
Software and Systems Modeling (2023) 22:871–889
https://doi.org/10.1007/s10270-022-01024-x

REGULAR PAPER

MoDMaCAO: a model-driven framework for the design, validation
and configuration management of cloud applications based on OCCI

Faiez Zalila1 · Fabian Korte2 · Johannes Erbel2 · Stéphanie Challita3 · Jens Grabowski2 · Philippe Merle4

Received: 28 February 2021 / Revised: 10 March 2022 / Accepted: 6 July 2022 / Published online: 25 September 2022
© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022

Abstract
To tackle the cloud-provider lock-in, the open grid forum is developing the open cloud computing interface (OCCI), a
standardized interface for managing any kind of cloud resources. Besides the OCCI Core model, which defines the basic
modeling elements for cloud resources, further standardized extensions exist that reflect the requirements of different cloud
service levels, such as infrastructure and platform elements. However, so far the OCCI platform extension is very coarse-
grained and lacks supporting use cases and implementations. Especially, it does not define how the components of the
application itself can be managed. In this paper, we discuss the features of MoDMaCAO, a model-driven framework that
extends the OCCI platform extension. The users of the framework are able to design and validate cloud application topologies
and subsequently deploy them on OCCI compliant clouds by using configuration management tools.

Keywords Cloud computing · Open cloud computing interface · OCCI · Models@run.time

1 Introduction

With the broad proliferation of cloud computing in the indus-
try and academia, different cloud service providers have
emerged that offer different service levels and interfaces to
the customer. This heterogeneity of cloud provider inter-
faces makes it hard to migrate applications between different

Communicated by Joerg Kienzle.

B Faiez Zalila
faiez.zalila@cetic.be

Fabian Korte
fabian.korte@cs.uni-goettingen.de

Johannes Erbel
johannes.erbel@cs.uni-goettingen.de

Stéphanie Challita
stephanie.challita@irisa.fr

Jens Grabowski
jens.grabowski@cs.uni-goettingen.de

Philippe Merle
philippe.merle@inria.fr

1 CETIC, Charleroi, Belgium

2 University of Goettingen, Goettingen, Germany

3 IRISA/Inria, University of Rennes 1, Rennes, France

4 Inria Lille - Nord Europe, University of Lille, Lille, France

cloud providers or combine different offerings. To tackle this
problem, two different strategies can be identified in the lit-
erature: (1) the use of code libraries that provide a common
software development kit for the different cloud provider,
e.g., Apache jclouds1,2 or fog3, or, (2) the resort to common
standards, e.g., the Topology andOrchestration Specification
for Cloud Applications (TOSCA)4, and Open Cloud Com-
puting Interface (OCCI) [1] integrated with model-driven
techniques to decouple the cloud applications from the tech-
nical peculiarities of the different target platforms. In this
context, multiple IDEs have emerged such as OCCIware
[2], Cloudify5 and Alien4Cloud6. In this paper, we focus on
OCCI, which is developed by the Open Grid Forum (OGF)
and aims to standardize an interface for the management of
any kind of cloud resources. The OCCI standard comprises
several parts, including the OCCI Core model and model
extensions for the infrastructure and platform layermanaging
Infrastructure-as-a-Service (IaaS) andPlatformas- a-Service
(PaaS) resources, respectively. Several implementations and

1 All URLs have been last retrieved on May 25, 2023.
2 http://www.jclouds.org.
3 http://fog.io.
4 https://www.oasis-open.org/committees/tosca/.
5 https://cloudify.co/.
6 https://alien4cloud.github.io.

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10270-022-01024-x&domain=pdf
http://orcid.org/0000-0001-9757-7874
http://www.jclouds.org
http://fog.io
https://www.oasis-open.org/committees/tosca/
https://cloudify.co/
https://alien4cloud.github.io

872 F. Zalila et al.

use cases for the infrastructure extension already exist, which
demonstrate its feasibility. However, implementations and
use cases for the platform extension are rare. This might be
due to the fact that it only provides a very rough definition of
cloud applications and their components that does not include
how these cloud applications can be configured andmanaged.
Furthermore, it does not define how application components
are connected to the hosting infrastructure, such as, which
component gets deployed on which virtual machine. This
kind of situation forces cloud developers to manually find
the appropriate deployment plan for their applications which
is a tedious task when the application has a considerable size
and multiple components.To close these gaps, we introduced
improvements to the OCCI platform extension to allow the
deployment andmanagement of modeled platform elements,
e.g., application and components, on top of IaaS resources.
We implemented and validated these extensions with the
Model-DrivenConfigurationManagement of CloudApplica-
tions with OCCI (MoDMaCAO) framework [3]. The initial
version of MoDMaCAO provides several improvements to
the OCCI platform extension to complete its lifecycle model
and allow theuseof configurationmanagement tools forman-
aging cloud applications at runtime. In this paper, we provide
an overview of the MoDMaCAO framework and extend its
features in the following ways:

1. We provide visualization and design capabilities for cloud
application topologies based on OCCI.

2. We integrate the definition of constraints on cloud
resource types to allow for the verification of defined
cloud application topologies at design time.

3. We introduce capabilities to generate configuration man-
agement artifact skeletons from the defined cloud appli-
cation topologies to reduce the effort for implementing its
lifecycle operations.

The remainder of this paper is structured as follows.We intro-
duce OCCI and the OCCIware tool chain as a basis for our
work in Sect. 2. Afterward, in Sect. 3, we identify the prob-
lems we want to address and the contributions introduced in
the paper. Subsequently, in Sect. 4, we give an overview of
the MoDMaCAO framework and its extended features. Fur-
thermore, we demonstrate how MoDMaCAO can be used
to model the popular LAMP stack and a MongoDB cluster
and how it integrates with configuration management tools
in Sect. 5. Thereafter, in Sect. 6, we discuss our results and
observations. Finally, we present related work in Sect. 7, and
we conclude this paper and provide an overview on future
work in Sect. 8.

2 Background

In the following, we provide a brief overview of the OCCI
standard, the extensions we made to the OCCI Platform
extension and the general features of MoDMaCAO, our
model-driven tool chain to the design, validation and con-
figuration management of cloud applications.

2.1 Open cloud computing interface

The OCCI Core model [1] is composed of eight elements
(grey boxes in Fig. 1). Category is the base type for
all other classes and provides the necessary identification
mechanisms. Categories can be uniquely identified by
associated Uniform Resource Identifiers (URIs). They have
Attributes that are used to define the properties of a cer-
tain class, e.g., the IP address of a virtual machine. Three
classes are derived from Category: Kind, Action and
Mixin. A Kind defines the type of a cloud entity, e.g., a
compute resource, and Mixins define how an entity can
be extended at runtime. Both have Actions that define
which behaviors can be executed on an entity. The cloud
entities themselves are modeled by the class Entity,
which provides the base class for cloud Resources,
e.g., virtual machines, and Links that define how the
resources are connected. In the remainder of this article we
use the terms OCCIware Extension and OCCIware
Configuration instead of OCCI extension and OCCI
Configuration to refer to the extension and the configuration
based on OCCIware metamodel.

The OCCI Core model is accompanied with several
extensions. The OCCI Platform extension [4] defines the
two specialized kinds of Resource: Application and
Component and a new Link kind ComponentLink
(see Fig. 2). The Appli cation thereby represents
the user accessible part of the overall cloud application.
The Application itself is composed of several
Components, that implement its functionality, e.g., through
microservices. Components can be linked with help of
ComponentLinks to establish a connections between
them.
An Application or Component can be in the state
Active, Inactive or Error. A transition from the
Inactive to the Active state can be triggered by call-
ing the start action on the specific Application or
Component, and a transition from Active to Inactive
can be triggered by calling the stop action. The Error
state can be reached at any time, in case an error occurs in
the Application or Component.

123

MoDMaCAO: a model-driven framework for the design, validation and configuration management... 873

Fig. 1 A subset of OCCIware metamodel

Fig. 2 Enhanced OCCI Platform kinds

2.2 OCCIware tool chain

OCCI has been proposed as a generic model and an inter-
face for managing any kind of cloud computing resources.
However, OCCI suffers from the lack of a precise definition

of its concepts and a modeling framework to model, ver-
ify, validate, document, deploy and manage OCCI artifacts.
To resolve the first issue, a metamodel from OCCI, named
OCCIware metamodel (see Fig. 1), has been proposed
in [5] and enhanced in [6]. It defines a precise semantics
of OCCI concepts and introduces, among others, two key
concepts: Extension and Configuration. An OCCI
Extension represents a specific application domain, e.g.,
inter-cloud networking extension [7], infrastructure exten-
sion [8], platform extension [4,9,10], application extension
[10], etc. An OCCI Configuration defines a running
system. It represents an instantiation of one or several OCCI
extensions. In addition, the OCCIware metamodel intro-
duces the Constraint notion allowing the cloud architect
to express business constraints related to each cloud comput-
ing domain. The constraints can be expressed on OCCI kinds
and mixins. In addition, the OCCIware metamodel inte-
grates the finite statemachine (FSM)model. Thismechanism
allows to describe the behavior of each OCCI kind/mixin.
Finally, AnnotatedElement and Annotation allow
to design non-OCCI information to deal with non-functional
needs such as visualization and documentation.

