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Serial imaging is frequently performed on patients

with diseases of the brain, to track and observe

changes. Magnetic resonance imaging provides very

detailed and rich information, and is therefore used

frequently for this application. The data provided by

MR can be so plentiful; however, that it obfuscates

the information the radiologist seeks. A system which

could reduce the large quantity of primitive data to a

smaller and more informative subset of data,

emphasizing change, would be useful. This article

discusses motivating factors for the production of an

automated process to this effect, and reviews the

approaches of previous authors. The discussion is

focused on brain tumors and multiple sclerosis, but

many of the ideas are applicable to other disease

processes, as well.
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WHEN A PATIENT is found to have a
brain tumor, a treatment protocol is

initiated which typically includes imaging
studies to localize the pathology and narrow the
differential diagnosis and biopsy to determine
the type of tumor. Interventions are chosen
depending on the biopsy-derived diagnosis,
which may include any combination of surgical
resection, generalized or localized radiation,
and chemotherapy. During and after interven-
tion, patients receive periodic imaging examin-
ations to watch for and monitor changes. In
serial imaging, the radiologist is presented with
an enormous amount of data. The changes may
be subtle. Tracking disease course is of great
clinical importance; however, with current
methods there is frequently ambiguity as to
whether or not a change has occurred, and it is
not typically readily apparent what changes
have occurred, where, and to what degree. The

exploration of methods of technological auto-
mation to improve this process is therefore one
of active investigation.
There are many acquisition-related factors

which make manual examination of studies for
the detection of pathology-related change diffi-
cult. Perfect image alignment is not possible
from one scan to the next, or even within one
acquisition (due to patient motion). Therefore,
one cannot assume a one-to-one correspon-
dence between slices from one acquisition to the
next to make side-by-side comparisons. Fur-
thermore, a different scanner may be used in a
followup scan which will have different signal
characteristics and may even have different
operating software. Often, magnetic resonance
(MR) or computer tomography (CT) scanning
parameters are not the same from one acquisi-
tion to the next. The gradients may have de-
cayed over time. Radiofrequency (RF) field
heterogeneities may have changed over time.
An essential component in the process of
change detection is therefore not simply the
detection of change but the separation of
acquisition-related change from disease-related
change. Methods that help to separate acquisi-
tion-related change from disease-related
change, methods that aid in reducing the
quantity of data presented to the radiologist,
and methods that produce objective, reproduc-
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ible, and accurate metrics of disease course are
of great interest. The introduction of serial
studies does add data volume, but understand-
ing the change in appearance over time is
essential to understanding disease course.

DETAILED REVIEW OF THE LITERATURE

Manual Inspection

The most common approach for the detec-
tion of change on imaging studies is visual
inspection; however, this approach suffers from
a myriad of problems. One of the most impor-
tant of these is the quantity of data presented to
the radiologist. At each acquisition, there are
multiple pulse sequences, each of which consists
of many slices. Change can present itself in
many ways, to different degrees spread across
different pulse sequences. The radiologist is re-
quired to assimilate all of this data in order to
render a decision, which often is quite difficult.
One group of authors showed that volumetric
changes of up to 59% were not appreciated by
visual inspection in their study.1 Some authors
have used subtraction to aid in the process of
manual inspection. One group applied a regis-
tration and subtraction technique which
reportedly achieves subvoxel registration accu-
racy in part through the use of sinc interpola-
tion.2,3 In summary, when certain conditions
are met (such as the data is band-limited), sinc
interpolation is a method of interpolation which
provides reduced error compared with other
interpolation techniques, eg, linear interpola-
tion. The sinc function is the in-slice point
spread function for MR because the data as
acquired in k-space is band-limited. In Hajnal et
al,2 the authors demonstrate the ability of their
technique to aid in the observation of many
kinds of subtle change. They show deforma-
tions in normal brain structure between a vol-
unteer with his head resting in the scanner on
the left side versus the right side (with the
deformations induced by gravity); brain growth
patterns in a normal child; changes in sulci,
cisterns, and sinuses when a normal subject
breathes 100% oxygen versus carbogen; the
growth of a brain tumor; progression of multi-
ple sclerosis; and postoperative changes in a
patient after undergoing endarterectomy (to

name a few). Though their technique represents
a valuable step in change detection, it is decid-
edly manual and subjective: The actual process
of interpreting the subtraction images is con-
ducted entirely by inspection. Furthermore,
these authors subtract only one pulse sequence
at a time, which still leaves the radiologist to
assimilate and mentally manage a potentially
large amount of information in order to yield a
clinical judgment. An important part of their
report, though, is that they assert, demonstrate,
and explain that with subtraction techniques
spatial changes smaller than one voxel can be
detected.
Some authors of articles on change detection

by subtraction incorporate modifications to the
basic approach. One group utilizes fast sinc
resampling, a modified version of sinc interpo-
lation as described above, to improve compu-
tational tractability.4 They additionally
incorporate a linear stretching term in the reg-
istration, as they remark that, during the sub-
traction phase, small changes in voxel size (eg,
due to variations in field gradients of an MR
scanner) can be misinterpreted as being due to
pathologic change. Another group has applied
change detection to patients with multiple
sclerosis.7 They utilize a surface registration
approach, followed by subtraction. Subvoxel
registration is likely to be an essential step in
any change detection approach. However, due
to the anisotropy of most current practical MR
pulse sequences, postacquisition registration of
nonisotropic pulse sequences necessarily re-
duces the acuity of interacquisition comparison,
particularly when the prescribed registration
involves a rotation through the plane of
acquisition. Furthermore, Rusinek et al.5 pres-
ent subtraction of T1-weighted images only;
however, change detection of diseases typically
requires the examination of many pulse se-
quences together. One group applies a test of
statistical significance after subtraction to re-
duce false positives, using a 3 · 3 · 3 window.6

