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Abstract
The relevance of IoT-based solutions in everyday life is continuously increasing. The capability to sense the world, activate
computation based on data gathered by sensors, and possibly produce reactions on the world itself results in an almost never-
ending identification of novel IoT solutions and application scenarios. Nonetheless, IoT’s intrinsic nature, which includes a
high degree of variability in used devices, data formats, resources, and communication protocols, complicates the design,
development, reuse and customisation of IoT-based software systems. In addition, customers require personalised solutions
strongly based on their specific requirements. Reducing the complexity of building customised solutions and increasing the
reusability of developed artefacts are among the topmost challenges for enterprises and IoT application developers. Upon
these challenges, we propose a model-driven approach organising the modelling and development of IoT applications in
different steps, handling the complexity in representing the IoT domain variability, and empowering the reusability of design
decisions and artefacts to simplify the derivation of customised IoT applications. Our proposal is named FloWare. It follows
the typical path of an MDE solution, providing modelling support through feature models to fully represent and handle the
possible variability of devices in a specific IoT application domain. Once a specific configuration has been selected, this
will be complemented with specific information about the deployment context to automatically derive fragments of the IoT
applications, that will be successively combined by the developer within a low-code development environment. The approach
is fully supported by a toolchain that has been released for public use.
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1 Introduction

The Internet of Things (IoT) is a paradigm that gained ground
in the context of modern wireless telecommunications [6].
The basic idea stands in the pervasive presence, all around
us, of a variety of things or devices, such as radio-frequency
identification (RFID) tags, sensors, actuators, which, through
unique addressing schemes, can interact with each other and
cooperate with their neighbours, to possibly reach common
goals [17]. IoT applications are developed to handle the
interaction among many of these devices and the physical
environment to produce valuable services to users. There-
fore, an IoT application generally includes a computational
part that can be distributed over the devices and connected to
cloud-based infrastructure. This logical component embeds
the logic that permits the delivery of the intended service. For
example, the automatic management of lighting in a building
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can be achieved through the combined usage and coordina-
tion of light sensors, presence sensors, andmotorised shutters
and lighting systems that can change a room’s lighting con-
ditions. In such a case, the collected data from these sensors
could flow towards a cloud-based infrastructure where sen-
sor data are collected and fed to a computational component.
Such component can then decide when and how to activate
the lighting system and the motorised shutters to reach spec-
ified objectives.

Developing IoT-based applications is a complex and
demanding activity asking for a relevant effort to enter-
prises and carrying a significant risk of failure [35,53,81,86].
Indeed, the development of an IoT application generally
requires addressing many interrelated aspects, starting from
low-level details related to the heterogeneous involved sen-
sors and actuators, the interacting protocols, the possible
definition of complex data manipulation procedures, and the
definition of a high-level logic so to coordinate the vari-
ous devices to reach the established objectives [31,60]. In
addition, enterprises often face the challenge of deriving
customised solutions that better respond to a client-specific
context that requests customisation [27]. These requests
are challenging for enterprises that have to manage IoT
elements with a significant variability (in terms of data, com-
munication protocols, and others) to produce competitive
applications inside the market [6]. As a result, the develop-
ment of an IoT application generally is a “single effort” that
hardly produces reusable artefacts. The development of an
almost identical application will scarcely have the opportu-
nity to exploit the reusability of already developed artefacts
if the devices to be used, or their displacement over the envi-
ronment, are different.

To reduce the overall complexity of IoT applications
development, fostering reuse and customisation, we propose
FloWare, an MDE approach that exploits the advantages
derived from the use of feature models to develop IoT appli-
cations for low-code development environments. FloWare
provides support from the design to the development and
deployment of customised IoT applications. The proposals
foresee different phases, actors, steps, and artefacts result-
ing in amodel-to-code transformation approach. The general
idea behind FloWare is to provide modelling mechanisms
that permit the description of general aspects related to an
IoT application, and that are not connected to a specific
deployment context. Provided abstract models then play the
role of a platform-independent model (PIM), permitting the
representation of crosscutting concerns about the IoT appli-
cation under development, and then the representation of
knowledge, that can be more easily reused to develop cus-
tomised IoT solutions. The approach provides configuration
and refinementmechanisms that enable derivingmodels con-
nected to a given deployment context and then to define fully
functional solutions.

The entiremodelling approach is supported by theADOxx
metamodelling platform1 for which we developed a dedi-
cated feature models library. The library has been used to
support the design of feature models concerning an IoT
domain and the possible IoT devices involved. Defined
feature models can be configured by inserting specific infor-
mation and a suitable translator that automatically derives
IoT application artefacts from specified configurations. We
also developed the open-source FloWare platform2 to vali-
date and support the proposed IoT application development.
Overall, the result can be considered a low-code development
environment to develop, customise, and deploy IoT software
applications.

Outline The FloWare approach, and consequently the
paper, follows the design science research method (DSRM)
[37,65], a qualitative research approach focused on the design
process, and generating knowledge about the method used to
design an artefact, and the artefact itself. An initial version
of the approach has been already, and shortly, introduced in
[23]. This paper extends the previous version in many differ-
ent dimensions and includes a more thoughtful comparison
with emerging approaches proposed in the literature. In par-
ticular, the paper includes details on the FloWare toolchain
and better clarifies the possible benefits coming from the
adoption of the approach through a realistic scenario.

The paper structure is the following. In Sect. 2, the first
DSRM step requires defining the IoT application develop-
ment research problems and gaps derived from the litera-
ture, that then justifies the motivation behind the proposed
approach. In Sect. 3, the second DSRM step scouts the lead-
ing solutions supported by the literature that aims to develop
IoT applications, including a discussion about their limi-
tations. Above the design and development DSRM step,
described in Sect. 4, we built ourFloWare, anMDE approach
to model and develop IoT applications. In the demonstration
step, in Sect. 5, we show the applicability of our approach
in a complex smart campus case study, to illustrate how
effectively it solves the challenges mentioned above. In the
evaluation step, in Sect. 6, we observe and measure how
FloWare can support the emerged challenges by comparing
the objectives of the solution concerning already existing
approaches. In Sect. 7, the limitations concerning the devel-
oped approach are highlighted, and in Sect. 8, possible future
directions are described.

2 Motivation and challenges

The term IoT already emerged more than 20 years ago (the
term was coined in 1999 by Kevin Ashton); nonetheless,

1 ADOxx: https://www.adoxx.org/live/home.
2 FloWare Platform:https://github.com/PROSLab/FloWare-Core.

123

https://www.adoxx.org/live/home
https://github.com/PROSLab/FloWare-Core


FloWare: a model-driven approach fostering reuse and customisation in IoT applications… 133

according to the literature, there are still many challenges,
both from the methodological and the technological side,
that makes the development of IoT application a complex
endeavour [17]. On the methodological side in [52,79], the
authors highlight the lack of software engineering method-
ologies to decrease the overall complexity of the entire IoT
application development. Compared to traditional software
development methodologies, building an IoT application has
many peculiarities and results in higher complexity, as noted
in [82]. Indeed, also [18] reports that there is a strong need for
solutions that allow lowering the entry barrier in the devel-
opment of IoT applications. This is necessary to encourage
experts to build solutions tomeet the real needs of consumers
and to propose innovative ideas in a reasonable time and cost.

The variability of the deployment context is another rele-
vant source of complexity. This clearly impacts the direction
of the definition of a development methodology that has to
provide tools to handle such a variability. Nonetheless, it is
firmly rooted in technological aspects [32,68,79]. In partic-
ular, the heterogeneity of the devices needed to sense and
manipulate the environment makes an IoT application chal-
lenging to adapt to different deployment conditions. Another
distinctive peculiarity in the development of IoT applications
is that the informationneeded andmanipulated by the compu-
tational layer can be produced by heterogeneous data sources
in a different context. For instance, the presence of a person
in a room could be derived in a given deployment context
from the data provided by a motion sensor, while in another
deployment context this information could be derived from
an access control system. As a result, one of the challenges
that IoT solution providers have to face has to do with the
production of IoT applications with a high degree of cus-
tomisation. Indeed, adopting development approaches based
on the customisation and configuration of general solutions
permits the management of different customer needs and
deployment contexts, while maintaining adequate costs and
times to stay competitive in the market [26].

Focusing on the variability of available devices, many
dimensions can be considered in developing a specific
IoT application [39,51]. Among the various heterogeneity
dimensions, the one related to the communication proto-
cols used by the devices is particularly relevant. Differences
can refer to the multiple layers of the communication stack.
So we have devices connecting through WiFi, Bluetooth,
5G, or RFID, where each type of communication proto-
col has its peculiarities (e.g. maximum connection distance,
message sending/receiving speed, sending frequency and
many others), and devices supporting application protocols
such as MQTT, HTTP, CoAP, or proprietary protocols such
as LoRaWAN [1]. Having IoT applications in which the
involved devices use different protocols can be challenging
and expensive. Indeed, in the general case, the IoT appli-

cation developers will have to handle such a heterogeneity
aspect explicitly.

The target domain for IoT applications (e.g. smart home,
smart hospital, smart agriculture) generally influences the
functionalities typically foreseen by an IoT application to
be deployed. Each domain has its peculiarities and asks for
a multitude of services that are somehow domain-specific
[79]. For example, a smart hospital generally provides well-
ness, access control in the rooms, optimises temperature and
light management, and heart-rate control. Another differ-
ent domain, such as smart agriculture, can offer services
regarding monitoring and acting on soils and plants. Differ-
ent customers can require various devices to operate, usually
to sense or change the physical environment, depending on
their needs. In the same way, a high degree of variability
concerning required functionalities inside an IoT application
is present. Besides the main functionalities necessary inside
a specific domain, the resulting IoT application is strongly
based on the distinct functionalities required by each cus-
tomer and the domain of use.

As also observed in [27], the immediate result of the chal-
lenges described so far is that IoT applications are often
re-written for each deployment context that shows some dif-
ference from the initial one. This is detrimental in terms of
time and costs for enterprises, which have to develop each
new request from scratch, even if the application require-
ments are similar [3]. In addition to this, as observed in
[40], a lack of systematic support for reusability does not
allow enterprises to build customised IoT applications with
reasonable costs and time tomarket [21].Moreover, [43] sug-
gests that effective reusabilitymechanisms could improve the
IoT application development efficiency. Reusability mecha-
nisms are based on the fact that once a given structure has
been developed or a given knowledge acquired, it must be
saved for subsequent reuse. Providing such a mechanism to
crystallise the acquired knowledge, and to foster its possible
reuse, could be a viable solution that needs more attention.
Moreover, software reuse is a valuable option to support, as
it allows for better-quality software and increases maintain-
ability.

