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Abstract
Porting software to new target architectures is a common challenge, particularly when dealing with low-level functionality in
drivers or OS kernels that interact directly with hardware. Traditionally, adapting code for different hardware platforms has
been a manual and error-prone process. However, with the growing demand for dependability and the increasing hardware
diversity in systems like the IoT, new software development approaches are essential. This includes rigorous methods for
verifying and automatically porting Real-Time Operating Systems (RTOS) to various devices. Our framework addresses this
challenge through formal methods and code generation for embedded RTOS. We demonstrate a hardware-specific part of a
kernel model in Event-B, ensuring correctness according to the specification. Since hardware details are only added in late
modeling stages, we can reuse most of the model and proofs for multiple targets. In a proof of concept, we refine the generic
model for two different architectures, also ensuring safety and liveness properties. We then showcase automatic low-level
code generation from the model. Finally, a hardware-independent factorial function model illustrates more potential of our
approach.
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1 Introduction

The amount of computing devices in the Internet of Things
(IoT) (in, e.g., autonomous vehicles, smart infrastructures,
automated homes, and production facilities), is expected to
increase exponentially, along with the diversity on both the
hardware (HW) and the software (SW) side [23, 32]. Oper-
ating System (OS) developers, who currently focus on just
a couple of different computing platforms, will face a huge
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variety of devices, ranging from simple single-core to more
complexmulti-core ormany-core systems, including special-
ized ASIC or even reconfigurable FPGA components [19,
29].

While high-level code can more easily be compiled for
a new or different hardware, low-level functionality (i.e.,
context switches, system initialization routines, interrupt
handling) are still handwritten for each architecture. To sup-
port a new instruction set architecture, for example, an OS
must have many low-level parts completely rewritten, which
requires in-depth knowledge of both software and hardware,
including a deep understanding of their interaction. From our
own experience and industry cooperation, supporting addi-
tional MCU families or just variants is not straightforward,
even if there are only a few differences to existing ports [53].
This increases the development time, often limiting OS sup-
port to a low number of devices. Even though the code base
of many OSs is modular, there are noticeably often just a few
complete anddirectly usable ports available. Especiallywhen
developed under time pressure, faulty implementations, new
bugs, and security holes are common. Besides, changes in
the logic of low-level software must be manually introduced
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to all implementations, which also hinders or slows down
important improvements of the OS.

These difficulties in porting software clearly signal that
new approaches must be sought to make the porting process
easier and more reliable. This would not only increase the
number of supported platforms, but could also have a pos-
itive impact in the quality of ports, reduce costs, and even
open new horizons on software evolution. As an example,
model-driven software development has been largely used in
the embedded software industry. It can improve quality while
reducing costs and development time. Simple sketches and
more elaborate modeling approaches, such as UML, are very
common [4], and formal modeling approaches are gaining
traction since a while. Formal methods have been experi-
mented on software development, bringing a new perspective
and showing that considerable improvements with respect
to correctness proofs and verification can be achieved [46,
82].Despite several obstacles regarding their applicability for
complex real-world systems [57], industry has been success-
fully exploring the benefits of introducing formal methods to
their development processes [11, 79]. Such methods have
been used for specification and verification, and also for
testing and code generation [7]. Even for OS development,
several works apply formal methods with great and promis-
ing results on, e.g., functional safety and security [31, 42,
84].

However, to the best of our knowledge, no one has tried
to use formal methods to do verification and to improve
software portability at the same time for embedded system
software, such asOS in, e.g., the IoT.We propose a change of
perspective to what software development is, which has the
potential of not only improving portability, but also overall
maintainability and dependability. While this is a big chal-
lenge and an ongoing work, we have investigated a novel
OS development framework based on formal methods and
code generation. This paper presents the framework and its
concepts, along with a proof of concept that shows how an
OS context switch can be modeled in a generic way and how
the code can still be automatically generated for two different
target architectures. Besides the low-level context-switch,we
have also applied the framework on a high-level mathemat-
ical function that calculates the factorial of a given number.
This demonstrates that our framework is not limited to low-
level OS functionality, and can potentially be applied to a
wide range of software functionality.
The first part of our approach addresses a research ques-
tion on verifying low-level functionality. RQ1: How can
low-level software development support guaranteed depend-
ability while not undermining portability?

Themethodology is based on incrementally refined formal
models to prove safety and liveness properties. We present
parts of themodel of anReal TimeOperating System (RTOS)
that focus on the switch into the kernel and back to a task,

detailing the operations that happen during these transitions.
We chose the context switch as demonstrating example,
because it is architecture-specific, typically requires reim-
plementation for each new architecture, and its correctness
is crucial: corrupted task contexts, resulting from incorrect
implementations, may produce errors that are hard to find
and compromise the OS’s ability to properly interleave con-
currently running tasks.

First, we model the OS execution flow and functionality
incrementally through formal refinements. Then, as a proof
of concept, we further refine the generic OSmodel to two dif-
ferent architectures: MSP430 and RISC-V. In order to verify
safety (something bad must not happen) and liveness (some-
thing good should eventually happen) properties [44], we
(1) prove that our RTOS models do not corrupt any task’s
context by properly saving and loading them, even though
the process for saving and restoring a context differs for dif-
ferentMCUarchitectures; (2) prove that the kernel runs in the
appropriateCPUstate and changes it as specified for task exe-
cution; (3) prove that the kernel executes in the correct order
and eventually finishes execution. Since we only introduce
hardware details in late refinements, most of those proofs
need only be done once, on the generic RTOS model. The
late refinement to each architecture, as well as their proofs
follow and become much simpler, as we will show.
The second part of our approach addresses a research ques-
tion on code generation:RQ2:How can low-level software be
engineered to be more portable to different hardware archi-
tectures?

The methodology is based on using the verified mod-
els from the first part as an input to EB2LLVM, a tool
that resulted from our research and automatically generates
LLVM intermediate code which is eventually compiled with
a target-specific compiler backend. To demonstrate how code
is generated from Event-B models, we first present another
model, applying the entire frameworkon the generally known
high-level algorithm to calculate the factorial of a number.
The factorial example presents EB2LLVM’s basic features,
and all stages of code generation for the same target archi-
tectures as for the OS model, i.e., MSP430 and RISC-V. We
also compare the automatically generated code with equiva-
lent code compiled from the function implemented in C.

Finally, we show howEB2LLVMgenerates code from the
presented OS model, including register and array accesses,
and, step-by-step, how generic parts of the OS model can
generate target-specific code considering the target’s hard-
ware model.
Contributions. To the best of our knowledge, this is the first
time that OS low-level functionality is formally modeled
with focus on its portability, and code is automatically gen-
erated for two targets. Our main contributions in this paper
are: (1) we decouple low-level functionality from hardware
specifics; (2) a generic formal RTOS model with context
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switches; (3) safety and liveness verification of two instanti-
ations of the generic model via interactive theorem proving
and model checking; (4) assembly code is automatically
generated and compiled into binaries for the two model
instantiations; (5) a formal model of the factorial function,
with its automatically generated code.
Structure. Section 2 discusses related work and Sect. 3 pro-
vides background on the tools and the two target HW
architectures. Section4 presents an overview of the frame-
work. Section5 presents the first part of the framework,
including the requirements, the general idea of the model-
ing process and our refinement strategy, the modeled RTOS,
and its verification. The second part of the framework is pre-
sented in Sect. 6, with the model and code generation for
the factorial example, and the code generation for the RTOS
model presented in the first part. We conclude in Sect. 7.

2 Related work

Throughout the history of software development, portabil-
ity has been a difficult to tackle issue. Porting is a common
source of bugs in drivers [14] and OSs in general [49, 61].
Code duplication, for example, is often difficult to maintain
and often leads to faults [24, 38, 39]. These problems can be
tracked to the porting process itself [13, 34]. Severalworks on
porting experiences report difficulties in the low-level code
[69] and the need to consider several aspects of the target [58],
and often the portsmiss some functionality [53, 83]. Even the
generally considered portable Linux and UNIX OSs present
important challenges [9, 41, 74, 75]. Solutions for improving
software portability in different domains have been proposed
[48, 67]. Some works try to improve aspects of portability
with formal methods and code generation [22, 60]. While
the generated code is semantically hardware-dependent, low-
level assembly code still cannot be generated.

Formal methods can also aid in OS verification, and sev-
eral works investigate how to formally model and verify OSs
[5, 10, 12, 15, 16, 18, 56, 71, 72]. The most known formally-
verified microkernel is probably sel4 [51], whose modeling
and verification strategies have been largely studied [42, 73].
OpenComRTOS [76] develops implementations from formal
models, though these implementations are still handwritten.
It is also possible to formally specify an entire Instruction
Set Architecture (ISA) and automatically generate a simula-
tor for it [80, 81].

With modular UML models, Besnard et al.’s work [8]
decouples system and environment models, deploying the
same system model for simulation, verification, and execu-
tion. Also focused on the software deployment, Rivera et
al. [64] present a tool that automates the transformation of
Platform-IndependentModels (PIMs) into Platform-Specific
Models (PSMs). These approaches are interesting for our

use-case, however we have not further explored UML as a
modeling language.

Automatic generation of code from formal models has
also been investigated [6, 17, 54, 55, 65, 68]: However, the
state-of-the-art modeling approaches rarely take care of sep-
arating software from hardware concepts. When high-level
functionality is modeled, this does not present an issue, and
the model can be detailed enough that (high-level) code can
be generated and then compiled to different hardware plat-
forms. However, as soon as direct interaction with hardware
is necessary, they either model it directly, which means that
the model does not or only with considerable effort work for
different hardware; or they do not detail the model enough
to be able to automatically generate any code from it. Such
generated high-level code does usually not support direct ref-
erences to, e.g., CPU registers. Apart, corresponding tools
like MATLAB [54] commonly lack built-in support for for-
mal verification in the way dedicated formal methods tools
like model checkers or theorem provers do. Even if, the
verification effort must be repeated for each target, as the
hardware-specific models largely differ. An exception in the
tooling landscape is AutoFOCUS [6] which comes with for-
mal semantics, code generation and support for hardware
deployment. However, AutoFOCUS has been designed for
component-based development of embedded applications, its
focus is not on low-level and portable operating systemdevel-
opment.

Finally, Holland [33] proposes an approach to synthesize
machine-specific OS assembly code by introducing a sub-
stantial number of new specification languages and tools
to handle compiler-specific and machine-specific calling
conventions, data types, memory layouts, etc. While these
languages are tailored to, e.g., the special requirements of
context switching, the verification step only considers the
correct interaction between the assembly code and the C
compiler that calls the generated sequences. The assembly
code generation must be manually adjusted for each new
architecture.

In contrast, our approach is to generate LLVM intermedi-
ate code from formal software and hardwaremodels.We then
use the standard compiler toolchain which ultimately gener-
ates low-level assembly code for a wide range of supported
target architectures. Since the intermediate representation
language is unified, our code generation algorithm needs
no adaptation to new hardware. Apart, we allow to directly
reuse the software model (along with already accomplished
proofs) for all target architectures by strictly separating it
from their hardware models. For a new hardware architec-
ture, only its hardware model and the instantiation needs to
be implemented and verified against the specification. This is
more efficient compared to implementing a new and mixed
hardware/software model for each new target architecture.
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3 Background

3.1 Event-B and Rodin

Event-B is a formal method for system-level modeling and
analysis [2, 21] derived from the B formalism [1]. Based on
set theory and state transitions, Event-B supports refinements
to model different abstraction levels, while mathematical
proofs verify correctness and consistency between refine-
ments. The Rodin Platform [37], an Event-B IDE based on
Eclipse, supports the development and refinement of models
with automatic generation and partial discharging of math-
ematical Proof Obligations (POs). POs are mathematical
formulas that must be proved (discharged) to ensure correct-
ness of the model. Several plugins are available to Rodin that
aid in, e.g., automatic PO discharging and model checking.

