
Software and Systems Modeling (2022) 21:2243–2266
https://doi.org/10.1007/s10270-021-00968-w

THEME SECT ION PAPER

Modeling and reasoning about uncertainty in goal models: a
decision-theoretic approach

Sotirios Liaskos1 · Shakil M. Khan2 · John Mylopoulos3

Received: 2 November 2020 / Revised: 30 November 2021 / Accepted: 15 December 2021 / Published online: 11 January 2022
© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022

Abstract
Goal models have been a popular subject of study by researchers in requirements engineering, due to their ability to capture
and analyze alternative solutions through which a software system can achieve business objectives. A plethora of analysis
methods for automated identification of optimal alternatives have been proposed. However, such methods often assume an
idealized reality where all tasks are successfully performedwhen attempted and all goals are eventually satisfied with certainty
when pursued according to a solution. In reality, some tasks run the risk of failure while others produce chance outcomes. In
this paper, we extend the standard goal modeling language to allow representation and reasoning about both uncertainty and
preferential utility in goals. Tasks are extended to allow for probabilistic effects and preferential statements of stakeholders are
captured and translated into utilities over possible effects. Moreover, solutions are not mere specifications (functions, quality
constraints, and assumptions), but rather policies, that is sequences of situational action decisions, through which stakeholder
goals can be fulfilled. An AI reasoning tool is adapted and used for identifying optimal policies with respect to the value they
offer to stakeholders measured against their probability of failure. Evaluation of the approach includes a simulation study and
scalability experiments to assess the applicability of automated reasoning for larger problems.

Keywords Goal modeling · Markov decision processes (MDP) · DT-Golog · Golog

1 Introduction

Goal models have long been studied as tools for capturing,
representing, and organizing stakeholder intentions within a
variety of application contexts such as software engineering
and business analysis [3,10,52]. One of their most appealing
features is their ability to show how top-level strategic objec-

Communicated by J. Araujo, A. Moreira, G. Mussbacher, and P.
Sánchez.

B Sotirios Liaskos
liaskos@yorku.ca

Shakil M. Khan
Shakil.Khan@uregina.ca

John Mylopoulos
jm@cs.toronto.edu

1 School of Information Technology, York University, 4700
Keele Street, Toronto, ON, Canada

2 Department of Computer Science, University of Regina, 3737
Wascana Parkway, Regina, SK, Canada

3 Department of Computer Science, University of Toronto, 214
College St, Toronto, ON, Canada

tives of stakeholders can be analyzed into low-level actions
that can be performed for the fulfillment of these objectives
[40]. Moreover, they allow the concise representation of high
degrees of variability in the ways by which the low-level
actions fulfill top-level objectives, capturing large numbers
of interrelated decisions. Several automated reasoning tech-
niques have been proposed for computer-aided analysis of
such variability of solutions [2,19,31,34,43] (see also [24]
for a survey). Such tools search for groups of actions that
both fulfill high-level functional goals and at the same time
bring about optimal value concerning criteria of interest.

Typically in goal modeling and related techniques for
automated reasoning, actions are deterministic, that is, they
are assumed to bring about one and only one desired effect
with certainty every time they are performed. However, in
reality, actions are rarely deterministic. Instead, they bring
about different outcomes with different probabilities. Some
actions, such as sending a message, or saving a document,
have a unique intended outcome but, with some probability,
they may fail to deliver it due to human or system errors.
Other actions, such as making a monetary investment or
participating in a competition such as an election, embody

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10270-021-00968-w&domain=pdf
http://orcid.org/0000-0001-5625-5297
http://orcid.org/0000-0003-0140-3584

2244 S. Liaskos et al.

non-determinism by design in that they can bring about dif-
ferent outcomes, each with different probability, desirability,
and qualities. Given such a non-deterministic interpretation
of actions, the value of performing the action concerning spe-
cific criteria depends on the outcome of the action rather than
the mere fact that it has been attempted.

In this paper, we propose an extension of the standard
iStar 2.0 [10] modeling notation to model and automatically
reason about optimal solutions to a requirements problem in
the presence of non-deterministic actions. To reason about
optimality, we need solutions that are not mere specifica-
tions, i.e., functions, quality constraints, and assumptions
for a system-to-be, but rather policies, that is, choices of
actions to be taken under given circumstances in order to ful-
fill stakeholder goals. Accordingly, in this work, a solution
to a requirements problem is a policy rather than a specifica-
tion. The iStar 2.0 concepts for modeling agent action, tasks,
are accompanied by effects, which are special constructs
that describe alternative outcomes that emerge from their
performance. Higher-level goal and quality criteria satisfac-
tion is defined through the use of AND/OR-decompositions
and contribution links based on such effects. Diagrammatic
and tabular representations are proposed for representing
probabilities and values of effects and combinations thereof.
These extensions allow the translation of the resulting model
into DT-Golog, a language for describing decision-theoretic
action theories [48,49]. Through DT-Golog’s automated rea-
soning tool, we can identify policies using tasks from the
goalmodel thatmaximize expectedvalue, taking into account
both the probabilities of task outcomes and the values of these
outcomes with respect to multiple criteria and the relative
importance of such criteria. The reasoning exercise is most
useful for design-time exploration and analysis of domains
featuring complex actor operations and is aimed at improved
understanding of the domain and increased accuracy of the
model.We demonstrate the extension and the reasoning prac-
tice using an example inspired by the iStar 2.0 guide. To
evaluate and further explore the technique we perform simu-
lation and sensitivity analyses, as well as a scalability study.

The paper extends our earlier publication on the mat-
ter [33] in several ways including (a) complete treatment
and presentation of the translation from Goal Models to
DT-Golog, (b) a proposal to diagrammatically present the
proposed extensions, (c) an exploration of probability-
maximizing (in addition to just expected utility-maximizing)
reasoning, (d) a new case and its analysis and validation
through simulation, (e) an approach to performing sensitivity
analysis for utility elicitation, (f) new, extended tool scalabil-
ity analysis. The translation details specifically allow further
independent validation, tool development, and extension of
the framework by the research community.