Ettinger et al.7 combines classification and
subtraction in order to detect change.7 They
align serial images and subtract the classified
volumes to observe changes in patients with
multiple sclerosis. They remark that the sub-
traction of classified volumes helps to address a
number of issues related to acquisition such as
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changes induced by changing the scanner from
baseline to followup and RF heterogeneity ef-
fects. This is important, because it is a step to-
ward the separation of acquisition-related
changes from pathology-related changes. Their
classification, however, is a hard classifica-
tion—this unnecessarily reduces the ability of
the system to detect many types of changes (eg,
subtotal changes in tissue character and sub-
voxel changes in boundary location). Serial
scanning, in principle, should be able to detect
subvoxel shifts in boundaries; in many cases,
hard classification loses this information. As
with many articles on change detection, one
focus of the Ettinger et al.7 article is their serial
exam registration algorithm, which is a surface
registration strategy that uses the intracranial
cavity (ICC) as an invariant structure. This
approach reportedly only achieves a root mean
square (RMS) error of 1.96 mm, which is
insufficient to detect subtle changes. This low
accuracy likely results because this approach
does not take into consideration the position
and shape changes which the brain undergoes
relative to the ICC. The brain’s shape is not
invariant; it is pliable and can move within the
cranial cavity as a result of its suspension in
cerebrospinal fluid (CSF). The Hajnal et al2

article provides good demonstrations of chan-
ges in brain position and shape that can be
observed in normal and pathological cases. For
serial imaging in particular, registration is pos-
sible which yields accuracy of a fraction of a
voxel, since large portions of the anatomy will
be entirely unchanged. A technique which
overlooks this potential loses change detection
sensitivity unnecessarily. Furthermore, the au-
thors use trilinear interpolation to effect the fi-
nal transformation, which introduces errors.
Interpolation methods, such as sinc interpola-
tion, have less of a potential for introducing
errors; and in the ideal case (volumetric 3D
acquisition and infinite sinc window), sinc does
not introduce errors at all.

Measurement Sampling

The measurement of tumor diameter is one
approach that has been used to assess patient
status. Two standard methods are those of the
World Health Organization8 and the Southwest

Oncology Group.9 Both of these methods use
largest diameter and largest corresponding
perpendicular. More recent guidelines, such as
RECIST, promote the use of a single maximal
tumor diameter.10-14 There are significant
problems associated with maximal diameter
approaches. RECIST, for example, completely
ignores lesions smaller than 1 cm and limits the
overall measure to include a maximum of 5
individual lesions per organ.10 This method also
sums up computed diameters over multiple le-
sions, which can tend to obfuscate the responses
of individual lesions. Furthermore, the RECIST
guideline dictates that measurements should
only be taken within the acquisition plane,
which is problematic as lesions do not grow
strictly in-plane. Finally, RECIST assumes a
single image type and does not address how to
handle disparate boundaries seen on different
MR pulse sequences. For serial image inspec-
tion, the method would be completely insensi-
tive to tumors that grow in the through-plane
direction. Another problem with these ap-
proaches is the intended generality of their
application. Compared with other organs, the
brain is particularly sensitive to tumor location.
Some authors remark that the purpose of
objective tumor response quantification is to
develop a surrogate marker for the prediction
of clinical events such as symptom control, time
to death, or disease progression.12

Particularly with brain lesions, however, tu-
mor location greatly influences the relationship
between such a surrogate and its intended
clinical correlates. To disregard location infor-
mation is to potentially obfuscate this rela-
tionship beyond intelligibility. These techniques
are additionally designed to apply only to solid
tumors. Many features of brain tumors, such as
edema, necrosis, and in many cases the tumors
themselves, do not obey demarcations. It is not
surprising, therefore, that RECIST measure-
ments applied to brain tumors do not correlate
well with either radiologist impressions or clin-
ical status.
Although these approaches attempt to con-

struct an objective and quantitative metric and
make it one which the radiologist can compute
quickly and easily, the multiplicity of assump-
tions and the use of metrics which are so sen-
sitive to measurement uncertainty serve to
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undermine the ability to detect small changes.
Thiesse et al15 found major disagreements be-
tween observers for 40% of evaluations, and
minor disagreements for a further 10.5% of
evaluations. Much of this disagreement stems
from the sensitivity of the measures to poten-
tially small spatial measurement errors. Filipek
et al1 found volumetric changes of up to 145%
associated with radius changes of only 2.7 mm,
which may be difficult to appreciate, particu-
larly in light of the irregular borders exhibited
by many tumors. Clarke et al16 investigated the
two-diameter approach with serial MR images
of six glioma patients. They asked radiologists
to compute the maximum area using the two-
diameter method; they then determined that the
coefficient of variability of the area measure-
ments was 16%, which they attributed primarily
to human difficulty in determining the tumor
margin. They then asked the radiologists to use
their area measures to rate each patient using
the standardized categories: complete response,
partial response, stable disease, and progressive
disease. In 30% of the cases, the radiologists
were unable to reach a consensus because the
categories were so sensitive to the variability of
the area metric. The one- and two-diameter
measures are sometimes thought of as surrogate
markers for tumor volume, which in some
studies has been shown to be predictive of sur-
vival.17 In contrast, Chow et al17 also found
that the area of enhancing tumor was not pre-
dictive of survival. This may be explained by
Clarke et al16 who demonstrated that there was
no significant relationship between the two-
diameter-derived area measure and the tumor
volume, which may be due to variability in tu-
mor shape and lack of interobserver consis-
tency. In light of the findings of these studies, it
seems that the one- and two-diameter mea-
surement sampling approaches are suboptimal.
The use of automation, as opposed to shortcuts,
should prove much more efficacious in estab-
lishing a clinically usable and quantitative
technique to predict response and survival from
radiologic studies.

