
Software and Systems Modeling (2024) 23:953–971
https://doi.org/10.1007/s10270-023-01141-1

SPEC IAL SECT ION PAPER

Assessing the testing skills transfer of model-based testing on testing
skill acquisition

Felix Cammaerts1 ·Monique Snoeck1

Received: 13 April 2023 / Revised: 10 October 2023 / Accepted: 29 November 2023 / Published online: 22 January 2024
© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2024

Abstract
When creating a software model, it is necessary that it accurately captures the desired behaviour, while at the same time
ensuring that any undesired behaviour is excluded. On the one hand, formal verification tools can be used to check the internal
consistency of a software system, ensuring that the behaviour of one software component does not contradict another. On
the other hand, software testing is essential to check the external validity of the model more comprehensively. Unfortunately,
software testing is often overlooked in curricula, resulting in graduates with inadequate software testing skills for industry.
Software testing tools such as TesCaV can be used to help teachers teach software testing topics in a non-intrusive and less
time-consuming way. Previous research has shown that TesCaV is easy to use and that novice users produce better quality
software tests when using TesCaV. However, it has remained unclear whether learners retain the skills they gain from using
TesCaV even when the tool is not offered for help. In order to understand the positive effect of TesCaV on learners’ software
testing skills, this study conducted an experiment with 45 participants. The experiment used a pretest-treatment-posttest
design. The results show that participants feel equally confident about the completeness of their test coverage, even though
they identify more test cases. It is concluded that for course design, a capsule such as TesCaV can help students to understand
the full complexity of software testing and help them to be more systematic in their approach.

Keywords Model-based testing · Model-driven engineering · TesCaV · MERODE

1 Introduction

Software testing is an important part of the software develop-
ment lifecycle. Proper software testing ensures that deployed
software systems perform as expected. This not only reduces
the opportunity cost of customer churn, but also allows devel-
opers to focus on features for the next release, rather than
fixing bugs.

In fact, a 2020 report estimated the total cost of poor soft-
ware quality at $2.08 trillion in the US alone [14]. The report
recommends that much emphasis be placed on preventing
software defects. For example, early and regular analysis

Communicated by Kurt Sandkuhl, Balbir Barn, Tony Clark, and Souvik
Barat.

B Felix Cammaerts
felix.cammaerts@kuleuven.be

Monique Snoeck
monique.snoeck@kuleuven.be

1 LIRIS, KU Leuven, Naamsestraat 69, Leuven 3000, Flemish
Brabant, Belgium

of source code to identify weaknesses and vulnerabilities,
measuring structural quality characteristics, considering the
weaknesses and vulnerabilities of embedded components,
and adopting secure coding practices.

Software testing can be used to improve software quality.
Software testing helps to avoid bugs, which allows develop-
ers to focus on features for a next release rather than fixing
bugs. Software bugs have been found to account for 80% of
the cost of a software system [23]. It has also been reported
that developers spend 35–50% of their time validating and
debugging software [1].

There is a lack of testing culture and awareness in
academia [11, 25], resulting in little time being spent on soft-
ware testing in education [33]. Instead, teachers place more
emphasis on other topics such as requirements engineering
and system design, leaving little time for software testing
[7]. This has led to graduates failing to meet industry stan-
dards when it comes to software testing [18]: research shows
that senior computer science students fail to provide adequate
tests for even a small computer program [4]. In fact, software
testers have been found to be inadequately trained in indus-

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10270-023-01141-1&domain=pdf
http://orcid.org/0000-0002-0037-3865

954 F. Cammaerts and M. Snoeck

try standards for software testing and to have received most
of their formal software testing training outside of university
[5].

Although there has been an increased focus on software
testing in education [10], software testing remains a com-
plex and challenging subject to teach. Studies have vowed
to introduce software testing early in the curriculum, ideally
in an introductory programming course [11]. Free and open
source software is often cited as beneficial to the learning pro-
cess, allowing students to find bugs in code that is not their
own, thus avoiding the negative setback of students finding
bugs in their own code. Similarly, gamification approaches
can further motivate students to gain experience in software
testing [9]. However, teachers of such introductory program-
ming courses are often overwhelmed by the larger number of
topics they have to teach, leaving little time to teach software
testing as a separate module in their classes.

The introduction of software testing tools has provided
a possible solution to this problem. Software testing tools
allow teachers to continue to focus on other topics while
introducing their students to testing techniques in a less time-
consuming way. The use of such software testing tools can
also ensure that students are prepared tomeet software testing
industry standards. To achieve this, it is important that soft-
ware testing is introduced taking into account the cognitive
learning process of students [18].

An example of a software testing tool designed for educa-
tional purposes is TesCaV (TEst CoverAge Visualisation),
which provides users with feedback on the manual tests
they have performed on a software system [16]. TesCaV
is part of MERODE, a model-driven engineering (MDE)
approach in which a software system can be created based
on a class diagram and statecharts. Users can generate a pro-
totype application from the models and use it to simulate
scenarios to test the models. During this process, TesCaV
provides users with feedback on the adequacy of their tests,
mainly in terms of coverage criteria.

Previous research has shown that for the subject of soft-
ware testing, TesCaV is beneficial to the student learning
process whilst also being user friendly [16]. In addition,
the use of TesCaV has been found to result in students per-
forming more comprehensive tests on a software system [3]
when allowed to use the tool. However, no evidence has
yet been found that TesCaV has a lasting positive effect
on novice users’ ability to achieve high test coverage, even
when TesCaV is no longer used. Such a lasting positive
effect is desirable, as it would provide evidence that novice
users are able to transfer newly acquired testing skills from
TesCaV to other scenarios. A longitudinal study with a con-
trol group would be needed to test for a truly long-lasting
effect. While it might be possible to follow students over a
semester, attributing improved performance to the treatment
would require controlling for the many different factors at

play in an educational context. The design of such an exper-
iment is constrained by data protection and the obligation
to treat all students equally. Henceforth, this research will
focus on the short-term lasting effect and address the fol-
lowing research question: Does providing TesCaV to novice
users enable them to transfer the acquired knowledge of test
coverage to new cases? In order to answer this research ques-
tion, a new experiment will be conducted. This experiment
is designed to specifically measure the knowledge transfer
effect after the treatment, in this case the use of TesCaV.

The rest of this paper is structured as follows. Section2
discusses related work in terms of software testing tools,
model-based testing, and theMERODE approach into which
TesCaV has been integrated. Section3 presents the experi-
mental setup used for this research. Section4 presents the
results of the experiment, which are then discussed in Sect. 5,
where internal and external validity are also discussed. Sec-
tion6 presents the conclusion of this research as well as
further research possibilities.

2 Related work

2.1 Teaching of software testing

There are numerous software testing tools designed to sup-
port teaching, many of which use white-box testing to
evaluate the internal implementation of code.