123

874 F. Zalila et al.

To resolve the second issue, a model-driven tool chain for
OCCI, namedOCCIware Studio, has been proposed [6]. It
is built based on the OCCIware metamodel and proposed
as a set of plugins for the Eclipse IDE. OCCIware Stu-
dio allows both cloud architects and users to encode OCCI
extensions and configurations, respectively, graphically via
theOCCIDesigner tool, and textually via theOCCI Editor
tool. They can also automatically verify the consistency of
these extensions and configurations via theOCCI Validator
tool. In addition,OCCIware Studio provides a tool, named
Connector Generator, that generates the Java code associ-
ated with an OCCI extension. This connector code must be
completed by cloud developers to implement concretely how
OCCI CRUD operations and actions must be executed on a
real cloud infrastructure. Later on, this generated connector
is deployed on the OCCIware Runtime7.

3 Problem statement

As stated above, there are several use cases and implemen-
tations of the OCCI Infrastructure extension available, while
the OCCI Platform extension has not reached a widespread
adoption yet. We identify the following reasons for this situ-
ation:

– No precise modeling framework for OCCI (P1): The
current version of OCCI lacks of formality and con-
cepts for the design of cloud applications. Subsequently,
no tooling is available that allows to graphically design
cloud applications, their lifecycles, and their underly-
ing infrastructure based on OCCI models. One issue is
that no connection between infrastructure and platform
models is defined. In fact, the OGF provides two sepa-
rate OCCI extensions for the infrastructure and platform
layers, but it misses to define the connection between
them. According to the specification it is hence not pos-
sible to connect a Component or Application to
a Compute resource of the OCCI Infrastructure exten-
sion. In addition, a generic interface is currently missing
from the standard that allows to couple state of the art
configuration management tools with OCCI. Moreover,
the lifecycle for the Component and Application
resources as defined in the OCCI specification is incom-
plete. Components can either be inactive or active, but
the specification does not allow to model information
about the installation or configuration states. This incom-
plete lifecycle information inhibits cloud developers to
finely observe the execution of their cloud resource.

– Lack of verification for designed cloud applications
(P2): Currently, the only manner to be sure that a cloud

7 https://github.com/occiware/MartServer.

application will run correctly is to provision and deploy it
in the cloud.Thus,when errors occur, a correction ismade
and the deployment task must be repeated several times
before the application becomes operational. This process
is cumbersome and supporting tooling is necessary to
spot errors as early as possible.

– Lack of IDEs for Infrastructure as Code (P3): With
cloud orchestration and configuration management tools
it is possible to encode the configuration of whole data-
centers inside reusable artifacts. Thereby, lightweight and
human readable serialization formats based on YAML or
JSON are commonly used. However, there is a lack of
supportive tooling to create and edit these artifacts.

To overcome P1, we proposed the MoDMaCAO frame-
work [3]. The MoDMaCAO framework is based on an
improved version of the OCCI Platform extension which
provides an extended lifecyclemodel. Furthermore, we intro-
duced a connection between both OCCI Infrastructure and
Platform extensions and offered an integration mechanism
for configurationmanagement tools. By using a generic inter-
face, several configuration management tools can be coupled
with the MoDMaCAO framework. Hereby, we make use of
model-driven techniques to support the development and
runtime management of cloud applications. For example,
configuration management script skeletons and variable files
that reflect information about the runtime state of the cloud
can be generated. To further improve our solution for P1 and
provide solutions for P2 and P3, we extend theMoDMaCAO
framework in the following way:

– Deployment model visualization and design (C1): We
extend theMoDMaCAOmodeling framework by adding
facilities to generate customized graphical designers for
defined cloud resource types. In addition, we revisit
the different runtime elements (actions, states and state
machines) by completing the missing ones and propose a
complete lifecycle for each cloud resource type (cf. P1).

– Deploymentmodel verification (C2): The custom cloud
resource types can be annotated with constraints at
design time.When designing configurations based on the
defined resource types, the MoDMaCAO framework can
subsequently be used to check if the defined constraints
are fulfilled. This helps to already spot errors during the
design process and thus addresses P2.

– Configuration management artifact generation (C3):
MoDMaCAO defines an integration mechanism for con-
figuration management tools. We extend this approach
by supporting the generation of configuration manage-
ment artifact skeletons from the modeled cloud resource
types which can then be further manually extended to
implement the management of the resources at runtime.
Thereby, we reduce the effort necessary to edit these arti-

123

https://github.com/occiware/MartServer

MoDMaCAO: a model-driven framework for the design, validation and configuration management... 875

Fig. 3 Overall Architecture

facts. The generation process is integrated as part of the
MoDMaCAO modeling framework and thus provides a
step toward an IDE for Infrastructure as Code (cf. P3).

4 MoDMaCAO

In the following, we will introduce the building blocks of
the MoDMaCAO framework [3] and how it addresses the
shortcomings of the OCCI platform extension.

4.1 Overall architecture

Theoverall architecture of the proposedMoDMaCAOframe-
work and its contributions are depicted in Fig. 3. The features,
we discuss in this paper, are numbered. Our first contribution
1a© , initially presented in [3], is to address P1 by enhancing
the OCCI Platform extension via additional lifecycle states
and actions, introducing a new OCCI Link kind to be able
to connect Components of the OCCI Platform extension
to Compute resources of the OCCI Infrastructure exten-
sion, and defining a new OCCI extension to be able to model
application components that are managed with help of a con-
figurationmanagement tool. For this,we formaconfiguration

management interface that is based on the introduced exten-
sions lifecycle actions. This interface allows to plug-in state
of the art implementations of current configuration manage-
ment tools like Ansible with minimal effort. In this improved
version of MoDMaCAO framework, we introduce the fol-
lowing features: At first, we propose an approach to ease the
visualization of MoDMaCAO configurations. It consists in
annotating the MoDMaCAO extensions with visualization
annotations (for example, show a resource inside another,
hide an attribute information, etc.). Then, we extended the
Designer Generator of the OCCIware Studio 1b© to sup-
port these annotations and generate pre-customized graphical
designers. Furthermore, we introduce a verification mech-
anism based on the Object Constraint Language (OCL)8

to assess the well-formedness of application configurations
2©. This feature allows to define domain-specific invariants
related to a particular MoDMaCAO domain and to verify
whether conforming configurations respect these invariants
(addressing P2). Finally, we demonstrate the feasibility
of the defined extension by modeling two different dis-
tributed cloud applications with MoDMaCAO and provide
a framework for implementing model-driven configuration
management with different configuration management tools
3©, thereby addressing P3.

4.2 MoDMaCAOmodeling framework

Experimenting with the OCCI Platform extension in real use
cases shows several hidden lacks. The OCCI Platform exten-
sion provides only inactive, active, and error states
with two actions: start and stop. This design assumes
that a component is already installed and configured which
might not be the case. For instance, an application com-
ponent, e.g., a software component, like a database or an
application server, will first be installed (“deployed”), and
configured, prior to managing it (start/stop, etc.). Therefore,
we argue that the lifecycle of the Component andApplication
kinds is not expressive enough and does not define all possi-
ble states of a resource (compare P1). To resolve this issue,
we propose an enhancement of the OCCI Platform extension
as shown in Fig. 2.

The different improvements are colored in blue. We pro-
pose to add two additional states in theStatus enumeration
type: undeployed and deployed. In addition, we define
three new actions for each kind: configure, deploy,
and undeploy. Finally, we enhance the FSMS of both
kinds by integrating the new provided states and actions, and
adding eleven new transitions. Figure 4 shows the enhanced
FSM for Component and Application kinds. There-
fore, a Component or Application resource is initially
undeployed. Once the deploy action is triggered, the

8 https://www.omg.org/spec/OCL/.

123

https://www.omg.org/spec/OCL/

876 F. Zalila et al.

Fig. 4 Enhanced OCCI Platform FSMs

Fig. 5 New OCCI placement extension

resource is deployed. By triggering the configure action,
the resource is configured . We treat this configuration as
a rather intermediate state which directly transfers to the
inactive state originally defined by the standard. As a
result, a distinct configured state is not covered in the FSM.
Finally, a Component or Application can reach the
active state by triggering the start action.

Figure 5 depicts the definition of a new link kind
Placement Link that addresses the missing connection
between the OCCI Platform extension and the OCCI Infras-
tructure extension. A PlacementLink has a Component
resource as its source and a Compute resource as its
target and hence allows to model the placement of an
application component on a virtual machine. Figure 5 depicts

Fig. 6 The MoDMaCAO modeling framework

the definition of a new link kind named PlacementLink
addressing the missing connection between the OCCI Plat-
form extension and the OCCI Infrastructure extension. As a
specialization of the generic Link kind, the Placement
Link provides the user with an additional constraint to
restrict the selection of the source and target resources.
Now, thanks to the PlacementLink, we can connect a
Component resource (from the Platform extension) as its
source, to a Compute resource (from the Infrastructure
extension) as its target, and hence allows us to model the
placement of an application component on a virtual machine.
In addition, the PlacementLink type allows us to easily
query the model, using the uniform and standardized OCCI
interface, based on the link type instead of deducing it from
the type of source and target resources.

