
Software and Systems Modeling (2023) 22:1645–1663
https://doi.org/10.1007/s10270-022-01066-1

SPEC IAL SECT ION PAPER

OSTRICH: a rich template language for low-code development
(extended version)

Hugo Lourenço1 · Carla Ferreira2 · João Costa Seco2 · Joana Parreira2

Received: 16 March 2022 / Revised: 18 September 2022 / Accepted: 3 November 2022 / Published online: 16 December 2022
© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022

Abstract
Low-code platforms aim at allowing non-experts to develop complex systems and knowledgeable developers to improve
their productivity in orders of magnitude. The greater gain comes from using components developed by experts capturing
common patterns across all layers of the application, from the user interface to the data layer and integration with external
systems. Often, cloning sample code fragments is the only alternative in such scenarios, requiring extensive adaptation to
reach the intended use. Such customization activities require deep knowledge outside of the comfort zone of low code. To
effectively speed up the reuse, composition, and adaptation of pre-defined components, low-code platforms need to provide
safe and easy-to-use language mechanisms. This paper introduces OSTRICH, a strongly typed rich templating language for
a low-code platform (OutSystems) that builds on metamodel annotations and allows the correct instantiation of templates.
We conservatively extend the existing metamodel and ensure that the resulting code is always well-formed. The results we
present include a novel type safety verification of template definitions, and template arguments, providing model consistency
across application layers. We implemented this template language in a prototype of the OutSystems platform and ported nine
of the top ten most used sample code fragments, thus improving the reuse of professionally designed components.

Keywords Metamodel templating · Typechecking templates · Parameter constraints · Low-code · Development productivity ·
Model reuse

1 Introduction

The productivity of the development process is a key driver
of the software industry. Productivity metrics include multi-
ple criteria, from the time used to produce theminimal viable
product to the adaptability to change in maintenance activi-
ties to the correctness of the final result. Low-code platforms,
like theOutSystemsplatform [18–20,27], aimat shielding the
developer from the complexity of the software construction
process. The OutSystems platform is a visual model-driven
development and delivery platform that allows developers to
create enterprise-grade web and mobile applications. Out-
Systems’ customers use Service Studio, the platform’s IDE,
to design all the aspects of their applications in a single place,

Communicated by Shiva Nejati and Daniel Varro.

B João Costa Seco
joao.seco@fct.unl.pt

1 OutSystems, Lisbon, Portugal

2 NOVA LINCS and NOVA University Lisbon, Lisbon,
Portugal

including user interface, business logic, database model, and
integration with external systems. The platform provides
type-safe, domain-specific languages (DSL) for all of these
aspects.

Beyond lowering the complexity provided by usingDSLs,
another major factor in increasing productivity is the safe
reuse of abstract code artefacts [16,24]. Code reuse is a
well-known practice in software construction in general and
essential in any healthy development process [17,22]. The
core factor here is the use of abstraction layers, leading to
parametrization, isolation, and information hiding. To this
end, OutSystems provides some basic scaffolding mecha-
nisms for themost commondevelopment patterns and sample
screen templates that can be cloned and adapted. Such mech-
anisms accelerate the construction of repetitive and complex
code patterns and sophisticated user interfaces designed by
experts for the low-skilled or design-impaired developers.
However, if pre-prepared samples work as an attractor for
new users, the need for extensions is frequent, and the lack
of success in replicating and adapting sophisticated code is
usually a strong detractor.

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10270-022-01066-1&domain=pdf

1646 H. Lourenço et al.

In this paper, we present an extended version of [18] by
introducing (type) dependencies between template parame-
ters. We address the lack of abstraction and parametrization
mechanisms in the OutSystems model-driven approach and
further explore the OSTRICH language, a template language
for OutSystems applications. The terminology “templates”,
in low-code platforms and web development in general, does
not fully correspond to the technical concept of parametrized
code templates but to the weaker notion that includes cloning
and in-placemodification of samples. The use of such sample
“Screen templates” is a common practice in the OutSystems
platform [26] and other low-code platforms [23]. An exam-
ple of a sample screen template is a page that is pre-prepared
for listing Products, which after instantiation needs to be
adapted to the actual database entity that the developer wants
to use. The existing OutSystems screen templates are the
direct motivation in the design of OSTRICH, but its applica-
tion is not limited toUI.At its core,OSTRICH conservatively
abstracts and parametrizes any element of the OutSystems
metamodel.

The challenge we tackle with this paper is how to reuse
pre-assembled applications with strong safety guarantees.
We aim at having a template instantiation mechanism that
produces well-formed code upon the validation of the argu-
ments used to ground its parameters. Creating a screen from
scratch, based on a sophisticated design, is cumbersome and
can take a long time to get right. Cloning screen templates
and ad hoc adaptation of code does solve this problem. How-
ever, adaptation requires deep knowledge of each template
internals, thus not suitable for all levels of expertise. Our goal
is to remove the need for ad hoc adaptation in the use of tem-
plates and replace it with the smart shaping of components
to a set of contextualized arguments.

Our goals include having fully functional applications
right after instantiation, with all arguments and encoded
adaptations in place. Template instantiation should be a plug-
and-play action in the IDE with immediate effect on the
current application and a zero-cost abstraction (no overhead
at runtime).

We adopt a model-driven approach and conservatively
extend the OutSystems metamodel, which allows for seam-
less integration in the existing IDE, for both the construction
and the instantiation of templates. Then, we develop a type-
safe model that captures type-level computations, capable
of producing new datatypes and model instances based on
the structure of types and values given as arguments of the
instantiation action. The produced model includes not only
the structure of elements and their property values (i.e. the
title of a screen), but also expressions defined during instan-
tiation.

Our approach is type-safe, hence the verification of tem-
plate code at design-time guarantees that all instantiations
also produce valid code, upon the verification of the argu-

ments. We implement a prototype that includes a typed
language for expressions respecting the phase distinction [4],
thus avoiding dependencies between compile-time and run-
time expressions. We explain with greater detail, when
comparing with [18], how the staged verification of expres-
sion is performed and how expressions are decomposed into
compile-time and runtime fragments.

We evaluate our approach by analysing and adapting
the set of the top ten most used, production-ready, screen
templates from the OutSystems platform. We successfully
converted nine out of ten onto OSTRICH templates, thus
moving the adaptation time required after instantiating a
screen template from a few hours to no time. Screen tem-
plates are widely used in the bootstrapping of applications,
which elevates the impact of this work.

This paper is part of the research efforts of project
GOLEM1 that addresses automation of programming like
synthesis and metaprogramming. The template language
OSTRICH is instrumental in order to allow assemblies of
larger components that can be matched to programming con-
cepts, cf. [30].

To summarize, our contributions are as follows:

– A novel conservative extension of a low-code model to
templates, in a market leader low-code platform, Out-
Systems. We allow the creation and edition of templates
in the OutSystems IDE. We introduce it with an example
(Sect. 2) and present its metamodel (Sect. 3). The support
for type dependencies introduced in this paper expands
the expressivity of OSTRICH in relation to the original
article [18] and allows for more cases to be safely cap-
tured.

– A semantics for the model, via an instantiation algorithm
(Sect. 4), and for the enclosed expression language with
embedded compile-time computations (Sect. 5).

– A staged typing algorithm for template expressions (new
with relation to [18]) that ensures that templates instan-
tiated with valid arguments always yield valid runtime
models (Sect. 5.2). We introduce a lightweight type
dependency that solves a limitation previously identified
which prevented developers from relating parameters in
templates.

– An experimental evaluation, obtained by porting sam-
ple screens used in cloning and rudimentary adaptation
mechanisms native in the OutSystems platform (Sect. 6).

– A critical review of template languages and models for
programming languages and models (Sect. 7).

– A set of clear extension points and supporting features for
more abstraction, adaptation, verification, and evolution
mechanisms (Sect. 9).

1 GOLEM: Automated Programming to Revolutionize App Develop-
ment, A CMU|Portugal large scale research project, Ref. Lisboa-01-
0247-Feder-045917.

123

OSTRICH: a rich template language for low-code development (extended version) 1647

Finally, we close the paper with some final remarks.

2 Templates by example

In this section, we use a running example to intuitively
introduce OSTRICH, our template language. The language’s
metamodel is formally presented and discussed in Sect. 3.

OutSystemsmodels followa strict hierarchical structure to
represent the has relationship: for each object in themodelwe
identify the set of its children elements. Objects can also use
other objects with no restrictions. For the sake of simplicity,
in this paper, we support only the definition of applications
consisting of entities (database tables) and screens.We define
screens as containing a tree of user interface widgets that can
depend on database tables to display data.