In order to ease the understanding of readers unfamiliar
with Event-B,we introduce the components of Event-Bmod-
els and then present a model with most of these components
to show how they can model a sequential program. Listing
1 and Listing 2 present the model explained later, and can
also be used as reference to the keywords and components
explained next. We assume the reader is familiar with basic
set theory notation.

The two top elements of a model in Event-B are contexts
andmachines. The term context is overloaded in the domains
of OSs and formal methods. Hence, we will always refer to
a context in Event-B as Event-B context. In contrast, just
context refers to task context in operating systems. Event-B
contexts describe all static information about the system and
can have carrier sets and constants.Axioms are the predicates
that the constants obey and will be available as hypotheses
in the POs. It is also possible to add theorems which must be
proved. If an Event-B context extends others, it can reference
sets and constants of the extended Event-B contexts and any
they also extend. Dynamic information about the system is
described in the machines. A machine can see Event-B con-
texts, such that it can use their sets and constants to relate
static and dynamic information, as well as axioms and the-
orems to discharge POs. Machines can have variables that
obey predicates given by their invariants, and theorems can
be added and proved. Considering machine states as sets of
the variables’ values, each event represents a state transition.
An event is said to be enabled if the state satisfies its guard
condition. The mandatory event INITIALISATION serves as
a starting point, has no guards, and only runs once to initialize
all variables. Event-Bdoes not definewhich eventwill be exe-
cuted in case more than one is enabled simultaneously. The
execution of an event modifies the current state according to
its actions, which are executed simultaneously. It is possible
to limit how often an event may be enabled using a variant,
which is either a numeric expression or a finite set whose free
identifiers are constants or concrete variables. Events always

Fig. 1 : Visualization of the binary search Event-B model

have a status, which can be either ordinary (default status,
the event may occur arbitrarily often), convergent (the event
must decrease the variant), or anticipated (the event must not
increase the variant). When a machine refines another one, it
may introduce details or more variables. The machine events
must be refined or kept as they were. In special cases, when
the event can never be enabled, it may be deleted from the
refined machine. POs define what is to be proved for a model
and are automatically generated by Rodin. For example, the
POs guarantee that invariants always hold and that refined
events do not contradict abstract ones.

Listing 1 and Listing 2 reproduce an example from
Abrial’s book: the binary search in a sorted array (Section
15.4 of [2]).We have only created a Rodin project and copied
the Event-B model from the book into it, correcting some
typos present in the original and discharging the POs Rodin
generated. To complete our example here, we also added the
Event-B context c1 (Listing 1b), which is not present in the
original model. With this example, we can show Event-B’s
notation and model components, as well as some concepts
for modeling sequential programs introduced by Abrial and
used in our models. In this model, we only have four events
and the state is composed of a few variables. Still, it can
be challenging to understand how state transitions occur and
which effect events may have on each other. Therefore, it is
helpful to visualize the model graphically. Many tools can
create visualizations from Event-B models, producing intri-
cate and detailed graphs. For the sake of simplicity, however,
wepresent simple state-machine-like graphs representingour
models. As an example, Fig. 1 presents a visualization of the
concrete Event-B model of the binary search. The nodes rep-
resent the events’ guards, and edges represent the possible
state transitions caused by their actions when they execute.
The dashed boxes are the guard expressions defining the state
that enables the respective event.

Listing 1a shows the Event-B context with the binary
search pre-conditions: f is an array of natural numbers with
size n, and v is a value in the range of f (i.e., an element of
the array). The program (modeled in the machine, explained
later) will search for the index r in the array, such that f(r)
= v. The axiom axm0_4 tells us that the array f is sorted in
a non-decreasing way, and the theorem thm0_1 states that
there is at least one element in the array. Listing 1b is not
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1 CONTEXT c0
2 CONSTANTS
3 n
4 f
5 v
6 AXIOMS
7 axm0_1: n ∈ N

8 axm0_2: f ∈ (1..n)→N

9 axm0_3: v ∈ ran(f)
10 thm0_1: n ≥ 1 theorem
11 axm0_4: ∀ i,j · i ∈ 1..n ∧ j ∈ 1..n

∧ i ≤ j ⇒ f(i) ≤ f(j)
12 END

(a) Event-B context c0 – pre-conditions

1 CONTEXT c1
2 EXTENDS c0
3 SETS
4 S
5 CONSTANTS
6 s1
7 s2
8 s3
9 AXIOMS
10 nProB: n = 5
11 vProB: v < 10
12 setDef: partition(S, {s1}, {s2}, {s3})
13 END

(b) Event-B context c1 – extends c0

1 MACHINE m0
2 SEES c0
3 VARIABLES
4 r
5 INVARIANTS
6 inv0_1: r ∈ N

7 EVENTS
8 INITIALISATION
9 THEN
10 act0_init_1: r :∈ N

11 END
12 progress anticipated
13 THEN
14 act0_prog_1: r :∈ N

15 END
16 final
17 WHERE
18 grd0_fin_1: r ∈ 1..n
19 grd0_fin_2: f(r) = v
20 THEN
21 skip
22 END
23 END

(c) Event-B machine m0 – post-condition and progress

Listing 1: Binary search as Event-B model – initial model

part of the model. However, it shows how an Event-B con-
text can extend another to use (and further detail) elements
of the extended context, for example, defining the size n of
the array f. It also defines a carrier set S and new constants.
The axiom setDef defines S as a partition of three subsets
with one element each, effectively creating an enumerated set
of three elements. The machine of the initial model (Listing
1c) sees the Event-B context c0 and declares the variable
r, which represents the index that the program must find.
Besides the mandatory INITIALISATION event, we add two
others. Event final represents the specification of the pro-
gram, i.e., its post-condition. It has no actions (skip), and
its guards represent the state where the program has found
r. Note that axm0_3 states that v is in the range of f, guar-
anteeing the program will find r. The other event we add
is the anticipated event progress, which modifies r in a
non-deterministic way. Its refinements will detail how r is
to be found and will eventually be made convergent on a
variant, such that the loop it creates is guaranteed to termi-
nate eventually. In the first refinement m1 (Listing 2a), two
new variables, p and q, are introduced, representing search
indexes of the array f. The abstract event progress is split
into events inc and dec, which are made convergent on the
variant q−p. Since inv1_3 has been introduced, the guard

grd0_fin_1 in final of Listing 1c always holds and can
therefore be removed from the refined machine m1. The sec-
ond refinement m2 (Listing 2b) defines how r is to be found
within inc and dec, defining the increment and decrement
intervals that were non-deterministic in m1. Note that, since
event final remains exactly the same as its abstraction,
its guard is omitted and the word REFINES is replaced by
EXTENDS. The goal state is still f(r) = v.

While we assume the reader is familiar with basic set the-
ory, our models use some set and relation operators that are
less generally known. To ensure understanding of themodels,
we explain the meaning of these operators with an example.
Listing 3 defines two sets, S1 and S2, where S2 is a subset
of S1. The set S1 is a partition of constants a to e (definition
omitted for simplicity). A relation r is a set of pairs where
its domain dom(r) is the set of all elements occurring on
the left side of the pairs and its range ran(r) is the set of
elements on the right side. A function is a special case of rela-
tion, where each element of the domain is uniquely related to
one element of the range. The two relations defined in List-
ing 3, r1 and r2, are partial functions from, respectively, S1
and S2 to N. Table 1 shows the values in each relation range.
Columns r1 and r2 show the range values defined for these
relations, each cell representing the value mapped to the cor-
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1 MACHINE m1
2 REFINES m0
3 SEES c0
4 VARIABLES
5 r
6 p
7 q
8 INVARIANTS
9 inv1_1: p ∈ 1..n
10 inv1_2: q ∈ 1..n
11 inv1_3: r ∈ p..q
12 inv1_4: v ∈ f[p..q]
13 VARIANT
14 q−p
15 EVENTS
16 INITIALISATION
17 THEN
18 act1_init_1: r :∈ 1..n
19 act1_init_2: p := 1
20 act1_init_3: q := n //typo: q := 1
21 END
22 inc convergent
23 REFINES progress
24 WHERE
25 grd1_inc_1: f(r) < v
26 THEN
27 act1_inc_1: r :∈ r+1..q
28 act1_inc_2: p := r+1
29 END
30 dec convergent
31 REFINES progress
32 WHERE
33 grd1_dec_1: v < f(r)
34 THEN
35 act1_dec_1: r :∈ p..r−1
36 act1_dec_2: q := r−1
37 END
38 final
39 REFINES final
40 WHERE
41 grd1_fin_2: f(r) = v
42 THEN
43 skip
44 END
45 END

(a) Event-B machine m1

1 MACHINE m2
2 REFINES m1
3 SEES c0 // c1 for extended
4 VARIABLES
5 r
6 p
7 q
8 EVENTS
9 INITIALISATION
10 THEN
11 act2_init_1: r := (1+n)/2
12 act2_init_2: p := 1
13 act2_init_3: q := n
14 END
15 inc
16 REFINES inc
17 WHERE
18 grd2_inc_1: f(r) < v
19 THEN
20 act2_inc_1: r := (r+1+q)/2
21 act2_inc_2: p := r+1
22 END
23 dec
24 REFINES dec
25 WHERE
26 grd2_dec_1: v < f(r)
27 THEN
28 act2_dec_1: r := (p+r−1)/2
29 act2_dec_2: q := r−1
30 END
31 final
32 EXTENDS final
33 THEN
34 skip
35 END
36 END

(b) Event-B machine m2

Listing 2: Binary search as Event-B model – first and second refinements

responding set element. If an element is not in the relation’s
domain, the cell is marked with “-”. If it is, but there is no
mapping for it in the relation the cell is left blank. The other
columns represent the result of some operations with r1:
The domain subtraction S2 �− r1 removes all S2 from r1’s
domain, leaving only two mapped values. Domain restric-
tion S2 � r1 is the inverse, only leaving values mapped
to elements present in S2. The overwrite operation r1 �−
r2 overwrites the r1 relation with values from r2. Finally,
Listing 3 also shows the results of two other operations as
theorems: S1minus S2 results in a set with all elements from

S1 that are not in S2 (thm1). Brackets are used to access a
relation element, as exemplified by thm2.

3.2 Model checking and ProB

Temporal logic [52, 59] is a logic system that formally
describes properties of time. Linear Temporal Logic (LTL) is
themost popular andwidely used temporal logic in computer
science to specify and verify the correct behavior of reactive
and concurrent programs [30]. It is particularly useful for
expressing properties such as safety (given a precondition,
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Table 1 Relation operators and
example values

Set r1 r2 Dom.Subtraction Dom.Restriction Overwrite
element S2 �− r1 S2 � r1 r1 �− r2

a 1 – 1 – 1

b 3 – 3 – 3

c 5 2 – 5 2

d 7 – 7 7

e 4 – 4

AXIOMS
// definitions
defS1: partition(S1, {a}, {b}, {c}, {d}, {e})
defS2: S2 = {c,d,e}
typeR1: r1 ∈ S1 	→N

defR1: r1 = {a 	→1,b 	→3,c 	→5,d 	→7}
typeR2: r2 ∈ S2 	→N

defR2: r2 = {c 	→2,e 	→4}
// theorems that exemplify other
operations
thm1: S1 \ S2 = {a,b} theorem
thm2: r1(a) = 1 theorem

END

Listing 3: Example of set and relation operators

then undesirable states that violate the safety condition will
never occur), liveness (given a precondition, then a desir-
able state will eventually be reached), and fairness (involves
combinations of temporal patterns of the form a predicate
holds “infinitely often” or “eventually always”). ProB is an
animator, constraint solver, and model checker for the B-
Method [47] that integrates as a plugin-in Rodin and can be
easily used for LTL model checking of our RTOS models.

