
Software and Systems Modeling
https://doi.org/10.1007/s10270-024-01180-2

SPEC IAL SECT ION PAPER

SYMBOLEOPC: checking properties of legal contracts

Alireza Parvizimosaed1 ·Marco Roveri3 · Aidin Rasti1 · Amal Ahmed Anda1 · Sofana Alfuhaid1,4 ·
Daniel Amyot1 · Luigi Logrippo1,2 · John Mylopoulos1

Received: 13 May 2023 / Revised: 26 January 2024 / Accepted: 8 April 2024
© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2024

Abstract
Legal contracts specify requirements for business transactions. Symboleo was recently proposed as a formal specification
language for legal contracts. It allows the specification of the contractual requirements by specifying the obligations and
powers of the parties, as well as specifying the events that can occur in a contract’s lifecycle. With appropriate tool support,
Symboleo can allow monitoring the contract lifecycle. However, because of mistakes in contract interpretation or formal
specification, specified contracts may violate properties expected by contracting parties. This paper presents SymboleoPC,
a tool for analyzing Symboleo contracts using the nuXmvmodel checker, where properties can be expressed in both Linear
Temporal Logic and Computation Tree Logic. The presentation highlights the architecture, implementation, and testing of the
tool, as well as a scalability evaluation, based on performance data. The performance of the tool was evaluated with respect
to varying numbers of obligations and powers, with varying numbers of inter-dependencies among them, with parameters
derived from the analysis of real contracts. These results suggest that SymboleoPC can be usefully applied to the analysis
of formal specifications of contracts with real-life sizes and structures.

Keywords Legal contracts · Smart contracts · Software requirements specifications · Formal specification languages · Model
checking · Performance analysis · SymboleoPC · nuXmv

Communicated by N. Bencomo, M. Wimmer, H. Sahraoui and E.
Syriani.

B Daniel Amyot
damyot@uottawa.ca

Alireza Parvizimosaed
aparv007@uottawa.ca

Marco Roveri
marco.roveri@unitn.it

Aidin Rasti
Aidin.Rasti@uottawa.ca

Amal Ahmed Anda
aanda@uottawa.ca

Sofana Alfuhaid
salfu014@uottawa.ca

Luigi Logrippo
logrippo@uottawa.ca

John Mylopoulos
jmylopou@uottawa.ca

1 School of EECS, University of Ottawa, Ottawa, Canada

2 Université du Québec en Outaouais, Gatineau, Canada

1 Introduction

Legal contracts specify the terms and conditions, i.e., the
requirements, that apply to business transactions. They are
commonly expressed in natural language and often contain
parts that are ambiguous, incomplete, conflicting, or possi-
bly invalid, i.e., inconsistentwith the intentions of contracting
parties.A smart contract is a software system intended to par-
tially automate, monitor, and control the execution of a legal
contract to ensure compliance with relevant terms and con-
ditions [48]. There is tremendous interest in industry these
days for such systems, in sectors that include supply chain
management, energy, and government [41].

Formal specifications of legal contracts can serve as
requirements specifications of smart contract software. Such
specifications can also enable automated analysis of a con-
tract, as well as the generation of smart contract code.

3 Department of Information Engineering and Computer
Science, University of Trento, Trento, Italy

4 King AbdulAziz University, Jeddah, Kingdom of Saudi
Arabia

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10270-024-01180-2&domain=pdf
http://orcid.org/0000-0003-2414-1791

A. Parvizimosaed et al.

Among several languages that exist, Symboleowas recently
proposed as a formal specification language for legal con-
tracts, together with an ontology, syntax, and semantics
[35, 45].

In previous work [37], we briefly proposed an analysis
tool named SymboleoPC for model checking properties of
Symboleo contract specifications, but without an automated
translation of a Symboleo specification into model checker
code, nor any scalability analysis. SymboleoPC is built on
top of the nuXmv model checker [9] and can check prop-
erties expressed in Linear Temporal Logic (LTL) [27] or
Computation Tree Logic (CTL) [18]. Such properties can
capture the intents of the contracting parties, as well as desir-
able legal properties such as termination for all possible
executions.

As illustrated in Fig. 1, our new SymboleoPC tool
now automatically translates a Symboleo specification to a
nuXmv contract module that invokes a library of predefined
modules extracted from Symboleo’s ontology and axioms.
This generated contract module is the one that can later be
checked against properties using the nuXmvmodel checking
environment.

Model checking technology [14] has come of age in the
past decade with important applications in analyzing differ-
ent types of artefacts, including hardware and software. This
technology enables searches over huge spaces of execution
paths looking for counterexamples to a givendesiredproperty
that a specification should have, or an undesirable property
it should not have. However, model checking can be compu-
tationally prohibitive, sometimes only returning answers for
simple problems in a particular domain. A recent survey [43]
identifies scalability challenges for model checking, espe-
cially regardingmodels of contracts. In this context, a critical
research question for SymboleoPC is whether it scales up to
analyze specifications of real-life contracts, such as contracts
and templates found on the Web, rather than only toy exam-
ples. The purpose of the work reported herein is to present
a full implementation of SymboleoPC and assess its scala-
bility.

The contributions of the paper are as follows:

– A full implementation of SymboleoPC, including its
architecture and testing, along with an illustration of use
for a new contract specification.

– A scalability analysis that studies the performance of
the tool as the input specifications and properties-to-
be-checked grow in size along different dimensions; the
results of the analysis suggest that SymboleoPC can be
usefully deployed for the analysis of real-life and real-
size legal business contract specifications and properties,
but not for large contracts involving hundreds of terms
and conditions.

This paper is an extended and improved version of a paper
that appeared at the MODELS 2022 conference [36]. The
extensions include the following items:

– Improvements to the earlier SymboleoPC prototype to
support variable assignments in events used by obliga-
tions and permissions, which is a recent extension of the
Symboleo language. This feature enables more types of
legal contracts to be formalized and verified (Sect. 4.1).

– Further improvements to SymboleoPC to support the
automatic generation of nuXmv specifications that cap-
ture implicit constraints between event predicates in
Symboleo. This automates the generation of complex
code that was generated manually in the earlier proto-
type (Sect. 4.1).

– A new example of a contract (Computer Delivery) that
demonstrates the use of the above features (Sect. 2.1).

– Additional details in the description of the translation
from Symboleo tonuXmv (Sect. 4.1). A new,more real-
istic performance evaluation where synthetic Symboleo
specifications are first converted tonuXmv automatically
(using SymboleoPC) and then model-checked against
synthetic LTL and CTL properties. Different verification
algorithms are used to verify the generated models and
identify the key factors that impact their performance
(Sect. 5).

The rest of the paper is structured as follows. Sec-
tion2 introduces the Symboleo language (with the help
of a new Computer Delivery contract) and the nuXmv
model checker. Section3 presents SymboleoPC’s architec-
ture, whereas Sect. 4 discusses its implementation rules, and
unit/acceptance testing, and demonstrates its use through an
example. Section5 reports results of the scalability exper-
iments. In Sect. 6, we review related work. Finally, Sect. 7
concludes and speculates on future research.

2 Research baseline

We introduce the Symboleo specification language for con-
tracts. In designing Symboleo, we reviewed hundreds of
sample contracts found by searching the web from different
legal domains and jurisdictions and formalized more than a
dozen that we considered representative of contracts that can
benefit from event-based monitoring [37, 45]. In this section,
we showcase a novel example that leverages the language’s
recently added assignment feature.

2.1 SYMBOLEO

In Symboleo, a contract consists of obligations and powers
(collectively called legal positions), roles (the contracting

123

SymboleoPC: checking properties of legal contracts

Fig. 1 Overview of SymboleoPC’s construction

parties), assets, situations that describe contract conditions,
as well as events. Each obligation has a debtor role that is
responsible for making a consequent true, if an antecedent
(a situation) holds, for the benefit of a creditor, another role.
A power (which enables creating, changing, or terminating
other legal positions) also has a creditor and a debtor where
the creditor has the right to exercise the power by mak-
ing a consequent (another situation) true if an antecedent
holds [45].

Both obligations and powersmay have triggers that can be
used to instantiate them many times during the execution of
a single contract. For example, a buyer that generates many
purchase events (triggers) instantiates for each purchase a
new obligation for the seller to deliver it. Every contract must
have at least two roles and two assets, one of which is usu-
ally money for business transactions. Triggers, antecedents,
and consequents, as well as preconditions, post-conditions,
and constraints, are expressed in an extension of the event
calculus [44] where quantification is over finite sets. Events
are treated as primitive concepts for describing consequents,
antecedents, etc., and play a critical role in monitoring com-
pliance.

To illustrate the nature of Symboleo specifications, con-
sider a simple computer buying contract:

i. The customer orders a computer from a store, to be deliv-
ered within 7 days;

ii. The customer agrees to pay a deposit worth between 15
and 20% of the computer price, on the same day;

iii. The customer agrees to pay the remaining amount of the
computer price within 10 days of delivery;

iv. If delivery is late, the customer has the option (power) to
cancel the contract or get a 5% reduction on the original
price and pay within 10 days of delivery.

It is imperative to retain data from monitored events and
use that data for dynamically adjusting the states of obli-
gations, powers, and the contract itself. For contracts that
include cumulative constraints, such as ‘Contract terminates
when the total amount of computers sold exceeds $100,000,’
we need a way to keep track of the amount of computers sold
as the contract is being executed, especially as the number of
sales is unknown in advance. Toward this end, a new Assign

construct is introduced to the Symboleo language to update
a cumulative constraint variable. Cumulative constraints are
typical of contracts where payment or delivery can be done
in multiple steps captured by events.

The specification in Listing 1 begins with a domain model
that formalizes terms mentioned in the contract (such as
Customer, Store, Computer, and Delivered) as specializations
of primitive concepts in Symboleo (Role, Asset, Event, etc.).
The contract is named ComputerC, and its definition begins
with parameters that are assigned values for each contract
execution, as well as local variables that can be assigned
instances of the classes introduced in the domain model.

123

A. Parvizimosaed et al.

Event values that come from the environment are labeled
with Env.

When contract execution begins, all obligations and pow-
ers without triggers are initiated, i.e., oOrder, oDel, and oPay in
this contract. As oPaid has a trigger condition (Happens(paid)
orHappens(payLateOptionChosen)), this obligation gets instan-
tiated when one of these two events happens. This obligation
then proceeds to become active because its antecedent is true.
That obligation is fulfilled when the total amount paid so far
is computed. Note the usage of the assignment (Assign (...))
in this particular obligation, which is needed to accumulate
all the partial amounts paid by the customer to the store, with
a number of payments that is unknown at contract design
time and that can differ across contract instances. When this
paid event happens, oPay becomes active, and the customer
has 10 days to pay the rest of the computer price when the
computer is delivered within the delivery due date. Once that
happens, there are no active obligations on any side, so the
contract execution terminates successfully.

If delivery is late, two powers (pCancel and pLateComp) are
triggered to give the customer authority to choose between
(i) cancelling the contract and getting a reimbursement, or
(ii) paying 95% of the computer’s price (pLateComp trig-
gers obligation oPayLateD, while pCancel triggers obligation
oReimburse). Note that time is an intrinsic event attribute,
accessible through a predicate Happens([event], [t]) or using
[event]. Time, where [event] and [t] are variables and Time is
a predefined attribute name.

Unfortunately, this sample specification does not capture
the expectations of the customer and of the store:

1. If the computer is delivered late and the customer chooses
the ‘pay late’ option, then she must pay both the regular
price and the reduced price (i.e., 195% of the original
price here) for the computer! To fix the problem, Opay
needs to be amended into Opay: Obligation(cust , store ,

Happens(Fulfilled(obligations.oDel)) , WhappensBefore(paid

, Date.add(ordered.date, 10, days)). That is, the antecedent
of that obligation is not the happening of the delivered

event, but the successful fulfilment of the delivery (oDel)
obligation. With this amendment, Opay becomes active
and obliges the customer to pay for the computer at the
regular price only if delivered on time.

2. Moreover, in line 41, the payment is added to the amount
deposited each time a partial payment is made by the
customer! This time, this issue puts the store at a dis-
advantage. To fix the problem, the deposit amount must
be the variable to be updated (deposit . amount:= deposit.

amount + paid.amount)) and be used in the condition on
line 45 (i.e., computer.price <= deposit .amount).

This example underscores the importance of formal analy-
sis of Symboleo specifications to ensure they are consistent
with the expectations of contracting parties.

2.2 The NUXMVmodel checker

The nuXmv model checker [9] is the evolution of the
NuSMV open source model checker [11]. It supports the
specification and the analysis of finite- and infinite-state tran-
sition systems. The nuXmv specification language provides
for modular hierarchical descriptions and for the definition
of reusable parametric components. The basic purpose of the
nuXmv language is to describe (using expressions in propo-
sitional calculus) the transition relation of either a finite-state
or infinite-state transition system.

A nuXmv program consists of:Declarations of state vari-
ables (within the scope of VAR) which determine the state
space of the model (this construct is also used to instantiate
modules); Init assignments andNext assignments (both in the
scope of ASSIGN) define respectively the valid initial states
and the transition relations; Declarations, specified in the
scope of DEFINE, introduce abbreviations of complex formu-
las to be evaluated in the current state. The variables can be
defined for a finite range (e.g., Boolean, enumerative, finite
integer range, or bit vectors) or for an infinite number of states
(e.g., Integer, Real).

nuXmv provides state-of-the-art algorithms for the ver-
ification and analysis of both CTL and LTL properties
specified in the nuXmv program (with CTLSPEC, LTLSPEC,
respectively). Listing 2 provides an excerpt of a nuXmv pro-
gram. nuXmv allows proving that a temporal property holds.
Moreover, for properties that do not hold, it can generate a
counterexamplewitnessing the reasonwhy the property fails.
This last feature allows also to generate witnesses for tem-
poral properties, thus supporting the user in assessing the
correctness of the model or of the property itself [1, 12, 21,
39]. We refer the reader to [49] for a more detailed descrip-
tion of the nuXmv language and functionalities of nuXmv.
Below we provide a brief introduction to LTL and CTL.

Intuitively, given an infinite sequence of states (computa-
tion sequences), the LTL syntax and semantics are as follows.
Any propositional formula ϕ is an LTL formula, which holds
in a state if the formula evaluates to true in that state. If ϕ

andψ are LTL formulas, then¬ϕ, ϕ ∧ψ , and ϕ ∨ψ are LTL
formulas with the standard semantics. LTL also uses the fol-
lowing temporal state operators: (i) X ϕ is an LTL formula
that holds in a state of the sequence if ϕ holds in the state
at the next position in the sequence, and (ii) ϕ Uψ , which
holds in a state if ϕ holds at every point in the sequence start-
ing from the given state until ψ holds. We also use Fϕ as a
shorthand for �U ϕ, which holds in a state of a sequence if
eventually in a subsequent state, including the current one, ϕ
holds, and G ϕ as a shorthand for ¬F¬ϕ, which holds in a

123

SymboleoPC: checking properties of legal contracts

Listing 1 Symboleo specification for the Computer Delivery contract.

