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Abstract

Most experts agree that large language models (LLMs), such as those used by Copilot and ChatGPT, are expected to revo-
lutionize the way in which software is developed. Many papers are currently devoted to analyzing the potential advantages
and limitations of these generative Al models for writing code. However, the analysis of the current state of LLMs with
respect to software modeling has received little attention. In this paper, we investigate the current capabilities of ChatGPT to
perform modeling tasks and to assist modelers, while also trying to identify its main shortcomings. Our findings show that,
in contrast to code generation, the performance of the current version of ChatGPT for software modeling is limited, with
various syntactic and semantic deficiencies, lack of consistency in responses and scalability issues. We also outline our views
on how we perceive the role that LLMs can play in the software modeling discipline in the short term, and how the modeling
community can help to improve the current capabilities of ChatGPT and the coming LLMs for software modeling.

Keywords Large language models - ChatGPT - Software models - Modeling languages - UML

1 Introduction

The emergence of generative Al and large language mod-
els (LLMs), such as those used by GitHub’s Copilot [9]
and OpenAI’s ChatGPT [14], is causing quite a stir in the
Computer Science community. Most experts foresee a major
disruption in the way software is developed and software
engineering education is also expected to drastically change
with the advent of these LLMs [12]. These issues are a recur-
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rent topic in many universities and are being covered by most
specialized forums and blogs. A plethora of papers are now
analyzing the potential advantages, limitations and failures
of these models for writing code [3], as well as how pro-
grammers interact with them [2, 19]. Most studies seem to
agree that LLMs do an excellent job in writing code: despite
some minor syntactical errors, what they produce is essen-
tially correct.

However, what about software modeling? What is the sit-
uation of LLMs when it comes to performing modeling tasks
or assisting modelers to accomplish them? A few months ago
we started looking at these issues, trying to investigate the
current status of LLMs with respect to conceptual modeling,
a topic that does not seem to have attracted much attention
so far. Our premise is that LLMs are here to stay. So, instead
of ignoring them or rejecting their use, we posit that it would
be better to embrace and use them in an effective manner to
help us perform modeling tasks.

We are aware that the current LLM situation is very
volatile, with new models, versions and tools being released
frequently, each one improving over the previous ones. How-
ever, our goal is to assess the current situation and to provide
a set of experiments that can enable us to identify possi-
ble shortcomings of current tools for performing modeling
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tasks and assisting modelers, as well as a way to measure the
improvement of future versions.

In this paper, we focus on the development of software
models and, more specifically, on how to build UML class
diagrams enriched with OCL constraints. Of the existing
LLMs, we will focus on ChatGPT, analyzing its possible
use as a modeling assistant. To do so, we investigate several
issues, such as: (1) the correctness of the UML and OCL mod-
els produced by ChatGPT; (2) the best way to ask ChatGPT to
build correct and complete software models—in particular,
UML class diagrams; (3) its coverage of different model-
ing concepts and mechanisms; (4) its expressiveness and
cross-modeling language translation capabilities; and (5) its
sensitivity to context and problem domains.

Our findings show that the performance of the cur-
rent version' of ChatGPT’s capabilities for software model
development is not as good as for code generation. Our
experiments concluded that ChatGPT is only able to deal
with small models, and unable to properly handle some
basic modeling concepts, such as association classes or
multiple inheritance. The variability and inconsistency of
the models produced in response to the same prompts was
too high to ensure the repeatability and reproducibility of
the results. Some obvious errors (such as associations that
had composition symbols at both ends) were more frequent
than expected. We also realized that the problem domain
had a remarkable impact on the results. For example, in
domains for which there is a large code base (e.g., bank-
ing), the models produced by ChatGPT had a very low
level of abstraction, were very close to the programming
level and mostly correct. However, the models generated for
more abstract domains, such as university courses or the-
ater plays, were fundamentally flawed. In contrast, we found
that ChatGPT’s performance with OCL expressions and con-
straints was remarkable. We attribute this to the fact that
OCL is very similar to SQL, for which there is an extensive
base of programs on which ChatGPT seems to have been
trained.

The structure of this paper is as follows. First, Sect.2
introduces the context of our work and our main objectives.
Section3 describes the experiments we have conducted to
understand the current capabilities of ChatGPT for perform-
ing modeling tasks. The results of these experiments are
presented and analyzed in Sect. 4. Section 5 sets out our views
of the present and foreseeable future of generative LLMs for
performing software modeling tasks, how modelers can make
the best use of them, and outlines some ideas on how the soft-
ware modeling community can help to improve these tools.
Finally, Sect. 6 concludes with some ending remarks.

! Stable release February, 2023.
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2 Context

This section introduces the context of our work and our main
objectives, formulated through a set of research questions.

2.1 Al-based assistant tools

Software assistants and conversational bots have been around
for a long time [18]—think, for example, of Microsoft’s
infamous Clippy. However, they have not received much
attention until recently, when their performance has been
found to be outstanding and their responses have seriously
challenged the Turing test in some instances. From the Arts
to the Sciences, LLMs are demonstrating their great potential
and value in helping with numerous tasks.