3.3 Hardware architectures

Next, we present the main characteristics of the two HW
architectures we use as examples for the architecture-specific
instantiations of our model in Sect. 5.3.
MSP430 The TI MSP430 [36] family of MCUs comprises
a range of ultra-low power devices featuring 16 and 20-bit
RISC architectures with a large variation of on-chip periph-
erals, depending on the variant. Among its 16 registers are
general purpose registers, the program counter PC, the stack
pointer SP, and the status register SR, which stores status
flags, such as interrupt enabled, overflow, etc. The MSP430
offers a very simple architecture with only one execution
mode and a fully orthogonal instruction set. There is no
privileged mode, nor any memory protection or memory
management unit. Once an interrupt occurs, the PC and
SR registers are pushed onto the stack. Then, further inter-
rupt requests (IRQs) are disabled and the PC is overwritten
with the address of the first instruction of the corresponding

interrupt handler. The return from interrupt instruction, i.e.,
RETI, restores SR and PC from the stack and finally contin-
ues where the handler has interrupted the regular execution
flow.
RISC-V The open RISC-V instruction set architecture [63]
was originally developed by UC Berkeley and is mean-
while supported by a highly active community of software
and hardware innovators with more than 100 members from
industry and academia. The RISC-V is a load-store architec-
ture, and its specification [78] defines privilege levels used
to provide protection between different components of the
software stack. We refer to an implementation that supports
user and machine modes, with 32-bit integer and multipli-
cation/division instructions (RV32IM) [77]. There are 32
registers available in all modes, including a zero register and
the program counter pc. The calling convention specifica-
tion assigns meanings to the other registers, such as a stack
pointer sp, function arguments and return values. Addition-
ally, Control and Status Registers (CSRs) with special access
instructions are available for, e.g., managing the CPU or
accessing on-chip peripherals in defined privilege levels. An
IRQ switches the CPU into a higher privilege level, while
software can issue an ECALL instruction for that. In both
cases, returning to user level is done by the instruction URET.

3.4 LLVM

The LLVM Compiler Infrastructure is a collection of com-
piler and toolchain components designed as a set of reusable
libraries [50]. All components have well-defined interfaces,
and one of themost important aspects of LLVM for this paper
is the LLVM Intermediate Representation (LLVM IR). The
LLVM IR is a language with well-defined semantics and a
RISC-like virtual instruction set that supports simple instruc-
tions like add, subtract, compare, and branch. It is strongly
typed and uses an infinite set of temporary registers prefixed
with a% character. LLVM IR is defined in three forms: a tex-
tual format of the language in .ll files, an in-memory data
structure used by optimizers, and an on-disk binary “bitcode”
[45], with tools provided to transform one form into another.

An LLVMcompiler has three distinct phases: the frontend
is responsible for parsing the input code and translating it into
LLVM IR; this IR can then go through optimizers and ana-
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lyzers that improve the IR code; a backend finally produces
native machine code from the IR code. To take advantage of
the available LLVM backends (and eventually of some opti-
mizers and analyzers), we have written a frontend that takes
Event-B “code” and produces LLVM IR. We then use llc,
the LLVM static compiler, to produce architecture-specific
assembly code that can be used by a native assembler and
linker to generate native binaries.

4 Framework overview

Our approach relies on the separation of software function-
ality from details of the hardware platform on which this
functionality shall run. The idea is to (formally) model the
functionality (i.e., theOSwewant to implement), abstracting
away the hardware details that would render the model spe-
cific to a certain target platform, such as registers, interrupt
handling, memory specifications, etc.

We can think of this as explaining someone else what the
code they should implement must do. We can explain func-
tionality in an abstract way, such that others (e.g., experts)
can presumably “understand” what is to be done, without
the need to know all the details of the code. For instance,
in order to support concurrent tasks, a preemptive OS must
implement context switches, i.e., it must save the currently
running task’s runtime information and load the next one’s
into the CPU. Experts will probably assume that this can
be implemented using interrupts, and that the interrupt con-
troller will save the return address of an interrupted code
sequence somewhere. It might change some CPU configura-
tion, such as the ability to take further interrupts, the stack,
its execution mode, etc., saving the previous values as well.
Finally, it will start executing another defined code sequence
(e.g., the handler specified for that interrupt). To understand
the general idea of a context switch, we do not need to know
exactly which and how registers are modified, or how they
might be saved. When we implement the OS context switch,
we know we must save the “rest" of the context that is not
automatically saved by the hardware, and change the remain-
ing CPU configuration according to what the OS needs it to
be.

What we do in our approach is to formalize this abstract
description, especially about low-level functionality. Figure2
shows an overview of the framework: While the software
model has a very abstract view of the hardware, these
specifics are separately modeled for each target architecture
in the hardware models. They are then combined (instanti-
ated) into architecture-specific models, fromwhich our code
generator can generate each target’s specific code. In addi-
tion, the models are verified through formal proofs, and most
of these proofs are reused to verify each arch-specific model.

Fig. 2 : Framework overview

In our framework, software and hardware are modeled
and verified with Event-B, a formal method for system-level
modeling and analysis [2]. Code is then generated with a
tool (EB2LLVM) that resulted from our research and parts
of the LLVM compiler infrastructure, taking advantage of
the backend targets that are already available.

As usual in formal modeling, the software model starts
from a very abstract view of the modeled software, and
is incrementally refined to describe all requirements. The
refinements integrate, step by step, the software require-
ments, and we also add invariants that guarantee correctness.
We also use model checking to verify liveness properties,
and find errors, inconsistencies, or underspecification prob-
lems early in the modeling, so that they can be fixed in early
phases of the modeling and will not become bugs in the code.
Since instantiations are nothingmore than late refinements of
the generic model to arch-specific models, their verification
also profits from the verified generic model, and is almost
automatic. Other aspects to be verified, such as timing, secu-
rity, functional safety, etc. could also be added to the models,
and similarly verified at both the generic and the hardware-
specific levels. This, however, is part of future work.

Once the software is modeled and verified, it can be easily
instantiated to different targets, verified again, and the corre-
sponding code automatically generated. When the software
must be ported to a new hardware (e.g., a new architecture),
one only needs to create or adapt the hardware model, instan-
tiate the generic software model and verify/generate again.
Whilemanual porting requires theOS developer to have deep
knowledge of both software and hardware, creating a hard-
ware model with just the details required for applying our
approach is much simpler, as described in Sect. 5.3.2. If OS
requirements change, new features are needed, or the logic
must be changed, one only needs to change the generic OS
model, verify the changes, and generate the code again for
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all targets. This can even accelerate the process of optimiz-
ing the software design, as different options can be quickly
evaluated on real hardware, without the need for the software
developer to apply the change to all ports individually. It also
guarantees that the ports are always consistent to each other
and according to the requirements.

Finally, to complete our approach to portability, code is
automatically generated from the models. While our frame-
work aims at generating all code for the models, including
linker files, generic and specific C code, etc., this paper
focuses on the low-level functionality. For the context switch
that serves as proof-of-concept, we only generate assembly
code. The tool we have written, EB2LLVM, takes as input
the Event-B models, and generates target-specific LLVM IR.
The LLVM IR files generated by EB2LLVM can then be
compiled with llc, LLVM’s static compiler. While other
Event-B code generators only understand basic arithmetics,
EB2LLVM also understands the model’s sets and axioms,
such that they are used to generate low-level code that refers
to target-specific registers and instructions. Taking advan-
tage of LLVM’s backend, we can generate machine code for
several different targets.

The next sections present details of our framework. In
Sect. 5, we use the example of the context switch in SmartOS
[66], anRTOSwehave developed and used formany years, to
show how the software can be modeled independently from
the hardware, how it is later instantiated, and how themodel is
verified. Section6 shows howwe generate the context switch
and factorial code for RISC-V-based architectures [63] and
the MSP430 [36].

5 Modeling

This section presents the first part of the framework: mod-
eling and verification. Section5.1 presents the requirements
for the context switch and Sect. 5.2 shows the refinement
strategy we used in the model. Section5.3 details the generic
model, while Sect. 5.3.2 presents the model instantiations to
the target architectures. The verificationwe have done on this
model is presented in Sect. 5.4.

5.1 Requirements

We modeled SmartOS [66], an embedded RTOS we have
developed and used for many years. This section summa-
rizes its architecture and requirements. An important concept
to understand is the context (not in the sense of Event-B, but
in the sense of operating systems): A context is a set of infor-
mation and configuration of a CPU or a CPU core that is
required to control the execution flow of software, i.e., code
sequences. Depending on the CPU state and external events,
cores can usually switch between different code sequences

by loading their respective context. To be able to continue
an earlier code sequence from the interrupted instruction, its
context is saved before the switch. The actual switching pro-
cess as well as the composition of the contexts is defined by
the interrupt concept of the CPU; in any case, the hardware
automatically saves and loads the contexts. If, in addition to
interrupts of the hardware, an OS supports preemptive, i.e.,
interleaved executable tasks (or threads or processes), the
context is extended. In order to switch between tasks, this
extended information is saved (previous task) and loaded
(next task) by the kernel. Next, we describe our general
assumptions about the computing platformandpresent Smar-
tOS’s requirements.

5.1.1 Hardware assumptions

Even though we aim at keeping the OS model initially inde-
pendent from the hardware, a target architecture must have
certain general features in order to be capable of running
an operating system. Focusing only on the relevant aspects
for our RTOS model, we define data storage and interrupt
handling features as environmental assumptions, numbering
and labeling them env. Different OSs might require other
features, but that does not affect our general concept.

ENV1 The CPU provides means to store/load data to/from
referable locations. These locations can be, e.g., reg-
isters or memory addresses.

ENV2 The context is a well-defined subset of locations and
their stored values that the CPU requires for execu-
tion of a code sequence. It must be saved when the
code sequence is interrupted, so that it can later be
resumed from the same point.

ENV3 TheCPUhas an interrupt enabled flag. Interruptswill
only be accepted if the interrupt enabled flag is set.

ENV4 When an interrupt is accepted, the values of the con-
text or a part of it are automatically copied into other
locations defined by the architecture.

ENV5 The CPU offers a “return from interrupt” instruc-
tion that automatically loads the context with the
values automatically saved when the interrupt was
accepted (ENV4).

ENV6 The saving process (ENV4) is allowed to modify the
context values before they are saved, according to a
well-defined and CPU-specific function.

ENV7 The restoring process (ENV5) must reverse the mod-
ification of ENV6.

5.1.2 Software specification

SmartOS provides, amongmany other features, a preemptive
and priority-based scheduler for concurrent tasks. The kernel
is invoked when an interrupt occurs or a syscall is called, and
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is divided into three parts: (1) the kernel entry is responsible
for stackmanagement and context saving. It unites both entry
points, enters kernel mode, and continues to (2) the kernel
body which handles the actual interrupt or syscall request
and runs the scheduler that selects the task to be executed
next. Finally, (3) the kernel exit executes a context switch
by loading the selected task’s context and returning to task
mode.

In this work, we only model the context switches in kernel
entry and exit, and the conditions required by the OS to exe-
cute its other functions. High-level kernel functionality, such
as scheduling, task management, etc. is out of scope. The
requirements for correct context switches and kernel execu-
tion (os) are:

OS1 (A) A task executes on the context defined in ENV2.
When not running, the values of its context are stored
in locations reserved for context saving. (B) Each ele-
ment of the context has its correspondent in the saved
context.

OS2 (A) Once the kernel is invoked, kernel entry saves the
old task’s context. (B) On kernel exit the next task’s
context is loaded into the CPU.

OS3 (A) Each task has dedicated locations for context sav-
ing. (B) These locations with their stored values are
the task’s saved context, where contexts are saved to
and loaded from (OS2).

OS4 The scheduler chooses the next task to be executed
and is implemented in kernel body.

