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Abstract
Increasingly, safety-critical systems include artificial intelligence and machine learning components (i.e., learning-enabled
components (LECs)). However, when behavior is learned in a training environment that fails to fully capture real-world
phenomena, the response of an LEC to untrained phenomena is uncertain and therefore cannot be assured as safe. Automated
methods are needed for self-assessment and adaptation to decide when learned behavior can be trusted. This work introduces
a model-driven approach to manage self-adaptation of a learning-enabled system (LES) to account for run-time contexts for
which the learned behavior of LECs cannot be trusted. The resulting framework enables an LES to monitor and evaluate
goal models at run time to determine whether or not LECs can be expected to meet functional objectives and enables system
adaptation accordingly. Using this framework enables stakeholders to have more confidence that LECs are used only in
contexts comparable to those validated at design time.

Keywords Goal-based modeling · Self-adaptive systems · Artificial intelligence · Machine learning · Models at run time ·
Cyber physical systems · Behavior oracles · Autonomous vehicles

1 Introduction

The integration of machine learning into autonomous sys-
tems is potentially problematic for high-assurance, safety-
critical applications [1,2] (e.g., autonomous vehicle features
[3,4],medical applications [5,6], smart grid systems [7], etc.),
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particularly when training coverage is limited and fails to
fully represent run-time environments. In addition to meet-
ing functional requirements, safety-critical learning-enabled
systems (LESs)1 must account for potentially a broad range
of possible operating scenarios and guarantee that all system
responses are safe [8]. However, machine learning compo-
nents, such as deep neural networks (DNNs), are associated
with uncertainties concerning generalizability, robustness,
and interpretability [9–11]. A rigorous software assurance
[12] process is needed to account for these issues of uncer-
tainty. For example, DNNs are used as LECs in numerous
safety-critical applications, such as autonomous vehicles, to
process onboard camera inputs [3,4]. Failure of these LECs
may lead to collisions with pedestrians or nearby objects.
Recently, several conferences,workshops, andmajorUS fed-
eral funding programs for assured autonomy [13–17] have
focused on exploring how the assurance of autonomous sys-
tems can be rigorously addressed. This paper proposes a
goal-oriented modeling approach to address the assurance

1 This paper refers to any functional software component with behavior
that is refined or optimized based on training experience (e.g., an object
detector trained by camera images) as a learning-enabled component
(LEC). An LES is any system containing one or more LECs (e.g., an
autonomous rover).
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of LECs and manage the run-time adaptation of a cyber-
physical LES.

Although verification of an LEC can include steps to
validate learning algorithms offline, additional online steps
are needed to provide confidence that an LES will per-
form reliably and safely at run time [18,19]. At design time,
mathematical proofs can show that convergence criteria of a
learning algorithmare satisfied, and empirical testing through
cross-validation can help estimate the generalizability of
a trained LEC. However, when all conceivable situations
cannot be included in training/validation data, methods are
needed to dynamically monitor and assess the trustwor-
thiness of LECs to determine whether assurance evidence
collected at design time remains valid for previously unseen
and/or uncertain run-time conditions. More importantly, an
LES must be able to determine when results from an LEC
can, or cannot, be trusted to correctly respond to current con-
ditions.

This paper presents a model-based framework for Model-
Driven Assurance for Learning-enabled Autonomous Sys-
tems (MoDALAS). MoDALAS uses goal models to manage
the run-time assurance of LESs, providing three key capa-
bilities. First, MoDALAS enables run-time monitoring of
LESs with respect to goal models. Second, MoDALAS uses
behavior oracles to assess the trustworthiness of LECs based
on functional and safety requirements expressed in the goal
model. Third, MoDALAS uses goal models to manage the
run-time adaptation of the LES to ensure its safe operation
in untrusted contexts.

In MoDALAS, online system verification is established
by the run-time monitoring of KAOS goal models [20] for
functional requirements [21]. Controlled by a self-adaptive
feedback loop [22], MoDALAS includes a behavior oracle
[23] for eachLEC.Analogous to a test oracle [24], a behavior
oracle predicts how an LEC will behave in response to given
inputs. In MoDALAS, behavior oracles are used to assess
the capability of LECs operating under varying run-time
conditions. The resulting self-adaptive LES can then detect
when its LECs are operating outside of performance bound-
aries and adapt accordingly, including possible transitions
to fail-safe modes in extreme circumstances. By combining
goal models with behavior oracles for an LES, developers
can specify requirements concerning the confidence in an
LEC and implement alternative strategies to ensure assur-
ance claims are supported. MoDALAS also supports the use
of fuzzy logic RELAX goal specifications [25,26] and cor-
responding analysis techniques to assess system assurance
in order to explicitly account for uncertainties in the goal
models due to environmental and onboard conditions.

A proof-of-concept prototype of MoDALAS is described
for a robotic operating system (ROS)-based [27] autonomous
rover LES equipped with a camera-based object detector
LEC [28]. DNNs play two roles in this example system: (1)

a DNN provides object detection capabilities for the rover
and (2) a separate DNN acts as a behavior oracle within
MoDALAS to assess the object detector’s performance at run
time. The object detector has been trained offline by a super-
vised training dataset, which includes mostly clear-weather
examples. However, the autonomous rover must be assured
to also function as expected in adverse weather. Without
MoDALAS, the object detector would be used regardless of
how closely run-time contexts match its trained experience,
which could risk accidents under adverse environmental con-
ditions (e.g., haze from a dust plume at a construction site).
In contrast, MoDALAS determines when the rover’s object
detector is operating outside of training coverage and then
triggers the rover to adapt accordingly by entering a more
cautious operating mode. The remainder of this paper is
organized as follows. Section2 reviews background top-
ics. Section3 describes how goal models are processed by
MoDALAS. Section4 describes how MoDALAS manages
LESs at run time to mitigate the impact of uncertain condi-
tions. Section5 presents an implementation of MoDALAS
for an autonomous rover. Section6 reviews related work.
Finally, Sect. 7 summarizes the paper and briefly discusses
future work.

2 Background

This section reviews background topics and enabling tech-
nologies that are relevant to the design and operation of
MoDALAS, as well as assurance challenges for LECs.
MoDALAS is a goal-based (e.g., Goal Structuring Nota-
tion (GSN) assurance cases andKAOS requirementsmodels)
model-based framework that extends and integrates a number
of disparate techniques previously used for different purposes
and contexts in order to explicitly address run-time assurance
of LESs. For reader convenience, Table 1 provides an “at-a-
glance” overview of the main enabling technologies that we
have leveraged/extended and integrated to support our objec-
tives in this work.

2.1 Challenges for LESs

Promising results from the use of deep learning [29] to solve
traditionally difficult problems such as image classification
[30] and object detection [31] have led to an increase in the
use of LECs in autonomous systems [32], many of which are
safety-critical (e.g., onboard autonomous systems [3,4,33])
where assurance and safety are paramount. For example,
DNNs have been implemented for the planning [34], per-
ception [35], and mapping/localization [36] of autonomous
vehicles. An advantage for using DNNs in these tasks is to
reduce dependence on human feature engineering, as features
are learned directly from input data [37]. However, increased
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Table 1 Summary of main
technologies used in MoDALAS

Technology Name Description

Assurance Cases Declarative specifications of assurance claims, organized
hierarchically, where the leaf nodes refer to evidence used to
establish parent claims

DNNs Multilayered artificial neural networks with behavior determined by
machine learning. For this paper, DNNs are used for two separate
purposes

(1) Functional behavior of an LEC (e.g., an object detector)

(2) Behavior oracles (e.g., Enlil [23]) to predict how LECs respond to
given uncertainty factors

KAOS goal models A goal modeling technique that supports hierarchical AND/OR
decomposition of system goals, where the leaf nodes refer to
requirements or environmental expectations [20]

LEC Control component of an LES with behavior optimized or refined by
exposure to training data (e.g., object detector, speech-to-text
analyzer, etc.).