The way to use LLMs and interact with them depends on
numerous factors. For example:

— Interaction mode: Interactions with assistants in software
development are bimodal [2]: in acceleration mode, the
programmer knows what to do next and uses a LLM such
as Copilot or ChatGPT to get there faster; in exploration
mode, the programmer is unsure about how to proceed
and uses the assistant to explore options.

— Type of assistance: We can distinguish between two types
of Al-based tools for software modeling depending on
their use. First, there are auto-completion wizards that
propose new classes, attributes and relationships while
the model is being developed, e.g., [4, 6, 7, 16, 17, 20].
Second, there are tools that can be asked to perform the
complete task, and then, the user can sometimes refine
or extend the tool’s results based on their correctness,
completeness or suitability, if needed. Examples of such
tools are Copilot and ChatGPT.

LLMs are deep learning models trained with massive
datasets to perform specific tasks. They all incorporate from
millions to billions of parameters that, in some occasions, can
be fine-tuned to be adapted to problems similar to those for
which they have been initially trained. Usually, these mod-
els contain a series of hyperparameters that allow users to
customize the predictions. The choice of good hyperparam-
eter values has an important impact on the quality of the
results. An appropriate hyperparameterization for a specific
task could be as important as the dataset used for training—
see, e.g., [8] on how the hyperparameterization of LLMs such
as Copilot or Codex affects their results. However, it is not
clear whether the advantages of choosing the most appro-
priate hyperparameters for the task at hand outweigh their
limitations, in terms of the needed knowledge and skills, com-
plexity, required effort and payoff in the results. For instance,
tools such as ChatGPT do not allow users to configure their
hyperparameters and these are inferred from the prompt. In
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Fig.1 A textual diagram generated by ChatGPT

contrast, the new Bing search engine? allows the non-expert
user to set only a few hyperparameters, but not all. For this,
Bing has modified how the hyperparameterization of the
LLM is done and allows the user to choose the conversation
style with three options: “more creative,” “more balanced”
and “more precise,” instead of asking them to select a
value (i.e., the so-called temperature value) within a
given interval, usually a Real number between O and 1.

2.2 ChatGPT

ChatGPT is a tool developed by OpenAl, a for-profit research
organization co-founded by Elon Musk and Sam Altman,
strongly funded by Microsoft. The users interact with Chat-
GPT in a conversational way via text prompts.

When asked about its modeling knowledge, ChatGPT
reports that it knows most UML diagrams, including Class
diagrams, Use cases, State machines, Sequence diagrams and
Activity diagrams.

Regarding the UML notations ChatGPT can handle, being
a language model, it cannot generate models in graphical
form. ChatGPT produces models in textual UML nota-
tions, including PlantUML, USE (the UML-based Specifi-
cation Environment), Yuml, Markdown UML, Mermaid and
UMLet. It also produces some rudimentary class diagrams
using plain characters to draw boxes and lines, but sometimes

2 https://www.bing.com/search?q=Bing+Al&showconv=1&
FORM-=hpcodx.

| balance: double |
| 1imit: int |

these are difficult to parse and understand. Figure 1 shows
one example of these textual diagrams.

We discovered that ChatGPT can also handle Ecore mod-
els. You can ask it to generate models in Ecore and also use
them as inputs for prompts. Its treatment of the Ecore lan-
guage is comparable to that of other modeling languages,
with similar mistakes and correct answers.

We also asked ChatGPT about other textual languages
that it knows, which are used in UML for representing
different aspects of software systems. It mentioned the
Object Constraint Language (OCL), the Action Language
for Foundational UML (ALF), the UML Profile Definition
Language (UML PDL) and the UML Testing Profile (UTP).
We checked in depth its skills with OCL, which are excellent,
but in contrast, the initial tests with the other notations did
not yield satisfactory results.

2.3 Research questions

As mentioned in the introduction, our primary goal was to
analyze the use of ChatGPT as an assistant tool for concep-
tual modeling. In line with this, we address the following
Research Questions:

RQ1. Does ChatGPT generate syntactically correct UML
models?

RQ2. Does ChatGPT generate semantically correct models,
i.e., semantically aligned with the user intents?

RQ3. How sensitive is ChatGPT to the context and to the
problem domain?

@ Springer
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RQ4. How large are the models that ChatGPT is able to
generate or handle?

Which modeling concepts and mechanisms is Chat-
GPT able to effectively use?

Does promptvariability impact the correctness/quality
of the generated models?

Do different use strategies (e.g., prompt partitioning)
result in different outcomes?

How sensitive is ChatGPT to the UML notation used

to represent the output models?

RQS5.
RQG6.
RQ7.

RQS.

To answer these research questions, we devised a set of
experiments, which are detailed in the next section.

3 Experiments

This section describes the experiments we conducted to
understand the current capabilities of ChatGPT to perform
modeling tasks. We defined two phases. In the first one, we
carried out some exploratory experiments to gain a basic
understanding of how ChatGPT works with software models,
as well as its main features and limitations. The experiments
in the second phase were more systematic and aimed to
further characterize ChatGPT’s modeling capabilities. The
results of these experiments are presented and discussed later
in Sect. 4.