Web-CAT is an online tool designed to help students
learn how to write effective code and test cases based on a
given specification [8]. It uses the Test-Driven Development
approach, which involves writing test cases for a software
system before actually implementing it. To use Web-CAT,
students are given a specification for a software program and
asked to write source code that satisfies the specification, as
well as test cases to ensure that the codeworks correctly.Once
submitted, the tests are run against the code and students
receive feedback on any incorrect or missing tests. Students
can resubmit their code and tests as many times as necessary
to improve their results. This feedback is crucial in reinforc-
ing the value of Test-Driven Development, as it highlights
the importance of continually creating new tests for each new
implementation to ensure that the software works correctly.

Another approach to teaching software testing is the Cod-
eDefenders framework [21], which uses mutation testing to
help students understand proper testing practices. Mutation
testing is a technique in which small changes are made to the
original program to create “mutants”, which are then tested
against test cases. If a mutant fails a test case, it is considered
“dead”, whereas a mutant that passes all test cases is “alive”
and can be used to create newmutants. The mutation score is
the ratio of livemutants to the total number ofmutants, which
indicates how well the program has been tested. In the Code

123

Assessing the testing skills transfer of model-based testing on testing skill acquisition 955

Defenders game, students are divided into ’defenders’ and
’attackers’. Defenders write test cases to kill mutants, while
attackers write mutants to survive test cases. Defenders earn
points for killing mutants, while attackers earn points for
having surviving mutants. CodeDefenders has been shown
to actively engage students and improve their testing skills
[9].

Martinez [19] used a method called Question-Driven
Teaching to help students learn how to write good test
cases. This method involved presenting students with an
exploratory test case along with guiding questions to analyse
it. The resulting list of questions generated by the students
was used by the teacher to explain the rationale behind the
test strategy. According to the research, this approach led to
improved test quality in real-world applications.

Testing Tutor is a web-based assignment submission plat-
form with a customisable feedback engine that supports
different levels of testing pedagogy [6]. A study evaluated
different forms of feedback, with researchers concluding that
students who received conceptual feedback achieved greater
code coverage with fewer redundant test cases compared to
those who received detailed feedback [6].

Marmoset is an automated submission and testing system
that provides feedback to both teachers and students [29].
Lecturers use tokens to grant access to their private test cases,
motivating students to start testing early and allowing lectur-
ers to identify and address student difficulties. Students have
reported positive experiences with Marmoset [29].

Finally, Sarkar and Bell [24] introduced a black-box test-
ing tool for acceptance testing,which received feedback from
final year students for potential improvements.

Although there has been some research into teaching soft-
ware testing, most of these methods are aimed at people who
already have technical expertise, as they focus on code-based
methods, mainly white-box testing. They aim to improve the
existing understanding of these methods rather than to teach
beginners how to start testing properly. All of these strategies
require students tomanually find and execute all possible test
cases. As a result, students may unintentionally run equiva-
lent test cases multiple times, or be completely unaware of
other test cases, resulting in incomplete program testing.

2.2 Model-based testing

Model-Based Testing (MBT) is a type of black-box test-
ing method that can automatically generate test cases from
a given software model. This method helps to address the
challenge of manual testing by automating the test case gen-
eration process. The definition of a test case can be found
in the ISTQB [12]: “A set of input values, execution pre-
conditions, expected results and execution postconditions
developed for a particular objective or test condition, such
as to exercise a particular program path or to verify compli-

Fig. 1 Overview of the steps taken in an MBT approach [31]

ance with a specific requirement”. MBT involves a series of
steps that have been defined by [31]. An overview of these
steps is also given in Fig. 1.

1. Model: The system requirements are used to create a
softwaremodel. A softwaremodel is an abstract represen-
tation of the system under test. This step is donemanually.
An example of such a test model would be a state machine
or a set of state machines describing the behaviour of the
system under test.

2. Generate: A set of abstract test cases is generated based on
specific test selection criteria such as transition coverage.
Such a specific test selection criterion is needed because
the number of possible tests can be infinite. These criteria
form part of the test plan. The test cases generated in this
step are considered abstract because they are designed
based on the software model defined in the first step and
are not directly executable on the system under test. These
abstract test cases can already be used to produce a model
coverage report, i.e. how well the test selection criteria
cover the model, and a requirement traceability matrix,
which links individual test cases to functional require-
ments.

3. Concretise: The abstract test cases are transformed into
concrete test cases. These concrete test cases are directly
executable on the system under test. This step can be per-
formed by a separate transformation tool. Such a two-step
approach allows the independent generation of tests that

123

956 F. Cammaerts and M. Snoeck

can be reused in other systems under test, regardless of
their implementation language.

4. Execute: The concrete test cases generated in the previous
step are executed. A report can be generated on the test
case executions that have produced a result that differs
from the expected result.

5. Analyse: Once the test cases have been executed, the
results are analysed and any defects in the code are iden-
tified and fixed. The analysis of the test case execution
results is done manually. Of particular interest is any test
case execution that has produced a result different from
the expected result.

Models created in a modelling language such as UML can
be used as input for automatic test case generation [17]. The
process of transforming abstract test cases into executable
ones can be done either manually or automatically. In [17],
a testing methodology has been introduced that automati-
cally generates executable test cases from the abstract ones.
This new approach significantly reduces the time needed for
testing. The abstract test cases are generated using nine test
criteria based on [30]. Pérez and Marín [20] have developed
a software tool called TCGen that automatically generates
abstract test cases from UML conceptual models. The gen-
eration of abstract test cases is based on a set of test criteria.
Compared tomanual generation of abstract test cases, TCGen
has been shown to deliver better results in terms of efficiency
and code coverage.

2.3 MERODE approach

The MERODE approach allows the creation of a conceptual
model from which a fully functional Java application can be
generated using the MERODE code generator, making it a
Model-Driven Development approach. Users can start from
a requirements text that specifies the requirements for the
software system to be modelled. These requirements can be
modelled using a UML class diagram containing the domain
object types for the software system. For each domain object
type, a Finite State Machine (FSM) can also be modelled,
specifying the life cycle of that object type in terms of states
and transitions. The combination of this UML class diagram
and the associated FSMs forms the conceptual model for the
software system. An example of such a conceptual model is
given in Fig. 2.

However, there are several possible sources of error.
Firstly, it is possible that the requirements from the require-
ments text have been incorrectly modelled. Secondly, the
conceptual model may contain internal inconsistencies, such
as deadlocks in the FSMs. Finally, there is no guarantee that
the automatically generated code is a correct translation of the
conceptual model. An overview of the MERODE approach
and possible discrepancies is given in Fig. 3.

Once users have created a conceptual model for the soft-
ware system, they can generate a Java application using the
MERODE code generator. The generated Java code con-
tains code according to the data and behaviour defined by
the conceptual model, as well as additional code to obtain
an executable application, which serves as a prototyper tool
[26]. This prototyper allows to quickly validate whether the
requirements are consistent with the conceptual model and
thuswith the generated Java code. In theMERODEapproach,
business events are the units of interaction between the envi-
ronment and the information system. The user interface of
the generated application allows to trigger the execution of
business events (e.g. create a person, create a tuxedo, rent a
tuxedo). The sequence of executed events and their results
can be considered as test cases.