1 Domain ComputerC
2 Store isA Role;
3 Customer isA Role with addr: String;
4 Device isAn Enumeration(workstation , laptop , desktop);
5 Options isAn Enumeration(keyboard , mouse , monitor);
6 Computer isAn Asset with type: Device , price: Number , options: Options;
7 Ordered isAn Event with who: Customer , item: Computer , Env date: Date;
8 Delivered isAn Event with item: Computer , delAddr: String , Env date: Date;
9 Paid isAn Event with Env amount: Number;

10 PayLate isAn Event;
11 Policy isAn Event with amountmin:Number , amountmax: Number , lateAmount: Number;
12 Reimburse isAn Event with Env amount:Number;
13 endDomain
14 TimeGranularity is hours
15 Contract ComputerContract(cust: Customer , store: Store , computer: Computer)
16 Declarations
17 ordered: Ordered with who := cust , item := computer;
18 delivered: Delivered with item:= computer , delAddr := cust.addr;
19 paid: Paid;
20 paidLateDel: Paid;
21 // The default store policy
22 policy: Policy with amountmin := 0.15 * computer.price ,
23 amountmax := 0.20 * computer.price , lateAmount :=0.95 * computer.price ;
24 payLateOptionChosen : PayLate;
25 deposit: Paid;
26 reimburse: Reimburse;
27 Preconditions
28 // Check the validity of the discount policy
29 (policy.amountmin <= policy.amountmax) and (policy.amountmin >= 0);
30 Obligations
31 // The customer has to pay a deposit when ordering a computer following the store policy
32 oOrder: Obligation(cust , store , Happens(ordered),
33 Happens(deposit) and (deposit.amount <= policy.amountmax)
34 and (deposit.amount >= policy.amountmin));
35 // The store must deliver the sold computer within 7 days from the date of the order
36 oDel: Obligation(store , cust , Happens(ordered),
37 WhappensBefore(delivered , Date.add(ordered.date , 7, days)));
38 // Calculate the total amount paid
39 oPaid: Happens(paid) or Happens(payLateOptionChosen)->
40 Obligation(store , cust , true ,
41 Assign(deposit.amount= deposit.amount+ paid.amount));
42 // The customer must pay for the computer within 10 days of the order date when the computer

is delivered by the delivery due date
43 oPay: Obligation(cust , store , Happens(delivered),
44 WhappensBefore(paid , Date.add(ordered.date , 10, days)) and
45 (deposit.amount == computer.price));
46 // The customer can pay 95% of the price of the computer if the computer is delivered after

the delivery due date
47 oPayLateD: Happens(payLateOptionChosen) ->
48 Obligation(cust , store , Happens(Activated(powers.pCancel)),
49 HappensAfter(paidLateDel , Date.add(ordered.date , 10, days)) and
50 (paid.amount == policy.lateAmount));
51 // The customer can request reimbursement if the computer is delivered after the delivery due

date
52 oReimburse: Happens(reimburse) ->
53 Obligation(store , cust , Happens(Activated(powers.pCancel)),
54 Assign(reimburse.amount := deposit.amount; deposit.amount :=0; paid.amount :=0));
55 Powers
56 // Give the authority to the customer to request reimbursement if the computer is delivered

after the delivery due date
57 pCancel: Happens(Violated(obligations.oDel)) ->
58 Power(cust , store , true , Triggered(obligations.oReimburse));
59 // Give the authority to the customer to pay only 95% of the computer price if the computer

is delivered after the delivery due date
60 pLateComp: Happens(Violated(obligations.oDel)) ->
61 Power(cust , store , true , Triggered(obligations.oPayLateD));
62 endContract

123

A. Parvizimosaed et al.

state of a sequence if in all subsequent states, including the
current one, ϕ holds.

CTL extends LTL temporal state operators with path
quantifiers A (for all paths) and E (there exists a path) to
be applied only in front of state formulas (e.g., EX,AX, EG,
AG, E[·U ·], A[·U ·]). CTL semantics, unlike LTL that uses
computation sequences, is given on computation trees. Thus,
(i)EX ϕ holds in a state if there exists a computation starting
from that state such that in at least one next state ϕ holds, (ii)
EG ϕ holds in a state if there is a computation starting from
that state such that for at least a path of such computation, ϕ
holds in all the states of the path, and (iii) E[ϕ Uψ] holds in
a state if there is a computation starting from the state such
that for at least a path of such computation, ϕ holds at least
until at some position in the futureψ holds.We also useEF ϕ

as a shorthand for E[�U ϕ] to state that there exists a path
of a computation such that along the path eventually ϕ holds.

Note that while there are CTL properties that cannot be
checked using LTL, there are also LTL properties that cannot
be checked using CTL. As a final remark, while both CTL
and LTL properties can be verified on finite-state transition
systems, in nuXmv only LTL properties can be verified for
infinite-state transition systems [9].

3 SYMBOLEOPC: a model checker for
SYMBOLEO

SymboleoPC (Symboleo Property Checker) is a tool that,
given a Symboleo specification of a contract, a set of
temporal logic properties (representing expectations of that
contract), and a range of parameter values of interest, verifies
whether each property holds or is violated. For each prop-
erty proven not to hold for the contract, a counterexample
witnessing the reason is generated so that the user can either
correct the specification of the contract or revise the property
itself. Moreover, properties are also used to generate behav-
iors (witnesses) compliant with a given temporal property
to check that expected intentions, captured by the property,
are complied with the contract. All these functionalities are
intended to check that unforeseen undesired situations are
not encountered during contract execution and thus to par-
tially protect contracts against parties trying to exploit their
weaknesses, and that the contract is not too restrictive to rule
out desired outcomes.

3.1 Library of trusted contract-independent
modules

SymboleoPC leverages the nuXmv finite-state symbolic
model checker [9] to perform verification of specified prop-
erties. The conversion from Symboleo to nuXmv relies
on the ontology and structure of a Symboleo specification,

1 MODULE wHappensBefore (event1 , event2)
2 DEFINE
3 _ f a l s e := (s t a t e = not_happened) ;
4 _ t rue := (s t a t e = happened) ;
5 VAR
6 s t a t e : { not_happened , happened } ;
7 ASSIGN
8 i n i t (s t a t e) : = not_happened ;
9 next (s t a t e) : = case
10 s t a t e = not_happened & event1 . _ a c t i v e &

next (event1 . _happened) &
! (next (event2_happened)) : happened ;

11 TRUE : s t a t e ;
12 esac ;
13 LTLSPEC NAME LTL1 : = !G (event2 . _happened &

! event1 . _happened) ;

Listing 2 Encoding in nuXmv of the wHappensBefore statechart of
Fig. 2.

that consists of (i) generic language concepts such as con-
tract, obligation, power, party, and event; (ii) domain-specific
information used to specify the specific constraints of each
contract.

The semantics of Symboleo is given in terms of stat-
echarts describing the states and transitions of Symboleo
generic concepts, and axioms expressed in Event Calculus
specifying the guards and effects that govern statechart tran-
sitions, as well as quantitative constraints.

The statechart diagram depicted in Fig. 2 describes the
behavior of Symboleo’s happen predicates. Similar state-
chart diagrams exist for contract, obligation, power, and party
concepts [45].

Each of the generic concepts is encoded faithfully in a
nuXmvmodule parametric on the conditions and guards that
label the specific state transitions, with variables to encode
the states, and with declarations to define reusable predicates
of the state diagram to facilitate encoding of Symboleo’s
primitive concepts.

1 MODULE Role (pa r t y)
2 DEFINE _pa r t y := pa r t y ;
3
4 MODULE Asse t (owner)
5 DEFINE _owner := owner ;
6
7 MODULE S i t u a t i o n (p r opo s i t i on)
8 DEFINE _holds := p ropo s i t i on

Listing 3 Role, Asset and Situation modules.

Listing 2 represents the nuXmv encoding of the state-
chart diagram for the wHappensBefore concept depicted in
Fig. 2. The predicate wHappensBefore(event1, event2), which
stands for Weak Happens Before, starts in the not_happened

state. If event2 does not happen before or at the same time
as event1, the predicate changes to happened. This indicates
that event1 occurred before event2, but does not guarantee
that event2 will eventually happen. In contrast, the predi-

123

SymboleoPC: checking properties of legal contracts

Fig. 2 Statechart diagrams representing the concepts of three variants of the Happens predicate

cate sHappensBefore(event1, event2) (Strong Happens Before)
includes an additional state to ensure that event2 eventu-
ally happens. This guarantees that event1 happens before
event2 and that event2 will occur at some point in the future.
Finally, the predicate HappensAfter(event1, event2) indicates
that event1 occurs after event2.

The concepts of role, asset, and situation, which are also
contract-independent, are defined as distinct nuXmv mod-
ules, as illustrated in the nuXmv Listing 3. These modules
are designed to allocate a party to a role, ascertain the owner
of an asset, and articulate the propositional state of a situa-
tion, respectively. Their attributes can be accessed using the
‘dot’ notation. For instance, if ‘Computer’ represents an asset
with ‘Michael’ as its owner, an instance of Asset is instanti-
ated in nuXmv, and the owner’s identity (Michael) can be
accessed using the notation <Computer.instance>.owner in the
nuXmv environment.

Each of the resulting nuXmv modules can be subject to
formal verification to ensure the overall properties of the
corresponding Symboleo concept are preserved (e.g., the
last property of Listing 2 is an LTL property aiming to verify
that the encoding of the wHappensBefore is such that event2
never happens before event1.

The encodings in nuXmv of Symboleo’s generic con-
cepts (ontology and axioms) constitute a library of trusted
modules to be used as building blocks for the encoding of
a specific Symboleo specification. This library of trusted
modules, which are independent from any specific contract
(see Fig. 1), is a core component of SymboleoPC.1

The complete nuXmv encoding is obtained by having
the nuXmv representation of a specific Symboleo con-
tract specification instantiating the elements of the library of
trusted modules. For example, the contract-specific nuXmv
module shown in Listing 4 corresponds to the Symboleo
specification of the Computer Delivery contract from List-
ing 1. In that example, Obligation (...) and Power (...) instanti-
ate trusted modules from the contract-independent library,
whereas Store (...) and Customer (...) instantiate contract-
specificnuXmvmodules generatedbySymboleoPC for that
Symboleo specification, which in turn instantiate modules
from the contract-independent library.

1 The complete description of the 16 nuXmv modules composing the
library is available online: https://bit.ly/SymboleoPC-library

123

https://bit.ly/SymboleoPC-library

A. Parvizimosaed et al.

1 MODULE ComputerContract (par ty1 , par ty2 , computer , address , paidAmount , reimburseAmount , depositAmount)
2 CONSTANTS
3 " wo r k s t a t i on " , " l ap top " , " desktop " , " monitor " ,
4 " keyboard " , "mouse " , " oOrder " , " oDel " ,
5 " oPaid " , " oPay " , " oPayLateD " , " oReimburse " ,
6 " pCancel " , " pLateComp " ;
7 VAR
8 s t o r e : S to re (pa r t y2) ;
9 cus t : Customer (par ty1 , address) ;

10 ordered : Ordered (oOrder . s t a t e = c r e a t e | oDel . s t a t e =c rea te , cust , computer , 1) ;
11 de l i v e r ed : De l i v e r ed (oDel . s t a t e = i n E f f e c t , computer , cu s t . addr , 2) ;
12 paid : Pa id (cnt . s t a t e = i n E f f e c t | oPay . s t a t e = i n E f f e c t , paidAmount) ;
13 pa idLa teDe l : Pa id (oPayLateD . s t a t e = i n E f f e c t , paidAmount) ;
14 po l i c y : P o l i c y (cnt . s t a t e = i n E f f e c t | oPay . s t a t e = i n E f f e c t , 0 . 15 ∗ computer . p r i ce , 0 . 2 ∗ computer . p r i ce ,

0 . 85 ∗ computer . p r i c e) ;
15 payLateOptionChosen : PayLate (cnt . s t a t e = i n E f f e c t | cnt . s t a t e = i n E f f e c t) ;
16 depos i t : Pa id (oOrder . s t a t e = i n E f f e c t ,
17 depositAmount) ;
18 re imburse : Reimburse (cnt . s t a t e = i n E f f e c t ,
19 reimburseAmount) ;
20 pCance l_exer ted : Event (pCancel . s t a t e = i n E f f e c t) ;
21 pLateComp_exerted : Event (pLateComp . s t a t e = i n E f f e c t) ;
22 −− S ITUATIONS
23 ComputerCont rac t_precond i t ion : S i t u a t i o n (cnt . s t a t e = not_c rea ted −>

(po l i c y . amountmin<=po l i c y . amountmax) & (p o l i c y . amountmin >=0)) ;
24 oPay_consequent : S i t u a t i o n (hbefore_pa id_ordered_date_10_days . _ t rue & (depos i t . amount=computer . p r i c e)) ;
25 oReimburse_consequent : S i t u a t i o n ((pa id . event . _happened & paid . event . per fo rmer = oReimburse_debtor . _name &

oReimburse_debtor . _ i s _pe r f o rme r)) ;
26 oPa i d _ t r i g g e r : S i t u a t i o n ((pa id . event . _happened) | (payLateOptionChosen . event . _happened)) ;
27 / / More nuXmv code he re . . .
28 −− OBLIGATIONS
29 oOrder : Ob l i g a t i on (" oOrder " , FALSE , cn t . _o_ac t i va ted , FALSE , oOrder_consequent . _holds , TRUE ,

oO rde r_v i o l a t ed . _holds , FALSE , oOrder_exp i red . _holds , FALSE , FALSE , FALSE , FALSE , FALSE , FALSE ,
oOrder_antecedent . _ho lds) ;

30
31 / / More nuXmv code he re . . .
32 −− POWERS
33 pCancel : Power (" pCancel " , cnt . _o_ac t i va ted , pCance l _ t r i gge r . _holds , FALSE , pCance l_exp i red . _holds ,

FALSE , FALSE , FALSE , pCance l _exe r t i on . _holds , FALSE , FALSE , TRUE) ;
34 −− PART IES
35 oOrder_debtor : P a r t y (oOrder . _name , cu s t . r o l e . _par ty , FALSE , TRUE , FALSE , FALSE , FALSE , TRUE) ;
36 / / More nuXmv code he re . . .
37 −− IMP L I C I T CONSTRAINTS
38 INVAR
39 (((ordered . date + 168) < (ordered . date + 240)) & (pa id . event . s t a t e = a c t i v e)) −> (
40 (d e l i v e r ed . event . s t a t e = happened | d e l i v e r ed . event . s t a t e = exp i r ed))
41 / / More nuXmv code he re . . .
42 −− CONSTRAINTS
43 INVAR ComputerCont rac t_precond i t ion . _ho lds ;
44 −− ASSIGNMENT
45 ASSIGN
46 next (depos i t . amount) : = case
47 oPaid . s t a t e = f u l f i l l m e n t : pa id . amount + depos i t . amount ;
48 paid . event . _happened & oReimburse . s t a t e = f u l f i l l m e n t : 0 ;
49 TRUE : depos i t . amount ;
50 esac ;
51 ASSIGN
52 next (re imburse . amount) : = case
53 paid . event . _happened & oReimburse . s t a t e = f u l f i l l m e n t : depos i t . amount ;
54 TRUE : r e imburse . amount ;
55 esac ;
56 ASSIGN
57 next (depos i t . amount) : = case
58 paid . event . _happened & oReimburse . s t a t e = f u l f i l l m e n t : 0 ;
59 TRUE : depos i t . amount ;
60 esac ;

Listing 4 nuXmv model excerpt generated for the Symboleo contract of Listing 1.

123

SymboleoPC: checking properties of legal contracts

3.2 Verification problem scoping

SymboleoPC relies on finite-state symbolic model check-
ing techniques provided by the nuXmv model checker [9]
to perform formal verification of a Symboleo specification
against a set of properties. Symboleo, by its very nature,
specifies a contract that applies to a possibly infinite set of
Symboleo concept instances. For example, the Computer
Delivery contract of Listing 1 is expected to be valid for
all possible instances of Role, Event, Asset, Obligation, etc.
However, in order to perform model checking with nuXmv,
we are forced to specify a finite set of instances for each
class element. Thus, for instance, we say that there are two
possible customers namely "Amal" and "Sofana", two possi-
ble addresses (e.g., "Montreal" and "Ottawa"), and so on for
all the parameter elements of the contract. This approach
has several similarities with the approaches used (i) in For-
mal Tropos [21], where an upper bound was specified on the
number of instances for each class in the domain model; (ii)
in PDDL Planning [19], where the PDDL problem speci-
fies the objects for the planning problem; (iii) and the object
diagram used in OthelloPlay [8].

To create a verification problem in SymboleoPC, one
needs to create a file that contains the range of interesting
instances for each class of the specification. Given this file,
an algorithm generates a complete nuXmv specification that
includes all models to be checked for verification purposes.

The steps of the conversion algorithm are outlined in List-
ing 8. The conversion starts by analyzing the basic elements
and parameters of the contract and of the problem (lines 4
to 17), followed by the analysis of the contract, powers, and
obligations (lines 20 to 26), and finally building the complete
nuXmv specification of the given verification problem (lines
29 to 58). In a nutshell, the algorithm extracts defined event
and asset variables from declarations and creates respec-
tive instances using the information in Symboleo’s problem
scoping file. During this analysis, the algorithm builds, for
each condition that governs a legal position of a specification
(e.g., antecedent, consequent, triggers, precondition, termi-
nation, satisfaction), a corresponding propositional formula
to be used in the instantiation of the respective nuXmvmod-
ule. Moreover, this analysis computes precedence relations
among events. For instance, if the antecedent of an obligation
is satisfied by an event, then the event must happen before
the creation of the obligation. All these elements contribute
to the final nuXmv verification of the problem at hand.