In Fig. 1, we depict an OutSystems application in the Out-
Systems IDE. In Fig. 2, we show its model. The application
consists of entity Product and screen ListProduct.
The entity has two attributes: Description of type String
and IsInStock of type Bool. The screen contains a Table
widget with a data dependency to entity Product. The
table contains two Column widgets, one for each of the
entity’s attributes. Both columns have aToggleVisibilitywid-
get to show/hide the corresponding column. The value of the
Description attribute is displayed using a generic Value
widget. For theIsInStock attribute, we use an Iconwidget
whose visibility is determined by the attribute’s value.

This pattern, a screen used for listing the content of a
database table, is frequent enough that we might want to
abstract it into a reusable template parametrized by an entity
and the list of attributes of that entity to be displayed. The
template may, for instance, include an elaborate design that

onewants to propagate uniformly throughout the application.
Such template can be modelled in OSTRICH as depicted in
Fig. 3, where annotations nodes are conservatively added (in
yellow) to a regular model. This template was defined using
a modified version of the OutSystems IDE with support for
OSTRICH (Fig. 4).

Under our approach, a template consists of a parametrized
annotated model that, when removing the highlighted ele-
ments in Fig. 3, results in a basemodel that can be inspected
and created using an unmodified version of our IDE. In order
to ensure a well-formedmodel, our example template defines
its own entity, Sample. This entity is used, for instance, as
the source for the Table widget. When instantiating the tem-
plate, we will want to effectively replace this entity with an
actual entity provided by the developer. For that purpose, the
template defines a parameter named e of type Entity(N,R).
We also want to allow to specify the list of attributes of the
entity to be displayed in the screen, instead of defaulting
to showing all of the attributes. This is accomplished via
the attrs parameter of type List<Attribute(N,T)>. Note
the type dependency between the two parameters, which
enforces the restriction that the attributes belong to the entity.
This type dependency mechanism is explained in detail in
Sect. 5.2.

Besides the declaration of parameters,OSTRICH supports
the following annotations:

– Property Value: provides the value for a given property
using a template expression. For instance, the Property
Value annotation t2 for screen s specifies that instead
of the default name, List, the actual name is to be
computed using the name of the entity provided through
template parameter e. Properties that have not been anno-
tated keep the value defined in the base model.

Fig. 1 Product list application

123

1648 H. Lourenço et al.

p : App

s : Screen

Name = ListProduct

t : Table

Source = Product.List

f : Entity

Name = Product

c1 : Column

Title = "Description"

a2 : Attribute

Name = IsInStock
DisplayName = "Is In Stock"
Type = Bool

i : Icon

Visible = Product.List.Current.IsInStock

v : Value

Value = Product.List.Current.Description

a1 : Attribute

Name = Description
DisplayName = "Description"
Type = String

c2 : Column

Title = "Is In Stock"

w1 : ToggleVisibility

Widget = c1

w2 : ToggleVisibility

Widget = c2

Fig. 2 Product list application model

– Iteration: repeats an element multiple times by iterat-
ing a compile-time list. The list is specified by a template
expression, and a cursor name is introduced so that the list
items canbe referred to in the annotations of the element’s
children nodes. For instance, the iteration annotation t4
in column c specifies that we must repeat the column
once for each of the attributes of the entity provided
through template parameter e. The cursor name attr
refers to the attribute being iterated.

– Conditional: conditionally include or exclude an ele-
ment. For instance, the conditional annotation t6 in icon
i specifies that this element is kept only when attribute
attr is of type Bool.

A template is instantiated by providing a location in a
target app and concrete values for the template parameters.
The target location specifies the insertion point for the result
of evaluating the template. In our example, we can easily
see that the model in Fig. 2 is obtained by instantiating the
template from Fig. 3 in the target app of Fig. 5, using App p
as the target location and entity Product as the template’s
argument.

Comparing the example of Fig. 3 with the one presented
in [18] highlights a substantial difference in terms of the
expressiveness. The example template in this paper con-
tains two inter-dependent parameters: an entity and a set of
attributes of that entity. The previous version of OSTRICH
was unable to express dependencies between parameters.

In this model, we present the basic abstractionmechanism
by conservatively extending the base model of OutSys-

tems applications. Hence, OSTRICH does not break existing
code, and application models that do not use OSTRICH
are completely forward compatible. Template edition and
instantiation do require a production-ready ServiceStudio
of our prototype, but the resulting models from instantiat-
ing a template are fully compatible with existing code and
tools. Immediate improvements to the present approach are
to include template instantiation as a language primitive.
This extension requires new nodes in the metamodel and
would break the backward compatibility of models using
templates with the previous versions and tools, but allows
for more modular structures of components. The compati-
bility of models with tool versions is already a concern with
other features and is properly illustrated in prior work [20].
In this case, a primitive for instantiation templates within
templates allows for different kinds of columns to be mod-
ularly captured in separate sub-templates for columns only
to be instantiated in a table template. We present a basic
model of type-level computation, where we can produce new
data types and use them in newly created code. One crucial
example is the creation of entities (which are datatypes in
this language) in automatic synchronization processes that
are defined from the arguments of a template.

3 Template metamodel

Figure 6 presents the underlyingmetamodel of theOSTRICH
language, which builds on the metamodel of OutSystems
applications. In this figure, uncoloured elements correspond

123

OSTRICH: a rich template language for low-code development (extended version) 1649

Fig. 3 List template model

t4 : Iteration

Cursor = attr
List = attrs

p : App

s : Screen

Name = List
IsRoot = true

t : Table

Source = Sample.List

e : Entity

Name = Sample

a : Attribute

Name = First
DisplayName = "First"
Type = String

c : Column

Title = "Sample Column"

t1 : Template Parameter

Type = List<Attribute<N,T>>
Name = attrs

t2 : Property Value

PropertyName = Name
Value = "List" + {{e.Name}}

t3 : Property Value

PropertyName = Source
value = {{e.Name}}.List

t5 : Property Value

PropertyName = Title
Value = attr.DisplayName

t6 : Conditional

Cond = attr.Type == Bool

t8 : Conditional

Cond = attr.Type != Bool

t9: Property Value

PropertyName = Value
Value = {{e.Name}}.List.Current.{{attr.Name}}

i : Icon

Visible = true

t7 : Property Value

PropertyName = Visible
Value = {{e.Name}}.List.Current.{{attr.Name}}

v : Value

Value = Sample.List.Current.First

w : ToggleVisibility

Widget = c

t0 : Template Parameter

Type = Entity<N, R>
Name = e

to (a simplified version of) the metamodel for OutSystems
applications. The coloured elements are the ones that were
introduced specifically byOSTRICH to support the definition
of templates and template components.

Briefly, applications are composed of multiple instances
of Abstract Object nodes. These include entities (cf. database
tables), entity attributes, computational actions (cf. function
declarations), application screens, and user interfacewidgets.
The original model describes more kinds of nodes that were
omitted here for the sake of simplicity. Only the nodes used
in the example were included in this metamodel. Abstract
Object nodes contain other nodes, forming a parent-child
hierarchical tree structure like the onewehave for entities and
attributes. Abstract Object nodes can also use other nodes.

For instance, widget ToggleVisibility uses Widget property
to refer to the widget whose visibility it is controlling.

OSTRICH extends the OutSystems metamodel by adding
the following new elements:

– Template parameter: provide instantiation-time values.
– Property annotation: set the value of a property dynami-
cally at instantiation time.

– Iteration annotation: repeat an element once for each item
in the provided list.

– Conditional annotation: dynamically include or exclude
an element, depending on the condition value.

123

1650 H. Lourenço et al.

Fig. 4 List template

Such template-specific metamodel elements are treated
as annotations on the base metamodel. This allows us to
maintain backward compatibility with existing tools, which
can just ignore the annotations, and, at the same time, makes
it easy to extend the tools that need to take advantage of
the annotations. That is the case of the OutSystems IDE,
which was modified to allow editing template annotations.
In Fig. 4, we can see a template being edited. Notice the
Property Annotation section at the bottom right corner,where
the value for the Name property annotation is set.

Nevertheless, this is not the only possible solution. The
support for templates could be achieved in multiple ways. A
possible alternative would be to create a template representa-
tion for each element of the original metamodel (e.g. screen
and screen template, or table and table template). The obvi-
ous disadvantages include that the creation of these templates
requires the costly extension of the existing tools.