The paper is organized as follows. In Sect. 2, we review
the goal modeling language we adopt and motivate the pro-

posed extensions and techniques. In Sect. 3, we present the
proposed extension, while in Sect. 4, we discuss the prac-
tice of automatically reasoning with it. Section 5 provides
details of the translation from the extended goal model to
DT-Golog, and in Sect. 6, we describe the steps we took
to further evaluate and understand the proposed technique,
including simulation, sensitivity, and scalability analysis.We
present related work in Sect. 7 and conclude in Sect. 8.

2 Background and running example

2.1 Goal models

The goal models we consider in this work are based on the
i* family [3,52] and specifically the latest iStar 2.0 standard
[10]. An example of such a model can be seen in Fig. 1.
The model in the figure is inspired by the guiding example
of the iStar 2.0 document [10]. In that model, the intentions
and tasks related to booking and securing reimbursement
for a trip by a research student are modeled. Here we con-
sider a more elaborate case of reimbursement. Specifically,
the researcher in question is assumed to have a last-minute
opportunity to attend a researchmeeting. The researcher con-
templates whether attending that meeting is worth the time
and effort to travel there and decides that she would go only
if she secures a reimbursement for that. However, given that
this is last-minute, she should first book the tickets and then
apply for the authorization needed for the reimbursement.
Such authorization is not certain. She applies for it by fill-
ing a form and also adding a short research proposal and then
submits it to either a committee or the head of the department,
who operate on different budgets. Applying through the com-
mittee is, in some cases, more likely to lead to an approval but
takes more time. Specifically, if the application is filled using
a paper form, it is reviewed by a different, more lenient sub-
committee, compared to when it is filled online. That option
is better than letting the head of the department approve it,
as the latter manages a smaller budget but still receives many
requests. On the other hand, having the entire committee
know the actor’s research endeavors may be uncomfortable
to the researcher.

In the model, goals (e.g., ‘Tickets Booked’), that is, states
of affairs desired by actors (represented using circular ele-
ments, e.g., ‘Researcher’), are modeled through oval-shaped
elements and recursively refined into subgoals and eventu-
ally tasks [10]. The latter, depicted through hexagon-shaped
elements represent actions that an actor wants to be exe-
cuted to achieve the goals as per the refinement structure,
such as ‘Book Refundable Tickets’ in the figure. The cloud-
shaped elements are qualities (also: quality goals, we use the
two terms interchangeably), i.e., attributes for which an actor
desires some level of achievement. Qualities can be precise,

123

Modeling and reasoning about uncertainty in goal models: a decision-theoretic approach 2245

Fig. 1 Goal model

i.e., allow for readily measurable and clear-cut criteria of
achievement, such as ‘Errors reduced by 10%’ or imprecise
as in ‘Reduce Errors’—both types are relevant in our work.
Modeling goals in the absence of a precise definition for their
satisfaction reflects the need to represent and reason about
qualities of options in the early stages of analyzing a problem
and/or when getting objective evidence of satisfaction is not
possible.

Goal refinement is represented through AND-refinement
and OR-refinement links. The AND-refinement implies that
every subgoal of the parent goal must be fulfilled for the par-
ent goal to also be considered fulfilled. The OR-refinement
signifies that fulfillment of one of the subgoals suffices for
assuming that the parent goal is fulfilled aswell. Furthermore,
quality goals can be the targets of contribution links, labeled
with help or hurt. A help (respectively, hurt) link signifies
that if the origin of the link is satisfied or performed, this
constitutes evidence of satisfaction (resp. denial) of the des-
tination. Contribution links offer a rough indication of how a
choice of an option within an OR-decomposition affects our
belief about the satisfaction of a quality goal. For example,
an alternative that includes {nRef,onl,head} (referring
to the abbreviations in the diagram of Fig. 1) is preferable
if we are interested in the goal ‘Reduce Cost,’ due to the
presence of nRef but not good for ‘Success Chance’ due
to the presence of head. Thus, depending on our priority

between those two high-level goals, the above or some other
alternative is suitable for the top goal.

Note finally that, to remind us that all the above intentional
elements are desired by an actor (‘Researcher’), the elements
are included within the scope of the actor boundary associ-
ated with the specific actor.

2.2 Probabilistic effects of tasks

Traditionally, goal models do not consider uncertainty con-
cerning task executions and their impact on goal fulfillment.
In reality, however, tasks do not always have the same out-
come. Some tasks which have a unique success outcomemay
fail, and other tasks have multiple possible outcomes each
with a different probability. Recognizing that tasks are of
this nature, requires us to adopt a different view of how we
model and reason with them within goal models.

Let us go back to our example of Fig. 1 and explore how
probabilities become relevant, by also adding detail to the
example. Any task in the model such as ‘Book Refundable
Tickets’ always carries a probability of not being performed
properly for a variety of reasons. For example, the researcher
may have thought they booked it but they forgot to finish the
booking, they may have booked the wrong flight or time,
or the company promising the booking may not deliver. In

123

2246 S. Liaskos et al.

consequence, ‘Tickets Booked’ and, by extension, ‘Travel
Organized’ are not guaranteed to succeed.

Alternative tasks ‘Fill in paper form’ and ‘Fill in online
form’ also face the risk of failure for the application to reach
its destination. In addition, while the actor can generally con-
sider online forms to bemore efficient, thatwill not turn out to
be the case in the presence of errors and problemswhile com-
pleting it, including an unavailable server, lost passwords,
etc. So the convenience of filling in an online form is only
enjoyed with a certain probability; frustration and delays are
experiencedwith a different probability. In that case, filling in
a paper form may be more convenient, even when problems
emerge that require help from the appropriate administrative
officer. In other words, contributions to qualities can depend
on the possible outcomes of the task fromwhich the contribu-
tion originates, in a way that, in turn, affects the preferability
of the task against other tasks.

