
Software and Systems Modeling
https://doi.org/10.1007/s10270-024-01201-0

SPEC IAL SECT ION PAPER

Evaluating formal model verification tools in an industrial context: the
case of a smart device life cycle management system

Maxime Méré1,2 · Frédéric Jouault3 · Loïc Pallardy2 · Richard Perdriau3,4

Received: 4 May 2023 / Revised: 22 July 2024 / Accepted: 25 July 2024
© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2024

Abstract
The formal verification of the properties of semi-formal models canmake it easier to ensure their security and safety. However,
this task is generally cumbersome for non-specialists in formal verification, particularly in an industrial context. This paper
introduces an evaluation of four formal verification tools on an industrial case, called a Life Cycle Management System
(LCMS). This LCMS makes it possible to deploy Product-Service Systems (PSSs) to customers using Systems-on-Chip
(SoC). A PSS is a business model in which products and services are tightly connected and whose objective is to optimize the
use of products, with a positive environmental impact. A SoC can embed hardware security; however, a LCMSmust be secure
from end to end, which requires a verification not only of the used protocol (in this case, a blockchain-based protocol), but also
of the whole architecture. For that purpose, semi-formal UMLmodels of a LCMS were first specified and designed with their
associated properties, then improved in order to be formally verifiable. Despite being more complex, they remain capable of
being processed by dedicated tools. In this paper, Verifpal and ProVerif, two formal cryptographic protocol verifiers, are used
and evaluated for the cryptographic protocol and AnimUML (developed by one of the authors) and HugoRT, two verification
tools for behavior and UML for the architectural model are evaluated. These tools are assessed and compared according to
their coverage of properties and state spaces, limitations, and usability for non-specialists. Some limitations of the approach
itself are also provided.

Keywords UML verification · Cryptographic protocols · Formal verification tools · Formally verifiable models · Life cycle
management systems · Smart devices

Communicated by N. Bencomo, M. Wimmer, H. Sahraoui, and E.
Syriani.

B Maxime Méré
maxime.mere@st.com

Frédéric Jouault
f.jouault@gmail.com

Loïc Pallardy
loic.pallardy@st.com

Richard Perdriau
richard.perdriau@eseo.fr

1 Univ Rennes, INSA Rennes, CNRS, IETR - UMR 6164,
Rennes 35000, France

2 STMicroelectronics, Le Mans 72100, France

3 ESEO-Tech, Angers 49100, France

4 CNRS, IETR - UMR 6164, Rennes 35000, France

1 Introduction

Smart devices and the Internet of Things (IoT) are two of
the fastest growing areas of the electronics industry [1].
These devices are generally built around a System-on-Chip
(SoC), which, in addition to the central processing unit,
integrates multiple hardware blocks implementing useful
features. For instance, a SoC typically integrates random
access memory, flash memory, communication peripherals,
cryptographic accelerators, and power management, which
would otherwise have to be provided by separate compo-
nents. To the authors’ knowledge, apart from a few research
projects, activating new features in such SoCs by the way of
customization can be achieved either in the very first manu-
facturing stages or for a limited number of times. The main
reason is that there is currently no secure industrial solu-
tion to achieve this yet. Therefore, the introduction of a Life
Cycle Management System (LCMS), which enables secure
actions in untrusted environments throughout a product’s life

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10270-024-01201-0&domain=pdf
http://orcid.org/0000-0002-6234-5851

M. Méré et al.

cycle, would make it possible to reconfigure a SoC dynam-
ically in a secure manner and, consequently, to implement
Product-Service Systems (PSSs) [2]. Sometimes referred to
as Product-as-a-Service (PaaS), this way of providing prod-
ucts is considered more sustainable. A PSS considers that a
user does not pay for goods (physical objects) but for a ser-
vice provided by an object. Therefore, the manufacturer is
encouraged to produce long-lasting and maintainable prod-
ucts, of which it is in charge of their maintenance. For the
time being, this type of services is mainly offered to com-
panies [3]. The way printers are now often associated with
consumable subscriptions is a typical PSS example, although
the manufacturer is not necessarily in charge of the printer’s
maintenance. However, this has not been widely extended to
electronic devices yet. A LCMS could, for instance, auto-
matically disable a device unless its associated subscription
is renewed.

To be deployed, a LCMS requires a high level of security
to guarantee object functionalities cannot be compromised
by an attacker. For this reason, formal verification of such
a system’s properties is highly desirable. Model checking
tools are however often difficult to use by non-specialists.
Therefore, the objective of this work is to obtain results from
models designed with techniques more suitable to an indus-
trial context. This paper presents a methodology and provide
feedback on the usage and features of the associated tools.1

Within the team, the authors are organized as follows:

• An (internal) industrial client (third author) who requests
an LCMS component.

• Adesigner (first author) who establishes the specification
and design models, and who verifies the design models.

• A scientific and modeling expert (second author) who
gives advice on modeling, model debugging, and LTL
formulation.

• And finally, a SoC scientific expert (fourth author) who
helps in identifying the points of scientific value.

The approach we followed consists in first defining the
requirements, including informal properties, then creating
design models that need to be verified. Two aspects are mod-
eled: the architecture, and the cryptographic protocol. For
each of these, two verification tools are evaluated.

This article is an extension of a conference paper pre-
sented at MODELS 2022 [4]. It includes the original article
content with some additional Verifpal and AnimUML veri-
fication result details. Moreover, the context and motivation
are further detailed to give a better understanding of the use
case. In addition to the use of AnimUML, HugoRT, a sec-
ond UML-based verification tool, is used for comparison and

1 Additional material is available at https://github.com/meremST/
Extended-LCMS-Models

feedback. In a similar way, a new ProVerif verification part,
as well as the feedback associated with this tool are added for
protocol verification analysis. Finally, a new section called
“Limitations" discusses the different limitations of the case
study. The limitations of each tool’s evaluation are given in
their respective sections.

The main results of this work are the following. (1) Ani-
mUML is relatively simple to use by engineers knowing
UML, whereas HugoRT has more capabilities, but requires
expertise in its backend model checkers from its users. (2)
ProVerif is more powerful than Verifpal but also more com-
plex to use. In contrast, Verifpal models are quite similar
to UML sequence diagrams. Meanwhile, ProVerif employs
a process-based modeling approach, where messages are
exchanged through channels.

The main expected benefits of this work are threefold.
Firstly, engineers can apply the presented methodology, as
well as decide which verification tools to use based on our
evaluation. Secondly, tool providers get some feedback from
an application of their tools to an industrial case study.
Finally, researchers may get some ideas about which model
verification topics require additional research.

The paper is organized as follows. Section2 presents the
background case study and the motivations behind the inten-
tion to verify the model of such a system. Section3 describes
the case’s design and the properties to be checked. It also
describes the approach to create a design model that can be
verified. Problems that may be encountered during the verifi-
cation process are described in Sect. 4,while Sect. 5 describes
some related work. Sections6, 7 and 8 detail the approach
to formally verify the models using selected tools. The feed-
back on modeling and tool use is then presented in Sect. 9.
Finally, Sect. 10 presents the limitations of the case study,
before Sect. 11 gives some concluding remarks.

2 Context andmotivation

As mentioned previously, a LCMS offers the ability to per-
form secure remote actions on a product at any state of its
life cycle. There are already a few proposals in the literature
for applications similar to this LCMS concept [5, 6]. How-
ever, these proposals either do not fully meet the full LCMS
requirements [7], falling short of enabling a PSS or do not
seem to be implementable in the industry. Moreover, none of
them has been formally verified so far.

2.1 LCMS procedure

In order to ensure that an SoC is capable of implementing
an LCMS, certain features must be present [7]: Dynam-
ically reconfigurable SoCs, SoC ownership management,
system trustability. Firstly, a LCMS must have the ability

123

https://github.com/meremST/Extended-LCMS-Models
https://github.com/meremST/Extended-LCMS-Models

Evaluating formal model verification tools in an industrial context: the case of a smart…

to be reconfigured. This capability guarantees that the prod-
uct only gives access to services subscribed to by users. It
also makes it possible to modify (i.e., activate/deactivate)
specific features, typically in the form of IP (for intellectual
property) blocks (also more concisely called “IPs"), accord-
ing to future requests. Secondly, the possibility to manage
rights on the functionalities associated with a given device
must be ensured. This enables the management, at a com-
ponent level, of which features are accessible by chip users
and which actors can lock or unlock the associated services.
Finally, both the consumer and the service provider must
have guarantees that the system does not allow one of them
to trick the other.

A communication diagram presenting the process of a
simple, naive LCMS procedure for realizing these operations
is presented in Fig. 1. In this diagram, two users are repre-
sented: the Manufacturer, which is the initial owner of an
SoC component, and Alice, the manufacturer’s client, who
is about to acquire rights or a configuration on the SoC. The
different steps of this procedure are as follows.

0. The Manufacturer produces and initializes the LCMS,
and the component is provided in an inactivated state to
Alice (not shown in Fig. 1).

1. Alice requests specific rights and configurations and pays
for them.

2. The Manufacturer gives Alice a corresponding certifi-
cate.

3. Alice can transmit the certificate to the SoC to activate
the configuration.

This naive LCMSputs forward the risks that such a system
implies. Indeed, for now, the currently presented system can
be compromised by both the Manufacturer and Alice.

Firstly, the Manufacturer can send a certificate, and Alice
can choose not to send payment if the Manufacturer sends
the certificate first, and vice versa. This implies the need for
a “trusted by both" service to proceed with the transaction.

Secondly, some trust issues can be found with the LCMS
element itself. In a standard situation, it is relatively straight-
forward to ensure that the manufacturer has confidence in the
LCMS component. As the designer and manufacturer, they
know how the component works. In addition, technologies
such as OTP registers [8] (non-rewritable registers based on
a fuse system), secure memories [9], trusted firmware [10],
or dedicated IP blocks may be considered difficult enough
to break to make their exploitation uneconomical. However,
once the component is in the user’s environment, it is impos-
sible for the manufacturer to apply patches to the component
without their approval. At the opposite end of the spectrum,
Alice can only trust the Manufacturer and has no guarantee
as towhat is implemented. Themeans of ensuring confidence
in the SoC’s implementation are very rare in the literature.

The practice that comes closest is the study of ways to limit
the impact of hardware Trojans [11]. A hardware Trojan
is a malicious modification of an integrated circuit. When
activated, hardware Trojans attempt to bypass or disable a
system’s security barriers, for example, by divulging confi-
dential information such as private keys.

Other approaches propose to allow the user to verify the
implementation [12]. However, they are mainly aimed at
manufacturers as opposed to third-party implementations.
To avoid implementation mistrust issues in Alice’s case, it
is possible to rely on external certifications to guarantee the
component’s implementation [13].

2.2 Blockchain-based LCMS

In this industrial case study, it was decided to use a secure ele-
ment embedded in the SoC, in association with a blockchain-
based cryptographic protocol. This allows component access
rights to be securely transferred among users without the
need to trust a third party. Blockchain is a popular tech-
nology enabling decentralized, automated and trustworthy
digital applications [14].

Blockchain-based LCMSs are present in the literature [4]
and are mainly based on the work of Islam et al. [5]. The
schematic diagram shown in Fig. 2 presents such a system.
Here, a blockchain serves as a trusted element to implement
an exchange service. First, the manufacturer registers the
component’s information using a smart contract, which then
allows users to configure and pay for unlocking elements in
the component. The state of the component is then transmit-
ted to the SoC so that it can update itself accordingly.

To the authors’ knowledge, there are no proposals in
the literature to implement a blockchain-based LCMS in an
industrial environment [7]. This is mostly due to the number
of blockchain calls needed for a unique component. Indeed,
ownership transfer in the state-of-the-art case is made com-
ponent by component, as shown in Fig. 3 [5]. This implies
too many blockchain transactions, which would typically
become too costly when managing a large number of com-
ponents.

To make this type of operation compatible with industrial
production constraints, the case study’s component exchange
protocol is designed to operate in batches instead of individ-
ual components. The sequence diagram in Fig. 4 presents a
batch-based ownership transfer. SoCs inside batches have
the same properties (same configuration, same users). The
protocol allows the division of a batch into two sub-batches
to enable the exchange or modification of these sub-batches
independently. This retains the ability to modify component
sets in different ways while taking advantage of the fact that,
as a general rule, several components will be configured in
the same way.

123

M. Méré et al.

Fig. 1 Communication diagram
of a naive life cycle
management system

Fig. 2 Communication diagram
of a life cycle management
system. Colored boxes indicate
elements that users must trust
(i.e., Blockchain and LCMS)

Fig. 3 Standard ownership
transfer sequence diagram as is
it made in state of the art

Fig. 4 Batch ownership transfer sequence diagram. This approach can reduce the number of blockchain transactions

123

Evaluating formal model verification tools in an industrial context: the case of a smart…

In theory, this approachmakes it possible to limit the num-
ber of transactions on the blockchain. Indeed, in the standard
case, for N components, a minimum of N transactions must
be carried out on the blockchain. In a batch system, this num-
ber of transactions varies from 1 to N, depending on the level
of required component differentiation.