Volumetrics

Some authors have computed global volume
of each tissue of interest at each acquisition in a

series, with the intention of subtracting this
metric from one scan to the next. Examples of
this method are available for tumors, multiple
sclerosis,18 and Alzheimer’s diseases.5,19 A sig-
nificant problem with this approach is that,
from a mathematical standpoint, computing a
measure (such as volume of a structure of
interest) in one scan and then computing the
corresponding measure in a followup scan and
finally subtracting the two necessitates an in-
crease in uncertainty. This is not the case when
the change is computed in one step. Computing
volumes over unnecessarily large regions in an
image also affects uncertainty. The summed
error over many voxels in a volume (eg,
resulting from the determination of the
boundary position) can be prodigious and can
easily overwhelm small measures of interest,
such as those related to minimally detectable
change.
Jack et al19 used volumetric measurements of

the hippocampus and temporal horn to com-
pare a control group with a group of patients
with Alzheimer’s disease. They had an expert
outline these anatomical structures, and the
volumes for each patient were computed. Each
patient was reimaged approximately one year
later and the process of outlining and volume
computation was repeated. From these values,
annual percent change in volume of each ana-
tomical structure was computed. This approach
overlooks partial volume effects to some degree,
and so a subtle spatial shift along a boundary
might be overlooked, even if it extended for
many voxels and therefore included a relatively
large total volumetric change. It additionally
increases the uncertainty in the change metric,
in the sense that hard classification amounts to
‘‘rounding up’’ and ‘‘rounding down’’ of the
fuzzy membership of the boundary voxels.
Information exists in the image to delineate the
boundary between structures with subvoxel
precision. One person’s partial volume artifact
is another person’s subvoxel information. This
information is being discarded when boundaries
are manually delineated with only voxel-size
precision.
Volumetrics finds even greater obstacles

when applied to processes such as tumors and
multiple sclerosis because of the use of manual
boundary delineation of the structure of inter-
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est, and consequently the assignment of a hard
classification. Brain gliomas are usually infil-
trative and, therefore, within a voxel there exists
a gradation in membership. In this sense, hard
classification is unnatural to many tumors.
White matter can exhibit greater or lesser
enhancement and can be more or less edema-
tous. These changes in tissue character are at
least as significant as frank tumor growth, when
change is of interest. It is also possible for a
tumor to change shape without changing vol-
ume. For example, it is possible for part of a
tumor to become necrotic while another part
grows (yielding no net volumetric change). In
each of these cases, volumetric techniques
would not indicate that a change had occurred
when in fact one had. Another issue arises from
the fact that, from a clinical standpoint,
knowing where and how changes have occurred
is as important as knowing that they have oc-
curred. This will have a profound impact upon
how symptoms will manifest and upon prog-
nosis. If a tumor is invading eloquent regions of
the brain, the implication for treatment and
prognosis is quite different compared with when
a tumor is invading comparatively expendable
regions. Conventional volumetric techniques do
not provide information in this regard. Which
anatomic and functional structures are involved
will impact the choice of repeat intervention, or
even the possibility of repeat intervention.
Assuming mechanical considerations have been
taken into account,20 the location and degree of
change could also impact the choice of biopsy
site, since localized description of changes may
suggest that one region of a tumor was more
aggressive than another.
In a discussion of volumetrics with regard to

tumor imaging, it is important to discuss the
reason for computing volume change as op-
posed to static single volume. There is a lack of
consensus in the literature as to whether static
tumor volume is predictive of outcome. Some
authors have found volume to be predictive of
outcome,17 whereas other authors have not.21,22

One possible explanation for this disagreement
is that abnormal signal demonstrated in imag-
ing studies is not fully reflective of the extent of
pathology from a histologic standpoint. Kelly et
al 23,24 attempted to correlate MRI and biopsy
findings in a series of patients with previously

untreated intracranial glial neoplasms. Al-
though biopsy of tissue with normal MR
imaging characteristics was not performed with
all patients for ethical reasons, when it was
done, approximately half of the biopsies dem-
onstrated isolated tumor cells in regions of
parenchyma with normal imaging characteris-
tics. Burger et al25 examined postmortem sec-
tions of patients with glioblastoma multiforme
(GBM) and found isolated tumor cells in tissue
that imaged normally in MR, as distant as the
hemisphere opposite to that of the principal
lesion. Johnson et al26 examined four formalin-
fixed brain specimens from patients who had
had a previous diagnosis of GBM using post-
mortem MRI and microscopic studies of whole-
brain sections cut at the same level. They found
tumor cells up to 5 cm from the nearest MR
signal abnormality. Tovi et al27,28 compared
pre- and postmortem MR examinations of five
patients who had malignant glial brain tumors
with histopathologic examination of whole-
brain sections. In 4 of 5 cases, tumor cells were
found in distant areas that had appeared nor-
mal in the MR examinations. In one of their
cases, a well-demarcated 1 · 5-cm tumor was
found, and in two of their cases, tumor cells
were in the contralateral hemisphere. One rea-
son these findings are particularly significant is
that they strongly suggest that quantifying the
volume of abnormal imaging will not neces-
sarily provide an accurate representation of the
volume and extent of histologic tumor burden.
However, it is likely that change seen in imaging
is reflective of change from a histologic stand-
point. In a sense, therefore, change seen in serial
imaging is likely to be more strongly correlated
with clinical status than imaging-based static
volume measurements. This point is made more
concretely by Filipek et al1 who describe that
the speed of change is an indication of the
aggressiveness of the tumor and has been shown
statistically to be a predictor of response.
Haney et al29,30 emphasizes the importance of

detection of subtle changes. They describe
techniques for the computation of contrast-
enhancing tumor volume in serial MR and
growth rate secondarily, in order to predict
therapeutic response. They describe two meth-
ods, one based upon nearest-neighbor classifi-
cation and the other based upon surface
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modeling. In essence, they identify the tumor
and compute its volume at each acquisition.
They then subtract the volume found for one
acquisition from the volume found at the other
acquisition and divide by the time interval be-
tween scans to obtain the growth rate. The
authors apply these methods, in conjunction
with short-interval scanning (image acquisition
interval once per week), in order to assess the
efficacy of temozolamide, a chemotherapeutic
agent, in a patient with glioblastoma multifor-
mae.29 They demonstrate that short-interval
scanning and growth rate computation allows
investigators to observe the slowing and arrest
of tumor growth, following the administration
of their trial chemotherapeutic agent. They
suggest that long-interval scanning could miss
subtleties of the response, particularly if the
tumor later progressed. For example, if the next
followup scan had been taken after a response
and then progression, investigators might be led
to erroneously conclude that the tumor had
never responded. The authors further assert
that volume and growth rate computation using
such short-interval scanning may provide a
mechanism to disambiguate between radiation
necrosis and recurrent tumor in ambiguous le-
sions; the patient in that particular study had an
ambiguous lesion at the commencement of the
short-interval scanning protocol. One reason
this study is so germane to the current discus-
sion is that a short time interval between
acquisitions means volume changes will be
small. Small errors in determining the boundary
or region of the tumor, accumulated over a
large tumor volume, would have the potential
to obscure the presence, absence, and magni-
tude of any actual change. A system able to
localize and characterize minimally detectable
change, and only the change, has the potential
to make growth rate determination more accu-
rate and less obscured by uncertainty.