The MoDMaCAO modeling framework is based on the
OCCIware tool chain presented in Sect. 2.2 and allows cloud
architects to:

1. design abstract types modeling cloud applications and
their components,

2. model configured instances of cloud applications, and
3. check the validity of instances of cloud applications.

First, as shown in Fig. 6, the MoDMaCAO modeling
framework defines the following set of abstract types:

– The Application mixin type abstracts the notion of a
cloud application. This mixin applies to OCCI Platform
Application resources. A cloud application is com-
posed of one or more cloud application components as
enforced by the OneOrMoreComponents constraint.
Then, modeling specific cloud applications requires to
design newmixin types inheriting from Application,
e.g., Cluster and ClientServer types. These new
types could define their own attributes and constraints.
For instance, a client-server application has only one
server component (i.e., OnlyOneServer constraint)

123

MoDMaCAO: a model-driven framework for the design, validation and configuration management... 877

and some client components
(i.e., OneOrMoreClients constraint).

– TheClustermixin type abstracts the notion of a clustered
cloud application.

– The Component mixin type abstracts the notion of
a cloud application component. This mixin applies to
OCCI Platform Component resources. Each compo-
nent has an optional immutable modmacao.
component.version attribute representing the ver-
sion of the component used at runtime and must be
placed on only one OCCI Compute resource (i.e.,
OnlyOnePlacementLink constraint). Then, model-
ing specific cloud application components requires to
define new mixin types inheriting from Component,
e.g., Client and Server types. These new com-
ponent types can define their own attributes and con-
straints. For instance, a server component has a net-
work port on which it listens to client requests (i.e.,
server.port immutable attribute) and a client com-
ponent must be connected to a server component (i.e.,
OneServerDependency constraint).

– The Version data type defines the valid string pattern for
version values, i.e., <major>.<minor>.

– The Port data type defines the valid network port values,
i.e., range from 0 to 65535.

– The Dependency mixin type abstracts the notion of a
dependency between two cloud application components.
Thismixin applies toOCCI Platform ComponentLink
links. Both SourceMustBeComponent and
TargetMust BeComponent constraints enforce that
a dependency link connects two Component instances.
Then, modeling specific dependencies requires to define
new mixin types inheriting from Dependency, e.g.,
InstallationDependency,
ExecutionDependency, ServerDependency.
These sub-mixins can be added as needed to capture other
types of dependency while defining their own attributes
and constraints. For instance, ServerDependency
defines two constraints enforcing the dependency source
to be a client component and the dependency target to be
a server component.

– The InstallationDependency mixin type abstracts an
installation dependency, i.e., the deploy action can only
be successfully executed on the source component when
the target component is already in the deployed state.

– TheExecutionDependencymixin type abstracts an exe-
cution dependency, i.e., the source component can only
be started when the target component is already in the
active state. For instance, the ServerDependency
type abstracts the execution dependency from a client
and a server component, i.e., the client component can-
not start until the server component is active.

Second, theMoDMaCAOmodeling framework allows archi-
tects to model configured instances of cloud applications and
their components. As illustration, Fig. 7 shows the model of
a client-server application composed of three client compo-
nents (client1 to client3) and one server component
(server) deployed on four virtual machines (vm1 to vm4).
OCCI resources and links are represented by boxes in yel-
low and orange color, respectively. The application
resource is connected to the four component resources
via componentlinks. Each client component is con-
nected to the server component via a componentlink
associated with a serverdependency mixin. The net-
work port of the server component is set to 8080.
Each component is placed on one virtual machine via a
placementlink. Finally, the architecture, the number of
cores, the host name, and thememory of each virtualmachine
are configured.

4.3 MoDMaCAO verification

Thanks to theOCCIwaremetamodel,we cannowdefinebusi-
ness constraints related to a cloud domain. These constraints
are defined in the OCCIware extension and must be later
respected by the conforming configurations. For the MoD-
MaCAO approach, we have defined a set of generic OCL
constraints in the MoDMaCAO extension. Listing 1 shows
the different implemented OCL constraints for the MoD-
MACAO framework. These constraints can be extendedwith
additional ones that are specific to a MoDMaCAO use case.

context Application
inv OneOrMoreComponents : self . entity .oclAsType(occi : :Resource) .

links−>collect(l :occi : :Link| l . target)−>select(rs :occi : :
Resource| rs .oclIsTypeOf(platform::Component))−>size()>=1

context Component
inv OnlyOnePlacementLink : self . entity .oclAsType(occi : :Resource)

. links−>select(l :occi : :Link| l .oclIsTypeOf(placement: :
PlacementLink))−>size()=1

context Dependency
inv SourceMustBeComponent : self . entity .oclAsType(occi : :Link) .

source.oclIsTypeOf(platform::Component)

context Dependency
inv TargetMustBeComponent : self . entity .oclAsType(occi : :Link) .

target .oclIsTypeOf(platform::Component)

Listing 1 OCL constraints of MoDMaCAO framework

MoDMaCAO checks the validity of cloud application
configurations by evaluating the constraints defined by
used abstract types. For the client-server application, MoD-
MaCAO evaluates that the Application resource is con-
nected to some Component resources (OneOrMoreComp
onents constraint), some client components (OneOrMore
Clients), and only one server component (OnlyOneSer
ver), all Component resources are placed on only one

123

878 F. Zalila et al.

Fig. 7 Modeling a Client/Server Application with MoDMaCAO

Compute resource (OnlyOnePlacementLink), each
client is connected to oneserver (OneServerDepen
dency), the value of the network port of the server com-
ponent is in the valid range (0 to 65535), each component
link must connect two Component resources (Source
MustBeComponent andTargetMustBeComponent),
and each
componentlink associated with serverdependency
mixin must connect a client to a server component
(SourceMustBeClient andTargetMustBeServer).

As long as a constraint is false, the architect must correct
its cloud application configuration. When all the constraints
are fulfilled, the cloud application can be deployed by the
MoDMaCAO implementation framework.

4.4 MoDMaCAO designers

The approach of MoDMaCAO aims to ease the design of
cloud applications using the OCCIware toolchain. It allows
to design multiple types of cloud applications and to instan-
tiate them inside configurations which represent the running
applications. Currently, the design of these running appli-
cations is done inside the generic OCCIware Designer as
shown for example in Fig. 7. The elements shown in this
kind of configurations are the instances of OCCI Resource
and Link concepts. Therefore, the graphical representa-
tion does not reflect the concrete running system in the
cloud. So, it is necessary to have a designer which (1)

allows to instantiate the extension concepts and (2) can be
customized to be as near as possible to the visual aspect
of the designed application. To deal with this issue, the
Designer Generator of the OCCIware toolchain allows us
to generate a graphical designer for each OCCIware exten-
sion. However, the generated designer must be customized.
To deal with this issue, we proceeded as following. At
first, we have referred to the Annotation mechanism
defined in the extended version of the OCCIware meta-
model [11]. This feature allows us to design non-functional
information such as visualization and documentation. The
Annotation mechanism consists of key-value pairs. Sev-
eral information can be modeled using this mechanism,
such as the containment between resources, the ability to
show/hide an attribute and highlight an edge. Then, we have
extended the Designer Generator in order to support the
defined annotations and generate a pre-configured designer
implementing the specified annotations. For example, in the
ComponentLink kind of the platform extension, we
can associate a Containment annotation claiming that
an “Application contains Component” (see Fig. 8).
Based on this annotation, the generated designer will allow
the architect to draw a Component resource inside an
Application resource.

Originally, theDesigner Generator of OCCIware Studio
allows us to automatically obtain multiple graphical design-
ers, and each one is specific to the domain of the application
to design. The drawback of these generated graphical design-

123

MoDMaCAO: a model-driven framework for the design, validation and configuration management... 879

Fig. 8 Annotation mechanism

Fig. 9 MoDMaCAO implementation class diagram

ers is they allow to create flat diagrams, i.e., an application
is linked to a component, a component is linked to a com-
pute, etc. Thanks to our annotation mechanism proposed in
the MoDMaCAO framework, we can now, for each cloud
domain, generate multiple graphical designers, and each one
shows the system from a different point of view with a hier-
archically manner. For example, we can visualize a system
from a “Compute-viewpoint” where we show the different
components deployed in a Compute resource. Or, we can
visualize the system from an “Application-viewpoint” where
the different components are shown inside the constituting
Application.