4 Model semantics

In this section, we present our template instantiation algo-
rithm and thus illustrate the semantics of the model. In our
prototype, the instantiation of a template is available through
an operation of the IDE. The inputs for the algorithm are:
the template root object, the target parent object where the
template is to be instantiated, and a compile-time value for
each template parameter. The compile-time values range
from basic value literals to model objects and lists of model
objects. Figure 2 depicts the result of instantiating the tem-
plate screen of Fig. 3 with the following inputs:

p : App

f : Entity

Name = Product

a2 : Attribute

Name = IsInStock
DisplayName = "Is In Stock"
Type = Bool

a1 : Attribute

Name = Description
DisplayName = "Description"
Type = String

Fig. 5 Target application

– template: Screen s (Fig. 3)
– targetParent: App p (Fig. 5)
– arguments: { t1 �→ f }, which means that the template
parameter t1 is assigned with entity f of the caller con-
text

Algorithm 1 starts by creating the environment env con-
taining all the arguments of the instantiation (line 2) and the
empty map newObjs to store the objects created during the
instantiation process (line 3). The algorithm then proceeds in
two steps.We recursively traverse the template, first, to create
all structural objects in the target parent object, and then to
evaluate all template expressions and set the property values
on the newly created objects. This ensures that we properly
resolve the object names and corresponding property values
regardless of the order by which objects are created. Func-

123

OSTRICH: a rich template language for low-code development (extended version) 1651

Abstract Object

Name: ID
IsRoot: Bool

Entity

Template Annotation

Property Value

 PropertyName: ID
 Value: TemplateExpression<BasicType>

Conditional

Cond: TemplateExpression<bool>

Iteration

Cursor: ID
List: TemplateExpression<List<T>>

Action

Template Parameter

Name: ID
Type: TemplateType

Screen

App

Attribute

Name: ID
DisplayName: String
Type: Expression<BasicType>

Abstract Widget

Column

Title: String

Value

Value: Expression<BasicType>

Icon

Visible: Expression<bool>

Table

Source: Expression<List<T>>

ToggleVisibility

Widget: Abstract Widget

Widget

Fig. 6 Template metamodel

tionEvaluateProperty (line 32), used to evaluate template
expressions, is discussed in detail in Sect. 5.

The Traverse function (line 6) evaluates all conditional
and iteration annotations present at each template node. For
the case of conditional annotations (line 7) this amounts to
evaluating the annotation’s condition and skipping the node if
the condition evaluates to false. In the case of annotations
(line 11) it evaluates and iterates the annotation’s list. Each
iteration is evaluated in a newly created environment that
binds the cursor name to the list item being iterated (line 15).
This makes the item’s value available for template expres-
sions contained in the template node and its children. Notice
that functionTraverse is parametric in functionfun, which
is called for all template nodes.

The CreateObject function (line 20), used in the first
traversal of the model, creates new objects under the tar-
get parent node. Each new object is stored in the newObjs
map. Notice that this is not a direct object-to-object map.
Because of the loop in theTraverse function, a single object
in a template may correspond to multiple objects in the tar-
get app. For example, the iteration annotation t4 in Fig. 3
will result in multiple instances of widgets c, w, v, and i.
The newObjs map handles the multiplicity by using the
pair (templNode, getCursorsState(env)) as the
map’s key. A CursorsState value encapsulates the state

of each cursor at a specific point in the instantiation process.
In our example, we only have one iteration annotation t4
whose list is e � Attributes, and thus the cursor state
sequentially corresponds to each of the attributes of entity
Product. That is, after running the first step of the instan-
tiation algorithm (line 4) newObjs contains the following:

newObjs = {(s, []) �→ s, (t, []) �→ t,
(c, [a1]) �→ c1, (w, [a1]) �→ w1, (v, [a1]) �→ v,

(c, [a2]) �→ c2, (w, [a2]) �→ w2, (i, [a2]) �→ i}
We can see that e.g. column c in the template has two corre-
sponding entries in newObjs, namely (c, [a1]) �→ c1 and
(c, [a2]) �→ c2. This is a consequence of the list of iteration
annotation t1 being evaluated to {a1,a2}, which resulted
in two new columns {c1,c2} being created.

Finally, function SetProperties is used in the second
traversal (line 5) to set the property values for the newly
created objects. This function starts by looking up the tar-
get object in newObjs and iterates the object’s properties
in order to set them. The actual property value is obtained
by calling function EvaluateProperty (line 32). Prop-
erty annotations, if they exist, are evaluated to determine
the actual property value. If not, we use the property value
from the template object as the default value. As a spe-
cial case, if the value is a model object, then we try to use

123

1652 H. Lourenço et al.

Algorithm 1 Template instantiation algorithm (Part 1 of 2)
input

template: AbstractObject �
root template object with annotations

parent: AbstractObject � target parent object
args: TemplateParameter → Object �

template parameter mapping
1: function instantiate(template, parent, args)
2: env ← newEnv(args)
3: newObjs ← {}
4: traverse(template, parent, env, newObjs, createObject)
5: traverse(template, parent, env, newObjs, setProperties)

input
templNode: AbstractObject � current template object
targetParent: AbstractObject � current target parent object
env: ID → AbstractObject � evaluation environment
newObjs: AbstractObject × CursorsState → AbstractObject

� new objects indexed by (template object, cursor values)
fun: {createObject, setProperties} � traversal function

6: function traverse(templNode, targetParent, env, newObjs, fun)
7: if hasConditionalAnnotation(templNode) then
8: if evaluate(getCondExpression(templNode), env) == true

then
9: fun(templNode, targetParent, env, newObjs)
10: else skip
11: else if hasIterationAnnotation(templNode) then
12: list ← evaluate(getListExpression(templNode), env)
13: cursorName ← getCursor(templNode)
14: for all item in list do
15: env ← beginScope(env)
16: bind(env, cursorName, item)
17: fun(templNode, targetParent, env, newObjs)
18: env ← endScope(env)
19: else fun(templNode, targetParent, env, newObjs)

newObjs to map it. For example, consider ToggleVisibil-
ity widget w in Fig. 3. The value for its Widget property
is c. The newObjs map presented above tells us that c
must be mapped to c1 and c2 when the cursor value is
a1 and a2, respectively (Fig. 2). We need a two-pass algo-
rithm to evaluate cross-references between objects without
being dependent on the objects creation order: when map-
ping object c we need the new objects to have already been
created.A single-pass algorithmcannot guarantee this in gen-
eral.

One particularly useful aspect of templating is its com-
positionality, i.e. the instantiation of templates as a model
element. This feature is out of the scope of the present work.

The next section describes the semantics of the tem-
plate expressions used in the annotations. These expressions
include not only the compile-time computation of literal val-
ues, but also the construction of runtime expressions that will
use runtime values of the existing model elements.

Algorithm 2 Template instantiation algorithm (Part 2 of 2)

20: function createObject(templNode, targetParent, env, newObjs)
21: obj ← createChild(targetParent, typeof templNode)
22: newObjs← newObjs ∪ {(templNode, getCursorsState(env)) �→

obj}
23: for all child in getChildren(templNode) do
24: traverse(child, obj, env, newObjs, createObject)

25: function setProperties(templNode, targetParent, env, newObjs)
26: obj ← get(newObjs, (templNode, getCursorsState(env)))
27: for all prop in getProperties(templNode) do
28: value ← evaluateProperty(templNode, prop, env, newObjs)
29: setPropertyValue(obj, prop, value)
30: for all child in getChildren(templNode) do
31: traverse(child, obj, env, newObjs, setProperties)

input
prop: Property � property to be evaluated

32: function evaluateProperty(templNode, prop, env, newObjs)
33: if hasPropertyAnnotation(templNode, prop) then
34: return evaluate(getValueExpression(templNode, prop), env)
35: else
36: value ← getPropertyValue(templNode, prop)
37: if contains(newObjs, (value, getCursorsState(env)) then
38: value ← get(newObjs, (value, getCursorsState(env))
39: return value

5 Template expressions

The example of Sect. 2 illustrates the definition and applica-
tionof templates in ourmodel.As seenbefore, the operational
semantics of the language, expressed in Algorithm 1, covers
the interpretation of model annotations over the actual model
nodes. The algorithm also includes the verification and evalu-
ation of expressionswithin such annotations.Wenowexplore
the evaluation and verification algorithm for template expres-
sions that ensures that all produced runtime expressions are
well-formed.

The template expression language is a multi-stage lan-
guage. The language defines a compile-time stage of eval-
uation whose results are runtime expressions, which is a
strict subset of the template language and matches the tar-
get model of the OutSystems platform. The language draws
the boundaries between type-level and compile-time compu-
tations and the runtime computations of the application. The
typing discipline involving the template language guarantees
the preservation of phase distinction [4] in the language, thus
ensuring that all template instantiations are not dependent on
runtime values and therefore essential for the termination of
compile-time computations. Template expressions evaluate,
in the first stage, using an environment containing references
to the elements in the actualmodel, the parameters introduced
in the template declarations, and the cursor values introduced
by iteration annotations in the template. The resulting run-
time expressions include references to runtime elements like
entities, attributes, and aggregates. Such elements are usu-
ally the anchors to access the program state. We perform

123

OSTRICH: a rich template language for low-code development (extended version) 1653

the second-stage evaluation in a closed setting, where all
abstracted references to model elements are inhabited by
actual elements in the current model, and all the expressions
associated with element properties are completely resolved
to runtime values.

