Software and Systems Modeling (2023) 22:351-375
https://doi.org/10.1007/s10270-022-01008-x

REGULAR PAPER O‘)

Check for
updates

Discovering architecture-aware and sound process models of
multi-agent systems: a compositional approach

2

Roman Nesterov'2@® . Luca Bernardinello® . Irina Lomazova? - Lucia Pomello’

Received: 3 May 2021 / Revised: 25 January 2022 / Accepted: 29 March 2022 / Published online: 3 May 2022
© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022

Abstract

A process model discovered from an event log of a multi-agent system often does not fully cover certain viewpoints of its
architecture. We consider those concerned with the structure of a model explicitly reflecting agent behavior and interactions.
The direct discovery from an event log of a multi-agent system may result in an unclear model structure and over-generalizations
of agent behavior. We suggest applying a compositional approach that yields architecture-aware process models of multi-agent
systems. An event log of a multi-agent system is filtered by the behavior of individual agents. Then, a multi-agent system model
is a composition of agent models discovered from filtered logs. We use an intermediate model, called an interface pattern,
specifying agent interactions and representing the architecture of a multi-agent system. We design a collection of specific
interface patterns modeling typical agent interactions. An interface pattern provides an abstract specification of interactions and
has a part corresponding to the behavior of each agent. We use structural transformations to map agent models discovered from
filtered logs on the respective parts in an interface pattern. If such a mapping exists, we guarantee that a composition of agent
models preserves their soundness. We conduct a series of experiments to evaluate the compositional approach. Experimental
results confirm the improvement in the structure of process models discovered using the compositional approach compared
to those discovered directly from event logs.

Keywords Multi-agent systems - Event logs - Process mining - Process discovery - Petri nets - Composition - Transformations -
Interface patterns

1 Introduction event logs. They consist of ordered sequences (traces) of

records on occurred events. Event logs are used in process

Modern information systems generate large amounts of event
data, including, for example, transaction logs, message logs,
and records of user activity. These data are commonly called

Communicated by Tony Clark.

This work is supported by MIUR, Italy and the Basic Research
Program at HSE University, Russia.

B<I Roman Nesterov
rnesterov @hse.ru

Luca Bernardinello
luca.bernardinello @unimib.it

Irina Lomazova
ilomazova@hse.ru

Lucia Pomello
lucia.pomello@unimib.it
University of Milano-Bicocca, Milan, Italy

HSE University, Moscow, Russia

mining to discover models of real processes [1]. The expected
behavior of processes is usually specified manually at the
early stages of the information system life cycle. Discovering
the real behavior of processes from event logs is an important
task since manually created models do not reflect changes
made during the operation of an information system.

A wide range of algorithms supports the automated
discovery of process models [2]. Process models can be rep-
resented in different notations. Process mining extensively
uses various classes of Petri nets, heuristic nets, causal nets,
and Business Process Model and Notation (BPMN). Our
study focuses on modeling the control-flow of processes. We
abstract from data used in the process execution. We choose
Petri nets [3], a widely used formalism for modeling process
behavior. Petri nets are also the basis for many other model-
ing notations, e.g., distinct classes of BPMN models can be
transformed to Petri nets, and vice versa [4].

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s10270-022-01008-x&domain=pdf
http://orcid.org/0000-0002-4162-9070

352

R. Nesterov et al.

Table 1 Event log of a multi-agent system

Timestamp Action Agent
Trace 1

30-12-2020:14.45 Register request Pete
05-01-2021:09.34 Check ticket John
07-01-2021:12.12 Examine causally Pete
09-01-2021:10.15 Decide John, Pete
12-01-2021:13.25 Pay compensation Nick
Trace 2

30-12-2020:16.45 Register request Pete
04-01-2021:10.12 Examine thoroughly Pete
06-01-2021:09.34 Check ticket John
09-01-2021:09.19 Decide John, Pete
10-01-2021:12.26 Reject request Nick

Four conformance checking dimensions, namely fitness,
precision, generalization, and simplicity, determine the qual-
ity of process discovery algorithms [5]. Fitness estimates the
extent to which a discovered process model can execute traces
in an event log. A model perfectly fits an event log if it can
execute all traces in an event log. Precision evaluates the
ratio between the behavior allowed by a process model and
not recorded in an event log. A model with perfect precision
can only execute traces in an event log. The perfect precision
limits the use of a process model since an event log represents
only a finite “snapshot” of all possible process executions.
Generalization and precision are two dual metrics. The fourth
metric, simplicity, captures the structural complexity of a dis-
covered model.

A record in an event log typically contains the name of
an action and several additional attributes specifying the
resources required for executing an action. For instance, in
the event log shown in Table 1, an “Agent” attribute desig-
nates who has executed an action: John, Pete, or Nick. They
execute actions independently, e.g., Pete registers a request,
John checks a ticket, or together, e.g., John and Pete decide
whether to pay the compensation. We say that an event log,
where records contain information on agents, represents the
behavior of a multi-agent system.

Event logs of multi-agent systems require the additional
analysis of agent behavior and interactions. Otherwise, a pro-
cess model discovered from an event log of a multi-agent
system will not fully cover certain viewpoints of its archi-
tecture. The following motivating example briefly explains
this problem. A model discovered from an event log of a
multi-agent system may have relatively high precision, but
its unclear structure does not reflect agent behavior and inter-
actions.

Consider the Petri net shown in Fig. 1. Its structure is self-
explanatory, i.e., there are two independent agents (colored

@ Springer

Agent 1

Fig.1 Multi-agent system with two interacting agents

areas in the figure) communicating via four distinguished
nodes. Two places, a and b, are used as asynchronous chan-
nels to exchange messages. Two transitions marked with s
correspond to actions executed simultaneously by Agents 1
and 2.

Simulating the behavior of the Petri net from Fig. 1, we
generate an event log L of a multi-agent system with two
agents. Applying, for instance, Inductive miner [38] to L,
we discover the Petri net shown in Fig. 2. The Inductive
miner allows us to guarantee the perfect fitness of a discov-
ered model, i.e., it can execute all traces in an event log.
This Petri net also demonstrates a high precision evaluation
(0.73461). However, the structure of this model is not clear.
The Inductive miner inserted many additional “silent” tran-
sitions (black boxes in Fig. 2) to connect blocks of actions
executed by Agents 1 and 2. The Petri net shown in Fig. 2
does not correctly represent some key viewpoints of the archi-
tecture of a multi-agent system with two agents exchanging
messages and executing synchronous actions.

The direct discovery of a model from an event log of a
multi-agent system can also over-generalize individual agent
behavior. For example, in the Petri net shown in Fig. 1, transi-
tion g7 fires after transition ¢4, while in the Petri net shown in
Fig. 2, transition g7 can fire after transitions g3, g4, or gs. The
concurrent execution of independent agents leads to a wide
variety of possible traces recorded in an event log. However,
a discovered model should not introduce inappropriate gen-
eralizations of agent behavior.

Discovering architecture-aware and sound process...

353

Fig.2 Petrinetdiscovered directly from the event log of the multi-agent
system from Fig. 1

In this paper, given an event log of a multi-agent sys-
tem, we aim to discover an architecture-aware Petri net,
whose structure clearly covers the architecture viewpoints
concerned with component interactions. In other words, a
synthesized Petri net should explicitly show individual agent
behavior and interactions similar to the Petri net shown in
Fig. 1.

Various Petri net classes can be used to model the behavior
of a multi-agent system. We will use generalized workflow
(GWF) nets equipped with initial and final states. They differ
from classical workflow nets [6] in allowing initial and final
states to be sets of places rather than singletons. For instance,
the Petri net shown in Fig. 1 is also a GWF-net with three
initial places and two final places, while the behavior of Agent
2 is a classical workflow net.

We focus not only on the structural features of discovered
GWF-nets but also on their behavioral properties. Soundness
[7] is the fundamental correctness property of process behav-
ior. Soundness is also called proper termination. A sound
process can reach its final state from all intermediate states.
The final state in a sound process cannot be contained in any
other reachable state. Apart from that, a sound process does
not have dead actions, which cannot be executed.

So we define the purpose of our study more precisely as
follows. Given an event log of a multi-agent system and a

specification of agent interactions, the task is to discover a
sound and architecture-aware GWF-net, such that there are
subnets showing agent behavior and nodes corresponding to
agent interactions.

A specification of agent interactions is called an inter-
face. It represents the key interaction-oriented viewpoints of
the architecture of a multi-agent system. We suppose that
an interface is provided by experts in advance, e.g., system
architects may construct candidate interfaces. The adequacy
of these candidates can be determined by checking their
conformance to an event log. Our paper does not consider
discovering an interface model directly from an event log of
a multi-agent system. Therefore, we assume that:

1. All records in an event log have the corresponding
“Agent” attribute.

2. There is a distinguished set of actions through which
agents communicate via message exchange and synchro-
nizations. For instance, in the event log shown in Table 1,
the “decide” action is executed simultaneously by John
and Pete.

We propose a compositional approach that allows us to
discover sound and architecture-aware process models of
multi-agent systems. Even a simple composition of sound
models might not be sound, e.g., it can have a deadlock. That
is why we do not consider arbitrary interfaces. The main idea
of our solution is to choose specific interface patterns, which
preserve agent soundness, and formulate the conditions for
a correct application of these patterns. Similar service inter-
action patterns are used in Business Process Management
for a correct organization of communication in large-scale
information systems [8]. Service interaction patterns repre-
sent typical communication scenarios. We use them to design
our collection of interface patterns. An interface pattern is a
GWF-net that:

— Provides a highly abstract view of agent interactions
without exposing internal agent behavior;
— Has a part representing the behavior of each agent.

The central hypothesis of our study is that the composi-
tional approach improves the quality of discovered process
models compared to the quality of process models discovered
directly from event logs of multi-agent systems.

An algorithm of the compositional process discovery
includes three steps, as shown in Fig. 3. These steps are dis-
cussed below.

Filtration An event log of a multi-agent system is filtered
by actions executed by different agents. Correspondingly, we
construct a set of sub-logs. For instance, filtering the records
in the event log given in Table 1 by the “Pete” value of the
“Agent” attribute, we obtain the sub-log presented in Table 2.

@ Springer

354

R. Nesterov et al.

Event log

A RN

FILTRATION

Y ¥ NN

Sub-log 1 Sub-log 2 ... | Sub-log k
| | | |
DISCOVERY

.+.

9 ’ g

Interface pattern

1A 8

System model

Fig.3 Compositional process discovery

Table 2 Pete’s sub-log of the event log from Table 1

Timestamp Action Agent
Trace 1

30-12-2020:14.45 Register request Pete
07-01-2021:12.12 Examine causally Pete
09-01-2021:10.15 Decide Pete
Trace 2

30-12-2020:16.45 Register request Pete
04-01-2021:10.12 Examine thoroughly Pete
09-01-2021:09.19 Decide Pete

Discovery We discover agent GWF-nets from correspond-
ing sub-logs constructed at the filtration step. Discovered
GWF-nets should be sound. The Inductive miner, mentioned
above, discovers sound models.

Composition If there is a mapping of an agent GWF-net
to the corresponding part in an interface pattern (shown by
dashed arcs in Fig. 3), we can replace this abstract part with
the agent GWF-net. As a result, we obtain a sound process
model of a multi-agent system, provided that we manage to
find a mapping for every agent GWF-net.

The following three aspects determine the correctness of
the compositional process discovery algorithm:

@ Springer

1. Theoretical backgrounds of an event log filtration and a
GWF-net composition.

2. Interface patterns describing soundness-preserving inter-
actions among agents in a multi-agent system.

3. A technique to map agent models discovered from fil-
tered sub-logs on the corresponding parts in an interface
pattern.

We discuss these aspects step by step in the paper.
Thus, our study makes the following contributions:

—

It proposes an algorithm for discovering sound and
architecture-aware models of multi-agent systems.

2. It proposes a collection of sound interface patterns rep-
resenting typical agent interactions.

It proves the correctness of the proposed algorithm.

4. It conducts a thorough experimental evaluation of the
proposed algorithm according to the main hypothesis of
our study.

e

The remainder of our paper is organized as follows. In the
next section, we formally define event logs of multi-agent
systems and GWF-nets. Section 3 presents a collection of
sound interface patterns that are used to model agent interac-
tions in the compositional process discovery. In Sect. 4, we
design an algorithm of the compositional process discovery
and prove its correctness. In Sect. 5, we present and discuss
the outcomes from experiments conducted to evaluate the
compositional process discovery. Section 6 discusses related
research. Finally, Sect. 7 concludes the paper and suggests
future work directions.