4.5 TheMoDMaCAO implementation framework

The MoDMaCAO implementation framework achieves the
whole provisioning– i.e., installation, configuration then exe-
cution – of model-based cloud application instances on top
of diverse configuration management tools such as Ansible,
Saltstack and Puppet by using model interpretation. As illus-
trated in Fig. 9, this framework is split into two main parts: a
generic part independent of any configuration management
tool and a plugin part specific to each supported configuration
management tool.

For the generic part, we used OCCIware Studio to auto-
matically generate the skeleton of the framework from
our three proposed OCCI extensions – enhanced OCCI
Platform, Placement, and MoDMaCAO – and only imple-
mented the five lifecycle actions – deploy, undeploy,
configure, start, and stop – of both Application
and Component kinds respecting their finite state machine.
The following paragraphs describe the key behavior we
implemented.

The implementation of Application orchestrates the
provisioning of all the components linked to an applica-
tion. When the state of an application is undeployed, the
implementation of deploy computes the order in which
all the application components must be deployed accord-
ing to their dependency links. Components connected by
Installation
Dependency links will be deployed sequentially, other-
wise, components will be deployed in parallel. For instance,
the four components of the client-server application shown
in Fig. 7 are deployed in parallel because they have no
installation dependencies. When the state is deployed,
the implementation of configure consists of configur-
ing all the application components in parallel. When the
state isinactive, the implementation of start computes
the order on which all the application components must be
started according to their ExecutionDependency links.
For instance in the client-server application, the server
component is started before the three client components can
be started in parallel. When the state is active, the imple-
mentation of stop consists of stopping all the application
components in the reverse order of their starting. For instance,
client components are stopped before the server component
is stopped. When the state is inactive, the implementa-
tion of undeploy consists of uninstalling all the application
components in the reverse order of their deployment.

The implementation of Component implements the
FSMof the Component kind and checks that the Compute
resource where the component is placed, is already started
before orchestrating the provisioning of the component.

Finally, the generic part delegates the calls to the plugin
part specific to the used configurationmanagement tool. Each
plugin must implement the ConfigurationManager
Tool interface shown in Fig. 9. For instance, the implemen-
tation of
start(Application) called by the generic part must
finalize the starting of a given application after all its com-
ponents have been started. This implementation is specific to
the used configuration management tool.

To provision the infrastructure resources to be configured
by MoDMaCAO, a connector is required to translate incom-
ing OCCI infrastructure requests to the interface of the cloud
provider. While this translation can be done for arbitrary
infrastructures, we implemented a connector9 for a private
Openstack cloud to perform our case studies.
In the following, we briefly discuss the implementation for
the configuration management tool, Ansible, with help of
the MoDMaCAO implementation framework. We also dis-
cuss howMoDMaCAO can be used to generate skeletons for
Ansible artifacts.

9 https://github.com/occiware/MoDMaCAO/tree/master/plugins/org.
modmacao.openstack.connector.

123

https://github.com/occiware/MoDMaCAO/tree/master/plugins/org.modmacao.openstack.connector
https://github.com/occiware/MoDMaCAO/tree/master/plugins/org.modmacao.openstack.connector

880 F. Zalila et al.

Fig. 10 Ansible-specific OCCI extension

We implemented an Ansible-specific plugin that imple-
ments theConfigurationManagementTool interface.
For each of the defined Mixins, an Ansible role10 is
created. It bundles the steps and files that are necessary
to manage the corresponding software component on a
specific machine. MoDMaCAO can assist with develop-
ing these roles by the generation of role skeletons from
OCCI Extensions. For the prototypical implementation, we
assume that these roles are already accessible from the
OCCIware Runtime. When executing an action, the corre-
sponding Ansible-tasks are executed on the machine. The
latter is target of thePlacementLink of the corresponding
Component instance. The AttributeStates defined
in the Components and from all connected Components
are used to generate Ansible variable files that can be con-
sumed by the Ansible roles to make their values available
to the configuration management at runtime. Furthermore,
we defined an additional OCCI Extension that allows to tag
specific instances of the OCCI NetworkInterface as
endpoints to be used by Ansible.

The extension is depicted in Fig. 10. It proved to be useful
in environmentswhere virtualmachines are connected to sev-
eral networks. Based on the Mixins defined with help of the
MoDMaCAO modeling framework, we can generate skele-
tons for configuration management scripts that can be later
on extended and executed with Ansible. Listing 2 shows an
excerpt from an Ansible playbook generated for the general
Component Kind.

- name: Deploy Component
block:
- debug: msg="Operationdeploynotimplemented."

when: task=="DEPLOY"
become: yes

- name: Configure Component
block:
- debug: msg="Operationconfigurenotimplemented."

when: task=="CONFIGURE"
become: yes
. . .

Listing 2 Excerpt of Ansible playbook skeleton generated for the Component Mixin.

For each of the Actions defined for the lifecycle of the
Component Kind, a code block is generated that can be
subsequently executed at runtime. This skeleton must be

10 https://docs.ansible.com/ansible/2.4/playbooks_reuse_roles.html.

manually refined to actually implement the desired behav-
ior.
Furthermore, to pass the model information at runtime to the
configuration management tool, files that contain the infor-
mation as variables can be generated. We provide examples
for generated and extended artifacts in Sect. 5.

Currently, we have started to extend our approach by sup-
porting the Saltstack11 configuration management tool. In
the future, we plan to extend our approach by supporting an
additional tools such as Puppet12.

5 Use cases

In the following, we present two use cases to demonstrate
the capabilities of theMoDMaCAO framework: a distributed
MongoDB database13 and the popular LAMP Web applica-
tion stack14. While complementary work exists that allows
to deploy OCCI configurations using several cloud providers
[12], we performed our case studies on a private Openstack
cloud. For this we used an OCCI deployment engine [13]
which compares the desired cloud deployment model with
the cloud runtime state to derive and send OCCI requests
to adapt the cloud. As the OCCI interface, to which the
requests of the engine are send, an OCCIWare runtime server
instance is used. This server serves as a middleware that
translates the incoming OCCI infrastructure request to the
interface of the Openstack cloud. To manage the lifecycle of
modeled components we use the configuration management
capabilities provided byMoDMaCAO, focusing on the ansi-
ble implementation. After the presentation of both use cases,
we provide a discussion about the capabilities provided by
the enhanced OCCI platform extension and the use of the
MoDMaCAO framework for application design, verification
and deployment.

5.1 MongoDB

MongoDB is aNoSQLdatabase that can be highly scaled and
is often used in cloud environments. To achieve scalability, it
supports the concept of sharding, i.e., the decomposition and
distributed storage of a data collection to several machines.
Furthermore, replication sets can be used, to provide redun-
dancy and high availability in case a machine experiences a
failure.

11 https://www.saltstack.com.
12 https://puppet.com.
13 https://www.mongodb.com/.
14 https://help.ubuntu.com/community/ApacheMySQLPHP.

123

https://docs.ansible.com/ansible/2.4/playbooks_reuse_roles.html
https://www.saltstack.com
https://puppet.com
https://www.mongodb.com/
https://help.ubuntu.com/community/ApacheMySQLPHP

MoDMaCAO: a model-driven framework for the design, validation and configuration management... 881

Fig. 11 Modeling MongoDB with MoDMaCAO

5.1.1 Design

Figure 11 depicts how we specialize the mixin types defined
by the MoDMaCAO framework to be able to model Mon-
goDB clusters:

– The MongoDBComponent mixin type is the base type
for all other MongoDB-specific Component mixin
types. It defines the mongodb.bindip and
mongodb.port attributes that specify the IP address
and port on which the MongoDB service should be lis-
tening.

– The ReplicableMongoDBComponent mixin type
defines the base type for components that
can be replicated. It defines the
mongodb.replication.set.name attribute that
is used to assign a component to a certain replication set.
MongoDBcomponents belonging to the same replication
set are synchronized copies of each other.

– TheRoutermixin type abstracts the notion of a router in
the MongoDB cluster. A router implements the compo-
nent to which the user connects. It forward the requests
of the user to the machines that actually hold the data.

– The ConfigServer mixin type abstracts the notion of a
config server of a MongoDB cluster. A config server
stores the metadata, including the state and organization
of the data. It is also responsible to store authentication
configuration information.

– The Shard mixin type abstracts the notion of a shard in
the MongoDB cluster. The shards are used to store the
actual data of the database. Each shard holds a subset of
the overall data.

– The Cluster mixin type defines constraints for a Mon-
goDB cluster: A cluster must contain at least one router
(i.e., OneOrMoreRouters), at least one shard (i.e.,
OneOrMoreShards), and at least one config server
(i.e., OneOrMoreConfigServer).

– The ConfigServerDependency mixin type
abstracts the execution dependency between
MongoDBComponents and a ConfigServer, to
ensure that the ConfigServer is started, before the
other components get started.

A model for a MongoDB cluster with three shards
and no replication is depicted in Fig. 12. For the sake
of brevity, we omit the depiction of Attributes. The
MongoDB cluster consists of the components router,
configserver, and the three shards,shard1 toshard3.
The router and shard1 to shard3 have an execu-
tion dependency to the configserver. Moreover, the
router has an execution dependency to each shard. The
components are placed on five different virtual machines,
vm1 to vm5, using PlacementLinks, which are con-
nected to a network using NetworkInterfaces.