The prototyper application includes feedback related to
themodels used to create it. Previous studies have shown that
providing such feedback-enriched prototyping is an effec-
tive approach for enhancing novice users’ understanding of
conceptual models and improving model quality [27]. How-
ever, as this feedback is only provided to the user when an
illegal action is attempted (e.g. attempting to rent a tuxedo
that is already on loan), this type of feedback can be consid-
ered as immediate informative negative feedback [28]. Illegal
actions result from constraints in the model (e.g. a maximum
multiplicity of one). The constraints may have been delib-
erately included by the modeller, or they may result from
modelling errors. In the latter case, students are likely to dis-
cover their errors by testing scenarios that they expect the
system to accept. However, detecting the correct modelling
of deliberately included constraints requires the deliberate
creation of scenarios to assess the correct modelling of con-
straints. Indeed, previous experiments have also highlighted
the limited testing skills of students, as evidenced by their use
of an insufficient number of test cases to assess the accuracy
of requirement modelling [27].

Figure 4 gives an overview of the general functionality
of the prototype application using the code generated from
the conceptual model in Fig. 2. The application contains one
tab for each domain object type. The tab displays the objects
(instances) that have been created and a button for each of
the actions (business events) that can be performed on these
objects. The buttons are grouped according to the type of
action: on the left are the creation events (these create a new
instance of the object type), in themiddle are themodification
events (these change the state of an instantiated object), and
on the right (not shown in the figure) are the ending events
(these terminate the life of an object). The example shows a
possible user interaction with the prototyper. In a first step,
the user creates a Person object by clicking the “mecrperson”
button on the Person tab. The result of this can be seen on the
top right, namely that a Person named Felix has been instan-
tiated and is now in the state exists. Next, the user attempts

123

Assessing the testing skills transfer of model-based testing on testing skill acquisition 957

Fig. 2 Example conceptual model

to execute the “approve” event on the Felix object by first
selecting the Felix row and then clicking the “approve” but-
ton. As soon as the user presses the “approve” button, he is
informed that this action is not possible due to a sequence
constraint: the Person FSM does not have a transition for the
“approve” event in the “exists” state. If the user clicks on “See
my FSM”, additional graphical feedback is provided, show-
ing the current state of the Felix object, and a suggested state
in which there is a transition for the “approve” event. This
type of feedback is negative in nature, as it is only displayed
when the user performs an illegal action. This could lead to
users being demotivated to test their model thoroughly, as
they do not feel a sense of reward after performing correct
actions.

2.4 TesCaV

TesCaV is amodel-based testing tool that provides userswith
feedback on their manually executed test cases. This means
that, unlike the generalMBTprocess shown inFig. 1, TesCaV
does not concretise the test cases, but after the abstract test
cases have been generated (step 2), these generated test cases
are used to provide users with feedback on their manual test
case execution.

123

958 F. Cammaerts and M. Snoeck

Fig. 3 Overview of the possible discrepancies within the MERODE approach

As input for the generation of abstract test cases, TesCaV
uses the conceptual models developed by themodeller. Thus,
TesCaV takes as input both the class diagram and the associ-
ated FSMs. The test plan used by TesCaV is based on TCGen
[17, 20], which is an algorithm for generating test cases
based on several criteria, namely the Class Attribute (CA),
All-Transitions (AT), All-States (AS), All-Loop-Free-Paths
(ALFP), All-One-Loop-Paths (AOLP), Association-End-
Multiplicity (AEM), Generalization (GEN), Transition-Pairs
(TP), All-Loops (AL) and All-Methods (AM) criteria. These
criteria can be divided into four sub-categories: class-based
criteria (CA, AEM and GEN), transition-based criteria (AT,
ALFP, AOLP, AL), state-based criteria (AS) and method-
based criteria (AM). Using both the conceptual model and
the TCGen algorithm, TesCaV automatically generates a set
of abstract test cases. As all these criteria are based on the
structural coverage of software artefacts, TesCaV thus only
provides feedback on these structural coverage criteria and
does not provide any feedback on integration testing, for
example.

To provide feedback on the user’s manual test cases,
TesCaV uses the event log, which is automatically generated
from the user’s interactions with the prototyper. These event
logs capture the execution of all events in the prototyper and
thus represent the full set of manual test cases that the user
has attempted to execute with the prototyper. By automati-
cally comparing the generated test cases with the event log,

it is possible to check which test cases have been covered by
the user and which have not.

Figure 5 shows an overview of the integration between the
MERODE approach, the MBT process and TesCaV. As the
MERODE approach is an MDE approach, there is already a
model, the conceptual model, which can be used to generate
test cases in an MBT approach. By automatically comparing
the event log generated from user actions and the test cases
automatically generated from the conceptual model via the
test coverage criteria, a list of covered and uncovered test
cases can be generated. This list can be used to give the user
feedback on their manual test case execution.

Furthermore, an example of how a user can run TesCaV
from within the prototyper is shown in Fig. 6. After click-
ing on the “Run TesCaV” button, the user is informed about
the (in)completeness of his manual test cases. In this case,
there are test cases that the user has not yet covered. The user
can then ask for more details by selecting an object type on
which they would like more feedback. In this case, the user
requests feedback on the Tuxedo object type. For each of the
different test criteria, the user is then informed of the number
of test cases covered and the total number of test cases. For
example, the user has covered three of the six test cases for
the all-transitions coverage. It is important to note that this
feedback is only for the Tuxedo object type and there may
be other uncovered test cases for all-transitions coverage for
other object types. Finally, the user can request more detailed

123

Assessing the testing skills transfer of model-based testing on testing skill acquisition 959

Fig. 4 Overview of the prototyper in the MERODE approach and feedback provided to the user

feedback on any of the criteria by clicking the View button.
This provides the user with colour coded visual feedback on
the covered and uncovered test cases. The type of feedback
provided by TesCaV corresponds to the following feedback
types defined in [28]: informative, both positive and nega-
tive, and learner driven. As TesCaV also includes positive
feedback, namely green coloured components to represent
tested parts of the model, users may feel more motivated to
test their models thoroughly.

TesCaV can provide feedback on both positive and nega-
tive tests. Positive testing checks whether the usage scenarios
that should be allowed by the software system are actually
allowed.Negative testing checkswhether the usage scenarios
that should not be allowed by the software system are cor-
rectly blocked by the system. Consider the software model
shown in Fig. 2. The requirements in Fig. 8e dictate that a per-

son can only rent a tuxedo after applying and being approved.
In a positive test, a tester would confirm that an approved
person can successfully initiate the rental process by transi-
tioning from the Approved state using the MERent method.
Similarly, a positive test would be able to detect a hypo-
thetical missing Approve transition in the AwaitingApproval
state. However, relying on positive testing alone would fail
to detect a potentially incorrect transition that would allow
people to rent a tuxedo before being approved, a scenario
that negative testing would detect. Negative testing would
also allow a tester to confirm that it is impossible for a per-
son to rent a tuxedo before applying and being approved,
meaning that the person would still be in either the Exists or
AwaitingApproval state.