OS5 The cause for kernel invocation, unambiguously iden-
tifying which interrupt or syscall has occurred, must
be recorded for use within the kernel body.

OS6 (A) The kernel body always runs in kernel mode, with
interrupts disabled, and on the OS stack. (B) Each task
runs on its own stack, with the interrupt flag being the
same as it was when that task was running last, and
never in kernel mode.

OS7 A part of the kernel entry context-saving and CPU
preparation is automatically executed by the hardware
(ENV4). The rest must be executed in software after
the automatic part.

OS8 The kernel is exited with a return from interrupt
instruction (ENV5). The task selected by the sched-
uler shall continue execution where it was preempted
before.

OS9 A part of kernel exit context loading and CPU prepa-
ration is automatically executed by the return from
interrupt instruction (ENV5, OS8). The rest must be
executed in software before the automatic part.

OS10 (A) If the values copied on interrupt (ENV4) are
copied into task-specific locations, these locations and
their data are considered a part of the saved context.
(B) Otherwise, it is the OS’s responsibility to save

Table 2 : Model and requirements

Level ENV OS

0 ENV1, ENV2 OS1

1 – OS2

2 ENV6, ENV7 OS3, OS4

3 ENV3 OS5, OS6

4 ENV4, ENV5 OS7, OS8, OS9, OS10

5 Target-specific OS11

those values into the task’s save context, and to copy
them back where the CPU expects them to be when
returning from an interrupt (ENV5).

OS11 If the architecture provides a privileged mode, ker-
nel body runs in it, while tasks run in less privileged
modes. Switching the mode must be done on kernel
entry and kernel exit.

5.2 Refinement strategy: from abstraction to
detailed specification

The model has several refinements and showing all would be
too cumbersome. So, we divide it into six levels of abstrac-
tion (referred to as Level). Each Level is composed of several
refinements and addresses a new set of requirements (Table
2).1 Up to and including Level 4, the model remains generic,
only requiring the generic hardware features described in
Sect. 5.1.1. We only introduce further hardware details in
Level 5, where we instantiate the model for specific target
architectures. This section introduces the general idea of each
Level, while Sect. 5.3 details how each level was modeled.
This model focuses on the interface between hardware and
software in order to model the kernel’s interleaved execution
of concurrently running tasks. The goal is to prove that the
kernel does not corrupt any task’s context by properly saving
and loading them, as well as to guarantee that tasks and ker-
nel body run in the appropriate conditions described by the
requirements from Sect. 5.1.

The state of an Event-B machine is the set of its variables’
values, and state transitions are represented by the machine’s
events. In ourmodel, these events represent the different parts
of the kernel, building a state machine that starts with the
switch into the kernel and finishes with the switch back to
a task. The events, therefore, are modeled such that their
order is well-defined, in the order the kernel parts must run:
kernel entry executes first, then body, and finally exit; and
the automatic part of entry executes before the manual part

1 Model artifact at https://figshare.com/s/0f262342284eada236f5. The
relationship between refinements and levels can be found in the
README file. Model elements are referenced as [component.label].
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that must be executed in software (OS7), and in exit manual
executes before automatic (OS9).

Level 0 In this initial abstraction, we only present the
expected result of the OS execution, i.e., that an old
context is saved and a new one is loaded, without
modeling how this will be achieved. We also define
the basic Event-B sets and their relations, used along
the refinements.

Level 1 In the first refinements, we define the entry and exit
parts of the kernel simply as two context copies: one
in kernel entry for saving a context, and another one
in kernel exit for loading a context. At this level, we
do not yet define where those contexts are copied
from or to, nor do we have any notion of tasks or
conditions for proper task and kernel body execu-
tion.

Level 2 Next, we introduce tasks, their saved contexts, and
kernel body. This level also defines where the con-
text is saved to and loaded from.

Level 3 Then, we introduce and set up the variables that con-
trol the conditions for proper task and kernel body
execution (interrupts disabled, kernelmode, running
on its own stack, and cause for the kernel execution).

Level 4 Here, we refine the model to a generic hardware
that automatically saves and loads a subset of the
context, and the software that complements the
switches.

Level 5 Finally, we refine the model into architecture-
specific models from which OS code can be gen-
erated (See Sect. 6).

5.3 Context switchmodel

This section details the generic part of the context switch
model, i.e., Levels 0 to 4 from Sect. 5.2. Please, refer to
Sect. 3.1 for the Event-B notation used in the following list-
ings.

5.3.1 Hardware-independent model

Level 0 First, we define the carrier set LOCATION (Fig. 3a),
an abstract representation of memory addresses and reg-
isters. In combination with DATA, a subset of Z, memory
and registers can be represented according to ENV1. Two
non-overlapping subsets with the same cardinality, CONTEXT
and SAVEDCTX represent the subset of locations that com-
pose the context (ENV2) and the subset of locations of a
saved context (OS1.A), respectively. The bijective function
ctx2saved ∈ CONTEXT��SAVEDCTX relates each context
location to where it is saved, while saved2ctx is its
inverse (OS1.B). The context is defined as a relation from

Fig. 3 : Diagrams of LOCATION

1 EVENTS
2 osProgress anticipated
3 THEN
4 act1:loaded :∈ CONTEXT 	→DATA
5 act2:saved :∈ SAVEDCTX 	→DATA
6 END
7 osFinal
8 ANY
9 new ∈ CONTEXT→DATA
10 old ∈ SAVEDCTX→DATA
11 WHERE
12 grd3:loaded = new
13 grd4:saved = old
14 THEN
15 skip // state not changed

Listing 4: Level 0 – Initial abstraction

CONTEXT to DATA, while a saved context is a relation from
SAVEDCTX to DATA.

The initial abstraction (Listing 4), sees the context
switches as two context copies: one copies old context to
saved∈SAVEDCTX 	→DATA, and the other loadsnew context
to loaded ∈ CONTEXT 	→DATA. The old and new contexts
that are copied are simply event parameters, that will later
be refined into the actual contexts that are copied. The OS is
modeled in the event osProgress. The event osFinal
is not a part of the OS, but is only introduced to model the
state where the OS has successfully finished its execution.
This event is composed only of guards, that is, it is enabled
once the state represented in its guards is reached but does
not change it anymore. The event osProgress, that repre-
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1 osEntry REFINES osProgress
2 ANY
3 saveSet ⊆ toSave
4 old ∈ SAVEDCTX→DATA
5 WHERE
6 saveSet �= ∅

7 saved = toSave �− old
8 loaded = ∅ //load not started
9 THEN
10 saved := saved ∪ (saveSet � old)
11 toSave := toSave\saveSet

Listing 5: Level 1 – Kernel entry

1 osExit REFINES osProgress
2 ANY
3 loadSet ⊆ toLoad
4 new ∈ CONTEXT→DATA
5 WHERE
6 loadSet �= ∅

7 loaded = toLoad �− new
8 toSave = ∅ //save complete
9 THEN
10 loaded := loaded ∪ (loadSet � new)
11 toLoad := toLoad\loadSet

Listing 6: Level 1 – Kernel exit

sents theOSkernel, is allowed to change the variablessaved
and loaded, but does not yet describe how the copies are
made. It ismade anticipated, which, in Event-B,means that it
may execute several times, but must eventually give up con-
trol and allow the model to reach osFinal. Refinements of
an anticipated event must converge, i.e., decrease a variant,
thereby proving that it eventually gives up control. The idea
is that, since the context is copied in different steps by HW
and software, this event can be refined into these steps. The
Proof Obligations (POs) generated by Rodin verify that the
refinements of this abstraction (Levels 1 to 5) are correct. If
we can prove that the model always reaches osFinal, we
prove that the desired state after OS execution is reached.
These proofs are shown in Sect. 5.4.
Level 1 Listing 5 and Listing 6 show the refinement of
osProgress into two events: osEntry (OS2.A: kernel
entry responsible for saving the old context), and osExit
(OS2.B: kernel exit is responsible for loading the new con-
text). They model state transitions (Fig. 4), and their guards
define that entry must happen before exit, and exit may only
start after entry is done.

The new variable toSave ⊆ SAVEDCTX keeps track of
the context yet to be saved, while the parameter saveSet
defines the context subset saved in each run of osEntry.
The event is made convergent on the variant toSave, and
saveSet is subtracted from toSave in each run (Listing
5, Line 11). This guarantees that, eventually, the save pro-

Fig. 4 : Level 1 states and transitions

cess will complete and we move to a saved state. Similarly,
the new variable toLoad ⊆ CONTEXT represents the context
yet to be loaded, while loadSet defines the context subset
loaded in each run of osExit. The event is made conver-
gent on the variant toLoad, and loadSet is subtracted
from toLoad on each run (Listing 6, Line 11), allowing the
event to eventually reach the loaded state. Event osFinal
remains unchanged.
Level 2 Next, we define the input constants oldTask ∈
TASKS and oldCtx ∈ CONTEXT → DATA that represent the
old task and its context when the kernel was requested.
The saving operation in osEntry must save oldCtx into
oldTask’s save space. In order to save the context, we
must map it to a saved context. Additionally, the context
might be modified during the saving process (ENV6), e.g.,
the stack pointer is changed before it is saved when the archi-
tecture automatically pushes some registers onto the stack.
We must account for this modification, since what is finally
saved is the transformed version of the values, and not the
original input values. Thus, we define in Listing 7 the func-
tions transform (axm1) and ctxTransform (axm5).
The architecture-specific function ctxTransform is only
declared at this level, and represents the modification of
each value in the context. The function itself is only fully
specified in Level 5. The function transform converts
a context into a saved context according to ctx2saved
(axm3), modifying the values stored in each location accord-
ing toctxTransform. This is modeled by the axiom axm7
in Listing 7.

With these definitions in Event-B contexts, we also refine
themachine variables and events. To represent the saved con-
texts of all tasks (OS3.A),saved is refined intot_saved∈
TASKS→( SAVEDCTX→ DATA), with glue invariant saved
= toSave �− t_saved(oldTask). The new variable
rTask ∈ TASKS is equal to the constant oldTask before
kernel body is run, and represents the new scheduled task
after the scheduler has run. While osFinal always uses
oldTask to check if the context has been correctly saved,
osEntry refers to rTask to save the context. Similarly,
as the CPU context is only one, we create cpuCtx ∈
CONTEXT→ DATA to represent it, and its relation to oldCtx
and loaded is given by the glue invariants toSave �
oldCtx = toSave � cpuCtx and loaded = toLoad
�− cpuCtx. This way, all three kernel parts (entry, body, and
exit) deal with the same variables, simplifying code genera-
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axm1: transform ∈ (CONTEXT→DATA)��
(SAVEDCTX→DATA)
axm2: invTransform ∈ (SAVEDCTX→ DATA)��
(CONTEXT→DATA)
axm3: ctx2saved ∈ CONTEXT��SAVEDCTX
axm4: saved2ctx ∈ SAVEDCTX��CONTEXT
axm5: ctxTransform ∈ CONTEXT→(DATA→DATA)
axm6: ctxInvTransform ∈ SAVEDCTX→(DATA→
DATA)
axm7: ∀ ctx,el · ctx ∈ CONTEXT→DATA ∧ el
∈ CONTEXT ⇒ transform(ctx)(ctx2saved(el)) =
ctxTransform(el)(ctx(el))
axm8: ∀ sctx ,el · sctx ∈ SAVEDCTX→DATA ∧

el ∈ SAVEDCTX ⇒ invTransform(sctx)(
saved2ctx(el)) = ctxInvTransform(el)(
sctx(el))

Listing 7: Generic model axioms in Level 2

1 osEntry REFINES osEntry
2 ANY
3 saveSet ⊆ toSave
4 WHERE
5 saveSet �= ∅

6 toSave �− t_saved(rTask) = toSave �−
transform(oldCtx)

7 loaded = ∅ // load not started
8 THEN
9 t_saved(rTask) := t_saved(rTask) �− (

saveSet � transform(cpuCtx))
10 toSave := toSave\saveSet

Listing 8: Level 2 – Kernel entry

1 osExit REFINES osExit
2 ANY
3 loadSet ⊆ toLoad
4 WHERE
5 loadSet �= ∅

6 toLoad �− cpuCtx = toLoad �−
invTransform(t_saved(rTask))

7 toSave = ∅ //save complete
8 THEN
9 cpuCtx := cpuCtx �− (loadSet �

invTransform(t_saved(rTask)))
10 toLoad := toLoad\loadSet

Listing 9: Level 2 – Kernel exit

tion.We can finally replace the abstract save action in Listing
5 (Line 10) by the action in Listing 8 (Line 9).