From the analysis of the reported challenges in the devel-
opment of IoT applications, the following research questions
seemed particularly interesting to us:

RQ1—How do available solutions support the modelling
and development of IoT applications to foster reuse and
customisation?
RQ2—How can we improve support for customisation
and reusability, of IoT application modelling and devel-
opment?
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RQ3—Which are the benefits of FloWare compared to
available MDE approaches?

The three questions clearly drove the research work we per-
formed and led us to the definition of the FloWare approach.
The approach follows the model-driven engineering (MDE)
paradigm to address the mentioned challenges [77], so to
define a methodology and a modelling method that foster
reusability and customisation.

3 Related work on solutions for IoT
applicationmodelling and development

This section intends to provide an answer to the first research
question: “(RQ1)—How do available solutions support the
modelling and development of IoT applications to foster
reuse and customisation?”

In the following we cluster those proposals found in the
literature that somehow relate to solutions for modelling and
development of IoT applications. Successively we discuss
these proposals on the base of how they provide support to
customisation and reusability, also in consideration of the
variability factor mentioned in the previous section.

Workflow management systems The adoption of workflow
management system for the definition and execution of busi-
ness processes related to the IoT domain has been a quite
flourishing topic, in the last years [22]. In this sense, different
notations can be used to represent a workflow and to execute
it on an IoT-aware workflowmanagement system. One of the
most used notation is the business processmodel and notation
(BPMN). However, this integration poses challenges both to
the research community and the industry, that have to clarify
how business process models can be made “IoT-aware” [49].
A relevant effort has been conducted in [36,56,84] to increase
BPMN expressiveness so to permit capturing and expressing
IoTaspects,while others approaches [5,14,80] aim to provide
amechanism to execute these enhancedmodels. Fromamod-
elling perspective, those research works perform an attempt
to incorporate IoT elements (e.g. an IoT sensor) inside the
BPMN model, including their related information. More in
general, all the works describe the usage of BPMN to express
business processes including IoT aspects mainly allowing
process modelling from a higher perspective. However, most
of the approaches do not provide support for executing these
enhanced BPMN models.

Approaches based onBPMNallow handling the complex-
ity of representing IoT-aware business processes, and they
can provide a certain degree of customisation on the defined
models. However, beingBPMNageneral-purposemodelling
language, approaches based on such modelling notation may
result in a limited expressiveness concerning peculiar IoT

concepts. Indeed, the BPMN language allows the expression
of concepts related to the IoT, but with a degree of abstraction
that could only include rudimentary support in expressing
essential aspects of the IoT domain. Indeed, as emerged from
[57], although several works provide efforts to include IoT
elements within a BPMNmodel, at the moment, no standard
or common representationof almost all IoTaspects is present.
To overcome this problem, it would be necessary to include,
validate and use an extended BPMN notation for the IoT
domain, which can thus fully exploit its characteristics. The
current integration efforts [41,80,81] allows modelling an
entire business process by including the concept of devices,
their actions and in some cases, even details on their con-
nectivity, to already existing BPMN elements (e.g. activities,
events and tasks). However, much effort is still needed to
integrate all the relevant concepts of the IoT domain (e.g.
the possibility to represent a device behaviour, and that of
the entire IoT application) into workflow management sys-
tems. In addition, it also emerges from the literature related to
IoT-aware business processes a lack of a common engine to
be used to execute models defined using an “IoT enhanced”
BPMN modelling notation.

Model-driven engineering approaches The use of a model-
driven engineering (MDE) approach in developing IoT soft-
ware products is gaining attention since it permits to abstract
technical details through models that can be successively
used as a base for further refinement, and to possibly derive
executable artefacts [34]. MDE approaches can be structured
to provide a clear separation of concerns through the defini-
tion and description of different system perspectives, helping
in handling the complexity of an IoT application [63]. Adopt-
ing an MDE approach enables defining a method for the
automatic generation of maintainable and better-quality soft-
ware based onmodelled system requirements. This approach
can foster software productivity in IoT scenarios, reducing
development time and costs [64].

Compared to traditional information systems develop-
ment, where the central pillar for the developer is coding,
in an MDE approach [72], the developer puts models as the
basis of the entire engineering process. MDE approaches
focus on representing systems aspects, such as behavioural
or structural parts, through models and then translating them
into code artefacts instead of directly programming the soft-
ware component. As reported in [7,15,20,63,77], an MDE
approach can provide support in modelling solutions for a
single device development, as well as for more complex and
fully functional IoT solutions [25,30,58,62,67]. To the best of
our knowledge, there are not full-fledged solutions that pro-
vide customisation and reusability supporting mechanisms
within a fully operational MDE approach. At the same time,
the capability of representing the variability of the target IoT
domain is in general not fully explored. In particular, almost
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all the works we could find use domain-specific modelling
languages or BPMN models, that are not able to provide a
full representation of all IoT elements.

On the other hand, the use of feature models to address
variability within the IoT context is suggested in [7]. In
this case, their primary use relates to the handling of vari-
ability concerning the different functionality that a software
product can include and the relation among them, provid-
ing reusability capabilities among different implementations
[9,13,50,70]. In this sense, proposed approaches allow the
definition of configurations that permit the selection of spe-
cific functionality among the ones included in the model,
so to satisfy the overall formula subsumed by the feature
model. The configuration is closely linked to the relationships
that bind the various features within the model. Different
configurations can be seen as different variants of the same
product, as described in [85]. In [7,15], the authors highlight
that the use of feature models presents positive evidence for
the adaptation to different IoT contexts. Nonetheless, despite
the various efforts, no single approach emerged as generally
applicable to permit its adoption in all the possible IoT devel-
opment contexts.

IoT Middlewares and platforms Internet of Things middle-
wares and platforms are considered helpful solutions that
facilitate communication and data handling among elements
that were not originally designed to be interconnected, and
would not otherwise be capable of communicating. IoT
middlewares can manage the communication between IoT
devices, providing a more abstract level where communica-
tion interfaces between devices and IoT applications can be
built up [33].

Among the most used IoT middleware, it is possible
to find MiddleWhere [69], OpenIoT,3, and FiWare.4 They
allow discovering and managing devices, providing analytic
data services to manipulate and analyse upcoming data from
devices, and sending valuable data to platforms/servers to
build IoT applications. In such respect middlewares gener-
ally permit to address variability aspects connected to device
communication.

IoT platforms have emerged to provide support to IoT
applications development. They share the spirits with which
middlewares were developed to interconnect different
devices, and they offer functionalities able to perform oper-
ations over devices data, and to permit the entire IoT
application development.

Currently, the main emergent option to develop IoT appli-
cations inside an IoT platform is to exploit the use of
low-code development (LCD) environments [44]. Definition
concerning the LCD can also be found under the umbrella

3 OpenIoT: https://www.openiot.in.
4 FiWare: https://www.fiware.org.

of no-code development, and rapid application development.
LCD aims to resolve the complexity of building IoT appli-
cations by reducing software application development time
and decreasing the hand-coding required to develop the solu-
tion. It usually adopts a visual environment, which allows for
building IoT applications more efficiently than traditional
methodologies. In addition, widely used open-source IoT
tools such as Node-RED,5 Crosser6 and NoFlo,7 as well
as IoT platforms such as IBM Cloud Platform,8 Things-
Board,9 Losant,10 and SmartWorks,11 have incorporated this
programming paradigm inside their solutions. To develop an
IoT application according to the LCD paradigm, IoT plat-
forms exploits the usage of a programming paradigm called
flow-based programming (FBP), proposed in 1971 by Paul
Morrison at IBM Canada [59]. The IoT application develop-
ment based on these platforms and tools is usually provided
through the use of graphical user interfaces that enable the
definition of the applications through the interconnection of
different graphical components [45]. Despite traditional soft-
ware development, where a programmer has to write code to
develop the desired solution, LCD hides all the classic pro-
gramming concepts and focuses only on how the desired
system should work, allowing drag-and-drop of prebuilt and
reusable components to develop a system. In this sense, this
type of development highly enhance reusability capabilities.

An example of LCD for an IoT application is reported in
Fig. 1, where data are gathered from two temperature sen-
sors components (read temperature sensor 1 and 2) and are
directed to a computation node that computes the average
value-producing as output. The complete application can be
seen as a connection of different components, where each of
themprovides specific functionality and sends data to the next
one. It is possible to facilitate the interconnection between
heterogeneous devices using LCD to realise IoT applications
suitable for small-medium domains (e.g. smart home, and
smart building) [42,66,74], and large scenarios (e.g. smart
city, smart logistic, smart hospitals and smart military envi-
ronments) [47,48,75].

Discussion and limitations of the available solutions The
categories of solutions proposed above only partially solve
one or more of the identified challenges. On the other hand,
they often bring other issues that can increase the complexity
of the development of an IoT application.

5 Node-RED: https://www.nodered.org.
6 Crosser: https://www.crosser.io.
7 NoFlo: https://www.noflojs.org
8 IBM Cloud Platform: https://www.cloud.ibm.com.
9 ThingsBoard: https://www.thingsboard.io.
10 Losant: https://www.losant.com.
11 SmartWorks: https://www.altair.com/smartworks.
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Fig. 1 An example of a low-code development IoT application

IoT middleware seems to be an optimal solution to use
in handling the variability concerning IoT devices commu-
nication protocols. However, as described in [4] they bring
several problems in relation to the rapid growth of the IoT
domain and its continuous variation. On the other hand,
IoT platforms exploit middleware’s principle and provide
clear support to decrease the complexity of IoT applications
development, enabling the reusability of parts of an IoTappli-
cation through LCD environments and elements. However,
as depicted in [55], there is still not much support to build and
reuse entire solutions across different application contexts,
as those are generally considered stand-alone projects. Fur-
thermore, allowing non-expert developers to produce code
for IoT applications could lead to errors in the derivation
of the application logic. Users often approach these envi-
ronments without sufficient knowledge to build a correct
application. In addition, many of these solutions, while on
the one hand facilitate the development through the intercon-
nection of graphical components, on the other, they require
to insert specific technical IoT information. This informa-
tion is usually technology-specific and differs for each IoT
device. Overall, there is a general lack of tools and methods
to support IoT application development.