TesCaV provides users with feedback on their manual
testing efforts for their own software models. This creates

123

960 F. Cammaerts and M. Snoeck

Fig. 5 Integration of the MBT process and TesCaV with the modelling and prototyping process

an incentive to execute more events on the prototype appli-
cation to get more positive feedback. These more thorough
checks allowusers to validate that all requirements are indeed
correctly implemented in their conceptual models. Together
with the feedback provided in the prototyper (Fig. 4), this
should allow the discrepancy between the requirements and
the developed conceptual model (as shown in Fig. 3) to be
reduced.

Although there are many model-based testing tools avail-
able, they all generate and execute test cases automatically,
making it difficult to teach novice users how to perform ade-
quate testing [15]. To our knowledge, TesCaV is the only
model-based testing tool that can help novice users under-
stand how to perform effective testing. This is due to the
feedback TesCaV provides through its visualisations, allow-
ing novice users to better understand their manual testing
efforts. Previous research has shown that TesCaV is benefi-
cial to the learning process of students in the field of software
testing, and has been found to lead to more comprehensive
testing of software systems when used by students [3, 16].
However, no evidence has been found to suggest that TesCaV
has a lasting positive effect on novice users’ ability to achieve
high test coverage, even after they have stopped using the

tool. This research investigated this lasting positive effect by
introducing a new experimental design to further evaluate
TesCaV.

3 Researchmethod

3.1 Course context

The experiment was conducted during the 2022–2023 aca-
demic year in one of the classes of the Architecture and
Modelling ofManagement Information Systems (AMMIS).1

AMMIS is a one-semester course offered at the Mas-
ter’s level with an active learning approach. The aim of
the AMMIS course is to teach students to build conceptual
models based on given requirements. The teaching approach
is based on a blended learning approach consisting of on-
campus and online lectures and on-campus computer lab
sessions. The exercises provided in the computer lab ses-
sions are designed based on the 4C/ID instructional design

1 More information about this course can be found at https://
onderwijsaanbod.kuleuven.be/syllabi/e/D0I71AE.htm.

123

https://onderwijsaanbod.kuleuven.be/syllabi/e/D0I71AE.htm
https://onderwijsaanbod.kuleuven.be/syllabi/e/D0I71AE.htm

Assessing the testing skills transfer of model-based testing on testing skill acquisition 961

Fig. 6 Overview of the actions needed to perform to get feedback from TesCaV in the prototyper of the MERODE approach

theory, which provides a moderate constructivist approach
[32]. This means that the exercises become more complex
as the semester progresses and the support provided to stu-
dents decreases. In practice, at the beginning of the semester,
full support consists of giving students pre-made conceptual
models for given requirements and asking them to experi-
ment with them to understand the implications of their design
choices. Later on, students are given requirements for which
they only need to construct the class diagram, and support
takes the form of guiding questions and hints until they can
construct the class diagram without support. Similarly, to
learn state chart modelling, students are given the class dia-
gram alongside the requirements as support. By the end of
the semester, students have to develop their own conceptual
models from scratch.

3.2 Course integration

As TesCaV is implemented as a module in the MERODE
codegenerator, it can be used in anyof the exercises. The vari-
ety of exercises leads to a similar variety of what TesCaV’s
feedback can do for the students. If students are given a
complete model that is considered correct with respect to
the given requirements, TesCaV’s feedback will help stu-
dents understand the completeness of their manual testing
efforts. Further testing will allow students to better under-
stand the design choices of the model they have been given.

When students are asked to complete a partialmodel, TesCaV
can provide feedback not only on the completeness of their
manual testing efforts, but also on the correctness and com-
pleteness of their conceptual model with respect to the
requirements. For example, if the requirements state that a
person should always be able to rent a tuxedo, the student
should manually test that this is indeed possible in every
state of the Person object. A student might forget to do this
for one of the states, which TesCaV’s feedback could inform
them about.

3.3 Experimental setup

Awell-known theoreticalmodel of learning retention/transfer
is Kirkpatrick’s which proposes four levels for evaluat-
ing training: Level 1 Reaction, Level 2 Learning, Level 3
Behaviour and Level 4 Results [13]. The levels are described
in terms of building and evaluating chains of evidence and
assessing the extent towhich training contributes to outcomes
by evaluating whether the results meet expectations.

In the past, we have adapted Kirkpatrick’s model to
technology-enhanced learning ([22]), where we suggest
measuring learning twice: with a test without and with the
tool. Suggested measures of the quality of learning are error
rates and %completion of the task. This corresponds to the
way we approached the design of the experiment, where we
will measure model coverage corresponding to %comple-

123

962 F. Cammaerts and M. Snoeck

tion of task. In this experiment, we do not use Kirkpatrick’s
behavioural level. For this level, the suggestion in [22] is
to train as much as possible on real tasks and measure the
level of support on real tasks. TesCaV itself works on real-
life tasks, but in this experiment, a small case is used to avoid
fatigue of the participants. The assessment is therefore aweak
assessment of real-life tasks.

Therefore, in order to measure the knowledge transfer
effect of test coverage after using TesCaV, a one-group
pre-test-post-test design is used. In this experimental design,
participants’ test coverage is measured before and after using
TesCaV, with TesCaV considered as the treatment. Ideally,
to avoid some single-group threats to validity, such as instru-
mentation, history and testing threats, a pre-test-post-test
control group design should be used. This is where a sec-
ond group takes the same pre- and post-test but does not
receive the treatment. Unfortunately, in education this leads
to the unethical practice of giving students unequal learn-
ing opportunities. Although it would be possible to provide
the control group with an equivalent alternative treatment,
such as an additional lecture on the same software testing
topic, it would be difficult to prove that such a treatment is of
equal educational value. Furthermore, since participation in
the trial cannot be made compulsory, it is difficult to ensure
random allocation to experimental groups that receive their
treatment at different places and times. Therefore, for ethical
and partly for convenience reasons, a pre-test-post-test con-
trol group design cannot be used in this case.2 The limitations
of this approach are discussed in more detail in Sect. 5.1.

Before the experiment, the basics of testing are reviewed,
such as the V-model, the notion of positive and negative
test cases, and the need for a strategy given that exhaus-
tive testing is not possible. The participants are told that
their task is to develop test cases for system and acceptance
testing: the test cases must assess whether the developed sys-
tem meets all the requirements. During the pre-experiment
questionnaire the personal characteristics of the participants
are collected. These questions are given in Table 5 in the
appendix. The questions relate to age, gender, confidence in
using new computer tools, and previous knowledge of soft-
ware testing. During the pre-test, participants are asked to
use pen and paper to develop a test strategy and an appro-
priate set of test cases for a given case. The students are
given both requirements and models for the case. The treat-
ment is then applied by asking the participants to solve a
second case using TesCaV. Again, the students are given the
requirements and the model, but this time they are also given
the generated prototype application containing the TesCaV
module. The students are shown how to get feedback from
TesCaV. Finally, during the post-test, students are asked if

2 Ethical approval for this research can be found under numberG-2023-
6441-R3(MIN).

they would like to make any changes to the test suite they
developed for the first case. Students can add new test cases
or remove test cases they consider redundant or unnecessary.
This is again done on paper, without the use of a generated
prototype application.

