
Software and Systems Modeling (2022) 21:1469–1494
https://doi.org/10.1007/s10270-022-01015-y

THEME SECT ION PAPER

Agile MERODE: a model-driven software engineering method
for user-centric and value-based development

Monique Snoeck1 · Yves Wautelet1

Received: 15 November 2021 / Revised: 5 May 2022 / Accepted: 16 May 2022 / Published online: 16 June 2022
© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022

Abstract
Agile is often associated with a lack of architectural thinking causing technical debt but has the advantage of user centricity
and a strong focus on value. Model-driven software engineering (MDSE) strongly performs for building a quality architecture
and code, but lacks focus on user requirements and tends to consider development as a monolithic whole. The combination of
Agile and MDSE has been explored, but a convincing integrated method has not been proposed yet. This paper addresses this
gap by exploring the specific combination ofMERODE—as an example of a provenMDSEmethod—with Scrum, a reference
agile method offering a concrete (sprint-based) life cycle management on the basis of user stories. The method resulting of
this integration is called AgileMERODE; it is driven by user stories, themselves associated with behavior-driven development
scenarios. It allows for domain-driven design and permits fast development from domain models bymeans of code generation.
An illustrative example further clarifies the practical application of Agile MERODE, while a case study shows the planning
game application in the case’s context. While the approach, in its entirety, allows reducing technical debt by building the
architecture in a logical, consistent and complete manner, introducing MDSE involves a trade-off with pure value-driven
development. Agile MERODE contributes to the state of the art by showing how to increase user centricity in MDSE, how
to align model-driven engineering with the Scrum cycle, and how to reduce the technical debt of agile developments yet
remaining value-focused.

Keywords Model-driven engineering · Agile · MERODE · User story · User stories · BDD · Behavior-driven development

1 Problem statement

According to the “State of Agile Report 2020”,1 up to 90%
of the companies are at least experimenting with Agile. The
most important reasons to adopt Agile are better responsive-
ness to change, the desire to accelerate software delivery,
and increased productivity. While 42% of the respondents
also consider better software quality as a reason for going
Agile, software maintainability is considered by no more

1 https://stateofagile.com/#ufh-i-615706098-14th-annual-state-of-
agile-report/7027494.

Communicated by K. Lano, S. Kolahdouz-Rahimi, J. Troya, and H.
Alfraihi.

B Yves Wautelet
yves.wautelet@kuleuven.be

Monique Snoeck
monique.snoeck@kuleuven.be

1 KU Leuven, Leuven, Belgium

than 20% of the respondents. According to the same
survey, the success of Agile is prevalently evaluated on busi-
ness value and customer satisfaction, while defects, their
resolution and pass/fail tests are considered by less than 20%
of the respondents as success measures. This focus on fast
delivery to quickly generate business value and satisfy cus-
tomers makes Agile projects highly vulnerable to technical
debt, leading to low maintainability, rework and delays [32].

Inmodel-driven software engineering (MDSE)models are
used as central skeleton for software development by gener-
ating code from them via transformations. The drawbacks of
agile listed in the previous paragraph are reported as being
partially addressed by the use of MDSE. Indeed, according
to Liebel et al. [26], quality, reusability, reliability, trace-
ability, and maintainability are the five most positively rated
elements byMDSE practitioners in the domain of embedded
systems. Also, according to Wortmann et al. [51], in rela-
tion to Industry 4.0 where by nature we require flexible tools
for studying how to swiftly integrate software in a rapidly
evolving and heterogeneous technological environment, the

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10270-022-01015-y&domain=pdf
http://orcid.org/0000-0002-3824-3214
http://orcid.org/0000-0002-6560-9787
https://stateofagile.com/#ufh-i-615706098-14th-annual-state-of-agile-report/7027494
https://stateofagile.com/#ufh-i-615706098-14th-annual-state-of-agile-report/7027494

1470 M. Snoeck, Y. Wautelet

main benefits of modeling languages like the Unified
Modeling Language [30] are reducing time & costs and
improving sustainability & international competitiveness.
These benefits are attributed to the fact that modeling sup-
ports digital representation and integration.

This paper explores the specific combination of
MERODE2 as example of a proven MDSE approach for
domain-driven design with the Agile and a value-driven
way of working. The interest of combining Agile Soft-
ware Development (ASD) with MDSE lies in the fact that
domain-driven design has proven to be efficient in delivering
a well-organized architecture in larger agile projects [45].
Alfraihi et al. [5] show some indicators that Agile MDD
has improved the efficiency and the quality of the developed
software. A comparative case study by Lano et al. [25] also
provides indications of improved efficiency and qualitywhen
combining Agile with MDD. We believe that our study is an
early step in understanding the impact of integrating Agile
development with MDD.

The paper mainly addresses the Research Question (RQ):
“How can a MDSE method like MERODE be anchored in an
ASD structure for user-centric and value-driven (i.e., agile)
development to minimize the technical debt?” To answer
the RQ, we build an overall approach based on domain-
driven design on the basis of Behavior-Driven Development
(BDD) scenarios (associatedwith specificUser Stories (US))
with MERODE as Domain-Specific Language3 (DSL) while
achieving fast release by generating code from the domain
model. Agility principles are sustained by the user-centricity
inherent to the artifacts4 used in themodel-driven design (the
BDD scenarios) as well as (partially) prioritizing the rapid
development of specific (software) features based on US
value. The framework we propose is called AgileMERODE;
through the use of the method, with respect to ASD and
MDSE, the strengths of one approach are used to address the
limitations of the other and vice versa.

To intertwine ASD and MDSE, we anchor MERODE
into the Scrum development life cycle. Within the classi-
cal MERODEmethod, the requirements analysis is achieved
partially through a Unified Modeling Language (UML) use
casemodel [30]; inAgileMERODE, the latter is replaced by
USs and BDD scenarios that are user-centric and industry-
adopted (thoroughly used in Scrum) agile requirements

2 The name ‘MERODE’ originally stood for ‘Model-driven Entity
Relationship Object-oriented DEvelopment’, referring in this way to
the roots of the method.
3 MERODE can itself be considered as a DSL for the domain-driven
engineering of enterprise information systems. The language itself does
not have mechanisms (e.g., such as stereotypes) to further adjust the
language to specific domains.
4 In this paper, the word artifact is used according to Scacchi’s defini-
tion [35]: a by-product of software development that helps describe the
architecture, design and function of software.

engineering artifacts. Also, no concrete iterative (or sprint-
based) life cycle support is furnished by the traditional
MERODE method that is essentially meant to be used in
a plan-driven fashion. The use of USs within the require-
ments analysis of an Agile MERODE project supports the
(sprint) planning game similarly as for traditional Scrum-
based developments. The planning game [10] can thus be
executed in a comparable fashion as for non-MDSE agile
projects. The MDSE approach makes the precedence con-
straints on object construction that govern the architecture
more explicit, as a consequence of which the prioritization
of feature development will be less purely value-driven com-
pared to non-MDSE projects. US are thus pivot elements in
the Agile MERODE method, they are (i) associated with a
few BDD scenarios that are the input for the model creation
process and (ii) the scope elements for the planning game.
The adoption ofUS inMERODEallows its swift anchoring in
the Scrum life cycle. An illustrative running example shows
the application of the method, and a more elaborated case
study further clarifies the practical application of the planning
game into an Agile MERODE-based development project.
The approach, in its entirety, allows reducing technical debt
by building the architecture in a logical, consistent and com-
plete manner but involves a trade-off with pure value-driven
because of architectural design precedence constraints. Agile
MERODE contributes to the state of the art by showing how
to increase user-centricity inmodel-driven development, how
to align model-driven engineering with the Scrum cycle, and
how to reduce the technical debt of agile developments yet
remaining focused on value.

The remainder of this paper is structured as follows: Sec-
tion 2 presents the essentials of the MERODE approach,
including the relevant elements of its meta-model. Section 3
presents the research paradigm (design sciences) and the
way the developed framework instantiates such a research
cycle. Section 4 presents the combined approach of ASD
and MDSE into the Agile MERODE approach starting with
a presentation of the US and BDD meta-model and its inte-
gration with the MERODE meta-model and then turning to
the Agile MERODE lifecycle and planning game. Through-
out these sections, a small illustrative case study is used.
Section 5 depicts Agile MERODE as a software process
through a dynamic high-level view and a detailed static one.
Section 6 applies Agile MERODE to a larger real-life case
study and focuses on the planning game application for sprint
content assignment. Section 7 discusses the specifics of the
approach in terms of planning tradeoff, heaviness in method
application and scalability, as well as the threats to validity.
Furthermore, it discusses the approach in the light of related
work. Finally, Sect. 8 concludes the paper.

123

Agile MERODE: a model-driven software engineering method… 1471

2 Background

2.1 Research gap and novelty of the approach

MDSE is not prescribed as an agile practice. While mod-
eling is a well-established discipline, MDSE still faces a
number of challenges. Among these we find current MDSE
shortcomings in addressing complex software problems and
MDSE tool usability issues [29], as well as the need for
making MDSE valuable in the context of ASD [8]. Despite
these challenges, combined ASD and MDSE approaches
have proven to be successful in several domains [22]. Related
work until 2016 has been described in a review of 15 studies
published between 2001 and 2016 [3]. Many Agile MDSE
approaches report positive impacts of a combined Agile-
MDSE approach, such as better quality and productivity
while maintaining typical ASD benefits such as faster devel-
opment rate and better customer satisfaction. The study also
reveals that the majority of approaches are MDD-based,
meaning that Agile practices such as Scrum are incorporated
in the MDD process. While the combination of Agile and
MDSE can help to overcome the problems with the individ-
ual approaches [24], an exact roadmap on understanding how
to exactly integrate ASD and MDSE is still lacking [4].

The Agile Unified Process [6] (AUP) constitutes a
lightweight version of the Rational Unified Process (RUP)
[21]. The AUP is intended to include agile techniques
like test-driven development (TDD), agile modeling, agile
change management and database refactoring. Because of
the use of the RUP iterative structure (composed of 4 prede-
fined phases themselvesmade of iterations), theAUP is rather
devoted to integrating agile practices in a plan-driven envi-
ronment than making use of MDSE in an inherently agile
lifeycle. The RUP lifecycle is indeed a predefined canvas
with overall project steps rather than a neutral (not induc-
ing any predefined number of iterations or project length)
sprint-based cycle. As seen in Christou et al. [9], the use of
the RUP life cycle also implies that the releases produced
at the end of each iteration are not necessarily deployable;
the effective roll-out is mostly made in late stages of the
project (at earliest within the construction phase). The AUP
nevertheless deviates from pure UML-only modeling arte-
facts. Christou et al. [9] emphasize that “Use cases are
not the best for documenting business rules, user interface
requirements, constraints, or non-functional requirements”;
consequently agile modeling artifacts like US can be intro-
duced in AUP-based projects; often these are nevertheless
used conjunctively with Use Cases leading to unnecessary
overhead [47].

BPL: Business Processes (VP4 + VP5)

ISL: Input Services (VP3) ISL:
Output
Services

(VP3)
EL

EHL: Business Event
Handling (VP3)

DL: Business Objects
Data (VP1) + Lifecycles (VP2)

Fig. 1 MERODE layers: BPL (green), ISL (yellow), EL (blue) with
two sublayers: EHL and DL

2.2 MERODE essentials

MERODE applies the principle of a layered architecture and
identifies three major layers (see Fig. 1). The bottom layer
is the Enterprise Layer (EL), containing two sublayers: the
Domain Layer (DL) andEvent Handling Layer (EHL). These
layers are similar to the layers of the artifact-centric BALSA
modeling approach of Hull [19]. The DL consists of the busi-
ness objects and their associations. Additional logic is given
in theObject Life Cycles (OLCs) defining the states a business
object can be in, and the business events that cause the tran-
sitions between states. The EHL offers an interface to invoke
the business events and routes these to the relevant business
objects thatwill handle the event bymeans of a corresponding
operation performing the required state changes. The Infor-
mation System Services Layer (ISL) offers input and output
services to access the EL. Output services allow querying
the attributes and states of business objects. Input services
capture input data but do not directly invoke operations on
business objects. Rather, they achieve the requested input or
update of information by triggering one or several business
events via the EHL. The business events and their handling in
the EHL allow combining the advantages of an event-driven
architecture with the advantages of the layered architecture.
Finally, the Business Process Layer (BPL) defines the work
processes. Activities in the business processes may invoke
the output and input services in the ISL to obtain informa-
tion from the data layer and/or update information in the data
layer.While theELcaptures behavior on a per business object
type basis, the BPL will capture other aspects of behaviour
relating to users, task attribution and permissions [41].