We remark that the parameters of the contract are mapped
to nuXmv’s FROZENVAR2 (see line 4 in Listing 5). These

2 In nuXmv, FROZENVAR are variables whose initial values can be
possibly constrained to take an initial value satisfying a constraint (or
any value in the domain), but once initialized they preserve the value
over time (thus they behave as parameters).

variables are the mechanism provided by nuXmv to spec-
ify parametric specifications. These variables, together with
other variables and constants necessary to encode the specifi-
cation, can be passed as argument values at the time a nuXmv
module is instantiated tomake the specification complete and
enable model checking. During verification, such variables
range over all possible assignments in their problem scope.
Thus, if a property holds, it does so for all possible assign-
ments to its parametric variables, or if a property is violated,
the model checker pinpoints specific values that lead to prop-
erty violation.

Listings 4 and 5 represent excerpts of the final encoding
in nuXmv of the Computer Delivery contract of Listing 1.
In this problem scoping example we considered two cus-
tomers ("Amal", "Sofana"), two different stores ("PC−Mart",
"NextComp"), twoaddresses ("Ottawa", "Montreal"), three options
("monitor", "keyboard", "mouse"), prices represented as inte-
gers ranging from 1000 to 3000 currency value (e.g., CAD),
etc. The choices made during problem scoping may have a
critical impact on verification and must therefore be chosen
carefully taking into account the contract itself and the prop-
erties to be verified (see next section). However, if the model
checker proves a property to hold, it means that any value for
the parameters-at-hand has no effect on the truth of the given
property. On the other hand, if the property is violated, then
the model checker shows which values lead to a violation,
through the generation of a counterexample.

We finally note that we chose not to include the complete
encoding of the contract specifications in nuXmv here. The
complete contract specification in nuXmv and the complete
details of the encoding are available in [38].

3.3 Property checking with SYMBOLEOPC

SymboleoPC enables checking a specification (given a
problem scope) against desirable and undesirable properties
formulated as LTL or CTL formulas. These properties are
subject to encoding to convert Symboleo terms into corre-
sponding nuXmv terms. Typical properties of interest for a
contract are:

– Termination: There should always exist a way to ter-
minate a contract; otherwise, parties may remain liable
forever after. A contract terminates successfully if all
instantiated obligations are fulfilled. A power may also
cause a contract to terminate unsuccessfully.

– Limited liability: Legal contracts commonly compen-
sate for breaches by entitling a creditor to dynamically
impose fine obligations on the debtor. This techniquemay
subject a debtor to unlimited liability against the creditor.
A property can check that such liabilities are limited in
terms of time and assets.

123

A. Parvizimosaed et al.

1 MODULE main
2 CONSTANTS
3 " PC−Mart " , " NextComp " , " Amal " , " Sofana " ,

" wo r k s t a t i on " , " l ap top " , " desktop " , " monitor " ,
" keyboard " , "mouse " , " Ottawa " , " Montrea l " ;

4 FROZENVAR
5 cust_name : { " Amal " , " Sofana " } ;
6 store_name : { " PC−Mart " , " NextComp " } ;
7 address : { " Ottawa " , " Montrea l " } ;
8 type : { " wo r k s t a t i on " , " l ap top " , " desktop " } ;
9 opt ions : { " monitor " , " keyboard " , "mouse " } ;

10 p r i c e : r ea l ;
11
12 VAR
13 paidAmount : r ea l ;
14 depositAmount : r ea l ;
15 reimburseAmount : r ea l ;
16
17 −− CONSTRAINTS
18 IN IT 1000 .0 <= p r i c e & p r i c e <= 3000 . 0 ;
19 INVAR 150 .0 <= depositAmount & depositAmount <=

2 5 0 . 0 ;
20 INVAR 1000 .0 <= paidAmount & paidAmount <= 3000 . 0 ;
21 ASSIGN
22 i n i t (reimburseAmount) : = 0 . 0 ;
23 VAR
24 computer : Computer (cust_name , type , p r i ce ,

op t ions) ;
25 computer_cnt : ComputerContract (cust_name ,

store_name , computer , address , paidAmount ,
reimburseAmount , depositAmount) ;

26 −− G loba l c o n t r a c t p r o p e r t i e s
27 LTLSPEC NAME LTL1 := F (computer_cnt . cnt . s t a t e =

sTe rm ina t i on | computer_cnt . cnt . s t a t e =
unsTerminat ion) ;

Listing 5 nuXmv model excerpt for the contract of Listing 1.

– Conformity to party intentions: A contract must com-
ply with party intentions and expectations; otherwise, the
contract may be deemed void and parties may rescind the
contract. Leaving an unwanted contract is often expen-
sive. Properties can express intentions and expectations
in terms of events and situations.

During property verification, implicit constraints play a vital
role in fine-tuning and restricting potential solutions. Their
primary purpose is to guarantee that only solutions adher-
ing to the defined temporal order are considered within
the solution space. These constraints achieve this by intro-
ducing specific conditions that govern the sequence of
predicate functions, such as HappensBefore, HappensAfter,
and HappensWithin. By doing so, implicit constraints con-
tribute to narrowing down the solution space, eliminating
sequences that fail to adhere to the specified order within the
contract.

Listing 6 shows for each of the properties above a cor-
responding encoding in nuXmv. The state names in these
properties refer to state diagrams encoded in nuXmv. P1’s
query (instance of Termination, named LTL1) ensures that the
contract finally reaches either a successful or unsuccessful
termination state. Property P2 (instance of Limited liability,
named LTL2) checks that a store cannot be penalized more
than once when it violates its delivery obligation. Property

P3 (instance of Conformity to party intentions, named LTL3)
assures that on-time delivery is a prerequisite of payment.
In this scenario, the implicit constraint (refer to Listing 4,
line 35) ensures that the valid solutions, when the paid event
is active, are those where the delivered event has occurred
or expired. Any solutions that deviate from this specified
order—such as the paid event being active, while the deliv-
ered event has not occurred—will be excluded from the
solution space. This constraint is derived from the contract
specification (see Listing 1, lines 37 and 45),which states that
the delivery event must occur within 7 days of the order time,
while the paid event must occur 10 days after the order time.
It is crucial to highlight that the verification of this property
yields a false result without the application of this constraint,
whereas the use of the implicit constraint renders the ver-
ification true. Property P4 (instance of Conformity to party
intentions, named LTL4_1) further checks that each legal posi-
tion is activated in some execution, which is akin to looking
for dead code in computer programs.

1 −−∗ Number : P1
2 −−∗ D e s c r i p t i o n : A c o n t r a c t e v e n t u a l l y t e rm i n a t e s .
3 −−∗ Type : D e s i r a b l e p r o p e r t y
4 LTLSPEC NAME LTL1 := F (computer_cnt . Cnt . s t a t e =

sTe rm ina t i on | computer_cnt . Cnt . s t a t e =
unsTerminat ion)

5 −−∗ Number : P2
6 −−∗ D e s c r i p t i o n : I n case o f l a t e d e l i v e r y , the

s t o r e i s p e na l i z e d no more than once .
7 −−∗ Type : D e s i r a b l e p r o p e r t y
8 LTLSPEC NAME LTL2 := G

(computer_cnt . pLateComp . s t a t e = f u l f i l l m e n t −>
9 G
10 ! (computer_cnt . oPayLateD . s t a t e = i n E f f e c t))
11 −−∗ Number : P3
12 −−∗ D e s c r i p t i o n : The computer i s a lways pa id

a f t e r on−t ime d e l i v e r y .
13 −−∗ Type : D e s i r a b l e p r o p e r t y
14 −−∗ F a i l s : Payment o b l i g a t i o n s depend on

the d e l i v e r e d event , not d e l i v e r y o b l i g a t i o n .
T h e r e f o r e , the computer may d e l i v e r a f t e r 10
days and cus tomer i s o b l i g e d to pay .

15 LTLSPEC NAME LTL3 := ! (computer_cnt . oDel . s t a t e =
f u l f i l l m e n t) U (computer_cnt . oPay . s t a t e =
f u l f i l l m e n t | computer_cnt . oPayLateD . s t a t e =
f u l f i l l m e n t)

16 −−∗ Number : P4
17 −−∗ D e s c r i p t i o n : T h i s p r o p e r t y e s s e n t i a l l y

e n s u r e s t ha t the d e l i v e r y s t a r t s once the
d e p o s i t f o r the computer i s r e c e i v e d .

18 −−∗ Type : D e s i r a b l e p r o p e r t y
19 LTLSPEC NAME LTL4_1 := F ((computer_cnt . oPay . s t a t e

= f u l f i l l m e n t) −> F (computer_cnt . oDel . s t a t e =
i n E f f e c t)) ;

20 −−∗ Number : P5
21 −−∗ D e s c r i p t i o n : I t i s p o s s i b l e to r e c e i v e a

computer and t e rm i na t e the c o n t r a c t w i thou t
payment . We aim to gene ra t e a w i t n e s s he r e .

22 −−∗ Type : Und e s i r a b l e p r o p e r t y
23 LTLSPEC NAME LTL5 := G (((computer_cnt . cnt . s t a t e =

sTe rm ina t i on | computer_cnt . cnt . s t a t e =
unsTerminat ion) &
computer_cnt . oDel . s t a t e = f u l f i l l m e n t)
−>G (computer_cnt . oPay . s t a t e = f u l f i l l m e n t |
computer_cnt . oPayLateD . s t a t e = f u l f i l l m e n t)) ;

Listing 6 Properties for the Computer Delivery contract.

123

SymboleoPC: checking properties of legal contracts

Fig. 3 Overview of SymboleoPC’s inputs and outputs

We note that SymboleoPC can also be used to discover
possibleways to fulfill the conditions of a contract. For exam-
ple,P5, named LTL5, (forwhich themodel checker is expected
to generate a counterexample) discovers a sequence of events
that delivers the computer to the customer and terminates the
contract without payment.

3.4 Architecture

While Fig. 1 gives an overview of how SymboleoPC was
created, Fig. 3 presents the architecture of SymboleoPC,
together with its inputs and outputs. The tool leverages the
nuXmv model checker engine [9] to perform analysis.

SymboleoPC expects three main inputs:

i. a Symboleo contract specification syntactically vali-
dated with an Xtext-based editor (e.g., Listing 1);

ii. a problem scope that specifies a finite set of instances for
each class that determine a finite set of contract instances
(e.g., Listing 5);

iii. the set of temporal logic properties (expressed inCTL/LTL)
to be verified against contract instances of interest (e.g.,
Listing 6).

Listing 7 Syntactic structure of a Symboleo contract.

1 Domain <domain name >
2 // <define assets as well as events >
3

4 Contract <contract name > (<contract
parameters >)

5 Declarations
6 // <instantiate events >
7 // <instantiate situations >
8 // <instantiate assets >
9 Obligations

10 // <instantiate obligations >
11 Powers
12 // <instantiate powers >

Translation into nuXmv (as discussed in Sect. 3.2 and
sketched in Listing 8) takes advantage of a library of trusted
nuXmvmodules (Sect. 3.1), each encoding basic Symboleo
constructs and primitives (e.g., axioms of primitive predi-
cates, runtime operations, and state machines describing the
behavior of primitive concepts). Details of the encoding are
available online [38].

The output of the translation is a complete nuXmv spec-
ification. At this point, SymboleoPC invokes the symbolic
model checker nuXmv to verify the CTL/LTL properties
and analyze its outputs. For the properties that hold, it sim-
ply reports the information to the user. For properties that do
not hold, it presents a counterexample/witness to the user. To
this end, SymboleoPC leverages the mapping used for the
conversion from Symboleo to nuXmv.

4 Implementation and testing

This section presents rules used to support the nuXmv
code generation from Symboleo specifications in Symbol-
eoPC’s implementation, togetherwith the tests used to assure
a minimum level of quality.

4.1 Implementation

The translation process is a multi-step endeavor that entails
navigating through the specifications outlined in a contract.
As illustrated in Listing 7, a contract specification contains
the domain and scopes of the contract. A contract comprises
a designated name and a list of input parameters that dictate
specific values crucial to the contract instance, such as the
payment due date. The contractual dynamics is event-driven,
where events play a pivotal role in altering the contractual
landscape. For example, an event might encapsulate a situa-
tion that triggers an obligation. Variables are used to define
instances of events, situations, and assets. Similarly, Obli-
gation, Power, and Party are all identified with variables,
although the translation algorithm treats them distinctively.
Depending on the contract, various constraints may apply.

123

A. Parvizimosaed et al.

1 Algorithm t r a n s l a t i o n (c : Con t r a c t)
2 / / E x p l o r e v a r i a b l e s and p r o p o s i t i o n s o f a c o n t r a c t
3 / / E x p l o r e even t v a r i a b l e s
4 events = s e t { }
5 v a r i a b l e s = s e t { }
6 foreach va r c in c . d e c l a r a t i o n :
7 when va r c . c l a s s = Event then
8 va r c . p r e cond i t i on = se t { }
9 foreach N in c . o b l i g a t i o n s union c . powers

10 when happens (varc , t) in N . antecedent then
11 va r c . p r e cond i t i on += {N . s t a t e = c r e a t e }
12 when happens (varc , t) in N . consequent then
13 va r c . p r e cond i t i on += {N . s t a t e = i n E f f e c t }
14 when happens (varc , t) in N . t r i g g e r then
15 va r c . p r e cond i t i on += { c . s t a t e = i n E f f e c t }
16 events += { va r c }
17 e l se v a r i a b l e s += { va r c }
18 / / Make a p r o p o s i t i o n t ha t t e rm i n a t e s a c o n t r a c t by a power
19 cn tTe rm ina t i on = { }
20 foreach pw in c . powers
21 when pw . consequent = te rm ina te s (s e l f) then
22 pw_exert ion = new event ()
23 pw_exert ion . p r e cond i t i on = {pw . s t a t e = i n E f f e c t }
24 events += { pw_exert ion }
25 cn tTe rm ina t i on += { pw_exert ion . _happened }
26 / / S i m i l a r pseudo code f o r d i s chargement , r e sumpt ion and t e rm i n a t i o n o f an ob l i g a t i o n , and su sp en s i on and

re sumpt ion o f a c o n t r a c t
27
28 / / C r ea t e a nuXmv c o n t r a c t
29 / / The o b l i g a t i o n , power , c o n t r a c t and even t modules
30 makeContract IndependentModules ()
31 / / A s s e t s , r o l e s and s p e c i f i c e v en t s w i th t h e i r a t t r i b u t e s
32 foreach cp in c . domainConcepts
33 makeModule (cp)
34 / / Make a module f o r a s p e c i f i c c o n t r a c t
35 makeContract (c . parameters)
36 / / i n s t a n t i a t e a c o n t r a c t module
37 Cnt : c on t r a c t (true , true , d i s j u n c t i o n (cn tTe rm ina t i on) , d i s j u n c t i o n (cntSuspens ion) , d i s j u n c t i o n (cntResumption) ,

fa l se , fa l se , d i s j u n c t i o n (f u l f i l l e d))
38 / / C r ea t e e v en t s and o t h e r modules f o r v a r i a b l e s
39 foreach ev in events union v a r i a b l e s
40 c r e a t e V a r i a b l e (ev) / / i n s t a n t i a t e a s s e t and even t v a r i a b l e s
41 / / I n s t a n t i a t e an o b l i g a t i o n s module
42 foreach o in c . o b l i g a t i o n s
43 obl : Ob l i g a t i on (o . s u r v i v i ng , c . _o_ac t i va ted , d i s j u n c t i o n (cn tTe rm ina t i on) , o . consequent , o . t r i g g e r , not

o . consequent , fa l se , not o . antecedent , d i s j u n c t i o n (oSuspens ion) , d i s j u n c t i o n (cntSuspens ion) ,
d i s j u n c t i o n (cn tTe rm ina t i on) or d i s j u n c t i o n (oTerminat ion) , d i s j u n c t i o n (oResumption) ,
d i s j u n c t i o n (cntResumption) , d i s j u n c t i o n (oDischargement) , o . antecedent)

44 makeDebtor (o)
45 makeCred i tor (o)
46 / / S i m i l a r l y i n s t a n t i a t e modules o f powers
47
48 / / Gene ra te i m p l i c i t c o n s t r a i n t s o f the p r e d i c a t e f u n c t i o n s
49 for i : 0 To c . p r e d i c a t e V a r a i a b l e s . s i z e
50 for j : i +1 To c . p r e d i c a t e V a r a i a b l e s . s i z e
51 g en e r a t e Imp l i c i t C o n s t r a i n t (c . p r e d i c a t e V a r a i a b l e s
52 . get (i) , c . p r e d i c a t e V a r a i a b l e s . get (j))
53 / / Add c o n s t r a i n t s to nuXmv INVAR scope
54 foreach c s t in c . c o n s t r a i n t s
55 add Inva r (c s t)
56 / / T r a n s l a t e as s ignment e x p r e s s i o n s to nuXmv ASSIGN c l a u s e .
57 foreach o in c . o b l i g a t i o n s
58 gene r a t e P r opo s i t i o nA s s i gnS t r i n g (o . T r i gge r , " cnt . s t a t e = . s t a t e = i n E f f e c t ")
59 gene r a t e P r opo s i t i o nA s s i gnS t r i n g (o . antecedent , o . name + " . s t a t e = i n E f f e c t ")
60 gene r a t e P r opo s i t i o nA s s i gnS t r i n g (o . consequent , o . name + " . s t a t e = f u l f i l l m e n t ")
61 / / S i m i l a r l y g ene ra t e as s ignment e x p r e s s i o n s from s u r v i v i n g o b l i g a t i o n s and powers

Listing 8 Pseudo code of the Symboleo-to-nuXmv translation algorithm.