2 Theoretical backgrounds of compositional
process discovery

The first correctness aspect of the compositional approach to
process discovery is its formal basis. This section collects the
definitions of general notions, event logs, and (a composition
of) generalized workflow nets. We refer to them when mod-
eling interface patterns in Sect. 3 and proving the correctness
of the compositional process discovery algorithm in Sect. 4.

St denotes the set of all finite non-empty sequences over
a finite non-empty set S, and S* = ST U {e} where ¢ is
the empty sequence. Let o € S* and S’ be a subset of S.
Then o | g denotes the projection of o on S’. In other words,
o|g is the subsequence of o obtained by removing elements
not belonging to §’. For example, let S = {a, b, c,d}, o0 =
abadabcdch € S*,and S’ = {b, c}. Projecting o on S’ gives
o|sgr = bbeeb.

N denotes the set of non-negative integers. A function
m: S — N defines a multiset m over a non-empty set S. We
write s e m iff m(s) > 0. The set of all finite multisets over S

Discovering architecture-aware and sound process...

355

is denoted by B(S). Let m, my € B(S). Then m; C my iff
mi(s) < ma(s);m' =my Umy iff m'(s) = mi(s) + ma(s);
m"” = my \ my iff m"(s) = max(m(s) — ma(s), 0) for all

s €S.
2.1 Event logs and log projections

An event log is the main data source used to discover process
models. It is a multiset of fraces — ordered sequences of
actions.

Definition 1 (Log) Let A denote the set of all actions. A trace
is a finite non-empty sequence o over A, i.e.,0 € AT. An
event log L over A is a multiset of traces, i.e., L € B(A™).

Given an event log L over A and A" C A, we can project
L on A’ by projecting all traces in L on A’. We need to take
into account only non-empty projections of traces in L as
well as the fact that the projections of different traces in L
may coincide.

Definition 2 (Log projection) Let L € B(A™T) be an event
log and A" € A. The projection of L on A’ is an event log,
denoted L 4+ € B((A’)™), containing non-empty projections
of traces in L on A’ such that:

YVoelL:o|ly e Ly & oy #¢eand
VoeL:oly=0 €Ly:Ly(0)=) L(o).

According to the main assumptions of the compositional
process discovery, actions in an event log of a multi-agent
system are assigned agents executing them. Then, A can be
decomposed into k (possibly overlapping) subsets of actions
correspondingly, i.e., A = Aj U ... U A;. Moreover, there
is a distinguished subset In € A of actions through which
agents interact. In is also called a set of interacting actions.

Then, the discovery of an individual agent model from
an event log of a multi-agent system L involves projecting
L, by Definition 2, on a corresponding subset of actions A;,
i.e., constructing L 4, withi = 1,2, ..., k. Log projections
are also called sub-logs. For example, the sub-log shown in
Table 2 is obtained from the log shown in Table 1 by removing
actions not executed by Pete from its traces.

2.2 Generalized workflow nets

Workflow (WF) nets [6] are basic models used in process
discovery. A WF-net is a Petri net with a distinguished initial
and final place. The execution of a trace in an event log corre-
sponds to the execution of a WF-net from its initial to its final
place. For a more convenient representation of multi-agent
systems, we generalize WF-nets, allowing sets of initial and
final places rather than singletons. Here, we define general-
ized workflow nets and their behavior.

Definition 3 (Ner) A net is a triple N = (P, T, F) where
P and T are two disjoint sets of places and transitions, and
F C (P xT)U(T x P) is the flow relation. For any node
xe PUT:

1. *x ={y € X|(y, x) € F}is the preset of x.
2. x* ={y € X|(x,y) € F}is the postset of x.
3. °x® = *x U x* is the neighborhood of x € X.

A net is called P-simple if Vp1, pop € P: *p; = *p> and
p1° = p2°® implies p; = p». In our work, we consider nets
without self-loops, i.e., Vx € PUT: *x Nx®* = & and
isolated transitions, i.e., Vt € T: |°¢] > 1 and [t°®] > 1.

The e-notation is also extended to subsets of nodes. Let
N = (P, T,F)beanet,and Y € P UT. Then °Y =
Uyey 9. Y* = U ey y*and*Y® = *YUY*. N(Y) denotes
the subnet of N generated by Y,ie., N(Y)=(PNY, TN
Y,FN({Y xY)).

A marking (state) m inanet N = (P, T, F) is a mul-
tiset over P, ie., m: P — N. Marking m is safe iff
Vp € P: m(p) < 1, i.e., a safe marking is a set of places.
Marking m of place p € P is depicted by putting m (p) black
dots inside p.

Definition 4 (Net system) A net system a quadruple N =
(P, T, F,mg) where (P, T, F)isanet,and mg: P — Nis
the initial marking.

A marking m in anet N = (P, T, F) enables transition
t € T,denoted m|t),iff *¢ C m.Enabled transitions may fire.
Firing ¢ at m evolves N to anew marking m’ = (m \ *r) Uz®,
denoted m[t)m’.

A sequence w € T* is a firing sequence in a net sys-
tem N = (P,T, F,mg) if w = ti5p...t, and mo[t1)m,
[t2)...my_1[t,)m,. Then we write m[w)m,. The set of all
firing sequences in N is denoted by FS(N).

A markingm in N = (P, T, F, mg) is reachable if 3w €
FS(N): mp[w)m. Any marking can be reached from itself
by the empty sequence, i.e., m[e)m. The set of all markings
reachable from m is denoted by [m). N is safe iff all reachable
markings in N are safe.

A state machine is a connected net (P, T, F), where
Vi e T: || = |t*] = 1. Asubnetof N = (P, T, F, mg)
generatedby Y C Pand®Y®,i.e., N(YU®Y*),isasequential
component of N if itis a state machine and has a single token
in the initial marking. N is covered by sequential components
if every place belongs to at least one sequential component.
In this case, N is state machine decomposable (SMD).

State machine decomposability is a basic feature bridging
structural and behavioral properties of nets, also consid-
ered in [6] as an important feature of workflow nets. It is
easy to see that SMD net systems are safe since their initial
markings are safe. We further work with SMD net systems,

@ Springer

356

R. Nesterov et al.

unless otherwise stated explicitly. Thus, we omit SMD in
their descriptions.

In a GWF-net, we impose additional restrictions on its
initial marking and distinguish its final marking.

Definition 5 (GWF-net) A generalized workflow net is a net
system N = (P, T, F, mg) equipped with the final marking
my C P such that:

1. *mop = @.

2. mf’ = J.

3. Vxe PUT3sempafemy: (s,x), (x, f) e F* where
F* is the reflexive transitive closure of F.

According to the third requirement in Definition 5, any
node in a GWF-net lies on a path from a place in its initial
marking to a place in its final marking.

Soundness is the main correctness property of the process
behavior formally specified by a GWF-net. Different kinds
of soundness were studied in [7]. Here, we use the classical
soundness related to the reachability of the final marking in
a GWF-net.

Definition 6 (Soundness) A GWF-net N =
mo, m r) is sound if and only if:

(P7T7F!

1. Vm € [mg): my € [m).
2. Vm e [mo):mg Cm=>m=my.
3. YVt € T dm € [mg): m[t).

Soundness is directly connected with the proper termi-
nation of a corresponding process. Every execution in a
properly terminating process must finish in its final state,
such that this final state is not contained in any other
reachable state. Also, there must not be non-executable
actions.

Event logs record the observable behavior of an informa-
tion system. The observable behavior of a GWF-net N =
(P, T, F,mp,my) is derived via transition labels. A total
function £: T — A U {t} is a transition labeling function
where T ¢ A is the label of the invisible action. Given
a firing sequence tw € FS(N), an observable execution
£(tw) is defined by (1) £(tw) = €(t)€(w) if £(t) # T and
(2) L(tw) = L(w) if L(t) = 7.

2.3 Composition of GWF-nets

Earlier in [9], we defined a composition of GWF-nets inter-
acting via message exchange and synchronizations. We use
this composition to design interface patterns representing the
architecture of a multi-agent system. Here, we briefly show
how to compose interacting GWF-nets and recall the main
properties.

@ Springer

Fig.4 Composition of two GWF-nets Ny and N,

Two kinds of transition labels model asynchronous and
synchronous interactions among agents, whose behavior is
formally represented via GWF-nets:

1. Asynchronous labels that carry channel names and oper-
ations. For instance, label “a!” corresponds to sending a
message to channel a, and its complement, label “a?”,
corresponds to receiving a message from channel a.

2. Synchronous labels that represent a name of a corre-
sponding action to be executed simultaneously by several
agents.

These transition labels specify interactions among agents
and define how GWF-nets representing their behavior are to
be composed. These labels correspond to a set of interact-
ing actions, denoted In, from an event log of a multi-agent
system. Thus, this composition involves the two following
operations:

1. Insertion of channel places connecting transitions with
complement asynchronous labels.

2. Pair-wise fusion of transitions with the same synchronous
labels.

Figure 4 illustrates the insertion of a place between tran-
sition 71 in Ny with label “c!” and transition e; in Ny with
label “c?”. The added place is assigned the corresponding
asynchronous label c. Figure 4 also shows the fusion of tran-
sition #» in N and transition e> in N; since they have the
same label s.

In [9], we studied the mathematical framework of this
GWF-net composition. The composition of two GWF-nets
with transition labels, denoted by N1 ® N>, is also a GWF-net.
In addition, the composition of GWF-nets is commutative
and associative. Thus, it is a convenient tool to model multi-
agent systems with three or more interacting agents.

Discovering architecture-aware and sound process...

357

3 Framework of proposed interface patterns

The second correctness aspect of the compositional approach
to process discovery is the proper specification of agent inter-
actions. In this section, we study interfaces preserving the
soundness of interacting agents.

It is easy to arrange agent interactions leading to dead-
locks. For instance, consider, again, the GWF-net shown in
Fig. 4. The two agent GWF-nets, N1 and N, are sound in iso-
lation. However, their composition is no longer sound since
N> may decide not to receive a message from channel c. As
aresult, N1 will not be able to synchronize further with N,.

Therefore, we do not work with arbitrary interfaces in the
compositional process discovery. We design specific inter-
face patterns — ready-to-use interface models, describing
typical and basic agent interactions. Moreover, interface pat-
terns preserve the soundness of agent GWF-nets discovered
from filtered sub-logs.

Firstly, we consider the classification and informal repre-
sentation of patterns. Secondly, we formally specify interface
patterns using the GWF-net composition.

3.1 Classification

Patterns are traditionally used in software engineering, e.g.,
software design patterns [10]. W.van der Aalstetal. [11] first
introduced workflow patterns in Business Process Manage-
ment to consolidate recurrent scenarios in the control-flow
of business processes. Later, A.Barros et al. [8] general-
ized these patterns to model typical service interactions in
large-scale systems. We take their classification of service
interaction patterns and recall it below.

Interface patterns are distinguished by the number of inter-
acting parties:

— Bilateral patterns specifying interactions between a pair
of agents;

— Multilateral patterns specifying interactions among three
or more agents.

Interface patterns are also classified according to the way
agents interact:

— Single transmission patterns;
— Multiple transmission patterns.

The number of transmissions specifies how many times
interacting agents can exchange messages. Multiple trans-
mission patterns imply repeated message exchange that
should have a possibility to be terminated to preserve the
soundness of agent behavior.

Interface patterns should include three main parts, indi-
cated by the scheme shown in Fig. 5. They are:

Asynchronous
channels

Synchronous

Fig.5 Components of an interface pattern

1. The number of interacting agents.
2. How agents exchange messages via channels.
3. How and when agents execute synchronous actions.

Following this scheme will allow us to effortlessly trans-
late the informal description of an interface pattern into a
composition of GWF-nets.

While describing interface patterns, we also follow the
general principles in the component-based design of infor-
mation systems [12]:

1. Aninterface should provide enough information to estab-
lish correct communication among agents.

2. An interface should not expose the internal behavior of
agents not required for their communications.

3.2 Informal representation

We design a set of interface patterns describing asynchronous
and mixed asynchronous-synchronous interactions among
agents, such that the soundness of their behavior is pre-
served. Using specific synchronous patterns in isolation is
not of great value in modeling systems with complex agent
interactions. That is why we will further consider different
combinations of asynchronous message exchange and syn-
chronizations.