We nowuse a running example to informally introduce the
syntax and semantics of template and runtime expressions.
Consider the template expression used in the property box of
List template (see Fig. 4), and present in the template model
(Property Value annotation t2 shown in Fig. 3),
"List"+{{e � Name}} (1)

where e is a template parameter of type Entity. In this par-
ticular case, expression (1) is used to customize the screen
name based on the name of the entity providedwhen instanti-
ating the template. The concrete syntax of expression (1) uses
the handlebars notation, common in well-known templating
and embedded markup languages, to separate the stages of
expressions. The abstract representation of expression (1),
depicted in Fig. 7, is as follows:
"List" + (NameOf e) (2)

We design the concrete syntax of the expression language
to have embedded template language snippets. However, the
“dot” operator inside the handlebars is context-dependent
and is translated to the native operator (NameOf _) during the
parsingprocess.We show later that, outside of thehandlebars,
the selection operation is translated to a runtime selection (�̂).

Also, the comparison between values and types
(attr.type !=Bool) is captured by the parser and
translated to an abstract expression, of the form not
(M isOfType T)2.

Consider the example of an instantiation for the free vari-
able e in expression (2)with entityProduct, which has for the
name property the identifier Product, we obtain the template
expression
"List" + Product (3)

that results, at compile-time, in a new name for a screen,
ListProduct. The evaluation of expression (3) is possible
because we overload the concatenation operator (+) to join
a String literal with an existing name to define a new name.
We show in Sect. 5.1 the detailed evaluation steps for this
template expression.

We first describe some details of the abstract syntax of
the language, defined by the grammar in Fig. 7. The lan-
guage encompasses a sub-language of value literals with lists
and records. For the sake of simplicity, constructors are only
available for values. We adopt a compact presentation that
uses the operator � in the abstract syntax to represent opera-
tions over basic values such as arithmetic operators, relational

2 The unary operator not is actually encoded in the abstract language
using the binary operator nand.

and Boolean operators, and concatenation on strings, the
indexing on lists, and the selection operation on records. The
access to particular properties of model elements like Name,
Label, and Type, is defined by built-in language operations.
In sync with this operator, �̂ represents the delayed form of
the� operator. The delayed operations are left uninterpreted
in the first stage of evaluation, which resembles staged com-
putation approaches like [10,31].

The second stage of evaluation defines the domain of run-
time expressions given by the syntax of Fig. 8. Notice that
the field selection expression is now instantiated with a label
instead of a term.

We also include references to model elements as language
values (V) so thatwe can access their properties, as illustrated
by template expression

attr � DisplayName (4)

in annotation t5 of Fig. 3. For brevity, from all elements
in the OutSystems language, we only include entities and
attributes. An entity template value is defined by a name, and
a record type defining the name, and type of each attribute.An
attribute template value is defined by the name of the entity
it belongs to, a label, a type for that particular attribute, and
a set of properties that can be used in expressions.

The first stage of template expressions evaluation is
expressed by function �M�Env , defined in Fig. 9, and func-
tion �M�, omitted from this presentation and representing
the straightforward interpretation of operations on literal val-
ues. For instance, it defines the selection of fields of records,
concatenation of names, and other destructors of values.
Function �M�Env is defined with relation to an environment
(Env) that defines a substitution for free variables in terms.
We also use the auxiliary definitions shown in Fig. 10. Notice
in Fig. 9 that � operations are fully interpreted in the first
stage, by recursively interpreting the operands to values and
immediately computing the result, an expression (E) of the
language, also defined in Fig. 7. In the case of the operators
�̂, the resulting operation is an uninterpreted binary oper-
ation on two terms. We will next show how to verify the
soundness of a template expression. The invariant we aim
to extract from such a verification procedure is the guarantee
that well-typed template expressions always evaluate to valid
runtime expressions. However, we analyse first an example
of evaluation.

5.1 An example of evaluating a template expression

To better explain the staged semantics of expressions, wewill
use the following template expression

{{e � Name}} � List � Current � {{attr � Name}}
(5)

123

1654 H. Lourenço et al.

Fig. 7 Syntax of template multi-stage expression language

Fig. 8 Syntax of the target runtime expression language

Fig. 9 Semantics of template expressions

Fig. 10 Inspection functions

that is used in an iteration context over the attributes of a
parameter of kind entity. The template variables e and attr
are used to refer to an entity and to one element of a list being
iterated. The abstract representation of expression (5) in the
grammar shown in Fig. 7 is the following

(((NameOf e) �̂ List) �̂ Current) �̂ (LabelOf attr) (6)

Expression (6) will be evaluated with the following evalua-
tion environment

Env � [e = Entity(Product, {Description : String,
IsInStock : Bool}),

attr = Attribute(Product, IsInStock,Bool,
{DisplayName = "Is In Stock"})]

where entity named Product, and attributes named Descrip-
tion and IsInStock are existing model elements. Moreover,
the runtime environment includes built-in labels List and
Current, used to access the list of records of an entity and
the current record of a list being iterated, respectively. Thus,
expression (6) is evaluated by recursively applying the rules
shown in Fig. 9 as follows,

�(((NameOf e) �̂ List) �̂ Current) �̂ (LabelOf attr)�Env =
�((NameOf e) �̂ List) �̂ Current�Env � �LabelOf attr�Env = (E- sel)

�((NameOf e) �̂ List) �̂ Current�Env � LabelOf �attr�Env = (E- LabelOf)

�((NameOf e) �̂ List) �̂ Current�Env � IsInStock = (E- Var)

with Env(attr)= Attribute(Product, IsInStock, . . .)

�((NameOf e) �̂ List)�Env � �Current�Env � IsInStock = (E- Sel)

�(NameOf e) �̂ List�Env � Current � IsInStock = (E- Label)

�NameOf e�Env � �List�Env � Current � IsInStock = (E- Sel)

�NameOf e�Env � List � Current � IsInStock = (E- Label)

NameOf �e�Env � List � Current � IsInStock = (E- NameOf)

Product � List � Current � IsInStock(E- Var)
with Env(e)=Enti t y(Product, . . .)

Notice that this result is a valid expression, in the language
defined in Fig. 8, that can be assigned to the model element
and evaluated at runtime (property Visible of Icon i depicted
in Fig. 2).

Consider now the evaluation of template expression (2)
used in annotation t2 for the name property of the screen in

123

fig:semantics
fig:semantics
fig:semantics
fig:semantics
fig:semantics
fig:semantics
fig:semantics
fig:semantics
fig:semantics

OSTRICH: a rich template language for low-code development (extended version) 1655

example 3:

�"List" + (NameOf e)�Env =
� �"List"�Env + �(NameOf e)�Env � = (E- ValOp)

� "List" + �(NameOf e)�Env � = (E- Val)

� "List" + (NameOf �e�Env) � = (E- NameOf)

� "List" + Product � = (E- Var)

with Env(e)=Enti t y(Product, . . .)
� ListProduct � = ListProduct(def. of + and� � function)

Finally, the evaluation of expression (4) used in annotation
t5 for the title property of the column widget in example 3:

�attr � DisplayName�Env =
� (PropsOf V) � DisplayName � = (E- Field)

with V = �attr�Env = Env(attr) =
Attribute(Product, IsInStock, . . .)

and �DisplayName�Env = DisplayName
� {DisplayName = "Is In Stock"} � DisplayName � =
� "Is In Stock" � = "Is In Stock"(def. of � and� � function)

The examples above illustrate the semantics of the expres-
sions within template property expressions and annotations.
Some produce ground values to shape the instantiation or to
be used as literals in the final model, others produce delayed
runtime expressions, cf. expression (6). Thewell-formedness
of the expressions, and of model templates thereof, is then
established by a statically verified type system, discussed
next.

5.2 Well-formedness of template expressions

A good development experience is highly dependent on the
expressiveness and soundness of the frameworks’ underly-
ing language, in this case, the OSTRICH template model
and its expression sublanguage. Ensuring the soundness of
OSTRICH basically means that any instantiation of a tem-
plate, which is a compile-time computation, using arguments
that are compliant with the specification of the corresponding
template parameters, must always produce a valid runtime
model. This concern is not at the core of all the templat-
ing languages, especially the ones targeting user interfaces,
because the target languages are very flexible and usually
untyped. This is not the case when composing and gener-
ating program elements for a strongly typed language. In a
low-code setting, it is not admissible to have to tweak the
instantiated result to be able to execute without errors. By
definition of low code, the programming environment leads
the developer as much as possible through a path of valid
program or application steps.