Figure 2 shows the relevant parts of the MERODE meta-
model. As the method uses a subset of the UML notation,
its meta-model is much simpler than the one of UML. The
blue box denotes the part corresponding to the DL’s meta-
model. It shows how the business object types are related by
binary associations or inheritance associations (not shown in

123

1472 M. Snoeck, Y. Wautelet

BLUE: relevant por�on of the Domain Layer
YELLOW: relevant por�on of the IS Layer, dashed:
connec�on to DL
GREEN: BP Layer elements, dashed: connec�on to ISL

ManualAc�vity

ISSupportedAc�vity
0..*

Ac�vity
{abstract} BusinessProcess

1

1

0..*

ISServiceInvoca�on

0..*

1

Informa�onService
{abstract}

OutputService

InputService

1
0..*

0..*1

0..* 1

0..* 1 0..*1

1

0..*

1

0..*
1 0..*

0..*1

0..*1

1

0..* 0..*

1

1

0..*

0..*

1

Master / Associa�on

Dependent / Associa�on

FromState / Transi�onToState / Transi�on

Informa�onObjectType

ObjectTypeInspec�on

EventTrigger

Associa�on

BusinessObjectType ObjectTypeA�ribute

FSM State

BusinessEventType Opera�on Transi�on

PersistentObjectType
{abstract}

Fig. 2 MERODE meta-model (relevant part)

the meta-model). Business object types have attributes and
operations. Each operation is triggered by exactly one type
of business event. Conversely, a single business event may
trigger an operation in several business objects, hence the
need for an EHL.

The yellow box indicates themeta-model part correspond-
ing to the ISL. The dashed part shows the meta-model
elements that connect the ISL to the EL. The green box,
finally, shows relevant elements of the BPL, and the connec-
tion to the ISL.

A specific aspect of MERODE is that it requires all asso-
ciations in the UML class diagram to express existence
dependency. In this way, the UML class diagram becomes
a Directed Acyclic Graph (DAG), according to master-
dependent associations. Such DAG can be obtained from a
regular UML class diagram by systematically reifying all
associations that do not express existence dependency. By
transforming the UML class diagram in an Existence Depen-
dency Graph (EDG), ambiguities are resolved, and consis-
tency checking with OLC diagrams (the FSMs) becomes
easier [39,40]. Thanks to this improved formality and cor-
rectness, the models from MERODE allow generating Java
applications as prototypes of the EL with default Informa-
tion System (IS) services in the ISL [38]. Alternatively, a web
service interface can be generated for the DL and EHL. This
allows connecting the prototype application to a business
process engine, so as to be able to prototype the IS support

for a business process. Currently, such code generation for
the BPL is not yet available, though a first proof-of-concept
with manual code writing has already been achieved [46].

3 Research paradigm, method and approach

This research follows the paradigm of Design Sciences (DS)
[17]; DS aims to build generic solutions for identified issues.
The result of DS-based research is some kind of artifact
that can be a framework, terminology, a methodology, an
engineering tool, software, and so forth. In this paper, an
attempt has been made to build a methodology to engineer a
software development project through models yet remaining
compliant with fundamental agile practices. The built artifact
is named Agile MERODE and aims to solve an unresolved
issue or a problem considered being in a precarious state. In
this research, we define Agile MERODE as a methodology
to engineer software on the basis of USs, BDD scenarios,
domain models, and transformations in order to increase the
overall quality of the software architecture, thus reducing
technical debt yet remaining maximally value-driven within
a sprint’s content determination. To answer the RQ given
in the introduction and, in accordance with the DS research
cycles defined by Hevner [16], we communicate an analy-
sis of the Relevance Cycle in Sect. 3.1, the Rigor Cycle in
Sect. 3.2 and the Design Cycle in Sect. 3.3.

123

Agile MERODE: a model-driven software engineering method… 1473

3.1 Relevance cycle

The Relevance Cycle is concerned with the identification
of opportunities/problems in the application domain. In the
present context, we identify the problem of (heavy) tech-
nical debt induced by the use of pure agile methods. The
problem has been identified in practice [18]. MDSE, by its
structured and and holistic approach, allows to develop soft-
ware having a well-organized architecture, thus ensuring a
strong basis for optimizing code and minimizing the tech-
nical debt. The combination of both approaches, even if it
requires some compromise, thus holds the promise of com-
bining the benefits of each.

3.2 Rigor cycle

The Rigor Cycle refers to the theories/methods that are
used to ground the construction and evaluation of the arti-
fact. The methodology developed in this paper adapts the
MERODE method for use in an agile (Scrum-based) con-
text; MERODE as a standalone method was validated in the
previous research, and this is therefore taken as a given. Also
Scrum is taken as a given, for being the industry standard for
ASD [28]. With respect to its classical lifecycle, MERODE
was adapted/enhanced in terms of:

– Requirements gathering and analysis USs coupled
with BDD scenarios are used to express requirements
with a different level of detail; these artifacts (especially
USs) are structural in Scrum because, besides their use
for user-centric requirements elicitation, they are used to
determine the sprint content. Indeed, USs receive a devel-
opment priority factor based on their delivered value.
They are thus the core artifacts to anchor into the Scrum
life cycle. BDDscenarios offer the required details forUS
design and implementation.These industry-adopted agile
modeling artifacts replace requirements elicitation with
use cases andworkflows traditionally used byMERODE;

– Life cycle management Agile MERODE has been built
to be driven byUSs (so these are themain scope elements
within the Scrum’s sprint planning (game)). Determining
a sprint’s implementation content is made by focusing on
the (group of) stories delivering the highest value first.
Although Agile MERODE aligns with this, architectural
and design constraints do impose some precedence con-
straints leading to somedeviations of the rule; a procedure
to cope with this is thus detailed. The Scrum life cycle is
the mostly used agile method in practice [28].

3.3 Design cycle

The Design Cycle refers to the construction and the evalu-
ation of the artifact. As explained in the previous section,

Agile MERODE has been built as an evolution of the tra-
ditional MERODE method. In order to proceed with the
construction of the method, we used existing ontologies
formalizing the type of elements present in USs [49] and
BDD scenarios [44]. Elements constituting these ontologies
have then been mapped to elements of the MERODE core
ontology [38]. This way, forward engineering rules could be
set up ensuring at the same time traceability between the
requirements artifacts and the design models. An illustrative
example is used to show the applicability and consistency of
the framework through its constituting models’ traceability.
The evaluation of the planning game constrained by MDSE
is done through a case study consisting in the development
of a Computer-Aided Software Engineering (CASE) tool to
supportMERODEorAgileMERODE-based software devel-
opments.

4 The agile MERODE framework

4.1 Integrating user stories and BDDwithin MERODE

The aim of this section is to show the mapping between the
concepts found inUSs andBDD scenarios and theMERODE
approach in order to define an integrated framework.Asmen-
tioned, USs and BDD are core concepts in ASD. Wautelet
et al. [49] proposed a study of the US templates that are
most frequently used in practice and unifies them in a con-
sistent ontology. The latter allows to characterize functions
of different nature without being overlapping yet exhaustive
in the required coverage (so all of the possible USs instances
could be associated with one and only one concept). The
same approach was followed in [44], and both ontologies
were merged to come to unification. While USs correctly
depict a user situation, they often fail to give context to the
execution of the functionality as well as enough details on
how to implement the requirement. USs do nevertheless con-
stitute the ideal communication artifact with customers and
other stakeholders and the proper way to define sprints’ con-
tent (the life cycle of Scrum) in terms of US to include in
the produced release. USs and BDD scenarios are thus per-
fectly complementary and serve as the pivot onto which we
interface with Scrum for MDSE. Implicitly BDD scenarios
are always defined in the context of one and only one US.
We here use the BDD scenarios (more detailed and specific)
for forward engineering to the software architecture. To illus-
trate the connection between the abovemeta-model and these
Agile concepts, we start from the set of USs for a Simple
Shop5 represented in Table 1. TheMERODE representations
of the Simple Shop as well as the prototype Java application

5 Source: https://github.com/kunicmarko20/Simple-Shop/tree/master/
features.

123

https://github.com/kunicmarko20/Simple-Shop/tree/master/features
https://github.com/kunicmarko20/Simple-Shop/tree/master/features

1474 M. Snoeck, Y. Wautelet

Table 1 User stories for the
simple shop 1 Login In order to buy cool products

As a web user

I need to be able to login

2 Order In order to buy cool products

As a web user

I should be able to add products to cart and checkout

3 Product admin In order to maintain the products shown on the site

As an admin

I need to be able to add/edit/delete products

4 Register In order to login and shop

As a web user

I need to be able to create personal account

5 Subscription In order to get cool product pack

As a web user

I should be able to subscribe to a plan

6 Card If I continue using this shop

As a web user

I should be able to update my credit card info

generated from these and documented in this section have
been placed on a persistent URL.6

As previously said, each US has a number of BDD sce-
narios attached to itself allowing to describe satisfactory
scenarios for the testing and thus validation of the US. Exam-
ple BDD-scenarios for the second US are given in Table 2.

Each of the US and scenarios allows distilling elements in
the different layers. As an example, the order US “In order to
buy cool PRODUCTs, As a web user, I should be able to add
PRODUCTs to CART and checkout” assumes the domain
concept of PRODUCT and CART, the business events of
add_product_to_cart and checkout of a cart, and IS services
with a web interface to add products and checkout. Looking
at the individual scenarios, additional model elements can be
derived. Scenario 2.2 suggests an attribute “quantity” for the
association (class) relating a product and a cart. Scenario 2.3
suggests the need for card information, but from the formu-
lation, we cannot infer that cards and their related info will
be stored, so at this point, this information can be part of IS
Service invocation and needs not (yet) to be captured as part
of the domain layer.

Figure 3 presents the essential elements of a meta-model
for BDD templates (extracted from [49] and [44]) that are rel-
evant for this paper.Whenoperationalizing the context part of
a BDD scenario (respectively the outcome part), the precon-
dition (respectively postcondition) may refer to the existence
or any other particular state of business objects and to val-
ues of their attribute, e.g., a product exists, it is on sale, and
the available quantity is larger than 5. Besides elements of

6 https://zenodo.org/record/6470567.

the domain, also system status or user characteristics may be
referenced. The User Behavior part will refer to a user action
that invokes an information system service. In the case of an
input service, this refers to triggered business events. Table 3
exemplifies this for the first two BDD scenarios for US2.
When the “Given” and “Then” part of a BDD scenario are
operationalized by formulating a precondition and postcon-
dition, respectively, these Boolean expressions may refer to
the states and attributes of Business Object Types (BOTs).
The user behavior, on the other hand, can be operationalized
as the invocation of an IS Service. These links are shown in
Fig. 4 in the purple dashed box. As such, an interactive task
in a business process can be further detailed by defining USs
for this task and a set of corresponding BDD scenarios. The
direct link from the interactive task to an IS Service invo-
cation from Fig. 2 is thus now replaced by many-to-many
associations to use cases, instantiated as “TaskOperationali-
sation” in Fig. 4.