MAPE-K Loop An adaptation manager that supports system reconfiguration at run
time in response to environmental changes

RELAX Requirements specification language used to explicitly specify and
account for uncertainty

Utility Functions Used to monitor system behavior and assess degree of goal model
satisfaction

dependence on input data has introduced newchallenges con-
cerning data bias [38] and data quality [39]. Furthermore,
research has shown that DNNs are sensitive to surface sta-
tistical regularities [40], causing decisions to be based on
superficial, statistically common features in training data
rather than semantically relevant [41] features to the tar-
get task (e.g., deciding an image contains a dog based only
on a pattern of grass that is frequently present in the back-
ground of training images of dogs). AlthoughDNNs can ease
the burden of programming solutions manually with domain
expertise, determining the applicability of DNNs to situa-
tions not covered by training/validation data poses significant
challenges to system assurance.

One major concern is the robustness of a DNN (i.e., the
ability of aDNN to predict correctly in the face ofminor input
perturbations) [10,42]. Research has shown that adversarial
examples [43–45] can be constructed by adding human-
imperceptible noise to known inputs in order to deceive
DNNs into making incorrect decisions. Such results raise
concerns about the capability of DNNs to locally generalize
[43] (i.e., the expectation that inputs only slightly different
from training inputs will lead to similar results). Increasing
the robustness of a DNNmakes it more locally generalizable
and less sensitive to superficial noise.

Automated methods have been developed to augment
existing datasets to improve the robustness of DNNs and
alleviate the burden of manual data collection. Recent tech-
niques, such asDeepXplore [46], DeepTest [47], DeepGauge
[48], DeepRoad [49], DeepConcolic [50], DeepHunter [51],
Enki [52], and TensorFuzz [53], are designed to enhance

existing data with adverse characteristics in order to uncover
vulnerabilities in a DNN. Through data augmentation at
design time, these tools can incrementally improve the per-
formance of DNNs to new forms of adversity [54]. However,
an empirical study by Ma et al. [55] found certain test selec-
tion criteria used by state-of-the-art DNN testing methods to
be ineffective at uncovering erroneous DNN behaviors (e.g.,
selecting test inputs by neuron coverage has been found to
be sometimes worse than random selection). Moreover, the
inclusion of additional training data does not enable the LES
to recognize when the performance of an LEC is degraded to
the point where it cannot provide useful behavior, or worse,
provide unacceptable behavior. For example, a DNN that has
been trained with additional synthetic dust cloud data still
cannot correctly identify an obstacle hidden behind the dust
cloud if it is impossible to see past the occlusion. Therefore,
new techniques are required to enable the LES to identify
such detrimental situations and adapt to alternate fail-safe
modes accordingly, similar to how a human operator will
operate with caution in response to the occlusion. Further-
more, DNN testing tools only provide example inputs that
lead to specific errors; they do not provide the ability to pre-
dict the expected performance of a DNN when given new
inputs at run time.

Model inference [56] enables the prediction ofLECbehav-
iors at run time. In contrast to software testing, where
program inputs are generated to produce an intended system
behavior, model inference deduces resulting system behav-
ior from a given input. Black-box tools have used model
inference to improve test generation for software programs
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by inferring the behavior of traditional software components
[57,58]. Aichernig et al. [59] have also described how to con-
struct behavior models of cyber-physical systems through
deep learning. Langford and Cheng [23] proposed behav-
ior oracles to predict and categorize how an LEC will
behave in response to environmental conditions different
from those covered by the training process. Their system,
Enlil, generates a behavior oracle for an LEC by exposing
it to simulated “known unknown” adverse conditions (i.e.,
conditions that can be described in appearance but have an
uncertain impact on LECs). For example, fog may be con-
sidered a known unknown condition when the appearance
of foggy conditions can be described and simulated but the
resulting LEC response for any given example of fog is not
known a priori. In contrast to out-of-distribution methods
that assess confidence in DNN outputs [60,61], behavior ora-
cles can be constructed to predict the resultingDNNbehavior
with respect to additional user-specified performancemetrics
(e.g., predicting a specific level of object detection degra-
dation in adverse conditions). As described in this paper,
MoDALAS leverages and extends Enlil behavior oracles to
1) assess the ability of LECs to satisfy KAOS goals at run
time and 2) adapt the LES accordingly.

2.2 Self-adaptive systems

Self-adaptation provides software systems the capability to
adjust system behavior in response to the environment [22].
Self-adaptive systems (SASs) commonly operate with a cen-
tralized feedback controller (i.e., adaptation manager) to
observe and adapt managed components of a system [62].
Figure1 depicts a commonly used approach to manage
adaptation, called the Monitor-Analyze-Plan-Execute over
a Knowledge base (MAPE-K) loop [63,64]. The MAPE-K
loop comprises four steps to monitor managed elements of
the system, analyze the current system state to determine a
type of adaptation, plan what actions need to be taken, and
execute the operations needed to realize an adaptation. The
shared knowledge base informs each step in the adaptation
process (e.g., system data, adaptation goals, optional tactics,
etc.). Thus, the MAPE-K loop enables reconfiguration of an
SAS at run time in response to changes in the system or the
external environment.

2.3 Utility functions

One approach to monitoring SAS behavior is to use util-
ity functions [65,66]. Utility functions map system attributes
(i.e., the system state) into real scalar values to express a
degree of goal (i.e., requirements) satisfaction [67]. Specifi-
cally, a utility function takes the following form.

u = f (v) (1)

Fig. 1 High-level depiction of a MAPE-K feedback loop to manage
adaptations for an SAS [62]

The utility value is a real scalar value (u ∈ [0, 1]), and the sys-
tem state vector (v = [s0, . . . , sn]) reflects specific attributes
(si ) of a system and its environment (e.g., speed or battery
level of a rover). Thus, utility functions enable a quantifiable
comparison of low-level system states in terms of high-level
task-oriented objectives. Furthermore, utility functions help
simplify the computational overhead of the MAPE-K ana-
lyze step when assessing the current state of a system and
choosing a method for adaptation [21]. Notably, MoDALAS
demonstrates that utility functions can provide a common,
unified approach to characterize the behavior of both LECs
and non-learning system components.

The proposed MoDALAS framework enables run-time
verification of an LES by associating utility functions to
KAOS goal models, reviewed below, for the LES and its
LECs. The associated utility functions are then evaluated by
aMAPE-K feedback loop with behavior oracles to assess the
capability of LECs at run time. Guided by KAOS goal mod-
els that reference different behavior categories for its LECs,
an LES can adapt accordingly to mitigate any risks resulting
from use of an LEC under conditions for which it has not
been adequately trained. Furthermore, results from the run-
time evaluation of a KAOS goal model can provide evidence
to support assurance claims about the run-time verification
of an LES.