Tables 3 and 4 give an informal representation of twelve
interface patterns we use to represent the interaction-oriented
architecture viewpoints of a multi-agent system in the com-
positional process discovery. A pattern contains dummy
agent names and crucial aspects of agent interactions, accord-
ing to the scheme from Fig. 5. We use identifiers to refer to
these interface patterns further in the text.

Table 3 considers interface patterns developed using ser-
vice interaction patterns presented in [8]. Single transmission
patterns, IP-1, IP-2, and IP-3, describe rather primitive agent
interactions since a sending agent is not supposed to receive

@ Springer

358

R. Nesterov et al.

Table 3 Description of asynchronous interface patterns

Pattern ID Description

Send (Receive) 1P-1 An agent X sends (receives) a message to (from) an agent ¥

Concurrent send (Receive) 1P-2 An agent X concurrently sends (receives) several messages (>1) to
(from) an agent Y

Alternative send (Receive) IP-3 An agent X sends (receives) exactly one out of two (or more)
alternative message sets to (from) an agent ¥

Exchange P-4 An agent X sends a message to an agent Y. Subsequently, Y sends a
response to X

Concurrent exchange IP-5 An agent X concurrently sends several messages (>1) to an agent Y.
Then Y sends a response to each message received from X

Alternative exchange IP-6 An agent X sends exactly one out of two (or more) alternative message
sets to an agent Y. Subsequently, Y sends a corresponding response
to a message received from X

Multiple exchange 1P-7 An iterative implementation of IP-4, such that the message exchange
continues till an Agent X does not need responses from an Agent Y

Racing incoming messages 1P-8 An agent X receives one among a set of messages incoming from two

or more other agents.

Table 4 Description of mixed

. Pattern 1D
interface patterns

Description

Sync before exchange IP-9

Sync after exchange 1P-10
Sync and exchange IP-11
Sync or exchange 1P-12

Before exchanging messages, agents X and Y execute a synchronous
action

Agents X and Y execute a synchronous action after they exchange
messages

Concurrently with message exchange, agents X and Y execute a
synchronous action

Agents X and Y either execute a synchronous action or exchange
messages but not both

an acknowledgment from the other agent. Various ways of
asynchronous message exchange are given in patterns IP-4,
IP-5, and IP-6. Interface pattern IP-7 describes multiple trans-
mission interactions when one agent can decide to stop the
exchange by sending a corresponding message to the other
agent.

Multilateral interactions among three or more agents are
described in IP-8. According to the specification of this
pattern, one of the agents expects to receive one of sev-
eral messages incoming from the other agents. Sending
agents should be properly notified whether their messages
are received.

Table 4 describes mixed interface patterns. They combine
asynchronous and synchronous agent interactions. Patterns
IP-9 and IP-10 extend pattern IP-4 such that agents synchro-
nize either before or after messages are exchanged. Pattern
IP-11 extends pattern IP-5 such that agents synchronize and
exchange messages concurrently. Pattern IP-12 allows agents
to either execute a synchronous activity or exchange mes-
sages. This corresponds to an extension of pattern IP-6.

The next step is to translate these informal descriptions of
interface patterns into GWF-nets.

@ Springer

3.3 Formal specification

Figure 6 provides eight GWF-nets constructed according
to the informal description of eight asynchronous inter-
face patterns. Figure 7 provides four GWF-nets constructed
according to the description of four interface patterns, com-
bining both asynchronous and synchronous interactions. We
discuss some important features of these models in more
detail below.

Every interface pattern is a composition of GWF-nets rep-
resenting abstractions of agent behavior. For example, in the
GWF-net of pattern IP-1 shown in Fig. 6(a), abstract rep-
resentations of agent behavior, A; and A, contain a single
labeled transition used to send/receive a message. However,
abstractions of agent GWF-nets can also contain transitions
not labeled by interacting actions. They are required to model
the specific control-flows of agents. For instance, the GWF-
nets of patterns IP-2, IP-5, IP-8, and IP-11 (see Fig. 6(b), (e),
(h), and Fig. 7(c) correspondingly) contain transitions used
to model the splits and joins of parallel branches in agent
behavior.

Discovering architecture-aware and sound process...

359

Z—O2®
Z—O<Rl®

(d) P-4

(g) TP-7

Fig.6 Asynchronous interface patterns: GWF-nets

In the GWF-nets of single transmission interface patterns,
IP-1, IP-2, and IP-3, channels are added only “in a single
direction” to send/receive messages. According to the speci-
fication of these patterns, acknowledgments are not expected.

The remainder of bilateral asynchronous interface patterns
contains different message exchange variations involving one
channel to send a message and the other channel to send an
acknowledgment. For example, in the GWF-net of pattern
IP-5 shown in Fig. 6(e), there are two concurrent message
exchanges between A1 and A,. A1 sends a message to Aj
via channel @, and A, sends an acknowledgment to A via
channel c. Channels b and d are used similarly.

Consider the GWF-net of the multilateral pattern IP-8
with three agents, A, Ay, and A3, as shown in Fig. 6(h). It
has the most sophisticated structure among all asynchronous
interface patterns. However, it has a clear interpretation.
According to the specification of pattern IP-8 from Table 3,
A expects to receive one of two messages incoming from A
and A3 through channels a and b correspondingly. Depend-
ing on which message is received (the one sent by A| or by
A3z), Ay executes the following actions:

@ Springer

360

R. Nesterov et al.

(b) 1IP-10

(d)1P-12

Fig.7 Mixed asynchronous-synchronous interface patterns: GWF-nets

1. It notifies A; (Az) by sending an acknowledgment
through channel ackA (ackB) that the corresponding
message is received;

2. It notifies the agent whose message is not received by
sending a message to channel a R or channel bR.

A message left in channel a () is removed by the sending
agent A (A3) to preserve the soundness of agents. In addi-

@ Springer

tion, a bold subnet in Fig. 6(h) corresponds to one of several
sequential components covering the GWF-net of pattern IP-
8. A similar analysis on sequential component decomposition
can be done for all GWF-nets provided in Figs. 6 and 7.

As discussed earlier, we extend asynchronous interface
patterns by introducing synchronizations into the structure
of corresponding GWF-nets. In the GWF-nets of patterns
IP-9 and IP-10 shown in Fig. 7(a), (b), synchronous action
s is added before and after the message exchange via chan-
nels a and b to extend pattern IP-4. Also, in the GWF-nets
of patterns IP-11 and IP-12 shown in Fig. 7(c), (d), syn-
chronous action s replaces one of two branches of the
message exchange, initially present in asynchronous inter-
face patterns IP-5 and IP-6.

It is also important to note that pair-wise fusion of
transitions can lead to redundant places that cannot be dis-
tinguished by their neighborhoods. Redundant places are
identified in GWF-nets of patterns IP-9, IP-10, and IP-11.
They are highlighted by dashed circles: place p in Fig. 7(a),
place p» in Fig. 7(b) and place p3 in Fig. 7(c). These places
can be safely removed to make a corresponding GWF-net
P-simple.

The interface patterns discussed in this section describe
interactions among agents in a multi-agent system such that
the soundness of agent behavior is not violated. Therefore,
Proposition 1 holds.

Proposition 1 Interface pattern GWF-nets IP-1, IP-2, ..., IP-
12 are sound.

The proof of Proposition 1 is the straightforward verifica-
tion of the requirements imposed by Definition 6. Note that
the collection of interface patterns presented above is incom-
plete. One may further extend it, provided that an extended
version of Proposition 1 holds for the new patterns as well.

4 Proposed algorithm for compositional
process discovery

This section presents the main algorithm for the compo-
sitional discovery of process models from event logs of
multi-agent systems where agent interactions are specified
using interface patterns proposed in Sect. 3. We also dis-
cuss the third correctness aspect of the compositional process
discovery. We propose a technique to map the models of
individual agents discovered from filtered sub-logs on the
corresponding subnets in an interface pattern.

We prove the correctness of the proposed algorithm from
two perspectives:

1. A model of a multi-agent system discovered by this algo-
rithm can execute all traces in an event log.

Discovering architecture-aware and sound process...

361

2. A model of a multi-agent system discovered by this algo-
rithm is a sound GWF-net.

4.1 Algorithm

The compositional process discovery algorithm (see Algo-
rithm 1) reflects the main steps of the general scheme of the
approach shown in Fig. 3:

1. DISCOVER(L 4,) corresponds to the application of the
process discovery algorithm to agent sub-logs. It is
important to obtain sound GWF-nets at this step. For
instance, the Inductive miner [13] guarantees the sound-
ness of discovered models.

2. ISREFINEMENT(R;, A;) checks if the agent GWF-net, R;,
is a proper refinement of the corresponding part, A;, in
the interface pattern.

3. REPLACE(S, A;, R;) substitutes the corresponding part,
Aj;, in the interface pattern with the agent GWF-net, R;,
discovered from L 4;.

Algorithm 1: Compositional discovery

Input: L —an event logover A = A; U ...U A U In,
IP = A ® Ay ® ... ® A — an interface pattern
Qutput: S — a multi-agent system GWF-net

S <~ IP
foreach A; € A do
| R; < DISCOVER(L 4,)
end
R <« {R, Ry, ..., R¢};
foreach R; € R do
if ISREFINEMENT(R;, A;) then
| REPLACE(S, A;, R;)
end
end

If all agent GWF-nets discovered from sub-logs are proper
refinements of the corresponding parts in the interface pattern
IP, we will obtain a complete multi-agent system model S.

However, it is also possible that only some GWF-nets dis-
covered from filtered sub-logs are proper refinements of an
interface pattern. For instance, given /P = A1®A,, we may
obtain that R is not a refinement of A, while R; is a refine-
ment of A,. Then a pattern will only be partially refined, and
a system model § = A1 ® Ry will be an approximation of
the model sought for. In addition, if none of the GWF-nets
discovered from sub-logs are proper refinements of the inter-
face pattern, then this algorithm will not change an interface
pattern. In these cases, we may recommend modifying /P or
developing a new interface pattern.

The correctness of Algorithm 1 is justified by the fact that
a multi-agent system GWF-net S is sound and perfectly fits

ON

Fig.8 An a-morphism ¢: Ny — N;

an event log L, provided that all agent GWF-nets can be
mapped on an interface pattern. Further, we formalize and
prove these properties.

4.2 Refinement of GWF-nets

Here, we discuss the formal framework for the correct refine-
ment check, ISREFINEMENT, that constitutes the basis of
Algorithm 1, when a process model of a multi-agent system
is actually constructed.

Abstraction/refinement relations between two GWF-nets
are formalized with the help of a-morphisms introduced
in [14]. Using the example shown in Fig. 8, we discuss the
basic intuition behind o-morphisms.

An a-morphism, denoted by ¢: Nj — Nj, is a total sur-
jective map, where N is called a refinement of N,, and N> is
called an abstraction of Nj. Places in N, can be refined with
acyclic subnets in Nj. For instance, subnet N ((p_1 (p1)) is
the refinement of place p; in N> shown in Fig. 8. Place refine-
ments may lead to a split of transitions in N», e.g., transition
t1 in N is split into two transitions #1; and #1> in Nj (see
Fig. 8).

Overall, an «-morphism is defined by a transition mapping
between Nj and N,. If a transition in N; is mapped to a
transition in Ny, their neighborhoods should also correspond.
For example, in Fig. 8, transition #{; in Nj is mapped to

@ Springer

362

R. Nesterov et al.

;, transform

Abstraction Refinement

Fig.9 Refinement through transformations

transition #1 in N>, and the neighborhood of 711 is mapped on
the neighborhood of ¢#;. If a transition in N; is mapped to a
place in N, then the neighborhood of this transition is also
mapped to the same place. For example, in Fig. 8, transitions
in subnet N; (go_l(pl)) are mapped to place p; in N3, and
the neighborhoods of these transitions are also mapped to
place pj. These and several other restrictions imposed on
subnets in Nj that can refine places in N, are discussed in
[14]. These restrictions ensure the main motivation behind
o-morphisms: behavioral properties valid for N, should also
hold in its refinement Nj.

A systematic approach to defining o-morphisms was dis-
cussed in our earlier work [15]. The main idea of this
approach is a step-wise application of local transformations
to an abstract model to construct its refinement, as shown in
Fig. 9 where each arc is a step of applying a structural trans-
formation. These transformations are local since they affect
only a part of a model, and the rest of the model remains
untouched.

As proven in [15], every step of applying a transformation
induces an o-morphism as well as their composition. Thus,
after a series of transformations is applied, there will be an
a-morphism from a transformed model towards the initial
one. As shown in Fig. 9, there is an ¢-morphism ¢: R — A,
and R is obtained by applying a series of transformations to
A.