The next section will take a step toward the realization
of a blockchain-based LCMS by modeling and verifying its
design properties.

3 Approach

This section is intended to present the specification models
and provide guidance on how to proceed with the design. In
Sect. 3.1, themodel specification and the properties to be ver-
ified are discussed. Subsequently, in Sect. 3.2, an explanation
is provided regarding how the design model was created.

3.1 Model specification and properties

The system under study (the batch-based LCMS) is rep-
resented as a black-box interaction diagram in Fig. 5. All
actors able to interact with the system are represented with
associated connections showing possible exchanged mes-
sages. User represents service providers and device users.
Because manufacturers already know how to perform secure
provisioning at production time, and in order to simplify
explanations, component provisioning will be considered as
already performed. This means that there is no need for a
special Manufacturer actor, who would be able to send spe-
cific provisioningmessages to the LCMS. SecureStorage and
SoCIPs represent parts of the SoC in which the system is
embedded and with which it interacts. The former corre-
sponds to a kind of storage that is considered secure: it is
not possible to recover or modify data by means other than
the designed ones. SoCIPs represents the set of hardware IP
blocks that the system can activate or not. Blockchain refers
to a decentralized application (or smart contract) running on
a blockchain, and the messages it exchanges correspond to
smart contract functions that run on the blockchain. Smart
contracts are tamper-proof computer programs with self-
checking and self-executing properties [15]. Here, they allow
users to transfer ownership or to activate or deactivate some
IPs/features on a given component or batch. Users can then
present corresponding certificates to the LCMS in order to
update its internal state, and actually transfer access rights,
or enable specific IPs. Actual contents of these smart con-
tracts is out of the scope of this model, which focuses on the
LCMS.

Possible interactions between actors and system are the
following.

• getScript: unauthenticated message sent by any User to
the system, or by the system to SecureStorage. The script
corresponds to codewritten in a specific language used to
describe the purchased features of the chip. The details of
this scripting language are beyond the scope of this arti-
cle. scriptResp is the corresponding response containing
the script, which is a set of instructions that configure
the SoC as agreed between the different actors involved.
This configuration can be time-dependent.

• updateScript(isValid): authenticated message sent by a
specific User. scriptResp is the corresponding response.
isValid is a Boolean parameter that abstracts whether the
update is valid or not. In practice the SoC will check a
certificate’s authenticity, which is beyond the scope of
this model.

• powerOn: message sent byUser, modeling the startup of
the SoC.

• powerOff : message sent by User, modeling the physical
shutdown of the SoC.

• setScript: message sent to SecureStorage.writeAck is the
corresponding response.

• getConfig: message sent to SecureStorage. configResp is
the corresponding response. This exchange corresponds
to the data recovery that enables to configure the SoC IPs.

• setConfig: message sent to SecureStorage. writeAck is
the corresponding response. This exchange corresponds
to the modification of the data that represents the IP con-
figuration.

• setIPs: message sent to SoCIPs. This message corre-
sponds to the ability of the system to physically activate
or deactivate SoC IPs.

To be used in a trustworthy way, the system must satisfy
the following, informally expressed, properties:

• P1. Someone taking ownership of a batch of devices
should not be able to knowwhich components are present
in other batches. It helps in preserve a specific level of
confidentiality within data that is publicly accessible.

• P2. It must be impossible for an attacker to acquire SoC
ownership without the current user’s approval.

• P3. It must be impossible for an attacker to forge a cer-
tificate.

• P4. When the user makes a script request with LCMS
mode active, the system must answer.

• P5. When a write is made to SecureStorage it must be
due to a valid update.

• P6. In the SecureStorage memory, a script modification
must be followed by a configuration update before the IP
setup.

123

M. Méré et al.

Fig. 5 Interaction diagram for
the system under study. Here
User is an agglomeration of both
Manufacturer and Client roles

Verifying these properties would guarantee a better func-
tioning and security of the system, at least at the design level.
Other properties could be desired and verified, but this study
focuses on these six only.

3.2 Designing themodels

There are two main aspects to model: the system’s architec-
ture and the cryptographic protocol. There are therefore, two
complementary parts. A first one covers the system’s archi-
tecture, which focuses on the interactions of the LCMS with
its external actors, as well as between its internal elements.
A second one dedicated to the cryptographic protocol that
allows the generation of certificates at the end of an exchange
between involved users and the blockchain. Certificate gen-
eration is not the only possible approach [16], but is the one
used in this paper’s case study. These two aspects comple-
ment each other. The first focuses on the hardware operation
and abstracts away the interactions between users, while the
other is dedicated to protocol and cryptographic functions
and does not focus on the internal operation of the SoC. The
objective is to obtain security guarantees for a global solu-
tion. The following sections provide a description of how

they are modeled, which assumptions were made, and how
the properties presented above are impacted.

3.2.1 Architecture

TheLCMSarchitecturewasmodeled usingUML [17] and
is presented in Fig. 6. All object behaviors were modeled as
UML state machines. There are too many state machines to
show them all in this paper, but Fig. 7 shows the ipCtrlr state
machine, the part of the LCMS responsible for the physical
configuration of the SoC. More state machines are available
in the additional material. This model aims at being as accu-
rate as possible about interactions between the system and
the actors, as well as between the former’s internal elements.

In order to simplify the creation of this model while being
complementary to the protocol model, several assumptions
were made.

• Cryptographic and authentication operations were
abstracted. Since the protocol model is better suited to
check these operations, it is not necessary to overload
the architecture model with them.

123

Evaluating formal model verification tools in an industrial context: the case of a smart…

Fig. 6 Architecture diagram of
the LCMS

• The concept of batch is notmodeled. For the same reasons
as for cryptographic operations, this concept is inherent
to the protocol model and, therefore, can be abstracted
out here.

• SoC provisioning is considered to be already performed.
• All users (service providers and consumers) are repre-
sented as a single entity capable of sending messages to
the SoC. This abstraction can bemade because the model
is focused on the behavior of the system itself.

manager is the central part of the system. It is in charge
of analyzing proof of ownership, updating the configuration
script, and executing it to determine how the SoC should
be configured. It controls all other objects in the system.
It interacts with the other elements through the following
messages.

• setAlarm: message sent by manager to sClk. wakeUp is
the corresponding response that can occur at any time.

123

M. Méré et al.

Fig. 7 State machine of the ipCtrlr object

• stopAlarm: message sent by manage to sClk in response
to a wakeUp message. Its role is to reset sClk.

• updateConfig: message sent by manager to ipCtlr. Its
function is to ask ipCtrl to load a new configuration.

• powerOn: message sent by manager to ipCtlr.
• powerOff : message sent by manager to ipCtlr.

iface represents the interface that the SoC provides to the
LCMS component. All user messages go through this ele-
ment. It is also used to model the physical states of the
component, for example powering on the circuit or activating
the LCMS mode. These will be performed electrically, but
are abstracted as messages here. iface communicates using
the following messages.

• getScript: unauthenticated message sent by iface toman-
ager. scriptResp is the corresponding response always
sent.

• updateScript: message authenticated by User but sent
by iface to manager. scriptResp is the corresponding
response always sent.

• powerOn: message sent by iface to manager. It is the
startup command. Depending on its lcmPin parameter,
the LCMS will start in normal mode or in life cycle man-
agement mode.

• powerOff is a message sent by iface tomanager. It is the
shutdown command.

sClk is a secure time counter. It allows the LCMS to limit
access time to a given configuration or service. This element
is not essential for a LCMS but mandatory for a PSS, to make
sure service stops at the end of the contracted period, unless
it is renewed. The principle of operation of this element is
beyond the scope of this paper. ipCtrl is an element capable
of enabling or disabling hardware features in the SoC. It is
thus able to retrieve and implement a configuration generated
by the manager.

With this architecture-oriented model, properties P4, P5,
and P6 can be rephrased in the following way:

• P4. When User sends updateScript or getScript to iface
without sending powerOff afterward, and SoC is in
LCMS mode, then User must receive a scriptResp mes-
sage.

• P5. Writes (setScript and setConfig) on SecureStorage
must correspond to updateScript(true) messages sent to
the manager.

• P6. When SecureStorage receives a setScript message,
it must always be followed by setConfig before the next
setIPs message is sent to SoCIPs by ipCtrlr.

3.2.2 Cryptographic protocol

The design of the cryptographic protocol was modeled with
a semi-formal sequence diagram, as shown in Fig. 8. This
diagram represents the necessary exchanges between actors
and system to manage ownership transfer of a specific
SoC (SoC[0]) from a whole batch (SoC[0..N]). In these
exchanges, Alice is a User who is a customer of the PSS.
Manufacturer is the User who provides the service. In this
scenario, Manufacturer transfers the ownership of one SoC
to Alice, and then establishes a certificate for the specified
SoC configuration modification. Blockchain plays the role
of a decentralized and automated trusted third party.

Simplification assumptions were made for this model.
First of all, the SoC is considered already powered on and set
in LCMSmode. Provisioning and configurationmodification
were modeled but are not detailed on this figure for the sake
of brevity. The provisioning step consists in a factory ini-
tialization of the cryptographic elements of the chip, and in
the initialization of the smart contracts inside the blockchain.
Configuration modification consists in updating SoC scripts
in a secure way, for instance to activate some IP blocks.

Messages sent among participants are the following.

• Some messages described above: getScript, scriptResp,
and updateScript.

• getBatchInfo: unauthenticated message that can be sent
to the blockchain smart contract by anyone. The batch
information represent the proof of ownership of the SoC
by an user. This is needed to transfer ownership. batch-

123

Evaluating formal model verification tools in an industrial context: the case of a smart…

InfoResp is the corresponding response always sent back
by the smart contract, with parameters (may not be all
used at all times).

• sendUidAndAccProof : authenticatedmessage that canbe
sent by the current owner to the future one.

• sendNewBatch: unauthenticated (anyone can send it) but
signed message sent to the previous owner.

• divideBatch: authenticated message sent by a current
owner to the smart contract.divideResp is the correspond-
ing response.

• sendProof : authenticatedproof (signedbycurrent owner).

This model should satisfy the P1, P2, and P3 properties,
which can be further elaborated as:

• P1. The secrecy of a non-transfered SoC UID must be
preserved. Ideally, the number of non-transferred SoC
UIDs should also be confidential.

• P2. batchInfoResp message data must not be forged by
an attacker.

• P3. updateScript messages must not be forged by an
attacker.

After this presentation of the informal design models, the
following sections will focus on the verification process as
well as on the tools that can be used for that purpose.

4 Verification problems

This section presents the main problems encountered when
using formal verification tools, as well as what are the expec-
tations for the choice of a verification method. Moreover, it
presents which tools were chosen to perform the verification.

4.1 Common problems

There are two main problems: selecting a tool, and avoiding
state space explosion.

4.1.1 Tool requirements

In this case study, tools used to perform automatic property
verification must meet two main criteria. First, it should be
relatively easy for users with engineering backgrounds to
model their systems. Ideally, verifiable models should be as
close to the design models (here UML) as possible. Second,
the properties to verify should ideally be relatively simple to
express for these users.

4.1.2 State space explosion

Most of the tools able to automatically check properties on
models perform state space explorations [18]. The state space
of a givenmodel is a graphwith all its possible configurations
as nodes, and all possible transitions between configurations
as edges. Checking a property over this graph corresponds
to checking whether the property is true on the whole state
space. To be able to check properties on a model, its state
space must be finite and small enough to be storable, and
explorable in a reasonably short time. Otherwise, its state
space is said to explode.

In general, the more elements a model contains, the more
likely its state space will explode. For instance, adding a
simple Boolean variable may double the number of possible
configurations. Several heuristics help to keep state spaces
small enough for verification to be tractable.

• Model only what is necessary for property verification,
abstracting the rest.

• Limit the use of variables that can take many distinct
values (e.g., floats).

• Constrain themodel to “artificially" reduce its state space.
It is important to avoid constraining it excessively, oth-
erwise the model may become unrealistic.

4.2 Protocol-related verification

The main challenge with the cryptographic protocol is to
make sure that it uses cryptography in a secureway. It is there-
fore necessary to use a cryptography verification tool. One of
the most popular is ProVerif [19], which relies on the Dolev-
Yao model [20]. This tool represents a protocol in the form
of Horn clauses, and can prove secrecy and authentication
properties (and more globally correspondence properties).
Secrecy properties assert that an attacker cannot obtain a
secret. Authentication properties assert that an attacker can-
not impersonate another actor. ProVerif has been shown to
be a reliable tool for protocol verification. It offers extensive
protocol modeling capabilities, fast execution and reliable
results. However, the way protocols are modeled in ProVerif
is not necessarily obvious to engineers who are not used to
formal verification tools.