3.1 First phase: exploration

Objective In this exploratory phase, the four authors of
this paper interacted individually with ChatGPT to become
acquainted with its modeling capabilities. We also explored
some of its general characteristics. Since we are not able to set
hyperparameters such as the number of tokens, we explored
the size of the models it was able to handle. We also explored
its skills with various modeling notations, which depend on
the training data.

Method For this phase, we did not use any systematic
approach but tried to explore all the ideas that came to mind
based on the findings we were making and the results we
were obtaining.

Materials We wrote prompts asking ChatGPT to create mod-
els of different sizes, as well as to create the target models
of some of the assignments that we use in our modeling lec-
tures. The size of these models ranged from 10 to 40 classes
and associations. We wrote all our interactions and findings
in a shared document used as a logbook [1].

First findings We became aware of several basic capabilities
and limitations of ChatGPT. Some of them were not surpris-
ing, given how language models work, but they are still worth
reporting here.

@ Springer

F1. Problem domain and semantics The problem domain
is important for ChatGPT. In general, it works poorly when
the names of the entities to be modeled have no meaning,
such as X, Y, Z, or A, B, C. The more meaningful and rep-
resentative entity names are, the better the class model it
produces. Similarly, the more ChatGPT “knows” about the
domain, the more accurate and complete the UML model
it generates. Purchase Orders, Banks or Employees are con-
cepts for which it is able to produce semantically rich models
(too rich sometimes, as it completes them with information
that was not requested).

F2. Problem domain and syntax The problem domain also
seems to influence the structure and contents of the resulting
models, as well as their level of abstraction. In some domains,
the models generated had a very low level of abstraction,
quite close to a software program represented in UML. In
others, the level of abstraction was higher, although it heav-
ily depended on the particular conversation. As we know,
LLMs have semantic and syntactic capabilities. When mix-
ing these two abilities to produce class models, depending
on the concrete domain (and thus the amount of data about
that domain in the training dataset), ChatGPT seems to rely
on its translation capabilities. Sometimes, given our prompt,
ChatGPT’s outputs seem to be the UML representation of
a possible solution that it found/produced in a different lan-
guage, i.e., with a different syntax. If this other language is a
low-level language such as Java or C++, the abstraction level
is lower than if it finds a solution represented as a software
model such as a relational schema. In other words, the prob-
lem domain influences the result, as the latter depends on the
data with which ChatGPT has been trained for that domain.

F3. Publicly available models Related to the previous
point, if you ask ChatGPT to build a UML model that is on
the Internet (such as the example given in the OCL 2.4 stan-
dard), ChatGPT will generate a correct model. OpenAl has
not disclosed what data was used to train ChatGPT or how
the training process was conducted, but it looks like these
publicly available models have served as training models for
ChatGPT.

F4. Size of the models to build The current version of
ChatGPT does not work well when asked to generate a class
model of more than 810 classes from scratch. However, it
works much better if you ask it to build a small initial model
and progressively add information to it. In fact, ChatGPT
was unable to cope with any of the exams of our modeling
course, because these UML models were too large (more
than 20 classes and associations) for its current capabilities
or hyperparameterization, and it either did not finish the task
(which had to be aborted) or built rather small and incomplete
models.

F5. Notations We also experimented with various nota-
tions to represent the generated UML model. By default,
ChatGPT seems to use a diagrammatic notation that employs
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Table 1 Coverage by the selected examples of the main modeling concepts and mechanisms

Concept/Mechanism Students Airlines File system Robots Video club Theaters Amphibious Cars
Enumerations X X X

Classes X X X X X X X X
Attributes X X X X X X X X
Operations X

Generalization X X X X

Association X X X X X X X
Aggregation X X X X

Composition X
Assoc. class X X X

Multiple inheritance X

Abstract classes X X X

OCL constraints X X
Roles (as assoc. ends)

Roles (as inherited classes) X

Roles (as entity types) [5]

Materialization [15] X X

characters to draw boxes and lines on the screen. This nota-
tion is too difficult to read and understand when there are
more than four or five classes in the model, so we started to
explicitly ask ChatGPT to produce models in specific nota-
tions, such as PlantUML or USE. Apart from small syntactic
errors, the results are generally good; we cannot say the same
for the semantics of the generated models, which were full
of errors, as we shall later see.

F6. Conversation history Although there is a limit to the
amount of information ChatGPT can retain, it is able to
“remember” what was said earlier in a conversation. This
is, ChatGPT is conversation-aware and results are heavily
conversation-dependent.> Depending on the session, and on
our previous interactions, the results may present remarkable
variations. In fact, when asked to build a model, ChatGPT
takes information from previously developed models within
the same conversation, even if they have nothing to do with
the model in question. This is why it is important to start a
new chat every time we want to develop a new model. One
exercise we did was to ask ChatGPT to generate a UML
model in three different chats using the same prompt. In two
of them, we had been previously creating models from other
domains, and the third chat restarted afresh. The results gen-
erated in the first two conversations were very similar to the
previously generated models, despite the fact that the new
model was from a different domain. The results of the same
prompt in the new chat were closer to the desired target.