Figure 12 shows a MongoDB cluster designed with the
MongoDB designer, generated using the Designer Genera-
tor. As we can see, the designed configuration follows the
containment annotation defined in Sect. 4.4. So, different
components are shown inside the MongoDB cluster applica-
tion.

5.1.2 Verification

To ensure the well-formedness of MongoDB configurations,
MoDMaCAO approach allows to extend the generic OCL
constraints by ones specific to the business of the application
to design. Listing 3 shows the different implemented con-
straints for the MongoDB use case. So, a MongoDB applica-
tion must have at least one router (OneOrMoreRouters),
one shard (OneOrMoreShards), and one configuration
server (OneOrMoreConfigServers).

context Cluster
inv OneOrMoreRouters :
self.entity.oclAsType(occi::Resource).links->collect(l:

occi::Link|l.target)->collect(c:occi::Resource|c.
parts)->select(mb:occi::MixinBase|mb.oclIsTypeOf(
mongodb::Router))->size()>=1

inv OneOrMoreShards :
self.entity.oclAsType(occi::Resource).links->collect(l:

occi::Link|l.target)->collect(c:occi::Resource|c.
parts)->select(mb:occi::MixinBase|mb.oclIsTypeOf(
mongodb::Shard))->size()>=1

inv OneOrMoreConfigServers : self.entity.oclAsType(occi::
Resource).links->collect(l:occi::Link|l.target)->
collect(c:occi::Resource|c.parts)->select(mb:occi::
MixinBase|mb.oclIsTypeOf(mongodb::
Configserver))->size()>=1

Listing 3 OCL constraints of MongoDB use case

5.1.3 Configuration management artifact generation

The MongoDB OCCI extension defined above can be used
as a basis for the generation of configuration management
artifact skeletons. Thereby, for each of the Mixin types that
can be applied to Resources of Kind Component, a skeleton
for a configuration management script is generated. Listing 4
shows a configuration management skeleton generated (the

123

882 F. Zalila et al.

Fig. 12 Modeling a MongoDB cluster with MoDMaCAO

blue parts) and extended for the MongoDB Router Mixin
of the MongoDB extension. Hereby, the block including its
name, e.g., Deploy Router, as well as when the block
should be executed, task == "DEPLOY", is generated.
The individual modules describing the logic of what to
deploy, e.g., apt, has to be manually set by the user which
in this case deploys a router component of a MongoDB.

- name: Deploy Router
block:
- apt_key:

keyserver: hkp://keyserver.ubuntu.com:80
id: 9DA31620334BD75D9DCB49F368818C72E52529D4
state: present

- apt_repository:
repo: deb [arch=amd64] https://repo.mongodb.org/apt/ubuntu

bionic/mongodb-org/4.0 multiverse
state: present

- apt:
name: mongodb-org
update_cache: yes
state: present

when: task == "DEPLOY"
become: yes
- name: Configure Router
block:
- name: Copy startup script
template: src=mongos_init.j2 dest=/etc/ init /mongos.conf owner=

mongodb
- name: Copy configuration file template
template: src=mongos.conf.j2 dest=/etc/mongos.conf owner=mongodb

when: task == "CONFIGURE"
become: yes

Listing 4 Excerpt from Ansible playbook generated and extended for MongoDB
router.

Listing 4 shows a variables file that is generated at runtime
and can be consumed by Ansible when configuring the soft-
ware component router of the defined MongoDB cluster.
From this variable file, the IP address of the configuration
server can be read by Ansible for the configuration of the
router.

id: b6fc880a-0571-46ba-86db-a206c0d13675 kind: component
ipaddresses: - 10.0.0.31 mixins: - name: Router
. . .

attributes:
occi.core.id: b6fc880a-0571-46ba-86db-a206c0d13675
occi.core. title: router
occi.core.summary: MongoDB cluster router
occi.component.state: undeployed

links:
- id: 4b9a6567-7cc8-4643-98a6-533068062b55
kind: componentlink
target:
id: b6fc880a-0571-46ba-86db-a206c0d13679
kind: component
mixins:
- name: ConfigServer
. . .

ipaddresses:
- 10.0.0.24

Listing 5 Excerpt from Ansible variables file generated for MongoDB router at
runtime.

Once the Ansible artifacts have been generated, they are later
executed on our Openstack cloud. A demonstration, avail-
able here15, shows the deployment process of the MongoDB
cluster.

15 https://github.com/occiware/MoDMaCAO/blob/master/videos/
MongoDB-Cluster.

123

https://github.com/occiware/MoDMaCAO/blob/master/videos/MongoDB-Cluster
https://github.com/occiware/MoDMaCAO/blob/master/videos/MongoDB-Cluster

MoDMaCAO: a model-driven framework for the design, validation and configuration management... 883

Fig. 13 Modeling LAMP with MoDMaCAO

5.2 LAMP

This second use case addresses LAMP, which is an open
source Web development platform that uses Linux as the
operating system, Apache as the Web server,MySQL as the
relational database management system and PHP, Perl or
Python as the object-oriented scripting language.

5.2.1 Design

The LAMPWeb application can be modeled with help of
the following mixins:

– The LAMP mixin type abstracts the notion of a LAMP
application anddependsonMoDMaCAOApplication
mixin. A LAMP application is accessible via only one
ApacheServer as enforced by theOnlyOneApache
Server constraint. It is deployed using one or more
Tomcat container (i.e., OneOrMoreTomcats con-
straint). Moreover, the persistent data of a LAMP appli-
cation are stored in only one MySQL database (i.e.,
OnlyOneMySQL constraint).

– The ApacheServer mixin type abstracts the notion of
a LAMP Web server. It inherits from the Component
mixin of the MoDMaCAO modeling framework. It
defines OneOrMoreTomcatDependencies
constraint enforcing that the ApacheServer instance
cannot run if it is not linked to at least one Tomcat
instance.

– The Tomcat mixin type abstracts the notion of a LAMP
application container. It inherits from MoDMaCAO
Componentmixin. Each Tomcat instance is executed
if it is connected to only oneMySQL instance (i.e.,Only-
OneMySQLDependency constraint).

– TheMySQLmixin type abstracts the notion of a LAMP
MySQL database and also inherits from MoDMaCAO
Component mixin.

– The TomcatDependency mixin type abstracts a LAMP
execution dependency by always connecting a
Component instance to a Tomcat instance
(TargetMustBeTomcat).

– TheMySQLDependency mixin type abstracts a LAMP
execution dependency by always connecting a
Component instance to a MySQL instance
(TargetMustBeMySQL).
Figure 14 shows a LAMP stack designed with the LAMP

designer, generated using the Designer Generator. As we
can see, the designed configuration follows the containment
annotation defined in Sect. 4.4. So, different components are
shown inside the LAMP application.

5.2.2 Verification
Before the deployment of the LAMP stack, it is necessary
to verify the defined configuration. The approach of MoD-
MaCAO allows to extend the generic OCL constraints by
ones specific to the business of the application to design.
Listing 6 shows the different implemented constraints for the
LAMPuse case. For example, aLAMPapplicationmust have
exactly one Apache server (OnlyOneApacheServer),
one MySQL database (OnlyOneMySQL) and at least one
Tomcat server (OneOrMoreTomcats).

contextLAMP
invOnlyOneApacheServer :
self.entity.oclAsType(occi::Resource).links−>collect(l :occi::Link| l .target)

−>collect(c:occi::Resource|c.parts)−>select(mb:occi::MixinBase|mb.
oclIsTypeOf(lamp::Apacheserver))−>size()=1

invOnlyOneMySQL :
self.entity.oclAsType(occi::Resource).links−>collect(l :occi::Link| l .target)

−>collect(c:occi::Resource|c.parts)−>select(mb:occi::MixinBase|mb.
oclIsTypeOf(lamp::Mysql))−>size()=1

invOneOrMoreTomcats :
self.entity.oclAsType(occi::Resource).links−>collect(l :occi::Link| l .target)

−>collect(c:occi::Resource|c.parts)−>select(mb:occi::MixinBase|mb.
oclIsTypeOf(lamp::Tomcat))−>size()>=1

context Tomcat
invOnlyOneMySQLDependency :
self.entity.oclAsType(occi::Resource).links−>select(l :occi::Link| l .

oclIsTypeOf(platform::Componentlink))−>collect(l :occi::Link| l .parts)
−>select(mb:occi::MixinBase|mb.oclIsTypeOf(lamp::Mysqldependency))−>
size()>=1

context ApacheServer
invOneOrMoreTomcatDependencies :
self.entity.oclAsType(occi::Resource).links−>select(l :occi::Link| l .

oclIsTypeOf(platform::Componentlink))−>collect(l :occi::Link| l .parts)
−>select(mb:occi::MixinBase|mb.oclIsTypeOf(lamp::Tomcatdependency))
−>size()>=1

context TomcatDependency
inv TargetMustBeTomcat :
self.entity.oclAsType(occi::Link).target.oclAsType(occi::Resource).parts−>

exists(m|m.oclIsTypeOf(lamp::Tomcat))

contextMySQLDependency
invTargetMustBeMySQL :
self.entity.oclAsType(occi::Link).target.oclAsType(occi::Resource).parts−>

exists(m|m.oclIsTypeOf(lamp::Mysql))

Listing 6 OCL constraints of LAMP use case

123

884 F. Zalila et al.

Fig. 14 Modeling a LAMP stack with MoDMaCAO

5.2.3 Configuration management artifact generation

The capabilities of MoDMaCAO to generate Ansible play-
book skeletons are used for the defined LAMP extension.
Listing 7 shows the generated Ansible playbook (the blue
parts) extended with a block from the deploy operation
of the Tomcat mixin. The unarchive and copy mechanisms
within the script (black parts) aremanuallyfilled by the devel-
oper.