Greatly influenced by ProVerif, Verifpal [21] is also
designed for verifying the security of cryptographic protocols
using the Dolev-Yao model. However, its protocol specifica-
tion language is significantly simpler. It is relatively close
to a sequence diagram, which makes it more suitable for
userswith engineering backgrounds. Protocols specifiedwith
Verifpal can actually be visualized as sequence diagrams.
It nonetheless offers formal verification features similar to
ProVerif’s. To check the security of a protocol, Verifpal,
unlike ProVerif, uses an algorithm that performs transfor-

123

M. Méré et al.

Fig. 8 Sequence diagram of the cryptographic protocol

mations on protocol messages. These transformations come
from a set of mutations that an attacker would be able to
perform from the information that can be gathered by obser-
vation or that can be reconstructed. Verifpal then checks
if it has found a contradiction to one of the queries (i.e.,
properties) specified in the model. Verifpal allows to rel-
atively easily and efficiently model a given protocol. But
because of its relative youth, its performance has not been
evaluated rigorously yet. Finally, this tool does not sup-
port user-defined cryptographic primitives, which can be an

obstacle to describe specific protocols. However, this has the
advantage of preventing the use of ill-defined primitives.

For our project, we decided to use both Verifpal and
ProVerif in order to compare their results. Verifpal could
be considered as a better fit with our criteria due to its
user-friendly modeling language. But the robustness of the
verification algorithm and the better modeling capabilities
of ProVerif argue in its favor. More discussion about this
trade-off can be found in Sect. 9.

123

Evaluating formal model verification tools in an industrial context: the case of a smart…

4.3 Architecture-related verification

The initial tool chosen to model check the architecture is
AnimUML [22, 23]. However, other UML model checking
tools are available, like HugoRT [24]. According to a recent
survey [25], there are only three still-maintained UML verifi-
cation tools: HugoRT, AnimUML, and EMI [26]. Moreover,
AnimUML is actually EMI’s successor, and most mainte-
nance activity is now focused on the former. For this reason,
AnimUML andHugoRT are the two tools that will be used in
the remainder of this paper. Those tools are based on UML,
which is widely known by engineers.

AnimUML offers the possibility to animate partial UML
models. This makes it relatively easy to incrementally work
on a testable model, similarly to how developers incremen-
tally build software. AnimUML models can be specified
using the PlantUML syntax [27], a relatively simple to use
textual UML modeling tool. Furthermore, AnimUML can
verify Linear Temporal Logic (LTL) properties by connect-
ing to the OBP2 model checker.2 Verification thus uses the
same UML interpreter that is used for AnimUMLmodel ani-
mation. Therefore, verification directly operates at the UML
level, without requiring translation to a tool-specific formal
language. One benefit is that the counter-examples it pro-
duces are also directly expressed at the UML level.

We chose AnimUML because it can be used for specifi-
cation (e.g., Fig. 5), simulation and debugging of incomplete
design models as a way to detect shortcomings to improve,
as well as expression of LTL properties and formal model
checking from within a single user interface. However, this
choice is subjective, considering that AnimUML is devel-
oped by one of the authors (the second) of the present paper.

HugoRT supports code generation to Java, C++, and
Arduino, as well as model verification. It achieves the lat-
ter by translating UML models to the formal language of
model checkers used as verification backends: SPIN [28]
and UPPAAL [29], which are well known software verifi-
cation tools. This means that a UML model, which includes
active classes featuring state machines, collaborations, inter-
actions, and OCL constraints, can be transformed into the
system languages used by these model checkers. Verification
is performed by the model checker backends at the level of
their respective modeling languages. This means that verifi-
cation counter-examples have to be translated back to UML,
which HugoRT supports. Although AnimUML and HugoRT
focus on similar UML subsets, the semantics implemented
in HugoRT is slightly different from the one implemented
in AnimUML. Moreover, HugoRT does not support partial
modeling, and requires complete models to operate. Finally,
whereasAnimUML is based on a single semantics definition,
in the form of an interpreter, HugoRT consists of multiple

2 http://www.obpcdl.org/

transformations from UML to various backends with dif-
ferent semantics. The transformations are responsible for
making sure the semantics remain consistent.

5 Related work

This section describes research work around different mod-
eling and verification approaches for similar projects, also
including some examples of work on blockchain modeling.

Dewoprabowo et al. proposed a formal verification of a
protocol using ProVerif and TLA+ [30]. In their work, they
try to formally verify a divide and conquer key distribution
protocol. They use TLA+ to check whether all participants
in the protocol retrieve the mutual key simultaneously. Then
they use ProVerif to verify the protocol’s correctness as well
as its security against passive attackers. This approach is sim-
ilar to ours, which consists in checking architecture with a
general-purposemodel checker, and cryptographywithmore
specific tools such as Verifpal or ProVerif. Latif et al., have
presented an IoT and blockchain-based project modeled with
sequence diagrams translated and verified with the TLA+
tool [31]. They used UML to specify a blockchain-based
smart waste management system. Then they used the TLA+
toolbox to create and verify a formal model. Rocha et al.,
have introduced the modeling of blockchain-oriented appli-
cations [32]. They proposed three ways to model blockchain
applicationswithwell-knownmodeling languages, including
UML class diagrams. Among the research on protocol mod-
eling, Koch et al. proposed a way to automatically transform
scenario-based security protocol specifications into equiv-
alent inputs to multiple model checkers [33]. The authors
present VICE, a tool able to produce verifiable models from
a sequence diagrams. Zhang et al. depict how they used sym-
bolic model checking to verify QUIC, an HTTPS handshake
protocol improvement [34]. They used two model checking
tools (namely, ProVerif and Verifpal) to perform a formal
security analysis of their protocol, to identify design flaws,
and to propose a fix. Lauser et al. also discussed how formal
models can be used to verify the security of protocols used
in modern vehicles: how to model them and how to verify
them with tools [35]. Chen et al. have presented work where
they use UML sequence diagrams to express formal safety
requirements. They then transform them into intermediate
semantic models that can be formally verified [36].

There are also several articles that present ways to trans-
form UML models to allow formal verification. Csertan et
al. and Cabot et al. proposed tools which follow this line of
thought [37, 38]. The first one uses the VIATRA transforma-
tion tool to automatically check consistency, completeness,
and dependability requirements onUMLmodels. The second
one usesUMLtoCSP, a tool that can automatically check sev-
eral correctness properties starting fromUMLclass diagrams

123

http://www.obpcdl.org/

M. Méré et al.

and OCL constraints. Each of these approaches addresses
part of the solution we had to build for this work. To the
best of our knowledge, no similar blockchain-based hard-
ware system has been modeled and verified with UML yet.

Glouche et al. propose a work that looks like Verifpal’s
ability to visualize protocols modeled with a cryptographic
verifier [39]. They proposed a tool named SPAN that is able
to visualize and animate AVISPA models [40]. AVISPA is
a cryptographic protocol checker that has the ability to use
different verification techniques on the same protocol speci-
fication.

Finally, this article focuses on the design and specifica-
tion of the case study and not on smart contracts. However,
there are tools capable of analyzing them, such as Manticore
[41, 42], a symbolic execution tool for the analysis of binary
programs, and also of smart contracts.

6 Architecture model verification

AnimUML is the tool chosen to create the architecturemodel.
Section6.1 describes the AnimUML modeling capabilities.
Section6.2 explains the model conversion from AnimUML
to HugoRT, which is necessary in order to be able to eval-
uate the verification capabilities of HugoRT. Section6.3 is
focused on the simplification/abstraction performed on the
model to make it verifiable. Section6.4 explains how the
properties to be verified were expressed, and gives the veri-
fication results.

6.1 Improving the AnimUMLmodel

With AnimUML, active object behaviors can be defined as
state machines, which communicate via asynchronous oper-
ation calls. These objects can then be linked to communicate
with each other. The preferred method to create a custom
AnimUML model is to start from a HTML template file
with embedded JavaScript data representing the model. The
overall model structure is defined as a JavaScript object, and
specific parts can use an extended PlantUML syntax: state
machines, interactions (using the PlantUML sequence dia-
gram syntax), and class diagram. Although the PlantUML
syntax is relatively permissive, AnimUML enforces more
constraints. For instance, it makes it mandatory to correctly
write transition labels with:

• A trigger that makes it possible to match incoming mes-
sages in order to activate the transition.

• A guard so that the transition is only fireable if a specific
condition is met.

• An effect that will be executed when the transition is
fired.

The syntax used to describe a transition label follows the
UMLspecification, and is in the form:trigger[guard]
/effect. With AnimUML, user can construct and visual-
ize an executable model relatively quickly. This makes it
possible to animate and test the model’s behavior during its
construction. Once the model is finalized, it is possible to
explore its state space. This helps make sure the model is
sufficiently constrained to avoid state space explosion. As
a matter of fact, if state space exploration takes too long
for the user’s taste, it can be stopped, and a heat map of
fired transitions is superimposed on the state machine dia-
grams. A colored disk is displayed next to each transition
that shows if it was never fired (in red), or how often it was
fired (as shades of green). Moreover, the last reached config-
uration is also displayed, which shows active objects current
states, attribute values, and event pool contents. This sig-
nificantly helps understand what happens during state space
exploration in order to optimize the model. Once the system
is modeled, AnimUML allows to write the LTL properties to
be verified. Linear Temporal Logic (LTL) [43] is a form of
logic, originally designed to formally verify computer pro-
grams, which adds time-related modalities in addition to the
classical Boolean operators.

LTL formulas depend on predicates over the model. With
AnimUML, it is possible to define these predicates as watch
expressions that can be evaluated during model execution.
In addition to being usable in LTL formulas, these watch
expressions can also be used like regular debugging watch
expressions. This helps users check that their expressions
mean what they intend. AnimUML watch expressions are
written in the same JavaScript language as its guards and
effects, with support for observation/introspection operators:

• __ROOT__ can be used to start a path to a specific object.
• IS_IN_STATE makes it possible to check whether a
given object is in a particular state.

• EP_IS_EMPTY checks whether an object has received a
given message or not (with EP standing for event pool).

• EP_CONTAINS checks whether a given object has
received a specific message or not.

6.2 Converting themodel to HugoRT

The fundamental modeling capabilities of HugoRT are sim-
ilar to those of AnimUML: state machines, and connected
objects. However, HugoRT does not support partial mod-
eling, which means that features and behaviors must be
defined in classes, and cannot be defined on objects, as
allowed by AnimUML. Classes are thus defined along with
their properties, and their behavioral features, which may be
either operations or receptions. The latter are asynchronous,
whereas HugoRT only supports synchronous operation calls.
Active classes have their behaviors defined as statemachines.

123

Evaluating formal model verification tools in an industrial context: the case of a smart…

Because of the lack of partial modeling support in
HugoRT, and even though AnimUML supports the verifi-
cation of an incomplete model (e.g., with objects and state
machines but no classes), it must be completed before being
fed into HugoRT (e.g., classes must be defined). Fortunately,
AnimUML is generally able to automatically complete par-
tial models. In practice, it performs model static analysis in
order to report issues, including those related tomodel incom-
pleteness. Most of the reported issues come with quick fixes,
which can be used to make the model more complete step-
by-step, by solving one issue at a time. Finally, it is also
possible to ask the tool to apply all quick fixes in one go,
which is exactly what is required here.

Once the AnimUML model has been completed, there
remains 5 notable differences that must be addressed for the
conversion to work properly:

1. Communication. Because AnimUML objects commu-
nicate asynchronously, receptions must be used with
HugoRT instead of operations.

2. Trigger arguments. Whereas AnimUML makes it pos-
sible to use any name for transition trigger arguments,
only the reception parameter names can be used with
HugoRT. This requires some careful renaming.

3. Associations and connectors.HugoRT does not support
associations, which means that they must be trans-
lated into class properties. Similarly, connectors between
objects must be translated into object slots.

4. Choices. In the case of choice pseudostates, HugoRT
does not make it possible to directly access arguments
from incoming transition triggers in outgoing transition
guards. It is therefore necessary to store them temporarily
in specific properties, which must be added to the class.

5. Deferred triggers. AnimUML implicitly defers all
incoming events that cannot be immediately processed
by a state machine, whereas HugoRT drops such events
by default. They must therefore be explicitly declared as
deferred triggers.

Other than that, the translation is relatively straightforward.
Although we decided to translate our AnimUML model

to HugoRT, it would also be possible to directly create a
model for HugoRT: either in its own textual syntax, or with
a compatible Eclipse UML tool. However, HugoRT does not
support debugging. It is actually necessary to translate the
model (e.g., to SPIN) in order to see it in action, albeit at
the model checker’s level, not at the UML level. Because we
assumed engineers know UML, but not any specific model
checker, directly modeling the system with HugoRT would
be relatively difficult.

6.3 Simplifying and abstracting assumptions

Even with the simplifications discussed in Sect. 3.2.1, the
state space is still too large. Additional actions are required
to make it small enough to be fully explored. AnimUML
has an option to consider that the elements of the system
(objects) are necessarily faster than its environment (actors)
who request them. This is called the reactive system hypoth-
esis. This means that during exploration, the actors will be
able to make progress only if there are no more transitions in
the system to fire. Therefore, situations where the environ-
ment progresses without waiting for the system’s reaction
are avoided. For instance, this prevents actors from flooding
object event pools. However, some actors, such asUser here,
should also have less priority than others, such as SecureStor-
age. AnimUMLdoes not directly allow to prioritize one actor
over others, and this can lead to state space explosion. One
solution to this problem is to add specific guards on an actor
transitions to force it to wait for other actors to progress.
This was performed on User’s transitions in order to force
the User to wait for the more reactive actors (SecureStorage
and SoCIPs) to complete their operations. These guards can
be seen in Fig. 9, which shows User’s state machine. They
make use of the EP_IS_EMPTY introspection action. The
way User is modeled is also important. As shown in Fig. 9,
apart from the priority limitationswith respect to other actors,
User has few constraints and can send any message to the
component at any time. Thus, all possible combinations of
messages that it can send will be checked.