As MERODE allows generating prototypes from domain
models, many elements of BDD scenarios can be verified in
just a few clicks once the domain model is specified. Min-
imal input suffices as, when creating a domain model, the
MERODE tool generates default create and end events for
each BOT, as well as a default “name” attribute in case no
attributes have been specified. Figure 5 shows the domain
model for the Simple Shop based on all USs and expressed
as UML class diagram.

Figure 6 shows the main screen generated from this
domain model, and how the “Given” part of BDD scenario
2.2 can be tested, i.e., viewing the product “Some Random
Product”. Figure 7 depicts testing the “When” part of this sce-

123

https://zenodo.org/record/6470567

Agile MERODE: a model-driven software engineering method… 1475

Table 2 BDD scenarios for US2
Scenario 2.1: Adding new product to cart success

Given I am viewing product with Name “Super Random Product”

And I press “Add to Cart”

Then I should see “Product added to Cart”

And I should see one extra item in cart

Scenario 2.2: Adding extra already selected product to cart success

Given I am viewing the content of my cart

And my cart already contains the product with Name “Super Random Product”

When I press “+”

Then I should see “Product added to Cart”

And I should see one extra item for “Super Random Product” in my cart

Scenario 2.3: Adding card to cart success

Given I fill card field “card-number” with “4242424242424242”

Then I press “Checkout”

And I wait “10000” ms for javascript to process

Then I should see “Order Complete”

Scenario2.4: Coupons

Given I fill card field “card-number” with “4242424242424242”

And I press “I have a couponcode”

Then I press “Add”

And I should see “Missing couponcode!”

Then I press “I have a couponcode”

And I fill in “code” with “MEGAOFF”

Then I press “Add”

And I should see “- $500”

And I should see “Checkout forFree!”

Then I press “Checkout forFree!”

And I wait “10000” ms forjavascript to process

Then I should see “OrderComplete”

Scenario 2.5: Card declined

Given I fill card field “card-number” with “4000000000000002”

Then I press “Checkout”

And I wait “3000” ms for javascript to process

Then I should see “There was a problem charging your card: Your card was declined.”

nario, i.e., adding the product to the cart, and Fig. 8 shows
how the outcome (the “Then” part) can be tested.

4.2 Agile lifecycle support and planning gamewith
agile MERODE

While the domain-driven spirit of the MERODE approach
may suggest that it requires a plan-driven approach, we
can proceed in an agile fashion. Indeed, inherently the
model-driven architecture of MERODE natively supports
incremental development. The key objects can be built up
at first, and other dependent ones can be developed later
on the basis of the previously developed architecture. Some
constraints do exist, but the process remains largely flex-

ible and value-driven. Moreover, each increment can lead
to an executable (and deployable) release. The iterative and
incremental support thus aligns with the agile principles. As
an example, Fig. 9 shows how a minimal model containing
just the two BOTs “Product” and “Customer” can already be
prototyped. The fast and automated prototypes production—
using the Merlin CASE-tool—at an early development stage
also benefits close interaction between developers and cus-
tomers while engineering the requirements; this also aligns
with the precepts of agility.

When expanding the model, one nevertheless needs to
observe the restriction that iterations and increments are
constrained by referential integrity between objects so that
sprints cannot address the development of features in any

123

1476 M. Snoeck, Y. Wautelet

0.
.*

UserStory
0..*

BDDScenario

1

1

0..*

ContextBDD-Given

UserBehaviourBDD-When

OutcomeBDD-Then

WHAT-Dimension

WHY-Dimension

0.
.*

Opera�onalises

Contribu�on

Fig. 3 Ontology for USs and BDD templates (extracted from [49] and [44])

order. MERODE’s concept of existence dependency allows
for the automated arrangement of objects according to their
dependency. The “Top-Down-Level” identifies the absolute
master BOTs that are not depending on any BOT as “level 0”
BOTs. From there, BOTs that depend on other BOTs get a
level that is one number more than the maximum level num-
ber of their masters. As such, looking at the complete domain
model in Fig. 10, one can see that ITEMINCART has level
2 because it requires the existence of PRODUCT (level 0)
and the existence of CART (level 1), which itself requires
the existence of CUSTOMER (level 0).

The levels allow partitioning a domain model into par-
tial models that can be implemented in separate sprints. The
levels are indicative for sequencing the sprints according to
referential integrity requirements. Figure 10 shows a possi-
ble partitioning with their dependencies. Partition 1 contains
the BOTs Product and Customer which are required to be
realized first, given all other BOTs are referencing them. The
realization can be tackled in one or two sprints. As soon as
this part of the DL has been implemented, US related to these
BOTs can be addressed by implementing the required IS ser-
vices. In next iterations, additional services can be realized
for this same partition, or a next partition can be addressed. In
the given example, Partitions 2A and 2B can be addressed in
any order. The same goes for partitions 3A and 3B. However,
the realization of these partitions will require the realization
of partition 2A first, as both partitions 3A and 3B contain a
BOT that references the BOT CART. BOT COUPON could
have been added to partition 1, but its inclusion in partition
3B shows how realization of certain BOTs and their associ-
ated IS services can also be delayed if other parts of a system
are considered to have a higher value-based priority.

Figure 11 depicts the global development process for the
SimpleWeb Shop example. The sequencing arrows show the
dependencies, and the parallel gateways indicate tasks that
have no mutual dependencies. After developing the DL for
partition 1, three different tasks can be added to the backlog
and addressed either in parallel or in random sequence. The
sprint planning can use value-based prioritization to decide
upon the sequencing of the development of services and/or
tackling a next DL partition. Each of the “Implement IS Ser-
vices ...” has been adorned with a loop symbol as also the
implementation of a set of IS services can be planned across
several sprints.As such, the representation inFig. 11 is imper-
fect as many more degrees of freedom are possible as long
as the sequencing dictated by the architectural dependencies
are respected.

Obviously, this way of identifying of architectural depen-
dencies within the DL assumes a pre-existing global domain
model. Creating a complete domain model, in particular for
larger projects, may be contradictory to an agile approach.
Creating only a partial domain model is better in line with
ASD but may induce a technical debt; indeed, within a
later sprint, the initial domain model and/or implementation
of related services could reveal to be suboptimal and thus
require refactoring of an earlier implemented DL partition
and its related services. “Just enough modeling” as proposed
by Agile Modeling7 can help achieving a balance between
agility and avoiding costly refactoring.

To summarize, the Agile MERODE life cycle should
include a preliminary initial sprint (called sprint 0) where,
from a project’s initial US set, a first creation/generation of
domain objects is made along the idea of “just enough mod-

7 http://agilemodeling.com/.

123

http://agilemodeling.com/

Agile MERODE: a model-driven software engineering method… 1477

Ta
bl
e
3

M
ap
pi
ng

B
D
D
sc
en
ar
io
s
to

do
m
ai
n
m
od
el
el
em

en
ts
an
d
re
qu
ir
ed

IS
se
rv
ic
es

B
D
D
sc
en
ar
io

B
us
in
es
s
ob

je
ct
ty
pe

re
fe
re
nc
ed

A
ttr
ib
ut
e
re
fe
re
nc
ed

B
O
T
st
at
e
re
fe
re
nc
ed

In
pu

ts
er
vi
ce

re
fe
re
nc
ed

O
ut
pu

ts
er
vi
ce

re
fe
re
nc
ed

2.
1

1.
G
iv
en

I
am

vi
ew

in
g
pr
od

uc
tw

ith
N
am

e
“S
up
er

R
an
do
m

Pr
od
uc
t”

1:
Pr
od
uc
t

1:
Pr
od
uc
tN

am
e

1:
Pr
od
uc
tE

xi
st
s

1:
1:

V
ie
w
Pr
od
uc
t

2.
A
nd

I
pr
es
s
“A

dd
to

C
ar
t”

2:
C
ar
t

2:
2:

C
ar
tE

xi
st
s

2:
C
re
at
e
It
em

In
C
ar
t

2:

3.
T
he
n
I
sh
ou
ld

se
e
“P
ro
du
ct

ad
de
d
to

C
ar
t”

3:
3:

3:
3:

R
es
po
ns
e
Su

cc
es
s/
fa
il

3:

4.
A
nd

I
sh
ou
ld

se
e
on
e
ex
tr
a
ite
m

in
ca
rt

4:
It
em

In
C
ar
t

4:
4:

It
em

In
C
ar
te
xi
st
s

4:
4:

V
ie
w
C
ar
t,
V
ie
w

It
em

In
C
ar
t

2.
2

1.
G
iv
en

I
am

vi
ew

in
g
th
e
co
nt
en
t

of
m
y
ca
rt

1:
C
ar
t

1:
1:

C
ar
tE

xi
st
s

1:
1:

V
ie
w
C
ar
t

2.
A
nd

m
y
ca
rt
al
re
ad
y
co
nt
ai
ns

th
e
pr
od
uc
tw

ith
N
am

e
“S
up
er

R
an
do
m

Pr
od
uc
t”

2:
It
em

In
C
ar
t

2:
2:

It
em

In
C
ar
tE

xi
st
s

2:
2:

V
ie
w
It
em

In
C
ar
t

3.
W
he
n
I
pr
es
s
“+

”
3:

3:
3:

3:
m
od
if
yI
te
m
In
C
ar
t

3:

4.
T
he
n
I
sh
ou
ld

se
e
“P
ro
du
ct

ad
de
d
to

C
ar
t”

4:
4:

4:
4:

R
es
po
ns
e
Su

cc
es
s/
Fa
il

4:

5.
A
nd

I
sh
ou
ld

se
e
on
e
ex
tr
a
ite
m

fo
r
“S

up
er

R
an
do
m

Pr
od
uc
t”
in

m
y
ca
rt

5:
C
ar
t,
It
em

In
C
ar
t

5:
5:

C
ar
tE

xi
st
s,
It
em

In
ca
rt

E
xi
st
s

5:
5:

V
ie
w
C
ar
t,
V
ie
w

It
em

In
C
ar
t

123

1478 M. Snoeck, Y. Wautelet

ISServiceInvoca�on

0..*

1

Informa�onService
{abstract}

OutputService

InputService

1
0..*

0..*1

0..* 1

0..* 1 0..*1

1

0..*

0..*

1 0..*

0..*1

0..* 0..*

1

Informa�onObjectType

ObjectTypeInspec�on

EventTrigger

BusinessObjectType

ObjectTypeA�ribute

FSM State

BusinessEventType Opera�on Transi�on

PersistentObjectType
{abstract}

ToState / Transi�on
FromState / Transi�on

1

Associa�on
1

0..*

0..*1 Dependent / Associa�on
1 0..*0..*

Master / Associa�on

ContextBDD-Given

OutcomeBDD-Then

BDD-When

PreCondi�on

PostCondi�on

0..*1

1 0..1

BooleanExpression

StateCondi�onA�ributeCondi�on

Ac�vity
{abstract}

ManualAc�vity ISSupportedAc�vity

UserStory BDDScenario

UserBehaviorTaskOpera�onalisa�on

BusinessProcess0..* 0..*

0..*

1

1

0..*

1

1

0..*0..*
1 1

1

0..*

1

0..*

0..*

1

0..*1

0..*

1

0..*

1

Fig. 4 Linking BDD elements to MERODE meta-model elements

Fig. 5 UML Class diagram for
the Simple Shop Product

0..*

1

CouponCodeUse 0..*

1

1

0..*

CreditCard

1

0..1

0..*

1

Coupon

ItemInCart

Cart

0..*
1

1

0..*

1

0..*

0..1
1

Customer

Plan

CraditCardPayment

eling”. This constitutes the so-called baseline architecture
of the project. Besides generating the baseline architecture,
sprint 0 also serves for building an initial next sprint planning
and, more importantly, determining the sequence constraints
that might appear for the USs development into coming
sprint(s). After sprint0, the product owner can determine
the next increment content (realized in the next sprint) by
selecting the USs (functions) on the basis of value if no
other function needs to be pre-built; otherwise, the content
is selected on the basis of the technical constraint.