Warping

Rey et al31 have used nonlinear registration
(warping) as a method for detecting change.
There are advantages to this approach.
Thompson et al32 examined patterns of growth
and development in the brains of normal chil-
dren using continuum mechanical tensor maps.

They used serial T1-weighted fast SPGR MR
images, applied a bias field correction algo-
rithm, rigidly registered interaquisition images
and resampled using Chirp-Z (in plane) and
linear interpolation (through plane), and ap-
plied histogram matching. They constructed
surface models of the cortex, deep sulci, corpus
callosum, caudate, and ventricular surfaces
based upon manually defined points. They used
an elastic image registration algorithm to match
surfaces from one acquisition to the next; the
resulting surface deformations were used to
derive volumetric deformation fields from
which local measures of three-dimensional tis-
sue dilation and contraction were quantified.
They emphasized that volumetric techniques
overlook very important information: When
they reduce change to a small set of numbers
and attempt to use those numbers to describe
change, significant localized changes may be
overlooked. For example, between ages 7 and
11 years, the global measurements of these au-
thors showed an overall 22.4% increase in
midsagittal callosal cross-sectional area (where
cross-sectional area is an indication of the
number of white matter fibers crossing at that
location); however, they found local growth to
be as high as 80%. With regard to tumors, this is
a critical point if growth rate is a marker of
therapeutic response and prognosis. The meth-
od described above is an example of a class of
warping algorithms where the transformation is
derived based on the surfaces of structures
which have typically sharp boundaries but are
relatively homogenous internally. However,
brain tumors are inherently not discrete struc-
tures: Tumor, edema, and necrosis inherently
blend into structures of which they are a part. It
is therefore not appropriate to use surface
warping approaches in the case of tumors.
There are a number of problems with using

nonlinear registration for change detection. One
is that nonlinear registration is undercon-
strained. For a given pair of acquisitions, there
are an infinite number of displacement fields
that will yield a match. This problem is typically
partly addressed by specifying the constraints
under which the displacement field will be de-
rived, for example, by the use of continuum
mechanical models. A viscous fluid model of
Freeborough et al33, was used to register serial
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MR images of patients with Alzheimer’s dis-
ease. The use of a fluid model is an approxi-
mation; limited work has been done to describe
how tumors grow and how infiltration and
growth are balanced. These effects make it very
difficult to disambiguate the underconstrained
warping problem. In addition, current warping
algorithms also require a one-to-one tissue
correspondence, based upon intensity. Warping
algorithms are based on the assumption that a
particular region of tissue exists in both acqui-
sitions (and appears identical in terms of
intensity) and has simply moved. This is a
requirement which tumors frequently do not
meet. In tumor progression and regression, a
given region of tissue can not only move, it can
change character: white matter can become
enhancing or edematous; enhancing tumor can
become necrotic, etc. Infiltration and expansion
can coexist with this change of character as
well. The case of white matter becoming
edematous is an example of this, because edema
is known to result in a 10%–40% volumetric
expansion of white matter.34 This case is par-
ticularly underconstrained because the warping
algorithm is left to determine which region of
the image has become edematous and which
region represents white matter which was pre-
viously edematous and expanded. A similar is-
sue exists with infiltrative tumor. If new
enhancement arises adjacent to a region which
was previously enhancing, the algorithm must
determine whether previously nonenhancing
white matter has become infiltrated, or whether
the tumor itself has pushed the white matter
away, or a combination of these effects. To
some degree it may do this by inference,
through examination of mass effect in sur-
rounding tissue.
An approach that attempts to accomplish

this disambiguation of frank growth from tissue
character change has been described by Thirion
et al.35 The central theme provided by these
authors is that if new tissue is being deposited
(as in the case of tumor growth), then mass
effect will be present in adjacent structures.
They use a warping algorithm to develop a
vector displacement field from the serial imag-
ing studies. The user then gives the coordinates
of the center of a lesion to be examined, and the
algorithm places concentric shells (which may