6.4 Formalizing and verifying properties

Translation from the informal expression of properties into
LTL versions verifiable by AnimUML coupled to OBP2 was
performed in three steps detailed in the following sections.

1. Define watch expressions (Sect. 6.4.1).
2. Rephrase the properties with the formulation of Dwyer’s

patterns [44] (Sect. 6.4.2).
3. Convert these into LTL properties while using the proper

watch expressions (Sect. 6.4.3).

6.4.1 Defining watch expressions

Watch expressions represent the elements of the model that
will be observed. They must correspond to parts of the infor-
mal property expressions. For instance, in the case of property
P4: “When User sends updateScript or getScript to iface
without sending powerOff afterward, if SoC is in LCMS
mode then User must receive a scriptResp message." can
be translated into: “When ifaceHasScriptMessage without
ifaceHasPowerOff, if ifaceIsInStatePOnLcmOn then user-
HasScriptRespmust be emitted." The same rewriting can be

123

M. Méré et al.

Fig. 9 User state diagram

performed on the other two properties P5 and P6. The whole
set of watch expressions is given in Table 1. Ideally, watch
expressions should be expressed only with elements already
in the black-box diagram. In our case watch expressions
ifaceIsInStatePOnLcmOn and managerHasValidUpdate do
not follow this rule. For the first one, the rule is not respected
to avoid too much complexity. In practice, it is difficult to
express that the system is on or off from an interface point
of view in a model with asynchronous communication. It is
often more convenient to express this by querying its internal
state. For the other one, the reason comes from the fact that
it is precisely when the component is in this particular state
that we want to verify that the state has not been reached by
abnormal means.

6.4.2 Rephrasing properties

LTL can be seen as reserved to users with good mathemat-
ical background because formulas can be relatively hard to
understand. Dwyer’s patterns [44] enable translating natural
language expressions to their mathematical representations.
In order to simplify the conversion, it was decided to refor-
mulate the properties to match the way Dwyer’s patterns are
expressed. Properties P4, P5, and P6 are reformulated into:

• P4.Globally ((userHasScriptResp or chipHasPowerOff)
responds to ifaceHasScriptMessage After (Globally
ifaceIsInStatePOnLcmOn)).

• P5. Globally managerHasValidUpdate respond to mem-
oryWrite or ifaceHasPowerOff.

• P5 bis. Globally managerHasValidUpdate precedes to
memoryWrite.

• P6.Globally (sstrHasSetScript implies sstrHasSetConfig
before IPsHasSetIP).

It should be noted here that P5 can be interpreted in two
different ways. It depends on whether one interprets P5 as
a liveness property (if something is going to happen) or a
safety property (if something is not going to happen). These
two variations are relevant and will both be evaluated. Here,
P5 corresponds to the liveness property and P5 bis to the
safety property.

After this rephrasing, the only thing left to do is to convert
them.

6.4.3 Converting to LTL

Once the properties have been reformulated, their conversion
to LTL is direct. Thisway it is possible to obtain the following
LTL properties:

• P4.[]([] ifaceIsInStatePOnLcmOn -> []
(ifaceHasScriptMessage -> <>
(userHasScriptResp ||
ifaceHasPowerOff)))

• P5.[](managerHasValidUpdate -> <>
(memoryWrite || ifaceHasPowerOff))

123

Evaluating formal model verification tools in an industrial context: the case of a smart…

Table 1 Definition of watch expressions

Name AnimUML signification

ifaceHasPowerOff EP_CONTAINS(iface,powerOff)

ifaceHasScriptMessage EP_CONTAINS(iface,updateScript)||EP_CONTAINS(iface,getScript)
userHasScriptResp EP_CONTAINS(User,scriptResp)

ifaceIsInStatePOnLcmOn IS_IN_STATE(iface,iface.icInterface.pOnLcmOn)

sstrHasSetScript EP_CONTAINS(SecureStorage,setScript)

sstrHasSetConfig EP_CONTAINS(SecureStorage, setConfig)

memoryWrite sstrHasSetScript || sstrHasSetConfig

managerHasValidUpdate IS_IN_STATE(manager,manager.clcmMode.executingScript)

IPsHasSetIP EP_CONTAINS(SoCIPs,setIPs)

• P5 bis.!memoryWrite W managerHasValid
Update

• P6.[](<>IPsHasSetIP -> (sstrHasSetScript
-> (!IPsHasSetIP U (sstrHasSetConfig &&
!IPsHasSetIP))) U IPsHasSetIP)

6.5 Results

All these properties, when verified on the model with Ani-
mUMLcoupled toOBP2,were found to be satisfied. It should
be noticed that despite the use of Dwyer’s patterns, it was
required to make several iterations before obtaining a good
formulation. Indeed, some properties initially failed, but by
observing counter-examples, it became clear that it was the
property rather than the design that was incorrectly formu-
lated. However, we were not able to verify these properties
with HugoRT (more details in Sect. 9.2.2).

7 Cryptographic protocol verification with
verifpal

As explained in Sect. 4, Verifpal is used as well as ProVerif to
verify the protocol model. Section7.1 presents how the Ver-
ifpal language works. Section7.2 describes how our protocol
sequence diagram can be translated to Verifpal. Assumptions
are listed in Sects. 7.3, 7.4 discusses property formalization
and finally, Sect. 7.5 details verification results.

7.1 Verifpal language overview

Protocol modeling with Verifpal is performed as follows.
First, an attacker type must be declared as passive or active.
A passive attacker can read transmitted messages but cannot
modify them. An active attacker is able to mutate messages
and perform man-in-the-middle attacks. Then, initial cryp-
tographic operations performed by each actor are declared.
Actors are automatically declared when they are involved in

the protocol. It is possible to generate constants, and to apply
cryptographic primitives such as public key generation, hash-
ing, symmetric and asymmetric encryption, message signing
or concatenation and de-concatenation. After these opera-
tions, actors can message some of the resulting data to other
actors. Actors who receive such messages can use available
cryptographic primitives on the received data to check their
validity or continue to describe the protocol flow. Once the
protocol exchange is described, it is possible to check prop-
erties by expressing them as queries. Verifpal can test four
types of queries.

• Confidentiality checks that no attacker is ever able to
obtain data marked as confidential.

• Authentication checks that no attacker can ever forge spe-
cific messages by pretending they come from legitimate
actors.

• Freshness checks that replay attacks, where oldmessages
are resent by an attacker as if they were new, are not
possible.

• Unlinkabilities checks that attackers cannot distinguish
whether two values belong to the same user or to two
different users.

7.2 Translating the sequence diagram

Switching from a sequence diagram toVerifpal code requires
some work. Listing 1 lists the code for the Verifpal model
excerpt that corresponds to the Actual SoC ownership trans-
fer part of Fig. 8. This exchange represents the phase during
which the new component owner (Alice) retrieves the data
needed to update the component from Blockchain, and
updates the component. The getBatchInfo query message
is not represented in Verifpal. It is an unauthenticated
requestwhich allowsAlice to get thebatchInfoResp response.
Because anyone can perform this query at any time, it does
not play any cryptographic role, and can thus be omitted.
The batchInfoResp response is represented. It contains the

123

M. Méré et al.

Listing 1 Verifpal sample code that correspond to the SoC ownership transfer phase
1 // not modeled: getBatchInfo
2 // batchInfoResp:
3 Blockchain −> Alice : [newOwnershipProof]
4 principal Alice[
5 _ = SIGNVERIF(pkMan, newBatchRootProof, newOwnershipProof)?
6]
7 // updateScript:
8 Alice −> SoC: newOwnershipProof, salt, newBatchRoot, newBatchRootProof, pkAlice
9 principal SoC[

10 // SoC checks exchange proof
11 _ = ASSERT(HASH(HASH(uid0) ,HASH(salt)) , newBatchRoot)?
12 _ = SIGNVERIF(I_pkMan,newBatchRootProof, newOwnershipProof)?
13 _ = SIGNVERIF(pkAlice, newBatchRoot, newBatchRootProof)?
14]
15 //not modeled: scriptResp

relevant cryptographic elements for the verification. For the
same reasons scriptResp, the response to updateScript, is
not represented because it only acts as an acknowledgment.
A Verifpal message takes the form: A -> B: message.
Only arguments of messages are actually modeled, because
only arguments, not message names, are used to perform
cryptographic operations. Furthermore, it is not possible to
reassign another value to a variable. Square brackets []
around an argument indicate that it is guarded. This means
that it can be read by an active attacker but not tamperedwith.
All parameters sent and received by Blockchain are guarded
to model the immutable characteristic that it guarantees.

In addition to messages, the Verifpal model includes addi-
tional information. Indeed, it is necessary to model which
cryptographic actions actors perform to construct messages.
The checks (e.g., of signatures) made by actors on mes-
sagesmust also bemodeled. Verifpal represents these actions
in the format principal Actor[code]. Listing 1
contains two occurrences of these. First, Alice performs a
signature verification (with SIGNVERIF) on the proof of
ownership she has just received. This gives her the guaran-
tee that this proof has been signed by the previous owner.
Second, the SoC checks (with ASSERT) that it is actually
included in newBatchRoot. It then verifies that this new con-
figuration is signed by the new owner and countersigned by
the old one. It already knows the previous owner’s public key
from a previous ownership transfer, or from initial provision-
ing for its first owner. Therefore, it can validate the proof and
update its status.

7.3 Assumptions for model simplification

In order to make verification tractable, state space explosion
must be contained by introducing some abstractions. First,
the proposed batch system has been modeled as a set of two
components only. There is the component sold to Alice with
unique identifier uid0, and the one kept by Manufacturer
with unique identifier uidN. By using only two compo-
nents, we artificially simplify the computations required to
model the accumulator and reduce the amount of data the

attacker can manipulate. This simplification prevents state
space explosion while being expressed with the same param-
eters as for N element. Secondly, Verifpal offers a phases
system. Phases allow to compartmentalize the protocol. An
attacker can only manipulate variables within the limits of
the phases in which they are communicated. This reduces the
number of attempts made by the attacker to manipulate each
variable. Phases must be chosen carefully. Using too many
of them can lead to missed potential attacks. In this project,
four phases have been used. The first phase corresponds to
SoC provisioning done by the manufacturer. The second one
is for contract initialization in the blockchain. The third one
encompasses the SoC ownership transfer exchanges. Inter-
nal component state update forms the fourth and last phase.
These four phases correspond to independent steps in the
protocol. It is therefore not necessary to allow the attacker to
change the parameters of the previous phases.

7.4 Formalizing and verifying properties

As a reminder, the properties that can be verified on the pro-
tocol model are P1, P2 and P3. Listing 2 shows the Verifpal
code that specifies the corresponding queries.

Listing 2 Verifpal queries code
1 queries[
2 confidentiality? uidN //P1
3 authentication? Blockchain −> Alice : batchRootProof //P2
4 authentication? Alice −> SoC: newOwnershipProof //P3
5 authentication? Alice −> SoC: newBatchRootProof //P3
6]

These queries can be understood in the following way.

• P1. can the attacker get the value of uidN?
• P2. when Blockchain sends batchInfoResp, is it possible
for an attacker to change the batchRootProof parameter
without Alice noticing?

• P3. is translated into two queries. The first one asks
whether, when Alice sends updateScript, it is possible for
an attacker to change the newOwnershipProof parameter
without the SoC noticing it or not. The second one asks
whether, when Alice sends updateScript, it is possible for

123

Evaluating formal model verification tools in an industrial context: the case of a smart…

an attacker to change the newBatchRootProof parameter
without the SoC noticing it or not.

These four queries and the three properties to be checked
can be linked as described in the following. The first query
makes sure that it is not possible for the attacker to be able to
retrieve the value ofuidN. It is used to prove that it is not pos-
sible for someone to identify elements that are not part of the
exchange, as mandated by P1. The second query ensures that
batchInfoResp messages cannot be corrupted by an attacker
and be seen as a valid message. This corresponds to the def-
inition of the P2. It is important to note that this property is
mainly fulfilled by the fact that the message is retrieved from
a blockchain. As our simplifying assumptions make us con-
sider this kind of message as intrinsically unmodifiable, this
query is mostly a sanity check. The last two queries, when
combined, verifyP3. The third query checks that newOwner-
shipProof cannot be modified. This parameter is used by the
update message to guarantee to the SoC that the ownership
modification is valid. An attacker able to forge this param-
eter could then create fake ownership modifications or load
illegitimate configurations. The last query goes hand in hand
with the third. It consists in checking that newBatchRoot-
Proof, which is the signed content of newOwnershipProof,
is itself signed by the new owner.