A solution as it could be a workflow management systems
can be applied in the IoT domain to model the IoT applica-
tion behaviour. As mentioned in [19], proposing a business
process oriented solution, it is clearly necessary to enrich
the adopted modelling language with IoT-aware constructs
to include in the business processes model aspects related to
the IoT domain. In this sense, despite all the effort made by
researchers, no modelling languages or notations affirmed
itself for general usage in this context.

Indeed, [22] highlights a lack of standard and an extensive
consequential fragmentation in proposing modelling nota-
tion to integrate IoT constructs inside business processes. In
addition, thismodelling notation enrichmentwith IoT related
concepts must be coherent from the design to the process
execution. Despite its significant usage from amodelling per-
spective, as highlighted in [41], support is also needed for the
execution phase. To overcome these problems, it would be
necessary to extend the used notation to include IoT domain
elements, and coherently to extend the corresponding work-
flowengines to execute them.As described in [83], IoT-aware

business processes are executed by process engines that are
bounded to specific device types. The authors highlight how
this decreases business process models reusability, as they
need to be deployed in multiple or different IoT scenarios
with different device types which provide similar function-
ality, that instead could be considered interchangeable from
a customer perspective.

To deal with the problems mentioned above, developing
and applying amodel-driven engineering approach seems to
be a possible solution for building IoT applications. They
use models to decrease the overall complexity of building
IoT solutions. In [12], the opportunities that the IoT domain
could receive in adopting an MDE approach are highlighted.
However, the authors also highlight open questions regard-
ing the effectiveness of developing and building complex IoT
applications to decrease the overall complexity and reduce
time and costs. These applications must correctly handle the
IoT domain variability in representing IoT elements and their
relationships. In addition, aspects regarding the enhancement
of the customisation and the reusability of IoT applications
development were detected as relevant points to decrease the
overall IoT development life-cycle time. We highlight how
feature models seem to be an excellent candidate to model
product lines of a complex IoT scenario. to represent and
handle aspects related to device variability and the neces-
sary functionalities to be supported by an IoT application.
As their intrinsic property, they also provide reusability and
customisation through different model configurations. How-
ever, a methodology that fully exploit these models and helps
in building customised solutions seems not to have emerged,
yet.More in general, enterprises and the research community
still require a lot of effort to provide a common or standard
MDE approach that can be practically used.

From the analysis we conducted emerged that no single
solution, for the development of an IoT application, seems to
address all the challenges mentioned in Sect. 2. On the other
hand, a recently emerging trend, as described in [24,28,46],
suggests the use of the model-driven engineering approach
to develop IoT applications based on low-code development
platforms. The authors highlight the potential benefits that
could be achieved by combing Model-Driven development,
possibly based on feature diagrams, and LCD. To the best
of our knowledge, no concrete approach following the men-
tioned direction has been proposed, so far, being FloWare the
first full-fledged proposal.

4 The FloWare approach

This section presents FloWare, a model-driven engineering
approach conceived to support the modelling and devel-
opment of IoT solutions. In the following, we provide an
overview of the approach by describing the various phases
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Fig. 2 Illustration of the FloWare approach with the supporting toolchain. (The area that divides step one from the others indicates that step one is
performed only the first time the enterprise applies the approach)

and actors, as depicted in Fig. 2. Then, for each phase, we
describe the foreseen steps, and the produced artefacts. In
the following, we also describe the support we provide in
developing and using the approach through a toolchain. The
toolchain covers all the FloWare phases, from modelling to
development phases. Additional information regarding the
toolchain is reported in the FloWare web page.12

4.1 FloWare overview

Since the IoT development process is broad and concerns
the intersection of multidisciplinary concepts by the various
actors involved, converging towards a division of roles and
concerns is certainly desirable. In our proposal, we intend
to foster the separation of concerns principle [11], iden-
tifying and supporting different modelling, refinement and
development steps. The approach aims at supporting from
the modelling to the development of IoT applications, inde-
pendently from the considered application domain.

Phases The approach is divided into two main phases: the
modelling phase and the development phase. The modelling
phase involves the design and usage of models representing
the entire range of solutions that an enterprise can provide
for a specific domain. Indeed, an enterprise specialising in a
specific IoT domain generally offers many different IoT soft-
ware and hardware solutions to the customers. In doing this,
different customers come to it with particular requirements.
Handling each requirementmeans for the enterprise that each
solution is heavily customised based on specific necessities.
Correctly producing customised IoT applications for each
customer in reasonable time and costs are the main aim of

12 FloWare web page: https://www.pros.unicam.it/floware.

the FloWare approach. Below, we refer to the term crys-
tallised knowledge to indicate the possibility of representing
the entire experience and awareness that a given enterprise
acquired in a specific IoT domain.

Applying our approach, we provide a modelling structure
to catalogue the entire enterprise knowledge for a specific
IoT domain through feature models. We use feature models
as a basis for representing and cataloguing hardware in the
form of devices that could be installed inside an environ-
ment, and the system functionalities that the enterprise can
provide to the customers. In this sense, our approach pro-
vides the possibility to handle the complexity in crystallising
the knowledge regarding the variability of all these possible
functionalities and the possible devices that could be needed
to provide the defined functionalities. In this way, feature
models help in managing the variability that derive from the
target domain and the used devices, as described in Sect. 2.
The feature model structure is built upon a well-known IoT
ontology called IoT-Lite13 to represent IoT devices, and sys-
tems characteristics, entirely.

Based on customer requirements, different feature model
configurations can be defined over the same model. These
requirements are derived from the customer needs and specif-
ically referring to the specific application scenario (e.g. a
building may need a smart access control system while
another one may not). In this sense, we apply the reusabil-
ity concept, providing the possibility of developing different
configurations starting from the initial featuremodel, accord-
ing to specific requirements. In this way, through these
configurations, our approach aims to provide better customi-
sation concerning all the possibilities that an enterprise can
offer to the customers, so that they can benefit from this level

13 IoT-Lite: https://www.w3.org/Submission/iot-lite.
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of customisation to better fulfil their requirements. At the
same time, enterprises can offer customised solution pack-
ages that can be realised in reasonable time and costs.

The development phase supports the development of the
final IoT application, and it starts from translating the fea-
ture model configurations into code artefacts. These artefacts
store information regarding the IoT devices and systems
involved in the final solution and are also used to provide
a customised development environment. This environment
is automatically filled with all the necessary information
regarding the used devices. The approach also provides the
developer with a selection of automatically generated IoT
application templates, in the form of low-code development
IoT applications, that the developer can use as a starting point
to elaborate data coming from the IoT devices, visualise, and
interact with them.

Actors The IoT application development is a multidisci-
plinary process that intersects heterogeneous knowledge
from different involved actors [64]. In our approach, we
revisited and adapted a classification of IoT actors and their
roles as described in [52]. Our revision intends to better fit
a model-driven approach as FloWare is. In the modelling
phase, we require the involvement of a modelling expert
(ME), an expert capable of designing and representing spe-
cific domains using modelling languages and tools, and an
IoTExpert (IoTE), an expert of the Internet of Things domain
responsible for the management of IoT devices deployed (or
to be deployed) within the application scenario. These enter-
prise actors collaborate with the customer, who requested
the work, to define configurations of the IoT scenario that
better fulfil needed requirements. The Development phase
requires an IoT application developer to exploit the poten-
tial provided by the approach to develop IoT applications.
In particular, the IoT application developer has the task of
selecting systems and devices to derive a valid configuration
as prescribed by the featuremodel, so to develop the IoT soft-
ware application that will involve the selected systems and
devices. In developing the IoT application, the developer will
have tomanage the interconnection of identified devices, and
correspondingly of the produced data.

4.2 Modelling phase

The modelling phase involves two different steps. The first
asks to an enterprise to model a complete IoT solution
through feature models. This solution must incorporate all
the functionalities and related devices that the enterprise can
provide for a target domain. The second step asks to con-
figure, following the customer necessities, the desired IoT
application, and to choose which functionalities and devices
to incorporate. To fully support these steps, we provide inside
the ADOxx metamodelling platform a feature model library

that can be used to design and configure feature models. Our
library can cover all the steps, starting from the featuremodel
design to its configuration, permitting then the generation of
artefacts describing different aspects of the IoT application.
Thanks to an intuitive graphical interface the resulting plat-
form makes it easy to design and configure all the needed
application details so to derive a fully functional IoT appli-
cation.

In the following, we provide a detailed description of each
step.

Step 1. Feature model design The enterprise that has
decided to adopt the FloWare approach involves the ME and
the IoTE actors to gather all the knowledge related to the
reference IoT domain and related devices that it can offer.
This collection forms the basis for designing a feature model
for that specific domain. While the enterprise could design
feature models using a custom terminology for describing
systems and devices, we encourage following and applying
the widely used IoT-Lite ontology as a reference [10]. This
ontology constitutes a lightweight solution for the definition
of concepts related to IoT devices and systems. The IoT-Lite
ontology is used in different research works [73,76,78], to
allow the easy development of IoT systems taking into con-
sideration device heterogeneity and interoperability aspects
among devices and systems. In our approach, we provide a
feature model structure upon which it is possible to model
one’s own IoT domain. This structure is composed of two
interrelated feature models, as shown in Fig. 3.

The first feature model, defined as IoT domain feature
model, concerns the modelling of an entire IoT domain, in
which, according to the interest of the IoT solution provider,
all the systems and subsystems composing an IoT solution,
can be inserted. For each of them, the relative devices need
for the development phase, are reported. The second model,
called IoT device feature model, is the one that allows the
modelling of a device with its characteristics and properties.
It can be used as a ready-to-use model to express device
features, or possibly extended to add emerging future char-
acteristics. Our approach permits the inclusion of this model
to cover all the aspects reported in the IoT-Lite ontology.

In the following, we describe the IoT domain feature
model referring to a smart campus IoT domain example,
and the IoT device feature model, as a model representing
a generic device. These models play the role of platform-
independent models (PIMs), which allow the enterprise to
represent all the systems it can provide to various customers,
independently from any technical specification. These mod-
els do not contain any specific information about the target
scenario; instead, they provide a high-level abstract repre-
sentation of the entire reference domain.

IoT domain featuremodelAfter analysing all the IoT systems
and devices that the enterprise can provide for the smart cam-
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Fig. 3 Feature models of the smart campus (a) and of the IoT device (b)

pus scenario, theME and the IoTE can design the IoT domain
feature model. By using the IoT-Lite terminology, this model
synthesises all the knowledge acquired concerning enterprise
provided solutions.