The context to be loaded during kernel exit actually comes
from the saved context of rTask, thus we replace the
abstract load from Listing 6 (Line 10) by the load in List-
ing 9 (Line 9). The functions transform, ctx2saved,
and ctxTransform, used for saving a context have their
inverses also defined in Listing 7: invTransform (axm2),
saved2ctx (axm4), and ctxInvTransform (axm6),

1 osFinal (guards)
2 cpuCtx = invTransform(t_saved(rTask)

)
3 t_saved(oldTask) = transform(oldCtx)
4 toSave = ∅

5 toLoad = ∅

Listing 10: Level 2 – osFinal

1 osBody
2 WHERE
3 toSave = ∅

4 toLoad = CONTEXT
5 THEN
6 rTask :∈ TASKS

Listing 11: Level 2 – osBody

respectively. Similarly to axm7 for the save functions, axm8
models how invTransform converts a saved context into
a context.

Now, we can refine the old and new parameters to reflect
the real source and destination of the context copies (OS3.B)
in Level 2 (Listing 8, 9, and 10).

Finally, the new event osBodymodels kernel body (List-
ing 11), abstractly representing the scheduler (OS4). We do
not model the typical functionality of the kernel body (e.g.,
scheduling, resource management, etc.) in this work, but
will refine it to guarantee its execution according to the OS
requirements.
Level 3 Though we do not model kernel body with all its
functionality, we want to guarantee that kernel entry pre-
pares the CPU to start its execution. Analogously, we do not
model tasks, but want to guarantee that kernel exit prepares
the CPU to run them. Thus, we introduce the variables that
control the conditions for proper task and kernel body execu-
tion (OS5,OS6): kernelMode is a flag that indicates when
the kernel has been entered. osBody can only be enabled if
it is true, and osFinal if it is false;kernelCause records
why the kernel has been invoked. It unambiguously identifies
each interrupt and syscall, andmust be validwithinosBody;
interruptEnable is the interrupt enabled flag (ENV3).
It must be false in osBody, and loaded from the next task’s
saved context during kernel exit; currStack indicates
the stack currently in use, abstractly representing a kernel
or a task stack. osBody is enabled if currStack indi-
cates kernel stack, while osFinal requires it to indicate
task stack. We strengthen osBody and osFinal guards
to fulfill OS5 and OS6. Modifications of these variables in
kernel entry and exit remain nondeterministic, since they are
highly hardware-dependent. Listing 12 shows the new sets
and variables, Listing 13 shows the new axioms, and List-
ing 14 shows the new guards for osBody. We also create
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1 SETS (new)
2 STACKS
3 KERNELCAUSES
4 VARIABLES (new)
5 kernelMode ∈ BOOL
6 kernelCause ∈ KERNELCAUSES
7 interruptEnable ∈ BOOL
8 currStack ∈ STACKS

Listing 12: Level 3 – New carrier sets and variables

1 AXIOMS (new)
2 parti tion(STACKS,KERNELSTACK,TASKSTACKS)
3 parti tion(KERNELCAUSES,{kCause_invalid},

KCAUSE_SYSCALLS,KCAUSE_FLOWINTS)

Listing 13: Level 3 – New axioms

1 osBody (new guards)
2 kernelMode = TRUE
3 kernelCause �= kCause_invalid
4 interruptEnable = FALSE
5 currStack ∈ KERNELSTACK

Listing 14: Level 3 – New guards in osBody

the event entryNothingToSave, thatmimicsosEntry
and is explained in Level 4.
Level 4 Now, kernel entry and exit are divided in two parts:
one models what is automatically done by the hardware, via
an interrupt acceptance or a return from interrupt instruc-
tion (ENV4, ENV5). This may save some registers, turn off
the interrupt enabled flag, switch the CPU mode, etc. The
remaining actions of kernel entry (OS7) and exit (OS8,OS9)
are fulfilled by their manual parts.

This Level still does not refer to specific details of a poten-
tial target architecture. Therefore, the model must support
different behaviors: the hardware might, on interrupt, copy
a set of its registers into another set of registers designed
for that (OS10.B), or it might copy them to memory, for
example pushing them onto the stack (OS10.A). In the
first case, we call this a temporary save, since the desti-
nation is the same for all tasks and must, therefore, still
be made permanent by (manually) copying it to the task’s
saved context in kernel entry. To model this, we partition
CONTEXT and SAVEDCTX in three sections, as shown inFig. 3b:
MANUALCTX and MANUALSAVED for the locations that are only
manipulated in the manual part, and two others for those
automatically handled by the hardware. AUTODIRECTCTX and
AUTODIRECTSAVE for those locations permanently saved by
the hardware, and AUTOTEMPCTX and AUTOTEMPSAVE for
those first copied to/from a TEMP location. TEMP is another
subset of LOCATION, created in this level.

We refine the events osEntry and osExit by split-
ting each in two, and refining their parameters (saveSet
in Listing 8 and loadSet in Listing 9) to differentiate the
partitions in CONTEXT and SAVEDCTX. The transform and
invTransform functions are also refined to reflect the
refinements of this level and the separation of the different
levels of context copy. The events are refined according to
Fig. 5: osAutoEntry saves values from AUTODIRECTCTX

into AUTODIRECTSAVE and copies from AUTOTEMPCTX to the
new variable temp ∈ TEMP → DATA. For architectures that
only copy parts of the context to temporary locations, not
saving anything, we refine entryNothingToSave into
tempSave, adding a copy to temp and making it conver-
gent on the variantTEMP\dom(temp) (must add elements to
temp). We also keep entryNothingToSave only modi-
fying variables fromLevel 3. Then,osManualEntry saves
MANUALCTX into MANUALSAVED and copies temp into the
AUTOTEMPSAVE location, completing the saving of the tem-
porary part of the context. The action that represents this
is shown in Listing 15a. The structure t_saved gives us
the locations where the context is saved for each task, and
rTask represents the running task, whose context must be
saved. The saved context is overwritten (�−) in two steps:
one takes the values from cpuCtx ∈ CONTEXT → DATA,
filtering only the MANUAL part with a domain restriction oper-
ator (�), while the other takes the values from temp ∈
TEMP → DATA, which has been written by osAutoEntry
with the AUTOTEMPCTX values from cpuCtx. The inverse
operation is modeled in kernel exit: First, osManualExit
loads from MANUALSAVED into MANUALCTX and copies from
AUTOTEMPSAVE into temp, then osAutoExit loads all
AUTOCTX from temp and AUTODIRECTSAVE. The generic
model we conclude in this Level is shown in Fig. 6.

5.3.2 Hardware-specific model instantiation

Level 5 This section details the instantiation of the context
switch model, i.e., Level 5, and the hardware models for the
target architectures we instantiate for, MSP430 and RISC-V.

Having intentionally modeled the OS independent from
the hardware so far, we finally introduce hardware details in
a new refinement level per target architecture. For each tar-
get, we extend the Event-B context into hardware models.
We define, within LOCATION, all registers available in the
architecture. At the same time, we also define which of them
are part of CONTEXT (and to which subset), TEMP, etc.We also
define the locations for saved contexts and the CPU-specific
functionsctxTransform and ctx2saved. TheMSP430
model defines the CONTEXT subsets as shown in Listing 16a,
while the same subsets are defined for the RISC-V in Listing
16b. Not shown here are the definitions of the SAVEDCTX

subsets, which simply mirror the CONTEXT elements, and
their relations. The relation ctx2saved, that maps each
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Fig. 5 : Context saving during kernel entry. Dx ⊂ DATA and D′
x = ctxTransform(Dx)

Fig. 6 : Level 4 – Most detailed but still hardware-independent (generic) model of the context switch

Fig. 7 : Level 5 – target-specific refinements of Level 4 (Fig. 6)

CONTEXT element to its correspondent in SAVECTX, is only
shown for the MSP430.

To instantiate the genericmodel, we refine, for each target,
the last Level 4 machine. It sees the Event-B context cor-
respondent to the target, and the architecture-specific actions
from Level 3 are made deterministic.

MSP430. Figure 7a depicts the architecture-specific
model for the MSP430. Comparing it to Fig. 6, one can see
that the former is a target-specific refinement of the latter.
The guards shown in the generic model are still present
(and verified) in the architecture-specific model, but omit-
ted in the figure for clarity. When the MSP430 accepts an

interrupt, it pushes the return address (next program counter
in R0) and status register (SR/R2) onto the stack, disables
interrupts, and starts executing the corresponding interrupt
handler. Because each task has its own stack, we can consider
R0 andR2 as automatically saved on interrupt. Therefore, we
refine osAutoEntry to represent the interrupt. The event
will also be refined to represent the syscalls, becoming two
different (but equivalent to their abstraction) events. Since no
registers are temporarily saved by the MSP430, tempSave
is removed. Once an interrupt is accepted, the MSP430 takes
the interrupt handler’s address from the corresponding index
in the interrupt vector table and executes the handler. The
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mSave:t_saved(rTask) := t_saved(rTask)
�− (MANUALSAVED � transform(cpuCtx))
�− (autoTempTEMPSVDtransform(temp))

(a) Formal definition of the manual save action

t_saved(rTask)(mR1) := cpuCtx(R1)
t_saved(rTask)(mR4) := cpuCtx(R4)
t_saved(rTask)(mR5) := cpuCtx(R5)
...

(b) Unrolled save on MSP430

t_saved(rTask)(mX1) := cpuCtx(x1)
t_saved(rTask)(mX2) := cpuCtx(x2)
...
t_saved(rTask)(mMEPC) := cpuCtx(mepc)
t_saved(rTask)(mMSTAT) := cpuCtx(mstatus)
...

(c) Unrolled save on RISC-V

Listing 15: Generic (a) and target-specific unrolled (b,c) save
actions

axm4:AUTODIRECTCTX = {R0,R2}
axm26:TEMP = ∅

axm3:AUTOTEMPCTX = ∅

axm5:MANUALCTX = {R1,R4,R5,R6,R7,R8,R9,
R10,R11,R12,R13,R14,R15}
axm22:ctx2saved = {R0 	→ mR0,R1 	→ mR1,
R2 	→ mR2,R4 	→ mR4,...,R15 	→ mR15}

(a) MSP430

axm4:AUTODIRECTCTX = ∅

axm11:TEMP = {mepc,mstatus}
axm3:AUTOTEMPCTX = {invisiblePC,
invisibleSTATUS}
axm5:MANUALCTX = {x1,x2,x3,x4,x5,x6,x7,x8
,x9,x10,x11,x12,x13,x14,x15,x16,x17,x18,
x19,x20,x21,x22,x23,x24,x25,x26,x27,x28,
x29,x30,x31}

(b) RISC-V

Listing 16: Hardware models for CONTEXT in Level 5

MSP430 does not record the interrupt ID anywhere, so we
must save it in the specific interrupt handler before proceed-
ing toosManualEntry.We thus refineentryNTS to save
the interrupt ID and rename it to intHandler.