While the previous tasks may unintentionally fail due to,
e.g., error and mishaps, tasks ‘Committee Authorizes’ and
‘Head-of-Dept. Authorizes’ are expected to succeed or fail
with a probability, by the nature or design of the underlying
process or system. For example, both authorization tasksmay
assume a fixed success rate. Importantly, the probabilities of
success may depend on probabilistic events captured else-
where in themodel. In our case, recall that paper applications
are more likely to be accepted than online applications when
sent to a committee. Online applications may have a better
fate with the head of the department. In light of this infor-
mation, the relationship between the choice of authorization
body and ‘Success Chance’ becomes more complex.

Note, finally, the choice between buying refundable
and non-refundable tickets. The task ‘Book Non-refundable
Tickets’ helps ‘Reduce Cost’ based on the idea that non-
refundable tickets are less expensive. In practice, however,
the dilemma between refundable and non-refundable could
be a comparisonbetween twomorenuanced refund schedules
(e.g., 50% refund for a 20% lower purchasing price versus
80% refund at original price), in a way that decision of which
choice affects ‘Reduce Cost’ the most depends on what is the
likelihood that a refund will be needed, even when the actor
is willing to take a risk.

To be able to express and reason with probabilistic effects
of tasks and the impact of various outcomes on the sat-
isfaction of goals and qualities, we introduce a series of
decision-theoretic extensions, presented in the next section.

3 Goals, probabilities, and utilities

3.1 Overview

We now turn our focus to the extensions we introduce to the
standard goal modeling language. The core of an extended

model contains a set of tasks T , a set of goals G and a set of
quality goals O as per the iStar 2.0 specification [10]. The
following concepts are then introduced:

– A set D of domain predicates.
– A set Et of effects for each task t ∈ T ; the effects are

individuals or sets of elements drawn from D.
– A set Pt of effect profiles for each task t ∈ T , called the

effect group of t . An effect profile is an effect augmented
with a probability value and a condition under which the
value holds.

– A set Uo of utility profiles for each quality o ∈ O, called
the utility group of o. A utility profile contains a utility
value with respect to o and the condition, a formula over
D, under which the utility value holds.

– Effect groups and utility groups can be represented dia-
grammatically or tabularly. In the latter format, they take
the form of effect tables and utility tables, respectively.

A metamodel demonstrating the new concepts and how
they relate is shown in Fig. 2. We next describe the above in
more detail.

3.2 Domain predicates and probabilistic effects

Our first concern is to introduce constructs to represent what
is true in the environment before, after, or independent of
the performance of tasks. The set of domain predicates D
is introduced for that purpose. Domain predicates typically
represent the fact that, in the process of attempting to fulfill
the root goal, a task has been performed and an effect has
occurred as the result of such performance. For example,
we could use domain predicates ‘Non-Refundable Tickets
Booked,’ ‘Paper Submitted,’ or ‘Committee Denied Autho-
rization’ to denote outcomes of tasks ‘Book Non-Refundable
Tickets,’ ‘Fill in paper Form’ and ‘Committee Authorizes.’
However, any kind of contextual information can also be
captured and used for reasoning irrespective of tasks, such
as ‘Travel Season High,’ ‘Number of Applicants High,’ ‘Actor
Dislikes Computers,’ ‘University Closed.’ The space S = 2D

of all possible combinations of truth values of the set of all
domain predicates D, represents the space of all possible
stages of a process toward fulfilling the root goal—though
not all such stages are necessarily reachable given temporal
constraints.

Tasks have the capability of causing changes to domain
predicates effectively resulting in transitions within S. As we
argued above, however, this rarely happens in a deterministic
way. Rather, each task t has the potential of affecting the truth
value of a number of domain predicates Qt ⊆ D and each
with a different probability. We call these domain predicates
effect predicates of t . The probabilistic effects (or simply
effects) of tasks are tuples et = (t,qt) forming a set Et ,

123

Modeling and reasoning about uncertainty in goal models: a decision-theoretic approach 2247

Fig. 2 Metamodel showing the
extensions. Key concepts are
annotated with the symbol used
in the translation
Algorithms 1, 2, 3, and 4 to
denote the set of the concept
instances in a specific model. In
the algorithms, subscripts are
used to denote specific subsets,
e.g., Et is the set of effects
connected to task t . The
complete iStar 2.0 metamodel
can be found in the iStar 2.0
Language Guide [10] Effect Profile

Priority
Table

1

0..1

1..*

1..*

1..*

1 1

1

1..*

1
1..* Utility Group

Domain
Predicate

Effect Group

Quality

includes

includes

describes effects

Fluent

1

1

Nature
Action

1

1

1

1

Stochastic
Action

1 2..*

Effect

1..*

1

Task

iStar 2.0 Concepts
Decision Theoretic Extension Concepts
DT-Golog Concepts

Legend

Utility Profile

0..*

1..*

1..*

1

1..*

Goal

Procedure

1

0..*

1

1

0..*
1

can have

where t is the task in question, qt a set of elements from Qt

that the effect makes true leaving all other elements of Qt

unaffected.
For example, task t = ‘Book Refundable Tickets’ is associ-

ated with two effect predicates Qt = {‘Ref. Tickets Booked’,
‘Ref. Tickets Failed to Book’}, representing success and
failure, respectively. Upon performance of the task, effects
e1t = (t, {‘Ref. Tickets Booked’}) and e2t = (t, {‘Ref. Tickets
Failed to Book’})mayhappenwith different probabilities and
turn the domain predicates mentioned in the effect true, leav-
ing the rest of the domain predicates unaffected. Note that,
for clarity and uniformity, we represent negative effects with
designated predicates (e.g., ‘Task Failed’) rather than nega-
tions of success predicates (such as¬‘Task Succeeded’). Our
formalization ensures that only one of these effects is realized
after the occurrence of the associated task.