The ontology describes an IoT domain as a collection
of systems, which in turn can be decomposed into sub-
systems. Different IoT devices can be associated with each
sub-system. According to several works [2,61] that sum-
marise the functionalities that a smart campus can provide,
in Fig. 3a is reported the resulting feature model that the
enterprise could have derived.

The provided feature model structure is the following. At
the first level, we reported the reference IoT domain, in this
case, the smart campus. At the second level, it is possible to
represent all the IoT systems involved in that domain (e.g.
temperature monitoring system, a light management system,
etc.). The enterprise experts are in charge of including, defin-
ing and characterising these systems.

As the IoT domain is very large, the systems in this sce-
nario are also heterogeneous. As described in the model of
Fig. 3a, many IoT systems that are part of the domain can be
decomposed and detailed through one or more sub-systems.

For instance, the temperature management system could be
a complex IoT system that involves many different IoT sub-
systems, to give the possibility to monitor the temperature,
and tomanually or automatically adjust it. At the bottom level
of the model, the IoT devices that contribute to support the
IoT systems and sub-system operations, are reported. While
designing a feature model, it is possible to define constraints
among the various features, specifying whether a configu-
ration has to abide by the following relations: mandatory,
optional, alternative or exclusive. In addition, it is possible
to express external constraints that allow the require or exclu-
sion of a specific feature from a configuration. An example
of a constraint could be the relation that binds an air qual-
ity management system with an alarm system. In case this
relation is present between these systems, the latter must be
included in case the first is included in a configuration. The
type of relationships among the various features of the model
is provided by the enterprise, which, being expert in a given
domain, provides a complete overview of all its possible ser-
vices.
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IoT device feature model The second feature model that the
enterprise can define is used to collect all the knowledge
about the types of IoTdevices that the enterprisemanages.An
example of an IoT device featuremodel is reported in Fig. 3b.
We defined this model following the device characteristics
highlighted in the IoT-Lite ontology. However, it is possible
for an enterprise to extend and modify this structure to better
fulfil their needs.

The presented IoT device feature model is characterised
by five main features: type, service, data, location, and cov-
erage. Type is a mandatory feature to express the IoT device
typology. An IoT device can be a sensing device, if it pro-
vides information from the physical environment (e.g. the
temperature of a room), an actuating device, if it can act
on the environment (e.g. a device that can open a door), a
tag device such as RFID, NFC or QR-codes. Service is a
mandatory feature that represents the way IoT device related
information can be sent/retrieved. Usually, the main commu-
nication protocols used to send/retrieve information within
the IoT domain are HTTP, CoAP, LoRa or MQTT. Data is
an optional feature that groups all the information regarding
the data sent/received to/from an IoT device. It is considered
an optional feature as in case it is missing this does not affect
device operations. These data can be catalogued into meta-
data, any metadata that a sensor can provide, QuantityKind
and unit, which are abstract concepts to represent what can
be measured and the measurement unit (e.g. temperature as
quantity and Celsius as a unit). Other information necessary
to allow the correct manipulation of the device data refers to
the DataType that the device can handle. Regarding the data
that the device sends or receives, it is possible to define if
they are numeric values, Boolean, etc., to allow the system
to correctly process them. Location is an optional feature
representing all the information regarding the physical IoT
device position, including the latitude and longitude in Geo-
Points and the physical platform where the device is located
(e.g. desk number one). Coverage is an optional feature that
refers to the specific coverage range that the device provides
(e.g. a temperature sensor inside a room has a coverage of
the entire room). Coverage can have different forms such as
that of a polygon, a circle, or a rectangle.

Once Step 1 of the approach has been performed, and the
model representing the entire IoT domain has been designed,
it will not be needed to repeat it for each new customer.
Instead, all the other steps must be repeated every time a
new customer requests an IoT smart campus solution. In
this sense, it is possible to provide reusability mechanisms
starting from the IoT domain feature model designed by the
enterprise, and its relative IoT device featuremodel. In Fig. 2,
the separation of Step 1 from the others highlights this con-
cept. The established feature models will provide a base for
defining the various configurations requested by the differ-
ent customers. In addition, we provide a way to categorise

and handle the variability, giving the possibility to represent
all the possible characteristics that the IoT domain, as well
as IoT devices, can have. It is possible to extend the already
designedmodels by adapting them tomeet advanced require-
ments that the enterprise can adopt, providing new additional
systems or modifying those already present (e.g. removing
those that are not offered anymore by the enterprise).

Step 2. Feature model configuration After the enterprise
designs its range of possible solutions for a target domain,
it can put FloWare into practice to answer the needs of a
customer. The enterprise experts and the customer use the
IoT domain Feature Model to discuss and configure all the
necessary solutions, following the specifications reported
in the model. Considering the the smart campus scenario,
a customer may need to build IoT applications for differ-
ent departments of the same university. Each of them have
its peculiarities and diversities. Different configurations rep-
resenting departments from an abstract perspective can be
generated.At this stage, no specific information are requested
in these configurations. An example concerning a depart-
ment configuration is reported in Fig. 4a, showing all the
mandatory systems that the department must have, such as
the temperature management and the optional systems that
can be chosen, such as light management and air quality
management. In addition, the Alarm system is included in
the configuration, given the rules that bind the air quality
and the alarm systems. All the sub-systems that the depart-
ment needs are also selected for each selected system. For
example, the temperature management system reports differ-
ent variability points in the initial feature model, and various
sub-systems can be chosen when configuring it. In this con-
figuration, the sub-systems that allow both a manual and an
automatic control of the department temperature have been
chosen.

Successively, the necessary devices have to be selected. It
is possible to notice these variability elements in the selec-
tion of devices. The entire temperature management system
could be realised in one location using a combination of tem-
perature sensors and an air conditioning system, while in
another using the temperature and humidity sensors and the
radiators. This variability allows producing different config-
urations starting from the samemodel and taking into account
the specific needs and intentions of a customer. As shown in
Fig. 4b, the example refers to two different devices included
in the configuration: the temperature sensor and the air con-
ditioner. These devices differ in their configuration. As for
the temperature sensor, it is possible to notice that it has
been configured as a sensing device, as it is used to capture
the room’s temperature values. The location points of the
device, intended as latitude and longitude GeoPoints, have
been selected in the configuration. The service that allows
to read/send data is also configured. In this case, the MQTT
protocol was selected. Finally, the specification of the type
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Fig. 4 Example of a a department configuration; b the temperature sensor and air conditioner devices configurations

of data sent has also been selected in the configuration. In
this case, the numeric type has been configured under data
type. Additional information such as the quantity kind, and
unit is also inserted.

Referring to the air conditioner, the configuration slightly
differs, and being a mandatory selection the type of device
has been specified in this case. In particular, it has been con-
figured as an actuator as this device performs the function of
changing environmental parameters such as the temperature
value. The type of communication protocol is also different.
In this case, CoAP has been selected. Finally, the data param-
eter that the device provides is configured as a Boolean data
type, as the device provides information about its status (e.g.
whether it is on or off), and information regarding its quantity
is also selected.

At this point, all the features chosen in the configuration
include the devices that need to be configured by the ME and
the IoTE actors. After configuring a department, it is nec-
essary to provide technological specifications regarding all
the included devices. Such information can come either from
the customer, that could have already deployed such devices
to support other IoT application scenario, or directly from
the IoT solution provider. This information is dependent on
the device’s technologies, and their specification will result
in so-called platform-specific models. For example, specific
information based on the type of communication protocol
chosen (e.g. if it is MQTT, the broker server name, the topic,
the listening port, etc.) or the exact latitude and longitude of

GeoPoints are requested. All the specific configurations are
saved in a common repository to have the possibility to reuse
them as necessary to develop the complete IoT application.
Indeed, the IoT application developer will use them to select
which IoT systems and devices will be included in the final
IoT application.

4.3 Development phase

All the defined configurations with specified devices infor-
mation will then be made available to the IoT application
developer, i.e. the expert in charge of developing the IoT
software application to be deployed.

Step 3. Feature model configuration selection The IoT
application developer can select one configuration related to
a specificmodel to develop the application or choosemultiple
configurations so to derive a more complex application.

Taking as a reference the configuration reported in Fig. 4a,
which is provided with a representation of all the IoT sys-
tems for the department, the IoT application developer can
select for which systems and sub-systems to develop the IoT
application.

As an example, the IoT application developer decides to
develop an IoT application for the temperature management
system. After the IoT application developer select which IoT
systems and devices to use to develop the application, the
predefined transformation will permit to derive a set of snip-
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1 <con f i gura t i on>
2 / / d e v i c e n a m e
3 <f e a tu r e automatic=" s e l e c t e d " name=" T e m p e r a t u r e

s e n s o r "/>
4 / / s e r v i c e s p e c i f i c a t i o n
5 <f e a tu r e automatic=" s e l e c t e d " name=" S e r v i c e "/>
6 <f e a tu r e automatic=" s e l e c t e d " name="

C o m m u n i c a t i o n p r o t o c o l "/>
7 <f e a tu r e automatic=" u n d e f i n e d " name=" M Q T T "/>
8 <f e a tu r e automatic=" u n d e f i n e d " s e rv e r=" w w w .

b r o k e r s e r v e r . c o m "/>
9 <f e a tu r e automatic=" u n d e f i n e d " port=" 1 8 8 3 "/>

10 <f e a tu r e automatic=" u n d e f i n e d " qos=" 0 "/>
11 <f e a tu r e automatic=" u n d e f i n e d " top i c=" r o o m 1 /

t e m p e r a t u r e "/>
12 / / d a t a s p e c i f i c a t i o n
13 <f e a tu r e automatic=" u n d e f i n e d " name=" D a t a "/>
14 <f e a tu r e automatic=" u n d e f i n e d " name=" D a t a T y p e "/>
15 <f e a tu r e automatic=" u n d e f i n e d " name=" N u m e r i c "/>
16 </con f i gura t i on>

1 { id : 42 a56979 .773094 ,
2 broker : www. b roke r s e rve r . com ,
3 port : 1883 ,
4 name : Temperature sensor ,
5 qos : 0 ,
6 t op i c : room1/ temperature ,
7 type : mqtt
8 datatype : numeric }

Fig. 5 A detail of a Temperature sensor device XML configuration
translated to a JSON component, readable from our FloWare platform

pets of code, defined as code artefacts, specifically conceived
and formatted according to the requirements of the selected
platform to be used. These code artefacts are built through a
translator script that translates the device’s information into
the format processable by the target IoT platform.