- name: Deploy Tomcat
block:
- yum: name=java-1.8.0-openjdk-devel state=present
- unarchive:

src: https://www-eu.apache.org/dist /tomcat/tomcat-9/v9.0.14/bin/
apache-tomcat-9.0.14.tar .gz

dest: /tmp
remote_src: yes

- file:
path: /opt/tomcat/
state: directory

- shell: cp -r /tmp/apache-tomcat-9.0.14/* /opt/tomcat/
when: task == "DEPLOY"
become: yes

Listing 7 Ansible task for LAMP Tomcat Deploy operation.

Once the Ansible artifacts have been generated, they are
later executed on our Openstack cloud. A demonstration,
available here16, shows the deployment process of the LAMP
stack.

16 https://github.com/occiware/MoDMaCAO/tree/master/videos/
LAMP-Stack.

6 Discussion

In this section, we discuss the applicability of the proposed
approach and how it contributes to theOCCI standard, aswell
as the model-driven cloud domain. Similarly to the problem
statements, the contributions can be separated to the creation
and extension of a precise modeling framework for OCCI
(P1), the benefits of verifying cloud application models at
design time (P2), and the combination of infrastructure as
code tools and model-driven engineering (P3).

To address the problem of a missing precise modeling
framework (P1), we extended the OCCI platform extension
and built a framework around it. We introduced capabilities
to the standard that allows to deploy components on IaaS
resources that can be managed at runtime. In MoDMaCAO,
we enhanced the OCCI Application and Component
definition by adding three additional lifecycle operations.
Our use cases confirmed that these extensions are able to
reflect the requirements for the deployment of the selected
applications. Furthermore, by providing the notion of a
PlacementLink, we are able to establish a connection
between the OCCI Platform extension and the OCCI Infras-
tructure extension. The PlacementLink is used in the
implementations to derive the IP address of the hostingvirtual
machines to be able to connect to them for the configuration
management. To extend the modeling capabilities of MoD-
MaCAO, we demonstrated how customized designers can
be created for defined cloud resource types. We have shown
that the utilization of simple annotation mechanisms allows
to greatly improve the automated generation of graphical
editors, especially when viewpoints for different hierarchies
are required.

123

https://github.com/occiware/MoDMaCAO/tree/master/videos/LAMP-Stack
https://github.com/occiware/MoDMaCAO/tree/master/videos/LAMP-Stack

MoDMaCAO: a model-driven framework for the design, validation and configuration management... 885

To verify designed cloud applications prior to a live
deployment (P2), we annotated OCCI cloud resource types
with OCL constraints. For the basic platform elements in
MoDMaCAO, we introduced generic constraints to check
whether basic structures of the standard are adhered to.
This comprises, e.g., constraints to check whether an
Application hasOneOrMoreComponents. In our use
cases we demonstrated how the MoDMaCAO framework
can be easily extended for customized resource and compo-
nent types allowing designers to incorporate their own OCL
well-formedness rules. Throughout the creation of the case
studies the validation reduced the overall development time
as errors within the structure of the modeled application are
directly detected. Still, only constraints regarding the struc-
ture or attribute configuration within the OCCI configuration
can be checked.

Finally, to address the lack of IDEs for Infrastructure as
Code (P3), we coupledmodel-driven engineering techniques
with configuration management. We separated the config-
uration management tool-specific logic from the generic
provisioning order. In this way, only a minimal set of
tool-specific code needs to be provided for each configu-
ration management tool. While we tested the integration
of SaltStack and simple Bash scripts with MoDMaCAO,
our case studies focused on the integration of the Ansible
configuration management tool into the OCCI ecosystem.
The combination of configuration management tools with a
model-driven approach supported not only the design time,
but also the runtime management of the modeled compo-
nents. At design time, the generation of the artifact skeletons
allowed to immediately start with directives to describe the
deployment of newly modeled component types. At run-
time, variable files accompanying the script can be generated
which provides these directives access to the current state
of the cloud application. Moreover, the direct connection
of component lifecycle actions to individual blocks in the
script allowed for smaller iterations when refining the con-
figuration management scripts which greatly supported the
development process.

In comparison with the original OCCI platform exten-
sion, the cloud developerwould have createdmanually coded
deployment artifacts for each application to deploy. This
activity is very hard, increases drastically defects in final
code and decreases the productivity of developers. In addi-
tion, the developer needs to check all functional constraints
such as the necessity to have a link between a compute
resource and a component one. Furthermore, the cloud devel-
oper needs to perform all previously listed tasks without any
visual support such as a graphical editor. This situation affects
the understandability of the designed systems and compli-
cates its reusability, maintenance and evolution. All these
enhancements provided in MoDMACAO avoid users manu-

ally creating infrastructure codes and deploying applications
without any guarantee of a successful execution.

The case studies presented in this paper only cover a
small subset of application possibilities for MoDMaCAO.
The original work additionally covers the modeling of a dis-
tributed Apache Cassandra database and an Apache Spark
cluster [3]. In addition, MoDMaCAO has already been
successfully applied in scope of resource deployment for sci-
entific workflows in the cloud [14] and for adaptive sensor
management [15].

7 Related work

As already mentioned in Sect. 1 and as explained in [16],
there are two strategies to address the heterogeneity between
cloud offerings. Since the first strategy, which is multi-cloud
libraries, is only focused on the infrastructure interoperabil-
ity,wedetail in the following the state-of-the-art of the second
remaining strategy, especially the solutions that tackle the
management of applications.

(1)MDE for the cloud: Nowadays, model-based solutions
are becoming increasingly popular in cloud computing. Some
of them are commercial application provisioning solutions
enabling developers and administrators to specify deploy-
ment artifacts and dependencies. Notable examples include
Ubuntu juju17 that targets the modeling of applications and
their hybrid deployment. In the same vein of this commercial
graphical interface, several research projects are providing
domain-specific modeling languages and frameworks that
enable architects to describe and manage cloud platforms.
Among these model-based solutions, we identify OCCIware
[2,6], which our work is an extension of. OCCIware has
been successfully applied for the management of resources
fromdifferent domains, including themanagement ofDocker
containers [12], and the management of mobile robots [17].
COAPS [18] is a PaaS interface for managing cloud appli-
cations. It extends the OCCI Core model, i.e., the Resource
and Link concepts, without extending the OCCI platform
extension. Moreover, COAPS complies to the previous, non-
enhanced version of the OCCI standard, and hence it lacks of
the resource statemanagement and the conformance verifica-
tion provided by theOCCIware tool chain andMoDMaCAO.
SALOON [19] is a model-driven multi-cloud configurator. It
uses feature models to represent infrastructure and platform
variability, as well as ontologies to describe the cloud appli-
cations requirements. SALOON targets four PaaS providers
and the authors claim it can be extensible by adding new
provider models that conform to the metamodel they define.
However, this can be difficult and error-prone since this
framework is not based on a standard, nor on some formal

17 http://juju.ubuntu.com/.

123

http://juju.ubuntu.com/

886 F. Zalila et al.

specification. TUNe [20] is a management system that is
based on the Fractal component model for describing the
software encapsulation and on two UML profiles, one for
the deployment of legacy distributed applications and one
for their reconfiguration using state diagrams. TUNe was
applied for the administration of J2EE applications. Like
most of the available model-driven configuration manage-
ment approaches, TUNe allows changes only at design-time.
This means that the deployment process may be repeated
several times, which is costly and time-consuming.