To associate probabilities with effects we use effect pro-
files. An effect profile is a triple (et , φct , p), signifying that,
upon performance of t , effect et will happen with probabil-
ity p if φct is true, where φct is a condition formula built
from a subset of predicates Ct ⊂ D that are relevant to
the probability definition of effects for t ; we call these the
condition predicates of t . Thus, in the above example t =
‘Book Refundable Tickets’ is associated with two effect pro-
files, (e1t , true, 0.95), (e

2
t , true, 0.05). The effect profilesPt

associated with a task t are grouped together to signify this
association, forming an effect group. The probabilities of the
effect profiles of an effect group that share the same condi-
tion formula should add up to 1; as is the case in the above
example.

An additional component of effect groups associated with
task t is the attainment formula φatt

t , constructed using

elements from Qt . The attainment formula represents the
conditions under which the tasks can be considered to be
successfully performed, in a way that can inform the satis-
faction status of the parent and other high-level goals. Thus
the attainment formula of task t = ‘Fill in paper form’ is
φatt

t = ‘Paper Submitted’ or ‘Paper Submitted With Prob-
lems.’

Let us now see how we can diagrammatically visualize
effects, effect profiles, and effect groups and map them with
tasks. For effects we use beliefs, a construct borrowed from
the original GRL language [51]. These are represented as
elliptical shapes in the effect model of Fig. 3. Each belief
element represents an effect and the elliptical shape contains
the set qt ∈ 2Qt the effect concerns; in the example, they all
contain one predicate. Individual effects are grouped together
as effect profiles into an effect group through a connection
link to a common solid dot and an annotation on that link
signifying the corresponding probability. Such representa-
tion of effect groups is preferable when Ct is empty, hence
φct = true. The association of the task with its effect group

is signified through effect links
eff−→ drawn from the task to

such an effect group.Attainment formulae can be represented
diagrammatically aswell. In the example of Fig. 3, color cod-
ing of the outline of the belief shapes signify which effects of
the exclusive disjunction are considered to be task attaining,
i.e., their satisfaction implies satisfaction of the attainment
formula.

Whenever Ct is non-empty, meaning that the probabili-
ties of the effects of a task depend on the truth status of other
domain predicates, effect groups are difficult to represent dia-
grammatically. In that case, we use effect tables to represent
effect groups. In Fig. 4, such tables are shown. Each table

123

2248 S. Liaskos et al.

Fig. 3 Effect model for tasks

mentions the task t it concerns, the set of affected domain
predicates Qt (‘Affects’), and the set of condition predicates
Ct (‘Depends on’). The table is populated with an exhaus-
tive list of effect profiles, i.e., combinations of φct formulae,
predicate sets qt constituting effects, and the probability p
of each. The tables also contain attainment formulae when
diagrammatic representation thereof is difficult.

To see a complete example of an effect table, consider task
‘Committee Authorizes.’ The task introduces a complex set
of effects with a non-empty Ct in which the probability that
the committee grants the authorization depends on whether
it was an online or paper form. Due to its complexity, the
resulting effect group is difficult to be represented diagram-
matically and, hence, a table-looking annotation is added in
Fig. 3, to inform of the existence of a detailed effect table out-
side the diagram. That effect table is shown in Fig. 4b. The
table shows how, for example, the effect {‘Cmt. Granted’} is
different when ‘Fill in paper form’ is performed (0.9) from
when ‘Fill in online form’ has been performed (0.5). Note
that, for brevity, instead of condition predicates, the names
of tasks are used in the table, implying reference to the attain-
ment formula of the task. Thus, in our case condition ‘Fill
in paper form’ stands for its attainment formula ‘Paper Sub-
mitted’ or ‘Paper Submitted with Problems,’ as per Fig. 4a.

Finally, two additional kinds of links are introduced to the

goal diagram, the
pre−−→ link and the

npr−−→ link—the former
seen in both Figs. 1 and 3. The links can be drawn from any

goal or task to any other goal or task, provided that origin
and destination are not part of the same path to the root. The
former link, which we call precedence link, indicates that
the destination task (resp. goal) cannot be performed (resp.
attempted) unless the origin has been performed (task) or
satisfied (goal)—as per the attainment formula. A goal is
considered attempted, if any of the leaf-level tasks that have
that goal as an ancestor is executed. Thus, a precedence link
toward a goal is a shorthand for multiple precedence links
toward each of the leaf-level tasks under that goal. Likewise,

the negative precedence link
npr−−→ indicates that the destina-

tion task (resp. goal) cannot be performed (resp. attempted)
if the origin has been performed (task) or satisfied (goal).

3.3 Probabilistic goal satisfaction, utilities, and
preferences

Interpreting tasks as probabilistic implies that overlaying
goals, which tasks are meant to satisfy, are also achieved by
a certain probability. Satisfaction of hard-goals is defined
by way of constructing conjunctions and disjunctions of
leaf-level task attainment formulae, in a way that mir-
rors the AND/OR-refinement structure. For example, each
of ‘Application Prepared’ and ‘Authorization Signed’ has
a probability of success equal to the probability of the
attainment formulae of the tasks chosen to perform for ful-
filling each of the goals. Satisfaction of goal ‘Authorization

123

Modeling and reasoning about uncertainty in goal models: a decision-theoretic approach 2249

(a) (b)

(c)

(e)

(d)

Fig. 4 Examples of effect tables [(a) and (b)], utility tables [(c) and (d)] and priority table (e)

Obtained,’ in turn, is the product of the probabilities calcu-
lated for the aforementioned goals. Traversing the AND/OR
tree upward, we see that the root goal, e.g., ‘Travel Orga-
nized’ in our case, has a probability of success based on
the choices made at the OR-decompositions, which, in turn,
imply the choice of different tasks at the leaf level and, as
such, different probabilities of success at that level.