3 OpenAl states that, when replying to a prompt, ChatGPT does not
access previous conversations.

F7. Cross-language translation facilities When testing the
translation facilities across modeling languages, the results
are conversation-dependent. For example, we gave ChatGPT
a model in USE with association classes and asked it to rep-
resent the model in PlantUML. The result was not correct,
because ChatGPT does not seem to know how to handle
association classes. Now, given that same PlantUML model,
if asked to convert it to USE, depending on whether it is
within the same conversation or in a different one, sometimes
ChatGPT converts it to the original USE model (even with
association classes) or to a different model (this time with
syntactic errors in USE). Interestingly, this does not seem to
be specific only to modeling, but also to translation between
other languages, even natural ones.

F8. Integrity constraints When the description of the
model to be represented includes integrity constraints (which
we would expect to be specified by means of OCL expres-
sions), what ChatGPT usually does for each constraint is
either to create a note or to define an operation that checks
the constraint on the class that would correspond to the con-
text of the OCL expression. We soon learned that if what
we want to represent are the integrity constraints of a UML
class model using OCL, it is better to develop the model with-
out constraints and then explicitly ask ChatGPT to generate
the constraints in OCL, one by one. ChatGPT works signifi-
cantly better with OCL than with UML. We suspect that this
is possibly due to the fact that the data sources used for the
construction of OCL expressions are usually SQL, Rust and
other declarative languages for which there is a much larger
corpus than for UML.

@ Springer



786

JJ.Camara et al.

Prompt

I would like to write a
class diagram in
PlantUML in which a
Videoclub rents movies.
The Videoclub has
customers, and both
the Videoclub, the

UML Class diagram

© Videoclub

o name: String

*

rents has

*

movies and the

© Movie @ Customer

customers must have
names.

o name: String

o name: String

PlantUML

@startuml
class Videoclub {

- name: String
}
class Movie {

- name: String
}
class Customer

- name: String
}

Videoclub "*" -- "*" Customer: has
Videoclub "*" o-- "*" Movie: rents

@enduml

Fig.2 Prompt used to ask ChatGPT to generate a UML class diagram of a video club system, and the resulting model

@ Videoclub

@ Movie

@ Customer

o name : string

o name : string

o name : string

o getName() : string
o setName(name: string) : void

o getName() : string

o setName(name: string) : void

o getName() : string
o setName(name: string) : void

© Rental

o movie : Movie
o rentedDate : Date
o returnedDate : Date

o customer : Customer

o getMovie() : Movie

o getCustomer() : Customer
o setCustomer(customer: Customer) : void

o setMovie(movie: Movie) : void

o getRentedDate() : Date

o setRentedDate(rentedDate: Date) : void

o getReturnedDate() : Date

o setReturnedDate(returnedDate: Date) : void

Fig.3 Another model generated by ChatGPT in response to exactly the same prompt, but in a different session

3.2 Second phase: focused experiments

Objective In the first phase, we managed to obtain a basic
understanding of how ChatGPT works, as well as of its main
features and limitations. We also obtained initial responses
to some of the research questions, namely those about its
sensitivity to context and problem domain (RQ3, addressed
by findings F1, F2, F3 and F6), its scalability (RQ4, addressed
by finding F4) and partly about its sensitivity to the modeling
notation of choice (RQ8, addressed by findings F5, F7 and
F8). The goal of this second phase was to address the rest of
the research questions, which demanded a more systematic
approach.

Method For this phase, we developed a set of models that
were intended to cover the most important modeling concepts
and mechanisms (see left column of Table 1). Each author
independently proposed ten UML models. All of them were

@ Springer

small in size (three to six classes) so that ChatGPT could han-
dle them without problems. They represented different user
intents, and for each one of them, the exercise consisted in
asking ChatGPT to produce the corresponding UML model
using one or more prompts.

Figure 2 shows one of these exercises (Video club). The
prompt used to generate the UML class diagram is shown on
the left, and the ChatGPT response (in PlantUML) is shown
on the right. For readability purposes, we have included the
graphical representation of the PlantUML model in the cen-
tral box. On this occasion, ChatGPT managed to generate
the intended model after a few interactions, so the exer-
cise was considered successful. However, to illustrate the
variability of ChatGPT’s responses, Fig.3 shows another
model generated by ChatGPT in response to exactly the
same prompt, but from a different conversation. (Both were
fresh conversations.) Although there are deterministic lan-
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Table2 Results of the experiment where the four authors tried to make
ChatGPT generate the intent models of the selected exercises

Exercise Successful Avg. sessions Prompts/Sess.
Students 4/4 2.5 2.5

Airlines 0/4 3 2.75

File system 4/4 2 225

Robots 0/4 3 35

Video club 4/4 2 2.3

Theaters 0/4 3 3
Amphibious 4/4 22 1.75

Car parts 4/4 2 2.3

guage models, most modern LLMs (such as ChatGPT) are
designed to be probabilistic, and not deterministic. This lack
of repeatability of the results represents a major obstacle to
the reproducibility of the experiments and is one of the main
current challenges of these assistants from our point of view.