7.5 Results

The verification results show that P1 and P2 requests passed.
This means that if the queries properly match the proper-
ties, and the exploration performed by Verifpal is sufficiently
exhaustive, then the protocol model conforms to its specifi-
cations. In the case of P3, the latest version of Verifpal (0.27
as of writing this paper) corrects a bug and now, unlike with
version 0.26, it prints a trace of a potential attack in both
queries dedicated to P3. After analysis of the traces given by
the tool, it appears that this attack is a false positive. Indeed,
in the Verifpal model, there are several successive checks.
It seems that when earlier checks should stop the iteration,
Verifpal continues exploring it. Faced with these findings,
the results obtained with ProVerif should help to clarify the
situation, so that the results of the two tools can be compared.

8 Cryptographic protocol verification with
ProVerif

In order to compare the results obtain with Verifpal with a
more well-known cryptographic verifier, ProVerif is used to
perform the same protocol verification of the model. This
section is ordered in the same way as Sect. 7. Thus, the way
ProVerif works is presented in Sect. 8.1. Section8.3 explains
how to adapt our model in order to be able to verify it.

Section8.2 lists the simplification assumptions made when
converting the model into the ProVerif language. Finally,
Sect. 8.4 explains how properties to check can be expressed,
and Sect. 8.5 presents the verification results.

8.1 ProVerif language overview

TheProVerifmodeling language3 is less straightforward than
the Verifpal one. In ProVerif, protocols are modeled as pro-
cesses that send messages over channels. They use different
user-defined primitives that are used to build, cipher, and
decipher messages. In general, a ProVerif file is organized
in four parts: (1) channel definition, (2) types and primitive
declarations, (3) properties to check, and (4) processes dec-
larations.

First of all, ProVerif uses channels to transfer messages
between processes. These channels can be public or private,
depending on whether one wants the attacker to be able to
access them or not. Processes can use the out(channel, data)
and in(channel, data) functions to send or retrieve data on a
given channel.

After channel declarations, types and functions used in the
protocolmust be defined. Specific data such as private or pub-
lic keys, host identifiers, typed data, can be declared as types.
Cryptographic primitives are constructedwith the use of con-
structors and destructors. Listing 3 presents the creation of
an asymmetric encryption primitive with this technique. In
this example, a private key (skey) type and a public key (pkey)
type are declared with the type system. The pk constructor
allows the construction of the public key from the private
key. encrypt constructs an encrypted message of type bit-
string (a standard type in ProVerif). It takes for arguments
the clear message of type bitstring and the public key of type
pkey. The destructor symbolized by “reduc forall" allows
to retrieve the message x using the decrypt function, which
needs the ciphered message (encrypt(x,pk(y))) and the secret
key (y) to recover the clear message x. This system of con-
structors and destructors allows for the definition of many
cryptographic primitives such as hashing, symmetric encryp-
tion, and authentication tags.

Once the channels and the cryptographic primitives are
specified, the properties to be checked over the proto-
col can be defined. ProVerif can check secrecy properties
(secrets are not accessible to the attacker) and even strong
secrecy (the attacker cannot see if a secret changes over
time, similar to unlinkability in Verifpal, but not used in
the present case study). Authentication, and more generally
“correspondence" properties, are also possible (the attacker
cannot modify a message without being detected, which
corresponds to authentication and freshness properties in

3 More information and tutorial are available in the ProVerif manual
[45].

123

M. Méré et al.

Listing 3 ProVerif type and function definition example. example taken from [45]
1 type pkey (* Public key type *)
2 type skey (* Secret key type *)
3

4 fun pk(skey) : pkey.
5 fun encrypt(bitstring, pkey) : bitstring.
6 reduc forall x: bitstring, y: skey;
7 decrypt(encrypt(x,pk(y)) ,y) = x.

Verifpal). Finally, ProVerif is able to prove equivalence
between two processes (they cannot be distinguished) [46].
More details on how to write the properties will be given in
Sect. 8.4.

Listing 4 ProVerif extract of the SoC process
1 let processSoC(pkMan: pkey) =
2 (*Secure provisioning*)
3 in (sc, (skSoC: skey, pkSoC: pkey, uidx1 : id,
4 Hroot: bitstring)) ;
5 (* Not modeled: reception of getScript message*)
6 if pkSoC = pk(skSoC) then
7 let signedUidx = sign(id_to_bitstring(uidx1) , skSoC) in
8 out(c, signedUidx) ; (*Correspond to scriptResp*)
9 (*The code continues...*)

The last part of a ProVerif script is composed of the actor
processes and the main process, which launches the whole
system. Listing 4 presents the first lines of the process that
represents the behavior of “SoC" as an example. The def-
inition of the process starts with “let proccessName()" and
finishes with a period. The presented code shows the pro-
visioning, and the first getScript received by the SoC from
Alice.

More precisely, it shows:

• The reception of the provisioning data through a secured
channel named sc.

• The verification of the integrity of the private and public
keys.

• The construction and the sending of the message on the c
channel (in response to the non-modeled getScript from
Alice).

8.2 Model simplification assumptions

In order to facilitate designing the ProVerif model, some
simplification has been performed. Firstly, the assumptions
made for Verifpal are also made here. Secondly, the way the
blockchain is modeled is also simplified. Indeed, in the origi-
nal sequence diagram, as well as in the architecture diagram,
the blockchain is considered as an actor with a behavior that
corresponds to the decentralized application that runs on it.
Conte de leon et al. [47], present the emergent and desired
properties in the case of a blockchain. The properties of a
blockchain can be summarized as being a decentralized reg-
ister in which the registered data are immutable provided that
the majority of the contributors are honest. The blockchain’s
role in the case of the protocol is to transmit data with the

guarantee that there will be consensus among all the applica-
tion users and nobody will be able to modify it. It is therefore
possible to represent the blockchain in ProVerif as a channel
with public messages that are impossible to tamper with. To
do this in ProVerif, a private channel named bc is dedicated
to messages that pass through the blockchain. Messages are
sent directly from the actor who sends them to the blockchain
to the actor who uses them in the protocol. In order to make
this data visible to the attacker, the other actors send dupli-
cate blockchain data on a public channel. Finally, the actors
compare the data received on the public channel with the
ones received on the private channel to prevent the attacker
from modifying them.

8.3 Turning a sequence diagram into a ProVerif
model

The way a protocol model differs in comparison to a
sequence diagram is important. The conversion from a
sequence to a set of processes is not straightforward andprone
to errors.Moreover, ProVerif does not indicate if the protocol
works properly. Worse, a protocol that is not functional, and
does not properly transmitmessages,may not violate security
properties. Thus, it may be considered as secure, although it
does not work. To simplify this process and limit these prob-
lems, we propose to use “intermediate UML diagrams."

8.3.1 Modeling actor behavior in UML

Figure 10 presents such a diagram. On it are listed all the
actors involved in the protocol, as well as the messages that
they can send to each other. The goal is then to determine the
behavior of each actor in the form of a state diagram, in order
to reproduce the protocol sequence diagram. For this process,
a tool that is able to animate and debug UMLmodels, such as
AnimUML, is helpful. After asserting the architecture state
machines are able to reproduce the sequence diagram, they
can be translated into a ProVerif process.

8.3.2 Converting intermediate diagrams to ProVerif

Figure 11 gives an example of a working state machine for
the SoC behavior. On this state diagram, it is possible to see
the first state, the provisioning step, as well as the first request

123

Evaluating formal model verification tools in an industrial context: the case of a smart…

Fig. 10 Intermediate interaction
diagram in order to go from the
protocol sequence diagram to
process for ProVerif

Fig. 11 SoC behavior in the
intermediate interaction
diagram. This state diagram can
be translated to a ProVerif
process

from Alice to the SoC, which consists of the SoC sending its
signed UID. Converting this diagram into a ProVerif model
can be done in the following way:

• The triggers correspond to the reception of data by the
process and can therefore be translated into the in func-
tion of ProVerif.

• The effects are equivalent to sending data and therefore
correspond to out in ProVerif.

• Guards and choice states can be transcribed as an “if then
else” conditional function.

Based on these principles, Listing 4 presented earlier
showspart of the translation of theSoCstate diagram.Finally,
it is possible to generate a trace in ProVerif to check if

the modeled protocol is running properly. Indeed, ProVerif
can evaluate the non-reachability of events within a model.
This can be done by using a query with the form: “query
param:type; event(anEvent(param)).
" with anEvent the name of the event to reach. If ProVerif
can reach the event, it will return that the query does not hold
and give a trace that proves that the event is reachable. It is
then easy to analyze the trace and check that this corresponds
to the correct protocol exchange.

8.4 Verifying properties

In our use case, the three properties to checkwith the protocol
model are privacy and authentication properties. ProVerif can

123

M. Méré et al.

verify such properties. The declaration of the properties in
ProVerif is done the following way.

8.4.1 Confidentiality properties

In the case of confidentiality properties, the usermust declare
the namespace of the data that must remain secret. The
data are declared private and the keyword not attacker(data-
name) must be used to clearly specify that the attacker must
not know the data. Finally, the keywords query attacker(data-
name) indicate to ProVerif that we want to check that the
attacker is not able to recover the data (here data-name).
Listing 5 shows how P1 can be expressed in ProVerif. It can
be noticed that this way of defining such a property is similar
to what is done in Verifpal.

Listing 5 ProVerif confidentiality property example
1 (* Secrecy assumptions *)
2 free uidN : id [private] .
3 not attacker (uidN) .
4 (* Queries, correspond to P1*)
5 query attacker (uidN) .

8.4.2 Authentication properties

The way to obtain authentication properties in ProVerif is
less straightforward. It is based on an event system. Listing 6
shows how P2 and P3 can be expressed.

Listing 6 ProVerif authentication propertie example
1 (* Events declarations *)
2 event ManSendBCCertif(pkey, pkey) .
3 event AliceRecBRProof(pkey, pkey) .
4 event ManSendCertif(pkey, bitstring) .
5 event socAcceptCertif(pkey, bitstring) .
6

7 (* Authentication, Correspond to P2 *)
8 query pkA: pkey, pkM: pkey;
9 inj−event(AliceRecBRProof(pkM,pkA))

10 ==> inj−event(ManSendBCCertif(pkM,pkA)) .
11 (* Correspond to P3 *)
12 query pkA: pkey, pkM: pkey, cert: bitstring;
13 inj−event(socAcceptCertif(pkA,cert))
14 ==> inj−event(ManSendCertif(pkM,cert)) .

In this case, the events needed to express the property
are defined first. Those events are called in the process
at key moments of the protocol. For instance, the event
ManSendBCCertif is sent just before Manufacturer sends
the newOwnershipProof into the blockchain. In a similar
way, AliceRecBRProof is emitted after Alice receives the
newOwnershipProof from the blockchain. Each event con-
tains types as parameters. This allows to take into account
part of the context during which the event occurs. To define
an authentication property, a query must be written in the
form: “query event(eventName1(paramsType))
==> event(eventName2(paramsType))."
with eventName 1 and 2, two specific events. This line of code
can be interpreted as: “If event eventName1 occurs then event
eventName2 necessarily occurs before." If an attacker is able

to make one process emit an event without the other process
emitting the other event before, this proves that the attacker
is able to impersonate that process. Listing 6 is expressed
this way. In the case of P2, we check if an attacker is able
to tamper with messages that came from the blockchain. For
P3, the ability of the attacker to forge updateScript messages
is verified. Listing 6 makes the use of the inj-event keyword
instead of event. inj-event stands for injective event. Injective
events are more powerful than classical events. In the case
of an injective event, ProVerif will also check that for each
occurrence of the first event, there is a distinct earlier occur-
rence of the other event. With an injective event, it is possible
to detect things like replay attacks. These are stronger prop-
erties than just authentication.

8.5 Results

Twomodels have beendesigned: one that abstracts provision-
ing and one that does not. The idea of abstracting comes from
the fact that provisioning is considered as safe by assumption.
Whatever the model, P1 and P2 are considered true. For P3
the results are more complex. In the first model, the result is
false and the trace seems to show that a replay attack and even
an authentication attack are possible. This looks problematic
because these attacks only exist because multiple SoC pro-
cesses have the same UID, which in reality is not possible.
The second model corrects this problem by modeling provi-
sioning and thus allowing all SoC instances to have their own
uid. This model does not find any attacks on P3, but is not
able to prove that there are none. However, ProVerif is able
to prove that it is not possible for the attacker to forge these
messages. One additional property has been tested (it can be
considered as a P3.5 property). This one aims to ensure that
the attacker is not able to forge configurations for the SoC. In
the first model, the function could be forged by the attacker
because the certificate receiver was not specified, and there-
fore the message could be reused. By modifying this in the
secondmodel, the results are better, but the absence of replay
attack cannot be proven either. This is logical since P3.5 can
only be proven if P3 is proven. It is important to note that
only the properties with injective events are not proven. The
case of classical events is shown to be true by ProVerif for
both P3 and P3.5.

9 Feedback

The specification, modeling, and formal verification of an
LCMS component have allowed us to gain insights into the
experience of modeling LCMSs. This was achieved with the
help of tools adapted to engineers andUMLuserswho are not
necessarily formal verification specialists, shedding light on
the interest of this approach. This section presents our feed-

123

Evaluating formal model verification tools in an industrial context: the case of a smart…

back on using Verifpal, ProVerif, AnimUML and HugoRT to
verify a model that consists of both a cryptographic pro-
tocol and a hardware architecture built around an LCMS
component. Section9.1 starts with themodeling process, and
Sect. 9.2 is dedicated to the tools.