In particular, the translator takes the information regard-
ing the selected systems (e.g. the temperature management
system) and the selected devices (e.g. the temperature sensor
device) and translates them from XML configurations into
code artefacts (e.g. JSON file) that the target IoT platform
can process.

An example showing this translation is reported in Fig. 5.
The figure shows a part of an XML file that corresponds
to a feature model configuration of a device reporting the
selected features and the specified device data. These data are
the name of the sensor (temperature sensor) as well as some
details concerning the service bywhich device data are acces-
sible. In particular the protocol (MQTT), the server name
(https://www.brokerserver.com), the server port (1883), the
quality of service for the protocol (0 means there is no guar-
antee of delivery), and the topic at which to subscribe for
accessing the device data (room1/temperature). In addition,
specific information regarding the data type that the device
exposes is reported (numeric type). It is worth noticing that,
referring to the IoT device feature model in Fig. 3b, all the
mandatory features have been included and are those with
the automatic attribute set to “selected” in the XML config-
uration file. The selected features that are optional inside the
model present the automatic attribute set to “undefined”.

In our approach, we provide some script to translate the
XML configurations into readable code for our FloWare
Platform. We integrated Node-RED, one of the most used

low-code development environments for building and run-
ning IoT applications inside the platform. The example in
Fig. 5 shows that this configuration information is translated
into the readable Node-RED format, that is, a JSON format,
ensuring the correct correspondence between the configura-
tion and the derived translation. The provided translator also
elaborates the information collected inside the XML con-
figuration to generate basic application logic. These basic
templates allow retrieval of the information from the devices
to perform simple operations inside the FloWare Platform.
We defined those templates based on our experience. How-
ever, it is reasonable to assume that any enterprise or user of
the FloWare approach can define more complex templates
based on the gathered experience in developing IoT applica-
tions.

In FloWare, templates that provide basic application logic
to interact with the selected devices are automatically gen-
erated to support the developer in designing more complex
applications.Anexample of a provided application logic tem-
plate for our scenario is the one related to the interactions
with the temperature and air conditioner devices, reported
in Fig. 6a. The templates appear to the developer as inter-
connected nodes. This interconnection of nodes corresponds
to the basic application templates that we provide to sup-
port the IoT application developer. This basic application
logic is enough to handle the automatic import, elaboration,
and visualisation of the device’s data. The low-code devel-
opment environment transforms the application logic that
is graphically displayed into executable code (usually using
JavaScript or Java languages), which allows its execution. In
this way, the user of this environment is free from having
to write code by hand. Developing the application through
interconnectable and reusable graphic components is only
necessary.

For what concerns the temperature sensor, as its data type
is numeric, as defined in the configuration step, nodes that

Temperature sensor

Air Conditioner

read temperature

read air conditioner

debugger

Temperature gauge

Temperature chart

Air Conditioner value

debugger

Temperature

Air Conditioner value:
on

gauge Temperature chart

(a)

(b)

Fig. 6 Templates automatically generated for the Temperature sensor
and an air conditioner devices (a) and the obtained dashboard (b)
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(a)

(b)

Temperature sensor

www.brokerserver.com:1883

room1/temperature

0

auto-detect (string or buffer)

Temperature sensor

Fig. 7 Representation of a generated temperature sensor node (a) and
of its related information (b) inside Node-RED

can correctly handle this type of data are provided (gauge
and chart nodes). In contrast, as the air conditioner provides
a Boolean value (true/false corresponding to on/off), its value
is displayed in a textual format. In addition, in Fig. 6b the
relative generated dashboard is presented. The dashboard
includes different widgets that allow the easy visualisation
of the temperature sensor and air conditioner device data in
real-time.

Each node included in the templates is automatically filled
with device information provided during the feature model
configuration phase. In Fig. 7a, an MQTT node is gener-
ated and its specific information (Fig. 7b) are automatically
retrieved from the configuration translation. The developer
does not have to insert specific information regarding each
device, but the environment automatically retrieves them
from the previous configurations.

The definition and the usage of automatically built tem-
plates permits the sharing of knowledge between the various
experts. Our approach provides such an abstraction level that
permits the developers to remain unaware of the specific
information regarding the devices, as the imported config-
urations automatically insert the necessary information. In
addition, through this approach, it is possible to foster arte-
facts reusability, providing a starting point to generate the
IoT application instead of redefining it from scratch.

Step 4. Application development In this step, the IoT appli-
cation developer can adequately handle the code artefacts
generated during Step 3 and provide them as input to the
integrated platform used to define the IoT application logic.
The generated code artefacts can be automatically imported
into the FloWare Platform through a script that, from the
configurations made inside the ADOxx environment, sends
the code artefacts directly to the FloWare platform. The IoT

application developer can then use the incorporated Node-
RED environment to modify or directly execute them.

In this final step, the derivation of the whole IoT appli-
cation takes place. To fully support the IoT application
developer inside the FloWare Platform, we provide a script to
automatically set the Node-RED environment based on the
configurations. Indeed, the Node-RED tool presents a palette
formed by many nodes that can be connected to design an
IoT application. We automatically configure the Node-RED
palette in such a way to display not only the default nodes but
also those nodes that are needed to interact with the systems
and the devices selected from the feature model configura-
tion (Step 3 of the approach).Without this support, each node
that does not come with the default palette would require a
manual installation. The result of the configured environment
is reported in Fig. 8a, where different nodes that are not pro-
vided as default are added (e.g. that of the highlighted CoAP
nodes) and correctly configured. In this way, all the devices
and information are automatically and correctly imported.

At this point, the IoT application developer has the com-
plete environment completely set. He/she can retrieve all the
information related to the included devices, and the basic
templates corresponding to the available configuration, to
possibly proceed to further manipulations and node inter-
connections. In particular is only necessary to use additional
operational nodes to enrich the IoT application logic. An
example of the extended IoT application is shown in Fig. 8b,
where a more complex logic to manage the temperature in
a room is provided automatically. Our approach has already
generated a considerable part of the final IoT application.
Indeed, the automatically generated nodes have beengrouped
within the green perimeter, so to see the valuable support pro-
vided by FloWare in developing the final IoT solution.

In our approach, we stress the importance of develop-
ing IoT software applications through low-code development
environments, as suggested in [44,71]. The described process
and composing activities illustrates how using FloWare it is
possible to crystallise the knowledge of a specific IoT appli-
cation context, to make possible its reuse in the development
of several related concrete IoT applications.

5 Demonstration

In this section, we provide a practical demonstration of the
FloWare approach in a smart campus domain to answer the
second research question: “(RQ2)—How can we improve
support for customisation and reusability of IoT application
modelling and development?”.

We introduce the smart campus application scenario, and
we describe the motivations of the two main actors involved:
an enterprise that wants to reduce the complexity of devel-
oping customised IoT solutions, and a customer in need of
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mqtt out

filter nodes

your nodes

FloWare Platform

Node-RED

gauge

chart

coap in

coap request

text

mqtt in

(a)

debugger

Air Conditioner value

Temperature chart

Temperature gauge

Air Conditioner

Temperature sensor

read air conditioner

read temperature

format command

Air Conditioner

switch Air Conditioner state > 20

turn on

turn off

(b)

Fig. 8 The customised Node-RED environment (a) and a complete IoT application to automatically manage the temperature of a room (b). The
application is developed by the IoT application developer combining and extending the templates of Fig. 6

an IoT solution to transform a traditional university campus
into a smart campus.

5.1 Application scenario

A smart campus can be defined as a university campus
equipped with IoT devices and exploiting their potential,
becoming able to detect and to automatically apply changes
in the environment, and its inhabitants’ state [29,87]. Trans-
forming a traditional campus into a smart campus can
enhance education and teaching, and it can optimise life
for students, employees, and visitors. It can also improve
the quality and performance of the services, reduce costs
and resource consumption, and engage more effectively and
actively with its residents [16,54].

One or more managers can handle all the functionalities
deployed within a smart campus through software solutions,
generally in the form of graphical dashboards explicitly cre-
ated to meet the needs of the smart campus. Using these
dashboards, it is possible to monitor the smart campus in
real time, to remotely manage devices activation (e.g. detect-
ing the presence or the absence of personnel, it is possible
to turn on/off the lights remotely via a virtual button), and to
analyse historical data to plan future actions.

The IoT solutions provider (enterprise) The company we
refer to has gained significant experience in digitising uni-
versity campuses, providing ad hoc solutions for every
situation encountered. Each solution is usually developed
from scratch, increasing production times and construction
costs. Referring to the same IoT domain (e.g. smart cam-
pus), IoT software development for different clients however
clearly has shown some commonalities [79]. The company
found that customers often required the same features (e.g.
temperature management, light management, smart HVAC,
etc.). However, each run project has often rewritten the soft-
ware to handle those same features. In addition, customers

can request the use of different sensors to create a specific
functionality according to their needs. For example, cam-
eras or presence sensors may be needed to monitor presence.
The numerous dimensions of variability that we can observe
in this domain are the primary source of problems for the
software development company. This differentiation must be
managed in a simpleway for the company. However theman-
agement of each project as a single instancemakes difficult to
introduce improvements in all the IoT applications belong-
ing to the same typology. All this leads to a high degree of
complexity for the company in maintaining and reusing the
acquired knowledge by applying the best practices achieved
over the years.

The university In our scenario, the university plays the role
of the customer as it intends to make its campuses smarter.
The university decides to rely on an IoT enterprise’s experi-
ence and start the necessary interactions to fulfil its interests.
Given that a university can be seen as the combination of
various buildings (e.g. departments, administrative offices,
etc.) and the people that populate them (e.g. students, pro-
fessors, administrative, etc.). Therefore the requirements for
IoT solutions may vary based on the building where devices
will have to be deployed, and the objectives of the people
consuming the services.

Some practical examples can help to better clarify the sce-
nario. Therefore we consider a generic university organised
over various departments, and their corresponding and pecu-
liar needs. So in our hypothetical university we have:

– the Chemistry department, in which, for safety reasons,
it is necessary to have an intelligent system for air qual-
ity monitoring. This system can immediately report the
air quality levels that may be influenced by the experi-
ments conducted in the labs. In particular, it is necessary
to include fire, CO, NO2 and CO2 sensors. In addition,
to maintain the various chemical elements accurately,
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Fig. 9 A representation of the feature model library within ADOxx (a), a designed smart campus platform-independent model (b), and a detail on
the temperature sensor feature (c)

the temperature should always be automatically kept
between 18 and 21 ◦C.