Even if prompts were carefully designed, very often Chat-
GPT did not generate the expected result. To improve the
result, we always tried to follow a conversation with the bot
by providing multiple successive prompts in which we asked
to modify some aspect of the generated result. For example,
if ChatGPT generates a class Movie that does not contain an
attribute name, we can tell ChatGPT that movies must have
a name. The same can be done to add the multiplicities and
role names of the associations, remove unwanted methods or
fix incorrect details (such as using compositions when there

is a multiplicity 1. .* in the composite end). As we will
mention later, ChatGPT does not always fix or add what we
ask for such as repairing the multiplicity of an association.
When it does it, ChatGPT sometimes introduces additional
errors in other parts of the model.

From the complete set of 40 exercises, we selected two
from each author. The resulting eight models covered the con-
cepts and mechanisms listed in Table 1. Their intent models
are shown in Fig. 4.

Each author tried to make ChatGPT generate these UML
intent models as faithfully as possible, using different strate-
gies to create the prompts. A summary of the results of this
experiment is shown in Table 2. The columns list the exercise,
the number of authors that could make ChatGPT successfully
generate the intended model, the average number of sessions
that were used and the average number of prompts that were
required per session until the solution was generated or the
author gave up. Reasons for restarting a new chat or giv-
ing up included that: (1) ChatGPT entered an endless loop,
e.g., saying “Sure, I will fix it” but repeating the previous
response, and (2) class diagrams that had an increasing num-
ber of errors despite our indications to fix them, or diagrams
that were not worth fixing.

Materials The complete set of UML models of the 40 exer-
cises is available from our GitHub repository [1], as well as
the reports that each author produced during their interactions
with ChatGPT.

Findings The exercises of this phase revealed some very
interesting findings, which are summarized below.

Airlines Students Cars
irli Airport Course - ©) make
© Airline |, operates * L @ @Dormunlt o name: String] Theaters
String name String code String name " Bdibleildadele J
— | String city String numCredits Real price § ——
| o Time
| N ‘ ® Person @
! (© model String name z?gyht
] L* SN 1.4 o name: String e s
Details
© @ Professor © Student 1
Real operatingCost
start()p g String name String name ’
stop() | @cr | (©)participant
updateCost(Real newCost) Vi © numberPlate: String
ideo Club
1 1
Robots (©) videoclub L 4 ¢
m o name: String ‘ @© Engine © wheel ‘ © seat ‘
‘@c\eamngﬁobot‘ ‘@T,anspormobot o 3 ! o power: Real o diameter: Real! o size: Real!
t I Rooms o —
rents has - Session
. Amphibious @ rheacer _d .© :
n int timeBegin
String location int timeEnd
1 ‘ © Movie ‘ ‘ @Customer ‘ @_7 @ Vehicle ‘
(®)Robot ‘ o name: String ‘ ‘ o name: String ‘ P S
String id L?gtder speed: Integer
File Syst air environment: String
ertorms ile System move(time: Integer) @ Play
E— ©F d © File String name
older e r—— i i
(©) TaskExecution ’ S e Time time
_ | String id Int size
int stgartTlme B  ——— ‘@LandVehlcle‘ ©ManneVeh|cle‘
Location location } | !
M Musical Opera
. E i ©) ©or
@FlleSystemElement
©Tm P — ©Amph|blousvehlcle
String id String name

Fig.4 Intent models of the eight selected exercises
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@ Course

- © Dormunit
o name: String
o credits: int o price: int

o professors: Set<Professor> o students: Set<Student>

o enrolledStudents: Set<Student>

hosts
teaches/ is taken by 1.%
professors enrolledStudents enrolledCourses residentStudents /students
enrolls

d
© Professor ~ © —Rdent

o name: String
o name: String

o enrolledCourses: Set<Course>
o dormUnit: Dormunit

Fig.5 Example showing some of the mistakes made by ChatGPT when
representing associations (real ChatGPT output)

F9. Relationships ChatGPT is able to capture associations
and inheritance adequately, although not always. The ability
seems to depend on the domain being modeled. Modeling of
role names, on the other hand, seems to work well for most
domains.

F10. Determinism Results are rather random, with major
differences for the same prompt in different chats, as dis-
cussed above and illustrated in Figs.2 and 3.

F11. Semantics Syntactically, results are mostly correct.
However, semantically they are not always correct. Examples
of common mistakes include:

1. Duplicating aggregations (and sometimes even associ-
ations) by defining, in addition to the association, an
attribute in the containing class with the list of related
elements, which is equivalent to the association and there-
fore redundant.

2. Mistakenly modeling relations as directed associations.
When asked to convert them into bidirectional associ-
ations, two opposing directed associations are created.
These cannot be merged later, even if we explicitly ask
ChatGPT to do so.

3. Creating compositions or aggregations with two com-
posite ends, as illustrated in the example shown in Fig. 5.
Note that the multiplicities of these relations are seman-
tically incorrect, too.

F12. Iterative process is required Several iterations with
explicit requests for modification are usually needed to
approximate the user intent model (cf. Table 2). Thus, the
task of developing a model usually consists of a dialogue
with ChatGPT, rather than a single request—response inter-
action. Normally, we start with an initial prompt and refine
the result until we achieve the desired intent model. Given
the large variability of ChatGPT’s responses to exactly the
same prompt, it is even a good strategy to start several con-
versations and continue with the one whose initial model is
most promising, both regarding its level of abstraction and
its contents (classes, attributes and associations). This is also
important because the iterative process does not always con-
verge. Sometimes the requested changes were implemented
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so poorly that the models became badly flawed and we had
to start from scratch (or from some regenerated model in an
intermediate step of the dialogue).