2.4 Assurance cases and goal-basedmodeling

In this subsection, we overview the modeling technologies
used inMoDALAS.MoDALAS uses two types of goal mod-
els tomanage the assurance of LESs at run time. GSNmodels
specify assurance cases for the system, and KAOS goal mod-
els specify the functional and performance requirements of
the system.
GSN assurance cases
Safety-critical LESs require a rigorous process for describ-
ing how functional requirements will be satisfied, including
when LECs are presented with uncertain contexts. The pur-
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pose of software assurance is to provide a level of confidence
to stakeholders that a software system conforms to estab-
lished requirements [68]. Assurance cases provide a means
to certify that software operates as intended by describing the
validation process and supporting evidence [69]. In an assur-
ance case argument, claims are made about how functional
and non-functional requirements are met, and each claim
must be supported with verifiable evidence. One way to doc-
ument an assurance case argument is through the use of GSN
[70], which depicts an assurance case as a graphical model.
Using GSN, an assurance case is depicted with an overarch-
ing assurance claim as its root goal (e.g., a rover navigates
its environment safely). The root goal is then decomposed
into lower-level assurance strategies, assumptions, justifi-
cations, contexts, and further subgoals to explain methods
of proof and reasoning for an assurance argument. At the
leaf level of a GSN model, solutions provide supporting evi-
dence for each respective branch of the assurance argument
(e.g., specific results from test cases, proofs, reviews, etc.).
Thus, a GSN assurance case graphically decomposes the
key elements of an assurance argument, connecting assur-
ance claims to each relevant artifact of supporting evidence,
including which validation strategies are required to demon-
strate assurance claims are supported.
KAOS goal modeling
Whereas the focus ofGSN is on software certification,KAOS
goal modeling [20] supports a hierarchical decomposition of
high-level functional and performance objectives into leaf-
level system requirements (i.e., goal-oriented requirements
engineering [71]). KAOS goal models enable a formal goal-
oriented analysis of how system requirements are interrelated
as well as threats to requirements satisfaction. Goals rep-
resent atomic objectives of a system at varying levels of
abstraction, with subgoals refining and clarifying higher-
level goals. Any event threatening the satisfaction of a
specific goal is represented as an obstacle. Resolutions for
obstacles can be specified by attaching additional subgoals
with alternative system requirements to the correspond-
ing obstacle. Finally, agents (i.e., system components) are
assigned responsibility for each system requirement. KAOS
goal models enable developers to decompose the expected
behavior of a software system, including information about
threats to specific system requirements and how system
requirements relate to each system component.
RELAX specifications
In this paper, we use the RELAX language [25] to explic-
itly specify uncertainties affecting an LES. RELAX is a
requirements specification language that enables develop-
ers to identify, evaluate, and “relax” brittle requirements to
address and mitigate uncertainty factors during run time.
During requirements engineering, developers may describe
system behaviors with strict and highly constrained proper-
ties. However, due to the numerous sources of uncertainty

potentially impacting an LEC, it may not always be possi-
ble to strictly satisfy all requirements. RELAX allows for
non-invariant requirements to be temporarily unsatisfied due
to uncertain environmental and onboard conditions. RELAX
operators add flexibility to the conditions for which a given
requirement is considered satisfied, thereby adding the notion
of degrees of satisfaction (i.e., “satisficement” [20,72]) in
a goal model. For example, RELAX operators such as AS
CLOSE AS POSSIBLE can be used to reduce the brittle-
ness of a given goal to RELAX elements (i.e., ENV, MON,
and REL to specify the relation (REL) of the variables that
are used to monitor (MON) an environmental condition with
uncertainty (ENV)) [25]. Table 2 enumerates the RELAX
operators, with the names of the operators provided in the
first column and corresponding descriptions provided in the
second. RELAX semantics have been defined in terms of
fuzzy logic [25].

RELAXenables developers to createmoreflexible require-
ments to ensure robustness against uncertainties. However,
modifications to textual requirements do not translate to
run-time evaluation. During run time, LESs monitor system
values and use utility functions to assess whether system
performance and/or configuration satisfy the current goal
model. Traditionally, utility functions returned a Boolean
value (i.e., 0 or 1) based on goal satisfaction. To address
run-timeuncertainty,RELAXoperators have beenmapped to
fuzzy logic semantics [75,76]. Fuzzy logic is a branch of logic
that enables developers to specify a partially satisfied goal.
Using fuzzy logic, a utility function can return normalized
real values ranging from 0 (i.e., not satisfied) to 1 (i.e., satis-
fied). A goal that returns a partially satisfied utility function
is known as satisficed [20]. Since fuzzy logic allows utility
functions to return real numbers, goal refinement (i.e., AND
andOR goal decompositions) for parent goal evaluationmust
be redefined. In the parent goal ofRELAX-ed goals, the goal’s
utility function is evaluated by applying mathematical oper-
ations (e.g., min and max) on subgoals’ satisficement values.
While several popular approaches to fuzzy logic evaluation
exist, this work uses Zadeh fuzzy operators [77], a common
convention for resolving fuzzy logic (e.g., conjunctions, dis-
junctions, and implications). Using Zadeh fuzzy operators,
when the subgoals are related by an OR relationship, the
maximum value of all subgoals’ utility functions determines
the evaluation of the parent goal. In contrast, when the sub-
goals are part of an AND relationship, their minimum value
determines the parent goal instead.A parent goalmay be con-
verted to Boolean satisfaction if the evaluation of the value of
the RELAX-ed subgoals exceeds a specified threshold (e.g.,
0.5). To illustrate an example of a RELAX specification, we
describe a component of an autonomous vehicle that detects
obstacles. A traditional requirement may be described as fol-
lows:
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Table 2 Example of RELAX operators and uncertainty factors [73,74]

Operator Description

Modal operators

SHALL A requirement must hold

MAY...OR A requirement specifies one or more alternatives

Temporal operators

EVENTUALLY The requirement that must hold eventually

UNTIL A requirement must hold until a future position

BEFORE/AFTER A requirement must hold before or after a particular event

AS EARLY AS POSSIBLE A requirement specifies something that should hold as soon as possible

AS LATE AS POSSIBLE A requirement specifies something that should be delayed as long as possible

AS CLOSE AS POSSIBLE TO [frequency t] A requirement specifies something that happens repeatedly, though the frequency may be relaxed

Ordinal operators

AS FEW/MANY AS POSSIBLE A requirement specifies a countable quantity, though the exact count may be relaxed

AS CLOSE AS POSSIBLE TO [quantity q] A requirement specifies a countable quantity, though the exact count may be relaxed

Uncertainty factors Description

ENV Defines a set of properties that define the system’s environment

MON Defines the set of properties that can be monitored by the system

REL Defines the relationship between ENV and MON properties

DEP Defines the dependencies between the (relaxed and invariant) requirements

S1: The system SHALL detect obstacles within 10
meters.

This requirement represents an ideal situation. However,
instead of a rigid requirement, a developer may wish to relax
the requirement to account for uncertainty factors (e.g., speed
variance of two vehicles, the sensitivity of the sensors, etc.).
For example, S1 may be RELAX-ed to the expression S1′ if
the vehicle is traveling below 10ms per second, since there
is more time for the system to react to detected obstacles.

S1′: The system SHALL detect obstacles AS CLOSE
AS POSSIBLE to 10 meters.
ENV: location of obstacle
MON: obstacle detection system
REL: system detects obstacle

Using S1′, the system can still handle the requirement of
“detect obstacle within 10ms,” and also support a more flex-
ible requirement should the system detect an obstacle within
8ms. Specifically, developers can replace rigid Boolean util-
ity functions (i.e., the system detected obstacle within 10ms
or not) with fuzzy logic utility functions (e.g., degree of satis-
ficement from 0 to 1) using RELAX. As such, the system can
adapt and temporarily trade-off non-critical requirements to
maintain the satisfaction of more critical requirements.

3 Modeling in MoDALAS

This section describes how modeling and specification tech-
nologies (e.g., GSN, KAOS, RELAX) are applied at design
time in MoDALAS. We describe how we have integrated
KAOS goal modeling and corresponding analysis into the
GSNassurance approach. In addition, our approach toKAOS
goal modeling enables developers to identify uncertainty in
the form of both obstacles and RELAX specifications. We
also include utility functions in the leaf level nodes of the
KAOS model as a means to assess whether the individual
goals and the full goal model are satisfied at run time.