– the Biology department, in which there is the necessity
to monitor experiments involving plants. In particular,
there is the necessity to have a system able to control
and manually act on the entire temperature and humidity
levels inside the labs so to manage in an optimal manner
the radiators and the lighting levels for plants wellness.

After the university provides the requirements for each
department to the enterprise, this has to develop a customised
smart campus solution. In the following section, we report
how theFloWare approach can help the enterprise tomeet the
university demands to provide customised IoT applications.

5.2 Smart campus case study

The company wishing to apply the FloWare approach can
use the provided toolchain to design its functionality model.
An example of the use of the provided toolchain is shown
in Fig. 9, where the same smart campus scenario (shown in
Fig. 3a) is modelled to show the feasibility to represent all
the functionalities that can be developed in a complex sce-
nario. In particular, we show how it is possible to design
models through the graphics library provided (Fig. 9a). A
partial representation of the entire feature model is shown
in Fig. 9b. The experts in developing these models can then
provide details on each feature inserted. These details can
represent devices and systems involved in the scenario, as
shown in Fig. 9c. In particular, in the example, the experts
select the temperature sensor. Then, it is possible to enter
information such as the name, a generic description of the
device involved, and the type of feature it represents (in this
case, a Device Type). It is worth noting that for the IoT solu-
tion provider, it is necessary to design this model only the
first time it applies FloWare in such a way to represent the

entire acquired knowledge. Indeed, our approach is strongly
based on the possibility to reuse the initial feature model to
provide all the necessary configurations to better explain and
model all the requirements. At the same time it is possible to
easily extend such amodel to include additional functionality
to be developed in a given context.

After enterprise experts have modelled the domain of
interest, including all the functionalities it can provide to
the customers and its related devices, it is possible to use
this model to guide each customer requiring smart campus
IoT applications. In this case, the enterprise collaborates
with the university to fulfil its requirements. The univer-
sity approaches the enterprise with several requests on how
to develop the IoT solution to manage the entire smart
campus, as described in Sect. 5.1. As explained, each depart-
ment has its specific necessities and needs different devices
and functionalities. In this sense, by applying the FloWare
approach, the enterprise can ensure that the university can
customise their preferences through different configurations
of the designed feature model. The developed feature model
is, indeed, reused to derive several department configura-
tions. Experts in cooperation with the university personnel
must select the necessary characteristics guided by the rela-
tionships defined in the model itself. In Figs. 10 and 11, it is
possible to notice how different configurations can be pro-
duced from the initial model. In this case, the configurations
for the chemistry department and the biology department are
provided following the already mentioned requirements.

Once the configurations are defined and all the univer-
sity requirements are satisfied, the experts have to provide
the specific configuration for each device part of the selected
systems. Correct devices configurations is the one reported in
Figs. 10b and 11b. For the temperature sensor and theHumid-
ity sensor devices, it is necessary to fill in a form to enter
specific information about them. The elements requested in
the insertion and its relations (e.g. mandatory, optional, and
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Fig. 10 A representation of the chemistry department configuration on ADOxx (a), and the temperature sensor device configuration in detail (b)

Fig. 11 A representation of the biology department configuration on ADOxx (a), and the humidity sensor device configuration in detail (b).
(Asterisks in the device configuration indicate mandatory features that must be filled, following the IoT device feature model of Fig. 3b)

others) were already defined in the IoT device feature model
in Fig. 3b and are represented in our library in textual form.
For each device included in the configuration, specific infor-
mation regarding the selection providedmust be inserted into
the form.

In the first case, three temperature devices are inserted,
while the biology department only needs one humidity sen-
sor. All of these devices need to be configured appropriately.

Despite the device name and its type, one of themain infor-
mation required is the communication protocol provided to
communicate and its relative information. In the configura-
tions, different communication protocols are provided,which
require different parameters. After a valid configuration is
completed, both systems and devices defined are stored as
an XML file in a dedicated repository.

The enterprise has stored all the configurations that reflect
the university requirements and a complete definition of
each device’s information. Then, enterprise experts select
on which target platform the solution has to be deployed in.

In this sense, we provide the possibility to derive the entire
solution for our FloWare platform, which already includes
Node-RED, a low-code development environment able to
run the developed IoT application directly. In particular, the
IoT application developer chooses the interesting configura-
tions and retrieves the automatically generated code artefacts.
That codes are directly imported inside the FloWare Plat-
form and provide the experts with an already configured
environment and a ready to use IoT application in the form
of Node-RED flows (as described in Fig. 7). At this stage,
the IoT application developer has a complete customised
environment according to the information inserted in the con-
figurations and can extend the application logic provided by
adding a more complex one. In particular, the IoT Applica-
tion Developer has both the generated application for the two
departments and can then extend those by adding additional
nodes.

The result for the complete IoT application regarding the
chemistry department is reported inFig. 12a,where the devel-
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Fig. 12 The FloWare platform with a the complete IoT application for the chemistry department, b its related dashboard

oper extended the generated application by adding some
logical nodes that allow setting the temperature to 20 ◦C. In
addition, this extension includes the air quality functionality
to detect if smoke or dangerous gases are present in the labo-
ratory. If a problemoccurs, the systemautomatically activates
theSiren alarm.Theoutcomeof this IoT application is a dash-
board that allows visualising all the device’s data collected
in real-time, as shown in Fig. 12b. The nodes automatically
generate almost all the dashboard widgets in the IoT appli-
cation templates (these dashboard nodes are grouped inside
the green area). To provide the possibility to showmore valu-
able data, such as the department’s average temperature and
manually turn on/off the air conditioner, the IoT application
developer extends the IoT application by adding additional
nodes. This is reflected in the dashboard provided to the cus-

tomer, which will contain essential information for the use
and management of that department.

Similarly, the IoT application for the biology department
needs to be developed. In this case, different requirements
will result at first in a different configuration, and then in
different templates, as shown in Fig. 13a. Following the
department requirements, the temperature and light manage-
ment systems are derived. Notably the choices made by the
different departments lead to a variability associated to the
different functionalities; at the same time, a functionality to
be developed in two different configurations can also present
a high variability. Indeed, the only commonality between
the two departments is the chosen temperature management
system. However, in this department, different features are
required. In particular, the temperature is not automatically

123



148 F. Corradini et al.

Temperature sensor 1 Temperature sensor 2 Humidity sensor 1

Radiators value: on

Light value: on

FloWare Platform

Brightness indoor sensor 2 gauge

Brightness indoor sensor 1 chart

Brightness indoor sensor 1 gauge

Humidity sensor 1 chart

Radiators

Light System

Brightness indoor sensor 1

Brightness indoor sensor 2

TURN LIGHT ON TURN LIGHT OFFTUR NRN LIGHT ON
12:17:05 12:19:05 12:20:07 12:17:05 12:19:05 12:20:07 12:17:05 12:19:05 12:20:07

(b)

12:17:05 12:19:05 12:20:07 12:17:05 12:19:05 12:20:07

Temperature sensor 1 gauge

Temperature sensor 1 chart

Temperature sensor 2 gauge

Temperature sensor 2 chart

Humidity sensor 1 gauge

Radiators value

Light system value

Brightness indoor sensor 2 chart

Brightness indoor
sensor 2

Brightness indoor
sensor 1

read light system

read temperature 1

read temperature 2

read brightness 1

read brightness 2

read humidity 1

read radiatorsRadiators

Light System

Humidity sensor 1

Temperature sensor 2

Temperature sensor 1

set message

set message

switch radiators

switch light system

scheduling radiators

Node-RED

BBiioollooggyy DDeeppaarrttmmeenntt

FloWare Platform

Manual Setting Temperature Functionality

Manual Setting Light Functionality

Biology Department Dashboard

(a)

Fig. 13 The FloWare platform with a the complete IoT application for the biology department, b its related dashboard. (The part highlighted in
green shows the automatically generated flows by the FloWare approach. The IoT application developer manually provides the additional part.)

set inside this department, and a system is necessary to inter-
act remotely with the radiators to set them. In addition, the
possibility to manually schedule the time at which to turn
on/off the radiators for that department is provided. This
department has also to be equipped with the functionality to
remotely control the light system. These different configura-
tions translate into different needs for the development logic
of the entire application, and thedevices to beused.This high-
lights the high degree of variability present in the whole IoT
domain, both for the development of different functionalities,
and also in developing the same one. After the IoT applica-
tion developer extends the code artefacts provided with more
complex logic, these changes are also reflected in the dash-
board, in Fig. 13b. In this case, it is offered to the customer the
possibility to visualise all the real-time data concerning the
temperature, humidity, and light inside the department and
manually change them through radiators and electric sys-
tems. In addition, it provides the possibility of scheduling
the power on or off for the radiators.

Once all the department’s IoT applications are derived,
with corresponding dashboards, the final IoT application is
completed. At this point, it can be delivered to the university,

that then will be able to view all the data relating to its depart-
ments and structures, to apply decisions based on them, and
to remotely interact with the university environment through
the deployed devices. It is reasonable that the enterprise, to
maximise the reusability factor, will store those developed
IoT applications inside the FloWare platform and reuse them
to provide other solutions.

Going back to RQ2, we illustrated in this section a possi-
ble approach to effectively support reuse and customisation
of models representing generic IoT solutions. Therefore, we
illustrated how an approach mixing feature models and LCD
can concretely support the development of reusable artefacts
for the derivation of highly customisable IoT solutions so
to reduce the time and costs needed to derive a full-fledged
IoT application. It can be certainly observed that the most
challenging part is the creation of a high quality Feature
Model that as said reports the knowledge that an organisation
acquired operating in a specific IoT domain. Nevertheless
once such knowledge has been correctly represented the
derivation of different, but somehow similar, applications
seems to be rather easy and relatively supported by the tool.
Clearly, the one proposed by FloWare is only a possible pro-
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posal, and other ways to reach similar objectives are certainly
possible. Indeed, Sect. 6 intends to put in relation FloWare
with related proposals found in the literature that seem to
share the most in terms of objectives and followed methods.

6 Alternative MDE approaches for IoT
application development

Different MDE approaches targeting the development of IoT
solutions have been proposed in the literature. In the fol-
lowing, we report those most related to our proposal by
describing and comparing them to the FloWare approach,
so to finally answer the third research question: “(RQ3)—
Which are the benefits of FloWare compared to available
MDE approaches?”.

6.1 Overview of MDE approaches

Above the MDE approaches defined in the literature, ten are
strictly linked to supporting the development of IoT appli-
cations. We report an overview of their characteristics in
Table 1, and then we describe each approach.