F13. Constructs of the UML language not handled prop-
erly There are UML constructs that ChatGPT can incorporate
but does not always handle adequately. For example, if we
give it a UML model with an association class, ChatGPT
is able to handle it and even define correct OCL constraints
involving that association class. However, none of the mod-
els that ChatGPT generates include association classes, even
when they would be the most natural way to model the
problem. We also tried to give ChatGPT a USE model that
contained an association class and asked it to write the model
in PlantUML. ChatGPT converted it to a model without asso-
ciation class. We explicitly asked ChatGPT to rewrite the
model to have association classes, and it said yes, but did
not. In fact, none of the three intent models of the exper-
iment containing association classes could be created with
ChatGPT: Airlines, Robots and Theaters (cf., Table 2).

F14. Enumerations In most cases, enumerations are not
used by ChatGPT unless explicitly requested. It rather uses
either inheritance or strings. Unlike with association classes,
when explicitly asked to use enumerations, it does so cor-
rectly.

F15. Multiple inheritance Multiple inheritance is not han-
dled correctly. We needed to explicitly describe the type of
relationship and what the source and target classes were to
obtain the desired result. Although ChatGPT most times ends
up producing the right result, there is high variability in its
responses, producing correct and incorrect models seemingly
at random.

F16. OCL constraints Initially, ChatGPT does not include
constraints in the model even when they were stated in the
prompt. When explicitly asked to include them, ChatGPT
first proposes using notes, and then operations. When we
asked ChatGPT about whether OCL could be used instead,
mostly correct OCL constraints were generated (apart from
minor syntactic mistakes on a few occasions).

F17. Capacity for abstraction ChatGPT (unlike human
modelers) has no capacity for abstraction. If it is asked to rep-
resent the UML model of a car with four wheels, it sometimes
creates four such attributes, as opposed to a more general
form of modeling that is capable of using a collection of
wheels that now has four but at another time might have
more or less. For a small number of elements, this strategy is
acceptable, but it is suboptimal when the number increases
above a certain threshold. Similarly, ChatGPT does not fac-
tor out the common attributes of subclasses and place them
in the superclass on its own.

F18. Effort required by the modeler Finally, the amount of
time and effort required to produce the correct intent mod-
els is not negligible, especially considering the small size
of these models. For example, in all the intent models that
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could be correctly produced, the total number of interactions
with ChatGPT (counting the prompts of all sessions until the
model was correct) exceeded the number of model elements.

4 Analysis

After carrying out the experiments and analyzing our expe-
rience with ChatGPT, this section is dedicated to answering
the research questions identified in Sect.2.3.

RQ1. Does ChatGPT generate syntactically correct UML
models?

The UML models produced by ChatGPT are generally
correct, although they may contain small syntactic errors (see
finding F5). This also depends on the notation used. Although
we did not test it thoroughly, the level of syntactic correctness
of the models produced in PlantUML was much higher than
those generated in USE, for example.

RQ2. Does ChatGPT generate semantically correct models,
i.e., semantically aligned with the user’s intent?

This is the weakest point that we observed during our
interaction with ChatGPT. Some studies suggest that LLMs
are better at syntax than producing semantically correct
results [11]. Our findings (e.g., F13) corroborate this fact.
This includes errors in both the semantics of the language
and the semantics of the domain being modeled. On many
occasions, we observed that ChatGPT proposed seemingly
random models that made no sense from either a modeling
or domain standpoint.

RQ3. How sensitive is ChatGPT to the context and to the
problem domain?

Our findings F1, F2, F3 and F6 clearly show that not only
the problem domain influences the resulting models, but also
the information exchanged during the dialogues with Chat-
GPT. In addition, the more ChatGPT ‘“knows” about adomain
(i.e., the more data about a domain was used during training),
the closer-to-correct class models it produces. ChatGPT pro-
duces its worst results when it has little or no information
about the domain or the entities to be modeled, as it hap-
pened when asked to produce software models of entities
such as Snarks or Zumbats, for which it did not seem to have
any reference or semantic anchor.

RQ4. How large are the models that ChatGPT is able to
generate or handle?

As mentioned in Finding F4, ChatGPT currently has strict
limitations on the size of the models it can handle. It has seri-
ous problems with models larger than 10-12 classes. Even
the time and effort required to produce smaller models (Find-
ing F19) are not insignificant.

RQS. Which modeling concepts and mechanisms is Chat-
GPT able to effectively use?

The modeling concepts that we analyzed are shown in
Table 1. There is a high degree of variability in how Chat-
GPT handles them. We observed that it is able to manage
reasonably well (with some exceptions) associations, aggre-
gations and compositions, simple inheritance and role names
of association ends (F9). However, it requires explicit indi-
cations for using enumerations (F14), multiple inheritance
(F15) and integrity constraints (F16). Finally, we found out
that its results are not acceptable when using abstraction
(F17), and it cannot handle association classes (F13).

RQ6. Does prompt variability impact the correctness/qu
ality of the generated models?