The translation algorithm systematically transforms each
scope into their respective nuXmv modules, as detailed in
Listing 8. The algorithm initiates its process by parsing
events, assets, and situation variables (lines 4 to 17) and
systematically delving into the powers and obligations asso-
ciatedwith a contract (lines 18 to 26). These initial steps serve

to extract and organize the essential metadata of a contract,
subsequently arranging them into appropriate data structures.
Leveraging this extracted metadata, the algorithm proceeds
to construct nuXmv modules for the contract (lines 27 to
54) and generates the corresponding ASSIGN clauses based
on assignment expressions (lines 56 to 60). More specifi-

123

SymboleoPC: checking properties of legal contracts

cally, the algorithmextracts event and asset variables from the
declaration scope of a specification. According to the event
module nuXmv, a propositional precondition enables an
event. Lines 7 to 17 search anywhere whether the occurrence
of an event is effective (e.g., in antecedents, consequents, and
triggers of legal positions) and determine the precondition for
the occurrence of the event. For instance, the ordered vari-
able in Listing 1, integrated into the antecedents of oOrder
and oDel, becomes activated upon the instantiation of these
respective obligations. Consequently, as shown in Listing 4,
the conjunction Order.state = create | oDel.state = create
serves to activate the ordered event.

A contract, along with its legal positions, is represented
through parametric nuXmv modules. These parameters
serve as input parameters for the nuXmv modules associ-
ated with obligations, powers, and contracts. They play an
important role in determining when a legal position or a con-
tract undergoes state changes [37]. While some parameters
are statically defined by constant values, others are contin-
gent on the legal positions or the contract itself. Consider the
True value in the oOrder obligation inListing 4,which serves
as a constant indicating unconditional obligation triggering.
In contrast, oOrder_violated is a variable that dynamically
determines when the obligation is violated. The algorithm
navigates through a contract, dynamically computing these
variables. In particular, lines 20 to 26gather powers that result
in the termination of a contract, generate an event for the
exertion of each power, and ultimately produce the cntTer-
mination variable, representing the contract’s termination.
In a parallel fashion, the algorithm defines variables for the
dischargement, suspension, resumption, and termination of
obligations. Additionally, it introduces variables pertaining
to the suspension and resumption of a contract.

Following the preliminary processing of variables, the
algorithm undergoes a secondary scan of the specification,
during which it creates customized nuXmvmodules. In line
30, contract-independent modules are dynamically gener-
ated. Specifically, nuXmv modules for the timer, event,
obligation, power, and contract are universally defined
once, regardless of a particular contract. Thesemodules serve
as templates and are subsequently instantiated for each spe-
cific contract. Moving to lines 32 to 33 of Listing 8, the
algorithm then addresses domain-specific concepts, such as
Store, Device, Computer and Delivered as outlined in List-
ing 1. These concepts are uniquely defined for each contract,
resulting in the creation of one nuXmvmodule per concept.

In line 35, a parametric module is crafted to align with a
designated contract, exemplified by ComputerC in Listing 1.
This module includes declarations of variables, legal posi-
tions, and constraints relevant to the specific contract under
consideration. Subsequently, in line 37, an instance of the
contract module is instantiated. This instantiation employs
internal variables to govern the contract’s behavior. In partic-

ular, the disjunction function is used to aggregate events that
culminate in the termination of a contract, such as the exertion
of a power. The invocation of disjunction(cntTermination)
serves as the catalyst for contract termination, adhering to
the logical principles encoded within the contract module.

Aligned with the stipulated variables in the contract spec-
ification, lines 39 and 40 of Listing 8 initiate the instantiation
of certain domain modules. Specifically referencing the
ComputerC contract, the variable ordered is established,
referring to an instance of Ordereddefinedwithin the domain
concept. The conversionprocedure involves the creationof an
instance of theOrderedmodule innuXmv, with the resulting
instance assigned to the nuXmv variable labeled ordered.

Similarly to the instantiation of the contract module, the
algorithm scans the obligations and powers and generates
the corresponding instances of nuXmv modules with the
proper parameters in lines 41 to 42. Debtors and creditors
are two features of legal positions that determine liability,
the right holder, and the performer. The makeDebtor and
makeCreditor functions (lines 43 and 44) instantiate a party
module for the debtor and the creditor of a legal position.
Then, Symboleo constraints are converted to invariants in
nuXmv (lines 53 to 54). Implicit constraints are also gener-
ated to constrain the sequence of occurrence of the predicate
functions and reduce the solution space (lines 49 to 51).

To extract the Assign clause from the assignment expres-
sions found in all the legal positions, lines 56 to 60 go through
their expressions Trigger, Antecedent, and Consequent, search-
ing for the Assign and HappensAssign predicate functions to
extract both the event and the expressions.

The translation algorithmconsists of 13 rules [34]. In order
to provide clarifications on the algorithm,we present an illus-
trative sample of six important rules in Appendix A.

SymboleoPC’s codegenerator is implemented inXtend [6]
and Java, with Eclipse. The parsing of a specification lever-
ages the Xtext framework. Similarly, the translations back
and forth from Symboleo tonuXmv leverage the navigation
methods provided by Xtext and Xtend. The implementation
consists of more than 3000 lines of code that comprise a
set of methods that mostly parse the Xtext file and generate
nuXmv modules using translation rules. The tool, technical
tutorials, usage instructions, and full contract examples are
publicly accessible on GitHub [38].

4.2 Unit and acceptance tests

The tool and translation rules have undergone a rigorous
assessment process, which included a comprehensive set of
unit tests and two acceptance tests. Unit tests were carried out
at different levels of granularity, covering various scenarios
related to assets, situations, and events. At the highest level of
granularity, the tests focused onverifying the translation rules
of legal positions, constraints, and contracts. This approach

123

A. Parvizimosaed et al.

allowed us to test the translation of concepts and relationships
in Symboleo’s ontology, and to ensure that the translation
rules for obligations and powers were accurate, based on
verified assets, events, and situations. To ensure that our test
scenarios covered the other concepts well, we extracted enti-
ties from theSymboleoontology and the language grammar.
The resulting unit test scenarios are summarized in Table 1,
while details are available on GitHub [15].

This approach not only helped us identify and correct
errors in our translation rules but also enabled us to improve
the overall quality of the translation tool.

An Asset often comes with a list of attributes that describe
the quantitative and qualitative properties of the asset (sce-
nario 1). A contract may contain several simple assets,
consisting of atomic attributes (scenario 2), or compos-
ite assets, which contain an attribute with the type of a
defined asset (scenario 3). As an example, Computer can be
a composite asset that contains motherboard and CPU assets.
The last scenario is the generalization of an asset (scenario
4). Although there are several generalization rules such as
attribute overriding, the translator supports inheritance cases
with new attributes and skips overriding cases.

Similarly, an Event is defined by a set of attributes (sce-
nario 1). An event is often used in the antecedent, consequent,
or trigger of a legal position, or in the precondition, post-
condition, or constraint of a contract. Scenario 2 covers the
antecedent and the consequent,while the remaining scenarios
have been implemented in the tool. In addition to obligations,
eventsmay activate a power (scenario 3). An eventmay occur
through a time-limited predicate such as sHappensBefore

(scenario 4). Similar to assets, the generalization of events is
another possible format of events (scenario 5).

A Situation is represented in different formats. Atomic
situations are numeric and Boolean values or occurrence
predicates. Recursive combinations of atomic situations
result in a composite situation. A situation may expire when
it never happens in the future. For example, happens(violated
(obl1)) expires if the obligation obl1 is fulfilled, terminated,
or discharged.

Unconditional and conditional legal positions are typical
scenarios of valid legal positions. However, several powers
may accomplish the same action such as termination of a
contract. In this case, the translator mixes powers and gener-
ates a proposition for the termination of a contract (scenarios
2 and 3).

The assignment is defined by two forms, HappensAssign
and Assign. Both are used in the antecedent and consequent
of a legal position. Scenarios 1 and 4 cover the antecedent
and the consequent of the obligations, while scenarios 3 and
6 cover powers’ antecedent. The assignment may have more
than one assignment expression and modify the event and
contract variables.

Unit test scenarios have been assessed through state cov-
erage and pair transition coverage metrics [53]. The test
scenarios cover all concepts aswell as 18 out of 22 links in the
ontology of Symboleo. Liability, performer, right holder,
and subcontracting association links [35] are not covered as
the translator does not support runtime operations.

The quality of the verification results depends on the cor-
rectness of the specification and the properties. To validate
the correctness of the generic modules (i.e., the event, timer,
party, obligation, power, and contract), we specified for each
a set of highly granular properties, and we verified each of
them using the nuXmv tool itself. The result is then a library
of genericmodules that constitute a trusted basis for the spec-
ification of the contract, hence minimizing the possibility
that contract-dependent properties fail because of bugs in
the common basic modules. Since state machines represent
the behavior of modules, state and transition coverage met-
rics have been used to assess coverage and the percentage
of properties. For example, Listing 9 lists a set of LTL and
CTL properties used to verify that each state of event and
obligation statecharts can be reached in the encoded nuXmv
modules and that all the direct and indirect transitions can be
fired.

5 Scalability analysis of SYMBOLEOPC

The performance analysis of a tool such as SymboleoPC
is a multi-parameter problem. The most important parame-
ters that may affect the performance of SymboleoPC and
that will allow to evaluate its scalability in handling realistic,
typical legal contracts are (1) the number of legal positions
(i.e., obligations and powers) in a Symboleo specification,
(2) their inter-dependencies (e.g., defined by conditions), (3)
the verification algorithm, and (4) the number and structure
of the properties to check.

To perform a credible evaluation on synthetic and scalable
benchmarks within the space of these parameters, we have
studied fourteen typical monitorable (i.e., with many events)
legal business contracts adopted from the literature or pub-
licly available on the Web. These contracts are available in
annotated form online [38]. From these contracts, we only
extracted the distributions of legal positions, their relation-
ships, and the operators that occur in properties of interest,
with results reported in Tables 2 and 3.

Table 2 shows that for these legal contracts, the number of
obligations ranges from 1 to 31, while the number of powers
ranges from 1 to 20. The dependency level of legal posi-
tions indicates to what extent the evolution of obligations and
powers depends on other clauses of a contract. Symboleo’s
semantics determine the types of dependencies that can exist
between positions, including the creation, suspension, and
discharge of obligations by powers, or the termination of

123

SymboleoPC: checking properties of legal contracts

Table 1 Test scenarios for SymboleoPC

Subject Test scenario

Asset 1. Define an asset with some attributes. E.g.

asset1 isAn Asset with owner: String, att1: Number

2. Make and instantiate an asset module. E.g.

asset1 isAn Asset with owner: String, att1: Number

Declarations

asset1: Asset1 with owner:= owner, att1:= att_val1

3. Define multiple assets. E.g.

asset1 isAn Asset with owner: String, att1: Number

asset2 isAn Asset with owner: String, att2: String

4. Define and instantiate a nested asset. E.g.

asset1 isAn Asset with owner: String, att1: Number

asset2 isAn Asset with owner: String, att2: String, ast2: Asset1

5. Inherit an asset. E.g.

asset1 isAn Asset with owner: String, att1: Number

asset2 isAn Asset1 with owner: String, att2: String

Event 1. Make and instantiate events with and without attributes. E.g.

event1 isAn Event with att1: String, att2: Date

event2 isAn Event

2. Use an event in different propositions. E.g.

obl1: Obligation(role1, role2, true, happens(event1))

obl2: Obligation(role2, role1, happens(event1), happens(event2))

3. Use an event in obligations and powers. E.g.

obl1: Obligation(role1, role2, true, happens(event1))

pow2: Power(role2, role1, happens(event1), suspends(Obl1))

4. Use an event with time constraint. E.g.

obl1: sHappensBefore(event1, time1) → Obligation(role1, role2, true, happensAfter(event2, time2))

5. Define an event based on another event. E.g.

event1 isAn Event with att1: String

event2 isAn Event1 with att2: Date

6. Define an event with an asset attribute. E.g.

asset1 isAn Asset with att1: String, att2: String

event1 isAn Event with att3: Asset1, att4: String

7. Happens a state transition event. E.g.

obl2: Obligation(role1, role2, happens(Violated(obl1)), happens(event1))

Role 1. Assign a party and some attributes to a role. E.g.

Role1 isA Role with att1: String

Contract contr (id: String, role1: Role1, role2: Role2, party1: String,

party2: String, att_val1: String, att_val2: Number, owner: String)

role1: Role1 with party:= party1, att1:= att_val1

Situation 1. Happening of an event and state transitions of an obligation. E.g.

obl1: Obligation(role1, role2, true, happens(event1))

obl2: happens(violates(obl1)) → Obligation(role2, role1, true, happens(event2))

2. Conjunction of events. E.g.

obl1: Obligation(role1, role2, happens(event1), happens(event1) and happens(event2))

3. Expire a situation. E.g.

obl1: Obligation(role1, role2, true, happens(event1))

obl2: Obligation(role2, role1, happens(violates(obl1)), happens(event2))

123

A. Parvizimosaed et al.

Table 1 continued

Subject Test scenario

Constraint 1. Explicit constraint: an event happens before a specific time. E.g.

Constraints

happensBefore(event, time)

2. Implicit constraint. E.g.

obl1: Obligation(role1, role2, true, sHappensBefore(event1, event2) and sHappensAfter(event1, event2))

obl2: Obligation(role2, role1, true, sHappensAfter(event2, event3) and time > 10)

3. Implicit constraint: consider occurrence order of events and precondition. E.g.

Preconditions

not IsEqual(party1, party2)

Obligations

obl1: O(role1, role2, true, sHappensBefore(event1, event2))

Obligation 1. An unconditional obligation. E.g.

obl1: Obligation(role1, role2, true, happens(event1))

2. An obligation with simple antecedent and consequent. E.g.

obl1: Obligation(role1, role2, happens(event1), Happens(event2))

3. Use a time-limited consequent. E.g.

obl1: Obligation(role1, role2, happens(event2), sHappensBefore(event1, dueDate))

4. Trigger an obligation by a proposition. E.g.

obl1: happens(event3) → Obligation(role1, role2, happens(event2), sHappensBefore(event1, dueDate))

Power 1. An unconditional power. E.g.

pw1: Power(role1, role2, true, terminates(self))

2. Conjunction of two powers as a situation for a contract termination. E.g.

pw1: Power(role1, role2, true, terminates(self))

pw2: Power(role2, role1, true, terminates(self))

3. Two unconditional powers with different actions. E.g.

obl1: Obligation(role1, role2, true, happens(event1))

pw1: Power(role1, role2, true, suspends(obl1))

pw2: Power(role2, role1, true, terminates(self))

Assign 1. Happen Assign in antecedent and consequent. E.g.