5 Agile MERODE process view

To further document the integration of MERODE into the
Scrum life cycle, we document, in this section, (i) a dynamic
view of the Sprint sequencing with the impact on the pro-
duced artifacts (like software architecture, a prototype, sprint
constraints, a sprint planning, etc.) in Sect. 5.1 and (ii) a static
view of the actions taken within a sprint that we call the pro-
cess fragment in Sect. 5.2.

123

Agile MERODE: a model-driven software engineering method… 1479

Fig. 6 Application generated from the domain model

5.1 Agile MERODE process structure

Figure 12 represents a (dynamic) viewof theAgileMERODE
process’ Sprints. As discussed earlier, the process is initiated
with Sprint0 that creates a baseline architecture, overviews
USs precedence constraints and generates a first software
prototype. Other Sprints devoted to produce executable
releases supporting USs through their associated BDD sce-
nario are then performed following the value provided by the
features described in the USs and the precedence constraints.
The construction of the executable releases requires hand
coding the ISL as the default generated information services
and user interface are not likely to satisfy the requirements
of the end users. Nevertheless, the construction of the exe-
cutable releases benefits from code generation for the EHL
and the EL, which are strictly separated from the ISL and
BPL. The MERODE code generator uses a template-driven
approach, whereby the templates can be adjusted to the needs
of a project. Such adjustments may be the source of template
design activities performed in parallel with sprint implemen-
tation, as suggested by [14].

5.2 Agile MERODE as a process fragment

The i* framework [12] is used to represent the process frag-
ment of Agile MERODE (it is a fragment because it is meant
to be integrated in the broader Scrumprocess). I*was already
used in a similar fashion to depict process fragment for other
methods integrated or not within Scrum (see [43,48]). The
benefit of i* is its ability to represent the social dependen-
cies between the actors/roles while, at the same time, being
static and thus non-sequential. Inherently to the nature of
agility, different actions can be taken in different sequences
for each of the Sprints: multiple activities can be performed
at the same time, some can be omitted, others can be added
and the sequence is always dynamically built up on the basis
of the development context. Workflow-based notations are
inherently more directive in terms of sequence, do not high-
light social dependencies and are less tailorable/customizable
and thus not capable of representing the flexibility needed in
Agile processes. The i* notation better allows to deal with the
variability in the activities’ execution and selection. Finally,

123

1480 M. Snoeck, Y. Wautelet

Fig. 7 Adding a product to the cart

Fig. 8 Viewing the content of a cart

i* also allows to immediately link the tasks that Help or Hurt
the realization of the Agile MERODE process’ goals.

Figure 13 illustrates theAgileMERODEprocess fragment
through an i* Strategic Rationale Diagram. It distinguishes
five roles involved in the software development, more specif-
ically:

– The End User Role is played by individuals that will be
the users of the to-be software. The main Goal of the end
user is to Provide Requirements and, as a means to the
end of the goal, the End User performs the Task Build
Individual User Stories. Involving End Users into this
task Helps fulfilling the Softgoal of User Centricity. The

123

Agile MERODE: a model-driven software engineering method… 1481

Fig. 9 Generating a prototype from a minimal model

Fig. 10 Domain model with
level numbers and possible
partitioning

0..*

Coupon (0)

0..*

1

CouponCodeUse (2)

CreditCardPayment (2)

0..*

1
1

Partition 3A

1 1

1

0..1

0..*

0..*

10..*

Partition 2A

Partition 3B

ItemInCart (2)

Cart (1) CreditCard (1)

Product (0) Customer (0)

Plan (1)

0..*

1

0..1

Partition 2B

1

Partition 1

Product Owner thus depends on the End User to collect
the User Stories;

– The Product Owner Role is played by individuals in the
development team. The mainGoals of the product owner
is to Gather Requirements and Ensure Project Develop-
ment. As a means to the end of the first goal, it performs
the Task Build/Structure User Story Set. To achieve the
end of the second goal, the product owner performs the
Task Manage Sprints. The latter task is very important
for the success of Agile MERODE since, for its ful-
fillment, it needs the realization of the tasks Determine
User Stories Value andEvaluate (User Story) Precedence
Constraints. The first task Helps the realization of the
Softgoal High Value Creation with Quick Access, while
the secondHurts it. These two tasks need to be realized to,

in turn, realize the main task Suggest Features to Imple-
ment in the Next Sprint; these features are contained in
the USs offering the highest value that are not facing any
remaining precedence constraint anymore;

– The Test Engineer Role is played by individuals in the
development team. The main Goal of the test engineer is
to Validate Features. As a means to the end of this goal,
it performs the Task Build BDD Scenarios out of User
Stories which Helps the realization of the Softgoal User
Centricity. The test engineer further transmits the BDD
Scenarios Resource to the end user of which it depends
on to fulfill the task Validate BDD Scenarios.

– The Software Architect Role is played by individuals in
the development team. The main Goal of the software
architect is to Design Software. As a means to the end

123

1482 M. Snoeck, Y. Wautelet

Fig. 11 Planning game

of the latter goal, it performs the Task Structure Soft-
ware Architecture. The latter task is very important for
the success of Agile MERODE since it needs, to be
fulfilled, the realization of the tasks Generate Baseline-
Architecture and Refine Software Architecture. The two
former tasks Help the realization of the Softgoal High
Value Creation with Quick Access. Indeed, it is further
decomposed in the tasks Generate Domain Model and
Generate User Interface allowing fast development of
value-supporting software. Both generation tasks may
involve the development of adjusted code generation
templates. The generation of user interfaces may fur-
ther benefit from the incorporating the FENIkS extension
[34], which allows for defining a presentation model that
capturesUI requirements, and fromwhich user interfaces
can be generated accordingly. Generate Baseline Archi-

tecture from BDD Scenarios requires, to be achieved,
the Project User Stories (with BDD Scenarios) Backlog
Resource that should be furnished by the product owner
role (social dependency).

– The Developer Role is played by individuals in the
development team. The main Goal of the developer is
to Implement Features. As a means to the end of this
goal, it performs the Task Implement User Story Sup-
port through BDD Scenario Realization. Achieving the
latter task requires the Software Architecture Resource
furnished by the software architect role.

123

Agile MERODE: a model-driven software engineering method… 1483

Sprint0

Baseline
Software

Architecture

User Stories
Precedence
Constraints

(Sprint
Planning

Constraints)

Sprint User
Story Backlog

Refined Software
Architecture

Sprint1..n

Final Release

Sprint Release

Final Software
Architecture

Initial
User Story

Set with
BDD Scenarios

Software
Prototype

Fig. 12 General process architecture

6 Case study

Agile MERODE has been applied to the development of the
CASE tool—calledMerlin—aimed to support theMERODE
or Agile MERODE methods’ practitioners (students in busi-
ness engineering at KU Leuven or professionals enrolled
in the Master of Science in Enterprise Architecture at the
IC Institute) when developing software in a model-driven
fashion. In this project, that we use here as case study, the
(development) teamwas structured following the precepts of
Scrum.More specifically, aProduct Owner (PO)—specialist
in MERODE and coordinating all the demands and feedback
coming from the user base—was reporting user requirements
to the development team. The latter team was composed of
one person being a user interface specialist (so designing
these) but acting also as project coordinator and scrum mas-
ter as well as 2 developers (pure coders). As can be seen in
the rest of this section, version 1 had 13 sprints, while version
2 had 4 sprints; the total duration of the project was about 18
months for a total effort of approximately 600 hours. Purely
technically speaking, the size of the project was 10.2 MB
and involved 1.387 Files in 342 Folders.8 The tool’s first
goal was to furnish a usable and bug-free environment to
practitioners; it was developed using a combination of the
React framework (Javascript) and Node. js. Master-level
students studying MERODE and using the tool for the term
assignment together with the method specialists served as a
user-base for defining the requirements of Merlin but also

8 According to https://ddiy.co/software-development-statistics/, this
corresponds to the size of an average software development project.

to determine the value associated with the functionalities
expressed in USs. As for classical Scrum-based develop-
ments, the PO served here as interface between the user base
and the development team.

Agile MERODE’s transformation rules from BDD sce-
narios (each of them associated with a specific US) to the
software architecture, as defined previously in the illustra-
tive example, have been applied on the case study leading to
a base architecture. Since this forward engineering follows
well-defined rules and partially benefits of the experience
accumulatedwith the use of “non-agile”MERODE,we focus
here on the scoping analysis and development sequence part
of the project. Indeed, we want to study how the project has
been divided into valuable features and how this value was
evaluated at “Scrumplanning game” time. This incorporation
in the Scrum life cycle is perceived as a key component of
agility and allows demonstrating the feasibility, advantages
and drawbacks of the approach.

The development project has been split in two major ver-
sions. The main purpose was to align with the academic
calendar that constrained the access to the user-base. Indeed,
the first version was aligned with the second semester of the
academic year 2018–2019 (so during the months February to
May 2019) so that for each sprint an executable release could
be produced and used by the user-base working on their term
assignment (so implicitly tested and co-created with these
users). A major version was made after a set of functions
had been developed, and the semester came to an end. Each
sprint took from 2 to 4 weeks. This first major version was
presented as a fully integrated development that could work
as a consistent whole and was viable as a standalone product

123

https://ddiy.co/software-development-statistics/

1484 M. Snoeck, Y. Wautelet

User
Stories

Build Individual
User Stories

Software
Architect

Generate
User Interface

Generate Baseline-
Architecture from BDD

Scenarios

Generate
Domain Model

End
User

Product
Owner

Legend:

Role Role
Boundary Goal Task Resource

Dependency Link AND
decomposition

Means-End
decomposition

Gather
Requirements

Build/Structrure
User Story Set

Sprint User
Stories
Backlog

Design Software

Validate BDD scenarios

Refine Software
Architecture

Project User
Stories (with

BDD Scenarios)
Backlog

Build BDD
Scenarios out of

User Stories

BDD
Scenarios

Implement User Story
Support through BDD
Scenario Realization

Developer

Validate Release

Determine
User Stories

Value

Evaluate
Precedence
Contraints

Ensure Project
Development

Manage Sprints

Software
Architectural

Quality

User Centricity

High Value
Creation with
Quick Access

Provide
Requirements

Implement
Features

Test
Engineer

Validate Features

Suggest Features to
Implement in the Next

Sprint

Positive contribution
to theSprint User
Stories Backlog
realization of a

Softgoal

Negative
contribution to
the realization
of a Softgoal

Softgoal

Software
Architecture

Structure
Software

Architecture

User Centricity High Value
Creation with
Quick Access

Fig. 13 Agile MERODE process fragment

for user support in development. A second version, improv-
ing on the first one, was developed after the summer break
(so from October to December 2019); this second version
essentially concerned refinements of version 1 with no major
feature addition and is thus less interesting “planning-game
wise”. A document9 presenting sample user stories from the
MERLIN development project and explains how they were
prioritized has been placed on a persistent URL.10

The sprints of the first major version could essentially all
be planned on the basis of value even if precedence con-
straints did exist; this will be illustrated in the rest of this
paragraph. For readability purpose, we do not get to the level
of the individual US but aggregate the discussion at the level

9 https://MERLIN-US-BDD-PrioritizationExample.pdf.
10 https://zenodo.org/record/6470567.

of the US theme11 as summarized in Fig. 14. Sprint (1) was
concerned with the building of a base environment in which
the core functions of the application could be developed and
was thus seen as preliminary programming work that had
to be done independently of the traditional value frame and
was not deployed to the entire user base. The next sprint (2)
was the first one that concerned a core function of Merlin; its
content was, at planning game time after sprint (1), driven by
value (only). The PO indeed gave the building of the editor
for the EDG (as seen earlier it is basically a refinement of
the UML class diagram) as main priority to start up using the
tool, USs related to this were thus grouped in a theme and
developed. After that, the next sprint (3) concerned building
a basic environment for the edition of Object Event Tables
(OET); it was also driven by (highest) value as determined