3.1 Assurance cases in MoDALAS

MoDALAS accepts as inputs assurance cases and goal mod-
els that have been constructed and validated throughmethods
such as model checking at design time [78]. In this work,
assurance cases are modeled using GSN, though alterna-
tive methods may also be used to describe an assurance
case [12]. A simple example GSN model is shown in Fig. 2,
which claims a rover will navigate its environment safely
(claim C1). Strategies are implemented to support claim C1
through offline validation (strategy S1) and run-time anal-
ysis (strategy S2). At design time, software testing, model
checking, and formal analysis are conducted offline to sup-
port assurance claim C2, with results provided as evidence
in solutions Sn1-Sn3. At run time, evaluation of a KAOS
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Fig. 2 Example GSN assurance case for design-time and run-time val-
idation of a rover. At design time, validation is supported by formal
proofs, test results, and simulation (highlighted in green). At run time,
verification is supported by the evaluation of a KAOS goal model (high-
lighted in blue)

goal model for the rover provides evidence (solution Sn4)
to demonstrate system requirements remain satisfied under
changing run-time conditions (claim C3). As such, a GSN
model provides context for our work, where evidence gener-
ated for assurance solution Sn4 is provided by the evaluation
of KAOS goal models at run time.

3.2 Goal modeling in MoDALAS

This section describes how KAOS goal models are automat-
ically processed by MoDALAS to hierarchically decompose
high-level goals into leaf-level system requirements for anal-
ysis. Figure3 shows a legend for KAOS goal modeling
elements, while Fig. 4 shows an example KAOS goal model
for a rover that must navigate its environment. In this exam-
ple, a rover is expected to sense objects in its environment
and plan its trajectory around objects according to object
type (e.g., when pedestrians are present (G10) or not (G9)).
The rover implements a DNN-based object detector that can
locate zero or more objects within a camera image and clas-
sify the type of each object [28]. The trustworthiness of the
object detector depends on how similar the run-time envi-
ronment is to its training experience. The rover also ensures
there is sufficient braking power (G20) using sensor values
from the tire pressure monitoring system and friction sensor.
In Fig. 4, utility functions (shown in yellow) are attached to
the bottom of each goal. Utility functions enable the KAOS
goal model to be evaluated at run time to determine goal
satisfaction.

InKAOS notation, any event that can threaten the satisfac-
tion of a goal is represented as a KAOS obstacle. In Fig. 4,
obstacles O1 and O2 represent events in which the object

Fig. 3 Legend key for interpreting the KAOS goal model notation

detector is operating in a state not explored during design
time. Obstacle O1 represents events where the object detec-
tor’s performance is degraded (i.e., statistical performance is
less than ideal), and obstacle O2 represents events where the
object detector is compromised (i.e., statistical performance
is unacceptable). When the object detector is compromised,
goal G16 is given as an obstacle resolution, where the rover
is expected to perform a fail-safe procedure (e.g., halt move-
ment). When the object detector is only degraded, goal G17
is given as a resolution, where the rover is expected to slow
down and increase its minimum buffer distance from objects
encountered in the environment. Additional KAOS obstacles
and resolutions can be included, depending on the LEC, tar-
geted behavior categories, and LES requirements.

3.3 Relaxing goals in MoDALAS

To address environmental uncertainties, developers may use
RELAX to temporarily allow specific requirements to be
relaxed within acceptable ranges. During the design step,
the developers identify non-invariant requirements that may
be relaxed. Next, developers specify specific requirements
in terms of a KAOS goal model, including various RELAX
operators for goals that face uncertainty factors. During this
step, developers must also define utility value thresholds
for goals that convert fuzzy logic utility function values to
Boolean utility function values.

Figure5 shows a modified version of the KAOS goal
model fromFig. 4, where RELAXoperators are used in goals
G20, G21, and G22. In the new goal model, we modified
G20 with the RELAX language to allow partial goal satis-
faction. The fuzzy logic utility functions of the RELAX-ed
goal models are evaluated to return a real number ranging
from 0 to 1 to represent the degree of satisficement for the
specific goal. Specifically, G20 is considered satisfied if the
threshold value of both the tire pressure sensor monitor and
the friction monitor are satisfied to the degree of 0.5.

To demonstrate the use of RELAX with an autonomous
rover, Fig. 6 shows an example of a RELAX-ed goal branch.
Consider goalG20, where the rover ensures that there is suf-
ficient braking power for the rover to stop should it detect a
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Fig. 4 Example KAOS goal model.Goals (blue parallelograms) repre-
sent system objectives. The top-level goal (G1) is refined by subgoals
down to leaf-level system requirements. Agents (white hexagons) rep-

resent entities responsible for accomplishing requirements. Obstacles
(red parallelograms) represent threats to the satisfaction of a goal (e.g.,
O1 and O2)

Fig. 5 Example a RELAX-ed KAOS goal model. Goals G20, G21, and G22 use fuzzy logic to denote degree of goal satisfaction
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Fig. 6 Example of the KAOS goal model for G20, G21, and G22
demonstrating a RELAX-ed goal hierarchy

potential collision. Previously, G20 returns a Boolean value
to parent goals indicating whether there is enough braking
power or not.G21 andG22 returned Boolean values depend-
ing on whether or not the specific sensor values are satisfied.
In order to add flexibility and account for environmental
uncertainties,G21 andG22 are RELAX-ed to explicitly cap-
ture uncertainty (e.g., if the visibility is poor and the rover is
traveling under 10m/s). To check if G20 is satisfied, the sys-
tem ensures that i) the friction sensor detects a friction rate of
2Newtons, with an acceptable range of−0.5Newtons and ii)
the tire pressure is within 221 kPa, with an acceptable range
of ±14 kPa. Fuzzy logic is used to express the degree of sat-
isficement in the RELAX utility functions. For example, if
the system detects that the value of a RELAX-ed goal is satis-
fied (e.g., tire pressure is at 221 kPa), then the corresponding
utility function returns 1. The value returned reduces to 0 as
the value reaches the lower bound of the acceptable range.

Figure7 shows an example of the range of values returned
forG21. The utility function used to evaluateG21 is shown in
Fig. 8.G21 returns 1 if the value of the friction sensor reads 2
Newtons. The returned value linearly decreases as the sensor
value reduces to the lower bound of the acceptable range.
In contrast, Fig. 9 shows an example of the range of values
returned in G22. Unlike G21 where the goal has an accept-
able range below a set value, G22 allows for satisficement
in both directions (i.e., a triangular fuzzy logic function is
used). The utility function used to derive the return value for
G22 is shown in Fig. 10. It returns 1 when the tire pressure
monitor reads 221 kPa. Since the acceptable range of the util-
ity function is defined as 221±14 kPa, the value returned by
the utility function decreases linearly to 0 as it approaches
207 kPa or 235 kPa, forming a triangular relationship.

The value of the parent AND goal, G20, is based on the
evaluation of the utility functions of its two children sub-
goals, G21 and G22. The satisfaction of G20 is determined
by a threshold value defined by a domain expert. Figure6
shows the logical relationship between G20, G21, and G22,
where the subgoals form an AND relationship. Expression 2
specifies the utility function used to evaluate goal G20.

1.5 2

0

1

G21 not satisfied

1

Fig. 7 Range of values returned by the friction sensor (G21) using the
RELAX language with fuzzy logic

Fig. 8 Utility function to calculate goal satisficement for G21

Fig. 9 Range of values returned by the tire pressure monitor system
(G22) using the RELAX language with fuzzy logic

Fig. 10 Utility function to calculate goal satisficement for G22

G20util =
⎧
⎨

⎩

1.0 if min(G21util ,G22util )
> threshold

0.0 otherwise
(2)

While we demonstrate the use of RELAX to explicitly
specify uncertainty in this paper,MoDALAScan also accom-
modate other types of requirement specification languages
and corresponding utility functions used to address uncer-
tainty, such as FLAGS [79], probabilistic utility functions,
etc.