Ob1: Obligation(role1, role2, true, HappensAssign(event, expression))

Ob1: Obligation(role1, role2, HappensAssign(event, expression), Happens(event2))

2. More than one assignment expression. E.g.

Ob1: Obligation(role1, role2, true, HappensAssign(event, expression1; expression2))

3. HappensAssign in powers. E.g.

pw2: Power(role2, role1, HappensAssign(event, expression), suspends(obl1))

4. Assign in antecedent and consequent of obligations. E.g.

Ob1: Obligation(role1, role2, true, Assign(expression))

Ob1: Obligation(role1, role2, Assign(expression), Happens(event2))

Ob1: Obligation(role1, role2, Assign(expression), Happens(event2))

5. More than one assignment expression. E.g.

Ob1: Obligation(role1, role2, true, Assign(expression1; expression2))

6. Assign in powers. E.g.

pw2: Power(role2, role1, Assign(expression), suspends(obl1))

123

SymboleoPC: checking properties of legal contracts

Table 2 Frequencies of legal positions and their dependencies in 14 business contracts adopted from the Web

Contract MS PD SA SHI FGW CL TE OR WA DIS1 SU EL DIS2 COV Dependency(%)

Obligation# 14 3 5 11 17 20 3 1 9 27 5 8 31 3 64.08

Power# 3 2 1 2 13 9 3 4 3 11 7 6 20 4 35.92

R1 1 2 1 0 0 0 0 0 0 0 1 0 1 0 3.82

R2 0 0 0 2 0 0 0 0 0 0 0 0 0 0 1.27

R3 0 0 1 1 3 4 1 0 1 7 0 2 2 0 14.01

R4 15 0 0 0 0 0 0 0 0 0 1 0 0 0 10.19

R5 14 0 0 0 0 0 0 0 0 0 0 0 0 0 8.91

R6 0 0 0 0 0 0 0 1 0 0 0 0 0 0 0.64

R7 0 0 0 0 0 0 0 1 0 0 2 2 1 0 3.18

R8 0 0 0 0 0 0 0 1 0 0 0 0 1 0 11.11

R9 1 0 1 1 2 2 1 0 2 2 2 2 3 0 21.59

R10 0 0 0 0 0 0 1 0 0 0 0 0 0 0 2.7

R11 0 0 0 0 1 0 0 0 0 0 0 0 0 0 1.14

R12 1 1 0 0 0 2 1 1 2 4 5 0 8 2 30.68

R1: Triggering an obligation by an obligation violation R2: Violation of an obligation is the antecedent of an obligation
R3: Triggering an obligation by a power R4: Suspending an obligation by a power
R5: Resuming an obligation by a power R6: Discharging an obligation by a power
R7: Triggering an obligation by contract termination R8: Triggering a prohibition by contract termination
R9: Triggering a power by an obligation violation R10: Antecedent of a power depends on the violation of an obligation
R11: Discharging a power by a power R12: Terminating a contract by a power
MS: Meat Sales PD: Pizza Delivery
SA: Service Agreement SHI: Shipping Agreement
FGW: Frozen Goods Warehousing CL: Car Lease
TE: Transactive Energy OR: Office Rental
WA: Warehousing DIS1: Distribution Agreement 1
SU: Supply Agreement EL: Equipment Lease
DIS2: Distribution Agreement 2 COV: COVID-19 Vaccine Manufacturing

contracts by powers. Implicit dependencies, e.g., triggering
obligations by the violation of other obligations, are also
important. Considering all possible types of dependencies in
generating specifications would result in a huge space of con-
tracts to be tested. However, most types are rarely found in
real contracts. Consequently, our empirical study only con-
siders 12 frequent types of dependencies, reported in Table 2
when generating synthetic specifications. The results of our
analysis suggest that 14% of the obligations are triggered
by powers (R3), while 22% of powers are triggered by an
obligation violation (R9). Suspension and resumption of an
obligation (R4 and R5) are outliers here since the meat sales
contract contains two powers to suspend and resume all obli-
gations. Note that the dependency percentages sum up to
more than 100% because some positions include multiple
dependencies.

Table 3 reports the result of our empirical study of typ-
ical LTL and CTL properties previously used to analyze
legal contracts. In the analysis, we considered the number of
occurrences of CTL and LTL temporal operators, the num-
ber of disjunctions (or), conjunctions (and), implications, and
negations, as well as the number of sub-formulas (which cor-
responds to the nesting of temporal operators). These results

show that for the property formulas, the maximum nesting
of operators is 7 and the average is about 3.

The presence of dependencies among positions reduces
the size of the state space to explore during verification.How-
ever, dependencies also involve the evaluation of conditions.
The impact of these adversarial performance factors must be
studied empirically.

5.1 Testing infrastructure

In this paper, we conducted a more realistic performance
evaluation than we did in our previous work [36]. Now, we
generate Symboleo specifications of random synthetic con-
tracts and translate them into nuXmv models automatically
using SymboleoPC, instead of directly generating nuXmv
code (and bypassing Symboleo). Synthetic random con-
tracts were manually syntax-checked using the Symboleo
editor, which enforces all the necessary static rules needed to
specify legal contracts correctly. Furthermore, different val-
idation algorithms are used to verify the generated models,
new data analysis is conducted, and new results are reported.

For the evaluation, we complemented the SymboleoPC
tool with a side evaluation tool that takes as input a ran-

123

A. Parvizimosaed et al.

Table 3 Distribution of operators in properties of legal business contracts

Property EG AG EF AF G F U OR AND Implication Negation Subformulas

Sum(LTL) 0 0 0 0 31 9 6 5 40 7 18 83

Average(LTL) 0 0 0 0 1.24 0.36 0.24 0.2 1.6 0.28 0.72 3.32

Sum(CTL) 0 5 7 0 0 0 0 3 10 4 4 24

Average(CTL) 0 0.71 1 0 0 0 0 0.43 1.43 0.57 0.57 3.43

1 −−∗ Even t : 100% s t a t e cove rage
2 LTLSPEC NAME LTL1 := (event . s t a t e = i n a c t i v e &

event . s t a r t) −> X (event . s t a t e = a c t i v e)
3 LTLSPEC NAME LTL2 := (event . s t a t e = a c t i v e &

event . s t a r t & event . t ime r . exp i red1) −>
X (event . _exp i red)

4 LTLSPEC NAME LTL3 := (event . s t a t e = a c t i v e &
event . s t a r t & event . t r i g g e r ed &
event . t ime r . a c t i v e 1)−> X (event . _happened)

5
6 −−∗ Even t : 100% t r a n s i t i o n cove rage
7 CTLSPEC NAME CTL1 := (event . s t a t e = a c t i v e) −>

EF (event . _exp i red)
8 CTLSPEC NAME CTL2 := (event . s t a t e = a c t i v e) −>

EF (event . _happened)
9

10 −−∗ Ob l i g a t i o n : 100% s t a t e cove rage
11 LTLSPEC NAME LTL1 := (obl . s t a t e = c r e a t e &

obl . a c t i v a t e d) −> X (ob l . s t a t e = i n E f f e c t)
12 LTLSPEC NAME LTL2 := (obl . s t a t e = c r e a t e &

obl . exp i red1) −> X (ob l . s t a t e = d i s cha rge)
13 LTLSPEC NAME LTL3 := (obl . s t a t e = i n E f f e c t &

obl . d i s cha rged) −> X (ob l . s t a t e = d i s cha rge)
14 LTLSPEC NAME LTL4 := (obl . s t a t e = i n E f f e c t &

(obl . power_suspended | obl . cnt_suspended))
−> X (ob l . s t a t e = suspens ion)

15 LTLSPEC NAME LTL5 := (obl . s t a t e = suspens ion &
(obl . power_resumed | obl . cnt_resumed)) −>
X (ob l . s t a t e = i n E f f e c t)

16 LTLSPEC NAME LTL6 := (obl . s t a t e = i n E f f e c t &
(obl . f u l f i l l e d)) −> X (ob l . s t a t e =
f u l f i l l m e n t)

17 LTLSPEC NAME LTL7 := (obl . s t a t e = i n E f f e c t &
(obl . v i o l a t e d)) −> X (ob l . s t a t e = v i o l a t i o n)

18 LTLSPEC NAME LTL9 := ((ob l . s t a t e = i n E f f e c t |
ob l . s t a t e = suspens ion) &
(obl . cn t_unte rm ina t ion)) −> X (ob l . s t a t e =
unsTerminat ion)

19
20 −−∗ Ob l i g a t i o n : 100% t r a n s i t i o n cove rage
21 CTLSPEC NAME CTL1 := (obl . s t a t e = not_c rea ted)

−> EF (ob l . s t a t e = f u l f i l l m e n t)
22 CTLSPEC NAME CTL2 := (obl . s t a t e = not_c rea ted)

−> EF (ob l . s t a t e = v i o l a t i o n)
23 CTLSPEC NAME CTL3 := (obl . s t a t e = not_c rea ted)

−> EF (ob l . s t a t e = unsTerminat ion)
24 CTLSPEC NAME CTL4 := (obl . s t a t e = not_c rea ted)

−> EF (ob l . s t a t e = d i s cha rge)
25 CTLSPEC NAME CTL5 := (obl . s t a t e = not_c rea ted)

−> EF (ob l . s t a t e = suspens ion)
26
27 CTLSPEC NAME CTL6 := (obl . s t a t e = suspens ion)

−> EF (ob l . s t a t e = f u l f i l l m e n t)
28 CTLSPEC NAME CTL7 := (obl . s t a t e = suspens ion)

−> EF (ob l . s t a t e = v i o l a t i o n)
29 CTLSPEC NAME CTL8 := (obl . s t a t e = suspens ion)

−> EF (ob l . s t a t e = unsTerminat ion)
30 CTLSPEC NAME CTL9 := (obl . s t a t e = suspens ion)

−> EF (ob l . s t a t e = d i s cha rge)
31 CTLSPEC NAME CTL10 := (obl . s t a t e = suspens ion)

−> EF (ob l . s t a t e = suspens ion)
32
33 −−∗ Ob l i g a t i o n s a re r e a chab l e
34 CTLSPEC NAME CTL11 := EF (ob l . _ a c t i v e)

Listing 9 Generic properties for the Event and Obligation modules.

domly generated Symboleo contract specification and the
set of parameters that comply with the extracted distributions
of Symboleo parameters (e.g., # of obligations, # of pow-
ers, % of dependencies, # properties, and depth) also used
for the generation of the Symboleo specification. This tool
first converts the random synthetic Symboleo contract into
the nuXmv format, and then, it generates a set of random
properties for the given Symboleo specifications directly at
the nuXmv level. This tool is implemented in Java and is
available online [38].

The next three sections report the evaluation results
along the parameters discussed previously (# of positions,
% of dependencies, and # of properties in Table 3). We
explore these parameters separately to reduce the num-
ber of possible analysis combinations. All the results have
been obtained by executing the tools on a laptop equipped
with an Intel Core i5-8250U CPU with 1.60GHz and 8GB
RAM. For each test, we considered an execution time limit
of 2 h, reordered variables, and computed reachable states
of nuXmv modules to increase the verification perfor-
mance.

5.2 Number of independent legal positions

SymboleoPC’s performance is sensitive to the number of
external events that are not triggered by obligations or pow-
ers. These events can happen in the real world and are not
controlled by SymboleoPC. They cause SymboleoPC to
check additional possible scenarios. In our experiment, four
external events can trigger, fulfill, activate, or expire inde-
pendent obligations. Similarly, external events can trigger,
activate, exert, or expire powers. However, internal events
such as suspension, resumption, termination, and discharge
by a power or contract are discarded in our experiment. In
addition, fulfillment and violation states share one event
whose trigger fulfills the obligation and whose expiration
violates the obligation. Using the tool discussed in the
previous section [38], we generated over sixty Symboleo
contract specifications with random dependencies between
the powers and obligations. We then converted each of them
automatically to nuXmv modules using SymboleoPC. To

123

SymboleoPC: checking properties of legal contracts

create independent tests, such that the obligations and pow-
ers are independent (without any type of dependencies such
as R2, R3, R5, R6, and R9 in Table 2), we define two ‘fresh’
events to trigger and represent the consequence of each obli-
gation. However, according to the principles set forth in the
Symboleo ontology [45], power is defined as the right of
a party to create, modify, suspend, or terminate legal situa-
tions. Hence, a power that does not impact an obligation or
another power lacks a rational basis in the legal contracts
domain. Consequently, and as enforced by Symboleo’s
grammar, each power must include at least one dependency.
In our synthetic specifications ‘without dependencies,’ we
decided that all powers will suspend a dummy obligation
(R4) while leaving the other obligations independent—an
enhancement affecting 8% of the specifications. Compared
to the original experiment in [36], this addition enhances
the coherence and correctness of the generated specifica-
tions.

Listing 10 shows the Symboleo contract specification
with one obligation (Obl0) and one power (Pow0) that are
independent, while Listing 11 shows the nuXmv code result-
ing from the conversion with SymboleoPC. Notice that the
obligation (Obld) is an unconditional obligation that is cre-
ated when the contract is initiated and suspended by Pow0,
representing the 8% dependency. This dependency is real-
ized by the internal event pow0_exerted that is a part of the
obld_suspension situation (a condition used to evaluate the sit-
uation and decide whether to suspend the obligation or not).
Three external events together with the internal event are

associated with four free variables and randomly happen or
expire to modify legal positions. Other input parameters of
obl0 and Pow0 are constants or situations to eliminate inter-
dependencies.

Listing 10 Symboleo specification for a contract with one independent
obligation and one independent power (with a required dependency to
a dummy obligation).

1 Domain TestContract
2 Store isA Role;
3 Customer isA Role;
4 DEvent isAn Event;
5 endDomain
6

7 TimeGranularity is hours
8

9 Contract TestContract(cust: Customer , store:
Store)

10 Declarations
11 // event to trigger obligation0
12 obl0trig: DEvent;
13 // event represents the consequent of

obligation0
14 obl0cons: DEvent;
15 // event to trigger Power0
16 pow0trig: DEvent;
17

18 Preconditions
19

20 Obligations
21 obld: Obligation(store , cust ,true ,true);
22 obl0: Happens(obl0trig)->O(store , cust ,true

,Happens(obl0cons));
23

24 Powers
25 pow0: Happens(pow0trig)->P(store , cust ,true

, Suspended(obligations.obld));
26

27 endContract

123

A. Parvizimosaed et al.

Listing 11 Automatically generated contract instance in nuXmv, with one independent

obligation and one independent power (with a require dependency to a dummy obligation).

To simulate the various compositions of obligations and
powers,we considered anumber of obligation instances rang-
ing from 1 to 32, incremented by a factor of 2 (i.e., 1, 2, 4,
8, 16, 32), and a number of power instances ranging from
1 to 16, also incremented by a factor of 2. For this anal-
ysis, nuXmv computes the set of reachable states (a basic
step typically carried out before checking any property, giv-
ing an idea of the complexity of the problem). The results
of this analysis are reported in Fig. 4, indicating that reach-
able states’ computation times grow exponentially with the
number of positions. Hereafter, reachable states computation
time means the time to compute the set of reachable states.

In this experiment, the case involving 32 obligations and
16 powers exceeded preset time limits (2 h). SymboleoPC is
hence able to handle cases where the contract contains up to
32 obligations with up to 16 powers, in a reasonable amount

Table 4 Independent positions: average andmean deviation times (sec-
onds) of reachable states computation, for 8 runs

Number of obligations 1 2 4 8 16

Average 1.415 2.157 3.363 9.161 29.011

Mean deviation 0.006 0.013 0.024 0.0415 0.0912

123

SymboleoPC: checking properties of legal contracts

Fig. 4 Set of reachable states
computation time (seconds) per
number of positions. The Y-axis
is displayed along a logarithmic
scale

of time, to compute the full set of reachable states. These
results suggest that SymboleoPC can handle real-life size
contracts, as identified in our study since they consist of fewer
legal positions than the limits identified above. It should be
mentioned, however, that there exist larger contracts with
hundreds of positions, especially in domains such as logistics.

For contracts with 8 powers, we also executed each test
case eight times and computed their average execution time
(in seconds). Table 4 shows that, for a given configuration
of obligation power, there is only a small variance in the
execution time among the 8 runs. This suggests that tool per-
formance depends deterministically on the parameters used
in this study.

5.3 Dependency levels between legal positions

To evaluate the impact of legal position dependencies on
SymboleoPC’s performance, we also generated 30 test
contracts using the most frequent types of legal position
dependencies observed in real contracts and analyzed in
Table 2, i.e., 14% on average of obligations with depen-
dencies of type R3, 8% on average of obligations with
dependencies of type R4, and 22% on average of powers
with dependencies of type R9. (R12 and R9 were ignored
as they are dependencies involving contracts, not just legal
positions.) Again in this experiment, we measure the time to
compute the set of reachable states.

The results are reported in Fig. 5, where we also compare
the reachable states computation times of these test caseswith
the corresponding scenarios that use independent positions.
In this figure, ompn represents the numbers of obligations
(m) and powers (n), respectively. As the Y-axis uses a loga-
rithmic scale, times below 1 appear with a negative exponent.