11 Themes are basically groups of USs around a particular topic that
can be or need to be developed together.

123

https://MERLIN-US-BDD-PrioritizationExample.pdf
https://zenodo.org/record/6470567

Agile MERODE: a model-driven software engineering method… 1485

Fig. 14 Merlin version 1 sprints Version 1 sprints
1. Login func�onality, ability to create and save a model, session management, user interface styling

2. Create and manipulate EDG

3. Basics of OET (=visualizing elements that are created by default by the tool),

4. Inspec�ng objects

5. Improvement of User Experience on exis�ng func�onality

6. OET

7. Bug fixing

8. Expor�ng default FSM (to ensure backward compa�bility)

9. Finite State Charts

10. Func�onali�es on Mul�ple-Propaga�on-Constraints

11. Expor�ng images

12. Styling and documenta�on

13. Bug fixing

1
2

3
4

5

6

7

8

10
9

11

13

12

by the PO after sprint (2). After sprint (4) involved the devel-
opment of the Inspection of Objects feature (so group of USs
around this theme); this needed the EDG to be developed
as precedence constraint, but it appeared that it was already
developed so no constraints needed to be respected for the
sprint content to be purely value-driven (after sprint (3)).
Sprint (5) focused on user experience and existing function-
alities refinement on the basis of new requests from the user
base as setup by the PO; this sprint was raised by specific
feedback from the user-base and is thus driven by immedi-
ate user value. Sprint (6) focused on further developments
related to the OET; this needed the basis of the OET to be
developed as pre-condition, but it appeared that it was already
developed so no constraints needed to be respected and sprint
(6) content is driven by the highest perceived value at the end
of sprint (5). Sprint (7) was devoted to some bug fixing as
the user-base pointed out several elements that needed to be
fixed/improved for a smooth modeling experience; this was
thus driven by immediate user value. Sprint (8) concerned
the exporting of Finished State Machines (FSM) diagrams
to ensure backward compatibility. This allows using Merlin
models for code generation, which is one of the most highly
valued features of this tool; thus sprint (8) was purely driven
by user value as defined by the PO at the end of sprint (7).
Sprint (9) concerned the edition of Finished State Charts.
Sprint (9) had sprint (8) as precedence constraint but the
since the content of sprint (8) was judged more valuable ex
ante, the two sprints were basically value-driven. Sprint (10)
was the last main function of the version and concerned the
functionalities on multiple propagation constraints. Finally,
sprint (11) concerned the exporting of images, sprint (12) the
styling and documentation and sprint (13) some bug fixing.
These three last sprints did not concern core functionalities
but were rather driven by the user-base feedback and late
requests so driven by immediate value (and co-created with
users).

As mentioned, a few months after version 1 was released,
new developments with the same setting were performed to
improve the quality, usability and functions of the Merlin
CASE tool. No precedence constraints had to be respected,
and the model-driven transformation process could be exe-
cuted. These improvements did not impact the software
architecture of the previous version but can rather be seen
as a global add-on and refinement of the developed features.
Requirements for these improvements (the list is given in
Fig. 15) have been collected on the basis of user feedback
obtained during the longer window of operation of version
1, and these stories were nevertheless perceived as of equal
value and developed in an almost sequential manner. So,
although the transformation process has been applied, agility
was not a key component for version 2 due to the nature of
the developments that were made.

Figure 16 summarizes the software architecture of the
Merlin CASE-tool after version 2; the matching with the
sequence of the sprints is given through the numbers. We
can highlight an important finding from the sprint execution
sequence that was established for version 1. In the end, all
of the sprints (but the first one where a base environment for
the tool was developed) have been driven by the highest user
value for the next release when a sprint ended. Indeed, even if
precedence constraints did exist, they have never concretely
constrained the development sequence since the features that
needed to be build first always had a higher user value than the
ones they were constraining. We cannot establish a pattern
on the basis of this single case study only, but it could appear
that, inmany cases, the precedence constraints induced by the
model-driven developmentway ofworking are not constrain-
ing the final (sprint-based) development sequence (because
the features that need to be developed ex ante tend to be more
valuable for the users). This hypothesis, which is an impor-
tant finding from the case study, should be further studied
and will be the subject of future work.

123

1486 M. Snoeck, Y. Wautelet

Fig. 15 Merlin version 2
functions

Sprint 1:
Add support for inheritance to the merlin data model
Add support for inheritance to the MXP import
Add support for inheritance to the MXP export
Add support for visualising inheritance to the EDG
Add support for adding an inheritance rela�on between two object types
Add support for removing an inheritance
Add inheritances to the Model Explorer
Add inheritance to the object inspector
Add an inheritance inspector

Sprint 2:
Add support for visualising inheritance to the OET
Add support for adding a specialised event
Add info about specializa�on in the event inspector
Add support for inheritance to all event/method propaga�on code
Add via inheritance info in the method inspector
Add support for inheritance in the OET CSV export
Update (OET) remove tool to support specialised events/methods
Add support for adding a specialised/inherited method
Highlight propaga�on path of selected method in OET
Update sor�ng of methods in Model Explorer

Sprint 3:
Add support for inheritance to the exis�ng checks
Add inheritance specific checks
Add support for inheritance to the event logging
Add inheritance to the learning report
Add support for inheritance to the image exports

Sprint 4:
Take inheritance into account when calcula�ng paths / in MPCs
Update all commands for inheritance
Removing elements some�mes generates mobx-state-tree warnings
(BUG) Merlin hangs when crea�ng ED from an object type to itself (Edge + Firefox)

7 Discussion, threats to the validity and
related work

7.1 Impact of agile MERODE on the technical debt
and communication improvements

This section briefly discusses how the technical debt is
minimized through the application of the Agile MERODE
process. The use and quality of the models is a key issue for
producing qualitative software through an MDSE approach.
This principle holds for the use of MDSE within an agile
or non-agile fashion. For instance, the MERODE approach
strongly focuses on the quality of the created domain model.
The method has been grounded in process algebra, thus
resulting in extensive quality checks as presented in the fol-
lowingpapers [11,15,39,40].We therefore consider the use of

theMERODEapproach per se as one element that contributes
to theminimization of Technical Debt by its powerful quality
checks on the domain model. The second contributing ele-
ment is the domain-driven nature of theMERODE approach.
We propose to strengthen the combination of Agile with the
domain-driven approach by the use of a preliminary sprint
(the so-called Sprint0) where, out of a project’s initial US set,
a first creation/generation of domain objects is made along
the idea of “just enough modeling”. The extent to which this
initial domainmodel covers a sufficiently large portion of the
final domain model is a strong instrument to avoid Technical
Debt asmuch as possible.Moreover,MERODE’s principle of
existence dependency helps to clearly outline technical con-
straints to be considered when performing the value-based
prioritization of USs during sprint planning.

123

Agile MERODE: a model-driven software engineering method… 1487

1

1
2

10
Version 2
Add ons

5 7 11 1312 Association
1

1 0..* PathElement
12

0..* 1

1

0..*
MPConstraint

ObjectTypeAttribute
1

1 0..*

1

0..* 1
FSM

BusinessObjectType

BusinessEventType
State

2
0..*1

Transition
3

2
OwnedMethod2

AcquiredMethod
InheritedMethod

2

Operation
1

0

0

1

2

3
SpecializedMethod

SpecializedEventType

InheritenceAssociation

0..*

0..*

0..*

0..*
0..*

0..*

0..* 0..*

1 1

0..*

0..*

0..*

1

1

1

1

1

1

1

0..1
1

1

0..*

1

0..*

4

3

6

8 9

SubType/InheritanceAssociation

SubType/InheritanceAssociation

ToState/TransitionFromState/Transition

Operation/AcquiredMethod

Operation/InheritedMethod

Master/AssociationDependent/Association

1

1

0..*

Fig. 16 The Merlin Software Architecture: the numbers correspond to the number of the sprint in which the architectural component has been
developed

Benefits in terms of communication generated by our
framework can be approached from different perspectives.
First, when compared to a classical Scrum process, Agile
MERODE and its intrinsic MDD allow fast (generated/no-
code) prototyping. Thanks to this, workable interfaces can be
delivered and validated early on in the software development.
Second, when compared to a classical MERODE-based
development, the inclusion in the Scrum life cycle allows
(i) the adoption of USs, which is a requirement artifact
allowing an easy communication with the end users, and
(ii) a sprint-based approach generating user-feedback early
on and continuously through the development allowing
to optimize communication on requirements, expectations,
domain-specific elements, etc.

7.2 Flexibility in planning

The (model-driven) approach from MERODE inherently
leads to constraints in the technical development (complete
coding) of the software which are inherent to any coding:
whatevermodule using the service of another requires the lat-
ter to be created first, thus implying that a specific sequence in
building and coding the objects of the object-oriented appli-
cation needs to be respected. This obviously impacts the
iterative (sprint) scheduling of software functional aspects.
The selection of USs for the next sprint is thus constrained

and cannot be realized in a totally neutral value-driven per-
spective. The benefit of the MERODE approach is that the
layers and the clearly identified dependencies in the domain
model provide clarity in what the technical dependencies are
thus helping the sprint planner taking well-informed deci-
sions. The approach, in its entirety, thus allows to reduce the
technical debt by building the architecture in a logical, con-
sistent and completemanner. In order to avoid technical debt,
the MERODE life cycle thus always requires a compromise
to the pure agile planning based on value. All in all, using the
MERODE approach implies making a trade-off in the value-
driven approach to get a clean software architecture for the
software application delivered as ultimate project output.

The inclusion of such constraints in sprint-based plan-
ning is a known problem in approaches combining ASD and
MDSE. Shafiee et al. [37] identify that, for the development
of product configuration systems, based on so-called Prod-
uct Variant Master models [20], precedence constraints do
appear because of dependent features also influencing the
sprint planning. In Agile MERODE, the planning game is
nevertheless not comparable with the approach of the AUP.
As said earlier in the paper, by following the RUP tem-
plate inducing a clear segmentation in phases,AUP implicitly
leads to a plan-driven iterative planning from the beginning
of the project without the aim of producing a deployable
release at the end of each sprint. Even if releases only par-

123

1488 M. Snoeck, Y. Wautelet

tially address the solution space, releases of each sprint of
Agile MERODE are made to be deployable.

7.3 Heaviness and scalability in themethod
application

The application of the Agile MERODE method involves the
characterization (tagging) of elements constituting the US
and BDD scenarios. Even though this may be seen as a time
investment from requirement engineers, the process in fact
allows (i) to sort the requirements and make them more con-
sistent and (ii) to spare a lot of design time.

Sorting theUS is a natural processmade in the agile devel-
opment. The process is often made in the form of User Story
Mapping (USM) [31], leading to grouping a set of US under
a major feature contained in a so-called Epic US. Tsilionis
et al. [42] have compared the process of building a Rationale
Tree (which is a visual representation of US elements defined
in [50]) with the ability to structure a set of US with USM
through a controlled experiment. This experiment is rele-
vant here because part of the work to build the visual model
implies making the same kind of tagging of US elements as
implied by the application of Agile MERODE. Tsilionis et
al. [42] conclude that while a USM is easier to build-up, the
evaluation of the US nature and structuring leads to discov-
ering missing requirements and increasing the consistency
of the entire US set. This ends up being very useful in the
overall approach, and also, implicitly will reduce the techni-
cal debt if missing base requirements can be identified early
on. As seen in the paper, when appropriately evaluated, the
nature of the US and BDD scenarios’ constituting elements
lead to an easy process of forward engineering to a software
architecture that can largely be automated through the use of
the CASE-tool. Such automation is only possible through the
use of MDSE and is thus generally not used in ASD while it
leads to a significant design-time reduction.

Finally, we could question the scalability of the approach.
As such, the larger the case, the more dealing with technical
debt becomes an issue and the more the approach makes
sense when compared to a classical ASD one.