The refinement of osAutoEntry tosyscall executes
the actions of both interrupt and intHandler events,
i.e., it saves the AUTOCTX, disables interrupts, and stores the
syscall ID. In osManualEntry the rest of the context is
saved, the stack is switched to kernel stack, and kernel mode
is set to true. Since the MSP430 does not have differently
privileged modes, we simulate the switch into kernel by set-
ting a simple variable.

RISC-V. The RISC-V architecture model is depicted
in Fig. 7b. The interrupt concept of RISC-V is quite dif-
ferent: when an interrupt is accepted, the return address is
stored in the special register mepc, the status in mstatus,
and the interrupt number goes into mcause. The CPU then
switches to a more privileged mode and continues execu-
tion from the address stored in the so called trap vector. We
refinekernelMode to the privilege levels, adding an invari-
ant that relates kernelMode = TRUE to machine mode
and kernelMode = FALSE to user mode (OS11). Since
the special registers where the AUTOCTX is stored are not
task-specific, they belong to the AUTOTEMPCTX, and must be
permanently saved later. Because nothing is automatically
saved (but only “temporarily” stored), tempSave is refined
to represent the interrupt and osManualEntry follows
after the interrupt. Event osAutoEntry is never enabled
and we can remove it.

For the syscalls, we need to be able to emulate the pre-
viously described interrupt process. The ecall instruction
is designed exactly for that, as it causes an exception, just
like a hardware interrupt. We refine tempSave again, now
to represent the instruction ecall. However, there is a
difference: what is recorded in mcause is not the ID of
the syscall itself, as the architecture can only register the
occurrence of the instruction. Since each syscall must pass
its ID to the kernel and call ecall explicitly, we refine
entryNothingToSave to do exactly that, also renaming
it to syscall.

5.4 Proofs andmodel checking

This section shows the properties we verified via theorem
proving in Rodin and LTL model checking.

From the requirements in Sect. 5.1.2, we elaborate some
safety properties to be proved: (S1) Contexts are never cor-
rupted by the kernel (OS2), (S2) osBody always runs in
the specified conditions for its execution, and osFinal
is reached with the specified conditions for task execu-
tion (OS5, OS6). Details for verifying the other OS require-
ments are omitted in this paper since the concept is the same.
Instead, we also showhow to verify some liveness properties:
To guarantee that the model reaches the intended states, we
verify that the steps resulting from the OS requirements are
executed in the appropriate orders. (L1) The kernel executes
in the correct order, and (L2) always finishes execution by
always reaching osFinal.

5.4.1 Theorem proving

All refinements in our model must correspond to their
abstraction, which is proved with discharging the POs gen-
erated by Rodin. The initial abstraction, Level 0, defines the
state (osFinal guards) we want to achieve after OS execu-
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Table 3 : Number of POs discharged

Level #POs Auto Simple Complex

0 8 8 0 0

1 17 15 2 0

2 63 52 11 0

3 14 14 0 0

4 83 39 35 9

5 70 58 6 6

Total 255 186 54 15

100% 73% 21% 6%

tion, namely that an old context is saved and a new context is
loaded. This state must be reached by osProgress, which
models the OS. Thus, event osProgress is refined into the
three main parts of the kernel (entry, body, and exit). Entry
and exit are responsible, respectively, for saving the old task’s
context and loading the new task into the CPU. The first
abstraction is modeled such that osProgress can not run
forever. The idea is that it must change the state until it finally
enables osFinal, i.e., the desired terminal state. Through
the refinements, wemodel how exactly this happens, splitting
osProgress into several events, and creating invariants
and actions that model the OS requirements.

Some of the discharged POs guarantee that the events
refiningosProgress alsogiveup control, and inSect. 5.4.2
we prove that they indeedmodify the state such that it eventu-
ally reaches osFinal. Other POs prove that actions always
respect the invariants (INV POs), or that a concrete event’s
actions do simulate the abstract correspondents (SIM POs).
There are several other rules for PO generation, which we do
not detail here. Table 3 summarizes the number of POs gen-
erated in each level of abstraction, and shows how many of
them were automatically or manually discharged. The man-
ually discharged ones are differentiated according to their
discharging complexity: simplePOsonly required a few steps
to be discharged, while the complex POs requiredmore expe-
rience with the proving system and the PO’s breakdown in
several proving steps.

In Level 2, two invariants guarantee that the save and load
processes do save oldCtx and load the rTask’s saved con-
text:

m05.inv2:toSave = ∅ ⇔ saved =
transform(oldCtx)
m07.inv4:toLoad = ∅ ⇔ loaded =
invTransform(t_saved(rTask))

Discharging the related INVPOsproves that, for every refine-
ment, when our model considers the old context as saved and
the new context as loaded, they indeed are. Those INV POs
were always automatically discharged, except in few refine-
ments, where they were manually discharged in a few steps.

The SIM POs involving save and load actions, however,
were rather complex, especially in Level 4. In particular for
events osManualEntry and osAutoExit, we had to
create a new parameter and an extra theorem in order to
discharge the SIM POs. We detail here the proof strategy
for the save action SIM PO in osManualEntry. The same
strategy was applied to osAutoExit. We must prove that
the manual save action from Level 4 (Listing 15a) simulates
its abstract correspondent of Level 2 (Listing 8, Line 9). We
replace the temporary save part of the action by the parameter

aux = autoSaveSet �
autoTempTEMPSVDtransform(temp)

and add to the event’s guards the theorem

aux = autoSaveSet � autoTempTransform
(AUTOTEMPCTX� cpuCtx)

After proving the theorem, the SIM PO is much easier to
discharge.

5.4.2 LTL model checking

For the liveness verification, we encode a set of LTL for-
mulas that guarantee the specified execution order and that
osFinal is eventually enabled. The model shall (1) even-
tually reach osFinal, staying there forever, (2) not reach a
state where all events are disabled, (3) always have exactly
one event enabled, and (4) implement the specified execu-
tion order: entry first, then body, and finally exit; and manual
save after auto save (OS7) and manual load before auto
load (OS9).

Since the model’s axioms are rather complex, we need
to create a minimal set of CONTEXT and SAVEDCTX elements
to represent the locations that compose contexts and saved
contexts, otherwise the state space explodes and ProB cannot
complete verification. For this, we extend the Event-B con-
texts with the constant instantiations, and refine themachines
we want to check. These machines are not modified any fur-
ther, except for the model checks of Level 3 and 4, where the
nondeterministic actions introduced in Level 3 would cause
the checks to fail, since paths would exist in which osBody
and osFinal could not be reached. As our intention is to
leave this determinism to the architecture-specific models,
the actions aremodified to enforce the correct execution path.
In Level 5, all actions are left unmodified, and we can check
if the variables have been correctly set.

One error was found in Level 2, where LTL found a coun-
terexample for reachability, so the model may never reach
osFinal: An infinite loop is possible, because osBody
does not decrease any variant and does not modify any
variables that affect its guards. Thus, we introduce a new
boolean variable osBodyRun, initialize it with FALSE,
and add the guard osBodyRun = FALSE and an action
osBodyRun := TRUE. A similar error was found when
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Fig. 8 : Overview of code generation

entryNothingToSave was introduced, prompting us to
make it convergent and create a variant as explained inLevel 4
(Sect. 5.3).

Model checking Level 4 also revealed that the execu-
tion order of events was not as intended: one formula fails
because we forgot to strengthen osManualEntry’s guards
to require it to only be enabled after all AUTODIRECTSAVE ele-
ments have been saved, as required by OS7. The new guard
AUTODIRECTSAVE ∩ toSave = ∅ forces this order. Simi-
larly, osAutoExit may only execute after all MANUALCTX
is loaded (OS9), thus the new guard MANUALCTX ∩ toLoad
= ∅ was introduced.

With these modifications to the models and the discharg-
ing of all proofs, we can formally prove that all requirements
from Sect. 5.1 are fulfilled and the OS model is correct.

6 Code generation

With generic and target-specific models complete and ver-
ified, we can generate code for the target architectures.
Figure8 shows an overview of the code generation process.
We start by exporting all Event-B contexts and machines to
text format. The plain text format (.eb) allows EB2LLVM
to work outside of Rodin. The Rodin plugin we use to export
the model is a modified version of the B2Latex plugin [20],
that we call EB2LatexLst.

Using Flex and Bison [25, 26], EB2LLVM can read and
parse these .eb files into abstract syntax trees that it can pro-
cess to generate code. For each concrete Event-B machine,
EB2LLVM will create one LLVM IR file, containing one

function named after the Event-B machine, with one code
block for each of its events. In Event-B, control flow between
events is not directly modeled, but defined within the event’s
guards. To extract this control flow information, we use the
event enabling analysis of the model provided by ProB [47].
At the end of each block, compare and jump instructions are
created to direct the flow to the appropriate next block.

Each block of code will be filled with code generated
from the actions of the corresponding event. As in most code
generators for Event-B, actions with basic arithmetics, vari-
able assignment, etc. can be converted to their corresponding
instructions. Additionally, EB2LLVM also supports array
accesses, direct register accesses, and is capable of unrolling
set expressions and relations, as well as solving equations2.
For that, it uses definitions and declarations (axioms) from
the concrete model and all its abstractions.

The code generation for the OS model will be presented
in Sect. 6.2. Before, in Sect. 6.1, we give an overview of
the entire framework on a generally known algorithm, the
mathematical function factorial. The factorial example will
show the more basic features of EB2LLVM, while the OS
example digs deeper in the more complex features that allow
EB2LLVM to generate code that communicates directly with
the hardware, such as for the context switch.

6.1 Factorial example

The factorial of a natural number n, denoted n!, is the prod-
uct of all natural numbers from 1 to n. The factorial of 0
is, by definition, 0! = 1. Factorial is often implemented
recursively, where f(n) = n * f(n-1). Our Event-B
model will use recursion for the model checking. However,
the intended implementation is an iterative one, as Listing 17
shows. This C code is not relevant for code generation, but
just to (1) present the algorithm in comparison to the model
and (2) to compare the final binaries compiled from the C
code and our generated LLVM IR.

Following our modeling strategy described in Sect. 5, the
model’s machine is shown in Listing 18. It contains the
fFinal event that models the goal of the factorial func-
tion in its guards, and has no actions (skip). The guard
[fFinal.modelGoal] assures the correctness of the calculated
result. Since some parts of the model are not intended for
code generation, such as this guard, any statement with the
label starting with “model” will be ignored by EB2LLVM.
The eventwhere the factorial of input is calculated iscalc
(Listing 18, Line 16). This event is equivalent to the while
block in Listing 17.

2 Computational equation solving is a rather complex topic thatwe have
not explored fully. EB2LLVM’s capabilities are limited to the specific
equations we needed for this proof of concept.
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1 int input ;
2 int cnt , res ;
3
4 void factorial () {
5 cnt = 0;
6 res = 1;
7
8 while(cnt < input ) {
9 cnt = cnt+1;

10 res = cnt∗res ;
11 }
12 }

Listing 17: C code of the factorial function. Parameters and
return value passed via global variables

1 MACHINE factorial
2 SEES factorialCtx
3 VARIABLES
4 cnt
5 res
6 INVARIANTS
7 cntType: cnt ∈ 0.. max Input
8 resType: res ∈ DAT A
9 resInv: res = f at Func(cnt)
10 EVENTS
11 INITIALISATION
12 THEN
13 initCnt:cnt := 0
14 initRes:res := 1
15 END
16 calc
17 WHERE
18 loopCond:cnt < input
19 THEN
20 mulRes:res := (cnt + 1) ∗ res
21 incCnt:cnt := cnt + 1
22 END
23 fFinal
24 WHERE
25 loopStop:cnt = input
26 modelGoal:res = f at Func(input)
27 THEN
28 skip
29 END
30 END

Listing 18: Event-B machine of the factorial model

The model sets the function’s pre-conditions in the
axioms of Listing 19. Therefore, the generated function
factorialwill assume that these pre-conditions hold, and
will not, e.g., check if input ∈ 0..maxInput.