9.1 Modeling process

The first step was to survey existing tools, from which we
realized that no single tool would be able to verify both
the cryptographic protocol and the architecture. Originally,
it was not obvious to go from UML to a protocol veri-
fication tool. This solution emerged when it was realized
how complex it would be to model a verifiable crypto-
graphic protocol with AnimUML or HugoRT. Because they
are general-purpose modeling tools, all cryptographic sup-
port would have had to be manually modeled, with the risk
of not being able to optimize enough to contain state space
explosion. Tools specifically designed for this task, such as
Verifpal or ProVerif, have dedicated algorithms and features
not found inUMLcheckers, to the authors’ knowledge. Sepa-
rating the model into a cryptographic protocol model, and an
architecture model was the next step. While it is not impos-
sible to attempt to verify cryptographic protocols with tools
like AnimUML, attempting to validate everything in a single
model maymake the taskmore time consuming and difficult.
The following sections discuss models creation.

9.1.1 Architecture model

The decision to use UML to model the architecture and
behavior of our hardware component is related to several fac-
tors. Firstly, even if UML is primarily designed for software
development, it is also possible to use it to design hardware
[48]. In our situation, the behavioral nature of our hardware
description implies that the model can be either a software
running on a secure microcontroller or a dedicated circuit.
Therefore, the choice between a full hardware solution, and
a software-hardware hybrid one can be taken at a later time,
offering more flexibility. Secondly, UML is a language that
is relatively well-known by engineers. Finally, the fact that
AnimUML is developed by one of the authors of the present
paper obviously impacted our choice. The main benefit of
using AnimUML for model checking comes from the fact
that the tool allows both design and verification from a sin-
gle user interface. Being able to animate early design models
was also useful in improving our model.

9.1.2 Protocol model

The translation from a sequence diagram describing a secu-
rity protocol to a Verifpal model required some adaptations.
A Verifpal model needs more details to model the protocol.

The same thing is true for ProVerif. In the original sequence
diagram, only the messages sent between participants are
visible. Verifpal and ProVerif also need to know how the
participants generate the parameters that are found in these
messages. Protocol modeling as a sequence diagram is there-
fore not complete enough.On the other hand, theVerifpal and
ProVerif models provide an accurate picture of the protocol
behavior.However, the exchange ofmessages is limited to the
strict minimum. Only messages that are directly relevant to
protocol security evaluation appear. Moreover, only message
parameters appear, not their names. In a way, the sequence
diagram and the Verifpal code or the ProVerif model are
complementary in modeling the protocol. We would have
liked to try using an approach that supports direct sequence
diagram annotation, such as [33], but we could not find the
corresponding tools.

9.2 Tools

The following sections present our feedback on the Ani-
mUML, HugoRT, Verifpal and ProVerif tools. The models
were run on a laptop with a 2.6 GHz Intel Core i5-1145G7
processor and 16 GB of RAM. The Verifpal model check
takes about 2h while the verification of ProVerif model is
done in a few seconds. In the case of AnimUML, a property
takes less than 10s to be checked with AnimUML and OBP2
running on the same machine. As for HugoRT, we were not
able to perform the verification, as is explained in Sect. 9.2.2.

9.2.1 AnimUML

Before talking about our feedback onAnimUML, it is impor-
tant to remember that one of the authors is at the origin of the
tool. Even if the person in charge of modeling the LCMS is
not directly involved in the development of the tool, the opin-
ions presented in this paper are necessarily biased. The most
interesting thing with AnimUML is that in the case of the
architectural model, it was possible to do everything with a
single tool, from architectural specification to LTL property
verification passing through model debugging. Among the
main highlights, there is the generation of sequence diagrams
during a manual simulation, which is a relatively useful way
to manually test the compliance of a model with its speci-
fications. Being able to use multiverse debugging [49] with
AnimUML is also useful, for instance to automatically find
a configuration in which a given watch expression is true.
The display of verification counter-examples as sequence
diagrams in terms of the design model also significantly
helps identifying the reasons for the failure. However, Ani-
mUML also has some negative points: information about
model analysis is not yet fully documented. Consequently,
it is sometimes hard to debug a model unless first having
been trained to know what functionalities are available. For

123

M. Méré et al.

instance, there is a heat map functionality that makes it pos-
sible to check how often a state machine’s transitions have
been explored. This is a useful way to detect if a model
enters all states. Another possibility is to perform depth-first
exploration rather than breadth-first, which allows to detect
different problems while debugging. We can also regret that
AnimUML does not offer more fine-grained scheduling con-
trol than the reactive system hypothesis yet. Indeed, in order
tomake state space exploration tractable, it is possible to con-
sider the system as faster than its environment. This means
that actor transitions will only be triggered when the sys-
tem itself can no longer trigger its own. This functionality
is useful but lacks precision, and is insufficient in our case.
It is nevertheless possible to encode priorities into environ-
ment transition guards as shown in Fig. 9. To conclude, like
Verifpal, AnimUML is a relatively recent tool. The available
options on its graphical interface are numerous but not neces-
sarily straightforward. Moreover, its graphical interface can
still be improved.

9.2.2 HugoRT

The threemain advantages ofHugoRT thatwe have identified
with respect to AnimUML are the following:

1. Complex model verification. Because HugoRT del-
egates verification to the SPIN and UPPAAL model
checkers, it benefits from their capacity to explore rel-
atively large state spaces, compared to what can be
achieved with AnimUML.

2. Timed verification.With UPPAAL, it is possible to per-
form timed verification. This is invaluable when one
needs it, although our case study does not in its present
form.

3. Sequence diagram properties. Although we have not
tried it, HugoRT offers the possibility to use sequence
diagrams in order to define properties, in the form of
observers.

However, although we have been able to launch SPIN
verifications, we have not been able to verify our model
with HugoRT. Indeed, it does not behave as expected: some
parts of the model that are explored with AnimUML remain
unexplored with SPIN. This is likely something that could
be debugged, given more time, but we have already spent
roughly as much time with HugoRT as we did with Ani-
mUML. This is not a drawback of HugoRT, but it shows that
working with different tools that encode slightly different
UML semantics is hard.

The four main limitations of HugoRT that we have iden-
tified with respect to AnimUML are the following:

1. Semantic Gap. It is not possible to simulate or debug
models directly at the UML level. We therefore found it
necessary to understand SPIN, plus how the UMLmodel
is translated. The translations of the traces back to UML,
although extremely useful, have some missing elements
(e.g., some message sources), are relatively verbose, and
do not support visualization as UML (e.g., sequence) dia-
grams.

2. No partial modeling. HugoRT does not support par-
tial models, which was especially useful while creating
the AnimUML model. Although we have not tried to
create the HugoRT model from scratch, we expect that
this would have been significantly harder than with Ani-
mUML.

3. Limited observation language. HugoRT’s “observa-
tion" language (what one writes LTL atomic properties
in) is more limited than AnimUML’s: one can query
an object’s current state (with inState), but not the con-
tents of its event pool. Moreover, HugoRT’s observation
language cannot be used in transition guards, which is
something we use when modeling the environment as
active actors in AnimUML, as in Fig. 9.

4. Priorities. HugoRT does not support giving a lower pri-
ority to the environment, which is something we use
in AnimUML (via the reactive system hypothesis) to
“delay" state space explosion.

Remark: we nonetheless managed to encode the last two
points (environment transition guards that observe other
objects’ event pools, and priorities) by editing the SPIN
model generated by HugoRT.

In conclusion: using HugoRT can bring some benefits,
but it requires additional expertise beyond what we assumed
engineers had. Obviously, the validity of this section’s con-
tents is impacted by our bias toward AnimUML, and by the
fact that we were not able to verify our model with HugoRT.

9.2.3 Verifpal

Themain quality of Verifpal is the one that made us decide to
use it, namely its relatively user-friendly language. Indeed,
this tool is designed to easily obtain aworkingmodel and ver-
ify properties [21]. In addition to the relative simplicity of this
language (compared to, e.g., ProVerif) for bothmodeling and
property declaration, the tool also has clear documentation.
However, Verifpal turns out to be inconvenient on several
points. Firstly, the impossibility of designing cryptographic
primitives can complicate, or even stop, the possibility to
model some protocols. For instance, the original protocol of
our LCMS system was supposed to use an RSA Accumulator
[50]. Accumulators are cryptographic techniques that are one
way membership hash functions. For a given set of elements,
they produce a condensate as well as membership and non-

123

Evaluating formal model verification tools in an industrial context: the case of a smart…

membership proofs for any element of the set. In order to
still attempt to model the protocol, it was decided to design a
new version that uses Merkle trees instead [51]. Merkle trees
are also capable of producing a condensate as well as a set of
evidence that prove the presence (but not the absence) of the
elements inside. This other primitive is also not available on
Verifpal, but it is possible to reconstruct a simplified version
from the hash and concatenation primitives. This compro-
mise was made because being able to verify the protocol
is critical: more features should not threaten security. Sec-
ondly, Verifpal offers a conversion feature from its models
into ProVerif ones. This is an interesting capability, because
moving from a Verifpal model to a ProVerif model, even if
incomplete, could be a good way to access ProVerif’s fea-
tures with reduced effort. In addition, ProVerif’s verification
methods are more tested, and can work on multiple protocol
usage scenarios, whereas Verifpal focuses on a single one.
However, in our case, this conversion tool produces a partic-
ularly verbose and complex non-working code. Therefore it
is not usable as it is. Finally, Veripal is still a relatively recent
tool and is currently in beta version. Even if the queries pass,
it is not necessarily a complete proof that there is no flaw. The
results obtained with Verifpal leave us doubtful. Indeed, for
P1 and P2 they correspond to those of ProVerif. But for P3,
the attack found by Verifpal was complex to analyze. Indeed
the trace is unclear, and its interpretation leads us to believe
that it is a false positive.

9.2.4 ProVerif

Since ProVerif has the same role as Verifpal, we rely on the
latter to identify the qualities of the former. According to its
designers, ProVerif’s ability to reason with reachability, cor-
respondences, and observational equivalence is sound.When
ProVerif says that a property is satisfied, then themodel really
does guarantee that property holds. However, ProVerif is not
complete and may not be capable of proving a property that
holds. The results of ProVerif are easier to analyze than those
ofVerifpal. ProVerif gives a lot of details and theHTMLinter-
face available with the tool allows to have a graphical trace
of potential attacks. ProVerif also has detailed and clear doc-
umentation. but it also has disadvantages. Its learning curve
is higher and it is more error prone in comparison with Ver-
ifpal. The risk of error comes from the fact that if there is a
problem in the model, it will not be obvious, and the proper-
ties to be checked will be considered as true. For instance, on
the first version of the second ProVerif model, a transmission
channel error was made by mistake. The receiver was listen-
ing to a different channel than the transmitter. This prevented
the whole protocol from running because the “in" function
used to retrieve the data is blocked. This error could be spot-
ted by first using the intermediate UML diagram. Then, it
is possible to check directly with ProVerif that the protocol

is executed correctly by using a special property in ProVerif
that fails if an event at the end of the protocol is produced.
ProVerif will be able to give a trace of this “fail" and it is then
possible to check that this trace corresponds to the protocol
sequence diagram.

Using UML and AnimUML to prepare the conversion of
the specifications diagram to the ProVerif model helps to
limit errors. Firstly, the intermediate interaction diagram can
be animated to prove that it is able to reproduce the sequence
diagram. Secondly, more liveness properties can be verified
with AnimUML. This was not done as part of this study, but
is feasible.

In our case, ProVerif has not been able to prove that prop-
erty P3 is true, but has no evidence that it is false either.
At least the non-injective property is considered true, which
means that in a strict sense P3 holds (messages cannot be
forged), but we don’t have the proof that the protocol is insen-
sitive to replay attacks.Modeling the protocol in another way
might give a clearer answer, but more work is needed to con-
firm this statement.

Finally, it should be possible to model an RSA accu-
mulator with ProVerif. However, we decided to keep using
a Merkel tree instead, to avoid adding to the differences
between the Verifpal and ProVerif models.

10 Case study limitations

There are a number of limitations to our proposed approach
and the results obtained:

1. Industrial stakeholder validation. Firstly, the main
threat to validity of the work presented in this paper is
that, although this is an industrial case study, we are only
in the early phases of the project. Therefore, the tech-
niques presented in this paper have only been validated by
one industrial stakeholder: the third author, as an indus-
trial client. However, as a direct consequence of the work
presented here, AnimUML has already been applied to
another project at STMicroelectronics, and more model
verification applications are planned.

2. Verification compositionality. Our hypothesis of divid-
ing themodel into the two architecture and cryptographic
protocol aspects was determined intuitively, given that
available verification tools generally focus on only one
aspect. Modeling the system separately from an architec-
tural and from a cryptographic point of views could be
insufficient. Moreover, for our case study, it would also
likely be useful to model the contents of smart contracts,
and formally verify them to guarantee their correctness.