Satisfaction of quality goals is also assumed to depend on
the outcome of the tasks rather than the mere fact that they
were attempted. For example, it is relevant to say that book-
ing non-refundable tickets hurts ‘Avoid Money Loss,’ if we
assume that the purchasing of such tickets was successful. If
ticket purchase actually fails (e.g., the travel agent lost the
order), money loss does not occur, and the contribution is not
relevant. As another example, not shown in the figure, it may
be known to the agent that flying with company A is a gam-
ble comfort-wise: sometimes it is an extremely comfortable
experience, while other times it is not. Hence, task ‘Book
with Company A’ makes a different contribution to quality
goal ‘Travel Comfort’ depending on the effect (e.g., ‘Flight
Comfortable’ vs. ‘Flight Uncomfortable’) in a way that it is

difficult to draw the contribution without explicating these
effects.

In the effect model of Fig. 3, the original quality goals of
Fig. 1 have been refined, replaced, and/or abstracted and a
different kind of contribution links now connect effects or
effect groups with quality goals. To represent the impact of
task effects to a quality goal o we define the utility func-
tion uo of the goal to be a mapping from a combination of
truth values of domain predicates to the real interval [0,1]:
uo : S �→ [0, 1]. Naturally, a subset Co ⊆ D of the domain
predicates affects the value of uo. Thus, each combination
of truth values for the elements from Co implies a differ-
ent satisfaction value for the quality goal in question, 1.0
associated with full satisfaction and 0.0 associated with no
satisfaction. We represent uo as a collection Uo of utility pro-
files, i.e., triples (o, φi

co
, ui

o) of the quality goal o in question,
the truth value combination of domain predicates from Co

in the form of a formula φi
co
, and a utility value ui

o. We call
such a collection of utility profiles, utility group.

In simple cases in which Co consists of a small set of
mutually exclusive predicates, the corresponding utility pro-

123

2250 S. Liaskos et al.

files can be represented diagrammatically as in Fig. 3. A
special kind of links, utility links are utilized to represent a
utility profile, decorated with the utility value of quality goal
o when the origin effect or effect group is true. For example,
for quality goal ‘Privacy,’ the utility link from the effect group
of o = ‘Committee Authorizes’ is decorated with 0.2, mean-
ing that uo = 0.2 if ‘Committee Authorizes’ is performed
irrespective of the actual effect. Note that although utility
links are akin to contribution links, we prefer here to treat
them as a separate construct due to their specific semantics
and quantitative labeling.

When larger numbers of predicates affect uo, diagram-
matic representation is difficult. Thus, in a way similar to
that of effect tables, we define utility tables in which the util-
ity profiles of uo are exhaustively listed. In Fig. 4c and d,
we see examples of such utility tables for goals ‘Efficiency
[Auth Choice],’ which is also represented diagrammatically
in Fig. 3, and ‘Reduce Cost’ which is too complex to be
represented diagrammatically.

Through utility tables we are able to map each state s ∈ S
to a utility value uo(s)with respect to each quality goal o. To
obtain a total utility value U for each state in S, the individ-
ual uo’s need to be combined to one global quality value. We
follow the preference specification approach introduced in
our earlier work [30,31,35] and combine individual utilities
through the formation of (nested, if needed) linear combina-
tions.

Given a set of quality goals o1, o2, . . . , oi of interest and
w1, w2, . . . , wi weights reflecting their relative importance,
the total quality U of a state s is simply U (s) = ∑

i wi ×
uoi (s). One way to represent such combinations is through
a third kind of table, priority tables, as seen in Fig. 4e. For
example, given the table, In a state s in which:

uReduceCost(s) = 0.7

uEfficiency[ApplicationPrep](s) = 0.2

uEfficiency[AuthChoice](s) = 0.1

uAvoidMoneyLosses(s) = 1.0

uPrivacy(s) = 0.8

... the total utility is:

U (s) = 0.3 · uReduceCost(s)

+ 0.2 · [0.9 · uEfficiency[App.Prep](s)
+ 0.1 · uEfficiency[AuthChoice](s)]
+ 0.3 · uPrivacy(s) + 0.2 · uAvoidMoneyLosses(s)

= 0.3 · 0.7 + 0.2 · [0.9 · 0.2 + 0.1 · 0.1]
+ 0.3 · 0.8 + 0.2 · 1.0

= 0.688

As we discuss below, hierarchies of such priority distri-
butions can be elicited following, e.g., AHP-like pairwise
comparisons, as we have also shown in [30], or other tech-
niques [45].

4 Reasoning with the extendedmodel

With the goal model appropriately extended we are now in
the position to automatically reason about optimal solutions
of the goal tree on the basis of maximizing global utility,
as specified in the utility and priority tables, taking into
account the probability by which the utility will be observed
as per the probability tables. For this purpose, we adopt DT-
Golog [9,49], a tool that combines Golog-style [47] action
theory-based high-level program execution and reasoning
with Markov Decision Processes (MDPs) [50] to allow for
the generation of policies thatmaximize cumulative expected
utility.

At the level of the extended goal model, we can think of a
policy as a conditional task sequence, dictating what choice
of action an agent should make at each stage of a process of
fulfilling the root goal. Specifically a policy π would have
the following form:

π = t; if (t′s outcome = e1
t) then π1

else if (t′s outcome = e2
t) then π2

. . .

else if (t′s outcome = ek
t) then πk

where π1, . . . , πk are policies or elementary tasks t , the lat-
ter being either a task from the goal model, or one of two
reserved instructions stop, denoting execution failure, or
nil meaning the executing agent should just do nothing.
The above is simply a concise representation of a DT-Golog
policy that the DT-Golog reasoner returns when given the
appropriate translation of the corresponding extended goal
model. The policy can then be given to an executing agent to
allow such agent decide what action to perform in each stage
of a process to fulfill the root goal. The policy maximizes
cumulative expected utility in a sense that repeated policy-
compliant executions bring about, on average, higher utility
than repeated executions of any other policy.