The metamodel and the expression language of OutSys-
tems applications and the OSTRICH templates are strongly
typed and the type system ensures that all template instan-
tiations produce valid runtime expressions when using valid
arguments.

Fig. 11 Syntax of types

Fig. 12 Table for operator typing

In this section, we focus on the template expression lan-
guage that captures the correct usage and correct typing of
model element’s names, and labels of element properties, and
record and list typed expressions. The typing algorithm for
the model fragment is a straightforward traversal and collec-
tion of declared names to define a typing environment for
expressions. The template expression language is a staged
language, cf. [10,31]. This means that there is a clear sep-
aration of phases [4] driven by the type system between
the instantiation-time construction of expressions, and the
execution of those expressions with runtime values. We use
singletons as names to represent the dependencies between
entities and their attributes, and ensure statically that all label
usages are correctly checked as part of the target entity or
record type. Similarly, the OutSystems model uses unique
keys to track down such dependencies as well as changes in
the model.

Figure 11 defines the type language associated with
OSTRICH. Types describe the nature of the values of run-
time computations (basic values b, records {L : b}, and lists
List(b)) and values of compile-time computations (entities,
their attributes, and labels of such attributes). The types

123

fig:semantics
fig:semantics
fig:semantics
fig:semantics
fig:semantics

1656 H. Lourenço et al.

of entities (Entity(N, t)) contain a name N that stati-
cally identifies a singleton compile-time value and a type
that can be specific of a type variable T . For the sake
of language usability, names and variables are implicitly
declared in the scope of a template by analysing the free
names and type variables available. The type of attributes
Attribute(N , b) identifies the entity to which an attribute
belongs and its (basic) type. Types of labels Label(L)
statically specify the label being selected. We also define
types for labels of attributes that abstract the label being pro-
cessed but fix the type of their values (LabelAttr(N , b)).
This allows for a typesafe iteration over attributes of an
entity. The same is defined for an abstract record type of
an entity (RecordAttr(N)) that maintains the link to the
source entity. This allows the typing of a selection operation,
together with a label of type LabelAttr(N , b) without
knowing the actual label being selected. Finally,we have type
BoxT(t) describes compile-time expressions that denote
delayed runtime expressions with type t . The use of this type
is next illustrated by means of an example. Notice that the
types used to describe attributes and corresponding labels
share a name with the source entity. This lightweight type
dependency allows us to abstractly check expressions within
templates without knowing, a priori, the actual entity and its
attributes. For instance, in Fig. 13, we define a template for
columns that enforces that the attribute given as argument
to parameter attr (t2) belongs to the entity given as argu-
ment to parameter e (t1). This example is similar to the one in
Fig. 3, inwhich a template for a screen is defined. Theattrs
(t1) parameter is a list of attributes that must be belong to the
entity provided via parameter e (t0). In both cases the depen-
dency is established by name N , which is implicitly declared
in the entity parameter and used in the attribute(s) parame-
ter to bind them. With this binding we are able to abstractly
check the expression in node t3 of Fig. 13 and determine its
type as T (also declared in template parameter attr).

We check all expressions with binary operators using the
relation defined in Fig. 12. Notice that the delayed selection
operator (�̂) is also checked using this relation, and that the
dependencies between the labels and the container values are
properly checked using the name registered in their types.
To allow genericity of entity and attribute values, names are
abstracted in the definition of templates to be freely used to
create dependencies between their parameters, cf. parametric
polymorphism.

To better understand the typechecking process, we resort
to an example to informally explain the process of staged
typechecking used in our model. Recall the abstract expres-
sion 6 introduced in Sect. 5.1 representing the expression in
concrete syntax in Fig. 13:

(((NameOf e) �̂ List) �̂ Current) �̂ (LabelOf attr)

Algorithm 3 Typechecking algorithm
input

expression: Term � term expression to be typed
c-env: Env � compile-time environment
r-env: Env � runtime environment

1: function typeOf(expression, c-env, r-env)
2: match expression with
3: num � Num
4: bool � Bool
5: string � String
6: [M] | typeOf(Mi , c-env, r-env) = ti � [t]
7: {L = M} | typeOf(Mi , c-env, r-env) = bi � {L : b}
8: x | x : t ∈ c-env � t
9: x | x : t ∈ r-env � BoxT(t)
10: L | L : t ∈ c-env � t
11: L | L : t ∈ r-env � BoxT(t)
12: N | N : t ∈ c-env � t
13: M � M ′ � · · · � (see Figure 12)
14: M �̂ M ′ � · · · � (see Figure 12)
15: NameOf(M) | typeOf(M, c-env, r-env) = Entity(N, t) �
16: BoxT({list : {current : RecordAttr(N)}})
17: LabelOf(M) | typeOf(M, c-env, r-env) =Attribute(N , b)

�
18: BoxT(LabelAttr(N , b))
19: M isOfType T | typeOf(M, c-env, r-env) = t � Bool
20: end

Notice two sub-expressions which are clearly compile-
time (NameOf e and LabelOf attr) and that the selection
operations are using the runtime/delayed selection expres-
sion (�̂). To preserve the property of phase distinction, all
compile-time subexpressions inside runtime expressions can
use compile-time variables (e and attr) but must be rewritten
as runtime expressions in the end. So, expressionsNameOf e
and LabelOf attr need to be replaced by the result of its
compile-time execution, a runtime value or expression. Our
algorithm, presented inAlgorithm3, ensures that no compile-
time computation depends on any value that is only obtained
at runtime by structurally separating expressions and using
two different environments to define identifiers: a compile-
time environment to declare compile-time variables and a
runtime environment to declare runtime variables. Hence,
we can guarantee that all free variables occurring in runtime
expressions only map to other runtime expressions.

That is what happens with expression 6: the variables
denoting the results of the NameOf and LabelOf func-
tions are declared in the runtime environment. The frontier
between stages is inferred based on type information as we
present here and not explicitly signalled as in the more gen-
eral work of [10]. The two functions used above are declared
with the following type signatures:

NameOf e : Entity(N, t) →
BoxT({List : {Current : RecordAttr(N)}})
LabelOf attr : Attribute(N , b) →
BoxT(LabelAttr(N , b))

123

OSTRICH: a rich template language for low-code development (extended version) 1657

p : App

e : Entity

Name = Sample

a : Attribute

Name = First
DisplayName = "First"
Type = String

t1 : Template Parameter

Type = Entity<N,R>
Name = e

t3: Property Value

PropertyName = Value
Value = {{e.Name}}.List.Current.{{attr.name}}

v : Value

Value = Sample.List.Current.First

c : Column

Title = "Sample Column"
IsRoot = true

t2 : Template Parameter

Type = Attribute<N,T>
Name = attr

Fig. 13 Type dependency in template definition

Fig. 14 New Screen dialog,
showing the available Screen
Templates

Recall that type BoxT(t) describes a runtime expression
that produces a value of type t . The type of the result of
NameOf e is a nested record that ultimately culminates in
records that contain attributes from the entity Product (in the
example of Sect. 5.1, expression 6). This intricate structure
results directly from the structure of iterators in the OutSys-
tems language and is not particular of our more open model.
This is the information used to type the delayed operations
�̂ . Function LabelOf attr denotes the label of an attribute,
thus conveying information about the attribute type and the
entity to which it belongs, LabelAttr(Product, Bool),
thus allowing to check the selection operation without know-
ing exactly which attribute is being handled. The overall
expression is valid if there is a dependency between the types
of NameOf and LabelOf, by checking if N = N ′, given
RecordAttr(N) and LabelAttr(N ′, b). Thus, we pre-
vent the selection of attributes that do not belong to that
particular entity. The type of expression 6 is the boxed type
of a runtime type extracted from the label type. In this exam-

ple, assuming that the attribute is IsInStock, the type is
BoxT(Bool).

The compile-time evaluation represents the code gener-
ation phase in the OutSystems platform. At this stage, all
ground template expressions are rewritten by resolving all
compile-time expressions and replacing the delayed opera-
tions with their regular runtime counterparts.

6 Evaluation

OutSystems developers take advantage of a pre-defined set
of sample code fragments, created by experts, to bootstrap
and create their user interfaces and associated functional-
ity. These code fragments are inappropriately called “screen
templates” as they are complete and closed fragments of
the application model. Thus, they still need to be fully
customized after being cloned. Such a manual adaptation
process necessarily creates errors and requires significant
effort, programming skill, and deep knowledge of the tem-

123

1658 H. Lourenço et al.

plate’s structure. One of the design goals for OSTRICH is to
support the conversion of such screen templates into proper
parametrized templates that require little to no customization
after instantiation.