7.4 Integration of MERODEwithin other agile
methods and practices

As seen, Agile MERODE integrates the MERODE approach
within the Scrum development life cycle. One could raise the
question of how to integrateMERODEwith other agilemeth-
ods and/or practices. Basically, we can distinguish two ways
of integrating ASD with MDSE. On the one hand, we can
perform a structural integration of a MDSE-based method
within an existing agile life cycle to anchor the practices
of MDSE into ASD. This is precisely what we did to build
Agile MERODE: we started from the Scrum lifecycle and

anchored MERODE’s MDSE practices to user stories and
BDD scenarios (natural requirements engineering artefacts
of Scrum). This way we now dispose of the sprint-based
life cycle of Scrum enriched with new models and concrete
support to build a neat software architecture. On the other
hand, a myriad of agile practices are reported on in litera-
ture (see, for example, [23] for a literature review and an
adoption approach). These practices are prescribed by some
agile methods but can also be adopted independently of any
agile method.12 It is indeed not because a development team
adopts an agile method that every prescribed practice should
necessarily be included and, also, an agile practice can be
adopted independently of the method prescribing it. Each
known agile practice can thus be adopted within MERODE
orAgileMERODEdevelopments to increase the overall level
of agility. Such an ad hoc adoption is, however, not a lifecy-
cle adaptation exercise (as described formerly) but rather the
punctual change of a method’s application context to include
a chosen practice(s). Most agile practices do indeed not have
a structural impact on the software development process itself
but rather impose contextual constraints on the way to oper-
ate (e.g., develop in pairs, be on the same site of the customer,
etc.).

eXtreme Programming (XP) [7] is one of the earliest agile
methods; its (structural) agile life cycle ismuch less advanced
than the one from Scrum. Adapting MERODE to XP would
thus rather lead to ad hoc agile practices adoption within
the MERODE method’s application context than generically
restructuring MERODE around an advanced agile life cycle.
As an example, pair programming, one of the core prescribed
XP agile practices, can be integrated in a MERODE devel-
opment project. Similarly, an artefact like the KANBAN
board [1] can be adopted as a practice in an Agile MERODE
development (which is classically done within Scrum devel-
opments). Several practices can thus be adopted in an ad hoc
fashion if required. All in all, Agile MERODE integrates the
Scrum life cycle because it is an advanced and widely val-
idated life cycle leading a structured approach of agility in
MDSE developments. It seems the best choice compared to
less complete or less often used agile methods. Agility nev-
ertheless remains a non-finite concept. The panel of agile
practices at disposal and prescribed by various methods is
broad, and new adoptions can be made toMERODE or Agile
MERODE. The aim was to provide a basis for a structured
approach to agility in MDSE that can be further customized
to integrate more agile practices as required by the develop-
ment context.

12 See, for example, the Agile Subway Map for a method independent
description of agile practices: https://www.agilealliance.org/agile101/
subway-map-to-agile-practices/.

123

https://www.agilealliance.org/agile101/subway-map-to-agile-practices/
https://www.agilealliance.org/agile101/subway-map-to-agile-practices/

Agile MERODE: a model-driven software engineering method… 1489

7.5 Threats to validity

7.5.1 Construct validity

A threat to the construct validity is that the modeling con-
structs are incorrectly interpreted by the modelers or any
other practitioner aiming to put Agile MERODE into use.
This includes the risk of using the concepts of the frame-
work in another way than intended. In the present case, the
application was done by the creators of the method so it does
not constitute a serious issue. Nevertheless, to deal with such
issues within the application of the method by others, spe-
cific guidelines can be integrated within the Merlin CASE
tool providing help for the relevant concepts within the func-
tions of the supporting tool.

7.5.2 Internal validity

The internal validity concerns the knowledge acquisition pro-
cess andmore precisely the objectivity of the views gathered.
The knowledge acquisition holds no threat to validity for the
authors being MERODE expert on the one hand and Scrum
expert on the other hand. The issue of objectivity could on the
other hand pose a threat, given the authors potential bias in
favor of the method. The threat has been mitigated by careful
analysis of other approaches and by the having the case study
analysis performed by the author whowas not involved in the
project. Additional case studies where the method is applied
by practitionerswhowere not involved in themethod’s devel-
opment could provide additional robustness to the validity of
the method.

7.5.3 External validity

The external validity is threatened by the incapability of
applying theAgileMERODEmethod in other circumstances.
The process has until now only been applied by the same set
of people considered as experts in model-driven develop-
ment and agility. Previous knowledge with techniques like
US writing and mapping, BDD, UML and other techniques
and notations can have a significant impact on the ability to
apply the method. Experiments on the ability to perform US-
based analysis and mapping (see [42]) by novice modelers
and MERODE-based model-driven development [36] both
showing the ability of novice modelers to apply the theoret-
ical foundations with proper guidance. Also, MERODE is
mainly applied in data-intensive domains, where the domain
model is an essential part of the system to build. This does not
preclude computationally intensive services using this data,
but the design and modeling of such services are not sup-
ported by the MERODE method, since it only offers UML
class diagrams and UML state charts as most essential mod-
els for the domain layer and relies on BPMN for the process

layer. The use of an event-driven architecture when defin-
ing transformations for the EHL would allow to deal with
reactive systems; more investigation is nevertheless neces-
sary for defining an exact process to approach such systems
in an agile fashion.

7.6 Related work

Overall, when comparing Agile MERODE to the related
work reviewed in Alfraihi et al. [3] and published in more
recent papers, the main distinctive factors are (1) that, in con-
trast to the dominantly MDD-based character of pre-2016
methods [3], Scrum is taken as a basis, andMDSE principles
are incorporated via the combination with MERODE and (2)
the explicit attention for how to deal with architectural con-
straints.

Table 4 provides an overview of the Agile andMDD prac-
tices used in [3] to compare the different approaches, together
with the number of occurrences in the reviewed studies. The
additional columns extend this overview with the proposals
by Essebaa and Chantit [13], by Romano et al. [33], by Alam
[2] and by the approach presented in this paper.

In terms of Agile practices, Agile MERODE addresses
test-driven development through the use of BDD. Pair devel-
opment is possible even if the practice adoption does not
depend on the process itself but is rather a matter of internal
organization of the development team working on a sprint.
We consequently see it as not immediately related to the
process as we have defined it. Continuous integration is
essentially possible if the deployment constraints are treated
upfront within the release development during the sprint.
Agile MERODE could be supplemented in this way, but it is
not included as such in the process as described in the paper;
we indeed only focus here on the development teams’ activ-
ities. Because of the combination with MDD, it is assumed
that the need for refactoring is drastically reduced, and in case
refactoring is needed, this should be addressed by means of
redesigned code generation templates, thus being part of the
MDD practices rather than the Agile practices. The remain-
ing practices are addressed by the fact that Agile MERODE
incorporates the Scrum practices.

In terms of MDD practices, MERODE generates code
automatically from the domain model, which was created
from a manual analysis of the US and BDD. The automatic
(partial) creation of domain models from US and BDD as
in [52] could be investigated in future work. The class dia-
gram and state charts comply toUMLmodeling, but the OET
is a MERODE-specific modeling techniques, here labeled
as “Domain Specific”. Models are not directly executable,
except for the BPMN models that define the process layer.
Model-to-model transformations are not used by default. The
addition ofUI-designmodels inMERODEhas been explored
by Ruiz et al. [34] and makes use of model-to-model trans-

123

1490 M. Snoeck, Y. Wautelet

Ta
bl
e
4

E
va
lu
at
io
n
an
d
co
m
pa
ri
so
n
of

ag
ile

M
E
R
O
D
E
w
ith

re
sp
ec
tt
o
ot
he
r
fr
am

ew
or
ks

N
r
of

st
ud
ie
s
th
at
re
po
rt
th
e
pr
ac
tic
e
ac
co
rd
in
g
to

SL
R

A
gi
le
M
E
R
O
D
E

E
ss
eb
aa

an
d
C
ha
nt
it
[1
3]

R
om

an
o
et
al
.[
33

]
A
la
m

[2
]

A
gi
le
pr
ac
tic

es

Te
st
-d
ri
ve
n
de
ve
lo
pm

en
t

5
B
D
D

Y
es

Y
es

?

Pa
ir
de
ve
lo
pm

en
t

5
–

?
?

Y
es

C
on
tin

uo
us

In
te
gr
at
io
n

5
–

–
–

–

R
ef
ac
to
ri
ng

5
–

?
?

Y
es

Pr
io
ri
tis
ed

B
ac
kl
og

5
Y
es

Y
es

Y
es

Y
es

D
ir
ec
tC

us
to
m
er

In
vo
lv
em

en
t

5
Y
es

Y
es

Y
es

?

St
an
d-
up

m
ee
tin

g
4

(S
cr
um

)
(S
cr
um

)
?

(S
cr
um

)

C
ol
le
ct
iv
e
O
w
ne
rs
hi
p

2
(S
cr
um

)
(S
cr
um

)
?

(S
cr
um

)

Se
lf
-s
el
ec
te
d
te
am

1
(S
cr
um

)
(S
cr
um

)
?

(S
cr
um

)

B
ur
n-
do
w
n
C
ha
rt

1
(S
cr
um

)
(S
cr
um

)
?

(S
cr
um

)

R
el
ea
se

Pl
an
ni
ng

1
ye
s

(S
cr
um

)
?

(S
cr
um

)

M
D
D
pr
ac
tic

e

A
ut
om

at
ed

co
de

ge
ne
ra
tio

n
13

Y
es

Y
es

Y
es

Y
es

U
M
L
m
od
el
in
g

7
Y
es

Y
es

Y
es

Y
es

D
SL

m
od
el
in
g

6
Y
es

(O
E
T
)

SB
V
R

Y
es

Y
es

E
xe
cu
ta
bl
e
M
od

el
s

4
B
PM

N
N
o

N
o

N
o

M
od
el
-t
o-
m
od
el
tr
an
sf
or
m
at
io
n

4
Po

ss
ib
le
[3
4]

Y
es

?
?

X
M
L
m
od
el
in
g

2
N
o

N
o

N
o

N
o

M
od

el
-b
as
ed

te
st
in
g

1
Y
es

[2
7]

Y
es

?
?

R
ou
nd
-t
ri
p
E
ng
in
ee
ri
ng

1
N
o

N
o

?
?

123

Agile MERODE: a model-driven software engineering method… 1491

formations for the generation of an Abstract User Interface.
Whilewe did not discuss the addition ofmodel-based testing,
this has already been explored in the context of MERODE
[27]. Finally, XML modeling and round-trip engineering are
not used by Agile MERODE.

Essebaa and Chantit [13] propose a combination ofMDA,
Scrum and the V-life cycle to improve the process of indi-
vidual sprints and generating tests using model-based testing
principles. The description of the approach mostly focuses
on the MDD practices. As the authors build on Scrum, it
can be assumed that most agile practices are incorporated in
the approach, although this is not explicitly described. The
authors also do not provide indications on how to address
the architectural constraints in the planning of sprints. In
Romano et al. [33], a framework and method for Agile
and Collaborative Model-Driven Development framework
for web applications (Web-ACMDD) is presented.While the
description of Web-ACMDD provides an overall flow and a
UML activity diagram describing the steps, the method is at
an early stage of development. The actual incorporation of
Scrum activities norMDDpractices is described in detail. On
the other hand, the authors propose aUMLprofile to allow for
the agile modeling of web applications. Here too, architec-
tural constraints are not discussed. In contrast to our proposal,
their sprint 0 does not advise to create a domain model. Por-
tions of the domain model are created during the individual
sprints. Besides domain class models and USs, this approach
also includes models for Human Machine Interface.

Finally, the agile concern-driven development (CDD) pro-
cess [2] is a reuse-focused development process in which an
application is built incrementally by reusing existing build-
ing blocks. The framework builds on CORE, a framework
inspired by separation of concerns, software product lines,
goal modeling and aspect orientation. In the initial sprint,
goal-orientedmodeling languages are used to hatch out high-
level requirements, upon which an iterative process develops
the application by reusing concerns. The authors suggest that
some reusable concerns such as concerns related to security,
e.g., authentication or authorization, could be identified and
reused early during the requirement phase, thus facilitating
addressing architectural concerns.While the Sprint 0 advices
the exploration of the domain by means of goal modeling,
the creation of a conceptual domain model usable for code
generation is not part of the approach.