be spheres or isocontours) around this point.
For each shell, the divergence of the warping
field is integrated over the volume within; this
yields the change in volume (DV) for that shell.
If character change is occurring within the shell
without deposition of new tissue, then as the
shells are made larger and larger, the computed
DV will return to zero, indicating that there is
no net change in volume within the shell. If, on
the other hand, DV reaches a plateau as the
shells are made larger and larger around the
lesion center, then real mass effect is present
and new tissue is being deposited. This ap-
proach of integrating divergence over the vol-
ume of a series of concentric shells centered on a
lesion center has a great deal of merit. The au-
thors demonstrate the algorithm’s ability to
detect changes where no changes in enhance-
ment are present at all, only mass effect. On the
other hand, there are a few significant draw-
backs. In the ideal case, if mass effect were
present, the computed value of DV would re-
main constant as soon as the shells were made
large enough to completely encompass the le-
sion. Because of noise, however, this is not the
case. As the shells become larger than the size
necessary to completely encompass the lesion,
the computed value of DV oscillates around the
theoretical DV plateau, and in fact the magni-
tude of this oscillation becomes larger and lar-
ger as the shell is made larger and larger. The
authors address this issue by setting all values of
their vector displacement field lower than a
specified threshold to zero in order to control
the noise. This is one critical problem since it
strictly limits the algorithm’s ability to detect
small changes. Furthermore, while this algo-
rithm works very well when a lesion generates
mass effect without a change in enhancement, it
works much less well at the other extreme:
change in enhancement with no mass effect. If a
region of lesion becomes more enhancing, for
example, a small level of enhancement increase
would not be recognized by the algorithm at all,
while larger enhancement increases would not
be differentiable from each other. Another
problem is related to the use of continuum
mechanical models for warping. The forces of
the continuum mechanical model resist the
forces generated by the intensity differences
between the two serial images being matched.36
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This is intentional. The purpose of these models
is to enforce smoothness and penalize locally
large deformations. Without these forces there
would be no penalty, for example, to prevent
the warping algorithm from moving a group of
colocated points from the first acquisition so
that they ended up on top of each other in the
second acquisition. However, particularly when
tissue class change occurs, large and irregular
deformations would be required if the trans-
formations are to be treated as if they were due
to deformation. The simple fact is that tissue
class changes are not due to deformation, so
attempting to model them as if they were, while
enforcing continuum mechanical constraints, is
inconsistent. The degree to which the mechan-
ical model is enforced will impact the system’s
ability to detect and characterize these kinds of
changes. Additionally, inferring change from
measured secondary mass effect is problematic
if the lesion exists in a large homogeneous re-
gion of white matter, since in a three-dimen-
sional volume the impact of mass effect decays
as the square of the distance. Small changes, in
particular, are quickly overwhelmed by noise
and generate no measurable mass effect in
neighboring structures. Another problem is that
this approach would not be particularly sensi-
tive to many small distributed changes, for
example, the development of distributed
necrosis. If small regions of necrosis appeared
within a previously enhancing tumor, the
warping algorithm would align enhancement
with enhancement; however, the displacement
and the divergences might not be large, even
though large changes in intensity had occurred.
Significant mass effect would not be expected
since the development of necrosis does not in-
volve the deposition of large amounts of new
tissue. This change could be overlooked, which
is significant given that the development of
necrosis is a significant prognostic indicator.22

Temporal Analysis

Some authors have described the analysis of
serial sets of MR images of patients with mul-
tiple sclerosis as 4D datasets.37,38 Gerig et al37

compute various metrics for each voxel, such as
difference between maximum and minimum
value over the time series, mean and standard

deviations over the time series, number of
crossings of the mean, maximum deviation
from the mean, minimum deviation from the
mean, maximum time gradient, etc. They then
combine these metrics to obtain a metric rep-
resenting the probability of a given voxel being
involved in lesion-related change over the given
time series. Knowledge of the disease process in
question, and the expected periodicity, allows
specific analysis of the fourth dimension (time).
There are differences between the analysis of
serial images of patients with multiple sclerosis
as described and the analysis of patients with
brain tumors. In the former, lesions are ex-
pected to wax and wane over time, so metrics
used to detect lesions and changes in lesions will
be attuned to this fact. Nevertheless, these au-
thors raise a very interesting point: In the
analysis of serial MR datasets, one may be at an
advantage if one is able to leave behind notions
of static numerical analysis and think of the
data in terms of a 4D dataset. One may be at an
even greater advantage if one is able to match
the metrics to the behavior of the disease pro-
cess being studied.

Steps in a Practical Change
Detection System

In practical terms, a change detection system
should not be thought of as an algorithm but
rather as a pipeline of algorithms and steps.38

Figure 1 shows a possible sequence of these
steps. Some of these steps are possible with
methods currently described in the literature
(eg, step 4: interscan scaling correction based
upon the size invariance of the intracranial
cavity), and some are not possible with cur-
rently available techniques. A good implemen-
tation of some steps could ameliorate the need
for others. For example, if perfect prospective
registration were possible, then retrospective
registration would be unnecessary. Likewise, if
control could be obtained over acquisition-re-
lated variability, then the need for subsequent
correction of inhomogeneities and intensity
normalization would be ameliorated. This dis-
cussion is not intended to be a final one; it is
intended only to address some of the issues
concerning practical change detection and to
point out that change detection represents a
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Fig 1. Possible steps in a practical change detection system.
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series of issues and not just one. To undertake
change detection necessitates developing ap-
proaches for separating acquisition-related
changes from the pathology-related changes,
which are of interest to the radiologist. This
section suggests some possible technical
approaches, but this list is by no means
exhaustive.

Preacquisition Registration of Scans

Kikinis et al.39 performed 24 serial exams of a
patient with multiple sclerosis over a one-year
period in order to track lesion evolution. As a
part of their study, they evaluated the variations
in head position. No effort was made to recre-
ate prior physical positioning from study to
study. They defined four points, ‘‘the nasion,
the external auditory canals, and a point at the
vertex.’’ They used a rigid body registration
algorithm using the intracranial cavity as a
basis for registration and determined that, over
the year, the average displacement without
registration was 0.9 cm; the minimum was
0.1 cm and the maximum was 1.9 cm. This is of
concern because interpolation to effect a regis-
tration transformation and bring two studies
into alignment results in artifacts, particularly
when thick slices, nonisotropic voxels, slice
gaps, and non-true-3D pulse sequences are
used. These artifacts limit the change detection
algorithm’s acuity. Another issue of positioning
relates to partial volume effects. Guttmann et
al.40 studied the impact of various factors on
lesion load in patients with multiple sclerosis.
They found that typical patient repositioning in
the scanner (completely unrelated to interpola-
tion) had a median impact of 5.4% on measured
lesion burden. Gawne–Cain et al.41 reported an
even larger median difference of 9.9% (the dif-
ference may have been partly attributable to the
fact that the first group of authors used 3-mm
contiguous slices while the second group of
authors used 5-mm contiguous slices). Both
groups used hard classification as their method
of identifying tumors (the first group used an
automatic classification technique and the sec-
ond group used manual contouring), and they
further reason that changes in partial volume
effects probably account for the bulk of the
changes in measured volume. It would be