These results show that, for the same numbers of obli-
gations and powers, the time is reduced in most cases with
dependencies between legal positions (23 out of 30 scenarios,
with o8p1, o16p2, o32p2, o1p4, o1p8, o8p16, and o16p16

as exceptions) since some free variables have been replaced
with the status of dependent legal positions. We performed
the Wilcoxon signed-rank test3 on our data test, as it com-
pares the probability to get a higher value from one group
(e.g., specifications with dependencies) with the probability
to get a higher value from a dependent group (e.g., spec-
ifications without dependencies). The test result indicated
that there is a significant medium difference between reach-
ability times in specifications with dependencies (median =
3.1, n = 29) and reachability times in specifications without
dependencies (median = 3.4, n = 29), with p = .035 (and
hence p < 0.05, which suggests significance) and r = 0.4
(medium magnitude).

We also measured the average and mean deviation of the
time used to compute the reachable states, through eight exe-
cution rounds for test contracts that contain 8 powers. These
results, summarized in Table 5, show that even though the
times measured to compute reachable states of rounds are
not convergent, they are always ascending in each round.One
potential explanation for the standard deviation is the weak
management of multi-core CPUs. The nuXmv tool running
the experiments underneath SymboleoPC is a single thread
program, and it was using 100% of the capacity of one CPU
core even if other CPU cores were not used.4

5.4 Property checking time

We used the results from the empirical observation discussed
earlier in this section to generate 1000 LTL and 1000 CTL
random properties for the synthetic dependent legal contracts
discussed previously, considering 16 obligations and 12 pow-

3 Wilcoxon signed-rank test calculator: https://www.statskingdom.
com/175wilcoxon_signed_ranks.html
4 When a core is fully loaded, the low-level kernel scheduler tries to
reduce the core load by migrating the process to another core, and this
results in an increase in execution time.

123

https://www.statskingdom.com/175wilcoxon_signed_ranks.html
https://www.statskingdom.com/175wilcoxon_signed_ranks.html

A. Parvizimosaed et al.

Fig. 5 Comparison of the set of reachable states computation time (seconds) per number of obligations/powers, with and without dependencies

ers. The results are reported in Fig. 6, where we plot the
median time required by SymboleoPC to check each of the
properties.

The diagrams show that (i) the median verification times
are about 0.36 s for LTL properties and 0.01 s for CTL prop-
erties; (ii)the average verification times are about 4.8 s for
LTL properties and 0.26 s for CTL properties.

These results tell us that thousands of typical properties
can be checked within an hour. We remark that a typical
stand-alone contract has few properties but scaling up the
contract and taking into account relevant regulations can lead
to an exponential growth of properties to be checked.

Figure 6 shows more fluctuations for LTL execution times
than for CTL properties. We have found no explanation to
account for this difference. In any case, the difference does
not alter the general conclusions of our scalability study.

Figures 7 and 8 present an in-depth analysis of verifica-
tion times for both CTL and LTL properties. The verification
process for all CTL properties is verified within 0–1.77 s,
whereas the verification of LTL properties spans 0–301 s.
Notably, 98.6% of LTL properties are successfully verified
within 2.96 s, with only a minimal 1.4% (14 properties)
requiringmore than 59 s for verification. Notice that verifica-
tion time is not aggregated, which means properties release
resources after verification. Therefore, the tool is able to ver-
ify many properties sequentially.

Table 5 Dependent positions: average and mean deviation times (sec-
onds) of reachable states computation, for 8 runs

Number of obligations 1 2 4 8 16

Average 1.886 1.827 2.597 8.908 23.904

Mean deviation 0.074 0.097 0.182 0.344 0.887

To assess the impact of the properties and the veri-
fication algorithm on the performance of the generated
models, we analyzed the same 1000 LTL properties exhibit-
ing performance times, utilizing the same nuXmvmodel but
employing the IC3 state-of-the-art SAT algorithm [7]. Fig-
ure9 illustrates the performance times of these properties
with the adoption of the IC3 algorithm. There is a noticeable
reduction in performance times of some of the properties,
while for other properties the performance time increased
to reach 1h and 42min. For example, as shown in Figs. 8
and 9, property number 508 has the largest performance
time (around 301s) when running the BDD algorithm [13],
whereas its performance time dropped significantly to 14.24 s
using IC3 algorithm. On the other hand, the BDD algorithm
needs 0.38 s to verify property number 744 whose verifica-
tion time equals 1h and 46min using IC3. Table 6 shows the
structure and the verification results of these two properties.

Furthermore, we noted variations in computation times
when the resultwas true,whereas propertieswith false results
exhibited more consistent times. Within the overall compu-

123

SymboleoPC: checking properties of legal contracts

Fig. 6 Median time (seconds) to
check each property

Table 6 Two generated LTL properties used for comparing the two verification algorithms

No. Property Result

508 (Test_cnt.obl5.state = violation U (Test_cnt.obl4.state = discharge & !(G Test_cnt.obl0.state = fulfillment))) false

744 G Test_cnt.obl8.state = suspension | F !(F Test_cnt.pow7.state = inEffect)) true

tation time of 17h for the 1000 properties, a subset of 26
properties, all producing true results, required 11h for veri-
fication. Another group of 187 properties, also yielding true
results, displayed notably short computation times, totaling
just 1min, with each property taking less than 1s.

Conversely, the verification of 699 properties with false
results took approximately 6h, with an average computation
time of 35s. In contrast to properties with true results, their
actual computation times varied between 13s and 2min, so
their execution times were more consistent.

The average computation time of the generated nuXmv
model when using IC3 verification algorithm is 1min and
13s while the median equals 27 s. However, despite this rel-
atively short average, the 1000 LTL properties demand 17h
to be verified. The same properties and the same model were
verified in approximately 45min only using BDD algorithm.

It is noteworthy that our models, even those with up to 64
obligations and 64 powers, were effectively verified by the
IC3 verification algorithm. This demonstrates the robustness
of our models, showcasing their ability to undergo success-
ful verification (for LTL properties) even at a larger scale.
It is important to highlight our decision to halt testing upon
reaching large models with 64 obligations and 64 powers
(equivalent to 128 legal positions and around 250 internal
and external events), a scale beyond the scope of most real
contract scenarios. Furthermore, although the computation
times of our nuXmv models are notably affected by the
hardware specifications of the running device, the relative
fluctuations in these times are primarily influenced by the size
of the model and the chosen algorithm. The property eval-

uation value also contributes to this dynamic, yet its impact
is contingent on the algorithm employed for the verification
process.

5.5 Threats to validity

Table 7 summarizes various threats to the internal, external,
construct, and conclusion validity of the research. Internal
validity is crucial as it hinges on the Symboleo specification,
underscoring its dependency on an ontology that may change
over time. Modifications to the Symboleo language can sig-
nificantly impact the translator and, consequently, the results
of the analysis. External validity, on the other hand, poses
challenges related to the inspection of Symboleo specifica-
tions by legal contract experts. The absence of such scrutiny
may result in specifications not fully capturing the original
intent of natural language contracts.

In terms of construct validity, the study conveys a limi-
tation in the scalability study, which primarily focused on
time without a detailed examination of memory usage. How-
ever, the experiments did not lead to any memory-related
problems. Lastly, the conclusion validity addresses the poten-
tial limitation in the representativeness of the 14 business
contracts adopted for analysis. Acknowledging that these
contracts may not entirely represent the entire class tar-
geted by Symboleo and SymboleoPC, the study suggests
that future research should explore additional contracts to
enhance the generalizability of the conclusions drawn here.

123

A. Parvizimosaed et al.

Fig. 7 Verification time (seconds) for 1000 CTL properties using BDD algorithm

Fig. 8 Verification time (seconds) for each of the 1000 LTL properties using the BDD algorithm

6 Related work

The formal verification of smart contracts using specialized
languages has been the subject of several contributions, as
discussed in the surveys ofTolmach et al. [52] andof Shishkin
[46]. Of particular relevance here, papers [3, 31–33] use
nuXmv for the functional verification of implementations
of smart contracts in languages such as Ethereum Smart

Contracts, to check deadlock-freedom, liveness, and safety
properties expressed in CTL or LTL.

Frank et al. [20] define an SMT-based [5] bounded model
checker for the verification of low-level implementation
properties of Ethereum networks. Antonino and Roscoe [4]
propose a similar approach but for the Solidity high-level lan-
guage used by Ethereum smart contract developers. Li and
Long [24] propose and study the SOLAR analysis tool, also

123

SymboleoPC: checking properties of legal contracts

Fig. 9 Verification time
(seconds) for each LTL property
using the IC3 algorithm

Table 7 Threats to validity

Validity type Threat

Internal − The foundation of the translator relies on the Sym-
boleo specification language, and it is important to
note that Symboleo is built on an ontology that is
susceptible to changes over time. Any modifications
to Symboleo have the potential to influence both the
translator and the outcomes of the analysis

External −The Symboleo specifications of our contracts have
not been inspected by legal contract experts, so they
may not fully reflect the intent of the original natural
language contracts

− Contracts are often subject to existing laws and
regulations, which are specified outside individual
contracts. This information (e.g., jurisdiction-related
obligations and powers) would likely add overhead to
the verification

−We focused on business contracts and did not cover
contracts in domains such as marriages or employ-
ment. Business contracts are an undeniably useful
source of concepts for the Symboleo specification
language and SymboleoPC. However, there is no
guarantee that these concepts are sufficient to support
other types of contracts and consequently, there is no
guarantee that SymboleoPC can verify other types
of contracts

Construct − The scalability study focused mainly on time, and
memory usage was not investigated. However, we did
not experience any memory issues during our experi-
ments

Conclusion − The 14 business contracts adopted from the web,
and analyzed in Table 2, may not be entirely represen-
tative of the class of contracts targeted by Symboleo
and SymboleoPC; other such contracts could be col-
lected in the future

based on SMT, for automatically detecting standard violation
errors in Ethereum smart contracts. Liu and Liu [26] propose
a formal verification method based on Colored Petri Nets
(CPN) and the ASK-CTL variant to verify smart contracts

in blockchain systems. Hajdu and Jovanovic [23] provide a
source-level verification tool for Ethereum smart contracts.

All these papers have common characteristics: They show
the feasibility of their analysis approach on case studies or
examples, but they do not perform a thorough experimental
assessment of scalability and applicability along important
dimensions such as the size of the problem, the degree of
interconnection of the specification elements, and the number
and size/depth of the properties involved. They also focus on
smart contract programming languages that do not support
legal concepts such as obligations and powers.

There exist high-level formal contract languages other
than Symboleo, but they also suffer from limitations in
their verification support or performance assessment. For
example, TCL [10], PENELOPE [22], and eFlint [50, 51]
support some analysis capabilities (akin to testing) but not
yet any formal verification of properties. Other languages
support verification, but without any performance or scal-
ability assessment. This is the case of MODELLER from
Daskalopulu [16], with contracts formalized in Petri Nets
and model-checked against CTL properties, and of CL from
Pace et al. [33], with contracts in deontic logic, transformed
to labeled transition systems, and also model-checked using
nuXmv. SCIFF, from Alberti et al. [2], enables verifying
deontic logic contracts using a tailored procedure for design-
time property verification. The performance of this procedure
was briefly evaluated in [29], but not for contract specifica-
tions or their properties.

There are also approaches checking the satisfiability of
LTL formulas that are somewhat related to our approach.
Notably, Li et al. [25] and Rozier and Vardi [42] investigated
different approaches for checking the satisfiability of LTL
formulas both randomly generated and taken from specifica-
tions of realistic problems. Similarly, Narizzano et al. [30]
discussed an approach for checking the satisfiability of LTL
properties resulting from random combinations of property
patterns [17]. In these three cases, they used nuXmv, among

123

A. Parvizimosaed et al.

other tools. For the generation of random formulas in our
setting, we leveraged the approach used in [30] for LTL spec-
ifications, with extensions to handle CTL specifications, and
to consider atomic propositions resulting from Symboleo
specifications. We remark that the focus of these approaches
is LTL satisfiability, i.e., they use a universal model (without
constraints on the evolution of variables). In our case,wehave
a nuXmvmodel resulting from the encoding of a Symboleo
specification, either randomly generated or corresponding to
a real contract.

7 Conclusions and future work

The verification of legal contract specifications against prop-
erties capturing the intents of contracting parties is essential,
especially in contexts where these specifications are used
to guide smart contract implementation. It is also important
to assess whether automated verification tools can scale to
realistic-size contracts and properties.

This paper reports on the implementation, performance,
and scalability analysis of SymboleoPC, a tool based on
nuXmv for model checking legal contracts specified in
Symboleo against LTL and CTL properties. Our analysis
results suggest that SymboleoPC performs well on realis-
tic mid-sized contracts with up to 128 legal positions and
scales well to their size considering different degrees of
inter-dependencies among their legal positions. The tool
also scales well in support of LTL/CTL properties of differ-
ent sizes and degrees of complexity. These results improve
substantially the scalability results reported in previous
work [36]. We remark that:

1. Since our analysis is done at the specification level, this
study is original compared to existing work on the verifi-
cation of smart contract code (e.g., expressed in Solidity)
or of specifications developed in other high-level contract
languages. In related papers [35, 37], we have shown
that Symboleo is significantly more expressive than
other languages that have been developed for similar
purposes. Since then, we have also extended Symboleo
to support assignments (as illustrated in our Computer
Delivery example and in the translation rule #6, shown
in Table 14), the automated generation of implicit con-
straints in nuXmv (Sect. 4.1 and translation rule #5,
shown in Table 13), as well the automatic generation of
smart contracts in JavaScript for the Hyperledger Fabric
blockchain platform [40].

2. Our synthetic contracts are realistic because they are
based on metrics extracted from contracts found in
contract repositories, with few adaptations, andwith con-
siderable variation among them.

3. The amount of performance experimentation that was
done for checking the properties of these contracts far
exceeds what was done in any other research published
so far in this field.

This work opens the door to additional future research
directions. For example, studying how to turn such verifica-
tion engines into online services. As contracts exist within
legal systems (e.g., national laws or other jurisdictions), it
would be relevant to encode legal requirements in Symboleo
or in nuXmv such that verification could be performed in
other contexts. Some contracts that satisfy properties when
evaluated stand-alone may no longer do so in specific judi-
cial contexts, and this verification may help detect voidable
contracts. This may pose performance challenges depending
on the complexity of legal systems.

For real-world contracts, there is a need to be able to spec-
ify runtime operations. Within Symboleo, we have already
introduced syntax and axiomatic semantics for operations
supporting subcontracting, assignment, delegation, and sub-
stitution [35]. Verifying properties at that level will help
handle several aspects of contract evolution.Our forthcoming
efforts involve further integrating these concepts with access
control principles to enhance security and privacy measures.

Although the usability of the Symboleo language and
related tools is outside the scope of this paper, our previ-
ous work discusses usability concerns (especially for legal
professionals) [37]. Ongoing work investigates the conver-
sion of natural language contracts to Symboleo [28, 47],
which would then help reduce the effort in generating good
contract specifications.

Finally, we hope that this evaluation study of Symbol-
eoPC will guide similar work on assessing the performance
of verification technologies for other contract specification
languages.

123

SymboleoPC: checking properties of legal contracts

Appendix A: technical details of the transla-
tion

This appendix provides a sample of the most important
conversion rules from Symboleo to nuXmv implemented
in SymboleoPC and discussed in Sect. 4.1. Many of the
rules generate nuXmv code that invokes our library of 16
trusted contract-independent nuXmv modules (discussed in
Sect. 3.1). This online library (https://bit.ly/SymboleoPC-
library) hence defines what is a contract, an asset, an obliga-
tion, a happensWithin, etc.
Rule 1: When dealing with assets, there are two common
structures, which are presented in Table 8: atomic and deriva-
tive. An atomic asset is a stand-alone asset, while a derivative
asset inherits from another asset in the same domain (for
example, Customer isA Role with addr: String). In the case of
a derivative asset, an instance of the parent asset is created
within the child asset and input parameters are inherited from
the parent. The rule corresponds to lines 32 and 33 in List-
ing 8.
Rule 2: Translate predicates wHappensBefore and wHap-
pensWithin to nuXmv modules in accordance with lines
39 and 40 in Listing 8. According to Table 9, wherever
wHappensBefore is used, an instance of the predicate mod-
ule is created with exactly the same event parameters. For
example, wHappensBefore(event1, event2) is converted
to an instance of the predicate (i.e., hb_inst1). Wherever
the predicate is used (e.g., antecedent), the holding sta-
tus of the predicate forms the corresponding proposition.
In the given example, the holding status of the predicate
(i.e., hb_inst1._true) fulfills the consequent of Obl1 (i.e.,
obl1_consequent). Similar modules are defined for sHap-
pensBefore and happensAfter (Table 10).
Rule 3: To translate Symboleo’s events to their correspond-
ing SymboleoPC modules (as referenced in lines 39 and
40 in Listing 8), each instance of an event defined within a
contract’s declaration scope is transformed into a nuXmv
module with a type event in SymboleoPC. As Table 11
shows, the disjunction of all propositions that trigger the
event is then summarized in preconditionProp. Regarding
the place where the event is used (as antecedent, consequent,
or trigger of an obligation or power), the state of obligations
and powers enables the event to be triggered. Let LP be an
obligation or power; there are then several possible cases to
consider:

– Event is used in the antecedent of LP → preconditionProp

contains LP. state = create

– Event is used in the consequent of LP→ preconditionProp

contains LP. state = inEffect

– Event is used in the trigger of LP → preconditionProp

contains contract . state = inEffect

Rule 4: To translate Symboleo’s obligations to their corre-
sponding SymboleoPC modules (as referenced in lines 42
and 43 in Listing 8), the translator creates an instance of the
parametric obligation module in SymboleoPC and sets the
appropriate propositions as input parameters of the module.