The main advantage to these transformations is the ability
to redefine the notion of refinement without referring to the
formal definition of o-morphisms since their direct applica-
tion may be rather complicated.

A transformation is a tuple p = (L, R, ¢, cg) where:

L is the left part — a subnet to be transformed.
R is the right part — a subnet that replaces L.
¢, — constraints imposed on L.

cR — constraints imposed on R.

LN

Constraints ¢z, and cg are structural, marking and transition
labeling restrictions.

Let N = (P, T, F,mg, my) be a GWF-net. A transfor-
mation p = (L, R, ¢, cr) isapplicable to N if there exists a
subnet N (X)) corresponding to the left part of p. The appli-
cation of p to N, schematically shown in Fig. 10, includes:

@ Springer

2 }/\
/\ AN

4 \
/

/ \ transform / \
i N(Xp)! . R i
N = (P, T, F,mg, my) p(N, Xp)
X, CPUT
Fig. 10 Application of a transformation to N
Table5 Refinement transformations
Transformation Constraints

p1: Place duplication

1.%p1 ="°p="ps;

2. p1®* =p* =p2°.

3. (p1 € m{, and p2 € my) iff
P € mo.

1. %t = °t = ®to;

2. 11° = 1° = {2

3. t1,ts have the same label
as t.

p3: Local transition introduction

? 1. %t ={p1}, t* = {p2};

2. p1® = *p2 = {t};
_l>
©)—{t]

3. °p1 = °p, p2°® =p%;
4. t is not labeled with an in-
teracting action.

pa: Place split

T

|*pl > 1

- °p1 C *p, *p2 C p;

< *p1Up2 = °p;

- *p1N°®p2 = O

. p1®, p2® are two complete
copies of p*®;

6.°(p:*)\{p:} = *(»*)\{p}-

Tk Wi

1. Identification and removal of N(X) in N according to
Cl,.

2. Insertion of R to N connecting it with *X*® according
to cpR.

The result of applying p to N is denoted by p (N, X1). We
alsowrite N —2> N’ when N’ = (N, X) and specification
of an affected subnet is not important.

A set of structural transformations RT = {p1, 02, 03, p4}
used to refine GWF-nets is presented in Table 5. Correspond-
ing constraints ¢y and cg are also given.

Discovering architecture-aware and sound process...

363

O <®

JO<{2]

Q-
3

OO
>/

>

O~ FOTOEOLOE]

O ®

O <®
O{®
O <®

O
,zﬁggpg

<O<=O<]

<O FO{RO-E
O]
.

1O

Q

Fig. 11 Behavior of Agent 1 from Fig. 1 is a refinement of A; in interface pattern IP-10

Thus, we can finally redefine the notion of refinement
through transformations.

Definition 7 (Refinement) Let N1, N, be two GWF-nets. N
is a refinement of N iff there exists a sequential application
of transformations p1, p2, ..., pn € RT leading from N, to

. p1 02 P
Ny, ie., N — N) — ... — Ni.

Correspondingly, the check ISREFINEMENT in Algorithm 1
comes down to the verification of the requirement imposed
by Definition 7.

Let us consider the behavior of Agent 1 shown in Fig. 1.
We show that it is a refinement of A from pattern IP-10 (see
Fig. 7(b)) since a subsequent application of transformations
from the set RT exists, as provided in Fig. 11. Note that
applications of transformations affecting disjoint subsets are
shown as a single step. Overall, the sequence of transforma-
tions shown in Fig. 11 includes 13 steps.

A similar refinement check can be done for the behavior of
Agent 2 from Fig. 1 to show that it is a refinement of A, from
pattern IP-10. Thus, pattern IP-10 represents the interaction-
oriented architecture viewpoints of the multi-agent system
shown in Fig. 1.

4.3 The first correctness theorem

Here, we show that GWF-nets discovered using Algorithm 1
can replay all traces in these event logs. In other words, a
GWPF-net discovered from an event log L of a multi-agent
system by Algorithm 1 perfectly fits L.

For what follows, L denotes an event log of a multi-agent
systemover A = A1 U Ay U ..U A U In.

We need to formalize a “perfectly fits” relation between a
GWF-net and an event log.

Definition 8 (Perfectly fits)Let N = (P, T, F,mo, my)bea
GWPF-net with a transition labeling function£: T — AU{z}.
GWF-net N perfectly fits event log L iff Yo € L3Iw €
FS(N): o = £(w).

We prove that a GWF-net S, discovered from an event
log L of a multi-agent system using Algorithm 1, inherits
the perfect fitness of an interface pattern and agent GWF-
nets, discovered from agent log projections L4, with i =
1,2, .., k.

Theorem 1 (Fitness preservation) Let IP = A] ® Ay ® ... ®
Ay be an interface pattern with a transition labeling function
Lip: Tip — In U {t}. Let R; be a refinement of A; with
a transition labeling function £;: T; — A; U {t} for all
i = 1,2,...,k. If IP perfectly fits Ly, and R; perfectly fits
La, foralli =1,2,.. k thenS = R ® Ry ® ... ® Ry with

@ Springer

364

R. Nesterov et al.

a transition labeling function £: T — A U {1} perfectly fits
L.

Proof The proofis done by contradiction. Assume that S does
not perfectly fit L. Then do € L, s.t. Fw e FS(S): L(w) =
o . Since IP perfectly fits L, Jwip € FS(IP): £ip(wip) =
o |, because Ly, is a log projection of L on In € A. Since
R; perfectly fits LA,., Jw; € FS(R;) = {i(w;) = O'|A,-»
because L4, is a log projection of L on A; € A for all
i = 1,2,.., k. Itis evident that w;p and w; (for all i =
1,2, ..., k) are projections of a firing sequence w’ € FS(S)
on transitions labeled by In and A; correspondingly. Since
A = A1 U...U A U In and taking the above into account,
we have that £(w’) = o. It contradicts the assumption that
Fw € FS(S): £(w) = o. Hence S perfectly fits L. O

An immediate corollary of Theorem 1 gives the first cor-
rectness characteristic of Algorithm 1 as follows.

Corollary 1 GWF-net S discovered from an event log L using
Algorithm 1 perfectly fits L.

4.4 The second correctness theorem

Using the formal framework behind the composition of
GWF-nets, we prove that GWF-nets of multi-agent systems
discovered by Algorithm 1 are sound. The main result of [9]
is recalled in the following proposition.

Proposition 2 (see [9]) Let Ny, Ny, and R be three sound
GWF-nets, s.t. there is an o.-morphism ¢ : Ry — N1. I[f N1 ®
Ny is sound, then Ry ® N> is sound.

In other words, the soundness of a GWF-net composition
N1 ® N is preserved if one of the two GWF-nets is replaced
by its sound refinement.

Note that arefinement of a sound GWF-net, constructed by
applying transformations (see Definition 7), is also a sound
GWEF-net. This follows from the fact that transformations do
not introduce deadlocks [15].

Lemma 1 Let Ny, N» be two GWF-nets, s.t. Ny is a refine-
ment of No. If N> is sound, then N is sound.

Then we prove thata GWF-net S, discovered from an event
log L of a multi-agent system using Algorithm 1, preserves
the soundness of an interface pattern and soundness of agent
GWPF-nets, discovered from log projections.

Theorem 2 (Soundness preservation) Let IP = A| ® Ay ®
... ® Ay be an interface pattern, s.t. A; is a sound GWF-
net withi = 1,2, ..., k. Let R; be a refinement of A; with
i=1,2,..,k. IfIP is sound, then S = R ® Ry ® ... ® Ry
is also sound.

Proof By Definition 7, since R; is a refinement of A;, there
is a subsequent application of transformations p1, p2, ..., on

@ Springer

leading from A; to R;,i.e., A; AN R;,s.t. R; is sound

(by Lemma 1). Then there is an ¢-morphism ¢; : R; — A;.
The composition of GWF-nets is also a GWF-net. Let [P’ =
Al ® ... ® Ag_1, then IP = IP’ ® Ay. By Proposition 2,
since /P is sound and there is an o-morphism ¢y : Ry —
Ak, IP" ® Ry is also sound. The composition of GWF-nets
is commutative. Let IP” = A1 ® ... ® Ay_» ® Ry. Then
IP' ® R, = IP” ® Aj_4. Since IP” ® Aj_q is sound and
there is an a-morphism ¢;_1: Rx—1 — Ax—1, IP” ® Ry_|
is also sound. Applying this reasoning further, we will arrive
to a conclusion that Ry ® Ry ® ... ® Ry is sound. O

An immediate corollary of Theorem 2 gives the second
correctness characteristic of Algorithm 1 as follows.

Corollary 2 GWF-net S discovered from an event log L using
Algorithm 1 is sound.

5 Experimental evaluation

In this section, we report the outcomes from a series of
experiments conducted to evaluate the compositional process
discovery algorithm. We used the twelve interface patterns
considered in Sect. 3. According to the central hypothesis
of our study, we analyze and compare the process models
obtained using the ordinary direct process discovery with
those discovered by our compositional approach.

5.1 Layout of experiments

Experiments were designed following the general scheme of
the compositional process discovery (see Fig. 3) with two
additional steps: refinement and simulation, as presented in
Fig. 12. We introduced an artificial source of event logs,
represented by a reference model. Reference GWF-nets are
refinements of interface patterns. Thus, an event log obtained
after simulating the behavior of a reference model will
meet the assumptions of compositional process discovery.
In addition, this approach conforms with a standard way of
evaluating process discovery algorithms using so-called arti-
ficial event logs, which are supposed to have certain features.
Then, for every abstract interface pattern /P = A;j® A ®
... ® Ay from Sect. 3, the following procedure was executed.
Step 1. Construct a sound reference GWF-net Np = N1 ®
Ny ® ... ® Ny where N; is a refinement of A; with i =
1,2, .., k.
Step 2. Simulate the behavior of Nk to obtain an event log
L of a multi-agent system with k interacting agents over
A=A UAU...UAg.
Step 3. Discover a sound GWF-net Np directly from L.
Step 4. Construct k agent log projections L 4, L 4,, ...
(by Definition 2).

s LAk

Discovering architecture-aware and sound process...

365

model N
&7
\@ﬁ“\ SIMULATION
¢ v

Event log

Interface
pattern

H

FILTRATION

|Sub—log1 | | Sub-log 2 | | Sub—logkl

| I | |

DISCOVERY

'} Y ¥
Interface pattern
A A N

System model N

Fig. 12 Layout of experiments

Step 5. Discover k sound GWF-nets N{, N, ..., N from
agent log projections L 4, L 4,, ..., L 5, respectively.

Step 6. Verify whether N, discovered from L 4, is a refine-
ment of A; in IP withi = 1,2, ..., k. If so, replace A; with
N/ and construct Nc = N{ ® N, & ... ® N|.

Step 7. Compare the reference GWF-net Ng (Step 1), the
directly discovered GWF-net Np (Step 3), and the composi-
tionally discovered GWF-net N¢ (Step 6).

Below, we consider the main steps of our experiment plan
in more detail.

Construction of a reference GWF-net (Step 1) and refine-
ment verification (Step 6) are executed using Definition 7,
based on the collection of structural GWF-net transforma-
tions, considered in Sect. 4.2. If Ni’, discovered from an agent
log projection, is not a refinement of A; in the interface pat-
tern /P, we can consider how the pattern can be modified,
preserving its soundness. Thus, we may extend Proposition 1.

Simulation of the reference GWF-net behavior (Step 2) is
supported with an approach to event log generation intro-
duced in [16]. This approach allows one to specify the
behavior of agents and interface separately.

Step 3 and Step S are explicitly connected with the discov-
ery of models from the event logs. The main requirement of a
process discovery algorithm applied here is that it should pro-
duce sound models. Among the others, the Inductive miner,
also mentioned earlier, always produces sound workflow
nets.

Reference, directly and compositionally discovered GWF-
nets are compared (Step 7) using standard and specifically
developed quality dimensions that are described further.

Unseen
behavior

Unfitting
traces

FS(N) L

Fig. 13 Comparison between event log L and GWF-net N

The experimental results and corresponding conclusions
are discussed in Sect. 5.3.

5.2 Conformance checking

Directly and compositionally discovered GWF-nets relate
differently to the initial event log, obtained after simulating
the behavior of the reference models. The general picture of
relations between an event log L and a GWF-net N is given
in Fig. 13.