4 Managing systems with MoDALAS

This section describes how the MoDALAS framework sup-
ports goal-based self-adaptation of an LES. Figure11 shows
a data flow diagram (DFD) of the framework. Circles repre-
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Fig. 11 High-level data flow diagram of MoDALAS. Processes are shown as circles, external entities are shown as boxes, and persistent data stores
are shown within parallel lines. Directed lines between entities show the flow of data

sent computational steps, boxes represent external entities,
directed arrows show the flow of data, and persistent data
stores are shown within parallel lines. Design-time steps
(green) include the construction of an assurance case, a goal-
oriented requirements model of the LES, and a behavior
oracle for each LEC. Run-time steps (blue) implement a
MAPE-K feedback loop driven by the models constructed
at design time.

Although MoDALAS is platform-independent, to aid the
reader, the following descriptions include an example of
an autonomous rover with a learning-enabled object detec-
tor. Specific implementation details on how MoDALAS is
applied to the autonomous rover are provided in Sect. 5. Each
step for the DFD in Fig. 11 is described in detail as follows.

4.1 MAPE instantiation

In Step D1, an adaptation manager (implemented as a
MAPE-K loop) is instantiated to manage adaptations of the
LES. To determine the system state and evaluate KAOS goal
models at run time, the adaptation manager must be con-
figured to monitor the same system attributes referenced
by KAOS goal models. KAOS goal models are parsed,
and utility functions are extracted from each KAOS ele-
ment. MoDALAS requires that KAOS goal models have
been converted into a machine parsable file format (e.g.,
XML) that includes attributes for each KAOS element and
its associated utility function. A set of utility parameters
is then compiled by identifying each unique variable ref-
erenced by a utility function. Since utility parameters may
refer to abstract concepts, a manual mapping must be made
by the user to link each utility parameter to a platform-
specific property of the LES. For example, for the utility
function object_dist >= 0.8 in Fig. 4, goal G14, the util-
ity parameter object_dist refers to the buffer distance

between the rover and any object in the environment. It is the
responsibility of the adaptation manager to link this abstract
parameter to a real, platform-specific property of the rover.
Configuration files are generated by Step D1 to initialize the
monitor processes of the MAPE-K loop with references to
the platform-specific properties to observe.

4.2 Constructing behavior oracles

To monitor and assess the trustworthiness of LECs at run
time, MoDALAS leverages behavior oracles generated by
Enlil [23] for each individual LEC in Step D2. In contrast
to traditional monitoring techniques used in the MAPE-
K loop (e.g., physical sensors, data-based monitors [80],
etc.), behavior oracles are uniquely implemented as DNNs in
MoDALAS to infer behavior of each LEC when exposed to
new forms of environmental uncertainty under simulation.
For example, when a rover implements a learning-enabled
object detector that has been trained only in clear weather,
Enlil can be used to simulate adverseweather conditions and
model the capability of the object detector under a variety of
adverse conditions. The resulting behavior oracle can then
predict different behavior categories for the object detector
when presented with sensor data under various weather con-
ditions. These categories are application-specific and must
be defined according to the user for the given task and LECs
involved. Furthermore, we codify the behavior oracle eval-
uations in the form of utility functions to enable real-time
assessment of the type of LEC behavior to expect under vary-
ing run-time conditions.

The KAOS goal model in Fig. 4 reflects that three
different behavior categories have been specified for the
behavior oracle of a rover’s object detector. Two of these
(behavior_cat == 1 andbehavior_cat == 2) are
attached to obstacles O1 and O2, respectively. The third
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Table 3 Behavior categories for an object detector

Category Classification Definition

0 “Little impact” 0% ≤ δrecall < 5%

1 “Degraded” 5% ≤ δrecall < 10%

2 “Compromised” 10% ≤ δrecall

(behavior_cat == 0) is the default and not explicitly
shown in Fig. 4. (The number of behavior categories depends
on the granularity and spectrum of available behaviors and
also the number of alternative resolutions required to sat-
isfy system requirements.) Categories are determined by
assessing the object detector’s performance under a vari-
ety of adverse environmental contexts in simulation. In this
example, the object detector’s recall2 is measured when a
newly-introduced adverse condition is present versus when
it is not. The change in recall (δrecall ) is then used to mea-
sure the effect on object detector’s performance. The value
of δrecall is computed statistically by measuring the object
detector’s recall for a set of validation images with and with-
out exposure to the given environmental phenomena. Table 3
provides a description of each behavior category reflected in
Fig. 4. When δrecall < 5%, the given context is considered to
have “little impact” on object detection (Category 0). When
5% <= δrecall < 10%, the object detector is considered
“degraded” (Category 1). Finally, when δrecall > 10%, the
object detector is considered “compromised” (Category 2).

Enlil automatically assesses an LEC by generating
unique contexts of simulated environmental phenomena (via
evolutionary computation [82]) to uncover examples that
lead to each targeted behavior category. Figure12 shows a
scatter plot generated by Enlilwhen simulating dust clouds.
Each point represents a different dust cloud context with the
resulting recall for the object detector LEC. Colors corre-
spond to the observed behavior category for each respective
point (i.e., categories 0, 1, and 2 are green, yellow, and red,
respectively).Data collected during this assessment phase are
used by Enlil to train a behavior oracle that can map LEC
inputs to expected behavior categories (i.e.,model inference).

Behavior oracles created in Step D2 are used at run time
to predict the resulting behavior category of an LEC for
any given run-time context. For the example object detec-
tor, inputs to the behavior oracle are the same camera inputs
given to the object detector. Output from the behavior oracle
includes a description of the perceived context of the environ-
mental condition and the inferred behavior category for the
object detector. Figure13 shows three behavior categories to
represent different degrees of impact dust clouds can have

2 Recall is the ratio of correctly detected objects to all detectable objects
(i.e., the ratio of true positives to both true positives and false negatives)
[81].

Fig. 12 Scatter plot of object detector recall when exposed to simulated
dust clouds from Enlil. Each point represents a different dust cloud
context with the corresponding density and intensity. Green, yellow, and
red points correspond to behavior categories 0, 1, and 2, respectively

on an object detector. Effectively, this information is used to
assess the trustworthiness of the object detector.

4.3 Self-adaptation at run time

AMAPE-K loop adaptation manager is executed at run time
to monitor and reconfigure the managed LES with respect
to the models constructed at design time. Responsibilities
include assessing the current state of the LES, predicting the
capability of LECs via behavior oracles, determining when
system requirements are not satisfied by referencing KAOS
goal models, and planning adaptations to ensure mitigating
actions are taken to maintain requirements satisfaction.