Let us consider the model of our example as extended
in Fig. 3 and the tables in Fig. 4. For these specific num-
bers (Scenario 1) DT-Golog will return the top left policy of
Fig. 5, where the conditional task sequence constituting the
policy is represented graphically. The policy implies that, in
repeated occurrences of the need to fulfill the root goal,when-
ever there is a choice for booking the tickets, the researcher
should book refundable ones, whenever there is a choice of
mode of submission, she will submit the application online

123

Modeling and reasoning about uncertainty in goal models: a decision-theoretic approach 2251

and whenever there is a choice to select authorization body,
shewill choose the head of the department.With this strategy,
her probability of succeeding (i.e., having a ticket, a success-
fully submitted application, and the authorization, as per the
root goal decomposition) would be 0.66 and the cumulative
expected utility is 0.55. The 1.0 − 0.66 = 0.34 probability
refers to any combination of task performances that can go
wrong, including not being able to book the ticket, having the
application lost, and having the authorization request denied.

If her goal was exclusively minimizing costs, we would
update the priority table so that Reduce Costs has weight 1.0
making all other weights 0.0 (Scenario 2). In that case, the
output is the policy on the top right of Fig. 5: the actor would
buy a non-refundable ticket and then apply through paper
form and have the authorization granted by a committee.
The probability of success is now higher at 0.77, thanks to
seeking authorization from a committee using a paper form.
This explains the reasoner’s confidence to recommend a non-
refundable ticket. The expected utility is the same number,
0.77, as the value of the specific outcome—if we do not
normalize for its probability of occurrence—is 1.0. However,
the actor may still want to minimize the loss from having the
reimbursement request denied. By reducing Reduce Costs’s
weight to 0.7 and adding weight 0.3 to Avoid Loss Possibility
(Scenario 3), the optimal becomes the one seen on the bottom
left of Fig. 5,which is equally likely to succeed butwith lower
expected utility, due to the risk-averse choice. In other words,
in repeated executions of the strategy, the actor would, on
average, pay more than what they would if they remained to
the non-refundable strategy. However, the money loss event
will always be the minimum possible.

As a final scenario (Scenario 4), assume that the actor is
not interested in Reduce Cost (so, now, weight is set to 0.0)
but is interested in Privacy (0.6), and Efficiency (0.4). There
are now two optimal policies one of which can be viewed at
the bottom right of Fig. 5 and the other one—not depicted
here for simplicity—is identical except that instead of rRef,
ref is considered. In order to safeguard her privacy and
efficiency, the actor appears to need to follow a policy of a
slightly lower success probability. Note that choice of rRef
or ref is irrelevant to expected utility in that ‘Reduce Cost’
does not weigh in the priority specification.

Interestingly, DT-Golog can be tweaked in terms of the
criteria it uses to base its optimality calculations [49]. Specifi-
cally, by default and in accordancewithMDP theory, policies
are calculated on the basis of maximization of cumulative
expected utility. However, we can change this objective func-
tion to, e.g., be more reliant on the probability of success. For
example, if we base the decisions exclusively on maximiz-
ing success probability, for Scenario 1 priorities, DT-Golog
returns policies that involve actions [nRef,ppr,cmt]
(U = 0.37, p = 0.77) and [ref,ppr,cmt] (U
= 0.46, p = 0.77),whichhavepoorer utility butmax-

imize probability. Note that here and in subsequent sections
we use the notation [t1,t2,t3, . . .] to refer to a more
complex policy using a branch that contains task-attaining
tasks—omitting the detailed policy for simplicity.

Through the exploration process we described in this
section, analysts are able to investigate solutions that best
match elicited priorities and qualities of interest. Probability
is accounted both in the calculation of the optimal, as pos-
sible total utility values are factored by the probability that
these values occur, and in assessing how likely the optimal
policy is to succeed. In what follows, we describe how the
extended goal model is translated to DT-Golog to allow for
such reasoning.

5 Translating to DT-Golog

5.1 DT-Golog basics

Overview DT-Golog [9,49] is a decision-theoretic extension
of the high-level agent programming language Golog [29],
which is, in turn, based on the situation calculus [47], a lan-
guage for modeling and reasoning about dynamic domains.
More specifically, DT-Golog incorporates Markov Decision
Processes (MDPs) [50] in Golog’s reasoning infrastructure,
enabling the integration of programming and decision-
theoretic planning. On one hand, DT-Golog allows the
specification of a high-level program that cuts down the
search space by prescribing a partial policy: the agent can
only adopt policies that are consistent with the execution
of the program. On the other hand, decision-theoretic plan-
ning inDT-Golog allows the programmer to specify uncertain
worlds and probabilistic actions subject to the optimization
of expected utility.

In the following, we briefly describe the aspects of DT-
Golog that are essential for understanding the subsequent
translation procedures, referring the reader to the respective
literature for more details [49]. The following are a summary
of the concepts we introduce below:

– Elementary Concepts: fluents, actions, and situations.
– Axioms: action precondition axioms and successor-state

axioms.
– ProgramConstructs: includingprocedures and sequences.
– Decision-Theoretic Features: stochastic actions, nature

actions, reward predicates, and probability predicates.
– The outputs of DT-Golog: policies.

Elementary concepts The core of DT-Golog consists
of constructs prescribed by the situation calculus: fluents,
actions, and situations. Fluents, playing the role of state
features and represented through n-ary predicates with a
situation term as their last argument, are understood as prop-

123

2252 S. Liaskos et al.

Fig. 5 Simplified DT-Golog policies for Scenarios (1)–(4). Paths that lead to stop states have been abbreviated for simplicity

erties whose value can vary from situation to situation due
to the performance of actions. For example, fluent ticket-
Booked(traveler, location, s) holds in situation s as a result
of an action of submitting a booking order. Actions are first-
order terms signifying specific activity performed by agents,
e.g., bookTicket(traveler, location). A situation is also a first-
order term that denotes a sequence of actions, those that
have been performed in the history of this situation. In par-
ticular, the function symbol do(a, s) denotes the situation
which results from performing action a in situation s. A spe-
cial constant S0 denotes the initial situation, one where no
action has been performed. Finally, there is a special pred-
icate Poss(a, s) used to state that action a is executable in
situation s.