After each pre-test, treatment and post-test, participants
are asked a series of questions to understand their perceived
test case coverage. These questions are given in Table 6. An
overview of the experimental design is given in Fig. 7.

For Case A (pre-test), the “TuxMe” case was used, while
for Case B (treatment) the “PhilHarmonics” case was used.
The requirement text for these cases is given in Figs. 8e and
9f, respectively. The software models for these cases are
shown in Figs. 8 and 9, respectively. Both cases describe
relatively small systems consisting of only a few domain
object types. However, Case B is more complex than Case
A because it has an additional domain object type and also
has more states in the finite state machines associated with
its object types. Students are therefore able to experience the
feedback provided by TesCaV on a richer model with a more
complex structure.

This experimental design allows us to test the following
hypotheses. Assuming that after using TesCaV, students will
have a better understanding of how to achieve full coverage,
studentswill feelmore confident about their performance, but
also actually perform better. It is also assumed that the effects
of the treatments are the same for all students, regardless of
their personal characteristics.

Hypothesis 1 The usage of TesCaV yields an increase in the
perceived test coverage of a software system for novice users
in terms of positive and negative test cases.

Hypothesis 2 Personal characteristics such as age, gender
and previous knowledge on software testing do not affect
this increase in perceived test coverage.

Hypothesis 3 The usage of TesCaV yields an increase in the
actual test coverage of a software system for novice users in
terms of positive and negative test cases.

Hypothesis 4 Personal characteristics such as age, gender
and previous knowledge on software testing do not affect
this increase in actual test coverage.

4 Results

4.1 Demographics

In total, 45 participants completed the questionnaire. Two
participants did give informed consent, leaving 43 valid
responses. Of the valid responses, 22 were from female par-
ticipants and 21 were from male participants. The mean age

123

Assessing the testing skills transfer of model-based testing on testing skill acquisition 963

Fig. 7 Experimental setup for the experiment

of the participants was 23.1 years. Unfortunately, not all par-
ticipants returned their written test cases, so only the results
of 37 participants could be analysed for the comparison of
Case A before and after treatment.

4.2 Perceived test coverage

This section discusses which results can be used to provide
evidence for H1 and H2. Evidence for H1 can be found
through an increase in the participants’ perceived test case
coverage, while evidence for H2 can be found through the
lack of correlation between the change in perceived test case
coverage and personal characteristics.

Participants completed several Likert scale questions to
measure their perception of test coverage, as shown in
Table 6. The first two questions measure whether the par-
ticipants feel that they have identified a sufficient number
of test cases for adequate testing, even though they would
be able to formulate more test cases. The next two ques-
tions measure whether the participants are unable to think
of additional test cases, even though they feel that more are
needed. These are two different reasons for stopping testing:
the first refers to stopping because they feel they have tested
enough, the second refers to stopping because they do not
know what else to do. Participants answered these questions
after both the pre-test and the post-test. The responses were
analysed using a coding for the 5-point Likert scale, where
“Completely disagree” is 1 and “Completely agree” is 5.

For H1, an overview of participants’ perceptions of their
test coverage is given in Table 1, which compares students’
self-reported scores after the pre- and the post-tests. As the
data consist of a measurement taken at two different points
in time (after the pre-test and after the post-test), the groups
are dependent. A paired t-test would be appropriate. How-
ever, as the measurements are on an ordinal scale, i.e. the

responses are on a Likert scale, a nonparametric test is
required. A Wilcoxon signed-rank test, which is the non-
parametric version of the paired t-test, can be used for this
comparison. The results of theWilcoxon signed-rank test are
given in Table 1. An additional Wilcoxon signed-rank test
was performed on the variables. This additional Wilcoxon
signed-rank test works under the alternative hypothesis that
case A (pre-test) has a lower mean than case A: revision
(post-test). The results are presented in the same table.

For H2, the change (between pre-test and post-test) in
the perceived test case coverage can be correlated with the
personal characteristics of the participants. This correlation
can be calculated by coding the responses to the Likert-scale
questions about participants’ perceived coverage of test case
from 1 (“Completely disagree”) to 5 (“nCompletely agree”),
and by coding the responses to the confidence and experi-
ence questions in the same way. Using these coded scores,
Spearman’s correlation coefficient can be applied as the data
are ordinal (Likert scale). The results are shown in Table 2.

4.3 Actual test coverage

An increase in participants’ actual test case coverage by par-
ticipants provides evidence forH3,while evidence forH4 can
be verified by checking that there is no correlation between
the change in actual test case coverage and personal charac-
teristics.

For H3, an overview of the students’ actual test coverage
is given in Table 3, which compares the number of test cases
identified by the students during the pre-test and the post-
test. Comparing the actual number of test cases identified is
equivalent to comparing the test coverage, since to obtain
the test coverage the actual number of test cases identified
should be divided by the total number of automatically gen-
erated test cases based on the model. Since both the pre-test

123

964 F. Cammaerts and M. Snoeck

Table 1 Median of the participants’ own perception of test coverage for the pre-test and the post-test

Question Case A Case A revision Difference Wilcoxon signed rank test (p value)
Pre-test (m1) Post-test (m2) Ha : m1 �= m2 Ha : m1 < m2

Perceived sufficient positive testing 3 2 −1 0.59 0.71

Perceived sufficient negative testing 2 2 0 0.23 0.89

Perceived exhaustive positive testing 2 2 0 0.19 0.10

Perceived exhaustive negative testing 2 2 0 0.22 0.11

Table 2 Correlation of personal
characteristics with the
difference in perceived test
coverage between the pre-test
and the post-test using the
Spearman correlation coefficient
(p value)

Variable Age Gender Confidence Experience

Perceived sufficient positive testing 0.14 0.44 0.74 0.99

Perceived sufficient negative testing 0.46 0.51 0.46 0.80

Perceived exhaustive positive testing 0.59 0.98 0.28 0.07

Perceived exhaustive negative testing 0.45 0.87 0.55 0.19

Table 3 Average number of actual test cases identified per participant for the pre-test and the post-test

Testing type Case A Case A: revision Difference Wilcoxon signed rank test (p value)
Pre-test (m1) Post-test (m2) Ha : m1 �= m2 Ha : m1 < m2

Positive test cases 3.75 4.58 0.83 3.47 × 10−4 1.73 × 10−4

Negative test cases 3.06 3.88 0.81 2.08 × 10−4 1.04 × 10−4

All test cases 6.81 8.46 1.65 4.51 × 10−5 2.25 × 10−5

Bold indicates significant p-values

and the post-test used the same model, this would give the
same denominator. Similarly to H1, given the ordinal nature
of the data, a Wilcoxon signed-rank test was used for this
comparison. The results of theWilcoxon signed-rank test are
shown in Table 3. An additional Wilcoxon signed-rank test
was performed on the variables. This additional Wilcoxon
signed rank test works under the alternative hypothesis that
Case A (pre-test) has a lower mean than Case A: revision
(post-test). The results are presented in the same table.