Estimation of the correspondence between an event log
and a process model is the main problem in the field of
conformance checking [5]. In addition, within conformance
checking, the structural complexity of process models is eval-
uated as well. There are four main quality dimensions offered
in conformance checking: fitness, precision, generalization
and simplicity [17]. They are aimed to build a holistic view
of the quality of process models discovered from event logs.

In our experiments, we estimate precision and simplic-
ity of the reference, directly and compositionally discovered
GWPF-nets with respect to the artificial event logs obtained
after simulating the reference models, as specified by Step 7
in our experiment plan.

Fitness is a value in the interval [0, 1] that demonstrates
how well a process model can replay every trace from an
event log. In the general case shown in Fig. 13, a part of
an event log (unfitting traces) may not be covered by the
firing sequences in a process model. The more the number
of unfitting traces in L is, the lower the fitness of a process
model is. By Definition 8, a process model perfectly fits an
event log (fitness = 1) if it can execute all traces in this event
log, i.e., there are no unfitting traces.

Note that, by Corollary 1, GWF-nets obtained by Algo-
rithm 1 perfectly fit event logs. Apart from that, existing
process discovery algorithms allow configuring the desired
fitness level. It may be necessary to decrease the fitness while
working with noisy and real-life event logs, where there
can be missing or duplicate actions, the wrong ordering of
actions, etc. Artificial event logs do not have such problems.
Thus, we do not need to estimate the fitness of reference,
directly and compositionally discovered models.

@ Springer

366

R. Nesterov et al.

Precision is a value in the interval [0, 1] that evaluates
a ratio of the behavior allowed by a process model and
not allowed by an event log (unseen behavior as shown in
Fig. 13). Perfectly precise models can only replay the traces
present in an event log. However, an event log represents
only a finite fragment of all possible process executions. That
is why perfectly precise models are of very restrictive use.
A well-known approach, used in our experiments as well,
to the precision estimation, is based on aligning the firing
sequences of a process model with the traces in an event
log [18].

The (structural) complexity of a discovered process model
is captured by the simplicity dimension. We express the sim-
plicity of a process model through:

— The number of places, transitions, and arcs;
— The number of neighboring transitions between pairs of
different agents.

Recall that the compositional process discovery aims to
build architecture-aware process models the structure of
which indicates agent behavior and interactions. Thus, we
expect the simplicity to be the main distinguishing feature
of compositionally discovered GWF-nets compared to those
discovered directly from event logs of multi-agent systems.
Below, we explain the main idea behind the notion of neigh-
boring transitions.

5.2.1 Neighboring transitions

The notion of neighboring transitions is introduced to esti-
mate the extent to which a structure of a discovered process
model covers the architecture viewpoints of a multi-agent
system concerning agent interactions. In other words, an
architecture-aware model of a multi-agent system explicitly
shows the behavior of individual agents as well as the way
they interact by exchanging messages and executing syn-
chronous activities. Precise definitions are given below.

Let L € B(A™) be an event log of a multi-agent system
over A = AfUAU...UA;. LetN = (P, T, F,mg,my)be
aGWF-net with alabeling function¢: T — AU{t}. Accord-
ing to £, we can also partition 7 into k subsets corresponding
to the behavior of different agents,i.e., T = T1UT,U...UT,
where transitions in 7; are labeled by actions from A; with
i=1,2,..k

Transitionst; € T; andt; € T suchthati # j, £(t;) # 7,
and £(t;) # t are called neighboring if there exists a path
in N connecting #; and ¢; where the other transitions along
this path are labeled by 7. Symbolically this is expressed as
follows:

1. (#;,t;) € F* where F* is the reflexive transitive closure
of F.

@ Springer

source 246

source 251 sous

sink 248

sink 26Q y sink 258

(a) NPT(N)[=4 (b) INDT(N)| =2

Fig. 14 Neighboring transitions

2.Vt e T\ {t;,t;}:if (#;,1) € F*and (¢,1;) € F*, then
L(t) = .

NbT(N) denotes the set of all neighboring transition pairs
in N where symmetric pairs of neighboring transitions are
counted as a single pair, i.e., (f1, 1) € NbT(N) < (12, 1) ¢
NbT(N). Intuitively, the bigger the INbT(N)] is, the less trans-
parent and understandable the structure of N is with respect
to agent interactions. There are a lot of causally dependent
transitions corresponding to the behavior of different agents.
Below, we give an example of computing pairs of neighbor-
ing transitions.

Consider GWF-net fragments shown in Fig. 14. The first
fragment (see Fig. 14(a)) is taken from the GWF-net shown
in Fig. 2. The second fragment (see Fig. 14(b)) is taken from
the GWF-net shown in Fig. 1.

Recall that the GWF-net shown in Fig. 2 were discov-
ered directly from an event log of the GWF-net shown in
Fig. 1. Both GWF-nets perfectly fit this event log. However,
as mentioned in the Introduction, the direct discovery of a
multi-agent system model may lead to inappropriate gener-
alizations of agent behavior. For example, in the fragment
shown in Fig. 14(b), transition g3 can fire only after transi-
tion ¢, while in the fragment shown in Fig. 14(a), transition
g3 can fire after transitions g or g».

These GWF-net fragments depict the behavior of a multi-
agent system with two agents. The behavior of Agent 1 is

Discovering architecture-aware and sound process... 367
ceyneironous tetace paters L2 P3 P4 PS5 PG WP IPS
Event logs
Events 95052 149988 92668 102404 182452 123322 88068 157098
MIN trace 17 29 17 18 36 24 8 30
MEAN trace 19 30 19 20 36 25 18 31
MAX trace 21 31 20 23 37 25 29 32
Reference GWF-nets used for event log generation
Places 35 52 45 41 59 60 31 70
Transitions 31 48 43 35 50 53 30 58
Arcs 73 110 96 86 121 131 78 148
NbT 4 4 2 6 7 7 12 8
Precision 0.73349 0.47346 0.77810 0.79798 0.37020 0.60955 0.82935 0.54382
GWF-nets discovered directly from event logs
Places 52 74 83 56 88 97 30 107
Transitions 51 69 71 55 78 81 48 84
Arcs 126 182 178 134 210 214 104 230
NbT 48 124 46 48 81 74 69 117
Precision 0.75230 0.57704 0.89348 0.75958 0.48480 0.76818 0.32359 0.66462
Compositional process discovery
Places 46 72 54 57 94 81 39 96
Transitions 41 71 51 49 80 71 38 78
Arcs 96 176 114 119 211 177 92 200
NbT 4 4 2 6 7 7 12 8
Precision 0.73639 0.43663 0.78777 0.80728 0.40350 0.62615 0.82180 0.56989

represented by transitions {71, 2, 3, t4, t5}. The behavior of
Agent 2 is represented by transitions {q1, g2, g3, q4}. The
first fragment shown in Fig. 14(a) has four pairs of neigh-
boring transitions, i.e., {(q1, t5), (g2, t5), (t5, q3), (t5,qa)}.
However, in the second fragment shown in Fig. 14(b),
there are only two pairs of neighboring transitions, i.e.,
{(ts, g3), (15, q4)}, exactly corresponding to the transitions
through which Agents 1 and 2 interact.

Further computation of neighboring transition pairs in the
GWPF-nets from Figs. 1 and 2 will lead to the following obser-
vations:

1. In a GWF-net discovered by Algorithm 1, the number of
neighboring transitions directly corresponds to the inter-
acting transitions.

2. In a GWF-net discovered directly from an event log
of a multi-agent system, there are far more pairs of
neighboring transitions since transitions corresponding
to different agents are tightly connected.

5.3 Experimental results
Table 6 presents precision and simplicity evaluations of the

reference, directly and compositionally discovered GWF-
nets of multi-agent systems where agent interactions are

specified by asynchronous interface patterns IP-1, IP-2, ...,
IP-8.

Table 7 presents precision and simplicity evaluations of
the reference, directly and compositionally discovered GWF-
nets of multi-agent systems whose architecture is described
by mixed asynchronous-synchronous interface patterns IP-9,
IP-10, IP-11, and IP-12.

In these two tables, we also provide the information on
artificial event logs obtained by simulating the reference
GWPF-nets, including the total number of events together with
the minimum, maximum, and average trace length in these
event logs. The longest traces are represented in the event
log of pattern IP-5 since there are parallel branches in the
behavior of interacting agents. The most notable difference
between the minimum and maximum trace lengths is repre-
sented in the event log of pattern IP-7 since there are loops
in the behavior of interacting agents.

For a better interpretation of the experimental results,
Table 8 provides pair-wise comparison between the precision
and simplicity evaluations given in Table 6 and in Table 7,
where we have computed the percentage change in the char-
acteristics of:

— Directly discovered and reference GWF-nets;
— Compositionally discovered and reference GWF-nets;

@ Springer

368

R. Nesterov et al.

Table 7 Experimental results: mixed interface patterns

1P-9 1P-10 IP-11 IP-12
Event logs
Events 115000 102548 160000 88089
MIN trace 23 20 32 17
MEAN trace 23 21 32 18
MAX trace 23 21 32 18
Reference GWF-nets used for event log generation
Places 53 41 50 44
Transitions 52 37 44 42
Arcs 128 89 103 97
NbT 6 6 6 3
Precision 0.76541 0.83729 0.43610 0.77731
GWF-nets discovered directly from event logs
Places 68 49 84 73
Transitions 79 53 80 67
Arcs 186 126 202 168
NbT 75 47 71 41
Precision 0.60369 0.69177 0.45910 0.80212
Compositional process discovery
Places 66 49 69 55
Transitions 64 45 63 52
Arcs 155 109 155 121
NbT 6 6 6 3
Precision 0.76785 0.81475 0.46640 0.77522

— Compositionally and directly discovered GWF-nets.

Based on these pair-wise comparison results, we report
the main conclusions and outcomes from the experiments on
evaluating the compositional process discovery approach.

We start with the analysis of the simplicity comparisons
given in Table 8.

An increase in the number of nodes in the directly and
compositionally discovered GWF-nets, next to the refer-
ence GWF-nets, is mainly caused by additional t-transitions.
They connect the standard behavioral constructions such as
the sequential, concurrent, or alternative control-flows of
actions executed by different agents. Conversely, the com-
positional process discovery shows an overall decrease or a
moderate increase in the number of nodes compared with
the direct process discovery since we separate the behav-
ior of different agents. The separation of agent behavior is
also justified by the changes in the number of neighboring
transitions. One may observe a multiplicative increase in the
number of the neighboring transitions in the directly discov-
ered GWF-nets. The compositionally discovered GWF-nets
have the same number of the neighboring transitions as the
reference GWF-nets. These transitions correspond exactly
to actions through which agents interact, while the rest of

@ Springer

agent behavior is independent since it is not involved in their
interactions.

We next consider the precision comparisons also provided
in Table 8.

Most directly discovered GWF-nets improve the preci-
sion since they are far more oriented to the corresponding
event logs. The precision of the reference and composi-
tionally discovered GWF-nets are lower next to the directly
discovered GWF-nets since the separation of agent behavior
leads to a corresponding increase in the amount of unseen
behavior, as shown in Fig. 13. This precision decrease is a
payment for making process models of multi-agent systems
architecture-aware. However, in the case of the interface pat-
terns with complicated and mixed agent interactions, namely
IP-7,1P-9, ..., and IP-12, we observe a decrease or a negligi-
ble increase in precision. The inappropriate generalizations
of agent behavior were the main reason for this precision
decrease. In conclusion to the precision comparative analysis,
we also see that the compositionally discovered GWF-nets
preserve almost the same precision level next to the reference
GWF-nets since changes in the corresponding values are less
than 10%.

To sum up the discussion of the experimental results, we
take a closer look at the outcomes reported for interface pat-
terns IP-2 and IP-7. Following the steps of our experiment
plan for these interface patterns, we encountered the follow-
ing issues:

— Interface pattern inconsistencies (IP-2);
— The most notable decrease in the precision (IP-7).

We further discuss the reasons for these problems.

5.3.1 Pattern inconsistencies: the case of IP-2

The experiment with the asynchronous interface pattern IP-
2 shown in Fig. 6(b) led to the following problem. Agent
GWPF-nets, N| and N, discovered from log projections, were
not the proper refinements of A; and A, in IP-2, according
to the requirement of Definition 7. Thus, the corresponding
ISREFINEMENT test in Algorithm 1 was not passed.