interesting to investigate whether a fuzzy clas-
sification–based method for volume measure-
ment would suffer to the same degree from
changes in scan orientation in serial acquisition.
If nothing else, such a study would emphasize
how important fuzzy methods are in computing
volumes from an imaging modality for which
partial volume effects are endemic. Neverthe-
less, this variability in volume quantification
with positioning between scans is of critical
importance since it places a very significant
floor on the size of changes that can be detected
with serial imaging, even before any image
processing (even registration) has been under-
taken. Although acquiring serial scans already
aligned would not eliminate the errors these
authors describe (partial volume effects are al-
ways present), it would control the variability
they induce, and therefore measures of change
would be more reliable.
Kikinis et al.39 also reported that the act of

interpolating to register images that were ac-
quired out of registration had a statistically
significant impact on their measured lesion
load, particularly when the lesion load was
small. They used trilinear interpolation which is
far from optimal, but even sinc interpolation,
which theoretically should not introduce errors
when the image is a true 3D volumetric acqui-
sition, is generally windowed spatially (due to
computational considerations) and therefore
introduces artifact. Additionally, if the acqui-
sition is not 3D, sinc interpolation cannot be
used for through-slice interpolation. Further-
more, when the slice thickness is greater than
the in-plane voxel dimension, the act of rotating
through the through-plane direction introduces
additional blurring into the in-plane dimension.
Preacquisition registration would help to ame-
liorate these problems.
Preacquisition registration can take two

forms: mechanical and electronic. The first is
possible (to a certain degree) with technology
which is readily available. The community of
radiation therapy providers, for example, uses
masks molded to the shape of the patient’s face
to hold the head in the correct position and
orientation from one treatment session to the
next. Pilipuf et al.42 describes a system that
reportedly achieves submillimeter control over
positioning (mean = 0.6 mm, SD = 0.1 mm,
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max = 1.0 mm), with negligible patient dis-
comfort and low cost. Noninvasive head hold-
ers that use dental molds which the patient bites
on and which are rigidly affixed to the head
holder (which is in turn affixed to the scanner)
are also described.43,44 A noninvasive method
of head fixation that uses two ear plugs and one
rest situated on the patient’s nasion is also
described.45 A head fixation device using a
plaster mold of the head has also been
described.46 Many additional approaches for
head fixation exist; some key design consider-
ations have been described by Strother et al.47

Given the significance of change detection and
the cost of serial MR imaging, the relatively low
incremental cost and difficulty of using head
fixation devices probably justifies their use. An
additional benefit is that some approaches help
reduce motion artifacts. There is resistance to
their adoption, however, due to practical con-
siderations, such as claustrophobia and nausea
and vomiting.
Electronic registration would consist of

acquiring the followup volumes already in reg-
istration with the baseline scan by reorienting
the acquisition planes. An approach to this end
has been described by Oshio et al.48, in which
the authors use a noninvasive head frame with
two ear pieces in the patient’s auditory canals
and a nose piece on the patient’s nasion. The
head frame provides standard fiducial reference
points in a scouting image. Prior to acquisition
of the final followup scan, the slices are reori-
ented so that they are in registration with the
corresponding slices of the baseline scan. The
authors report that error using this system is
<1 mm, which they attribute to uncertainty in
the placement of the device, error in locating the
reference points, and patient motion.48 A pos-
sible alternative approach would be to use the
patient’s own brain as a basis for volumetric
registration and reorientation of the slices prior
to final image acquisition. At the time of the
followup scan, a test scan could be acquired and
the brain would be registered to the baseline
scan. The acquisition of the final scan would be
adjusted accordingly. It is likely that this would
be a preferable technique to the head frame
approaches described above, since it would re-
quire no additional hardware, would not
introduce patient discomfort, and would hope-

fully result in a more accurate registration. In a
comparison of registration strategies, it was
demonstrated that noninvasive stereotactic
head frames with fiducial markers performed
poorly compared with intensity-based
approaches.49 Although Strother et al.49 noted
that the fiducial landmarks themselves could be
aligned with high accuracy, they remarked that
the low performance observed was attributable
to the fact that the head holder is not com-
pletely stationary with regard to the skull, and
the skull is not completely stationary with re-
gard to the brain. Logically speaking, therefore,
if the brain is what is of interest, an optimal
approach would be one which acquires slices
using the brain itself as the basis for alignment.

Acquisition Considerations

For the purposes of change detection,
reducing slice thickness, eliminating interslice
gaps, having isotropic voxels, and preregistra-
tion are all desirable. These are interrelated to
some degree. For example, if one could perform
true 3D volumetric acquisitions with very small
voxels in all pulse sequences, and one was using
sinc interpolation with an infinitely large win-
dow, this would, to a certain extent, obviate the
need for preacquisition registration. In contrast,
if one had perfect registration prior to acquisi-
tion so that voxels at each time represented the
same portion of anatomy, there would be less
need for isotropic voxels. Overall, the following
factors should be maintained during serial
scanning: equivalence of the scanner used, the
pulse sequences used, the acquisition parame-
ters, and the scanner software. Slice gaps should
never be present because they represent areas in
which the change detection algorithm will be
completely unable to detect change, and more
importantly they make it impossible to establish
a one-to-one anatomical correspondence from
one acquisition to the next. They also make it
impossible to apply arbitrary linear or nonlin-
ear spatial transformations to the images. Other
acquisition-related changes, such as decay of
the gradient coils and inhomogeneities, should
be ameliorated to the greatest degree possible as
these represent changes which confound the
pathology-related changes of interest. If they
are present in the images, then the algorithm
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will be forced to attempt to remove them, and
this will not always be possible. Identical
administration of contrast (type, quantity,
method, time before acquisition, etc.) should
also be ensured.