For H4, the change (between pre-test and post-test) in the
actual coverage of the test cases can be correlated with the
personal characteristics of the participants. This correlation
can be calculated by encoding the responses to the confidence
and experience questions, where “Completely disagree” is
equal to 1 and “Completely agree” is equal to 5. Using these
coded scores, the Spearman correlation coefficient can be
used, as the data are ordinal (count and Likert scale). The
results are shown in Table 4.

5 Discussion

ForH1, the results in Table 1 show that no significant changes
in the responses to the perceived sufficient and exhaustive
testing were found for either the positive or negative test
cases. This means that no evidence was found for H1.

Table 4 Correlation of personal characteristics with the difference in
actual test coverage between the pre-test and the post-test using the
Spearman correlation coefficient (p value)

Variable Age Gender Confidence Experience

Positive test cases 0.29 0.03 0.74 0.59

Negative test cases 0.17 0.22 0.26 0.42

All test cases 0.15 0.04 0.36 0.73

Bold indicates significant p-values

For hypothesis H2, the calculated Spearman correlation
coefficients in Table 2 should be considered. As all the p
values obtained are above the 0.05 significance threshold, no
correlation was found between any of the personal character-
istics and the perceived test coverage variables. This provides
evidence for H2.

To test hypothesis H3, Table 3 shows the actual number
of test cases identified for the pre- and post-tests. For both
positive and negative test cases, and therefore for all test
cases, there is an increase in the average. Since all p values
of the Wilcoxon signed rank test are significant, it can be
said that the means of the pre- and post-tests are statistically
different. The additional Wilcoxon signed rank test with the
alternative hypothesis that the mean of Case A (pre-test) is
smaller than Case A: revision (post-test) also shows that all
p values are significant, which means that significantly more

123

Assessing the testing skills transfer of model-based testing on testing skill acquisition 965

test cases were defined in the post-test than in the pre-test.
This provides evidence for Hypothesis H3.

For hypothesis H4, the calculated Spearman correlation
coefficients in Table 4 should be considered. Gender is the
only variable that correlates with the increase in actual pos-
itive tests and all cases. As the other correlation coefficients
are all above the 0.05 significance threshold, no other corre-
lations were found to support hypothesis H4 specifically for
these personal characteristics.

So even though the participants’ perception of the cover-
age achieved remains the same between the pre-test and the
post-test, in reality they have increased their actual test cov-
erage. The fact that this actual increase in test coverage is not
reflected in their perception of test coverage could be seen as
an indication that their perceptions are now closer to reality.
In other words, students are showing less unjustified opti-
mism. This leads us to believe that the use of TesCaV allows
participants to understand that testing is a complex task and
that they have begun to realise that testing all possible test
cases of a software system is unrealistic.

These results also provide some insights for course design.
Students who are new to software testing, seem to believe
that they are achieving good code coverage on a software
system through their manual testing efforts. This is partly
because they are not fully aware of how complex the task of
fully testing a software system is, and because they are not
given feedbackonhowmuch theirmanual testing efforts have
contributed to the overall test coverage of a software system.
Providing students with a tool that gives them feedback on
the coverage achieved by their manual testing efforts can
therefore be useful. Such a tool also allows students to be
more systematic in their approach, as the results show that
the students are able to identify more test cases in the same
software system than before the treatment, even when the
tool support is no longer provided.

Although TesCaV is now implemented as a module in
the MERODE code generator, the general idea of provid-
ing visual feedback on a user’s manual testing efforts can be
applied to any course. Courses using MDE approaches can
implement a similar tool, possibly with some slight adap-
tations according to the modelling artefacts they use. These
adaptations would be in the visualisations and in the test case
generation algorithms used. Courses teaching code-based
software testing can also implement a similar TesCaV tool,
where the first step would be to develop a model of the code,
which can then be used to perform model-based testing.

5.1 Internal validity

The use of a one-group pre-test-post-test experimental design
introduces several threats to validity. To address the instru-
mentation threat, where participants may encounter different
difficulties at pre-test and post-test, leading to changes in
scores unrelated to the treatment, the same case was used
for both pre-test and post-test. The history threat, where
improvements may be due to factors other than the treatment,
such as previous software testing courses, was mitigated by
assessing personal characteristics, which showed only mod-
erate correlations with scores. In addition, the test threat, also
known as priming, was avoided by using the same case for
both the pre-test and the post-test.

The use of only one question for each of the characteristics
in Table 6 also poses a threat to the internal validity. Only
one question per characteristic was used in order to keep the
questionnaire as short as possible, given that the duration
of the experiment was limited to two hours, and to avoid
participant fatigue. The use of Cronbach alpha to measure
consistency within these traits is not possible because only
one question is asked per trait. Nevertheless, a pre-test was
carried out with 5 participants to ensure that all the questions
and the whole experimental design were clear.

5.2 External validity

A pilot study was conducted to increase the external validity
of the research. The pilot study aimed to obtain qualitative
feedback andwas subject to time constraints.As a result, only
four participants were recruited. This small sample sizemade
statistical analysis of their responses irrelevant. Nevertheless,
the qualitative feedback provided proved useful in identify-
ing errors and ambiguities in the experimental design, which
led to improvements in the student instructions andquestions.
In order to strengthen the external validity of this study, it is
important to consider the sampling method. Specifically, the
experiment recruited students who all took the same course,
in the same year and on the same campus. A replication study
could strengthen the findings, but would ideally recruit stu-
dents fromdifferent teachers and different campuses, courses
and programmes.

123

966 F. Cammaerts and M. Snoeck

Although the relatively tight integration between TesCaV
and the MERODE code generator, as shown in Fig. 5, would
suggest a lowgeneralisability of the results, we are convinced
that the results of this research are still generalisable.Namely,
the general idea of providing feedback on manual test execu-
tion performed by novice testers can be helpful for all types
of testing. Specifically for MBT, other MDE approaches that
are not per se based on class diagrams and statecharts may
also benefit from using such feedback to users. In these cases,
other test case generation algorithms may be used. The way
in which the feedback is visualised can also be modified,
depending on the exact artefacts that the MDE approach
uses. Other research has already done a comparison of differ-
ent visualisations for the feedback generated by TesCaV [2].
Unfortunately, these results were not used in the experiment
as the research was still under review at the time of the exper-
iment. More generally, for code-based testing approaches, it
may also be useful to provide visual feedback on the cover-
age of the abstract test cases as generated byMBT. However,
this would require the user to first create a model from the
code.