3. Model equivalence. Another issue is that the different
models we created are not necessarily equivalent. This is
actually the reason why we were not able to verify our

123

M. Méré et al.

model with HugoRT. As explained in Sect. 9.2.2, solv-
ing this issue is not trivial because of differing UML
semantics. The difficulty of working with multiple UML
semantics is actually one of the lessons learned in this
work. Regarding cryptographic protocol models, Verif-
pal and ProVerif work quite differently: a Verifpal model
focuses on one scenario, whereas a ProVerif model can
be more general. We decided to leverage this in the case
study by creating a more general ProVerif model than
the Verifpal one. In theory, Verifpal can generate equiv-
alent ProVerif models, but we did not manage to get
it to work on our case study, which is also one of the
lessons learned in this work. However, in practice, only
one architectural, and one protocol verification tools are
necessary for a given project. Therefore, the only remain-
ing issue to apply themethodology presented in this paper
is the architecture and protocol model verification com-
positionality (see point 2).

4. Smart contract verification. At the time being, smart
contracts are only partially modeled using sequence dia-
grams. This can be considered sufficient at the specifica-
tion or initial design stages, given that the implementation
is not yet defined. However, this means their correctness
cannot be verified on the model at this stage.

5. Early stage verification. Another limitation is that the
methodology presented in this article is limited to model
verification. The transition to a prototype or functional
system is not taken into account, and we assume that
current industry methodologies will be applied. How-
ever, this does not formally guarantees a match between
the verified models and the final system. Nevertheless,
the proposed approach makes it possible to obtain better
qualitymodels,which should at least avoid some issues in
the later development phases. Moreover, proposals have
already been made to allow UML models to directly run
on embedded systems, while ensuring that they are veri-
fiedwith the same semantics as the one used in production
[26]. Such an approach also avoids the pitfall of working
with multiple UML semantics.

6. Types of properties. Another limitation is that property
checking is only expressed in LTL for the architectural
model. However, other types of properties, such as those
related to response times, might be desirable to verify.
In our case, the targeted applications do not have strict
time constraints, as the systems in which the LCMS is
embedded must be in configuration mode (not produc-
tion) while the LCMS is used. In cases where timing
issues are more important, the use of a tool such as
HugoRT could prove judicious, because it can translate
UMLmodels intoUPPAAL,which can verify this type of
properties. However, from our experience with HugoRT
and SPIN, we expect that the combination of HugoRT
and UPPAAL becomes even more complex to use, and

requires significantly more expertise than just knowing
UML.

7. Required efforts.Wehave notmeasured the extra efforts
required to verify models compared to the global project
implementation efforts. This is not a question on which
we focused, but answering it would be useful.

8. Reproduction. In order to further refine the evaluation,
the experiment should be reproduced by others, on the
same and on other case studies, as well as with the same
and other verification tools. This could also help with
point 7 about measuring the additional efforts required
to applymodel verification, provided these reproductions
take care to measure spent efforts.

9. Informal to formal specification. A final limitation can
be identified by the difficulty of converting informal spec-
ifications into formal properties, whether for architecture
or protocol models. For architecture models, the use of
Dwyer’s patterns helps, but the transition fromEnglish to
formal properties suffers from the limitations of natural
language, requiring interpretation.

11 Conclusion

This paper evaluates formalmodel verification tools on a case
study.The studied systemconsists of aSoC-embedded secure
element as well as a secure protocol that allows to exchange
chip ownership rights as well as to update its configuration.

This work shows that it is possible to model SoC-based
systems with modeling techniques close to those used for
specification in industry while still being able to formulate
and formally verify their properties.

In the case where the modeling tools were more difficult
to use, it is possible to facilitate their use by performing inter-
mediate operations. The idea of using different tools, such as
Verifpal or ProVerif to check the cryptographic protocol, and
AnimUMLorHugoRT for the architectural aspects, gives the
benefit of coming to a complete solution more quickly.

Verifpal’s modeling language, similar to a textually spec-
ified sequence diagram, allows non-experts to obtain a
protocol model more easily than with other similar tools at
the cost of a lesser degree of soundness. ProVerif is more
powerful and offers more possibilities than Verifpal, but it
requires more training to be mastered. It is also more com-
plicated than with Verifpal to get a model that works, which
is why using an intermediate AnimUML model can help.

The fact that AnimUML offers the possibility to simulate
a design model while it is still very incomplete is a useful
advantage in order not to forget any elements and to facilitate
the design phase.

HugoRT can convert UML to code for multiple well-
known model checking tools. However, one needs a certain

123

Evaluating formal model verification tools in an industrial context: the case of a smart…

level of expertise in using thesemodel checking tools to check
properties effectively.

Finally, specification verification in the form of LTL prop-
erties, while not necessarily obvious, is greatly simplified by
the use of Dwyer’s patterns.

Acknowledgements The authors would like to thank Pr. Alexander
Knapp for his guidance and support in using HugoRT.

References

1. Dachyar, M., Zagloel, T.Y.M., Saragih, L.R.: Knowledge growth
and development: internet of things (IoT) research, 2006–2018.
Heliyon 5(8), 02264 (2019). https://doi.org/10.1016/j.heliyon.
2019.e02264

2. Mont, O.K.: Clarifying the concept of product-service system.
J. Clean. Prod. 10(3), 237–245 (2002). https://doi.org/10.1016/
S0959-6526(01)00039-7

3. Exner, K., Schnürmacher, C., Adolphy, S., Stark, R.: Proactive
maintenance as success factor for use-oriented product-service sys-
tems. Procedia CIRP 64, 330–335 (2017). https://doi.org/10.1016/
j.procir.2017.03.024

4. Méré, M., Jouault, F., Pallardy, L., Perdriau, R.: Feedback on the
formal verification ofUMLmodels in an industrial context. In: Pro-
ceedings of the 25th International Conference on Model Driven
Engineering Languages and Systems. MODELS ’22, pp. 121–
131. ACM, New York, NY, USA (2022). https://doi.org/10.1145/
3550355.3552454

5. Islam,M.N.,Kundu, S.: Remote devicemanagement via smart con-
tracts. IEEE Trans. Consum. Electron. 68, 38–46 (2021). https://
doi.org/10.1109/TCE.2021.3139584

6. Skudlarek, J.P., Katsioulas, T., Chen, M.: A platform solution for
secure supply-chain and chip life-cycle management. Computer
49(8), 28–34 (2016). https://doi.org/10.1109/MC.2016.243

7. Méré, M., Jouault, F., Pallardy, L., Perdriau, R.: Trustworthy
SoC reconfiguration aimed at product-service systems: a literature
review. In: COINS Conference, pp. 1–6. IEEE Computer Society,
Barcelona, Spain (2022). https://doi.org/10.1109/COINS54846.
2022.9854965

8. Robson, N., Safran, J., Kothandaraman, C., Cestero, A., Chen, X.,
Rajeevakumar, R., Leslie, A., Moy, D., Kirihata, T., Iyer, S.: Elec-
trically programmable fuse (eFUSE): frommemory redundancy to
autonomic chips. In: 2007 IEEE Custom Integrated Circuits Con-
ference, pp. 799–804 (2007). https://doi.org/10.1109/CICC.2007.
4405850 . ISSN: 2152-3630

9. Tanaka, K., Nakamura, S.: Storage system and data protection
method therefor. Google Patents (2009)

10. Shepherd, C., Arfaoui, G., Gurulian, I., Lee, R.P., Markantonakis,
K., Akram, R.N., Sauveron, D., Conchon, E.: Secure and trusted
execution: past, present, and future - a critical review in the context
of the internet of things and cyber-physical systems. In: 2016 IEEE
Trustcom/BigDataSE/ISPA, pp. 168–177 (2016). https://doi.org/
10.1109/TrustCom.2016.0060. ISSN: 2324-9013

11. Bhunia, S., Tehranipoor, M.: The Hardware Trojan War. Springer,
Cham (2018). https://doi.org/10.1007/978-3-319-68511-3

12. Mera Collantes, M.I., Garg, S.: Do not trust, verify: a verifi-
able hardware accelerator for matrix multiplication. IEEE Embed.
Syst. Lett. 12(3), 70–73 (2020). https://doi.org/10.1109/LES.2019.
2953485

13. SGS Société Générale de Surveillance: SGS Brightsight (2023).
https://www.brightsight.com/system-on-chip Accessed 2023-06-
12

14. Hakak, S., Khan, W.Z., Gilkar, G.A., Assiri, B., Alazab, M.,
Bhattacharya, S., Reddy,G.T.: Recent advances in blockchain tech-
nology: a survey on applications and challenges. Int. J. Ad Hoc
Ubiquitous Comput. 38(1–3), 82–100 (2021)

15. Mohanta, B.K., Panda, S.S., Jena, D.: An overview of smart
contract and use cases in blockchain technology. In: 2018 9th
International Conference on Computing, Communication and Net-
working Technologies (ICCCNT), pp. 1–4. IEEE, Bengaluru, India
(2018). https://doi.org/10.1109/ICCCNT.2018.8494045

16. Méré, M., Jouault, F., Pallardy, L., Perdriau, R.: Modeling trust
relationships in blockchain applications: the case of reconfigurable
systems-on-chip. In: 2022 IEEE 22nd International Conference on
Software Quality, Reliability, and Security Companion (QRS-C),
pp. 1–8 (2022). https://doi.org/10.1109/QRS-C57518.2022.00020
. ISSN: 2693-9371

17. OMG: Unified Modeling Language (2017). https://www.omg.org/
spec/UML/2.5.1/PDF

18. Valmari, A.: The state explosion problem. In: Reisig, W., Rozen-
berg, G. (eds.) Lectures on Petri Nets I: BasicModels: Advances In
Petri Nets, pp. 429–528. Springer, Berlin (1998). https://doi.org/
10.1007/3-540-65306-6_21

19. Blanchet, B.: Automatic verification of security protocols in the
symbolic model: the verifier ProVerif. In: Aldini, A., Lopez, J.,
Martinelli, F. (eds.) Foundations of Security Analysis and Design
VII: FOSAD 2012/2013 Tutorial Lectures, pp. 54–87. Springer,
Cham (2014). https://doi.org/10.1007/978-3-319-10082-1_3

20. Cervesato, I., Durgin, N.A., Lincoln, P.D., Mitchell, J.C., Scedrov,
A.: A meta-notation for protocol analysis. In: Proceedings of the
12th IEEE Computer Security Foundations Workshop, pp. 55–69.
IEEE,Mordano, Italy (1999).https://doi.org/10.1109/CSFW.1999.
779762 . ISSN: 1063-6900

21. Kobeissi, N., Nicolas, G., Tiwari, M.: Verifpal: cryptographic pro-
tocol analysis for the real world. Published: Cryptology ePrint
Archive, Report 2019/971 (2019). https://ia.cr/2019/971

22. Jouault, F., Besnard, V., Calvar, T.L., Teodorov, C., Brun,M., Dela-
tour, J.: Designing, animating, and verifying partial UML models.
In: Proceedings of the 23rd ACM/IEEE International Conference
on Model Driven Engineering Languages and Systems. MODELS
’20, pp. 211–217. Association for Computing Machinery, New
York, NY, USA (2020). https://doi.org/10.1145/3365438.3410967

23. Jouault, F., Besnard,V., Brun,M., LeCalvar, T., Chhel, F., Clavreul,
M., Delatour, J., Méré, M., Pasquier, M., Teodorov, C.: Animuml:
a practical tool for partial model animation and analysis. Sci. Com-
put. Program. 232, 103050 (2024). https://doi.org/10.1016/j.scico.
2023.103050

24. Knapp, A.: In: Haxthausen, A.E., Huang, W.-l., Roggenbach,
M. (eds.) An Intermediate Language-Based Approach to Imple-
menting and Verifying Communicating UML State Machines, pp.
289–307. Springer, Cham (2023). https://doi.org/10.1007/978-3-
031-40132-9_18

25. André, E., Liu, S., Liu, Y., Choppy, C., Sun, J., Dong, J.S.:
Formalizing UML state machines for automated verification-a sur-
vey. ACMComput. Surv. 55(13s), 1–47 (2023). https://doi.org/10.
1145/3579821

26. Besnard, V., Brun, M., Jouault, F., Teodorov, C., Dhaussy, P.: Uni-
fied LTL verification and embedded execution of UMLmodels. In:
Proceedings of the 21th ACM/IEEE International Conference on
ModelDrivenEngineeringLanguages andSystems.MODELS ’18,
pp. 112–122. Association for Computing Machinery, New York,
NY, USA (2018). https://doi.org/10.1145/3239372.3239395

27. Roques, A.: PlantUML: Open-source tool that uses simple textual
descriptions to draw UML diagrams (2022). http://plantuml.com/
Accessed 2022-04-25