Segmentation of Skull and Brain (Yielding
Identical Anatomy in Each Scan)

The subsection ‘‘Subvoxel Registration’’ be-
low discusses registration of the serial studies.
Several structures (the ears, the lower mandible,
the eyelids, the tongue, etc.) completely unre-
lated to the brain are acquired in a typical head
MRI. They are not invariant and therefore have
the potential to mislead the registration algo-
rithm. Since several of the algorithms below
require that each voxel represent exactly
homologous portions of anatomy at both
acquisitions (neglecting pathology-related
changes), it is essential that these structures be
prevented from misleading the registration
algorithm. Additionally, in the subsection
‘‘Scaling Correction’’ below, scaling is per-
formed based upon the inner table of the skull
and therefore this must also be segmented. The
actual act of segmentation will not be addressed
in detail here; a variety of algorithms and ap-
proaches exist to perform this task with varying
degrees of automation.50

Scaling Correction

It is commonly recognized that gradient
amplifiers of magnetic resonance imagers
change over time, resulting in a corresponding
scaling distortion of acquired images if proper
quality control does not correct this. In order to
detect changes associated with disease pro-
cesses, it is essential that these changes in the
gradient amplifier be reversed to prevent their
effects from being misinterpreted as changes
due to disease. A useful invariant for this pur-
pose is the inner table of the skull.4 A standard
linear registration algorithm could be used to
compute the scaling factors.
Obviously, however, the preferred method

would be for quality control personnel to pre-
vent these changes from entering into the
imaging studies by making adjustments to the
scanner prior to acquisition, because applying a

scaling factor would require use of interpolation
which, as discussed previously, almost invari-
ably introduces errors. It should be noted that it
is inadvisable to incorporate this scaling into
the registration algorithm proper—scaling cor-
rection should be derived based upon a different
part of the anatomy (inner table of the skull)
than the rigid body registration (the brain it-
self). Derivation of a scaling correction trans-
formation presumes that the structure upon
which the correction is based is invariant over
time. If this scaling correction were derived as a
part of a registration algorithm based upon the
brain itself, this assumption would be violated
since the brain may change under a pathologi-
cal process. If the scaling transformation were
derived based upon the brain, the transforma-
tion could unwittingly undo the process the
algorithms were created to measure. Likewise,
construction of a rigid body registration algo-
rithm should be based on the brain rather than
on the inner table of the skull, because the po-
sition of the brain is not fixed with respect to the
skull because of its suspension in CSF. On the
other hand, it would be undesirable to apply
interpolation twice since, as discussed previ-
ously, interpolation almost invariably intro-
duces errors. Therefore, a preferable approach
would be to begin by computing the scaling
transformation. Then at each iteration of the
registration algorithm (in the subvoxel regis-
tration step), the trial transformation matrix
(containing rotation and translation compo-
nents) would be multiplied by the previously
computed scaling matrix. The unified transfor-
mation would be applied as one and the cost
function computed.

Subvoxel Registration (Subvoxel Approach
with Subregioning)

Examples of linear registration algorithms
intended for serial studies which reportedly
achieve subvoxel accuracy are described in the
literature.2-4 Bosc et al.6 report using a nonlin-
ear registration step following an initial linear
registration step to correct for acquisition-re-
lated distortion of the brain. It is important to
note that these algorithms assume identical
underlying anatomy, which is exactly contrary
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to the assumption that patients have changes
occurring in their brain. Since the patient is the
same in each case, large portions of anatomy
are expected to be invariant; this is a great boon
to the registration algorithm. However, since
the subject under discussion is the detection of
change, some regions of anatomy may not be
invariant. A registration algorithm attempting
to achieve subvoxel accuracy should therefore
be able to base its transformation on only the
portions of the anatomy that are invariant from
the baseline to the followup scans. This can be
done quite simply. When the volumes are out of
alignment, the value of the cost function over
all voxels will be fairly uniformly poor. As the
volumes become aligned, the values of the cost
function for more and more voxels will be more
and more optimal. When the brains are per-
fectly aligned (assuming invariant anatomy),
the value of the cost function at all voxels will
be expected to occupy a distribution about
some optimal level. Image noise will obviously
prevent it from ever becoming a singleton. In
the case of disease process–induced anatomy
changes, a population of voxels will approach a
distribution about the optimum level when the
two volumes are registered, while a population
of voxels will remain as outliers. In this case,
these outlier voxels may be excluded from the
overall cost function computation at each trial.
The volume-wide cost function at each iteration
could then be computed as a combination of the
number of voxels included in the cost function
(which should be maximized) and the tradi-
tional metric such as the sum of the square of
the differences (which should be minimized).

Sinc Interpolation

Once the scaling and linear registration
transformations have been computed, they
should be combined, as discussed above, in
order that at most one interpolation procedure
be applied to the data. The transformation
should be effected using an algorithm that
introduces as little artifact as possible. Sinc
interpolation2,3 could be used in three dimen-
sions if the volumes were acquired in true 3D,
or sinc interpolation could be applied in-plane
with another algorithm out of plane (an inter-
polation algorithm which does not possess the

band-limited constraint of sinc interpolation,
such as trilinear interpolation). If computa-
tional considerations were a factor, fast sinc
could be used instead,4 since, with the use of a
head fixation device and preacquisition regis-
tration, the required transformation should be
small. If a volumetric intensity–based preac-
quisition registration approach is used to ac-
quire the scans in registration (as described in
the subsection ‘‘Preacquisition Registration of
Scans’’ above), the step of interpolation may
not be necessary at all.

Inhomogeneity Correction (Serial Imaging
Strategy)

As mentioned previously, the availability of
serial imaging studies affords a great opportu-
nity, since major portions of the anatomy will
remain invariant from one scan to the next.
Therefore, applying knowledge of the ways in
which inhomogeneities are likely to manifest,
the baseline scan may be used as a standard in
order to detect inhomogeneities in the followup
scan and viceversa.6 If inhomogeneity correc-
tion parameters were being optimized at the
same time as linear registration parameters (as
described above), the invariant structures could
be detected for both purposes and the simulta-
neous correction of inhomogeneities would aid
the registration algorithm. These two processes
would be symbiotic.