In Table 12, the conjunction of all propositions that
suspend, resume, terminate, or discharge the obligation
(i.e., exertion of powers) is summarized in the oblSuspen-
sionProp, oblResumptionProp, oblTerminationProp, and
oblDischargementProp variables. The translator navigates
through the Symboleo specification and combines propo-
sitions that suspend, resume, terminate, or discharge an
obligation.

It is worth noting that the suspension, resumption, and
termination of a contract can influence an obligation. The
cntSuspensionProp, cntResumptionProp, and cntTermi-
nationProp variables indicate the aforementioned states of a
contract.

Furthermore, the antecedent and consequent of an obli-
gation are propositions that are recursively decomposed into
terminals (i.e., indivisible propositions) and then converted
to the nuXmv format.

If the occurrence of an event fulfills an antecedent or con-
sequent of a legal position, SymboleoPC’s translator can
formulate the expiration and violation of that legal posi-
tion. Specifically, if an event expires, while it is used in the
antecedent, the legal position expires. However, if the event
is used as a consequent of an obligation, then the obligation
is violated. The oblActivationProp integrates conditions that
activate an obligation.
Rule 5: Symboleo specifications may include explicit
and implicit constraints that are converted to nuXmv
(lines 49 to 54 in Listing 8). isOwner(<asset>, <role>)
is an example of explicit constraint that is converted to
<asset>.owner = <role>.party. Table 13 shows two implicit
constraints between the predicateshappensBefore and either
happensAfter or happensWithin when point1 and point2
are time instants. The translation process extracts a constraint
from these predicates to specify the relationship between
the times when events occur, which reduces the state space
and optimizes the verification process. These predicates can
be used in the antecedent, consequent, or trigger of legal
positions. If point1 is before point2 in either of the afore-
mentioned pairs of predicates, then event2 must always
occur after event1 has occurred or expired.
Rule 6: This rule translates HappensAssign and Assign predi-
cates to nuXmvASSIGN clauses, as indicated in lines 54 to 59
in Listing 8. According to Table 14, wherever HappensAssign
or Assign is used, an ASSIGN is created with exactly the same
event and assignment expression.

In the ASSIGN clause, to determinewhether or not to evalu-
ate the assignment expression and assign its value to the vari-
able, a Boolean condition must be satisfied using a nuXmv

123

https://bit.ly/SymboleoPC-library
https://bit.ly/SymboleoPC-library

A. Parvizimosaed et al.

Table 8 Asset translation rules

Table 9 Translation rule for the wHappensBefore predicate

123

SymboleoPC: checking properties of legal contracts

Table 10 Translation rule for the happensWithin predicate

Table 11 Event translation rule

case statement (case condition : assignment expression; TRUE:

original value ; esac;).This condition includes the event of
HappensAssign that must occur and the relevant legal posi-
tion state depending on where we extract the assignment
expression. Specifically, as Table 14 shows, regarding the
place where the assignment is used (either as antecedent,
consequent, or trigger of an obligation or power), the state of

obligations and powers enables the assignment expressions
to be evaluated. Let LP be an obligation or power, there are
many possible states to consider:

– HappensAssign or Assign is used in the antecedent of LP
→ legalPositionCondition contains LP. state = inEffect ;

– HappensAssign or Assign is used in the consequent of LP
→ legalPositionCondition contains LP. state = fulfillment ;

123

A. Parvizimosaed et al.

Table 12 Obligation translation rule

Table 13 Implicit constraints between happens predicates

123

SymboleoPC: checking properties of legal contracts

Table 14 Assignment translation rule

– HappensAssign or Assign is used in the trigger of LP →
legalPositionCondition contains contract . state = inEffect .

Lines 49 to 51 inListing 8 showhow the algorithmpasses this
part of the conditions to the function that builds the ASSIGN

clause from a trigger, an antecedent, or a consequent.

Acknowledgements This work was partially funded by an NSERC
Strategic Partnership Grant titled Middleware Framework and Pro-
gramming Infrastructure for IoT Services, by SSHRC’s Partnership
Grant Autonomy Through Cyberjustice Technologies, and by the ORF-
RE project CyPreSS: Software Techniques for the Engineering of
Cyber-Physical Systems. S. Alfuhaid is supported by the KSA King
AbdulAziz University. M. Roveri is partially supported by the PNRR
project FAIR - Future AI Research (PE00000013), under the NRRP
MUR program funded by the NextGenerationEU, by the project MUR
PRIN 2020 -RIPER - Resilient AI-Based Self-Programming and Strate-
gic Reasoning - CUP E63C22000400001, and by the European Union

under Horizon Europe Programme - Grant Agreement 101070537 -
CrossCon.

References

1. Aberer, K., Hauswirth, M., Salehi, A.: Middleware support for
the “Internet of Things”. In: 5th GI/ITG KuVS Fachgespräch
“Drahtlose Sensornetze”, pp. 15–20. Universität Stuttgart, Ger-
many, (2006). https://elib.uni-stuttgart.de/bitstream/11682/2604/
1/TR_2006_07.pdf

2. Alberti,M., Chesani, F., Gavanelli,M., Lamma, E.,Mello, P.,Mon-
tali, M., Torroni, P.: Expressing and verifying business contracts
with abductive logic programming. Int. J. Electron.Commer.12(4),
9–38 (2008). https://doi.org/10.2753/JEC1086-4415120401

3. Alqahtani, S.M., He, X., Gamble, R. F., Papa, M.: Formal verifica-
tion of functional requirements for smart contract compositions in
supply chain management systems. In: 53rd Hawaii International

123

https://elib.uni-stuttgart.de/bitstream/11682/2604/1/TR_2006_07.pdf
https://elib.uni-stuttgart.de/bitstream/11682/2604/1/TR_2006_07.pdf
https://doi.org/10.2753/JEC1086-4415120401

A. Parvizimosaed et al.

Conference on System Sciences, HICSS 2020, pp. 1–10, (2020).
https://doi.org/10.24251/HICSS.2020.650

4. Antonino, P., Roscoe, A. W.: Formalising and verifying smart con-
tracts with Solidifier: a boundedmodel checker for Solidity. CoRR,
(2020). arxiv: 2002.02710

5. Barrett, C. W., Sebastiani, R., Seshia, S. A., Tinelli, C.: Satisfiabil-
ity modulo theories. In: Handbook of Satisfiability, volume 185 of
Frontiers in Artificial Intelligence and Applications, pp. 825–885.
IOS Press, (2009). https://doi.org/10.3233/978-1-58603-929-5-
825

6. Bettini, L.: Implementing domain specific languages with Xtext
and Xtend, 2nd edn. Packt Publishing (2016)

7. Bradley, A.R.: Sat-based model checking without unrolling. In:
Jhala, R., Schmidt, D. (eds.) Verification, Model Checking, and
Abstract Interpretation, pp. 70–87. Springer, Berlin Heidelberg
(2011). https://doi.org/10.1007/978-3-642-18275-4_7

8. Cavada, R., Cimatti, A., Micheli, A., Roveri, M., Susi, A., Tonetta,
S.: Othelloplay: a plug-in based tool for requirement formalization
and validation. In: TOPI@ICSE, p. 59. ACM, (2011). https://doi.
org/10.1145/1984708.1984728

9. Cavada, R., Cimatti, A., Dorigatti, M., Griggio, A., Mariotti,
A., Micheli, A., Mover, S., Roveri, M., Tonetta, S.: The nuXmv
symbolic model checker. In: Computer Aided Verification, pp.
334–342, Springer, Cham, (2014). https://doi.org/10.1007/978-3-
319-08867-9_22

10. Chesani, F., Mello, P., Montali, M., Torroni, P.: Representing and
monitoring social commitments using the event calculus. Auton.
Agent.Multi-Agent Syst. 27(1), 85–130 (2013). https://doi.org/10.
1007/s10458-012-9202-0

11. Cimatti, A., Clarke, E., Giunchiglia, E., Giunchiglia, F., Pistore,
M., Roveri, M., Sebastiani, R., Tacchella, A.: NuSMV 2: An open-
source tool for symbolic model checking. In: Computer Aided
Verification, pp. 359–364. Springer Berlin Heidelberg, (2002).
https://doi.org/10.1007/3-540-45657-0_29

12. Cimatti, A., Roveri, M., Susi, A., Tonetta, S.: Validation of require-
ments for hybrid systems: a formal approach. ACM Trans. Softw.
Eng. Methodol. 21(4), 22:1-22:34 (2012). https://doi.org/10.1145/
2377656.2377659

13. Clarke, E.M., Grumberg, O., Hamaguchi, K.: Another look at LTL
model checking. Formal Methods Syst. Des. 10(1), 47–71 (1997).
https://doi.org/10.1023/A:1008615614281

14. Clarke, E.M., Grumberg, O., Peled, D.A.: Model checking. MIT
Press (2001). ISBN 978-0-262-03270-4. https://mitpress.mit.edu/
9780262038836/model-checking/

15. CSM Lab. Symboleo IDE Tool, (2020). https://github.com/
Smart-Contract-Modelling-uOttawa/Symboleo-IDE. Accessed
10-February-2022

16. Daskalopulu, A.-K.: Logic-based tools for the analysis and repre-
sentation of legal contracts. PhD thesis, Imperial College London,
UK

17. Dwyer, M.B., Avrunin, G.S., Corbett, J.C.: Patterns in property
specifications for finite-state verification. In: 1999 International
Conference on Software Engineering, ICSE’99, pp. 411–420.
ACM, (1999). https://doi.org/10.1145/302405.302672

18. Emerson, E.A., Clarke, E.M.: Using branching time tempo-
ral logic to synthesize synchronization skeletons. Sci. Comput.
Program. 2(3), 241–266 (1982). https://doi.org/10.1016/0167-
6423(83)90017-5

19. Fox,M., Long, D.: PDDL2.1: an extension to PDDL for expressing
temporal planning domains. J. Artif. Intell. Res. 20, 61–124 (2003).
https://doi.org/10.1613/jair.1129

20. Frank, J., Aschermann, C., Holz, T.: ETHBMC: A bounded model
checker for smart contracts. In: 29th USENIX Security Sympo-
sium, pages 2757–2774. USENIX Association, (2020). https://
www.usenix.org/conference/usenixsecurity20/presentation/frank

21. Fuxman,A., Liu, L.,Mylopoulos, J., Roveri,M., Traverso, P.: Spec-
ifying and analyzing early requirements in Tropos. Requir. Eng.
9(2), 132–150 (2004). https://doi.org/10.1007/s00766-004-0191-
7

22. Goedertier, S., Vanthienen, J.: Designing compliant business pro-
cesses with obligations and permissions. In: International Confer-
ence onBusiness ProcessManagement, pp. 5–14. Springer, (2006).
https://doi.org/10.1007/11837862_2

23. Hajdu, Á., Jovanovic, D.: solc-verify: Amodular verifier for Solid-
ity smart contracts. In: Verified Software. Theories, Tools, and
Experiments, VSTTE 2019, volume 12031 of LNCS, pp. 161–179.
Springer, (2019).https://doi.org/10.1007/978-3-030-41600-3_11

24. Li, A., Long, F.: Detecting standard violation errors in smart con-
tracts. CoRR, (2018). arxiv: 1812.07702

25. Li, J., Geguang, P., Zhang, Y., Vardi,M.Y., Rozier, K.Y.: SAT-based
explicit LTLf satisfiability checking. Artif. Intell. 289, 103369
(2020). https://doi.org/10.1016/j.artint.2020.103369

26. Liu, Z., Liu, J.: Formal verification of blockchain smart contract
based on colored petri net models. In: 2019 IEEE 43rd Annual
Computer Software and Applications Conf. (COMPSAC), 2, 555–
560, 2019. https://doi.org/10.1109/COMPSAC.2019.10265

27. Manna, Z., Pnueli, A.: The temporal logic of reactive and concur-
rent systems - specification. Springer (1992). https://doi.org/10.
1007/978-1-4612-0931-7

28. Meloche, R.: Legal contract formalization in Symboleo with con-
trolled natural language templates. Master’s thesis, University of
Ottawa, Canada, (2023). https://doi.org/10.20381/ruor-29889

29. Montali, M.: Specification and verification of declarative open
interaction models - a logic-based approach, volume 56 of LNBIP.
Springer (2010). https://doi.org/10.1007/978-3-642-14538-4

30. Narizzano, M., Pulina, L., Tacchella, A., Vuotto, S.: Property
specification patterns at work: verification and inconsistency expla-
nation. Innov. Syst. Softw. Eng. 15(3–4), 307–323 (2019). https://
doi.org/10.1007/s11334-019-00339-1

31. Nehai, Z., Piriou, P.-Y., Daumas, F. F.: Model-checking of
smart contracts. In: 1st IEEE International Conference on
Blockchain, pp. 980–987. IEEE, (2018). https://doi.org/10.1109/
Cybermatics_2018.2018.00185

32. Nelaturu, K., Mavridou, A., Veneris, A. G., Laszka, A.: Veri-
fied development and deployment of multiple interacting smart
contracts with veriSolid. In: IEEE International Conference on
Blockchain and Cryptocurrency, ICBC 2020, pp. 1–9. IEEE,
(2020). https://doi.org/10.1109/ICBC48266.2020.9169428

33. Pace, G. J., Prisacariu, C., Schneider, G.:Model checking contracts
- a case study. In: Automated Technology forVerification andAnal-
ysis, 5th International Symposium, ATVA, volume 4762 of LNCS,
pp. 82–97. Springer, (2007). https://doi.org/10.1007/978-3-540-
75596-8_8

34. Parvizimosaed, A.: Symboleo: specification and verification
of legal contracts. PhD thesis, Université d’Ottawa/University
of Ottawa, Canada, Oct. (2022). https://ruor.uottawa.ca/handle/
10393/44186

35. Parvizimosaed, A., Sharifi, S., Amyot, D., Logrippo, L., Mylopou-
los, J.: Subcontracting, assignment, and substitution for legal
contracts in Symboleo. In: Conceptual Modeling, pp. 271–
285, Springer, Cham, (2020). https://doi.org/10.1007/978-3-030-
62522-1_20

36. Parvizimosaed, A., Roveri, M., Rasti, A., Amyot, D., Logrippo, L.,
Mylopoulos, J.: Model-checking legal contracts with symboleopc.
In: Proceedings of the 25th International Conference on Model
Driven Engineering Languages and Systems, MODELS ’22, pp.
278–288, New York, USA, (2022). ACM.https://doi.org/10.1145/
3550355.3552449

37. Parvizimosaed,A., Sharifi, S.,Amyot,D., Logrippo,L.,Roveri,M.,
Rasti, A., Roudak, A., Mylopoulos, J.: Specification and analysis