Regarding runtime support, a strong analogy can be
made between our approach and DeployWare [21], while
the former is applied on cloud APIs and the latter on grid
infrastructures. In fact, DeployWare provides a modeling
language to deploy applications on Grid’500018 and a graph-
ical interface to manage them at runtime. CloudML [22] is
a cloud modeling language that helps to provision cloud
infrastructure and platform resources by a semi-automatic
matching between the defined application requirements and
the cloudofferings.CloudML is exploited both atdesign-time
to describe the application provisioning of cloud resources
after performing the necessary orchestration, and at runtime
to manage the deployed applications. Furthermore, its cor-
responding management framework CloudMF [23] presents
follows a model driven approach to maintain multi-cloud
applications. Another language to model cloud application
is Cloud Application Modelling and Execution Language
(CAMEL) [24] also utilizing the benefits of a models at
runtime approach. In the CAMEL approach the Cloudia-
tor toolkit [25] is used which provides a deployment engine
building upon self-contained components described via exe-
cutable artifacts and life-cycle actions.

Unlike our work, CloudML and CAMEL are not based on
standards and requires the user to learn a new DSL. In addi-
tion, the different extensions of CloudML DSL are required
to address different needs (monitoring, QoS, etc.) [26]. How-
ever, in OCCI, and thus OCCIware, this aspect is simplified
by providing a single, simple and concise core DSL to cap-
ture the different concepts that could emerge to represent
everything-as-a-service.

(2) Cloud standards: Our work is also a standard-
based approach since it adopts the OCCI standard meta-
model. Besides OCCI, several cloud computing standards
for managing cloud applications exist. The Organization
for the Advancement of Structured Information Standards
(OASIS)’s Cloud Application Management for Platforms
(CAMP)19 standard targets the deployment of cloud appli-
cations on top of PaaS resources. The OASIS’s TOSCA
standard defines a language to describe and package cloud
application artifacts and deploy them on IaaS and PaaS

18 https://www.grid5000.fr/.
19 https://www.oasis-open.org/committees/camp/.

resources. The Eclipse Winery20 project provides an open
source Eclipse-based graphical modeling tool for TOSCA
when the OpenTOSCA project provides an open source
container for deploying TOSCA-based applications [27].
Cloudify21 is an open source orchestration and management
framework for cloud applications lifecycle. It is also based
on TOSCA and provides a commercial Web Interface that
enables the developer to create deployments and execute
workflows.

For the deployment aspects, OpenTOSCA chose to use
management plans implemented as BPEL and/or BPMN
workflows to deploy applications and adaptation plans to
update a deployment based on the given situation at run-
time. In the OCCI based adaptation process utilized in our
use cases similar plans are generated withMoDMaCAO pro-
viding the capability to plug ourmodels into themanagement
configuration tools such as Ansible. The declarative aspect
of the latter and its idempotency allows it to only affect the
runtime part concerned by the update in the modeling level.
In addition, CAMP and TOSCA can use OCCI-based IaaS/-
PaaS resources, so these standards are complementary. This
standards “marriage” will be amain pillar of our future work,
as discussed in Sect. 8.

8 Conclusion

This article presents our approach, named MoDMaCAO, for
model-driven configuration management of cloud applica-
tions at runtime by using an enhanced version of OCCI
standard.MoDMaCAOhas the following features: (i) a mod-
eling framework to design cloud applications based onOCCI
standard, (ii) the visualization facilities to seamlessly create
cloud applications, (iii) a verification mechanism to ensure
the correctness of the designed applications, and finally (iv) a
generative approach to automatically produce configuration
management artifacts. We used the OCCIware tool chain to
model the proposed enhancements and used its capabilities to
generate prototypical implementations for different configu-
ration management tools. Furthermore, we showed how the
proposed framework can be used to model, deploy and man-
age two different distributed cloud applications, aMongoDB
cluster and a LAMP stack.

As future work, we will investigate how the proposed
framework can be extended to support multiple configura-
tion management tools to be used side-by-side for managing
a single cloud application. We also want to incorporate con-
cepts that support the reuse of defined Component mixins
in other applications. Second, we plan to reduce the man-
ual written parts of scripts. For that, we need to define the

20 https://www.eclipse.org/proposals/soa.winery/.
21 http://cloudify.co/.

123

https://www.grid5000.fr/
https://www.oasis-open.org/committees/camp/
https://www.eclipse.org/proposals/soa.winery/
http://cloudify.co/

MoDMaCAO: a model-driven framework for the design, validation and configuration management... 887

semantics of a configuration management tool in order to
finely capture the behavior of each operation. Then, we can
extend the Deployment artifacts generator to generate scripts
based on the chosen configuration management tool. In addi-
tion, we intend to explore in depth the behavior definition of
OCCIware resources. One possible improvement consists to
incorporate an assertion based on the dependency mixin in
the finite state machine of the related kind. Our long-term
goal is to extend the provided approach and tooling with the
support of additional cloud standards, including TOSCA and
CAMP. We already defined a preliminary mapping between
TOSCA and OCCI [28]. We will further refine this mapping
as a basis for providing an integrated solution for model-
driven cloud orchestration utilizing both standards.

Acknowledgements We thank the Simulationswissenschaftliches Zen-
trum Clausthal-Göttingen (SWZ), the French PIA OCCIware project
(www.occiware.org), and the Hauts-de-France Regional Council for
supporting this work.

Data availability Readers can find the open source code base of MoD-
MaCAO on https://github.com/occiware/MoDMaCAO.

References

1. Nyrén, R., Edmonds, A., Papaspyrou, A., Metsch, T., Parák,
B.: Open Cloud Computing Interface-Core (2016). http://ogf.org/
documents/GFD.221.pdf

2. Parpaillon, J., Merle, P., Barais, O., Dutoo, M., Paraiso, F.:
Occiware-a formal and tooled framework for managing everything
as a service. In: Projects Showcase@ STAF’15, vol. 1400, pp. 18–
25 (2015)

3. Korte, F., Challita, S., Zalila, F., Merle, P., Grabowski, J.: Model-
driven configurationmanagement of cloud applicationswithOCCI.
In: 8th International Conference on Cloud Computing and Services
Science (CLOSER), pp. 100–111 (2018)

4. Metsch, T., Mohamed, M.: Open Cloud Computing Interface-
Platform (2016). https://www.ogf.org/documents/GFD.227.pdf

5. Merle, P., Barais, O., Parpaillon, J., Plouzeau,N., Tata, S.: A precise
metamodel for open cloud computing interface. In: 8th IEEE Inter-
national Conference onCloudComputing (CLOUD), pp. 852–859.
IEEE (2015)

6. Zalila, F., Challita, S., Merle, P.: A model-driven tool chain for
OCCI. In: 25th International Conference on COOPERATIVE
INFORMATION SYSTEMS (CoopIS), pp. 389–409. Springer,
Cham (2017)

7. Medhioub, H., Msekni, B., Zeghlache, D.: OCNI—open cloud net-
working interface. In: 22nd International Conference on Computer
Communications and Networks (ICCCN), pp. 1–8. IEEE (2013)

8. Metsch, T., Edmonds, A., Parák, B.: Open Cloud Computing
Interface-Infrastructure (2016). http://ogf.org/documents/GFD.
224.pdf

9. Yangui, S., Tata, S.: CloudServ: PaaS resources provisioning for
service-based applications. In: 27th IEEE International Conference
on Advanced Information Networking and Applications (AINA),
pp. 522–529. IEEE (2013)

10. Yangui, S., Tata, S.: An OCCI compliant model for PaaS resources
description and provisioning. Comput. J. 59(3), 308–324 (2014)

11. Zalila, F., Challita, S., Merle, P.: Model-driven cloud resource
management with occiware. In: Future Generation Computer Sys-

tems, vol. 99, pp. 260–277 (2019). http://www.sciencedirect.com/
science/article/pii/S0167739X18306071

12. Paraiso, F., Challita, S., Al-Dhuraibi, Y., Merle, P.: Model-driven
management of docker containers. In: 9th IEEE International Con-
ference onCloudComputing (CLOUD), pp. 718–725. IEEE (2016)

13. Erbel, J., Korte, F., Grabowski, J.: Comparison and runtime
adaptation of cloud application topologies based on OCCI. In: Pro-
ceedings of the 8th International Conference on Cloud Computing
and Services Science (CLOSER) (2018)

14. Johannes, E., Fabian, K., Jens, G.: Scheduling architectures for
scientificworkflows in the cloud. In: Ferhat, K., Reinhard, G. (eds.)
System Analysis and Modeling. Languages, Methods, and Tools
for Systems Engineering, pp. 20–28. Springer, Cham (2018)

15. Erbel, J., Brand, T., Giese, H., Grabowski, J.: OCCI-compliant,
fully causal-connected architecture runtime models supporting
sensor management. In: Proceedings of the 14th Symposium on
Software Engineering for Adaptive and Self-Managing Systems
(SEAMS 2019) (2019)

16. Challita, S., Paraiso, F., Merle, P.: Towards formal-based semantic
interoperability in multi-clouds: the fclouds framework. In: 10th
IEEE International Conference on Cloud Computing (CLOUD),
pp. 710–713. IEEE (2017)

17. Merle, P., Gourdin, C., Mitton, N.: Mobile Cloud robotics as a
service with OCCIware. In: 2nd IEEE International Congress on
Internet of Things (ICIOT), pp. 50–57. IEEE (2017)