We observed that there is plenty of variability when Chat-
GPT generates responses to same prompt (F10). We learned
that it is useful to start a new conversation from scratch when
the results were not good, in order to find better solutions for
the same intent model (F12).

RQ7. Do different use strategies (e.g., prompt partitioning)
result in different outcomes?

First, as noted in finding F4, the size of the models that
ChatGPT is capable of handling in a single query forces
the modeling task to become an iterative process in which
the user starts with a small model and progressively adds
details to it (F12). The variability and randomness of Chat-
GPT responses (F10) or when results within a conversation
start to diverge often force the modeler to repeat conversa-
tions to try to obtain better models.

RQ8. How sensitive is ChatGPT to the UML notation used
to represent the output models?

ChatGPT is capable of representing models with several
notations (F5), although in general it makes fewer syntactic
mistakes with PlantUML. It is also much better with OCL
than with UML (F8). Finally, we also looked at how accu-
rate ChatGPT was with cross-modeling language translation
(F7), realizing that this task works better within the same
conversation, but not across conversations.
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5 Discussion

From our study, we conclude that ChatGPT is not yet a reli-
able tool to perform modeling tasks. Does that mean we
should discard it, or at least wait to see how it evolves before
taking any action? Our position is that, on the contrary, we
should start working now to improve the modeling skills of
ChatGPT and other LLMs to come, and to build a future
where these assistants are destined to play a prominent role
in modeling.

This section sets out our views about the future of LLMs
that we foresee when it comes to performing software mod-
eling tasks, and about how modelers can make the best use
of them. It is divided into three parts. First, we describe the
Model-Based Software Engineering (MBSE) tasks in which
LLMs can be helpful, and how we can use LLMs to accom-
plish them. Second, we discuss the consequences that the
new status quo may have on the way we develop models
and teach modeling, including the new possibilities it opens
and the new roles that software engineers could play in this
new context. Finally, we discuss what we think is needed to
realize this vision.

5.1 The role of assistants in MBSE

In our opinion, ChatGPT or any other LLM can be of invalu-
able help in many areas of MBSE, complementing the current
work of software modelers and letting them focus on the tasks
for which they really provide value.

Model development LLMs can help develop models both in
acceleration and exploration modes [2]. Modelers typically
generate models by composing (usually in their heads) model
fragments, each of which addresses a concern or implements
a feature. These model fragments are reused from existing
conceptual patterns or solutions known to the modeler, adapt-
ing them to the problem at hand. Assistants could be of
great help in this case, identifying these existing patterns or
solutions and automatically performing the adaptation. For
example, in acceleration mode, the tool can provide solu-
tions to add security aspects to a model, extend an existing
model to implement more entities or functionalities or pro-
vide model elements with new features, among other tasks.
In exploration mode, an LLM can provide a set of options
to a modeler on how to model certain system aspects. For
example, whether it would be better to use association ends,
inheritance or entity types to model certain roles in the appli-
cation. We could also ask the LLM about how to model
certain requirements and ask it to add to our model the one
that best suits our needs. In this context, the modeler would
identify the features or functionalities to be incorporated into
the model, using natural language, and the wizard would be
in charge of automatically adding them, until the model is
complete.
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Another task in which LLMs could be very useful is the

generation of object models that conform to a given class
diagram. We have tested this functionality in ChatGPT, and
the results have been very good, although we found similar
problems to those we had during model generation. Namely,
ChatGPT is able to produce very diverse instance models
quickly and efficiently, although the quality of those models
is not optimal. For example, most of them do not respect
the integrity constraints of the class diagram. As soon as
the quality of ChatGPT improves, e.g., by including some
grammatical checks such as those available for SQL [10], it
could outperform the current instance model generators, thus
successfully taking on this tedious and costly task.
Model-based testing In addition to generating sets of instance
models from a UML class model, that could serve as test
inputs, LLMs can also be used to generate test cases for
the system. For several simple systems (such as a bank
account, a microwave, an online shopping system and a flight
reservation system), we gave ChatGPT class diagrams with
the specification of their structure and operations, and state
machines with the specification of their behaviors, and asked
it to generate test cases for them. The results were very accu-
rate and complete, covering all relevant cases. Investigating
in depth the quality of the test cases that ChatGPT is able to
generate is part of our future work.
MBSE Education The methods for teaching modeling are
likely to be one of the things that will change the most. A
few ways in which LLMs can be used to improve modeling
education include:

— Enhanced Learning: LLMs can help students to learn
modeling languages by providing real-time feedback on
syntax, highlighting common errors and offering sugges-
tions for improvement. Additionally, they can provide
contextual help, e.g., providing definitions and examples
of modeling concepts.

— Model Completion: LLMs can provide auto-complete
functionality when students are developing models,
which can save time and improve accuracy.

— Model Generation: LLMs can also generate models
based on natural language descriptions. This can be use-
ful for students who are just starting and may not yet be
familiar with modeling, or with the syntax of a particular
modeling language.

In addition, other tasks where LLMs could be of great
help—although they would require more elaborate tool
support—are the following.

— Personalized Learning: As with other subjects, LLMs can
be used to provide personalized learning in computer sci-
ence education. If complemented by a tool that analyzes
the student’s strengths, weaknesses and learning style,
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LLMs can provide tailored instruction and feedback that
meets the individual needs of students.