6 Conclusion

The effectiveness of TesCaV, a tool designed to provide feed-
back on tests performed on a software model, was further
evaluated in this research. TesCaV is primarily aimed at help-
ing novice users to perform adequate testing. To measure
the transfer of testing skills after using TesCaV, a one-group
pre-test-post-test experimental design was used. Each par-
ticipant was given a pre-test in which they were asked to
write down their test cases, after which they were given the
treatment of using TesCaV. Finally, participants were given
the opportunity to make adjustments to their first case in
which they could not use TesCaV. This allowed the increase
in test coverage scores due to the introduction of TesCaV to
be measured. A stagnation in perceived test case coverage
was observed. Together with the fact that the participants
believed that they would not be able to identify any more test

casesmanually, we believe that TesCaV allows users to better
understand that testing is a complex task and that complete
testing of a software model is intractable. In terms of actual
test case coverage, therewas an increase in the extent towhich
participants were able to increase their actual test coverage
when they stopped using TesCaV. In addition, an analysis of
the personal characteristics of the participants showed some
moderate correlations, in particular between gender and the
number of positive test cases identified, and consequently
also between gender and the number of all test cases iden-
tified. No other correlations were found in the transfer of
testing skills based on different personal characteristics.

6.1 Further research

Future research could focus on conducting a replication
experiment to provide additional evidence on the transfer of
testing skills from novice users in identifying test cases when
using TesCaV. The present experimentmeasured the increase
in test case coverage immediately after using TesCaV, but a
new experiment could assess the transfer of testing skills
after a longer period of time. In addition, future researchers
could compare the study results of studentswho actually used
TesCaV during the semester and those who did not.

Other research [2] has explored the most effective way
for TesCaV to provide feedback to users by using differ-
ent visualisations for the same underlying feedback. These
new visualisations can be integrated into TesCaV and eval-
uated for their ability to further increase test case coverage
for novice users. An A/B test could be conducted where one
group is given the current version of TesCaV and another
group is given the new visualisations to evaluate their effec-
tiveness.

Acknowledgements This paper is being funded by the ENACTEST
Erasmus+ Project Number 101055874.

Appendix

See Tables 5, 6 and Figs. 8, 9.

123

Assessing the testing skills transfer of model-based testing on testing skill acquisition 967

Table 5 Questions on personal characteristics of the participants given during the pre-experimental survey

Personal characteristics questions Possible answers

What is your age? Number

What is your gender? M/F/X/Prefer not to say

I have a lot of previous knowledge on behavior modeling/statecharts
from a previous degree

no knowledge/experience at all little knowledge (a few hours course)
moderate knowledge (intermediate level course) extensive
knowledge (advanced course(s))

I have a lot of previous knowledge on programming from a previous
degree

no knowledge/experience at all little knowledge (a few hours course)
moderate knowledge (intermediate level course) extensive
knowledge (advanced course(s))

I have a lot of previous knowledge on testing a software from a
previous degree

no knowledge/experience at all little knowledge (a few hours course)
moderate knowledge (intermediate level course) extensive
knowledge (advanced course(s))

Years of programming experience (if applicable) Number

I could use a new software application well even if I had never used an
application like it before.

Not at all confident: no, probably not, rather not, rather yes, likely yes,
totally confident: yes

I could use a new software application well if I had just the
built-in-help facility or manual for assistance.

Not at all confident: no, probably not, rather not, rather yes, likely yes,
totally confident: yes

I could use a new software application well if I had first seen someone
else using it before trying it myself.

Not at all confident: no, probably not, rather not, rather yes, likely yes,
totally confident: yes

I could use a new software application well using only the internet for
assistance.

Not at all confident: no, probably not, rather not, rather yes, likely yes,
totally confident: yes

On average, I use computers (laptops, desktop, tablet) per day Less than one hour, one to two hours, six to eight hours, eight or more
hours

Table 6 Questions given to
participants after case A, case B
and case A: revision

Name Personal characteristics questions Possible answers

Perceived sufficient positive
testing

I feel like I listed all required test cases to test
what should be allowed by the system.

Completely agree

Agree

Neutral

Disagree

Completely disagree

Perceived sufficient negative
testing

I feel like I listed all required test cases to test
what should NOT be allowed by the system.

Completely agree

Agree

Neutral

Disagree

Completely disagree

Perceived exhaustive positive
testing

I could not think of any more allowed test
cases to test

Completely agree

Agree

Neutral

Disagree

Completely disagree

Perceived exhaustive negative
testing

I could not think of any more disallowed test
cases to test

Completely agree

Agree

Neutral

Disagree

Completely disagree

123

968 F. Cammaerts and M. Snoeck

Fig. 8 Software model and requirements text for TuxMe case

123

Assessing the testing skills transfer of model-based testing on testing skill acquisition 969

Fig. 9 Software model and requirements text for PhilHarmonics case

123

970 F. Cammaerts and M. Snoeck

References

1. Britton, T., Jeng, L., Carver, G., Cheak, P., Katzenellenbogen, T.:
Reversible Debugging Software. Judge Bus. School, Univ. Cam-
bridge, Tech. Rep 229 (2013)

2. Cammaerts, F., Snoeck, M.: Comparing different visualizations for
feedback on test execution in a model-driven engineering environ-
ment. In: International Conference on Business Process Modeling,
Development and Support, pp. 312–326. Springer, Berlin (2023)

3. Cammaerts, F.,Verbruggen,C., Snoeck,M.: Investigating the effec-
tiveness of model-based testing on testing skill acquisition. In:
Proceedings of the Practice of Enterprise Modeling: 15th IFIPWG
8.1 Working Conference, PoEM 2022, London, UK, November
23–25, 2022, pp. 3–17. Springer, Berlin (2022)

4. Carver, J.C., Kraft, N.A.: Evaluating the testing ability of senior-
level computer science students. In: 2011 24th IEEE-CS Confer-
ence on Software Engineering Education and Training (CSEE&T),
pp. 169–178. IEEE (2011)

5. Chan, F.T., Tse, T.H., Tang, W.H., Chen, T.Y.: Software testing
education and training in Hong Kong. In: Fifth International Con-
ference onQuality Software (QSIC’05), pp. 313–316. IEEE (2005)

6. Cordova, L., Carver, J., Gershmel, N., Walia, G.: A compari-
son of inquiry-based conceptual feedback vs. traditional detailed
feedback mechanisms in software testing education: an empirical
investigation. In: Proceedings of the 52nd ACMTechnical Sympo-
sium on Computer Science Education, pp. 87–93 (2021)

7. Cowling, T.: Stages in teaching software testing. In: 2012 34th
International Conference on Software Engineering (ICSE), pp.
1185–1194. IEEE (2012)

8. Edwards, S.H.: Teaching software testing: automatic gradingmeets
test-first coding. In: Companion of the 18th Annual ACM SIG-
PLAN Conference on Object-Oriented Programming, Systems,
Languages, and Applications, pp. 318–319 (2003)

9. Fraser, G., Gambi,A., Kreis,M., Rojas, J.M.:Gamifying a software
testing course with code defenders. In: Proceedings of the 50th
ACM Technical Symposium on Computer Science Education, pp.
571–577 (2019)