Step R1. Monitor: In order to inform self-adaptations,
monitor processes observe and record relevant attributes of
the managed LES, which includes executing the behavior
oracles constructed in Step D2. In KAOS notation, agents
indicate which system components are responsible for each
system requirement (e.g.,A1-A4 in Fig. 4). Specific attributes
of a system component are monitored when referenced by
utility functions in the models constructed at design time (see
Step D1). Monitor processes are responsible for observing
functional system components (e.g., controllers, mechani-
cal parts, physical sensors, etc.) as well as behavior oracles
for LECs. For example, when using a behavior oracle for a
camera-based object detector, the behavior oracle is executed
for each new camera input to predict the impact of run-time
conditions on the object detector’s performance. Through the
use of utility functions,MoDALAS enables LECs to bemon-
itored in a similar manner to traditional system components,
using behavior oracles to determine whether or not LECs can
be trusted in the current system state.
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Fig. 13 Example behavior oracle input/output for an image-based
object detector LEC. Input is identical to the input given to the LEC.
Output is a “perceived context” to describe the environmental condi-
tion and a “behavior category” to describe the expected LEC behavior.
Examples of behavior categories 0, 1, and 2 are shown in (a), (b), and
(c), respectively

Step R2. Analyze:KAOS goal models of the LES are eval-
uated in Step R2.a to determine if adaptation is needed to
resolve violated system requirements. Utility functions from
the KAOS goal model are extracted, and a logical expres-
sion is formed via top-down graph traversal of the KAOS
goal model. For example, Fig. 14 shows the logical expres-
sion parsed from the KAOS goal model in Fig. 4. Variables
in this expression are substituted with corresponding values
recorded by Step R1, and the entire expression is evaluated to
determine satisfaction of theKAOS goalmodel. If the logical
expression is satisfied, then no adaptation is needed. How-
ever, in the event that the resulting evaluation is unsatisfied,
then the type of adaptation is determined based on the set of
violated utility functions.

Methods for adaptation are implemented as adaptation
tactics [83], which are stored in a repository accessible by
the MAPE-K loop (example tactic in Fig. 15). Each tactic
comprises a pre-condition, post-condition, and set of actions
to perform on the managed LES. Pre-conditions and post-
conditions for tactics reference the satisfaction of KAOS
goals/obstacles, where pre-conditions are defined by the util-
ity functions for KAOS obstacles and post-conditions are

Fig. 14 Logical expression parsed from KAOS model in Fig. 4

Fig. 15 Example tactic for reconfiguring a rover to a “cautious mode.”
Pre-conditions and post-conditions refer to KAOS elements and utility
functions (see Fig. 4). Actions are abstract operations to achieve the
post-condition

defined by the utility functions associated with the resolu-
tion goals for KAOS obstacles. Step R2.b retrieves a tactic
from the repository with pre-conditions that most closely
match (e.g., via logical implication) the current evaluation
of the KAOS goal model. For example, in the event that
obstacle O1 is satisfied and goal G17 is not satisfied, then
the tactic in Fig. 15 with a pre-condition matching the util-
ity function for O1 is selected. The post-condition in Fig. 15
includes the utility functions for G17 and its subgoals (G18
andG19). The actions associatedwith the tactic are platform-
independent operations required to satisfy the post-condition.
When multiple tactics fit the given pre-conditions, the tac-
tic with higher priority is chosen, where priorities can be
manually assigned and/or adjusted based on the success of
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subsequent goal model evaluations in future iterations of the
MAPE-K loop.

Step R3. Plan: After a platform-independent adaptation
tactic has been selected in Step R2, a platform-specific pro-
cedure is generated for implementing the actions associated
with the selected tactic. For example, a platform-independent
action to turn the autonomous platform 15◦ will be translated
into the corresponding operations for a wheeled rover ver-
sus a legged-robot. Additionally, actions may be modified to
consider the dynamic state of the system during execution of
a tactic (e.g., actions may change or be preempted to account
for emergent mechanical issues in a rover) [84].

Step R4. Execute:After an adaptation procedure has been
planned, Step R4 is responsible for interfacing with and
reconfiguring the managed LES. Depending on the nature of
the adaptation and the current system state, different meth-
ods of adaptation may be considered to ensure the managed
LES functions correctly while safely transitioning into its
new configuration (e.g., one-point, guided, or overlap adap-
tations) [85]. Since adaptations may not be safe to perform in
all states of the LES, Step R4 is responsible for determining
quiescent states where the LES can be safely reconfigured
(e.g., prevent halting a rover during a high-speed turn) [86].

5 Proof-of-concept demonstration

To illustrate the operation of MoDALAS, we consider
a scenario where an autonomous rover is used within a
construction site.3 Compared to autonomous automobiles
operated on public roads, autonomous construction vehi-
cles operate within relatively tight behavioral constraints
and physical areas, leading to rapid growth in this market
segment [87]. In addition to large earth-moving vehicles,
smaller rovers are used to carry tools and materials for
construction workers, periodically record the progress of
construction, and provide surveillance of the site outside
of normal operating hours [88]. For such rovers, detecting
and avoiding objects in the environment, including pedestri-
ans and other vehicles, are safety-critical requirements [89].
Increasingly, machine learning techniques have been used
to provide object detection in such applications [90]. How-
ever, ensuring requirements satisfaction of learning-enabled
autonomous rovers is a challenging task, as transient environ-
mental conditions (i.e., rainfall or dust clouds) can impede
object detection and potentially lead to serious accidents and
even fatalities. To demonstrate the operation of MoDALAS
in the construction site application domain, we have imple-
mented a prototype and integrated it into the software for an
autonomous robot in our laboratory.

3 Due toCOVID-19 restrictions,wewere unable to deployour approach
for a full-scale physical experiment at the remote construction site.

Fig. 16 A1:5-scale (1.1m× 0.6m) autonomous vehicle for demonstra-
tion. A KAOS goal model governs run-time behavior and adaptation. A
MAPE-K loop, integrated in the ROS infrastructure, identifies and acts
on required adaptations

5.1 Rover platform

Our rover, shown in Fig. 16, is a 1:5-scale vehicle based on a
design published byGoldfain et al. [91]. The rover is powered
by an electric motor and includes wheel speed sensors, an
InertialMeasurement Unit (IMU), GPS, and an optional lidar
unit. Of particular relevance to this study are stereo cameras
mounted atop the rover. A compute box contains an Intel i7
quad-core processor, 32-gigabyte RAM, 2-terabyte SSD, and
an Nvidia GPU for image processing. In addition, a Gazebo-
based [92] simulation of the vehicle is used for offline testing.

ROS-Based Platform The rover’s software infrastructure
is based on ROS [27], a popular middleware platform for
robotics. A ROS implementation comprises a set of pro-
cesses, called ROS nodes, that communicate with other ROS
processes using a publish-subscribe mechanism called ROS
topics. Multiple ROS nodes can publish messages on a ROS
topic, and multiple ROS nodes can subscribe to the same
ROS topic. Commonly, and in our case, ROS is implemented
atop the Linux operating system with ROS nodes realized as
Linux processes. For a non-trivial robot such as our rover,
this design produces an intricate software infrastructure that
can be visualized with a ROS graph. The full ROS graph for
our rover software comprises over 30 nodes that implement
tasks such as processing of sensor data, localization, path
planning, and generating the corresponding commands to
control the vehicle. Over 200 ROS topics are used to convey
raw and preprocessed sensor data, exchange of information
among controller nodes, and deliver commands to actuators
for throttle control, steering, and braking.

ROS-Based Adaptation ManagerFig. 17 showsan (elided)
ROS graph of the MAPE-K loop implemented for the rover.
The /knowledge ROS node is a process that manages
access to the data stores depicted in Fig. 11. Data stores
for goal models and adaptation tactics are populated at
startup time and remain static during operation. However,
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Fig. 17 Elided ROS graph for MAPE-K loop in rover software. ROS
nodes shown as green ellipses and ROS topics as yellow boxes. Arrows
indicate data flow

themanaged system state data store is highly dynamic, com-
prising sensor readings and other state information that are
updated continually. The MAPE-K monitor step (Step R1 in
Fig. 11) is implemented as a collection of ROS nodes (e.g.,
/monitor_lidar, /monitor_wheels, /monitor_camera)
that receive raw sensor data collected by hardware-specific
ROS nodes. These nodes preprocess data streams and pub-
lish results to the /update_state topic in order to modify
the managed system state. Examples include direct measure-
ments (e.g., wheel speed), derivativemeasurements (e.g., rate
of battery drain), and operational status of hardware com-
ponents (e.g., delays in GPS localization reporting). The
remaining three MAPE-K steps (Steps R2-R4) are imple-
mented as singleton ROS nodes, respectively, /analyze,
/plan, and /execute.