Currently OutSystems provides a set of 70 screen tem-
plates, organized into different categories such as List, Form,
and Dashboard screens (cf. Fig. 14). To evaluate our work,
we selected the top ten most instantiated screen templates
(table 1) and converted them into OSTRICH templates. Col-
lectively, this set of templates accounts for 53.9%of all screen
template instantiations after three years of generalized use in
the platform. All of the existing screen templates use pre-
defined sample entities that the developers must replace with
their actual entities. The initial step of our conversion process
consisted of the definition of template parameters to allow
developers to specify the core entities at template instantia-
tion time.

Upon instantiation, all the elements in the screen that
depend on sample entities or their attributes are assigned
Property annotations to point to the corresponding attributes
of the template parameter. Repeated or sequential uses of
entity attributes such as entity fields in a form, or columns in
a table, were decorated with iteration and conditional anno-
tations to be iterated, used, or removed at instantiation time.

Some templates require additional parameters to shape
their final result. For instance, List with charts, which shows
a table and a pie chart, requires the attribute bywhich the data
is to be grouped in order to define the pie chart categories.

Table 2 summarizes our results on the number of changes
madewhen adapting each one of the screen templates. Notice
the uniformity in the number of conditional annotations. This
is not surprising since, in most cases, conditional annotations
are used to select between alternative widgets based on the
type of an attribute, and we have a fixed set of supported data
types. We were able to successfully convert nine out of the
ten screen templates considered. The only template that we
were not able to convert is the Account dashboard. This tem-
plate consists of a screen designed to display bank account
information. It was not converted because it is highly spe-
cific, requiring constraints on the entity parameter that we
currently cannot specify (the entity needs to contain a partic-
ular set of attributes, e.g. the account number). Most of the
remaining 60 templates to be converted are not dependent
on the structure of the incoming entities. Thus, it is highly
foreseeable that those screen templates can be converted to
our model in due time. We plan to address this kind of con-
straint and therefore increase the coverage of the supported
templates.

Since we are in the prototyping phase and OSTRICH is
not yet fully generally available, we were unable to conduct
large-scale usability tests using OSTRICH. Internal usability
tests define a baseline to measure the decrease in time when
using OSTRICH templates, compared to cloning and adapt-

ing “screen templates”. The time it takes to adapt “screen
templates” ranges from 30 minutes to a few hours. A com-
mon scenario is when a user clones a “screen template”, fails
to adapt it to its current context, and gives up after a few erro-
neous trials. The advantage of OSTRICH, crucial in low-code
platforms, is the absence of an error-prone adaptation phase.

The mechanisms proposed in this paper have been par-
tially implemented in Service Studio and are currently being
tested. Namely, the existing screen template mechanism was
extended to support Boolean template parameters and If
annotations. A new set of (now parametrized) screen tem-
plates has been created. When instantiating such a template,
Service Studio will allow the developer to choose the param-
eter values.

Figure 15 illustrates the new functionality. In this figure,
the developer is about to create a new screen based on the
“Account Overview” template. For this particular instance,
they have decided to include account movements (the “List
Movements” checkbox is checked) but not balance informa-
tion (the “Check Balance” checkbox is unchecked).

6.1 Limitations

While converting the screen templates, we identified in [18]
a few limitations in the use of OSTRICH in more advanced
scenarios. In this paper, we already proceeded to solve some
of those limitations, namely the dependency between param-
eters.

At this stage, OSTRICH already allows for direct depen-
dencies between parameters by means of singleton names as
compile-time values. This allows us, as shown in the template
of Fig. 3, to have a Table or a Form template with an entity
and a list of attributes to be displayed as parameters. We are
now able to check that the list of attributes only contains
attributes that belong to the given entity.

Nevertheless, we can still identify room for improvements
in this language and the verification mechanism of the model
and expressions:

– It is not yet possible to identify a minimal set of
attributes that an entity should have in order to be
accepted as an argument for a template. The chal-
lenge of this task is to establish a universal subtyping
relation between compile-time values, maintaining the
dependencies between types. This limitation prevents us
from checking the tenth example in our benchmark–the
Account dashboard application.

– An improvement on the work presented in this paper is
the extension of the lightweight type dependency to a
more general type-dependent setting. This topic needs to
be supported by extra evaluation work on the set of tem-
plates available in benchmarks and also new templates

123

OSTRICH: a rich template language for low-code development (extended version) 1659

developed with the current status of OSTRICH in new
user studies.

– One limitation introduced by our design is the absence of
a template instantiation node in the language. Although
this would bring more expressiveness and reusability to
the language, it would be incompatible with the current
underlying model. So, any initiative to introduce this in
the language has to be part of a larger effort in evolving
the underlying model in the same lines.

– Lastly, template instantiation in OSTRICH is still a write
once process. Template instantiation works by expand-
ing the template definition in place and executing the
template expressions in annotations in the target context
to obtain runtime expressions that can be used in an appli-
cation. After instantiation, the natural step is to continue
editing the application, adding new elements, configur-
ing the existing ones, or removing the ones that were
added by the template. Once edited, changing the tem-
plate applied or changing any of the arguments would
override the customization made. Future developments
of OSTRICH also include this aspect, with one strong
requirement being to keep the soundness of the model
being produced. The most promising approach is to keep
the log of applied operations together with the template
instantiation node. Then, when a change occurs, the type
system can reevaluate all operations and discard or give
a warning to the developer. This extension is also incom-
patible with the current status of the underlying model
for OutSystems applications.

Table 1 Top ten most used “screen templates”

Screen template % of total instantiations

List with charts 19.1

Admin dashboard 4.7

Detail 4.6

Dashboard 4.2

List 4.2

List with filters 4.0

Bulk actions 3.7

Four column gallery 3.2

Account dashboard 3.2

Master detail 3.0

Total 53.9

7 Related work

Model to Model transformations
Templating, as we capture in this paper, is an abstraction
mechanism added on top of the OutSystems language, cf.
functions in general-purpose languages. Thus, templates
exist, are edited and produce results at the same abstrac-
tion level as regular OutSystems code, and use the same
development tools, thus dramatically increasing develop-
ment efficiency.

Fig. 15 New Screen dialog, showing a parameterized Screen Template

123

1660 H. Lourenço et al.

Table 2 Screen templates
adaptation statistics

Parameters Annotations
Screen template Property Iteration Conditional

List with charts 2 15 2 6

Admin dashboard 2 20 3 6

Detail 1 24 2 3

Dashboard 2 20 3 6

List 1 17 2 6

List with filters 2 19 4 6

Bulk actions 1 17 2 6

Four column gallery 3 17 2 6

Account dashboard – – – –

Master detail 2 20 3 12

Total 16 169 23 57

Model to Model transformations (M2M) [9] in EMF [33]
or MPS [14,29] define a process that is external to the lan-
guage itself (cf. ATL [1]), usually defined by a set of rewriting
rules or some low-level code thatmanipulates the syntax tree,
and whose approach requires a skilled “language designer”
to encode them.

We do define a kind of very generic M2M transformation,
whose semantics is uniform and compositional. We argue
that our approach cannot be encoded in any known M2M
tool. Moreover, the constraints that our prototype checks that
relate the nature of template parameters go well beyond syn-
tactic soundness and usual integrity constraints inOCL. Such
verifications are needed to ensure that our model is able to
verify template code and produce well-typed programs in
low code.

General purpose programming languages
Standard template languages take no advantage of the

structure of their (type) arguments. They are closely related to
the concept of parametric polymorphism [5] which abstracts
the nature of the processed elements uniformly. Even in
bounded polymorphism, like Java Generics [2], there is not
much customization that can be done in the behaviour of the
instantiated code, depending on the actual type or compile-
time values used as parameters.

Compile-time computations represented in mainstream
languages provide a greater expressiveness in adapting rich
pre-prepared code templates to the context of an application.
BothMetaOCAML [15], and Template Haskell [32] are gen-
erative approaches supporting the algorithmic construction
of programs at compile-time. Richer type-level computations
have been proposed in generalized algebraic data types [7],
and more recently in [3], using refinements kinds, with the
capability of reasoning about the structure of types and pro-
ducing custom code constructions. Our approach is inspired
by the latter. The innovation of this work is the use of type-
level computation in low-code models, accompanied by the

verification of the template code, and the (partial) guarantee
that all well-typed instantiations produce well-typed code.
The formal proof of completeness of this process is ongoing
work and is out of the scope of this presentation. We start by
having operations that reason about the structure of types and
other model elements and aim to verify more sophisticated
conditions on types used as arguments in future work.