Since the factorial model does not make any use of, e.g.,
registers or interrupts, its instantiation consists of only defin-
ing the DATA type as a function of the target’s bit-width.
It is important to notice that, currently, EB2LLVM only
supports signed integers with the architecture’s bit-width.
Therefore, even though the model’s variables could poten-

1 CONTEXT factorialCtx
2 CONSTANTS
3 DAT A
4 max Int
5 f at Func
6 input
7 max Input
8 AXIOMS
9 maxIntType: max Int ∈ N

10 dataType: DAT A = 0..max Int
11 maxInt1: max Int ≥ 1
12 maxInType: max Input ∈ DAT A
13 inParam: input ∈ 0..max Input
14 fType: f at Func ∈ 0..max Input → DAT A
15 fCalc: ∀ x · x ∈ 0..max Input ∧ x > 0 ⇒

f at Func(x) = x ∗ f at Func(x−1)
16 fZero: f at Func(0) = 1
17 maxIn: f at Func(max Input) ≤ max Int
18 END

Listing 19: Event-B context for the factorial model

tially be represented, e.g., by unsigned long integers, the
instantiation must consider them signed integers. It follows
that DATA ∈ 0..(2b−1−1), where b is the bit-width of the tar-
get. For the 16-bitMSP430, thismeansmaxInt = (215−1),
while for the 32-bit RISC-V, maxInt = (231 − 1).

We will now explain the LLVM IR generated from our
models and shown in Listing 20 for the MSP4303: In the
enabling analysis generated by ProB (Table 4) the connection
between fFinalwith itself is syntactic_independent, since
once the event executes, the state does not change anymore.
EB2LLVMinterprets this as a return instruction.Thepossible
connections in the enabling analysis will all generate condi-
tional branches at the end of the origin block. The condition
is generated from the guards of the destination. All possible
destinations will be considered: having INITIALIZATION
as origin, both calc and fFinal are possible. Therefore,
two conditional branches will be generated. The first, in List-
ing 20 (Lines 7–10) branches to calc if cnt < input , as
required by the guard [calc.loopCond].Otherwise, it jumps to
a newly created block INITIALIZATION_fFinal (Lines
32–36) that then jumps tofFinal if cnt = input (Line 26).
Otherwise, it jumps to the default error block (Line 29).
Similarly,calcmay either jump back to itself (Lines 21–24)
or to calc_fFinal (Lines 38–42).

In this example, one can also notice several load and
store instructions generated from Event-B variable reads
and assignments. Basic arithmetics are also translated to their
LLVM equivalents. In the factorial example, we have addi-
tion and multiplication being converted to, respectively, the
instructions add and mul.

3 The RISC-V code is the same, except for the bit-widths.
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1 ...
2 ; Function Attrs: naked
3 define void @factorial () naked {
4 INITIALISATION:
5 store i16 0, i16* @cnt , !label !{!"initCnt"}
6 store i16 1, i16* @res , !label !{!"initRes"}
7 %0 = load i16 , i16* @cnt
8 %1 = load i16 , i16* @input
9 %compare = icmp slt i16 %0 , %1

10 br i1 %compare , label %calc , label %INITIALISATION_fFinal , !label !{!"
possible"}

11
12 calc: ; preds = %calc , %INITIALISATION
13 %2 = load i16 , i16* @res
14 %3 = load i16 , i16* @cnt
15 %4 = add i16 %3 , 1
16 %5 = mul i16 %4 , %2
17 store i16 %5 , i16* @res , !label !{!"mulRes"}
18 %6 = load i16 , i16* @cnt
19 %7 = add i16 %6 , 1
20 store i16 %7 , i16* @cnt , !label !{!"incCnt"}
21 %8 = load i16 , i16* @cnt
22 %9 = load i16 , i16* @input
23 %compare2 = icmp slt i16 %8 , %9
24 br i1 %compare2 , label %calc , label %calc_fFinal , !label !{!"

possible_disable"}
25
26 fFinal: ; preds = %calc_fFinal , %INITIALISATION_fFinal
27 ret void , !label !{!"syntactic_independent"}
28
29 error: ; preds = %calc_fFinal , %INITIALISATION_fFinal
30 ret void
31
32 INITIALISATION_fFinal: ; preds = %INITIALISATION
33 %10 = load i16 , i16* @cnt
34 %11 = load i16 , i16* @input
35 %compare1 = icmp eq i16 %10 , %11
36 br i1 %compare1 , label %fFinal , label %error , !label !{!"possible"}
37
38 calc_fFinal: ; preds = %calc
39 %12 = load i16 , i16* @cnt
40 %13 = load i16 , i16* @input
41 %compare3 = icmp eq i16 %12 , %13
42 br i1 %compare3 , label %fFinal , label %error , !label !{!"possible_enable"}
43 }

Listing 20: MSP430 generated LLVM IR for the factorial model. The generated IR code for RISC-V is the same, except for
the bit-widths.

The last step in the code generation is to compile the
LLVM IR into assembly with llc, LLVM’s static compiler.
For the factorial example, we use the default optimization
-O2 to generate assembly code for the targets MSP430 and
RISC-V.Thegenerated code is shown inListing21a andList-
ing 22a respectively. The code generated from the Event-B
model, can be compared to the code compiled from the C
factorial function in Listing 17. For the MSP430, we used
the MSPgcc 6.2.1 compiler, and the resulting assembly
is shown in Listing 21b. A clang compiler was available for
RISC-V, and we used version RISC-V rv32gc clang

9.0.0 (with the -march=rv32i option), the same LLVM
version we use in our code generation. The compiled code is
shown in Listing 22b. Both used the same level of optimiza-
tion -O2.

The code compiled from C for the MSP430 (Listing 21b)
is a few instructions longer than the one we generated from
the Event-B model (Listing 21a). One of the reasons is that
the gcc compiler inserted prologue and epilogue to save and
restore registers used within the function. Since our code
generator aims at generating exactly what is modeled, these

123



A framework for embedded software portability... 309

Table 4 Control flow generated
by ProB

Origin/destination calc fFinal

INITIALISATION possible possible

calc possible_disable possible_enable

fFinal syntactic_unchanged syntactic_independent

1 factorial: ; @factorial
2 ; %bb.0: ;

%INITIALISATION
3 mov #1, &res
4 clr &cnt
5 cmp #1, &input
6 jl .LBB0_2
7 .LBB0_1: ; %ca l c
8 ; =>This Inner Loop Header: Depth

=1
9 mov #1, r 1 0

10 add &cnt , r 1 0
11 mov &res , r 1 3
12 mov r 10 , r 1 2
13 call #__mspabi_mpyi
14 mov r 12 , &res
15 mov r 10 , &cnt
16 cmp &input , r 1 0
17 jl .LBB0_1
18 .LBB0_2: ; % c a l c _ f F i n a l
19 cmp &input , &cnt
20 ret

(a) Compiled from auto-generated IR for MSP430
(Event-B EB2LLVM

GGGGGGGGGGGGA LLVM llc
GGGGA ASM)

1 factorial ():
2 PUSHM.W #4, R10
3 PUSHM.W #1, R4
4 MOV.W R1 , R4
5 MOV.W #0, &cnt
6 MOV.W #1, &res
7 MOV.W &input , R7
8 MOV.B #0, R12
9 CMP.W R7 , R12
10 JGE .L1
11 MOV.W R7 , R8
12 ADD.W #1, R8
13 MOV.B #1, R10
14 MOV.W R10 , R12
15 MOV.W #__mspabi_mpyi , R9
16 .L3:
17 MOV.W R10 , R13
18 CALL R9
19 ADD.W #1, R10
20 CMP.W R8 , R10
21 JNE .L3
22 MOV.W R7 , &cnt
23 MOV.W R12 , &res
24 .L1:
25 POPM.W #1, r 4
26 POPM.W #4, r 1 0
27 RET

(b) Compiled from the C code for MSP430 (C gcc
GGGGGA ASM)

Listing 21: MSP430 assembly code for factorial

registers are silently overwritten.4 Further, the gcc version
has more instructions to prepare for the while loop, however
the instructions sequence inside the loop is more optimized.

A note about the compare instruction in Listing 21a, Line
19: our code generator correctly generated it from Listing
20, Lines 39 to 41, however the corresponding branch in
Line 42 was omitted. This is functionally correct, since both
destinations of this branch (fFinal and error) would
result in the execution of a return instruction, which fol-
lows the compare in the generated assembly code. However,
this renders the compare instruction useless. A similar situa-
tion happens in the code generated for RISC-V: all the load
instructions between Lines 24 and 31 in Listing 22a are gen-
erated from Listing 20, Lines 39 to 41, but never used in the
compare/branch for which they were intended.

4 Support for function parameters and return values are future work for
EB2LLVM.

Also similarly to the MSP430, the assembly code gener-
ated by clang for the RISC-V (Listing 22b) has prologue
and epilogue, while the code generated from Event-B (List-
ing 22a) does not. The while loop is also more optimized,
and instead of storing partial results in each iteration, clang
only stores the end values before return. Though slightly less
efficient, the code generated from Event-B for both MSP430
and RISC-V can be compiled into binaries that execute as
intended.

6.2 OS code generation

Generating code for our context switch model requires more
complex features from EB2LLVM. Since the context switch
must communicate with the hardware directly, the code gen-
erator must know how to, e.g., translate and interpret register
accesses, interrupts, and specific instructions. Themodel also
uses array accesses, sets and relations, and equations that
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1 factorial: # @factorial
2 .cfi_startproc
3 # %bb.0: # %INITIALISATION
4 lui s 2 , %hi(cnt)
5 sw z e r o , %lo(cnt)( s 2 )
6 lui s 1 , %hi(res)
7 addi a0 , z e r o , 1
8 sw a0 , %lo(res)( s 1 )
9 lui s 3 , %hi(input)
10 lw a1 , %lo(input)( s 3 )
11 blt a1 , a0 , .LBB0_3
12 .LBB0_1: # %ca l c
13 # =>This Inner Loop Header: Depth=1
14 lw a0 , %lo(cnt)( s 2 )
15 addi s 0 , a0 , 1
16 lw a1 , %lo(res)( s 1 )
17 mv a0 , s 0
18 call __mulsi3
19 sw a0 , %lo(res)( s 1 )
20 sw s 0 , %lo(cnt)( s 2 )
21 lw a0 , %lo(input)( s 3 )
22 blt s 0 , a0 , .LBB0_1
23 # %bb.2: # % c a l c _ f F i n a l
24 lui a0 , %hi(input)
25 lw a0 , %lo(input)( a0 )
26 lui a1 , %hi(cnt)
27 lw a1 , %lo(cnt)( a1 )
28 ret
29 .LBB0_3: # %INIT IAL ISAT ION_ fF i n a l
30 lw a0 , %lo(input)( s 3 )
31 lw a1 , %lo(cnt)( s 2 )
32 ret

(a) Compiled from auto-generated IR for RISC-V
(Event-B EB2LLVM

GGGGGGGGGGGGA LLVM llc
GGGGA ASM)

1 factorial (): # @factorial ()
2 addi sp , sp , -16
3 sw ra , 12( s p )
4 sw s 0 , 8( s p )
5 sw s 1 , 4( s p )
6 lui a0 , %hi(cnt)
7 sw z e r o , %lo(cnt)( a0 )
8 lui a0 , %hi(res)
9 addi a1 , z e r o , 1
10 sw a1 , %lo(res)( a0 )
11 lui a0 , %hi(input)
12 lw s 1 , %lo(input)( a0 )
13 blt s 1 , a1 , .LBB0_4
14 mv s 0 , z e r o
15 .LBB0_2: # =>This Inner Loop Header:

Depth=1
16 addi s 0 , s 0 , 1
17 mv a0 , s 0
18 call __mulsi3
19 mv a1 , a0
20 blt s 0 , s 1 , .LBB0_2
21 lui a0 , %hi(res)
22 sw a1 , %lo(res)( a0 )
23 lui a0 , %hi(cnt)
24 sw s 0 , %lo(cnt)( a0 )
25 .LBB0_4:
26 lw s 1 , 4( s p )
27 lw s 0 , 8( s p )
28 lw ra , 12( s p )
29 addi sp , sp , 16
30 ret

(b) Compiled from the C code for RISC-V (C clang
GGGGGGGA ASM)

Listing 22: RISC-V assembly code for the factorial function

need to be used in the code generation, as opposed to the
factorial model, where these were only used for the model
verification.