KAOS goal model evaluation by the /analyze node is
triggered by state changes published on the /state_change

ROS topic. If the KAOS goal model is not satisfied and an
adaptation is necessary, then the /analyze node determines
the type of adaptation needed and relays the adaptation type
to the /plan node via the /plan_action topic. The /plan

node retrieves actions for the corresponding tactic from the
knowledge base and forwards an adaptation procedure to the
/execute node. The /execute node directly interfaces with
and reconfigures components of the target platform.

5.2 Camera data and the behavior oracle

In our proof-of-concept demonstration, we use images from
the mounted cameras atop the rover for object detec-
tion [28,31] and triangulation from stereo vision [93]. A
three-dimensional point cloud [94] is generated by fus-
ing stereo camera triangulations and lidar sensor readings.
As shown in Fig. 17, both the /monitor_camera and
/behavior_oracle nodes receive raw camera data pub-
lished from onboard cameras. The /monitor_camera node
processes camera data anddelivers relevant information (e.g.,

frame rate, etc.) to the /knowledge node. For example, lack
of input or a slow frame rate might indicate a problem with
one or both cameras, thus necessitating a run-time adaptation.

The /behavior_oracle node processes camera images
online with the behavior oracle DNN that was trained
offline by Enlil for model inference. Specifically, the
/behavior_oracle node infers the behavior of the onboard
object detector LEC by evaluating input images given to
the object detector. The behavior category produced by the
/behavior_oracle node is published on the /category

ROS topic, which is monitored by the /monitor_oracle

node. At run time, if the /monitor_oracle node reports any
change in the behavior category, then the /analyze nodewill
execute to address the situation, as follows.

5.3 Run-time adaptation

When adverse run-time conditions are detected, MoDALAS
prevents the use of an LEC in environments for which they
have not been adequately trained by switching to fail-safe
modes of operation. In the absence of such a run-time self-
assessing framework, an LEC might provide inappropriate
behavior when encountering unsafe operating conditions,
where the LES is not aware that the LEC is operating beyond
its scope of capabilities. MoDALAS provides a means to
identify these situations and adapt the LES to execute vali-
dated fail safes when potential failure cases are detected.

We consider a scenario in which the behavior oracle trig-
gers run-time adaptations to the rover. At design time, the
behavior oracle was created to account for three types of
adverse environmental conditions that can impact object
detection: rainfall,dust clouds, and lens flares (where a bright
light source obscures part of the image). Additional environ-
mental phenomena can be included by introducing them into
the simulation environment used by Enlil. Figure18 shows
examples of each simulated phenomenon, with different lev-
els of intensity, and the resulting object detector behavior
category inferred by the behavior oracle. Referencing the
behavior categories in Table 3, examples in columns (i), (ii),
and (iii) are expected result in Categories 0, 1, and 2, respec-
tively, (i.e., “little impact,” ”degraded,” and “compromised.”)

Scenario 1. Dust Clouds To demonstrate MoDALAS in
practice, we explore a scenario where the autonomous rover
navigates a construction site to periodically record progress
on the project at different locations. The rover begins with
behavior_category = 0. As the rover approaches a con-
struction worker, a dust cloud is produced by a dump truck
leaving the construction area.When the /behavior_oracle
node receives images from the rover’s cameras, the dust-
obscured images are evaluated by the behavior oracle DNN,
which infers that the object detector will be degraded by
the current environment. Thus, the /behavior_oracle node
publishesbehavior_category = 1on the/category topic.
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Fig. 18 Example of object detection at a construction site. A pedestrian
is detected by an image-based object detector (a). New environmental
phenomena are introduced in simulation, such as (b) rainfall, (c) dust
clouds, and (d) lens flares. Enlil explores different contexts to find
examples that have (i) little impact, (ii) degrade, or (iii) compromise the
object detector’s ability to achieve validated design-time performance

The /monitor_oracle node forwards this change to the
/knowledge node. The state change triggers execution of the
/analyze node to evaluate the logical expression (Fig. 14)
of the KAOS goal model depicted in Fig. 4. Upon evaluation,
the /analyze node determines that adaptation is necessary,
since the pre-condition associated with KAOS obstacle O1
applies but the resolving goal G17 is not satisfied. The tac-
tic in Fig. 15 is selected and forwarded to /plan, which finds
that the tactic’s actions involve reducing themaximumveloc-
ity of the rover and increasing the buffer distance between
the rover and objects in the environment. The /plan node
then maps abstract tactic actions to a platform-specific pro-
cedure. Our rover uses a Timed Elastic Band (TEB) [95]
planner provided with ROS to compute trajectories around
objects in the environment. The abstract actions in Fig. 15

can be accomplished by setting the min_obstacle_dist

and max_vel_x parameters of the TEB planner. Finally, the
platform-specific procedure is forwarded to the /execute

node, which is responsible for executing the reconfiguration
of the rover. As a result, the rover moves slower and takes a
wider berth around objects in the environment while the dust
cloud is present.

Eventually, as the dust settles, the behavior oracle deter-
mines that the new environmental condition is expected to
have little impact on the object detector (i.e., Category 0).
Through the same sequence of steps described above, the
/analyze node is triggered to execute by the state change.
The /analyze node then determines that KAOS obstacleO1
no longer applies and the KAOS goal model is satisfied. The
/analyzenode publishes amessage to notify the /plan node
that the selected tactic is no longer applicable. The /plan

node then triggers the /execute node so that the previous
operating parameters are restored (i.e., reset the minimum
object distance and maximum rover velocity to their prior
values).

Scenario 2. Lens Flare In a second scenario, the rover
is navigating around a parked vehicle. Suppose the reflec-
tion of the sun on the windshield of the vehicle causes a
momentary lens flare that blinds the cameras. The behav-
ior oracle processes the camera image and determines that
the impacted images will compromise the ability of the
rover’s object detector to perform as validated at design time
(i.e., Category 2). The /monitor_oracle node publishes
behavior_category = 2 to /knowledge, triggering the
/analyze node similar to the dust cloud scenario. TheKAOS
goalmodel is evaluated, but this time obstacleO2 applies and
its resolving goal G16 is not satisfied. A tactic with a pre-
condition matching O2 and post-condition matching G16 is
selected and forwarded to the /plan node. The actions asso-
ciated with the selected tactic are to halt the rover, and the
/plan node generates a procedure to set the rover’s maxi-
mum velocity to zero. Finally, the adaptation procedure is
forwarded to the /execute node to update the rover accord-
ingly, thereby transitioning it to a fail-safe state. When the
lens flare eventually disappears (e.g., due to changing angle
of the sun or cloudmovements), the /monitor_oracle node
publishes behavior_category = 0. The change in behav-
ior category triggers the /analyze node to re-evaluate the
KAOS goal model. The /analyze node then determines that
O2 no longer applies, subsequently triggering the /plan and
/execute nodes to reset the selected tactic and restore the
rover to its original configuration.