As mentioned in Sect. 5.1, in the detailed description of
the experiment plan, we would try to reconfigure an interface
pattern in this case. Then, we determined that there exist two
sequences of refinement transformations (see Table 5) that
lead from A} and A/, shown in Fig. 15 to agent GWF-nets
N and N,.

Intuitively, it can be seen that the two pairs of concurrent
actions, “a!”, “b!” and “a?”,“b?”, were discovered as sequen-
tial actions respectively. The main reason for this is the lack
of different process executions in an event log generated by
the reference GWF-net.

Discovering architecture-aware and sound process... 369
Table 8 Experimental results: changes in simplicity and precision evaluations

IP-1 IP-2 IP-3 P-4 IP-5 IP-6 IP-7 1P-8 1P-9 IP-10 IP-11 1P-12
Directly discovered GWF-nets compared to reference GWF-nets
Places +49% +42% +84% +37% +49% +62% —3% +53% +28% +20% +68% +66%
Transitions +65% +44% +65% +57% +56% +53% +60% +45% +52% +43% +82% +60%
Arcs +72% +66% +85% +56% +74% +63% +33% +55% +45% +42% +96% +73%
NbT x12 x31 x23 x12 x11.6 %x10.6 %x5.6 x14.6 x12.5 x7.8 x11.8 x13.7
Precision +3% +22% +15% -5% +31% +26% —61% +22% —21% —17% +5% +3%
Compositionally discovered GWF-nets compared to reference GWF-nets
Places +31% +40% +20% +39% +59% +35% +26% +37% +25% +20% +38% +25%
Transitions +32% +48% +19% +40% +60% +34% +27% +35% +23% +22% +43% +24%
Arcs +32% +60% +19% +38% +74% +35% +18% +35% +21% +23% +51% +25%
NbT coincides with the values of reference GWF-nets
Precision +0,4% -8% +1% +1% +9% +3% —1% +5% +0.3% —3% +7% -0.3%
Compositionally discovered GWF-nets compared to directly discovered GWF-nets
Places —12% —3% -35% +2% +7% —17% +30% —10% -3% 0% —18% -25%
Transitions —20% +3% —28% —11% +3% —12% —21% —7% —19% —15% —21% —22%
Arcs —24% —3% —36% —11% +1% —17% —12% —13% —17% —14% —23% —28%
NbT —92% —97% —96% —88% —91% —91% —83% —94% —92% —87% —92% —93%
Precision —2% —24% —12% +6% —17% —19% x2.5 —14% +27% +18% +2% —3%

O A,

Fig. 15 Modifications of A; and A; in IP-2

Having considered A| ® A/, as the new interface pattern
and verified its soundness (see Proposition 1), we actually
experimented with the modified version of the interface pat-
tern IP-2.

5.3.2 Precision drop: the case of IP-7

The experiment with the multiple transmission interface pat-
tern IP-7, shown in Fig. 6(g), also deserves to be highlighted.

The directly discovered GWF-net exhibits a sharp decrease in
its precision compared to the reference and compositionally
discovered GWF-nets.

Figure 16 shows the GWF-net discovered directly from
an event log generated by the reference GWF-net of pattern
IP-7. As seen from this GWF-net, its structure contains sev-
eral joint blocks of actions executed by different agents. The
structure of this model does not cover the interaction-oriented
architecture viewpoints of a system with two interacting
agents exchanging messages until one of them decides to
stop the exchange.

Thus, the complicated nature of agent interactions can
hardly be reconstructed directly from an event log of a multi-
agent system. The identification of agent behavior and the
interface pattern refinement check allows us to decompose
this problem and improve the quality of a multi-agent system
model.

5.4 Technical support of experiments

According to the plan discussed in Sect. 5.1, experiments
were conducted using a PC with the following characteristics:

1. CPU Intel Core i7 3.70GHz.

2. 32 Gb RAM.
3. 64-bit OS Windows 10 Pro.

The generation and filtration of artificial event logs, the
discovery of agent GWF-nets, and precision evaluation were

@ Springer

370

R. Nesterov et al.

supported by the ProM software [19]. This is the plugin-
extendable tool, where various process discovery algorithms
are implemented.

The experimental data, including the artificial event logs
(XES-files), reference, directly, and compositionally discov-
ered GWF-nets (PNML-files), are accessible via the open
Zenodo repository [20].

5.5 Limitations of interface patterns

Interface patterns play an essential role in proving the correct-
ness of the compositional process discovery algorithm (see
Corollary 1 and 2). The experimental results found that the
agent interaction requirements imposed by interface patterns
might not be fully satisfied by agent GWF-nets discovered
from filtered sub-logs. The main reason for this problem is the
incompleteness of event logs. They represent only a “finite
snapshot” of all possible executions generated by concur-
rent interactions among agents in multi-agent systems. To
tackle the problem, one should either correspondingly adapt
an interface pattern verifying its soundness, as exemplified
in Sect. 5.3.1, or process event logs with a bigger number of
different trace classes.

Another limitation is the manual selection of an interface
pattern and the manual construction of refinement transfor-
mation sequences using Definition 7. Manual work can result
in the wrong pattern choice and mistakes in checking whether
an agent GWF-net is a refinement of the respective subnet
in an interface pattern. We plan to overcome these issues by
developing an algorithm for the refinement check ISREFINE-
MENT (see Algorithm 1) and by extending the collection of
typical and sound interface patterns.

6 Related works

As mentioned in the Introduction, there are many algorithms
for the automated discovery of process models from event
logs. Among the most widespread ones are the following:
Inductive miner [13], Fuzzy miner [21], Heuristic miner
[22], ILP-based (integer linear programming) miner [23],
Region Theory-based miner [24], and Genetic miner [25].
A. Augusto et al. [2] conducted a comprehensive and system-
atic review of these and other process discovery algorithms.
The existing process discovery algorithms can tackle dif-
ferent problems connected with the representation of event
data in logs. They include noise, e.g., the wrong ordering of
logged actions, duplicate or missed actions, and incomplete-
ness, i.e., an event log represents only a finite fragment of all
possible execution sequences.

In general, the synthesis of Petri nets from low-level
behavioral representations, e.g., transition systems, is a well-
known problem that is to decide whether a given transition

@ Springer

sink 22

middle 15

source | ak 14

source 6

1111

sink 2

Fig. 16 Directly discovered GWF-net: pattern IP-7

system is isomorphic to the reachability graph of some Petri
net and then to construct this net [26]. Region theory [27]
is the main formal tool used to solve the Petri net synthe-
sis problem. It undoubtedly found use in process discovery
when an event log is represented by a finite transition system.

The experimental part of our study is supported with the
Inductive miner since it discovers a process model with

Discovering architecture-aware and sound process...

371

necessary features, including soundness and state machine
decomposability. We incorporated this algorithm into the
compositional process discovery.

Conformance checking [5] is an essential part of process
mining along with process discovery. It is aimed to assess
the quality of process models discovered from event logs
since different algorithms yield different process models, and
they are to be compared. The four main quality dimensions
in process discovery are fitness, precision, generalization,
and simplicity. J. Buijs et al. [17] discussed the role of these
dimensions. The review [2] also indicated the lack of uni-
versal measures of the fitness and precision applicable to
a wide range of process discovery algorithms. W.van der
Aalst [28] discussed the same question from a slightly differ-
ent perspective, focusing on the urgent need for the consistent
requirements of quality measures since there is a significant
increase in the use of process discovery algorithms in com-
mercial software tools.

Within the framework of this paper, our focus was on
distinguishing process models of multi-agent systems dis-
covered by the compositional approach. In this light, we
measured the structural complexity of agent interactions by
assessing the number of neighboring transitions correspond-
ing to the behavior of different agents.

The problem of discovering structured process models
from event logs is not entirely new. Researchers studied this
problem in several contexts. In general, there exists the con-
tinuum of process models: from Spaghetti (poorly structured
models, e.g., the one presented in Fig. 16 to Lasagna (models
with a clear structure). Subtle differences between well-
structured, structured, and semi-structured process models
are hard to formalize [1]. For example, process models dis-
covered by the Inductive miner are called well-structured
since they are recursively constructed from building blocks.
They correspond to the basic constructs such as sequential,
parallel, alternative, and cyclic executions.

Researchers offer different techniques to improve the
structure of discovered models, e.g., in [29], and to produce
already well-structured process models [30-32]. Composi-
tional approaches to improving the structure of discovered
process models were proposed as well. A.Kalenkova et
al. [33] showed how to discover a readable model from
an event log by decomposing the extracted transition sys-
tem. A. Kalenkova and I. Lomazova [34] studied an advanced
technique to deal with cancellations — “exceptional” behav-
iors — in the process execution and to produce clear and
structured process models. In addition, W.van der Aalst et
al. [35] proposed an approach for the compositional process
discovery based on localizing events using region theory to
improve the overall quality of discovered process models. A
method for compositional modeling and discovery of struc-
tured object-centric Petri nets was proposed by W.van der
Aalst and A. Berti in [36], where they used special transition

fusions. M. Stierle et al. [37] discussed some design princi-
ples of discovering comprehensible models from event logs.
They defined metrics estimating the extent to which a dis-
covered model meets these principles. In our study, the clear
architecture-aware structure of multi-agent system models
results from the independent discovery of process models
for interacting agents from log projections.

A large amount of literature is devoted to Petri net
composition, e.g., general compositional frameworks and
approaches are discussed in [3,38,39]. The main prob-
lem of a compositional approach, also considered in this
paper, is to preserve component properties in their com-
position. The incorrect composition can be caused by the
poor specifications of component interactions resulting in the
violation of component behavioral properties. L.de Alfaro
and T.Henziger [12,40] emphasized the importance of the
proper interface specification in the component-based design
and development of complex software systems. Moreover,
according to these works, interfaces should describe compo-
nent interactions at the most abstract level without exposing
their internal behavior.

We used morphisms on Petri nets to achieve the inheri-
tance of behavioral component properties. Morphisms pro-
vide a convenient formal tool from category theory, used
for the modular design of information systems with interact-
ing components. They give a natural and rigid framework to
study the properties of different Petri net compositions. These
properties may include the preservation of firing sequences,
place/transition invariants, and others. Petri net composition
based on morphisms was discussed in several works, includ-
ing [41-44], with different aspects of preserving behavioral
and structural properties.

For safe net systems, used in our paper to model the
behavior of interacting agents and multi-agent systems,
L.Bernardinello et al. [14] proposed a class of a-morphisms.
They support the refinement of places to identify whether
agent models are proper refinements of the corresponding
parts in interface patterns. Using o-morphisms also accounts
for preserving the soundness of agents in a complete model
of a multi-agent system. However, we did not apply o-
morphisms directly since the required theoretical background
is rather extensive. Instead, we redefined the notion of refine-
ment via the local structural transformations proposed in our
earlier work [15]. These transformations are the basis of a
systematic approach to the definition of o-morphisms.

Within the compositional approach to discovering pro-
cess models of multi-agent systems, we assume that experts
provide specifications of agent interactions in advance. Iden-
tifying an interface model from a raw event log of a
multi-agent system is another task that is out of the scope
of this paper. We designed a collection of specific interface
patterns using typical service interaction patterns studied
by A.Barros et al. in [8]. They provide generic solutions

@ Springer

372

R. Nesterov et al.

to the specification of complex component interactions in
large-scale systems. G.Decker et al. [45] and D. Campagna
et al. [46] discussed the practical application of interaction
patterns to construct corresponding BPMN process models.
The correctness of interface patterns was also studied by
G.Decker et al. in [47] and by W. van der Aalst et al. in [48].
They formalized patterns using process algebras and open
Petri nets — a class of Petri nets with distinguished input
and output places. The authors used operating guidelines to
construct services correctly interacting with the given one. In
our case, an interface pattern comprises highly abstract repre-
sentations of all interacting agents. Moreover, since interface
patterns are known to be correct, they can be reused for all
properly constructed refinements, representing the concrete
behavior of agents.

This paper is based on our previous works [49,50]. We
extended the earlier achieved results by considering the for-
malization of multilateral interactions (pattern IP-8) and the
mixed interaction patterns (patterns IP-9, IP-10, IP-11, and
IP-12). We relied on the mathematical framework for the
associative composition of generalized workflow nets stud-
ied in [9].

7 Conclusions and future work

This paper proposed a compositional approach to discover-
ing architecture-aware and sound process models from event
logs generated by multi-agent systems. The structure of an
architecture-aware model is self-explanatory, i.e., it explicitly
shows the behavior of individual agents and their interac-
tions. Our solution involves an additional interface model and
includes three steps. Firstly, we filter event logs by actions
belonging to each agent and obtain a set of sub-logs. Sec-
ondly, agent models are discovered from these sub-logs with
the help of an existing process discovery algorithm. Finally,
we check whether there is a mapping of agent models to the
corresponding parts in an interface.