UML Templates
Standard UML templates introduce the common concepts

of abstraction and parametrization [17] in UMLmodels [25],
with some authors extending it and instantiating it in EMF-
based tools [6,34,35]. The semantics of thesemodels includes
the substitution of parameters and cloning model elements to
produce other diagrams.Our approach includes a full-fledged
template language with iteration and conditional annotations
and a strongly typed approach that can soundly adapt to the
environment and provides safety properties to the instantia-
tion.Wealso provide a formal semantics for a staged template
expression language for property setting expressions that is
directly implemented in the prototype. Similar verification
results can be obtained using approaches like OCL [12], like
in [35], or using contracts [8].

In both the approaches [8,35], it is not clear how to verify,
at compile-time, both the instantiation ofmodel elements and
the expressions being produced for the model instance. By
having a conservative extension of the base model, where
all parameters must have default values, our base model
also supports the partial instantiation of parameters that is
present in UML templates. Unlike UML templates, our tem-
plates are also ground models that can be viewed, edited, and
compiled by production versions of the platform, including
its IDE. This also accounts for a graceful evolution of the
existing tool ecosystem.Moreover, we evaluate our approach
in real-world application of model templates, like [34], but
targetingOutSystems platform instead.We add rich compile-
time computations to new elements and use their properties.

123

OSTRICH: a rich template language for low-code development (extended version) 1661

Fig. 16 Handlebars template

�public class {{className}} {
{{#each fields}}

� �public {{type}} {{name}};
{{/each}}

�}

Template

{
� className: "Person",
� fields: [
� � { name: "Name", type: "string" },

� � { name: "Height", type: "int" }
�]
}

Data

public class Person {

� public string Name;
� public int Height;
}

Result

�public class Person {

� �public string Name;
� �public int Height;
�}

Our approach is a two-stage language [10], that is in a way
similar to MetaDepth [11], extending the DSL of the Out-
Systems platform with an extra “generic” layer. Our aim is
to extend single root templates to multiple root instances so
that high-level concepts can be instantiated by several parts
at a lower-level in the chain of models. The universal lan-
guage constructs we propose to show/hide model elements,
or iterate over compile-time lists of compile-time values (e.g.
labels, types, child nodes) are present in MetaDepth code
generators that instantiate the lower-level. A crucial differ-
ence between the two approaches, and otherworkswithUML
models [12,34], is that the verification ofmodel conformance
is usually performed on the instances after the substitution
of the parameters instead of statically verifying the template
and the application of the arguments at compile time.Another
difference is that our model uses the same template mech-
anisms to produce actual runtime values for model element
properties.

Template Languages for UI (Web)
Textual template languages have long been used to sim-

plify the development of web applications [28]. They enable
the creation of dynamic pages by multidisciplinary teams
consisting of web designers (who focus on the static aspects
of the web pages) and developers (who are concerned with
defining the dynamic elements that fetch and process data).

Many of these template languages, such as ASP.NET and
Java Server Pages, allow intermixing imperative code with
the template content, while others such as Handlebars [13]
andMustache [21] take a simpler and cleaner approachwhere
the templates are purely declarative. OSTRICH draws inspi-
ration from the latter. In Fig. 16, we present an example of
a Handlebars template for generating a Java class, and the
result of running it against a concrete data input. Handlebars
tags (highlighted in red) are interspersed among text that is
copied verbatim to the output. Handlebars attaches no mean-
ing to the verbatim text, and thus can be used to produce
anything that can be represented in a text format. However,

it is up to the template developer to guarantee that the tem-
plate will produce well-formed results, which is not a trivial
task since the template itself is usually not well-formed with
respect to the target language grammar and, consequently, the
target language development tools cannot be used to edit and
validate the template. OSTRICH addresses these concerns
by design by guaranteeing that only well-formed models are
produced. The fact that templates are annotated model ele-
ments makes it possible to evolve existing tools to support
defining templates.

8 Future work

We identify a set of extension points for this work which
include some solutions for the limitations identified inSect. 6.1.

Our template mechanism is at this point partially inte-
grated into the IDE,whichmeans that the ground components
are expanded into the current application context, and can be
expanded and tweaked tomeet the specific needs of the devel-
oper. This process disables the possibility of experimenting
and changing different templates in the same context, and
hinders the effect that evolutions of template definitions may
have in their instances. We plan to tackle the template instan-
tiation process in the near future, thus allowing to instantiate
template inside template definitions and also to customize
the resulting instances, without loosing the hability of reap-
plying the template or changing its arguments without losing
the customizations.

9 Conclusions

In this paper, we present the second iteration of a rich
template language for the OutSystems platform, called
OSTRICH. The original version of OSTRICH [18] conserva-
tively extends the existing OutSystems model with template

123

1662 H. Lourenço et al.

annotations to denote parameters, node properties, special
iteration and conditional behaviour to model nodes and tem-
plate expressions. OSTRICH is a two-stage language that
evaluates template nodes and the corresponding annotations
to ground model nodes with concrete property values that
correspond to a standard OutSystems model. Ground model
nodes contain runtime expressions that ultimately define the
runtime behaviour of an application.

In our second iteration, we increased the expressiveness
of OSTRICH by accounting for dependencies between tem-
plate parameters. The impact of this extension is twofold.
First, more sample code fragments can be captured now. For
instance, by enabling dependencies between entities it’s now
possible to define templates that express master-detail pat-
terns. Second, there is an improved user experience as the
instantiation result is more precise which, in turn, reduces
the number of changes that need to be done by the applica-
tion developer.

We also equip our template language and the corre-
sponding template expression language with a verification
mechanism that guarantees that all staged expressions are
well-formed and will produce results of the right type.

We evaluated our approach by porting existing screen tem-
plates available in the OutSystems platform and produced
parametrized versions of the same professionally produced
components to be used in a safer, easier and faster way.

Acknowledgements We thank the anonymous reviewers for their com-
ments that helped improve the paper. This work is partially supported by
FCT/MCTES grants UIDB/04516/2020, PTDC/CCI-INF/32081/2017,
and GOLEM Lisboa-01-0247-Feder-045917.

References

1. Atlas Group. Atlas transformation language. https://wiki.eclipse.
org/ATL/User_Guide

2. Bracha, G.: Generics in the Java programming language (2004).
https://www.oracle.com/technetwork/java/javase/generics-
tutorial-159168.pdf

3. Caires, L., Toninho, B.: Refinement kinds: type-safe program-
ming with practical type-level computation. In: Proceedings of the
ACM on Programming Languages, 3(OOPSLA), October 2019.
UID/CEC/04516/2019 PTDC/EEICTP/4293/2014

4. Cardelli, L.: Phase distinctions in type theory (1988). https://www.
microsoft.com/en-us/research/publication/phase-distinctions-in-
type-theory/

5. Cardelli, L., Wegner, P.: On understanding types, data abstraction,
and polymorphism. ACM Comput. Surv. 17(4), 471–523 (1985)

6. Caron, O., Carré, B., Muller, A., Vanwormhoudt, G.: An OCL for-
mulation of UML2 template binding. In: Baar, T., Strohmeier, A.,
Moreira, A., Mellor, S.J. (Eds) UML 2004—The Unified Model-
ing Language. Modeling Languages and Applications, pp. 27–40.
Springer, Berlin (2004)

7. Cheney, J., Hinze, R.: First-class phantom types. Technical report.
Cornell University (2003)

8. Cuccuru, A., Radermacher, A., Gérard, S., Terrier, F.: Constraining
type parameters of UML 2 templates with substitutable classifiers.