Scenario 3. Relaxation of Goals In a third scenario, we
explore how RELAX may be used to explicitly deal with
uncertainty on the rover. Suppose the rover uses the KAOS
goal model in Fig. 4, where the KAOS goal model is initially
not RELAX-ed to address run-time uncertainties. Figure19
shows example utility values published on a ROS node
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Fig. 19 Example utility value input for Scenario 3

by the rover during operation. Table 4 shows the resulting
MoDALAS evaluation of the RELAX-ed goal model to be
unsatisfied since the original KAOS goal model expects a
friction rate of 2 Newtons and a tire pressure of 221 kPa
(individual goal results of G21 (0.0) and G22 (0.0), depicted
in red). In this instance, an unsatisfactory evaluation of the
goal model would trigger MoDALAS to execute an adapta-
tion tactic to mitigate brake failure (e.g., notifying a human
supervisor for intervention). However, the rover may be able
to operate under the given values as the deviation is insignif-
icant (e.g., inaccurate readings due to sensor noise). Thus, if
we use the RELAX-ed KAOS goal model in Fig. 5, the sys-
tem uncertainties may be tolerated and avoid the need for an
immediate mitigation strategy that could negatively impact
performance. Table 5 shows the resulting evaluation of the
same rover configuration from Fig. 19, but instead using the
RELAX-ed goal model from Fig. 5. Using fuzzy logic, the
new model is tolerant to the sensor values with an accepted
deviation range (individual goal results of G21 (0.799) and
G22 (0.95), depicted in blue).

6 Related work

This paper explores methods for the assurance of cyber-
physical LESs via models at run time [96]. Related studies
have investigated the verification of robotic systems [97],
including construction site applications [98]. Those efforts
apply formal methods for verification but do not explicitly
address LECs faced with uncertain conditions. RoCS [99]
has been introduced as a self-adaptive framework for robotic
systems, but in contrast toMoDALAS, it is not model-driven

Table 4 Example evaluation of a non-RELAX-ed goal model (Fig. 4)

Goal # Evaluation Result

‘G1’ 1.0

‘G2’ 1.0

‘G3’ 1.0

‘G4’ 1.0

‘G5’ 1.0

‘G6’ 1.0

‘G9’ 0.0

‘G10’ 1.0

‘G12’ 1.0

‘G13’ 1.0

‘G14’ 1.0

‘G16’ 0.0

‘G18’ 1.0

‘G19’ 1.0

‘G21’ 0.0

‘G22’ 0.0

‘O1’ 0.0

‘O2’ 0.0

OVERALL EVALUATION 0.0

OVERALL SATISFACTION 0.0

Table 5 Example evaluation of a RELAX-ed goal model (Fig. 5)

Goal # Evaluation Result

‘G1’ 1.0

‘G2’ 1.0

‘G3’ 1.0

‘G4’ 1.0

‘G5’ 1.0

‘G6’ 1.0

‘G9’ 0.0

‘G10’ 1.0

‘G12’ 1.0

‘G13’ 1.0

‘G14’ 1.0

‘G16’ 0.0

‘G18’ 1.0

‘G19’ 1.0

‘G21’ 0.799

‘G22’ 0.95

‘O1’ 0.0

‘O2’ 0.0

OVERALL EVALUATION 0.799

OVERALL SATISFACTION 1.0
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nor focused on software assurance. To the best of our knowl-
edge, MoDALAS is the first to include run-time assessment
of LECs with respect to goal-oriented (i.e., KAOS) models.

Self-adaptive frameworks have used different approaches
to address assurance. Zhang and Cheng [85] developed a
state-basedmodeling approach formodel checking assurance
properties of SASs. Weyns and Iftikhar [100] proposed the
use of model-based simulation to evaluate system require-
ments and determine adaptation procedures. ENTRUST
[101] supports the development of an SAS driven by GSN
assurance cases and verified by probabilistic models at run
time. Similarly, AC-ROS [102] is a GSN model-driven
self-adaptive framework for ROS-based applications, which
includes self-assessment through utility functions as assur-
ance evidence. In contrast, MoDALAS uses KAOS goal
models to assess the satisfaction of system requirements of
an LES at run time. Furthermore, these other approaches do
not address uncertainty for LECs. MoDALAS enables an
LES to self-adapt to mitigate failure from the use of LECs in
untrusted contexts.

A number of design-time approaches have addressed
how LECs handle uncertainty [103,104]. Smith et al. [105]
have also explored the construction of assurance cases at
design time to categorize LEC behavior with respect to haz-
ardous behaviors. However, these methods do not enable
self-assessments at run time and have limited applications for
handling uncertain environmental conditions. MoDALAS
differs from these works by using model inference (via
behavior oracles) to assess LEC behavior at run time for
known unknown environmental conditions.

Requirements modeling and specification research has
also addressed environmental uncertainties for LECs. Whit-
tle et al. [25,26] proposed RELAX as a requirements specifi-
cation language that allows for the relaxation of requirements
to adapt to environmental uncertainties. Fredericks et al. [74]
andRamirez et al. [106] proposed automation of relaxation of
goalmodels andderivationof utility functions usingRELAX.
Letier et al. [72], Ramirez et al. [106], and Bencomo et al.
[107] proposed the use of various utility functions (e.g., prob-
abilistic) to evaluate and quantify partial satisfaction of a
goal. Letier et al. [108] also proposed usingMonteCarlo sim-
ulation to calculate the consequences of certain uncertainty
factors. The MoDALAS framework has been designed to
accommodate different requirements specification languages
and support the corresponding analysis techniques, such as
those mentioned above, to address uncertainty.

Recently, other researchers have explored system assur-
ance for LESs andLECs.Asaadi et al. [109] proposed a prob-
abilistic quantification of LES system confidence based on
functional capabilities and dependability attributes. Boursi-
nos et al. [110] proposed a conformal prediction framework,
leveraging previous normal values to check for abnormali-
ties. Weyns et al. [111] proposed combining MAPE, control

theory, andmachine learning for better adaptive systems. Fer-
reira et al. [80] proposed an orthogonal approach to assess the
effectiveness of safety monitors [112]: i) to identify out-of-
distribution data for image classification machine learning
algorithms and ii) to assess the safety monitors’ abilities
to correct the incorrect behavior of the model. In contrast,
MoDALAS is a framework that uses evolutionary comput-
ing to create behavior oracles to determine which LEC is
appropriate for a given operational context, which prevents
the use of LECs in conditions for which they have not been
adequately trained. In essence, behavior oracles can be used
as safety monitors. As such, future work may explore the
use of Ferreira et al.’s framework to assess behavior oracles
generated with MoDALAS for various performance metrics
of interest.

7 Conclusion

This paper introduced the MoDALAS framework for using
requirements models at run time to automatically address the
assurance of safety-critical systems with machine learning
components.Due to uncertainties about the ability of LECs to
generalize to complex environments, methods are needed to
assess their capability at run time and adapt LESs to mitigate
the use ofLECs in uncertain run-time conditions.MoDALAS
assesses the trustworthiness of LECs with behavior oracles
and reconfigures an LES to maintain satisfaction of system
requirements at run time.

MoDALAS addresses uncertainties about the assurance
of an autonomous LES when facing uncertain run-time
conditions (e.g., known unknown phenomena). This paper
described a proof-of-concept prototype of MoDALAS for
an autonomous rover LES with an object detector LEC.
MoDALAS adapts the rover to maintain safety require-
ments under run-time conditions where the object detector
is deemed unreliable. This paper also demonstrated how
MoDALAS can leverage the RELAX language and fuzzy
logic run-time evaluation to manage uncertainties in require-
ments.

Future work will explore the management of dynamic
assurance cases and goal models, as well as the inclusion
of security assurance cases within the MoDALAS frame-
work [113]. Working with our industrial collaborators, we
will perform additional empirical studies.Wewill expand our
studies with additional benchmark datasets and other sources
of training data (e.g., various ranges of hazard types and dif-
ferent types of behavior categories, etc.) in order to continue
to improve the ability of MoDALAS to address assurance of
LESs in the face of a broad range of uncertainty factors and
diverse operating contexts.
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