Table 1 provides a summary of general aspects for each
approach. In particular it reports the source of the approach
(column Source) and the name of the approach (column
Approach). Then, it summarises the kind of tool support
that the specific approach make available, as well as the IoT
application development phases that the approach support.
Considered phases are those of modelling, development, and
deployment. Almost all the approaches provide a tool or
a library supporting it (column tool). However, not all of
them are available for download or testing (column avail-
able). Nearly all the approaches reference a tool supporting
the modelling phase, allowing the design of certain kinds of
models, such as feature models, using different notations,
such as UML, BPMN, and custom DSML (column mod-
els/notations). Not all the approaches provide support for
the development phase, meaning that not all of them provide
so-called translators or scripts that allow converting mod-
els into running code/applications. Those that provide such
support provide different target formats such as binary code,
Python, Java, JavaScript, C, and GO. Only one of the consid-
ered approaches, [25], references the target platforms where
to deploy the developed IoT application. All of them except
one, [63], validates the approach over an example application
scenario. Finally, the target of each approach is highlighted,
meaning whether it provides support for the development of
code that runs directly on devices (D) or whether it is focused
on the development of software for IoT Applications (A).

FRASAD—Framework for sensor application develop-
ment [63], is a model-driven framework to realise IoT
applications targeting different devices in a network. It uses Ta
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a domain-specific language and rule-based programming to
model the IoT application, and a translator to obtain code
readable for the different operating systems of a device.
It is developed inside the eclipse modelling framework.14

FRASAD aims to handle and resolve the complexity of IoT
application development from the device perspective. In this
sense, the authors provide models to describe an IoT appli-
cation using sensor node domain concepts. Through these
modelled concepts, FRASAD aims to improve the reusabil-
ity, extensibility, and maintainability of a sensor software.
This work does not emphasise the actors involved in the mul-
tiple steps of its usage (fromcomputation-independentmodel
to platform-independent and finally to platform-specific
one), but the authors present results of a user evaluation dur-
ing which students have been requested to develop an IoT
application with FRASAD, and with device operating sys-
tems such as TinyOS and ContikiOS. The results show that
developing an IoT applicationwith the FRASAD approach is
perceived as easier than developing it directly for the device
operating systems. However, the approach shows some lim-
itations, especially related to the fact that it only supports
TinyOS and ContikiOS operating systems as a target.

MDE4IoT [20] is a model-driven approach to support
the architectural modelling and self-adaptation of differ-
ent device configurations. This approach uses UML models
and translators to generate code. The produced code allows
the self-adaptation configuration once deployed in the tar-
get system. The approach provides a high-level abstraction
to support the IoT application development complexity,
handling the variability of the inserted elements (devices,
physical objects, and others), and supporting reusability
of designed artefacts to be deployed on different devices,
without considerable modifications to their software func-
tionalities. In doing this, separation of concerns to enable
collaborative development is supported. The approach is
based on UML-MARTE15 for modelling and developing
real-time embedded systems in Java and C++ languages. The
approach is validated using a concrete smart street light case.

SPLP4IOT—software product line process to develop
agents for the IoT [7] is a model-driven approach conceived
to develop self-managed systems for the IoT domain. The
approach aims to enhance the development of self-managed
IoT systems based on software agents using software product
line models. The reusability is ensured as it is a fundamental
principle of the modelling approach used, and the possibil-
ity of handling and representing the entire variability of the
elements through the common variability language. In this
sense, themain scope of this approach is to provide the devel-
oper information regarding the configuration of aminimal set
of devices supporting the application requirements of the tar-

14 EMF: https://www.eclipse.org/modeling/emf.
15 UML-MARTE: https://www.omg.org/omgmarte.

get IoT application, and derive if that configuration can be
deployed inside that infrastructure. The approach validation
is done by realising a multi-agent system for a smart shop-
ping centre. These models provide the possibility to develop
different customised configurations for each shopping expe-
rience to satisfy specific requirements.

In [15], the authors propose a model-driven approach that
uses a multilayered feature models methodology to capture
the variability of IoT software and hardware. The approach
provide then the possibility to reuse these models to produce
different configurations. The work does not aim to represent
the variability concerning an entire IoT system while it aims
at ensuring that a derived configuration can be hosted in a
specific infrastructure. Specifically, this work represents a
support to the developer of edge systems (IoT devices) by
providing a modelling approach for cyber-physical systems
to reduce the footprint of these technologies. A case study
regarding the smart campus domain is provided.

In [77], the authors propose a model-driven architecture
to explicitly describe a methodology for designing software
applications for the IoT domain. The main focus is on the
abstraction levels provided for each phase of developing an
IoT Application. The authors propose an architecture com-
posed of four layers based on the software-oriented approach.
In this way, the variability in representing device information
and the interoperability between the various models are pro-
vided. In addition, a set of formal rules to allow the model
transformation is provided. A meta-model is given concern-
ing the smart vehicle domain, and themethodology proposed
is used to generate code for a real-time system.

ThingML [58] proposes amethodology, a domain-specific
modelling language (inside the eclipse modelling frame-
work), and a set of tools to facilitate the collaboration
between service developers and platform experts. It is con-
tinuously evolving to allow practitioners to have complete
control of the code by easily customising compilers on the
base of their needs. This personalisation step aims at produc-
ing value-added IoT services to be deployed inside devices.
In ThingML, the main scope is handling and correctly man-
aging the different communication protocols inside other
devices to generate correct artefacts. The artefact produced
using this approach can cover various languages, such as
Java, JavaScript, C, and GO, allowing to derive code for het-
erogeneous platforms and devices. An E-Health case study
is provided to demonstrate the approach’s applicability and
to report on scalability and extensibility aspects.

AutoIoT [62] is a model-driven approach based on user-
driven choices to generate IoT server-side applications. The
approach supports the complex problems of developing IoT
applications by providing a high level of abstraction for
developing them. AutoIoT allows users to provide a tex-
tual representation of the scenario using JSON files. The
artefacts produced by the user are translated using specifi-
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cally designed components (called specialised Builders) to
automatically derive the source code of the IoT server-side
project. In this sense, this approach does not produce soft-
ware codes for devices or complete IoT applications. Instead,
it only focuses on developing the server-side IoT application
part (on Python and JavaScript languages) and does not con-
sider all layers of a complete IoT system development. The
approach is validated through a real smart containers scenario
involving numerous developers.

IoTLink [67] is amodel-driven approach that allows stake-
holders with limited programming experience to quickly
develop IoT prototype applications. The approach uses a
graphical domain-specific language based on a low-code
development environment defined within the eclipse mod-
elling framework. This approach first allows the modelling
of the elements included inside the application and then to
express their behaviour. The modelling elements are pro-
vided inside a graphical palette that will enable them to be
easily dragged and dropped inside the editor to develop the
IoT solution. In this way, the extensibility of the solution and
the representation of different elements are favoured. Sup-
port for translating the model into Java language is provided.
A manufacturing stations case study is provided to ensure
the approach’s applicability.

SmartHomeML [30] is a model-driven approach that
defines a domain-specific modelling language to capture the
architecture and specification of a smart home. This work is
not portable to other IoT domains, as it was developed specif-
ically for the smart home domain. The main focus of the
paper is to provide direct integration between services inside
a smart home using Alexa16 and SmartThings.17 Model
transformation into code artefacts processable by Alexa and
SmartThings is obtained through a model-to-text approach.
The proposed approach can be extended to provide artefacts
for other platforms.

IDeA is a model-driven approach that aims to resolve the
complexity of specifying a systemmodel that represents pre-
cisely and with a high level of abstraction different hardware
and software entities together with their internal information.
The IDeA approach provides such abstraction to represent
different types of hardware devices, software devices and ser-
vices through the use of the IoT-A18 ontology. The authors
provide a separation of concerns between all the stakeholders
involved in the IoT application development process. In addi-
tion, to promote the reusability concept inside the approach,
the authors propose using libraries containing reusablemodel
elements for a given domain, such as devices and resources
that can be reused by different stakeholders when modelling

16 Alexa: https://www.alexa.amazon.com.
17 SmartThings: https://www.smartthings.com.
18 IoT-A: https://www.iot-a.eu.

IoT applications. A smart building scenario demonstrates the
applicability of the modelling phase of the IDeA approach.

The FloWare approach supports the modelling, develop-
ment, and deployment phases. In addition, we provide an
open-source toolchain to support all the phases. We based
FloWare on an ontology for the representation of IoT devices
and systems. Using a well established ontology allows for
describing IoT elements involved in an IoT solution without
neglecting important information regarding these elements.
For themodelling phase, through the ADOxxmetamodelling
platform, we developed a feature model library to design
these models, and to support the definition of suitable con-
figurations. We also provide translators that permit to derive
snippet of flows to be combined in the development phase.
These translators allow converting from a standard config-
uration model file (XML) to a JSON file processable by
the low-code development environment. The FloWare tool
incorporates the low-code development environment Node-
RED to produce directly executable artefacts. We support
the IoT developers in storing, managing, and easily extend-
ing the automatically generated IoT applications with this
tool. FloWare supports the development of IoT applica-
tions that can retrieve data from the IoT devices involved,
elaborate these data, and show them in a customised dash-
board based on the inserted devices. We validate the entire
approach through a smart campus scenario. Starting from an
IoT domain feature model, it is possible to reuse it to produce
different configurations (following customer requirements)
and, in turn, different IoT applications.

6.2 Comparison of MDE approaches

From the scouting of the approaches in Table 1, it emerged
that these approaches have different focuses and targets.
In particular, from the target column, it can be seen that
some works mainly focus on modelling for a single device
(reported as D). In contrast, others provide modelling for
an entire IoT application (reported as A). Below we detail
the analysis and the comparison between FloWare and those
emerging approaches that share with our approach the main
target, that is providing modelling solutions for entire IoT
applications.

Table 2 summarises the results of the conducted anal-
ysis and comparison. We categorised and compared the
approaches based on the different characteristics that they
expose, and in relation to the IoT software development
challenges they intend to provide support to. In particular,
the source (column source) and the name of the approach
(column approach) are reported. Since the entire IoT appli-
cation development is an interdisciplinary and complex task,
providing a solution to handle the separation of concerns
principle is considered relevant [11]. We reported this cat-
egory within the analysis to discuss and compare all the
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approaches based on their possible support to such an aspect.
The remaining columns refer to the IoT software develop-
ment challenges discussed in Sect. 2 (reusability, variability,
and customisation). Then, the extensibility and scalability
challenges are reported as emerged from at least one of
the analysed works. A critical analysis of all the discussed
approaches is provided, detailing for each approach the pro-
vided support in addressing the emerged challenges.