In: Proceedings of the 12th International Conference on Model
Driven Engineering Languages and Systems, MODELS ’09, pp.
644–649. Springer, Berlin (2009)

9. Czarnecki, K., Helsen, S.: Classification of model transformation
approaches. In: Proceedings of the 2nd OOPSLA Workshop on
Generative Techniques in the Context of the Model Driven Archi-
tecture, vol. 45, pp. 1–17 (2003)

10. Davies, R., Pfenning, F.: A modal analysis of staged computation.
J. ACM 48(3), 555–604 (2001)

11. de Lara, J., Guerra, E.: From types to type requirements: genericity
for model-driven engineering. Softw. Syst. Model. 12(3), 453–474
(2013)

12. Gogolla, M., Büttner, F., Richters, M.: Use: a uml-based speci-
fication environment for validating UML and OCL. Sci. Comput.
Program. 69(1), 27–34 (2007) (Special issue on Experimental Soft-
ware and Toolkits)

13. Handlebars-minimal templating on steroids (2021). https://
handlebarsjs.com/. Last visited in 11 May 2021

14. Jetbrains. Jetbrains meta programming system (2020). http://
github.com/JetBrains/MPS

15. Kiselyov, O.: The design and implementation of BERMetaOCaml-
system description. In: Codish, M., Sumii, E. (eds.) Functional
and Logic Programming—12th International Symposium, FLOPS
2014, Kanazawa, Japan, June 4–6, 2014. Proceedings, vol. 8475 of
Lecture Notes in Computer Science, pp. 86–102. Springer (2014)

16. Kitchenham, B.A., Mendes, E.: Software productivity measure-
ment using multiple size measures. IEEE Trans. Softw. Eng.
30(12), 1023–1035 (2004)

17. Liskov, B., Guttag, J.: Abstraction and Specification in Program
Development. MIT Press, Cambridge (1986)

18. Lourenço,H., Ferreira,C., Seco, J.C.:OSTRICH—a type-safe tem-
plate language for low-code development. In: 24th International
Conference onModelDrivenEngineeringLanguages andSystems,
MODELS 2021, Fukuoka, Japan, October 10–15, 2021, pp. 216–
226. IEEE (2021)

19. Lourenço, H., Eugénio, R.: TrueChange™ under the hood: how
we check the consistency of large models (almost) instantly. In:
2019 ACM/IEEE 22nd International Conference on Model Driven
Engineering Languages and Systems Companion (MODELS-C),
pp. 362–369 (2019)

20. Lourenço, H., Tavares, J., Eugénio, R., Lourenço, M., Simões, T.:
LUV is not the answer: continuous delivery of a model driven
development platform. In: Proceedings of the 23rd ACM/IEEE
International Conference onModel Driven Engineering Languages
and Systems: Companion Proceedings (2020)

21. Mustache-logic-less templates (2021). https://mustache.github.io/.
Last visited in 11 May 2021

22. McConnell, S.: Code Complete—A Practical Handbook of Soft-
ware Construction, 2nd edn. Microsoft Press (2004)

23. Mendix. Page templates (2021). https://docs.mendix.com/
refguide/page-templates

24. Mohagheghi, P., Conradi, R.: Quality, productivity and economic
benefits of software reuse: a review of industrial studies. Empir.
Softw. Eng. 12(5), 471–516 (2007)

25. Modeling language specification version 2.5.1 (2017). https://
www.omg.org/spec/UML. Last visited in 09 May 2021

26. OutSystems. OutSystems screen templates (2020). https://success.
outsystems.com/Documentation/11/Developing_an_Application/
Design_UI/Screen_Templates

27. OutSystems. Platform overview (2021). https://www.outsystems.
com/platform/

28. Parr, TJ.: Enforcing strict model-view separation in template
engines. In: Feldman, S.I., Uretsky, M., Najork, M., Wills, C.E.
(eds) Proceedings of the 13th International Conference on World
Wide Web, WWW 2004, New York, NY, USA, May 17–20, 2004,
pp. 224–233. ACM (2004)

123

https://wiki.eclipse.org/ATL/User_Guide
https://wiki.eclipse.org/ATL/User_Guide
https://www.oracle.com/technetwork/java/javase/generics-tutorial-159168.pdf
https://www.oracle.com/technetwork/java/javase/generics-tutorial-159168.pdf
https://www.microsoft.com/en-us/research/publication/phase-distinctions-in-type-theory/
https://www.microsoft.com/en-us/research/publication/phase-distinctions-in-type-theory/
https://www.microsoft.com/en-us/research/publication/phase-distinctions-in-type-theory/
https://handlebarsjs.com/
https://handlebarsjs.com/
http://github.com/JetBrains/MPS
http://github.com/JetBrains/MPS
https://mustache.github.io/
https://docs.mendix.com/refguide/page-templates
https://docs.mendix.com/refguide/page-templates
https://www.omg.org/spec/UML
https://www.omg.org/spec/UML
https://success.outsystems.com/Documentation/11/Developing_an_Application/Design_UI/Screen_Templates
https://success.outsystems.com/Documentation/11/Developing_an_Application/Design_UI/Screen_Templates
https://success.outsystems.com/Documentation/11/Developing_an_Application/Design_UI/Screen_Templates
https://www.outsystems.com/platform/
https://www.outsystems.com/platform/

OSTRICH: a rich template language for low-code development (extended version) 1663

29. Pech, V., Shatalin, A., Voelter, M.: JetBrains MPS as a tool for
extending Java. In: Plümicke, M., Binder, W. (eds) Proceedings of
the 2013 International Conference on Principles and Practices of
Programming on the Java Platform: Virtual Machines, Languages,
and Tools, Stuttgart, Germany, September 11–13, 2013, pp. 165–
168. ACM (2013)

30. Perez De Rosso, S., Jackson, D., Archie, M., Lao, C., McNamara,
B.A. III.: Declarative assembly of web applications from prede-
fined concepts. In: Masuhara, H., Petricek, T. (eds) Proceedings of
the 2019 ACMSIGPLAN International Symposium on New Ideas,
New Paradigms, and Reflections on Programming and Software,
Onward! 2019, Athens, Greece, October 23–24, 2019, pp. 79–93.
ACM (2019)

31. Seco, J.C., Ferreira, P., Lourenço, H.: Capability-based localization
of distributed andheterogeneous queries. J. Funct. Program.27, e26
(2017)

32. Sheard, T., Jones, S.P.: Templatemeta-programming for haskell. In:
Proceedings of the 2002 Haskell Workshop, Pittsburgh, pp. 1–16
(2002)

33. Steinberg, D., Budinsky, F., Paternostro, M., Merks, E.: EMF:
Eclipse Modeling Framework. Eclipse Series, 2nd edn. Addison-
Wesley, Upper Saddle River (2009)

34. Vanwormhoudt, G., llon, M., Caron, O., Carré, B.: Template based
model engineering inUML. In: Syriani, E., Sahraoui,H.A., deLara,
J., Abrahão, S. (eds) MODELS ’20: ACM/IEEE 23rd International
Conference onModelDrivenEngineeringLanguages andSystems,
Virtual Event, Canada, 18–23 October, 2020, pp. 47–56. ACM
(2020)

35. Vanwormhoudt, G., Caron, O., Carré, B.: Aspectual templates in
UML-enhancing the semantics of UML templates in OCL. Softw.
Syst. Model. 16(2), 469–497 (2017)

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds
exclusive rights to this article under a publishing agreement with the
author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such
publishing agreement and applicable law.

HugoLourençograduated in Com-
puter Engineering at Instituto Supe-
rior Técnico, Portugal. He has been
at software engineering positions
for most of his career. Currently
he is a Distinguished Research
Engineer at OutSystems. His main
responsibilities center around the
definition and evolution of the Out-
Systems visual language and its
metamodel.

Carla Ferreira received a Ph.D.
from the University of Southamp-
ton (2003). She is an Associate
Professor at NOVA University Lis-
bon and a researcher at the NOVA
LINCS research centre in Por-
tugal. She currently coordinates
TaRDIS—a Horizon Europe proje
ct on programming tools for decen-
tralised swarms. Her research is
concerned with developing formal
calculi, techniques, and tools to
express and reason about concur-
rent and distributed systems, with
the overall goal of helping pro-

grammers build trustworthy systems. She has published in top-tier
venues, including POPL, VLDB, EuroSys, OOPSLA, ESOP, MOD-
ELS, and CONCUR.

João Costa Seco graduated in
1993, got a Masters in 1997 and
got his Ph.D. from NOVA in 2006.
He is a researcher at the Soft-
ware Systems group of NOVA
LINCS and an assistant professor
at NOVA Science and Technology
School, NOVA University Lisbon.
His research, teaching, and knowl-
edge transfer activities are cen-
tred on the use of programming
language-based approaches for auto-
mated programming and software
evolution to better enable soft-
ware development processes, adva

nce the state-of-the-art, and improve software engineering practices.
He actively participates in applied research projects and collaborative
research initiatives with the industry.

Joana Parreira got an M.Sc.
degree from the NOVA School of
Science and Technology—NOVA
University Lisbon (2022). During
her master’s, she formalised and
implemented a core template lan-
guage for OSTRICH, a type-safe
template language for OutSystems.
She is currently working as a Soft-
ware Engineer at Microsoft.

123

	OSTRICH: a rich template language for low-code development (extended version)
	Abstract
	1 Introduction
	2 Templates by example
	3 Template metamodel
	4 Model semantics
	5 Template expressions
	5.1 An example of evaluating a template expression
	5.2 Well-formedness of template expressions

	6 Evaluation
	6.1 Limitations

	7 Related work
	8 Future work
	9 Conclusions
	Acknowledgements
	References