8 Conclusion

At this stage, we can get back to the RQ stated in the
introduction (How can a MDSE method like MERODE be
anchored in an ASD structure for user-centric and value-
driven (i.e., agile) development to minimize the technical
debt?). To answer this RQ, we have developed the Agile

MERODE framework. In terms of user centricity, it uses US
and BDD scenarios as artifacts for the collecting and rep-
resenting requirements. For flexible value-driven iterative
development, the framework is anchored in the (industry-
adopted) Scrum life cycle. The framework allows to reduce
technical debt through the generation of a well-organized
architecture on the basis of the (high-level) requirements ele-
ments found in theBDDscenarios related toUS.Asignificant
amount of time can also be saved through automatic genera-
tion of the software architecture.

The model-driven approach enables the automatic gen-
eration of a partial software architecture. Nevertheless, the
software architecture implies a number of precedence con-
straints on the sequence in which USs are developed (e.g.,
in order to address USs related to behavioral modeling, we
need the USs related to data modeling to have been imple-
mented already). This did not appear to be an important issue
at project time. Indeed, sprints do contain consistent devel-
opments in terms of common theme in theUSs supported and
the parts depending on other parts are often perceived by the
user-base and the PO as less valuable than the ones that do
not present such precedence constraints. Thanks to that, the
pure value-driven way of working could be respected within
the development of theMerlin tool. Future work involves the
realization of more case studies in various domains to fur-
ther test this hypothesis as well as further developments of
the Merlin CASE tool to better support the sprint-based way
of working through a custom interface; an expert opinion has
also been collected and will be fully documented.

References

1. Ahmad, M.O., Markkula, J., Oivo, M.: Kanban in software devel-
opment: a systematic literature review. In: 2013 39th Euromicro
Conference on Software Engineering and Advanced Applications,
pp. 9–16. IEEE (2013)

2. Alam, O.: Towards an agile concern-driven development pro-
cess. In: S.M.S. Jr., Armbrust, O., Hebig, R. (eds.) Proceedings
of the International Conference on Software and System Pro-
cesses, ICSSP 2019, Montreal, QC, Canada, May 25–26, 2019,
pp. 155–159. IEEE/ACM (2019). https://doi.org/10.1109/ICSSP.
2019.00028

3. Alfraihi, H., Lano, K.: The integration of agile development and
model driven development: a systematic literature review. In: Pires,
L.F., Hammoudi, S., Selic, B. (eds.) Proceedings of the 5th Inter-
national Conference on Model-Driven Engineering and Software
Development, MODELSWARD 2017, Porto, Portugal, Feb 19–
21, 2017, pp. 451–458. SciTePress (2017). https://doi.org/10.5220/
0006207004510458

4. Alfraihi, H., Lano, K.: Practical aspects of the integration of agile
development andmodel-driven development: an exploratory study.
In: Burgue no, L., Corley, J., Bencomo, N., Clarke, P.J., Collet,
P., Famelis, M., Ghosh, S., Gogolla, M., Greenyer, J., Guerra, E.,
Kokaly, S., Pierantonio, A., Rubin, J., Ruscio, D.D. (eds.) Proceed-
ings of MODELS 2017 Satellite Event: Workshops (ModComp,
ME, EXE, COMMitMDE, MRT, MULTI, GEMOC, MoDeVVa,
MDETools, FlexMDE, MDEbug), Posters, Doctoral Symposium,

123

https://doi.org/10.1109/ICSSP.2019.00028
https://doi.org/10.1109/ICSSP.2019.00028
https://doi.org/10.5220/0006207004510458
https://doi.org/10.5220/0006207004510458

1492 M. Snoeck, Y. Wautelet

Educator Symposium, ACM Student Research Competition, and
Tools and Demonstrations co-located with ACM/IEEE 20th Inter-
national Conference on Model Driven Engineering Languages
and Systems (MODELS 2017), Austin, TX, USA, Sept 17, 2017,
CEUR Workshop Proceedings, vol. 2019, pp. 399–404. CEUR-
WS.org (2017). http://ceur-ws.org/Vol-2019/flexmde_3.pdf

5. Alfraihi, H., Lano, K., Rahimi, S.K., Sharbaf, M., Haughton, H.P.:
The impact of integrating agile software development and model-
driven development: a comparative case study. In: Khendek, F.,
Gotzhein, R. (eds.) System Analysis and Modeling. Languages,
Methods, and Tools for Systems Engineering - 10th International
Conference, SAM 2018, Copenhagen, Denmark, Oct 15–16, 2018,
Proceedings. Lecture Notes in Computer Science, vol. 11150, pp.
229–245. Springer (2018)

6. Ambler, S., et al.: The agile unified process (aup) (2005). Obtenido
de Ambysoft: http://www.ambysoft.com/unifiedprocess/agileUP.
html

7. Beck, K., Hendrickson, M., Fowler, M.: Planning Extreme Pro-
gramming. Addison-Wesley Professional, Boston (2001)

8. Bucchiarone, A., Cabot, J., Paige, R.F., Pierantonio, A.: Grand
challenges in model-driven engineering: an analysis of the state
of the research. Softw. Syst. Model. 19(1), 5–13 (2020). https://
doi.org/10.1007/s10270-019-00773-6

9. Christou, I.T., Ponis, S.T., Palaiologou, E.: Using the agile unified
process in banking. IEEE Softw. 27(3), 72–79 (2010). https://doi.
org/10.1109/MS.2009.156

10. Cohn,M.:Agile Estimating andPlanning. PearsonEducation, Lon-
don (2005)

11. Dedene, G., Snoeck, M.: Formal deadlock elimination in an object
oriented conceptual schema. Data Knowl. Eng. 15(1), 1–30 (1995)

12. Eric, S., Giorgini, P., Maiden, N., Mylopoulos, J.: Social Modeling
for Requirements Engineering. MIT Press, Cambridge (2011)

13. Essebaa, I., Chantit, S.: Model driven architecture and agile
methodologies: reflexion and discussion of their combination. In:
Ganzha, M., Maciaszek, L.A., Paprzycki, M. (eds.) Proceedings of
the 2018 Federated Conference on Computer Science and Infor-
mation Systems, FedCSIS 2018, Poznań, Poland, Sept 9–12, 2018,
Annals of Computer Science and Information Systems, vol. 15, pp.
939–948 (2018)

14. Guta, G., Schreiner, W., Draheim, D.: A lightweight MDSD pro-
cess applied in small projects. In: 35th Euromicro Conference on
Software Engineering and Advanced Applications, SEAA 2009,
Patras, Greece, Aug 27–29, 2009, Proceedings, pp. 255–258. IEEE
Computer Society (2009). https://doi.org/10.1109/SEAA.2009.63

15. Haesen, R., Snoeck, M.: Implementing consistency management
techniques for conceptual modeling. Consistency Problems in
UML-Based Software Development (2005)

16. Hevner, A.R.: The three cycle view of design science. Scand. J. Inf.
Syst. 19(2), 4 (2007)

17. Hevner, A.R., March, S.T., Park, J., Ram, S.: Design science in
information systems research. MIS Q. 28(1), 75–105 (2004)

18. Holvitie, J., Leppänen, V., Hyrynsalmi, S.: Technical debt and the
effect of agile software development practices on it: an industry
practitioner survey. In: Sixth International Workshop onManaging
Technical Debt, MTD@ICSME 2014, Victoria, BC, Canada, Sept
30, 2014, pp. 35–42. IEEE Computer Society (2014). https://doi.
org/10.1109/MTD.2014.8

19. Hull, R.: Artifact-centric business process models: brief survey of
research results and challenges. In:Meersman,R., Tari, Z. (eds.)On
the Move to Meaningful Internet Systems: OTM 2008, OTM 2008
Confederated International Conferences, CoopIS, DOA, GADA,
IS, and ODBASE 2008, Monterrey, Mexico, Nov 9–14, 2008, Pro-
ceedings, Part II, Lecture Notes in Computer Science, vol. 5332,
pp. 1152–1163. Springer (2008)

20. Hvam, L., Mortensen, N.H., Riis, J.: Product Customization.
Springer, Berlin (2008)

21. IBM: The Rational Unified Process, Version 7.0.1 (2007)
22. Kautz, O., Roth, A., Rumpe, B.: Achievements, failures, and

the future of model-based software engineering. In: Gruhn, V.,
Striemer, R. (eds.) The Essence of Software Engineering, pp. 221–
236. Springer, Berlin (2018). https://doi.org/10.1007/978-3-319-
73897-0_13

23. Kiv, S., Heng, S., Wautelet, Y., Poelmans, S., Kolp, M.: Using an
ontology for systematic practice adoption in agile methods: expert
system and practitioners-based validation. Expert Syst. Appl. 195,
116520 (2022)

24. KolahdouzRahimi, S., Lano, K., Alfraihi, H., Haughton, P.H.:
Extrememodeling: an approach to agilemodel-based development.
J. Comput. Secur. 6(2), 43–52 (2019)

25. Lano, K., Alfraihi, H., Rahimi, S.K., Sharbaf, M., Haughton,
H.P.: Comparative case studies in agile model-driven develop-
ment. In: Hebig, R., Berger, T. (eds.) Proceedings of MODELS
2018Workshops: ModComp, MRT, OCL, FlexMDE, EXE, COM-
MitMDE, MDETools, GEMOC, MORSE, MDE4IoT, MDEbug,
MoDeVVa, ME, MULTI, HuFaMo, AMMoRe, PAINS co-located
with ACM/IEEE 21st International Conference on Model Driven
Engineering Languages and Systems (MODELS 2018), Copen-
hagen, Denmark, Oct 14, 2018, CEUR Workshop Proceedings,
vol. 2245, pp. 203–212. CEUR-WS.org (2018)

26. Liebel, G., Marko, N., Tichy, M., Leitner, A., Hansson, J.: Model-
based engineering in the embedded systems domain: an industrial
survey on the state-of-practice. Softw. Syst. Model. 17(1), 91–113
(2018). https://doi.org/10.1007/s10270-016-0523-3

27. Marín, B., Bañados, S.A., Giachetti, G., Snoeck, M.: Tescav: an
approach for learningmodel-based testing and coverage in practice.
In: Dalpiaz, F., Zdravkovic, J., Loucopoulos, P. (eds.) Research
Challenges in Information Science: 14th International Conference,
RCIS 2020, Limassol, Cyprus, Sept 23–25, 2020, Proceedings.
Lecture Notes in Business Information Processing, vol. 385, pp.
302–317. Springer (2020)

28. Maarif, D., Yusnorizam, M., Hafifi Yusof, M.F., Mohd Satar, N.S.:
The challenges of implementing agile scrum in information sys-
tem’s project. J. Adv. Res. Dyn. Control Syst. 10, 2357–2363
(2018)

29. Mussbacher, G., Amyot, D., Breu, R., Bruel, J., Cheng, B.H.C.,
Collet, P., Combemale, B., France, R.B., Heldal, R., Hill, J.H.,
Kienzle, J., Schöttle, M., Steimann, F., Stikkolorum, D.R.,Whittle,
J.: The relevance of model-driven engineering thirty years from
now. In: Dingel, J., Schulte, W., Ramos, I., Abrahão, S., Insfrán,
E. (eds.) Model-Driven Engineering Languages and Systems: 17th
International Conference, MODELS 2014, Valencia, Spain, Sept
28–Oct 3, 2014. Proceedings, Lecture Notes in Computer Science,
vol. 8767, pp. 183–200. Springer (2014)