Axioms A set of axiomsD over the above basic constructs
are then specified in order to describe the domain. From these,
the most important are action precondition axioms that tell
us when actions are possible and successor-state axioms that
describe how fluent values change due to the performance of
actions. The former are defined for each action α, and are of
the form

∀s. Poss(α, s) ↔ Πα(s) (Action Precondition)

signifying that performance of the action α in some situation
s is possible if and only if some formulaΠα is true in situation
s. Successor-state axioms, on the other hand, are defined for
each fluent and are of the form

∀a, s. f (x, do(a, s)) ↔ Φ f (x, a, s)
(Successor-State Axiom)

where f is an n-ary fluent symbol, x represents its n argu-
ments, andΦ f is a formula that intuitively says that the fluent
f will be true after the performance of action a, if and only if,

either a is an action that enables f and the conditions under
which a brings about f hold in situation s, or f was already
true in s and a did not turn it false.

Program constructs Having the background action the-
ory D defined using the above set of axioms, languages in
the Golog family further allow the development of high-
level programs that describe behavior to be followed by
agentswhile abiding by the action theory.Constructs found in
most procedural languages are used for constructing Golog
programs. Relevant to our purposes are primitive actions,
defined as above, procedures δ, sequences (of actions or other
procedures) denoted as (δ1; δ2), non-deterministic choices
of actions (denoted as (δ1 | δ2)), tests/wait for conditions
(denoted by φ?) and if-then-else conditionals.

In executing programs written using the above constructs,
the Golog interpreter finds an execution of the specified high-
level program relative to the action theory D. The presence
of non-deterministic choices within such programs, allows
Golog to behave in part as an AI planner, searching for a
legal sequence of actions that amount to a legal execution of
the high-level non-deterministic program such that the action
theory is satisfied.

Decision-theoretic features The above features are found
in all members of the Golog family. DT-Golog augments
these with an additional component, an optimization theory,
in which non-deterministic choices are made with respect
to maximization of a decision-theoretic objective function—
by default, the cumulative expected utility. To achieve this,
DT-Golog extends the standard Golog features as follows.

Firstly, to the (deterministic) agent actions of core Golog,
which are called nature actions in the context of DT-Golog,
stochastic actions are added to denote exogenous events.
Each stochastic actionα is associatedwith afinite set of deter-
ministic nature actions αi . We use a set of nature actions to

123

Modeling and reasoning about uncertainty in goal models: a decision-theoretic approach 2253

represent the actions that might have actually happened due
to the influence of nature when α was attempted; hence the
use of the term ‘nature.’ Successor-state axioms are provided
for deterministic nature actions directly, but not for stochas-
tic actions. The probability predicates prob(αi , pi , s) are
used to assign probabilities pi to each such nature action αi

in situation s. Note that the probabilities pi can be simple
numerical values or complex numerical functions of fluent
values holding in the particular situation s. Further, reward
predicates reward(r , do(αi , s)) assign a reward value to sit-
uations, actions or both.

Policies In the face of non-deterministic choices, DT-
Golog’s reasoning engine searches for an optimal policy that
maximizes the total accumulated expected utility defined as
a sum of the products of the reward and the probability that
this reward occurs when following a certain action trajec-
tory. The policy π returned by the interpreter is a conditional
Golog program1 of (roughly) the form [49]:

a; senseEffect(a); if φ1 then π1

. . .

. . .

else if φk−1 then πk−1

else (φk)?; πk

... where πi are policies and φ’s are outcomes of the
senseEffect(a) actions. The latter, sense-effect actions, are
actions that the policy executing agent performs in order
to identify the nature action ai that was evoked by the
stochastic action. The outcome of the sense-effect action
is registered through a sense-condition axiom of the form
senseCond(ai , φ), that holds if φ is a logical condition that
identifies the occurrence of nature’s action ai . This way,
each branch of the policy is conditioned on a test formula
that identifies the nature’s outcome that was implemented.
Accordingly, the choice is dictated by the nature and not by
the agent.

To acquire a high-level view of how the DT-Golog pol-
icy is calculated and appreciate the meaning of cumulative
expected utility maximization we mention here the Bellman
optimality equation [49,50]:

Vn(si) = R(si) + max
a

⎧
⎨

⎩

∑

s j

Pr(si , a, s j)Vn−1(s j)

⎫
⎬

⎭

1 DT-Golog’s definition of a policy is slightly different from the usual
concept of a nonstationary Markov policy [50], which is a function
mapping each state and a decision epoch to an action. In particular, DT-
Golog policies prescribe an action only in those states that are reachable
from the initial state (that corresponds to the initial situation S0).

In the above, R(s) is the reward gained by reaching state
s, Pr(si , a, s j) is the probability of transitioning to state s j

after executing action a at state si while Vn(s) is the calcu-
lated cumulative expected utility of the process after n steps,
where V0(s) = R(s). This basic MDP formulation shows
how the value of a given state depends on the respective value
of subsequent states, calculated recursively up to a horizon,
multiplied by the probability of reaching each such subse-
quent state, while also making action choices that maximize
such value.

DT-Golog combines such MDP optimization approach
with Golog program execution, where Golog situations play
the role of states, the MDP reward function is represented
through the predicate reward(r , s) and the transition prob-
abilities are captured through the nature action probability
clauses prob(αi , pi , s). The details and nuances of this syn-
ergy are not of direct relevance here and we refer the reader
to the DT-Golog sources for a detailed presentation of DT-
Golog semantics and the exact relationship to the standard
MDP formulation [49].

Note that, for our purposes, the off-line version of the
DT-Golog interpreter is used, in which the optimal policy
is identified prior to execution. However, online versions of
DT-Golog exist [15,49] in which sensing or other exogenous
actions or events can be interleaved with action execution
and trigger policy recalculation.