For the two architectures shown in Fig. 7, each inner-most
box (representing the concrete events) results in one block
of code. They are executed sequentially, and the enabling
analysis from ProB reflects that dubbing each connection
guaranteed, while other possible connections are impos-
sible. The guaranteed connections generate unconditional
branches from the origin block to the destination.

In our models, events model what the hardware does
when an interrupt occurs and when a return from inter-
rupt instruction is issued. The actions within these events
should, therefore, not produce any code. Furthermore, an
event modeling a specific instruction, such as the return from
interrupt, should be translated to the equivalent instruction.
This is achieved by using pre-defined names for these events
to indicate to the code generator which instruction to use.
For example, the code generator will ignore events called

interrupt, and automatically generate a return from inter-
rupt instruction when it finds an event named reti.

The context switch model is much larger than the fac-
torial, and, to demonstrate its code generation, we selected
one crucial snippet of it: the save action from Listing 15a.
Besides showing the remaining features of EB2LLVM, this
is also the action that allows the model to remain mostly
generic up to refinement Level 4 and yet detailed enough to
generate architecture-specific code from refinement Level 5.
In the save action, the context is saved into t_saved. We
know from the model that t_saved is a two-dimensional
array, with one block of SAVEDCTX elements for each task
in the system (see Fig. 3b). The running task rTask is our
reference here, and each context element is to be stored in
the array t_saved[rTask]. EB2LLVM will use the HW
models (Listing 16) to unroll the action into several store
instructions, according to the other elements of the expres-
sion. It appliestransform to save eachcpuCtx andtemp
value into their appropriate saved context index, filtering only
MANUAL* cpuCtx values due to the restriction operator (�).
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The results of this process for both MSP430 and RISC-V are
shown in Listing 15b and Listing 15c, respectively.

However, the definition of transform involves fur-
ther axioms and its evaluation during code generation
is rather complex. Listing 23 shows it step by step for
saving one MSP430 register. First, the save action is
unrolled, resulting in several expressions like ①. Then, the
code generator matches the right-hand side (②) to axm7
from Listing 7, also using the hardware-specific defini-
tion of ctx2saved (axm22 in Listing 16a) to solve
③. Finally, ctxTransform (④) is evaluated in a sim-
ilar way. In this particular case it does nothing (i.e.,
ctxTransform(el)(ctx(el)) = ctx(el)), so the final
expression that will be translated into LLVM IR shows in
⑤. If a modification was defined by ctxTransform in the
model, it would be taken into account and the appropriate
instruction would be generated.

The save operation can then be translated into LLVM IR5

as shown in Listing 24. The register access cpuCtx(R8)
(Listing 23, ⑤) is converted to a call to the intrinsic LLVM
function read_register (→ Line 1). In Lines 4 and 7
we can see that the accesses to elements in a relation are
converted to LLVM’s GEP instruction6, and the value from
the register is finally stored in the appropriate array position
mR8. Note that the save index mR8 is defined, in the model,
as a constant value, and therefore expressed as the immediate
value 5 in Line 7. This is repeated for each element that must
be saved, according to the model. The LLVM IR code for
RISC-V is similar to Listing 24: The register name and its
index, as well as the data sizes are replaced according to the
RISC-V model.

5 Tomake the LLVM IR listingsmore readable, we have replacedmeta-
data with their actual values, renamed virtual registers to better reflect
what they represent, and added comments to some lines.
6 The getelementptr (GEP) instruction is often misunderstood,
but here it is enough to understand it as calculating the address of an
array element.

1 %R8 = call i16 @llvm.read_register.i16(r8)
2 %rTsk = load i16 , i16* @rTask
3 // t_saved[rTask]
4 %gepRT = getelementptr i16 , i16* @t_saved ,
5 i16 %rTsk
6 // t_saved[rTask ][mR8], with mR8=5
7 %gepMR8 = getelementptr i16 , i16* %gepRT ,
8 i16 5
9 store i16 %R8 , i16* %gepMR8

Listing 24: LLVM IR generated from Listing 23 , ⑤

1 mov &rTask , r 1 2
2 add r 12 , r 1 2
3 mov r8 , t_saved

+10( r 1 2 )

(a) MSP430: save r8
(see Listing 24)

1 lui a0 , %hi(t_saved)
2 addi a0 , a0 , %lo(t_saved)
3 lui a1 , %hi(rTask)
4 lw a1 , %lo(rTask)( a1 )
5 slli a1 , a1 , 2
6 add a0 , a0 , a1
7 sw s 0 , 28( a0 )

(b) RISC-V: save register x8 (s0)

Listing 25: Generated assembly code to save one register

Finally, assembly code is generated from the automati-
cally generated LLVM IRs by llc. This time, we turn off
optimizations (-O0) to assure that unintended modifications
to the model’s logic will not occur. For the MSP430, each
block that saves one register (such as in Listing 24) is trans-
lated to assembly as shown in Listing 25a. The index for the
array access in Line 3 is automatically calculated by llc
as mR8 ∗ ByteWidth, and since the MSP430 is a 16-bit (2
bytes) architecture: 5∗2 = 10 (Line 3). Listing 25b shows the
RISC-V generated code to save register x8 in the save index
mX8 = 7. Our model only uses the architecture’s specified
register names, but llc uses the Abstract Binary Interface
(ABI) names (x8 = s0). The index calculated for RISC-V’s
32-bit (4 bytes) architecture is 7 ∗ 4 = 28 (Line 7).

The generated code could still be optimized: Lines 1 to 2
in Listing 25a and Lines 1 to 6 in Listing 25b are repeated for
each register saved, though they could be present only once.
Furthermore, while the model assures, for example, that no
register will be overwritten before it is saved, the code gen-
erator might need to use temporary variables for temporary
storage of register values. Thus, a tighter integration between
EB2LLVMandllc is needed to assure that anymodification
caused by a generated instruction is intentional according to
the model.

7 Conclusion and outlook

We have presented our framework for OS portability based
on formal methods and code generation.

First, with regard to RQ1 from the introduction, we have
shown a generic formal RTOSmodel in Event-Bwith context
switches that decouples low-level functionality from hard-
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ware specifics. This allows us to reuse the model and its
proofs for several architectures. Then, we instantiated the
model for two architectures and verified them via interactive
theorem proving and model checking. The safety and live-
ness verification of the models (1) proved that the generic
model and its instantiations do not corrupt task contexts by
having them properly saved and loaded; (2) proved that the
kernel and the tasks run in the appropriate CPU states and
privilege levels by having them properly changed; (3) proved
that the kernel executes in the correct order and finishes exe-
cution. This verification also helped us detect and eliminate
issues early in the design.

Within the proof of concept for the next stage of the
framework, and with regard to RQ2 from the introduction,
we showed how code is automatically generated from the
models: EB2LLVM generates LLVM IR code from the veri-
fied models. The IR is then compiled with the target-specific
compiler backend, generating assembly code for the con-
text switch of SmartOS. Additionally, we presented another,
hardware-independent model, applying the entire framework
on the generally known high-level algorithm to calculate the
factorial of a number. We compared the automatically gener-
ated code with equivalent code compiled from the function
implemented in C. Though less efficient, the code generated
fromEvent-B for bothMSP430 andRISC-V can be compiled
into binaries and work as intended, successfully generating
a binary that corresponds to the model.

An important aspect of our approach is to initially keep
the software models and the hardware models independent
from each other. From a potential pool of OS models and
architecture models we can then pick one, respectively, and
only combine them in a last instantiation step before code
generation. This way, most of the modeling and verification
efforts are concentrated in the generic parts of the mod-
els, and supporting a new architecture requires much less
effort compared to traditional approaches, where hardware
and software are inherently mixed in one model which must
then be created from scratch. In addition, the automatic code
generation from one OSmodel to many architectures assures
consistency between the ports, and makes it easier to adapt
to new or changing OS specifications. The framework can
thus accelerate the optimization of the software, as different
design options can be quickly evaluated on real hardware
without the need to adapt all ports individually and manu-
ally. This even shows that RQ1 and RQ2 can be addressed in
combination.

Formal modeling of software is still not very common in
real-world projects – especially when it comes to generating
executable code. The effort often seems too high compared
to traditional implementation and acceptance on the devel-
opers’ side must first be built. However, studies have already
shown that formal methods can drastically increase software
quality and have a great positive impact on its overall depend-

ability. In fact, we have shown how the same formal models
can be be used for both code generation (RQ2) and verifica-
tion (RQ1). On the long-term, we believe that the approach
will essentially simplify the creation and maintenance of
software.Thiswill not only save costs, but itwill also bebene-
ficial for future systems in various domains (e.g., automotive,
avionics, the IoT, etc.), where guaranteed dependability is
crucial. The effort invested in modeling can be mitigated by
increasing the number of ports and partially replacing test-
ing by verification for guaranteed dependability during the
development process. Therefore, we continue our work to
support more target architectures and to verify the generated
code.

With regard to the validity and applicability of our
approach, a potential issue we must mention is the time
and computation power required for model checking. The
axioms in the presented model already cause a state explo-
sion inProB if all registers available in the target architectures
are included, which prompted us to create a minimal set for
model checking. With bigger and more complex models of,
e.g., bigger and more complex OS kernels or targets, even a
minimal set might eventually not avoid state explosion. We
hope that advances in formal methods will eventually solve
this problem. Other methods, such as TLA+, Isabelle/HOL,
and HOL4 are potentially suitable for the model presented
in this work, and should be investigated in future works.

We have already investigatedmore complex architectures,
such as the Infineon Aurix [35]. In fact, though the work is
not yet complete, our initial models do already consider some
Aurix-specific concepts, and show the general applicability
of our approach. In order to actually generate code for it, the
instantiation stepwill likely bemore complex than for the two
simple architectures we have presented in this work. Since
the Aurix supports special instructions and a linked list data
structure in hardware to handle contexts, the code generator
would also have to be extended to generate the appropriate
code.

In any case, we still need to work on verifying the code
generator itself, so we can guarantee the correct translation
of the model into LLVM IR. Regarding the final compilation
step into an executable binary, we rely on the LLVMcommu-
nity, where several works already try to provide verification
for the compiler backend [3, 40, 43]. The verification of the
toolchain parts we have developed is still open and not part
of this work.

Apart, we have already started to extend our modeling
concept to also support the verification of (non-)functional
aspects in (other) OS kernels and application software, such
as timing and liveness.We are thereforeworking onmodeling
timed automata to analyze the interaction of the application
and OS layers through syscalls as well as on the response
times of kernel functions and concurrently running tasks [62].
A possible threat to the applicability of our approach to gen-

123



A framework for embedded software portability... 313

eralOSs could be their sheer set of features and the commonly
very complex interactions in between. Regarding SmartOS,
we aim to model the entire kernel by separating its parts
and features into distinct model modules with well-defined
input/output interfaces. This way, we can model and verify
all modules independently first (e.g., the kernel body), and
only later verify their interaction (e.g.,with the context switch
model presented here). Early experiences with AUTOSAR
[70] have shown that other low-level functionality of the OS,
such as device drivers, can also be modeled and verified sim-
ilarly to the context switch presented here. The individually
verified model modules would then be combined for the ver-
ification of overarching aspects in complete software stacks.
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