Arbitrary interfaces are not considered since it is easy to
arrange agent interactions leading to a deadlock. We designed
a collection of specific interface patterns describing typ-
ical agent interactions. An interface pattern describes the
architecture of a multi-agent system. Moreover, agent inter-
actions specified by an interface pattern will not violate the
soundness of agent behavior. The set of presented inter-
face patterns is based on service interaction patterns studied
earlier. It can also be extended with new models of agent
interactions, provided that each new pattern is sound. If a
map from agent models towards the corresponding parts in
an interface pattern exists, then we can replace this part in
a pattern with a discovered agent model. As a result, we
obtain an architecture-aware model of a multi-agent system
if all agent models are successfully mapped on an interface

@ Springer

pattern. Otherwise, when only some agent models can be
mapped on an interface pattern, we construct an approxima-
tion of a multi-agent system model we are looking for. In this
case, an interface pattern needs to be modified, such that all
agent models can be mapped on it.

The mathematical framework for finding a mapping of
agent models to an interface pattern is based on struc-
tural transformations inducing «-morphisms. We formally
demonstrated the correctness of the compositional process
discovery from two perspectives. Firstly, a multi-agent sys-
tem model perfectly fits an event log, i.e., for all traces in
this event logs, there exists an execution in the model. Sec-
ondly, a multi-agent system model inherits the soundness of
an interface pattern and individual agent models.

To evaluate the proposed compositional approach, we con-
ducted a series of experiments. We compared the quality
of the process models discovered directly from the artifi-
cial event logs of multi-agent systems with the quality of
the process models discovered using the interface patterns.
The experimental results confirm the overall improvement in
the structure of architecture-aware process models of multi-
agent systems since agent behavior, not involved in their
interactions, is structurally separated.

The proposed approach is applicable to distributed sys-
tems with components that can be represented as business
processes. The control-flow of these processes can be formal-
ized using generalized workflow nets, making the soundness
property relevant for the analysis. The main limitation of
the compositional process discovery is the manual selection
of interface patterns according to information provided by
experts. This can result in the further adaptation and sound-
ness verification of modified interface patterns. However, the
number of interacting actions is usually significantly less than
the number of local actions of agents.

As for future research, we plan to continue our work
in several directions that are also focused on overcoming
the limitations. Firstly, the application of a-morphisms and
the corresponding structural transformations does not allow
refining acyclic interface patterns with cyclic behavior. We
want to consider possible constraint relaxations, such that
the overall correctness is preserved. Then the applicability
of interface patterns will be extended. Secondly, we plan to
augment the presented collection of interface patterns with
new interaction models, especially considering the broad-
cast communication, and apply the compositional approach
to real-life examples of event logs. Finally, we also plan to
work on an approach to identifying interfaces from event logs
of multi-agent systems.

We are grateful to the reviewers for their valuable sugges-
tions that helped us to improve the presentation of the main
contributions of our study.

Discovering architecture-aware and sound process...

373

References

10.

11.

12.

13.

14.

van der Aalst, W.: Process Mining: Data Science in Action.
Springer, Heidelberg (2016). https://doi.org/10.1007/978-3-662-
49851-4

Augusto, A., Conforti, R., Dumas, M., Rosa, M., Maggi, F., Mar-
rella, A., Mecella, M., Soo, A.: Automated discovery of process
models from event logs: review and benchmark. IEEE Trans.
Knowl. Data Eng. 31(4), 686-705 (2019). https://doi.org/10.1109/
TKDE.2018.2841877

Reisig, W.: Understanding Petri Nets: Modeling Techniques, Anal-
ysis Methods, Case Studies. Springer, Heidelberg (2013). https:/
doi.org/10.1007/978-3-642-33278-4

Kalenkova, A., van der Aalst, W., Lomazova, 1., Rubin, V.: Pro-
cess mining using BPMN: relating event logs and process models.
Softw. Syst. Model. 16, 1019-1048 (2017). https://doi.org/10.
1007/s10270-015-0502-0

Carmona, J., van Dongen, B., Solti, A., Weidlich, M.: Conformance
Checking: Relating Processes and Models. Springer, Cham (2018).
https://doi.org/10.1007/978-3-319-99414-7

van der Aalst, W.: Workflow verification: finding control-flow
errors using petri-net-based techniques. In: van der Aalst, W.,
Desel, J., Oberweis, A. (eds.) Business Process Management: Mod-
els, Techniques, and Empirical Studies. Lecture Notes in Computer
Science, vol. 1806, pp. 161-183. Springer, Heidelberg (2000).
https://doi.org/10.1007/3-540-45594-9_11

van der Aalst, W., van Hee, K., ter Hofstede, A., Sidorova, N.,
Verbeek, H., Voorhoeve, M., Wynn, M.: Soundness of workflow
nets: classification, decidability, and analysis. Form. Asp. Comput.
23, 333-363 (2011). https://doi.org/10.1007/s00165-010-0161-4
Barros, A., Dumas, M., ter Hofstede, A.: Service interaction pat-
terns. In: van der Aalst, W., Benatallah, B., Casati, F., Curbera,
F. (eds.) Business Process Management. Lecture Notes in Com-
puter Science, vol. 3649, pp. 302-318. Springer, Heidelberg (2005).
https://doi.org/10.1007/11538394_20

Bernardinello, L., Lomazova, I., Nesterov, R., Pomello, L.:
Soundness-preserving composition of synchronously and asyn-
chronously interacting workflow net components (2020). https://
arxiv.org/pdf/2001.08064.pdf

Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns:
Elements of Reusable Object-Oriented Software. Addison-Wesley
Professional, Boston (1994)

van der Aalst, W., ter Hofstede, A., Kiepuszewski, B., Barros, A.:
Workflow patterns. Distrib. Parallel Databases 14, 5-51 (2003).
https://doi.org/10.1023/A:1022883727209

de Alfaro, L., Henzinger, T.: Interface-based design. In: Broy, M.,
Griinbauer, J., Harel, D., Hoare, T. (eds.) Engineering Theories
of Software Intensive Systems, pp. 83—104. Springer, Dordrecht
(2005). https://doi.org/10.1007/1-4020-3532-2_3

Leemans, S., Fahland, D., van der Aalst, W.: Discovering block-
structured process models from event logs-a constructive approach.
In: Colom, J., Desel, J. (eds.) Application and Theory of Petri Nets
and Concurrency. Lecture Notes in Computer Science, vol. 7927,
pp- 311-329. Springer, Heidelberg (2013). https://doi.org/10.1007/
978-3-642-38697-8_17

Bernardinello, L., Mangioni, E., Pomello, L.: Local state refine-
ment and composition of elementary net systems: an approach
based on morphisms. In: Koutny, M., van der Aalst, W., Yakovlev,
A. (eds.) Transactions on Petri Nets and Other Models of Con-
currency VIII. Lecture Notes in Computer Science, vol. 8100, pp.
48-70. Springer, Heidelberg (2013). https://doi.org/10.1007/978-
3-642-40465-8_3

. Bernardinello, L., Lomazova, I., Nesterov, R., Pomello, L.:

Property-preserving transformations of elementary net systems

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

217.

28.

29.

based on morphisms. In: Transactions on Petri Nets and Other
Models of Concurrency X VI (ToPNoC). Springer (2022, to appear)

. Nesterov, R., Mitsyuk, A., Lomazova, I.: Simulating behavior of

multi-agent systems with acyclic interactions of agents. Proceed.
Inst. Syst. Program. RAS 30(3), 285-302 (2018). https://doi.org/
10.15514/ISPRAS-2018-30(3)-20

Buijs, J., van Dongen, B., van der Aalst, W.: On the role of fitness,
precision, generalization and simplicity in process discovery. In:
On the Move to Meaningful Internet Systems: OTM 2012. Lecture
Notes in Computer Science, vol. 7565, pp. 305-322. Springer, Hei-
delberg (2012). https://doi.org/10.1007/978-3-642-33606-5_19
Adriansyah, A.: Aligning observed and modeled behavior. Ph.D.
thesis, Mathematics and Computer Science (2014). https://doi.org/
10.6100/IR770080

van Dongen, B., de Medeiros, A., Verbeek, H., Weijters, A., van
der Aalst, W.: The ProM framework: a new era in process mining
tool support. In: Ciardo, G., Darondeau, P. (eds.) Applications and
Theory of Petri Nets 2005. Lecture Notes in Computer Science,
vol. 3536, pp. 444—-454. Springer, Heidelberg (2005). https://doi.
org/10.1007/11494744_25

Nesterov, R.: Compositional discovery of architecture-aware and
sound process models from event logs of multi-agent systems:
experimental data. (Version 1) [Data set]. Zenodo (2021). https://
doi.org/10.5281/zenodo.5830863

Giinther, C., van der Aalst, W.: Fuzzy mining - adaptive pro-
cess simplification based on multi-perspective metrics. In: Alonso,
G., Dadam, P., Rosemann, M. (eds.) Business Process Manage-
ment. Lecture Notes in Computer Science, vol. 4714, pp. 328-343.
Springer, Heidelberg (2007). https://doi.org/10.1007/978-3-540-
75183-0_24

Weijters, A., Ribeiro, J.: Flexible heuristics miner (FHM). In: 2011
IEEE Symposium on Computational Intelligence and Data Min-
ing (CIDM), pp. 310-317. IEEE (2011). https://doi.org/10.1109/
CIDM.2011.5949453

van der Werf, J., van Dongen, B., Hurkens, C., Serebrenik, A.: Pro-
cess discovery using integer linear programming. Fundam. Inform.
94(3-4), 387-412 (2009). https://doi.org/10.3233/FI1-2009-136
Bergenthum, R., Desel, J., Lorenz, R., Mauser, S.: Process mining
based on regions of languages. In: Alonso, G., Dadam, P., Rose-
mann, M. (eds.) Business Process Management. Lecture Notes in
Computer Science, vol. 4714, pp. 375-383. Springer, Heidelberg
(2007). https://doi.org/10.1007/978-3-540-75183-0_27

van der Aalst, W., de Medeiros, A., Weijters, A.: Genetic process
mining. In: Ciardo, G., Darondeau, P. (eds.) Applications and The-
ory of Petri Nets. Lecture Notes in Computer Science, vol. 3536,
pp- 48-69. Springer, Heidelberg (2005). https://doi.org/10.1007/
11494744 _5

Badouel, E., Bernardinello, L., Darondeau, P.: Petri Net Synthesis.
Springer, Heidelberg (2015). https://doi.org/10.1007/978-3-662-
47967-4

Badouel, E., Darondeau, P.: Theory of regions. In: Reisig, W.,
Rozenberg, G. (eds.) Lectures on Petri Nets I: Basic Models:
Advances in Petri Nets. Lecture Notes in Computer Science, vol.
1491, pp. 529-586. Springer, Heidelberg (1998). https://doi.org/
10.1007/3-540-65306-6_22

van der Aalst, W.: Relating process models and event logs — 21
conformance propositions. In: Proceedings of the International
Workshop on Algorithms and Theories for the Analysis of Event
Data 2018, CEUR Workshop Proceedings, vol. 2115, pp. 56-74.
CEUR-WS.org (2018)

van der Aalst, W., Gunther, C.: Finding structure in unstructured
processes: The case for process mining. In: Seventh International
Conference on Application of Concurrency to System Design
(ACSD 2007), pp. 3-12. IEEE (2007). https://doi.org/10.1109/
ACSD.2007.50