28. Holzmann, G.J.: The spin model checker: primer and reference
manual 1003 (2004)

123

https://doi.org/10.1016/j.heliyon.2019.e02264
https://doi.org/10.1016/j.heliyon.2019.e02264
https://doi.org/10.1016/S0959-6526(01)00039-7
https://doi.org/10.1016/S0959-6526(01)00039-7
https://doi.org/10.1016/j.procir.2017.03.024
https://doi.org/10.1016/j.procir.2017.03.024
https://doi.org/10.1145/3550355.3552454
https://doi.org/10.1145/3550355.3552454
https://doi.org/10.1109/TCE.2021.3139584
https://doi.org/10.1109/TCE.2021.3139584
https://doi.org/10.1109/MC.2016.243
https://doi.org/10.1109/COINS54846.2022.9854965
https://doi.org/10.1109/COINS54846.2022.9854965
https://doi.org/10.1109/CICC.2007.4405850
https://doi.org/10.1109/CICC.2007.4405850
https://doi.org/10.1109/TrustCom.2016.0060
https://doi.org/10.1109/TrustCom.2016.0060
https://doi.org/10.1007/978-3-319-68511-3
https://doi.org/10.1109/LES.2019.2953485
https://doi.org/10.1109/LES.2019.2953485
https://www.brightsight.com/system-on-chip
https://doi.org/10.1109/ICCCNT.2018.8494045
https://doi.org/10.1109/QRS-C57518.2022.00020
https://www.omg.org/spec/UML/2.5.1/PDF
https://www.omg.org/spec/UML/2.5.1/PDF
https://doi.org/10.1007/3-540-65306-6_21
https://doi.org/10.1007/3-540-65306-6_21
https://doi.org/10.1007/978-3-319-10082-1_3
https://doi.org/10.1109/CSFW.1999.779762
https://doi.org/10.1109/CSFW.1999.779762
https://ia.cr/2019/971
https://doi.org/10.1145/3365438.3410967
https://doi.org/10.1016/j.scico.2023.103050
https://doi.org/10.1016/j.scico.2023.103050
https://doi.org/10.1007/978-3-031-40132-9_18
https://doi.org/10.1007/978-3-031-40132-9_18
https://doi.org/10.1145/3579821
https://doi.org/10.1145/3579821
https://doi.org/10.1145/3239372.3239395
http://plantuml.com/

M. Méré et al.

29. Behrmann, G., David, A., Larsen, K.G., Håkansson, J., Pettersson,
P., Yi, W., Hendriks, M.: Uppaal 4.0 (2006)

30. Dewoprabowo, R., Arzaki, M., Rusmawati, Y.: Formal verifica-
tion of divide and conquer key distribution protocol using ProVerif
and TLA+. In: 2018 International Conference on Advanced
Computer Science and Information Systems (ICACSIS), pp.
451–458 (2018). https://doi.org/10.1109/ICACSIS.2018.8618173.
ISSN: 2330-4588

31. Latif, S., Rehman, A., Zafar, N.A.: Blockchain and IoT based for-
mal model of smart waste management system using TLA+. In:
2019 International Conference on Frontiers of Information Tech-
nology (FIT), pp. 304–3045. IEEE, Islamabad, Pakistan (2019).
https://doi.org/10.1109/FIT47737.2019.00064. ISSN: 2334-3141

32. Rocha, H., Ducasse, S.: Preliminary steps towards modeling
blockchain oriented software. In: 2018 IEEE/ACM 1st Interna-
tional Workshop on Emerging Trends in Software Engineering
for Blockchain (WETSEB), pp. 52–57. IEEE, Gothenburg Swe-
den (2018)

33. Koch, T., Dziwok, S., Holtmann, J., Bodden, E.: Scenario-based
specification of security protocols and transformation to security
model checkers. In: Proceedings of the 23rd ACM/IEEE Interna-
tional Conference on Model Driven Engineering Languages and
Systems. MODELS ’20, pp. 343–353. Association for Computing
Machinery, New York, NY, USA (2020). https://doi.org/10.1145/
3365438.3410946

34. Zhang, J., Yang, L., Gao, X., Tang, G., Zhang, J., Wang, Q.: For-
mal analysis of QUIC handshake protocol using symbolic model
checking. IEEEAccess 9, 14836–14848 (2021). https://doi.org/10.
1109/ACCESS.2021.3052578

35. Lauser, T., Zelle, D., Krauß, C.: Security analysis of automotive
protocols. In: Computer Science in Cars Symposium. CSCS ’20,
pp. 1–12. Association for Computing Machinery, New York, NY,
USA (2020). https://doi.org/10.1145/3385958.3430482

36. Chen,X.,Mallet, F., Liu,X.: Formally verifying sequence diagrams
for safety critical systems. In: 2020 International Symposium
on Theoretical Aspects of Software Engineering (TASE), pp.
217–224. IEEE, Hangzhou, China (2020). https://doi.org/10.1109/
TASE49443.2020.00037

37. Csertan, G., Huszerl, G., Majzik, I., Pap, Z., Pataricza, A., Varro,
D.: VIATRA - visual automated transformations for formal verifi-
cation and validation of UML models. In: Proceedings 17th IEEE
International Conference on Automated Software Engineering, pp.
267–270. IEEE, Edinburgh, UK (2002). https://doi.org/10.1109/
ASE.2002.1115027 . ISSN: 1938-4300

38. Cabot, J., Clarisó, R., Riera, D.: UMLtoCSP: a tool for the for-
mal verification of uml/ocl models using constraint programming.
In: Proceedings of the Twenty-Second IEEE/ACM International
Conference on Automated Software Engineering. ASE ’07, pp.
547–548. Association for Computing Machinery, New York, NY,
USA (2007). https://doi.org/10.1145/1321631.1321737

39. Glouche, Y., Genet, T., Heen, O., Courtay, O.: A security proto-
col animator tool for avispa. In: ARTIST-2 Workshop on Security
of Embedded Systems, Pisa (Italy) (2006). http://people.irisa.fr/
Thomas.Genet/Publications/papier_artist.pdf

40. Viganò, L.: Automated security protocol analysis with the AVISPA
tool. Electron. Notes Theor. Comput. Sci. 155, 61–86 (2006).
https://doi.org/10.1016/j.entcs.2005.11.052

41. Mossberg, M., Manzano, F., Hennenfent, E., Groce, A., Grieco,
G., Feist, J., Brunson, T., Dinaburg, A.: Manticore: a user-friendly
symbolic execution framework for binaries and smart contracts.
In: 2019 34th IEEE/ACM International Conference on Automated
Software Engineering (ASE), pp. 1186–1189 (2019). https://doi.
org/10.1109/ASE.2019.00133

42. Leid, A., Merwe, B., Visser, W.: Testing ethereum smart contracts:
a comparison of symbolic analysis and fuzz testing tools. In: Con-
ference of the South African Institute of Computer Scientists and
Information Technologists 2020. SAICSIT ’20, pp. 35–43. Asso-
ciation for Computing Machinery, New York, NY, USA (2020).
https://doi.org/10.1145/3410886.3410907

43. Pnueli, A.: The temporal logic of programs. In: 18th Annual
Symposium on Foundations of Computer Science (sfcs 1977),
pp. 46–57. IEEE, Providence, RI, USA (1977). https://doi.org/10.
1109/SFCS.1977.32 . ISSN: 0272-5428

44. Dwyer, M.B., Avrunin, G.S., Corbett, J.C.: Patterns in prop-
erty specifications for finite-state verification. In: Proceedings
of the 1999 International Conference on Software Engineering
(IEEE Cat. No.99CB37002), pp. 411–420. IEEE, Los Angeles,
CA, USA (1999). https://doi.org/10.1145/302405.302672 . ISSN:
0270-5257

45. Blanchet, B., Smyth, B., Cheval, V., Sylvestre, M.: ProVerif 2.04:
automatic cryptographic protocol verifier, user manual and tutorial
(2021). https://bblanche.gitlabpages.inria.fr/proverif/manual.pdf

46. Blanchet, B., Abadi, M., Fournet, C.: Automated verification of
selected equivalences for security protocols. J. Logic Algebraic
Program. 75(1), 3–51 (2008). https://doi.org/10.1016/j.jlap.2007.
06.002

47. Leon, D., Stalick, A.Q., Jillepalli, A.A., Haney, M.A., Sheldon,
F.T.: Blockchain: properties andmisconceptions. Asia Pacific Jour-
nal of Innovation and Entrepreneurship 11(3), 286–300 (2017).
https://doi.org/10.1108/APJIE-12-2017-034. Publisher: Emerald
Publishing Limited

48. Vanderperren, Y., Mueller, W., Dehaene, W.: UML for electronic
systems design: a comprehensive overview. Des. Autom. Embed.
Syst. 12(4), 261–292 (2008). https://doi.org/10.1007/s10617-008-
9028-9

49. Singh, R.G., Lopez, C.T., Marr, S., Boix, E.G., Scholliers,
C.: Multiverse Debugging: non-deterministic debugging for
non-deterministic programs (Artifact). Dagstuhl Artifacts Series
5(2), 4–143 (2019). https://doi.org/10.4230/DARTS.5.2.4. Place:
Dagstuhl, Germany Publisher: Schloss Dagstuhl-Leibniz-Zentrum
fuer Informatik

50. Boneh, D., Bünz, B., Fisch, B.: Batching techniques for accu-
mulators with applications to IOPs and stateless blockchains. In:
Boldyreva, A., Micciancio, D. (eds.) Advances in Cryptology -
CRYPTO 2019, pp. 561–586. Springer, Cham (2019). https://doi.
org/10.1007/978-3-030-26948-7_20

51. Becker, G.:Merkle signature schemes,merkle trees and their crypt-
analysis

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds
exclusive rights to this article under a publishing agreement with the
author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such
publishing agreement and applicable law.

123

https://doi.org/10.1109/ICACSIS.2018.8618173
https://doi.org/10.1109/FIT47737.2019.00064
https://doi.org/10.1145/3365438.3410946
https://doi.org/10.1145/3365438.3410946
https://doi.org/10.1109/ACCESS.2021.3052578
https://doi.org/10.1109/ACCESS.2021.3052578
https://doi.org/10.1145/3385958.3430482
https://doi.org/10.1109/TASE49443.2020.00037
https://doi.org/10.1109/TASE49443.2020.00037
https://doi.org/10.1109/ASE.2002.1115027
https://doi.org/10.1109/ASE.2002.1115027
https://doi.org/10.1145/1321631.1321737
http://people.irisa.fr/Thomas.Genet/Publications/papier_artist.pdf
http://people.irisa.fr/Thomas.Genet/Publications/papier_artist.pdf
https://doi.org/10.1016/j.entcs.2005.11.052
https://doi.org/10.1109/ASE.2019.00133
https://doi.org/10.1109/ASE.2019.00133
https://doi.org/10.1145/3410886.3410907
https://doi.org/10.1109/SFCS.1977.32
https://doi.org/10.1109/SFCS.1977.32
https://doi.org/10.1145/302405.302672
https://bblanche.gitlabpages.inria.fr/proverif/manual.pdf
https://doi.org/10.1016/j.jlap.2007.06.002
https://doi.org/10.1016/j.jlap.2007.06.002
https://doi.org/10.1108/APJIE-12-2017-034
https://doi.org/10.1007/s10617-008-9028-9
https://doi.org/10.1007/s10617-008-9028-9
https://doi.org/10.4230/DARTS.5.2.4
https://doi.org/10.1007/978-3-030-26948-7_20
https://doi.org/10.1007/978-3-030-26948-7_20

	Evaluating formal model verification tools in an industrial context: the case of a smart device life cycle management system
	Abstract
	1 Introduction
	2 Context and motivation
	2.1 LCMS procedure
	2.2 Blockchain-based LCMS

	3 Approach
	3.1 Model specification and properties
	3.2 Designing the models
	3.2.1 Architecture
	3.2.2 Cryptographic protocol

	4 Verification problems
	4.1 Common problems
	4.1.1 Tool requirements
	4.1.2 State space explosion

	4.2 Protocol-related verification
	4.3 Architecture-related verification

	5 Related work
	6 Architecture model verification
	6.1 Improving the AnimUML model
	6.2 Converting the model to HugoRT
	6.3 Simplifying and abstracting assumptions
	6.4 Formalizing and verifying properties
	6.4.1 Defining watch expressions
	6.4.2 Rephrasing properties
	6.4.3 Converting to LTL

	6.5 Results

	7 Cryptographic protocol verification with verifpal
	7.1 Verifpal language overview
	7.2 Translating the sequence diagram
	7.3 Assumptions for model simplification
	7.4 Formalizing and verifying properties
	7.5 Results

	8 Cryptographic protocol verification with ProVerif
	8.1 ProVerif language overview
	8.2 Model simplification assumptions
	8.3 Turning a sequence diagram into a ProVerif model
	8.3.1 Modeling actor behavior in UML
	8.3.2 Converting intermediate diagrams to ProVerif

	8.4 Verifying properties
	8.4.1 Confidentiality properties
	8.4.2 Authentication properties

	8.5 Results

	9 Feedback
	9.1 Modeling process
	9.1.1 Architecture model
	9.1.2 Protocol model

	9.2 Tools
	9.2.1 AnimUML
	9.2.2 HugoRT
	9.2.3 Verifpal
	9.2.4 ProVerif

	10 Case study limitations
	11 Conclusion
	Acknowledgements
	References