18. Sellami, M., Yangui, S., Mohamed, M., Tata, S.: PaaS-independent
provisioning and management of applications in the cloud. In: 6th
IEEE International Conference on Cloud Computing (CLOUD),
pp. 693–700. IEEE (2013)

19. Quinton, C., Romero, D., Duchien, L.: SALOON: a platform for
selecting and configuring cloud environments. Softw. Pract. Exp.
46(1), 55–78 (2016)

20. Chebaro, O., Broto, L., Bahsoun, J.-P., Hagimont, D.: Self-TUNe-
ing of a J2EE clustered application. In: 6th IEEE Conference and
Workshops on Engineering of Autonomic and Autonomous Sys-
tems. EASe 2009, vol. 2009, pp. 23–31. IEEE (2009)

21. Flissi, A., Dubus, J., Dolet, N., Merle, P.: Deploying on the Grid
with DeployWare. In: 8th IEEE International Symposium on Clus-
ter Computing and the Grid (CCGrid), pp. 177–184. IEEE (2008)

22. Ferry, N., Brataas, G., Rossini, A., Chauvel, F., Solberg, A.:
Towards bridging the gap between scalability and elasticity. In:
4th International Conference on Cloud Computing and Services
Science (CLOSER), pp. 746–751 (2014)

23. Ferry, N., Chauvel, F., Song, H., Rossini, A., Lushpenko, M.,
Solberg, A.: Cloudmf: model-driven management of multi-cloud
applications. ACM Trans. Internet Technol. 18, 2 (2018). https://
doi.org/10.1145/3125621

24. Achilleos, A.P., Kritikos, K., Rossini, A., Kapitsaki, G.M.,
Domaschka, J., Orzechowski, M., Seybold, D., Griesinger, F.,
Nikolov, N., Romero, D., et al.: The cloud application modelling
and execution language. J. Cloud Comput. 8(1), 20 (2019)

25. Baur, D., Seybold, D., Griesinger, F., Masata, H., Domaschka, J.:
A provider-agnostic approach to multi-cloud orchestration using a
constraint language. In: Proceedings of the 18th IEEE/ACM Inter-
national Symposium on Cluster, Cloud and Grid Computing, ser.
CCGrid ’18, pp. 173-182. IEEE Press (2018). https://doi.org/10.
1109/CCGRID.2018.00032

26. Bergmayr, A., Rossini, A., Ferry, N., Horn, G., Orue-Echevarria,
L., Solberg, A., Wimmer, M.: The evolution of CloudML and its
manifestations. In: 3rd International Workshop on Model-Driven
Engineering on and for the Cloud (CloudMDE), pp. 1–6 (2015)

27. Binz, T., Breitenbücher, U., Haupt, F., Kopp, O., Leymann, F.,
Nowak, A., Wagner, S.: OpenTOSCA—a runtime for TOSCA-
based cloud applications. In: Service-Oriented Computing, pp.
692–695. Springer (2013)

123

www.occiware.org
https://github.com/occiware/MoDMaCAO
http://ogf.org/documents/GFD.221.pdf
http://ogf.org/documents/GFD.221.pdf
https://www.ogf.org/documents/GFD.227.pdf
http://ogf.org/documents/GFD.224.pdf
http://ogf.org/documents/GFD.224.pdf
http://www.sciencedirect.com/science/article/pii/S0167739X18306071
http://www.sciencedirect.com/science/article/pii/S0167739X18306071
https://doi.org/10.1145/3125621
https://doi.org/10.1145/3125621
https://doi.org/10.1109/CCGRID.2018.00032
https://doi.org/10.1109/CCGRID.2018.00032

888 F. Zalila et al.

28. Glaser, F., Erbel, J., Grabowski, J.: Model driven cloud orches-
tration by combining TOSCA and OCCI. In: 7th International
Conference onCloudComputing andServices Science (CLOSER),
pp. 644–650. SciTePress (2017)

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

Springer Nature or its licensor holds exclusive rights to this article
under a publishing agreementwith the author(s) or other rightsholder(s);
author self-archiving of the accepted manuscript version of this article
is solely governed by the terms of such publishing agreement and appli-
cable law.

Faiez Zalila is research engineer
at CETIC within Model-Based
Engineering and Distributed Sys-
tems (MBEDiS) department. He
is interested in software engineer-
ing, including model driven soft-
ware engineering (MDE), software
language engineering (SLE) and
software validation and verifica-
tion (V&V) applied on critical
embedded systems and distributed
systems. He received the M.Sc.
degree in computer science from
Université Toulouse III Paul
Sabatier in 2010, and the Ph.D.

degree in computer science from National Polytechnics Institute of
Toulouse (INP Toulouse) in 2014. His thesis focused on the integra-
tion of formal verification activity for domain-specific languages. For
more information, see https://sites.google.com/site/faiezzalila/.

Fabian Korte is a Ph.D. candi-
date at the University of Goettin-
gen under the supervision of Prof.
Dr. Jens Grabowski. His research
interests include model-driven
orchestration and configuration
management with the focus on
homogenizing and simplifying the
access to cloud resources. He
recently made the shift to indus-
try where he is concerned with the
automated management of large
distributed systems. For more
information on his research, see
https://swe.informatik.uni-goettingen.

de/staff/fabian-korte/.

Johannes Erbel is a Ph.D. can-
didate at the University of Goet-
tingen and works in the research
group Software Engineering for
Distributed Systems of Prof. Dr.
Jens Grabowski at the Institute of
Computer Science. His research
focuses on model driven engineer-
ing approaches for distributed sys-
tems and the reflection of sci-
entific workflows within causally
connected cloud runtime models.
In his Masters thesis in 2017 he
discussed a model-driven approach
to compare and adapt cloud appli-

cation topologies at runtime. For more information, see: https://swe.
informatik.uni-goettingen.de/staff/johannes-martin-erbel/.

Stéphanie Challita is associate
professor of software engineering
at University of Rennes 1 in
France. She teaches at the engi-
neering school ESIR and she is a
member of the DiverSE research
team, which is joint to CNRS,
Inria Rennes - Bretagne Atlan-
tique and Irisa. Until September
2020, she was a postdoctoral resea-
rcher at I3S laboratory & Inria
Sophia Antipolis - Méditerranée,
within the Kairos research team.
She was also a lecturer at Univer-
sity Côte d’Azur. She obtained a

Ph.D. degree in Computer Science from University of Lille in 2018.
She prepared her thesis at Inria Lille - Nord Europe within the Spi-
rals research team. Her thesis focuses on automatically inferring mod-
els from Cloud APIs and reasoning over them. Her research is about
Model-Driven Engineering, Software Language Engineering, Reverse-
Engineering and Cloud Computing. For more information, see https://
stephaniechallita.github.io/.

Jens Grabowski is professor at
the Georg-August-Universität in
Göttingen (Germany). He is head-
ing the Software Engineering for
Distributed Systems Group at the
Institute. Prof. Grabowski is one
of the developers of the standard-
ized testing languages TTCN-3
and UML Testing Profile. The cur-
rent research interests of Prof. Gra-
bowski are directed toward model-
based development and testing, man-
aged software evolution, and empir-
ical software engineering.

123

https://sites.google.com/site/faiezzalila/
https://swe.informatik.uni-goettingen.de/staff/fabian-korte/
https://swe.informatik.uni-goettingen.de/staff/fabian-korte/
https://swe.informatik.uni-goettingen.de/staff/johannes-martin-erbel/
https://swe.informatik.uni-goettingen.de/staff/johannes-martin-erbel/
https://stephaniechallita.github.io/
https://stephaniechallita.github.io/

MoDMaCAO: a model-driven framework for the design, validation and configuration management... 889

PhilippeMerle is senior researcher
at Inria and is member of the Spi-
rals research team. He was asso-
ciate professor at University of
Lille 1, France. He obtained a
Ph.D. degree in computer science
from University of Lille 1. His
research is about software engi-
neering for distributed systems,
especially cloud computing, ser-
vice oriented computing, middle-
ware, model driven engineering,
and component-based software engi-
neering. He has co-authored two
patents, two OMG specifications,

one book, 15 journal papers, and more than 70 international confer-
ence papers.

123

	MoDMaCAO: a model-driven framework for the design, validation and configuration management of cloud applications based on OCCI
	Abstract
	1 Introduction
	2 Background
	2.1 Open cloud computing interface
	2.2 OCCIware tool chain

	3 Problem statement
	4 MoDMaCAO
	4.1 Overall architecture
	4.2 MoDMaCAO modeling framework
	4.3 MoDMaCAO verification
	4.4 MoDMaCAO designers
	4.5 The MoDMaCAO implementation framework

	5 Use cases
	5.1 MongoDB
	5.1.1 Design
	5.1.2 Verification
	5.1.3 Configuration management artifact generation

	5.2 LAMP
	5.2.1 Design
	5.2.2 Verification
	5.2.3 Configuration management artifact generation

	6 Discussion
	7 Related work
	8 Conclusion
	Acknowledgements
	References