10. Garousi, V.,Mathur, A.: Current state of the software testing educa-
tion in North American academia and some recommendations for
the new educators. In: 2010 23rd IEEE Conference on Software
Engineering Education and Training, pp. 89–96. IEEE (2010)

11. Garousi, V., Rainer, A., Lauvås Jr, P., Arcuri, A.: Software-testing
education: a systematic literature mapping. J. Syst. Softw. 165,
110570 (2020)

12. Graham, D., Black, R., Van Veenendaal, E.: Foundations of Soft-
ware Testing ISTQB Certification. Cengage Learning (2021)

13. Kirkpatrick, D.L., Craig, R.L.: Evaluation of Training. Evaluation
of Short-Term Training in Rehabilitation, p. 35 (1970)

14. Krasner, H.: The cost of poor software quality in the US: a 2020
report. In: Proceedings of the Consortium Information Software
QualityTM (CISQTM)

15. Li, W., Le Gall, F., Spaseski, N.: A survey on model-based testing
tools for test case generation. In: Tools and Methods of Program
Analysis: 4th International Conference, TMPA 2017, Moscow,
Russia, March 3–4, 2017, Revised Selected Papers 4, pp. 77–89.
Springer, Berlin (2018)

16. Marín, B., Alarcón, S., Giachetti, G., Snoeck, M.: TesCaV: an
approach for learningmodel-based testing and coverage in practice.
In: Research Challenges in Information Science: 14th International
Conference, RCIS 2020, Limassol, Cyprus, September 23–25,
2020, Proceedings 14, pp. 302–317. Springer, Berlin (2020)

17. Marín, B., Gallardo, C., Quiroga, D., Giachetti, G., Serral, E.:
Testing of model-driven development applications. Softw Qual.
J. 25(2017), 407–435 (2017)

18. Marín, B., Vos, T.E.J.., Paiva, A.C.R., Fasolino, A.R., Snoeck, M.:
ENACTEST-European innovation alliance for testing education.
In: RCIS Workshops (2022)

19. Martinez, A.: Use of JiTT in a graduate software testing course: an
experience report. In: Proceedings of the 40th International Con-
ference on Software Engineering: Software Engineering Education
and Training, pp. 108–115 (2018)

20. Pérez, C., Marín, B.: Automatic generation of test cases fromUML
models. CLEI Electron. J. 21, 1 (2018)

21. Rojas, J.M., Fraser, G..: Code defenders: a mutation testing game.
In: 2016 IEEE Ninth International Conference on Software Test-
ing,Verification andValidationWorkshops (ICSTW), pp. 162–167.
IEEE (2016)

22. Ruiz, J., Snoeck, M.: Adapting Kirkpatrick’s evaluation model
to technology enhanced learning. In: Proceedings of the 21st
ACM/IEEE International Conference on Model Driven Engineer-
ingLanguages andSystems:CompanionProceedings, pp. 135–142

23. Strategic Planning: The Economic Impacts of Inadequate Infras-
tructure for Software Testing, p. 1. National Institute of Standards
and Technology (2002)

24. Sarkar, A., Bell, T.: Teaching black-box testing to high school
students. In: Proceedings of the 8th Workshop in Primary and Sec-
ondary Computing Education, pp. 75–78 (2013)

25. Scatalon, L.P., Carver, J.C., Garcia, R.E., Barbosa, E.F.: Software
testing in introductory programming courses: a systematicmapping
study. In: Proceedings of the 50th ACM Technical Symposium on
Computer Science Education, pp. 421–427 (2019)

26. Sedrakyan, G., Snoeck, M.: Lightweight semantic prototyper for
conceptual modeling. In: Advances in Conceptual Modeling: ER
2014 Workshops, ENMO, MoBiD, MReBA, QMMQ, SeCoGIS,
WISM, and ER Demos, Atlanta, GA, USA, October 27–29, 2014.
Proceedings 33, pp. 298–302. Springer, Berlin (2014)

27. Sedrakyan, G., Snoeck, M., Poelmans, S.: Assessing the effec-
tiveness of feedback enabled simulation in teaching conceptual
modeling. Comput. Educ. 78(2014), 367–382 (2014)

28. Serral Asensio, E., Ruiz, J., Elen, J., Snoeck, M.: Conceptualizing
the domain of automated feedback for learners. In: IberoAmerican
Conference on Software Engineering, pp. 223–236. Curran Asso-
ciates (2019)

29. Spacco, J., Hovemeyer, D., Pugh, W., Emad, F., Hollingsworth,
J.K., Padua-Perez, N.: Experiences with marmoset: designing and
using an advanced submission and testing system for programming
courses. ACM Sigcse Bull. 38(3), 13–17 (2006)

30. UML, OMG and I MOF: The unified modeling language UML
(2011)

31. Utting, M., Legeard, B.: Practical Model-Based Testing: A Tools
Approach. Morgan Kaufman, San Francisco (2007)

32. Van Merriënboer, J.J.G., Kirschner, P.A.: Ten Steps to Complex
Learning: A Systematic Approach to Four-Component Instruc-
tional Design. Routledge, London (2017)

33. Zakaria, Z.:A state of practice on teaching software verification and
validation. In: 2009 Annual Conference & Exposition, pp. 14–112
(2009)

123

Assessing the testing skills transfer of model-based testing on testing skill acquisition 971

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds
exclusive rights to this article under a publishing agreement with the
author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such
publishing agreement and applicable law.

Felix Cammaerts is a Ph.D. student at the Research Centre for Informa-
tion Systems Engineering (LIRIS) at KU Leuven. Actively researching
and developing tools to teach students to test and understand their
models within Model-Driven Engineering both in terms of validation
and verification.

Monique Snoeck holds a Ph.D. in computer science from KU Leu-
ven. She is full professor at the Research Center for Management
Informatics (LIRIS), KU Leuven, and visiting professor at the UNa-
mur. She has a strong research track in conceptual modelling, require-
ments engineering, software architecture, model-driven engineering
and business process management. Main guiding research themes are
domain modelling, business process modelling, model quality, model-
driven engineering, and technology-enhanced learning. Previous
research has resulted in the Enterprise Information Systems Engineer-
ing approach MERODE, and its companion e-learning and prototyping
tool MERLIN and its companion prototyping tool. She is author of 2
books, (co-) author of over 191 peer-reviewed papers. She is associ-
ated editor of the BISE journal and (senior) member of the program
committee of numerous conferences in the domains of Information
Systems such as CAiSE, RCIS, PoEM, and EMMSAD.

123

	Assessing the testing skills transfer of model-based testing on testing skill acquisition
	Abstract
	1 Introduction
	2 Related work
	2.1 Teaching of software testing
	2.2 Model-based testing
	2.3 MERODE approach
	2.4 TesCaV

	3 Research method
	3.1 Course context
	3.2 Course integration
	3.3 Experimental setup

	4 Results
	4.1 Demographics
	4.2 Perceived test coverage
	4.3 Actual test coverage

	5 Discussion
	5.1 Internal validity
	5.2 External validity

	6 Conclusion
	6.1 Further research

	Acknowledgements
	Appendix
	References