@ Springer

https://doi.org/10.1007/978-3-662-49851-4
https://doi.org/10.1007/978-3-662-49851-4
https://doi.org/10.1109/TKDE.2018.2841877
https://doi.org/10.1109/TKDE.2018.2841877
https://doi.org/10.1007/978-3-642-33278-4
https://doi.org/10.1007/978-3-642-33278-4
https://doi.org/10.1007/s10270-015-0502-0
https://doi.org/10.1007/s10270-015-0502-0
https://doi.org/10.1007/978-3-319-99414-7
https://doi.org/10.1007/3-540-45594-9_11
https://doi.org/10.1007/s00165-010-0161-4
https://doi.org/10.1007/11538394_20
https://arxiv.org/pdf/2001.08064.pdf
https://arxiv.org/pdf/2001.08064.pdf
https://doi.org/10.1023/A:1022883727209
https://doi.org/10.1007/1-4020-3532-2_3
https://doi.org/10.1007/978-3-642-38697-8_17
https://doi.org/10.1007/978-3-642-38697-8_17
https://doi.org/10.1007/978-3-642-40465-8_3
https://doi.org/10.1007/978-3-642-40465-8_3
https://doi.org/10.15514/ISPRAS-2018-30(3)-20
https://doi.org/10.15514/ISPRAS-2018-30(3)-20
https://doi.org/10.1007/978-3-642-33606-5_19
https://doi.org/10.6100/IR770080
https://doi.org/10.6100/IR770080
https://doi.org/10.1007/11494744_25
https://doi.org/10.1007/11494744_25
https://doi.org/10.5281/zenodo.5830863
https://doi.org/10.5281/zenodo.5830863
https://doi.org/10.1007/978-3-540-75183-0_24
https://doi.org/10.1007/978-3-540-75183-0_24
https://doi.org/10.1109/CIDM.2011.5949453
https://doi.org/10.1109/CIDM.2011.5949453
https://doi.org/10.3233/FI-2009-136
https://doi.org/10.1007/978-3-540-75183-0_27
https://doi.org/10.1007/11494744_5
https://doi.org/10.1007/11494744_5
https://doi.org/10.1007/978-3-662-47967-4
https://doi.org/10.1007/978-3-662-47967-4
https://doi.org/10.1007/3-540-65306-6_22
https://doi.org/10.1007/3-540-65306-6_22
https://doi.org/10.1109/ACSD.2007.50
https://doi.org/10.1109/ACSD.2007.50

374

R. Nesterov et al.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

Buijs, J.: Flexible evolutionary algorithms for mining structured
process models. Ph.D. thesis, Eindhoven University of Technology
(2014)

De Smedt, J., De Weerdt, J., Vanthienen, J.: Multi-paradigm pro-
cess mining: retrieving better models by combining rules and
sequences. In: On the Move to Meaningful Internet Systems: OTM
2014 Conferences. Lecture Notes in Computer Science, vol. 8841,
pp. 446—-453. Springer, Heidelberg (2014). https://doi.org/10.1007/
978-3-662-45563-0_26

de San Pedro, J., Cortadella, J.: Mining structured petri nets for
the visualization of process behavior. In: Proceedings of the 31st
Annual ACM Symposium on Applied Computing, p. 839-846.
ACM (2016). https://doi.org/10.1145/2851613.2851645
Kalenkova, A., Lomazova, 1., van der Aalst, W.: Process model
discovery: a method based on transition system decomposition. In:
Ciardo, G., Kindler, E. (eds.) Application and Theory of Petri Nets
and Concurrency. Lecture Notes in Computer Science, vol. 8489,
pp. 71-90. Springer, Cham (2014). https://doi.org/10.1007/978-3-
319-07734-5_5

Kalenkova, A., Lomazova, I.: Discovery of cancellation regions
within process mining techniques. Fundam. Inform. 133, 197-209
(2014). https://doi.org/10.3233/FI-2014-1071

van der Aalst, W., Kalenkova, A., Rubin, V., Verbeek, E.: Pro-
cess discovery using localized events. In: Devillers, R., Valmari, A.
(eds.) Application and Theory of Petri Nets and Concurrency. Lec-
ture Notes in Computer Science, vol. 9115, pp. 287-308. Springer,
Cham (2015). https://doi.org/10.1007/978-3-319-19488-2_15
van der Aalst, W., Berti, A.: Discovering object-centric petri nets.
Fundam. Inform. 175, 1-40 (2020). https://doi.org/10.3233/FI-
2020-1946

Stierle, M., Zilke, S., Dunzer, S., Tenscher, J., Karagegova, G.:
Design principles for comprehensible process discovery in process
mining. In: ECIS 2020 Proceedings. Research Papers. AIS eLibrary
(2020)

Best, E., Devillers, R., Koutny, M.: Petri Net Algebra. In: Brauer,
W., Rozenberg, G., Salomaa, A. (eds.) Monographs in Theoret-
ical Computer Science. An EATCS Series. Springer, Heidelberg
(2001). https://doi.org/10.1007/978-3-662-04457-5

Girault, C., Riidiger, V.: Petri Nets for Systems Engineering: A
Guide to Modeling, Verification, and Applications. Springer, Hei-
delberg (2003). https://doi.org/10.1007/978-3-662-05324-9

de Alfaro, L., Henzinger, T.: Interface theories for component-
based design. In: Henzinger, T., Kirsch, C. (eds.) Embedded
Software. Lecture Notes in Computer Science, vol. 2211, pp. 148—
165. Springer, Heidelberg (2001). https://doi.org/10.1007/3-540-
45449-7_11

Bednarczyk, M., Bernardinello, L., Caillaud, B., Pawtowski, W.,
Pomello, L.: Modular system development with pullbacks. In: van
der Aalst, W., Best, E. (eds.) Applications and Theory of Petri
Nets. Lecture Notes in Computer Science, vol. 2679, pp. 140-
160. Springer, Heidelberg (2003). https://doi.org/10.1007/3-540-
44919-1_12

Bernardinello, L., Monticelli, E., Pomello, L.: On preserving struc-
tural and behavioral properties by composing net systems on
interfaces. Fundam. Inform. 80(1-3), 31-47 (2007)

Padberg, J., Urbasek, M.: Rule-based refinement of petri nets: a sur-
vey. In: Ehrig, H., Reisig, W., Rozenberg, G., Weber, H. (eds.) Petri
Net Technology for Communication-Based Systems: Advances in
Petri Nets. Lecture Notes in Computer Science, vol. 2472, pp. 161-
196. Springer, Heidelberg (2003). https://doi.org/10.1007/978-3-
540-40022-6_9

Winskel, G.: Petri nets, algebras, morphisms, and compositionality.
Inform. Comput. 72(3), 197-238 (1987). https://doi.org/10.1016/
0890-5401(87)90032-0

Decker, G., Barros, A.: Interaction modeling using BPMN. In: ter
Hofstede, A., Benatallah, B., Paik, H.Y. (eds.) Business Process

@ Springer

46.

47.

48.

49.

50.

Management Workshops. Lecture Notes in Computer Science, vol.
4928, pp. 208-219. Springer, Heidelberg (2008). https://doi.org/
10.1007/978-3-540-78238-4_22

Campagna, D., Kavka, C., Onesti, L.: BPMN 2.0 and the service
interaction patterns: can we support them all? In: Software Tech-
nologies. Communications in Computer and Information Science,
vol. 555, pp. 3-20. Springer, Cham (2015). https://doi.org/10.1007/
978-3-319-25579-8_1

Decker, G., Puhlmann, F., Weske, M.: Formalizing service inter-
actions. In: Dustdar, S., Fiadeiro, J.L., Sheth, A.P. (eds.) Business
Process Management. Lecture Notes in Computer Science, vol.
4102, pp. 414-419. Springer, Heidelberg (2006). https://doi.org/
10.1007/11841760_32

van der Aalst, W., Mooij, A., Stahl, C., Wolf, K.: Service inter-
action: patterns, formalization, and analysis. In: Bernardo, M.,
Padovani, L., Zavattaro, G. (eds.) SFM 2009: Formal Methods for
Web Services. Lecture Notes in Computer Science, vol. 5569, pp.
42-88. Springer, Heidelberg (2009). https://doi.org/10.1007/978-
3-642-01918-0_2

Bernardinello, L., Lomazova, 1., Nesterov, R., Pomello, L.: Com-
positional discovery of workflow nets from event logs using
morphisms. In: Proceedings of the International Workshop on
Algorithms and Theories for the Analysis of Event Data 2018,
CEUR Workshop Proceedings, vol. 2115, pp. 23-38. CEUR-
WS.org (2018)

Nesterov, R., Lomazova, I.: Asynchronous interaction patterns for
mining multi-agent system models from event logs. In: Proceedings
of the MACSPro Workshop 2019, CEUR Workshop Proceedings,
vol. 2478, pp. 62-73. CEUR-WS.org (2019)

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

Roman Nesterov is a lecturer
at the Faculty of Computer Sci-
ence, HSE University, Russia. In
2021, he finished joint postgrad-
uate studies at the HSE Univer-
sity and the University of Milano-
Bicocca, Italy. In 2017, he received
the M.Sc. degree in software engi-
neering from HSE University. His
research interests are the theory
of concurrency, Petri nets, process
mining, and formal methods for
modeling multi-agent information
systems.

https://doi.org/10.1007/978-3-662-45563-0_26
https://doi.org/10.1007/978-3-662-45563-0_26
https://doi.org/10.1145/2851613.2851645
https://doi.org/10.1007/978-3-319-07734-5_5
https://doi.org/10.1007/978-3-319-07734-5_5
https://doi.org/10.3233/FI-2014-1071
https://doi.org/10.1007/978-3-319-19488-2_15
https://doi.org/10.3233/FI-2020-1946
https://doi.org/10.3233/FI-2020-1946
https://doi.org/10.1007/978-3-662-04457-5
https://doi.org/10.1007/978-3-662-05324-9
https://doi.org/10.1007/3-540-45449-7_11
https://doi.org/10.1007/3-540-45449-7_11
https://doi.org/10.1007/3-540-44919-1_12
https://doi.org/10.1007/3-540-44919-1_12
https://doi.org/10.1007/978-3-540-40022-6_9
https://doi.org/10.1007/978-3-540-40022-6_9
https://doi.org/10.1016/0890-5401(87)90032-0
https://doi.org/10.1016/0890-5401(87)90032-0
https://doi.org/10.1007/978-3-540-78238-4_22
https://doi.org/10.1007/978-3-540-78238-4_22
https://doi.org/10.1007/978-3-319-25579-8_1
https://doi.org/10.1007/978-3-319-25579-8_1
https://doi.org/10.1007/11841760_32
https://doi.org/10.1007/11841760_32
https://doi.org/10.1007/978-3-642-01918-0_2
https://doi.org/10.1007/978-3-642-01918-0_2

Discovering architecture-aware and sound process...

375

Luca Bernardinello graduated in
Computer Science at the Univer-
sity of Milano in 1986. Since then,
he has worked at the University
of Milano, at IRISA-Rennes, at
the Joint Research Center of the
European Commission. Since 2001,
he is a researcher at the Depart-
ment of Informatics, Systems and
Communications (DISCo), Univer-
sity of Milano-Bicocca, Italy. His
research activity focuses on the
theory of concurrency, and of for-
mal models of concurrent systems.
In the field of Petri nets, he has
been working on the theory of regions and on the synthesis problem.

R Irina Lomazova is a professor
at the Faculty of Computer Sci-
ence, HSE University, Russia. She
received the Ph.D. degree in math-
ematics from Sobolev Institute of
Mathematics, Russia in 1982 and
the Doctor of Science degree in
theoretical informatics from Dorod-
nitsyn Computing Centre, Russia
in 2002. Her research interests
include formal methods for mod-
eling and analysis of distributed
multi-agent systems and process
mining.

Lucia Pomello is an associate
professor at the Department of
Informatics, Systems and Com-
munications (DISCo), University
of Milano-Bicocca, Italy. Gradu-
ated in mathematics, she received
the Ph.D. degree in computer sci-
ence from the Universities of Mil-
ano and Torino in 1988. Her rese-
arch interests mainly include for-
mal methods for the analysis and
design of distributed systems, the
theory of concurrency and of Petri
nets.

@ Springer

	Discovering architecture-aware and sound process models of multi-agent systems: a compositional approach
	Abstract
	1 Introduction
	2 Theoretical backgrounds of compositional process discovery
	2.1 Event logs and log projections
	2.2 Generalized workflow nets
	2.3 Composition of GWF-nets

	3 Framework of proposed interface patterns
	3.1 Classification
	3.2 Informal representation
	3.3 Formal specification

	4 Proposed algorithm for compositional process discovery
	4.1 Algorithm
	4.2 Refinement of GWF-nets
	4.3 The first correctness theorem
	4.4 The second correctness theorem

	5 Experimental evaluation
	5.1 Layout of experiments
	5.2 Conformance checking
	5.2.1 Neighboring transitions

	5.3 Experimental results
	5.3.1 Pattern inconsistencies: the case of IP-2
	5.3.2 Precision drop: the case of IP-7

	5.4 Technical support of experiments
	5.5 Limitations of interface patterns

	6 Related works
	7 Conclusions and future work
	References