Among all the analysed approaches, only in IDeA [25]
there is a specific consideration for the Separation of Con-
cerns aspect. In particular, the authors provide a specification
regarding actors involved in the supported development
process, as well as their responsibilities. The intention is
to ensure and provide correct mechanisms to address the
concerns of the different actors involved. The approach
delineates as well a collaborative method to develop IoT
applications. Compared to FloWare, in addition to specify-
ing each stakeholder’s responsibility and concern,we divided
the entire approach into distinct phases and steps, where the
experts involved are highlighted for each step. All the other
approaches do not refer to any development process and do
not try to give an intuition of a possible IoT development pro-
cess in which the approach can better suite. The challenge of
developing IoT applications that provide reusability poten-
tial is highlighted as the main focus by none of the analysed
approaches; nonetheless, we considered such an aspect rather
relevant for the IoT domain. To maximise its reuse potential,
a reusable part must be able to adapt to the needs of a wide
variety of users. Those approaches seeking to support this do
so by providing a higher level of abstraction to avoid mod-
elling the specific details for a target solution, and providing a
tool that allows the modelled application to be easily adapted
to other contexts or systems requirements.We noted that only
in the IDeA [25] approach reusability can be exploited from a
software components perspective. In particular, the approach
enables reusability by providing already modelled elements
(devices and resources) that could be reused inside differ-
ent IoT applications. This is a side effect of the developed
solution, as their focus does not aim to address such a chal-
lenge. Indeed, this functionality permits to share knowledge
between different stakeholders when modelling IoT applica-
tions. In contrast, we specifically conceived FloWare trying
to solve the reusability challenge. As a result, reusability is
somehow central in all the engineering activities preformed
in the context of FloWare.

The ability to represent a heterogeneous IoT domain,
including all the aspects involved, to be efficiently extended,
changed, and customised is defined as Variability. In this
sense, correctly handling the variability among all the pos-
sible changes is fundamental to analyse their correctness
before deploying the changes. From the research conducted,
no approach addresses the variability challenge as main tar-
get of theirworks.All the reportedworks provide amodelling
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approach that allows to directlymodel a scenario, not consid-
ering amore abstractmodelling perspective inwhich possible
points of variability can be inserted to consider a broader
scenario. Contrasting, inside FloWare, we stress the impor-
tance of representing the entire range of variability that such
a domain/scenario can represent. Inside our approach, the
variability is not focused only on describing an IoT device
specific variability aspects. FloWare also provides a higher
variability degree to manage an entire range of possible IoT
applications for a given domain, including all the possible
functionalities provided. The representation of these points
of variability thenmakes it possible to provide different deci-
sion choices on the base of the considered scenario.

The possibility to handle this variability by representing
all the possible functionalities that an IoT system or device
can have, so to apply development decisions for different
customers, can be defined as customisation. In this sense, the
customisation is addressed, from a software perspective, in
ThingML [58], providing personalised compilers for the cus-
tomers. FloWare addresses the same problem by providing
two different customisation perspectives. In our approach,
we provide a higher level of abstraction in representing IoT
devices and a focus on representing a whole range of IoT
solutions for a target IoT domain. In such a way, providing
the entire range of possibilities to apply for a given scenario
permits customers and experts to customise the target IoT
solution based on their requirements and necessities through
a model configuration. In addition, we also provide customi-
sation of automatically generated code. Indeed, based on the
configurations provided through the functionality models,
the artefacts are developed to derive a deployable IoT appli-
cation. This application has many customisation points that
can be chosen in the modelling phase and after obtaining the
code.

The issue of providing an approach that can be easily
extended (column extensibility) is out of the main con-
tributes for FloWare. However, as highlighted from the
analysed works, it results to be a relevant challenge to
face, and on which to compare the different approaches.
In some approaches as ThingML [58], AutoIoT [62], and
IoTLink [67] the challenge of extensibility is addressed as
the possibility of extending the developed code to meet new
requirements. In SmartHomeML [30], as conceived as an
approach for a specific target solution (smart homes with
Alexa and SmartThings platforms incorporated), they pro-
vide the possibility to extend the translators provided to
include additional target platforms. Following this principle,
even if our approach does not aim to solve this challenge, we
can certainly assume that FloWare can guarantee a certain
level of extensibility. Indeed, using FloWare it is possible
for an enterprise to easily extend and enrich the function-
alities provided through the feature models. To the feature
models that an organisation has developed, new features can

be added as well as the associated devices to provide addi-
tional functionalities to different customers. From this point
of view, we can infer that the system can be extended easily
(mainly using the graphical toolchain we provide). At the
same time, as described in Sect. 5, for the IoT application
developer it is possible to easily extend the automatic gener-
ated IoT application and the provided templates to develop
mode complex IoT applications. Clearly, these extensions
come with an increased development cost, even though the
added characteristics can be successively reused in succes-
sive customisation’s.

A closely related challenge to the one of extensibility is
that of scalability. Indeed, scalability can be related to mea-
suring performance and costs of an approach in relation to
is capability to respond to increasing or decreasing specific
needs [38]. In ThingML [58] the scalability is discussed con-
cerning the increase or decrease in device performance, using
benchmarks to provide values as devices energy consump-
tion and execution time. As with extensibility, our FloWare
does not directly address this challenge as the approach men-
tioned above does. However, it is reasonable to assume that,
from an IoT domainmodelling perspective, our approach can
ensure a certain degree of scalability, as it allows represent-
ing a vast scenario, including many different functionalities
and related devices, as demonstrated in the smart campus
scenario in Sect. 5. We demonstrate that many other config-
urations can be derived and translated into deployable code
artefacts without increasing time and cost, even from a large
application scenario domain.

Compared to the identified approaches, our FloWare
stands out for the capability to deal with almost all the iden-
tified challenges for the development of an IoT Application
and for the completeness of the toolchain capable of support-
ing all the phases of theMDEapproach, frommodelling of an
IoT domain to the actual deployment of an IoT application.
In addition, FloWare differs from being strongly based on
the separation of concerns principle, an almost absent prin-
ciple for what concerns the other approaches, clarifying and
pointing out possible different phases and steps necessary
to develop an IoT application, and then identifying specific
expertise involved in applying the entire approach.

7 Limitations and extensibility

In this research work, we presented the FloWare approach
and its supporting toolchain. They provide support to all the
stages involved in the development of an IoT solution. Never-
theless, our approach and toolchain present some limitations.

Referring to the FloWare approach, some limitations are
linked to the management of large IoT domains, which may
incorporate several IoT systems and sub-system. A possible
solution to this issue could be that of definingmodular feature
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models as proposed in [8]. In particular, the models should
be divided into parts which are hierarchically arranged to
form a complete feature model. The modular feature model
representation can enhance an additional reusability and fea-
ture model evolution. In addition, in FloWare models must
be maintained to reflect the enterprise’s capability prop-
erly. Therefore, models can and must be updated to support
the evolution of a domain. This also affects the proposed
toolchain that needs to be updated to support added IoT
Systems and IoT devices. In particular, it is possible to inte-
grate new information regarding IoT devices by modifying
the library provided within the metamodelling platform. For
example, extending the list of protocols used by adding a
specific one under the Communication Protocol category is
possible. This type of change also impacts the translators for
the target platforms, which must be updated to process the
new information correctly.

For what concerns the FloWare toolchain, it provides IoT
developers with a selection of templates for the application
logic, so as to simplify and speed up the development of IoT
applications. However, up to now, the selection of templates
is limited and represents only basic examples of application
logic. An enterprise that uses our approach could reason-
ably define more complex templates based on its experience,
and already implemented best practices. In addition, our
toolchain can only support translating feature model config-
urations from the XML format into the JSON format that can
be processed by the Node-RED tool (which is integrated into
ourFloWarePlatform).Toovercome this limitation,we could
develop ad hoc translators for additional target platforms, and
add them to the ADOxx library, or establish a standard for-
mat based on the IoT-Lite ontology structure used, and leave
the translation into specific formats to interested developers.

8 Conclusions and future work

To solve the inherent complexity of modelling and develop-
ing IoT applications, we presented the FloWare approach.
The idea is to combine and exploit the potential of a model-
driven engineering approach through feature models and
Low Code Development. These models allow handling the
huge variability dimension typical of the IoT domain, and
enable the reuse of knowledge in the production of different
deployment solutions for IoT applications. In this sense, the
FloWare supports a high degree of customisation of generic
IoT solutions to derive solutions that satisfy the needs of dif-
ferentcustomers in different ways. Derived variations can be

translated into code and deployed inside a low-code develop-
ment environment. The approach provides a way to lighten
the overall complexity of IoT application development by
applying the separation of concern principle and providing
support for the various development phases, from the IoT
modelling to the application development.

The paper reported on how separating the modelling and
configuration of different IoT systems, from the activities of
IoT application developers, allows developers to stay focused
on defining a proper application logic instead of having
directly to deal with IoT device’s technicalities. With our
solution, the developers can remain unaware of each device
technical specifications, while he/she will inherit such infor-
mation from the feature model configurations that IoT and
modelling experts have defined. In addition, feature mod-
els emphasise reusability as their intrinsic property, and they
allowmodelling the entire IoT domain solution once and then
reusing that model to provide different configurations, and
then solutions. The models are proposed following the IoT-
Lite ontology to represent all the elements concerning the
IoT context. They can be easily extended to satisfy scalabil-
ity without impacting the required effort. In addition, these
models permit the better management of variability aspects,
that are a distinctive characteristic of the IoT domain. This
variability is increased by the customised requests the cus-
tomers can make for the various solutions.

The paper illustrated the application of the FloWare
approach and the relative toolchain, applying it to a real-
istic scenario in the smart campus domain. The supporting
toolchain leverages the usage of the ADOxx metamodelling
platform through a Feature Model library developed for the
modelling of feature models, their configuration selection,
up to their translation into code artefacts in the form of basic
templates executable by a proper target platform. To support
the development of IoT applications, we also provided the
FloWare Platform that permit to automatically imports these
artefacts, properly configures the development environment,
and allows the IoT developer to extend the basic templates
already provided to realise complex IoT applications.

In future work, we plan to involve other IoT and mod-
elling experts to design and develop different IoT systems
in practice, and to validate and test the approach in differ-
ent scenarios. Referring to the set of templates representing
basic application logic, we plan to extend it to include more
complex application logic that can simplify and speed up the
development of IoT applications.
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