123

https://doi.org/10.24251/HICSS.2020.650
http://arxiv.org/abs/2002.02710
https://doi.org/10.3233/978-1-58603-929-5-825
https://doi.org/10.3233/978-1-58603-929-5-825
https://doi.org/10.1007/978-3-642-18275-4_7
https://doi.org/10.1145/1984708.1984728
https://doi.org/10.1145/1984708.1984728
https://doi.org/10.1007/978-3-319-08867-9_22
https://doi.org/10.1007/978-3-319-08867-9_22
https://doi.org/10.1007/s10458-012-9202-0
https://doi.org/10.1007/s10458-012-9202-0
https://doi.org/10.1007/3-540-45657-0_29
https://doi.org/10.1145/2377656.2377659
https://doi.org/10.1145/2377656.2377659
https://doi.org/10.1023/A:1008615614281
https://mitpress.mit.edu/9780262038836/model-checking/
https://mitpress.mit.edu/9780262038836/model-checking/
https://github.com/Smart-Contract-Modelling-uOttawa/Symboleo-IDE
https://github.com/Smart-Contract-Modelling-uOttawa/Symboleo-IDE
https://doi.org/10.1145/302405.302672
https://doi.org/10.1016/0167-6423(83)90017-5
https://doi.org/10.1016/0167-6423(83)90017-5
https://doi.org/10.1613/jair.1129
https://www.usenix.org/conference/usenixsecurity20/presentation/frank
https://www.usenix.org/conference/usenixsecurity20/presentation/frank
https://doi.org/10.1007/s00766-004-0191-7
https://doi.org/10.1007/s00766-004-0191-7
https://doi.org/10.1007/11837862_2
https://doi.org/10.1007/978-3-030-41600-3_11
http://arxiv.org/abs/1812.07702
https://doi.org/10.1016/j.artint.2020.103369
https://doi.org/10.1109/COMPSAC.2019.10265
https://doi.org/10.1007/978-1-4612-0931-7
https://doi.org/10.1007/978-1-4612-0931-7
https://doi.org/10.20381/ruor-29889
https://doi.org/10.1007/978-3-642-14538-4
https://doi.org/10.1007/s11334-019-00339-1
https://doi.org/10.1007/s11334-019-00339-1
https://doi.org/10.1109/Cybermatics_2018.2018.00185
https://doi.org/10.1109/Cybermatics_2018.2018.00185
https://doi.org/10.1109/ICBC48266.2020.9169428
https://doi.org/10.1007/978-3-540-75596-8_8
https://doi.org/10.1007/978-3-540-75596-8_8
https://ruor.uottawa.ca/handle/10393/44186
https://ruor.uottawa.ca/handle/10393/44186
https://doi.org/10.1007/978-3-030-62522-1_20
https://doi.org/10.1007/978-3-030-62522-1_20
https://doi.org/10.1145/3550355.3552449
https://doi.org/10.1145/3550355.3552449

SymboleoPC: checking properties of legal contracts

of legal contracts with symboleo. Softw. Syst. Model. 21(6), 2395–
2427 (2022). https://doi.org/10.1007/s10270-022-01053-6

38. Parvizimosaid, A., Anda, A. A., Alfuhaid, S.: Supplementary
online material, (2024). https://github.com/Smart-Contract-
Modelling-uOttawa/Symboleo-Model-Checker-Test-Generator/
tree/main/Realistic_Test_algorithms/Symboleo-Model-Checker-
Test-Generator

39. Pill, I., Semprini, S., Cavada, R., Roveri, M., Bloem, R., Cimatti,
A.: Formal analysis of hardware requirements. In: 43rd Design
Automation Conference (DAC), pp. 821–826. ACM, (2006).
https://doi.org/10.1145/1146909.1147119

40. Rasti, A., Amyot, D., Parvizimosaed, A., Roveri, M., Logrippo, L.,
Anda, A. A., Mylopoulos, J.: Symboleo2sc: From legal contract
specifications to smart contracts. In: Proceedings of the 25th Inter-
national Conference on Model Driven Engineering Languages and
Systems, MODELS ’22, pp. 300–310, New York, USA, (2022).
ACM. https://doi.org/10.1145/3550355.3552407

41. Reyna, A., Martín, C., Chen, J., Soler, E., Díaz, M.: On blockchain
and its integration with IoT, challenges and opportunities. Futur.
Gener. Comput. Syst. 88, 173–190 (2018). https://doi.org/10.1016/
j.future.2018.05.046

42. Rozier, K.Y., Vardi,M.Y.: LTL satisfiability checking. Int. J. Softw.
Tools Technol. Transf. 12(2), 123–137 (2010). https://doi.org/10.
1007/s10009-010-0140-3

43. Sánchez,C., Schneider,G.,Ahrendt,W.,Bartocci, E., Bianculli,D.,
Colombo, C., Falcone, Y., Francalanza, A., Krstic, S., Lourenço,
J.M., Nickovic, D., Pace, G.J., Rufino, J., Signoles, J., Traytel,
D., Weiss, A.: A survey of challenges for runtime verification from
advanced application domains (beyond software). FormalMethods
Syst. Des. 54(3), 279–335 (2019). https://doi.org/10.1007/s10703-
019-00337-w

44. Shanahan, M.: The event calculus explained. In: Artificial Intel-
ligence Today, pp. 409–430. Springer, (1999). https://doi.org/10.
1007/3-540-48317-9_17

45. Sharifi, S., Parvizimosaed, A., Amyot, D., Logrippo, L., Mylopou-
los, J.: Symboleo: Towards a specification language for legal
contracts. In: 28th IEEE International Requirements Engineering
Conference (RE 2020), pp. 364–369. IEEE, (2020).https://doi.org/
10.1109/RE48521.2020.00049

46. Shishkin, E.: Debugging smart contract’s business logic using sym-
bolic model checking. Program. Comput. Softw. 45(8), 590–599
(2019). https://doi.org/10.1134/S0361768819080164

47. Soavi, M.: From legal contracts to formal specifications. PhD the-
sis, Università di Trento, Italy, (2022). https://doi.org/10.15168/
11572_355741

48. Szabo, N.: Formalizing and securing relationships on public net-
works. First Monday (1997). https://doi.org/10.5210/fm.v2i9.548

49. The nuXmv team. The nuXmv symbolic model checker, (2020).
https://nuxmv.fbk.eu

50. van Binsbergen, L.T., Kebede, M.G., Baugh, J., van Engers, T.,
van Vuurden, D.G.: Dynamic generation of access control policies
from social policies. Procedia. Comput. Sci. 198, 140–147 (2022).
https://doi.org/10.1016/j.procs.2021.12.221

51. van Binsbergen, L.T., Liu, L.-C., Van Doesburg, R., Van Engers,
T.: eFLINT: a Domain-Specific Language for Executable Norm
Specifications. In: 19th ACM SIGPLAN International Confer-
ence on Generative Programming: Concepts and Experiences
(GPCE’20), pp. 124–136. ACM, (2020). https://doi.org/10.1145/
3425898.3426958

52. Tolmach, P., Li, Y., Lin, S.-W., Liu, Y., Li, Z.: A survey of smart
contract formal specification and verification. ACMComput. Surv.
(CSUR) 54(7), 1–38 (2021). https://doi.org/10.1145/3464421

53. Utting, M., Legeard, B.: Practical model-based testing: a tools
approach. Elsevier (2010)

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds
exclusive rights to this article under a publishing agreement with the
author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such
publishing agreement and applicable law.

Alireza Parvizimosaed is President
and Founder of Infilock Inc. His
research interests include smart
contracts, facility security and mon-
itoring, formal verification, and
self-adaptive systems. He received
his PhD in Computer Science from
the University of Ottawa in 2022,
and an MSc degree in Computer
Science - Software Engineering
from the Sharif University of Tech-
nology in 2013. More information
can be found here: https://www.
researchgate.net/profile/Alireza-Pa
rvizimosaed

e-mail: ali.reza.parvizi.mosaed@gmail.com

Marco Roveri is an Associate Pro-
fessor in the Information Engi-
neering and Computer Science
Department of the University of
Trento, Italy. He received a PhD
in Computer Science from the Uni-
versity of Milano, Italy, in 2002.
He was Senior Researcher in the
Embedded Systems Unit of Fon-
dazione Bruno Kessler in Trento,
and before that a researcher in the
Automated Reasoning Division of
the Istituto Trentino di Cultura
also in Trento. His research inter-
ests include automated formal ver-

ification of hardware and software systems, model checking, for-
mal requirements validation of embedded systems, model-based pre-
dictive maintenance, automated model-based planning, and apply-
ing such techniques in industrial settings. More information can
be found here: https://sites.google.com/view/marco-roveri e-mail:
marco.roveri@unitn.it

Aidin Rasti is Senior Software
Engineer at Shutterstock, Canada.
His research focuses on blockcha-
ins, the implementation of smart
contracts, and front-end applica-
tions.He received aMaster ofCom-
puter Science degree from theUni-
versity of Ottawa in 2022, as well
as a Bachelor of Computer Science
degree from Amirkabir University
of Technology in 2018.More infor-
mation can be found here: https://
www.linkedin.com/in/aidinrs/
e-mail: aidin.rasti@uottawa.ca

123

https://doi.org/10.1007/s10270-022-01053-6
https://github.com/Smart-Contract-Modelling-uOttawa/Symboleo-Model-Checker-Test-Generator/tree/main/Realistic_Test_algorithms/Symboleo-Model-Checker-Test-Generator
https://github.com/Smart-Contract-Modelling-uOttawa/Symboleo-Model-Checker-Test-Generator/tree/main/Realistic_Test_algorithms/Symboleo-Model-Checker-Test-Generator
https://github.com/Smart-Contract-Modelling-uOttawa/Symboleo-Model-Checker-Test-Generator/tree/main/Realistic_Test_algorithms/Symboleo-Model-Checker-Test-Generator
https://github.com/Smart-Contract-Modelling-uOttawa/Symboleo-Model-Checker-Test-Generator/tree/main/Realistic_Test_algorithms/Symboleo-Model-Checker-Test-Generator
https://doi.org/10.1145/1146909.1147119
https://doi.org/10.1145/3550355.3552407
https://doi.org/10.1016/j.future.2018.05.046
https://doi.org/10.1016/j.future.2018.05.046
https://doi.org/10.1007/s10009-010-0140-3
https://doi.org/10.1007/s10009-010-0140-3
https://doi.org/10.1007/s10703-019-00337-w
https://doi.org/10.1007/s10703-019-00337-w
https://doi.org/10.1007/3-540-48317-9_17
https://doi.org/10.1007/3-540-48317-9_17
https://doi.org/10.1109/RE48521.2020.00049
https://doi.org/10.1109/RE48521.2020.00049
https://doi.org/10.1134/S0361768819080164
https://doi.org/10.15168/11572_355741
https://doi.org/10.15168/11572_355741
https://doi.org/10.5210/fm.v2i9.548
https://nuxmv.fbk.eu
https://doi.org/10.1016/j.procs.2021.12.221
https://doi.org/10.1145/3425898.3426958
https://doi.org/10.1145/3425898.3426958
https://doi.org/10.1145/3464421
https://www.researchgate.net/profile/Alireza-Parvizimosaed
https://www.researchgate.net/profile/Alireza-Parvizimosaed
https://www.researchgate.net/profile/Alireza-Parvizimosaed
https://sites.google.com/view/marco-roveri
https://www.linkedin.com/in/aidinrs/
https://www.linkedin.com/in/aidinrs/

A. Parvizimosaed et al.

Amal Ahmed Anda received her
PhD in Computer Science from
the University of Ottawa in 2020,
on a scholarship from the Libyan
Ministry of Education. She worked
as an Assistant Professor at Tripoli
University. In Libya, she contri-
buted to complex information sys-
tems including large databases (stu-
dents, employees, teachers, and
retirees at the national level) and
financial systems. Amal is now a
Post-Doctoral Fellow at the Uni-
versity of Ottawa, and Part-Time
Professor at Algonquin College,

Canada. Her research centers around model-driven software engineer-
ing, requirements engineering, adaptive cyber-physical systems, and
smart contracts. More information can be found here: https://www.
researchgate.net/profile/Amal-Anda e-mail: amal_eletri@yahoo.com

Sofana Alfuhaid received her MSc
in Digital Transformation and Inno-
vation (DTI) from the University
of Ottawa, Canada, in 2020. Her
thesis focused on blockchain-based
traceability. She is now PhD stu-
dent in DTI, working on the gen-
eration of smart contracts from
Symboleo specifications of legal
contracts. Sofana was Teaching
Assistant at King AbdulAziz Uni-
versity, KSA, from 2012 to 2017.
Her research interests span block-
chains, smart contracts, cyber-phy-
sical systems, non-functional req-

uirements, and domain-specific languages. More information can be
found here: https://www.linkedin.com/in/sofana-alfuhaid-417a2151/
e-mail: salfu014@uottawa.ca

Daniel Amyot is Professor at the
School of Electrical Engineering
and Computer Science of the Uni-
versity of Ottawa. He received a
PhD in Computer Science from
the University of Ottawa in 2002.
His research interests include req-
uirements engineering, process min-
ing, goal and process modeling,
regulatory compliance, smart con-
tracts, and healthcare informatics.
Daniel led the standardization of
the User Requirements Notation
at the International Telecommuni-
cation Union from 2002 to 2013.

He was general chair of the Requirements Engineering conference in
2015 and program co-chair in 2018. Daniel is on the editorial boards
of SoSyM and the Requirements Engineering Journal. More informa-
tion can be found here: https://www.site.uottawa.ca/~damyot/ e-mail:
damyot@uottawa.ca

Luigi Logrippo received a degree
in law from the University of Rome
La Sapienza (Italy), followed by
Master’s and PhD degrees in Com-
puter Science, respectively, from
the Universities of Manitoba and
Waterloo (Canada). After work-
ing in industry for some years,
he was with the University of
Ottawa (Canada) for almost thirty
years. For the last twenty years,
he has been with Université du
Qué bec en Outaouais, Dé parte-
ment d’informatique et d’ingén-
ierie, while remaining associated

with the University of Ottawa as Emeritus Professor. He is interested
in algebraic and logic methods with their applications to the specifi-
cation of the software requirements of complex systems, such as dis-
tributed and telecom systems, or organizational systems. He worked
on the development of tools and methods for LOTOS, a formal speci-
fication language for distributed systems. Past research dealt also with
the formal analysis of the feature-rich communications services that
are made possible by internet telephony and the web, of the policies
that govern them, and of their interactions. Currently, he does research
on data flow control for security in organizations and in distributed
systems, and in the formalization of legal contracts. He participates or
has participated in the work of several standardization groups in the
area of telecommunications (ITU, ISO, IETF), as well as in IFIP WG
6.1. He is a lifetime member of the ACM. More information can be
found here: http://w3.uqo.ca/luigi/ e-mail: logrippol@acm.org

John Mylopoulos holds a profes-
sor emeritus position at the Uni-
versities of Toronto and Trento
and is working at the University
of Ottawa on a project titled ôEngi-
neering Smart Contractsö as vis-
iting researcher. He earned a PhD
degree from Princeton University
in 1970 and joined the faculty of
the Department of Computer Sci-
ence at the University of Toronto
the same year. His research inter-
ests include conceptual modelling,
requirements engineering, data se-
mantics, and knowledge manage-

ment. Mylopoulos is a fellow of the Association for the Advancement
of Artificial Intelligence (AAAI) and the Royal Society of Canada
(Academy of Applied Sciences). He has served as program/general
chair of international conferences in Artificial Intelligence, Databases
and Software Engineering, including IJCAI (1991), Requirements
Engineering (1997, 2011), and VLDB (2004). Mylopoulos was project
leader for a project titled “Lucretius: Foundations for Software Evo-
lution”, funded by an advanced grant from the European Research
Council (2011-16). More information can be found here:
https://en.wikipedia.org/wiki/John_Mylopoulos
e-mail: jm@cs.toronto.edu

123

https://www.researchgate.net/profile/Amal-Anda
https://www.researchgate.net/profile/Amal-Anda
https://www.linkedin.com/in/sofana-alfuhaid-417a2151/
https://www.site.uottawa.ca/~damyot/
http://w3.uqo.ca/luigi/
https://en.wikipedia.org/wiki/John_Mylopoulos

	SymboleoPC: checking properties of legal contracts
	Abstract
	1 Introduction
	2 Research baseline
	2.1 Symboleo
	2.2 The nuXmv model checker

	3 SymboleoPC: a model checker for Symboleo
	3.1 Library of trusted contract-independent modules
	3.2 Verification problem scoping
	3.3 Property checking with SymboleoPC
	3.4 Architecture

	4 Implementation and testing
	4.1 Implementation
	4.2 Unit and acceptance tests

	5 Scalability analysis of SymboleoPC
	5.1 Testing infrastructure
	5.2 Number of independent legal positions
	5.3 Dependency levels between legal positions
	5.4 Property checking time
	5.5 Threats to validity

	6 Related work
	7 Conclusions and future work
	Appendix A: technical details of the translation
	Acknowledgements
	References