— Automated grading and assessment: LLMs can provide
instant feedback to students on their performance. This
can save teachers time and help them provide more effec-
tive feedback to students.

5.2 How will the game change?

Overall, the use of large language models has the potential
to revolutionize software modeling engineering and educa-
tion, making it more accessible, personalized and efficient.
To get to that point, we will first need to improve the current
consistency and reliability of the models produced by LLMs
such as ChatGPT. Second, we will need to change the way
in which we currently develop software models and teach
modeling. These two issues are described in the following.

First of all, modeling assistants will become key compo-
nents in model development processes. Software modelers
will be able to interact with them in natural language in order
to build and test their models. For example, modelers may
rely on LLMs to explore modeling choices, add new features
to a model or change a model to accommodate to new or
evolving requirements.

Secondly, new software engineering roles will also appear.
For example, companies have started incorporating the new
role of prompt engineer [13], whose job is to test Al chatbots
using natural language instead of code. Their goal is to iden-
tify both errors and hidden capabilities so that developers can
either fix or exploit them. They are also experts on how best
to ask an LLM to perform a particular task so that it is carried
out in the most accurate and efficient manner by the chatbot.

New opportunities also emerge for experts in configuring
the hyperparameters that allow users to customize the LLM
predictions in order to improve the quality of the results.
As mentioned earlier, an appropriate hyperparameterization
for a specific task could be as important as the dataset used
for training the LLM [8] or the actual choice of the (deep
learning) algorithm. Similarly, LLM trainers can help provide
the appropriate datasets to improve the prediction accuracy
of an LLM in particular domains, and for specific tasks.

MBSE educators will have to change the way they perform
most of their tasks today. Since LLMs will be ubiquitous,
professors will not be able to prevent students from using
LLMs for their assignments. On the contrary, one of their
goals will be to help students use modeling assistants in the
best possible way to learn new concepts, develop software
models and test them. In addition, they will need to help
students to develop critical thinking skills that enable them
to distinguish when the information provided by an assistant
is useful and correct and when it is not.

Finally, researchers and academics will be able to use
LLMs to analyze large amounts of models, identify patterns
and insights and generate new ideas from them.

5.3 How do we make this happen?

The prospects are certainly encouraging. The question is
whether they are really attainable and, if so, how they can
be achieved. It is clear that ChatGPT’s abilities to perform
modeling tasks are not yet up to the job. In this section, we
would like to propose some suggestions that the modeling
community could implement to improve the reliability and
accuracy of ChatGPT and other generative Al models.

First, we should make more (correct) software models
available in public repositories, thus increasing the acces-
sibility of datasets that can be used for training LLMs and
other generative Al models. The more UML and software
models that are publicly available from different domains,
the more accurate and reliable the responses from these Al
models will be.

Second, we should start using LLMs/generative Al mod-
els in our software modeling tasks to familiarize ourselves
with them, explore their possibilities and discover their
limitations. We should strive to use them not only for devel-
oping software models, but also for testing them, generating
instances and test cases, etc. Exploring their use for other
MBSE tasks and activities could also be valuable. We are
sure that Al models can open new ways to make use of mod-
els in software and systems engineering tasks.

Providing feedback to the results of Al models, whenever
available, will benefit the whole community. Training them
should become a community effort, i.e., a responsibility of
each and every one of us.

Developing a body of knowledge that incorporates a set
of guidelines about the best strategies to interact with Al-
based assistants for various types of modeling tasks, as well
as a catalog of capabilities and common limitations, can also
contribute to streamline the assimilation of AI models for
modeling tasks.

Finally, let us incorporate LLMs and generative Al models
into our teaching practices. Making students acquainted with
them and aware of their possibilities and limitations will help
them not only to improve their modeling skills, but also their
critical thinking. They should learn to discriminate when to
use these AI models and when not to, as well as when to trust
their answers.

6 Conclusions
Generative Al and large language models are becoming

ubiquitous, and their upcoming impact on our disciplines
and professions cannot be overlooked. In this paper, we
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have investigated their current capabilities and limitations
for generating UML class diagrams and for assisting soft-
ware engineers to perform modeling tasks. Our findings show
that, in contrast to code generation and completion, the per-
formance of the current version of ChatGPT for software
modeling is still quite limited.

Our intention was not to conduct an exhaustive set of
experiments regarding the capabilities of LLMs for assist-
ing in modeling tasks, as they are currently changing very
fast. However, we wanted to address the growing need to
have a picture of their current state, as accurate as possi-
ble. We also did not want to address other issues related to
these types of tools, such as their ethical concerns. Although
equally important, in this article we have focused mainly on
their technical aspects.

In general, we believe that, far from detracting from the use
of this type of generative Al-based tools, we should try to help
improving them as much as possible. In addition, we should
start adapting our model-based engineering practices to these
new assistants and the possibilities they offer. Likewise, we
should start changing our modeling education methods to
incorporate them.

Successfully addressing the challenge of seamlessly inte-
grating these new LLMs and generative Al models into our
MBSE methods and practices is crucial. It could significantly
increase the impact of MBSE on society and lead to a major
step forward for our profession.
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