30. OMG: Omg unified modeling language (omg uml). version 2.5.1.
Technical Report (2017)

31. Patton, J., Economy, P.: User Story Mapping: Discover the Whole
Story, Build the Right Product. O’Reilly Media Inc., Sebastopol
(2014)

32. Rios, N., Mendonça, M.G., Seaman, C., Spínola, R.O.: Causes and
effects of the presence of technical debt in agile software projects.
In: Proceedings of the 2019 Americas Conference on Information
Systems (AMCIS). Article 3, Cancun, pp. 10 (2019)

33. Romano, B.L., da Cunha, A.M.: An agile and collaborative
model-driven development framework for web applications. In:
Information Technology-New Generations, pp. 383–394. Springer
(2018)

34. Ruiz, J., Sedrakyan,G., Snoeck,M.:Generating user interface from
conceptual, presentation and user models with jmermaid in a learn-
ing approach. In: Ponsa, P., Guasch, D. (eds.) Proceedings of the
XVI International Conference on Human Computer Interaction,
Interacción 2015, Vilanova i la Geltrú, Spain, Sept 7–9, 2015, pp.
25:1–25:8. ACM (2015)

123

http://ceur-ws.org/Vol-2019/flexmde_3.pdf
http://www.ambysoft.com/unifiedprocess/agileUP.html
http://www.ambysoft.com/unifiedprocess/agileUP.html
https://doi.org/10.1007/s10270-019-00773-6
https://doi.org/10.1007/s10270-019-00773-6
https://doi.org/10.1109/MS.2009.156
https://doi.org/10.1109/MS.2009.156
https://doi.org/10.1109/SEAA.2009.63
https://doi.org/10.1109/MTD.2014.8
https://doi.org/10.1109/MTD.2014.8
https://doi.org/10.1007/978-3-319-73897-0_13
https://doi.org/10.1007/978-3-319-73897-0_13
https://doi.org/10.1007/s10270-016-0523-3

Agile MERODE: a model-driven software engineering method… 1493

35. Scacchi, W.: Understanding the requirements for developing open
source software systems. IEE Proc. Softw. 149(1), 24–39 (2002).
https://doi.org/10.1049/ip-sen:20020202

36. Sedrakyan, G., Snoeck, M., Poelmans, S.: Assessing the effec-
tiveness of feedback enabled simulation in teaching conceptual
modeling. Comput. Educ. 78, 367–382 (2014)

37. Shafiee, S., Wautelet, Y., Hvam, L., Sandrin, E., Forza, C.: Scrum
versus rational unified process in facing the main challenges of
product configuration systems development. J. Syst. Softw. 170,
110732 (2020). https://doi.org/10.1016/j.jss.2020.110732

38. Snoeck, M.: Enterprise information systems engineering: the
MERODE approach. In: The Enterprise Engineering Series.
Springer (2014). https://doi.org/10.1007/978-3-319-10145-3

39. Snoeck, M., Dedene, G.: Existence dependency: the key to seman-
tic integrity between structural and behavioral aspects of object
types. IEEE Trans. Softw. Eng. 24(4), 233–251 (1998). https://doi.
org/10.1109/32.677182

40. Snoeck, M., Michiels, C., Dedene, G.: Consistency by construc-
tion: the case of MERODE. In: Jeusfeld, M.A., Pastor, O. (eds.)
Conceptual Modeling for Novel Application Domains, ER 2003
Workshops ECOMO, IWCMQ, AOIS, and XSDM, Chicago, IL,
USA, Oct 13, 2003, Proceedings, Lecture Notes in Computer Sci-
ence, vol. 2814, pp. 105–117. Springer (2003)

41. Snoeck, M., Smedt, J.D., Weerdt, J.D.: Supporting data-aware
processes with MERODE. In: Augusto, A., Gill, A., Nurcan, S.,
Reinhartz-Berger, I., Schmidt, R., Zdravkovic, J. (eds.) Enter-
prise, Business-Process and Information Systems Modeling: 22nd
International Conference, BPMDS 2021, and 26th International
Conference, EMMSAD 2021, Held at CAiSE 2021, Melbourne,
VIC, Australia, June 28–29, 2021, Proceedings, Lecture Notes in
Business Information Processing, vol. 421, pp. 131–146. Springer
(2021)

42. Tsilionis, K., Maene, J., Heng, S., Wautelet, Y., Poelmans, S.: Con-
ceptual modeling versus user story mapping: which is the best
approach to agile requirements engineering? In:Cherfi, S.S., Perini,
A., Nurcan, S. (eds.) Research Challenges in Information Science:
15th International Conference, RCIS 2021, Limassol, Cyprus,May
11-14, 2021, Proceedings. Lecture Notes in Business Information
Processing, vol. 415, pp. 356–373. Springer (2021). https://doi.org/
10.1007/978-3-030-75018-3_24

43. Tsilionis, K., Wautelet, Y.: A model-driven framework to support
strategic agility: value-added perspective. Inf. Softw. Technol. 141,
106734 (2022)

44. Tsilionis, K., Wautelet, Y., Faut, C., Heng, S.: Unifying behav-
ior driven development templates. In: 29th IEEE International
Requirements Engineering Conference, RE 2021, Notre Dame,
South Bend, USA, Sept 20–24, 2021. IEEE (2021)

45. Uludag, Ö., Hauder, M., Kleehaus, M., Schimpfle, C., Matthes,
F.: Supporting large-scale agile development with domain-driven
design. In: Garbajosa, J., Wang, X., Aguiar, A. (eds.) Agile Pro-
cesses in Software Engineering and Extreme Programming: 19th
International Conference, XP 2018, Porto, Portugal, May 21–25,
2018, Proceedings. Lecture Notes in Business Information Pro-
cessing, vol. 314, pp. 232–247. Springer (2018). https://doi.org/
10.1007/978-3-319-91602-6_16

46. Verbruggen, C., Snoeck, M.: Model-driven engineering: a state
of affairs and research agenda. In: Augusto, A., Gill, A., Nurcan,
S., Reinhartz-Berger, I., Schmidt, R., Zdravkovic, J. (eds.) Enter-
prise, Business-Process and Information Systems Modeling: 22nd
International Conference, BPMDS 2021, and 26th International
Conference, EMMSAD 2021, Held at CAiSE 2021, Melbourne,
VIC, Australia, June 28–29, 2021, Proceedings. Lecture Notes in
Business Information Processing, vol. 421, pp. 335–349. Springer
(2021). https://doi.org/10.1007/978-3-030-79186-5_22

47. Wautelet,Y.,Heng, S.,Hintea,D.,Kolp,M., Poelmans, S.:Bridging
user story setswith the use casemodel. In: Link, S., Trujillo, J. (eds.)
Advances in Conceptual Modeling: ER 2016 Workshops, AHA,
MoBiD,MORE-BI, MReBA, QMMQ, SCME, andWM2SP, Gifu,
Japan, Nov 14–17, 2016, Proceedings, Lecture Notes in Computer
Science, vol. 9975, pp. 127–138 (2016). https://doi.org/10.1007/
978-3-319-47717-6_11

48. Wautelet,Y.,Heng, S.,Kiv, S.,Kolp,M.:User-story drivendevelop-
ment of multi-agent systems: a process fragment for agile methods.
Comput. Lang. Syst. Struct. 50, 159–176 (2017)

49. Wautelet, Y.,Heng, S.,Kolp,M.,Mirbel, I.: Unifying and extending
user story models. In: Jarke,M.,Mylopoulos, J., Quix, C., Rolland,
C., Manolopoulos, Y., Mouratidis, H., Horkoff, J. (eds.) Advanced
Information Systems Engineering: 26th International Conference,
CAiSE 2014, Thessaloniki, Greece, June 16–20, 2014. Proceed-
ings, Lecture Notes in Computer Science, vol. 8484, pp. 211–225.
Springer (2014)

50. Wautelet, Y., Heng, S., Kolp,M.,Mirbel, I., Poelmans, S.: Building
a rationale diagram for evaluating user story sets. In: Tenth IEEE
International Conference on Research Challenges in Information
Science, RCIS 2016, Grenoble, France, June 1–3, 2016, pp. 1–12.
IEEE (2016)

51. Wortmann,A., Barais, O., Combemale, B.,Wimmer,M.:Modeling
languages in industry 4.0: an extended systematic mapping study.
Softw. Syst. Model. 19(1), 67–94 (2020). https://doi.org/10.1007/
s10270-019-00757-6

52. Yue, T., Briand, L.C., Labiche, Y.: Atoucan: an automated frame-
work to derive uml analysis models from use case models. ACM
Trans. Softw. Eng. Methodol. (2015). https://doi.org/10.1145/
2699697

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123

https://doi.org/10.1049/ip-sen:20020202
https://doi.org/10.1016/j.jss.2020.110732
https://doi.org/10.1007/978-3-319-10145-3
https://doi.org/10.1109/32.677182
https://doi.org/10.1109/32.677182
https://doi.org/10.1007/978-3-030-75018-3_24
https://doi.org/10.1007/978-3-030-75018-3_24
https://doi.org/10.1007/978-3-319-91602-6_16
https://doi.org/10.1007/978-3-319-91602-6_16
https://doi.org/10.1007/978-3-030-79186-5_22
https://doi.org/10.1007/978-3-319-47717-6_11
https://doi.org/10.1007/978-3-319-47717-6_11
https://doi.org/10.1007/s10270-019-00757-6
https://doi.org/10.1007/s10270-019-00757-6
https://doi.org/10.1145/2699697
https://doi.org/10.1145/2699697

1494 M. Snoeck, Y. Wautelet

Monique Snoeck holds a PhD in
computer science from KU Leu-
ven. She is full professor at the
Research Center for Management
Informatics (LIRIS), KU Leuven,
and visiting professor at the UNa-
mur. She has a strong research
track in conceptual modeling,
requirements engineering, soft-
ware architecture, model-driven
engineering and business process
management. Main guiding
research themes are domain mod-
eling, business process modeling,
model quality, model-driven engi-

neering, and technology-enhanced learning. Previous research has
resulted in the Enterprise Information Systems Engineering approach
MERODE, and its companion e-learning and prototyping tool MER-
LIN and its companion prototyping tool. She is author of 2 books,
(co-) author of over 130 peer-reviewed papers. She is associated editor
of the BISE journal and (senior) member of the program committee of
numerous conferences in the domains of Information Systems such as
CAiSE, RCIS, PoEM and EMMSAD.

Yves Wautelet holds a PhD in
economics and management from
UCLouvain. He is professor at the
Research Center for Management
Informatics (LIRIS), KU Leuven
(Brussels), and visiting professor
at the UNamur. Yves has pursued
research in software project man-
agement, requirements engineer-
ing, conceptual modeling, multi-
agent systems, model-driven
development as well as IT gover-
nance and strategy. He has pub-
lished over 90 peer-reviewed
papers. He is member of the pro-

gram committee of numerous conferences in the domains of Informa-
tion Systems such as ER, REFSQ, RCIS, PoEM and EMMSAD

123

	Agile MERODE: a model-driven software engineering method for user-centric and value-based development
	Abstract
	1 Problem statement
	2 Background
	2.1 Research gap and novelty of the approach
	2.2 MERODE essentials

	3 Research paradigm, method and approach
	3.1 Relevance cycle
	3.2 Rigor cycle
	3.3 Design cycle

	4 The agile MERODE framework
	4.1 Integrating user stories and BDD within MERODE
	4.2 Agile lifecycle support and planning game with agile MERODE

	5 Agile MERODE process view
	5.1 Agile MERODE process structure
	5.2 Agile MERODE as a process fragment

	6 Case study
	7 Discussion, threats to the validity and related work
	7.1 Impact of agile MERODE on the technical debt and communication improvements
	7.2 Flexibility in planning
	7.3 Heaviness and scalability in the method application
	7.4 Integration of MERODE within other agile methods and practices
	7.5 Threats to validity
	7.5.1 Construct validity
	7.5.2 Internal validity
	7.5.3 External validity

	7.6 Related work

	8 Conclusion
	References