Change Computation

The step of change computation relates to
conversion of corrected image volumes into
measures of change. This process is somewhat
related to classification in the sense that it cor-
responds to a process of assigning each voxel in
an image to various classes, depending upon the
voxel’s location in feature space. There are
important differences, however. In classifica-
tion, what is of interest is static membership in
particular tissues/clusters. In change detection,
two things are of interest: what tissue(s) a par-
ticular voxel contains (similar to classification)
and, just as important, how that voxel moves
through feature space, from one scan to the
next.
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An obvious approach to the process of
change computation could consist of the com-
parison of two static classified membership
volumes, essentially by subtraction. This is a
valid way to approach this problem; however,
great advantages result from considering both
images together as a 4D dataset, specifically
with regard to the management of noise. Con-
sidering the data as a multiple acquisition/pulse
sequence volume also leads to a series of real-
izations, mostly relating to the availability of
important knowledge regarding the problem. In
classification, knowledge is available that voxel
locations in feature space tend to center around
clusters, each of which corresponds to a tissue.
In change detection, it is analogously important
to recognize that change tends to occur along
lines in feature space, between particular pairs
of cluster centroids. This knowledge is impor-
tant because it allows both the reduction of
noise and the simultaneous prevention of
problems before they enter the data. In most
voxels it can be assumed that at most two tis-
sues are present. With this assumption in hand,
voxels can be projected onto the line connecting
the two centroids involved, under the assump-
tion that any deviation from this line results
solely from noise. Knowledge of what classes of
transitions are physically possible results in a

reduction of the number of possible ‘‘lines’’ in
feature space to a manageable number, and the
availability of two acquisitions helps to disam-
biguate which line is relevant for a particular
voxel, in the face of noise. As mentioned, there
are some very specific problems which this ap-
proach helps to prevent from ever entering into
the data. An important example is given by
edema/white matter partial-volumed voxels,
which are located in feature space quite close to
the gray matter cluster in brain MRI. With the
knowledge that static voxel location in feature
space is not relevant, only the direction of mo-
tion is, this problem is overcome by avoidance
(Fig 2).

Fig 2. The gray matter cluster underlies the white edema line of transition. Using a static method, such as classify-subtract,

voxels moving along this transition would appear to change dramatically in gray matter membership. By focusing on direction of

movement and using knowledge of the way transitions occur, rather than static feature space location at each time point, the

problem of spurious gray matter change is obviated.

Table 1. Current Methods of Change Detection and

Quantification

Method Subtypes

Manual inspection Without subtraction

With subtraction

Measurement sampling Maximum diameter

Maximum area

Volumetrics Manual outlining

Classification

Surface modeling

Warping

Temporal analysis
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A simultaneous thread of logic involves the
quantification of change. Since partial-volume
(and mixing) effects manifest as linear combi-
nations of intensities over each pulse sequence,
in order to reverse the linear combination and
determine the relative proportions of the con-
stituent components, a Euclidean classifier is
necessary. In particular, when more than two
tissues are considered, Euclidean classifiers are
very susceptible to noise (a voxel will likely end
up having nonnegligible membership in all tis-
sues). However, the domain-specific knowledge
just described results in the ability to narrow the
consideration to at most two tissues per voxel.
The problem of change computation therefore
consists of two interrelated problems.
The first is the determination of which of a

short list of transition types each voxel con-
tains, which is an inherently crisp problem. The
second is the determination of distance traveled
through feature space of the voxel, in the
direction of that line, which is inherently a fuzzy
problem.

Significant Region Detection

At this point, data has been transformed
from imaging data to change data. Inevitably,
noise will result in false positives—voxels that
appear to have changed but actually have not.
A method is needed, therefore, to reduce the
number of false positives. This method may be
quite simple. For example, thresholding would
discard all changes smaller than a certain size. A
more appealing approach could take into ac-
count the fact that changes rarely occur in iso-
lation; when real changes occur, they usually
manifest as a group of spatially contiguous
voxels undergoing the same type of change. An
implementation of this type could require not
only that a voxel be above a certain magnitude
but that a minimum number of its neighbors
also be above that magnitude.51 Another ap-
proach used in the field of fMRI for allowing
groups of spatially colocated voxels to reinforce
each other involves using intelligent filters to
‘‘smear’’ large magnitude changes into their
neighbors52 (however, this results in errors,
both false positive and false negative, as one
might expect). Another approach is to use the
likelihood ratio to test whether a group of

voxels is changing,53 which allows smaller
clusters to be detected as change as long as their
magnitude is sufficiently high, as well as larger
clusters to be detected as change with a smaller
change requirement. A threshold based upon
cluster size is not only able to separate changes
of large magnitude from noise, but also sepa-
rate changes of much smaller magnitude con-
sisting of spatially contiguous groups of voxels
undergoing the same type of change.

Presentation of Results

The change membership volume generated in
the preceding step could be masked by the sig-
nificant region detection generated in this step.
The changes remaining—those computed to be
significant—could be displayed in a volume,
where each change type could be color-coded.
The magnitude of the change in each voxel could
be represented by the intensity of the color. The
colors could be superimposed upon an ana-
tomical image to help the radiologist orient him
or herself. In addition, quantitative summations

Fig 3. A sample change detection image. Type of change is

encoded by color; magnitude of change is encoded by the

intensity.
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could be made for each change type by adding
the change membership of each type over the
entire volume and multiplying by the volume of
each voxel. This would yield a volumetric rep-
resentation of how much white matter had be-
come enhancing, how much enhancing tumor
had become necrotic, and soon, based upon
fuzzy metrics. From this, net change in each
tissue could also be computed (Fig 3).

DISCUSSION AND SUMMARY

The field of change detection has been de-
scribed in which computational methods
assimilate multiple image types from two
acquisitions in a series and determine which
regions have changed, in what way, and to what
degree. It would seem to be an optimum use of
human and computer resources if the task of
acquisition to-acquisition comparison and
quantitative analysis should be assigned to the
computer, to which these tasks come naturally.
It is the process of interpretation and judgment
of those quantitative results which should be
given to the radiologist. Computational change
detection methods promise, to some degree, to
relieve the radiologist of ‘‘slice/information
overload", while simultaneously improving his
or her ability to interpret the data, in terms of
both acuity and speed.
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