We now turn our focus to the translation of the proba-
bilistic goal models into a DT-Golog specification—readers
interested in more details on the Situation Calculus, Golog,
and DT-Golog are referred to the corresponding literature
[29,47–49].

5.2 From goal models to DT-Golog

To allow reasoning about goal alternatives in light of proba-
bilistic effects we translate it into a DT-Golog specification.
The translation is such that it can be automated allowing
analysts to perform the subsequent reasoning activities with-
out having any knowledge of the DT-Golog formalisms. For
illustration purpose, we sketch how the translation is possi-
ble based on the example of Fig. 6 translated into DT-Golog
specifications as described in Figs. 7 and 8. The general trans-
lation procedures can be found in Algorithms 1, 2, 3, and 4.
The DT-Golog translation of the running example can be
found in the accompanying technical report [32].

Translating the elementary constructs. The translation
of the elementary goal modeling constructs into DT-Golog
ones is performed as follows (Lines 1-21 of Alg. 1). First,
each leaf-level task t is translated into a stochastic agent
action at (Line 6). An additional stochastic agent action a f

is also produced (Line 20), playing the role of the final action.
The final action is introduced to allow consideration of
rewards only at the final stage of the action sequence, allow-

123

2254 S. Liaskos et al.

Algorithm 1: Translating Tasks and Effects
Let G be the set of hard-goals, T the set of leaf-level tasks, Et the
set of probabilistic effects of task t and Qt the effect predicates of
a task t .

1 ST ← ∅; /* initialize the set of stochastic
actions */

2 F ← ∅; /* initialize the set of satisfaction
fluents */

3 N ← ∅; /* initialize the set of nature
actions */

4 SC ← ∅; /* initialize the set of sense
conditions */
/* add a stochastic action at for each task

in T ; add a fluent φet and a nature
action ai

t for each effect et of t; set up
t’s attainment formula */

5 for t ∈ T do
6 ST ← ST ∪ {at };

/* for each domain predicate */
7 for qt ∈ Qt do
8 F ← F ∪ {φqt }; /* add satisfaction fluent

φqt */
9 Nφqt

← ∅;/* a set of actions that affect

it */
10 end
11 for et ∈ Et do
12 N ← N ∪ {ai

t }; /* add nature action ai
t for

et */

13 SC ← SC ∪ {senseCond(ai
t , scai

t
)}; /* scai

t

signifies performance of ai
t in the

resulting policy */
14 foreach qt ∈ Qt mentioned in et do
15 Nφqt

← Nφqt
∪ {ai

t }; /* keep track of

actions ai
t affecting φqt */

16 end
17 end

/* attainment formula below constructed
based on effect table; constituent atoms
are replaced with corresponding
satisfaction fluents and may involve
other elements from D */

18 φatt
t ← attainment formula for t ;

19 end
20 ST ← ST ∪ {a f }; /* add the final stochastic

action */
21 N ← N ∪ {as-e f , a f -e f

}; /* add the nature actions

for a f */
22

/* set up hard-goal g’s attainment formula
*/

23 for g ∈ G do
/* attainment formula below reflects the
AND/OR structure of the decomposition and
is grounded on attainment formulae of
leaf-level tasks; construction through
recursion omitted here for simplicity */

24 φatt
g ← attainment formula for g;

25 end
26

ing formore accurate calculation of the expected utility—this
will become clearer below. For each such stochastic action,
we also introduce a set of nature actions ai

t each distinctly
representing each of the possible effects et ∈ Et due to the
execution of at (Line 12). For each such action, we also
include a sense-condition clause, that associates the nature
action with a fluent (Line 13). As we saw, these sense condi-
tions are used for describing the resulting policy to a run-time
policy execution environment.

Each task t is also associated with as many satisfaction
fluents φqt as the effect predicates (Line 8), each of which is
true if the nature action that was actually performed made it
so—we see below howwe represent this through a successor-
state axiom. For each task t , an attainment formula φt is also
defined to denote what combinations of domain predicates
make the task satisfied; this is simply a translation of the
task’s attainment formula grounded on the corresponding flu-
ents (Line 18). Similarly, a DT-Golog attainment formula φg

is introduced to represent the goal-level attainment formula
of higher-level hard-goal g, in turn grounded on satisfaction
formulae φt of leaf-level tasks (Lines 22-26).

Thus in Table 1 of Fig. 7, task t2 of Fig. 6 has been
translated into four nature actions denoting the four different
effects of t2 constructed, as per the table, through combi-
nations of the predicates Qt2 = {s-e2, s-e′

2, f -e2, f -e′
2}.

Actions as-e2,s-e′
2
and as-e2, f -e′

2
are examples of how such

nature actions are denoted based on the effects they bring
about. The final action a f is associated with two nature
actions as-e f and a f -e f (Line 21). Note that in these exam-
ples the s- and f - prefixes denote success and failure of that
action, respectively, but meanings alternative to success and
failure can be utilized depending on the specific problem.
Further, Table 2 of Fig. 7 shows how the attainment formulae
from Fig. 6 are represented using simple DT-Golog axioms.

Precondition Axioms. For each nature action, we spec-
ify an action precondition axiom. In particular, if there is
an incoming

pre→ link to a task node t from a goal or task
h, then the attainment formula of h is added as a conjunct
to the preconditions of all the associated nature actions ai

t
(Line 6 of Algorithm 2). Moreover, if there is an incoming
npr→ link to the task node t , then the negation of the attainment
formula for the source node of this link is added as a con-
junct to the preconditions of ai

t (Line 10). In the absence of
any such links, these actions are specified to be always exe-
cutable. The resulting formulae are assigned to the special
predicate Poss(a, s), which, as we saw, denotes that action
a is executable in situation s (Line 12).

In Table 3 of Fig. 7, we specify the preconditions of the
tasks of Fig. 6. We see below how we treat precedence links
targeting higher-level hard-goals.

Successor-State Axioms. For each satisfaction fluent
φqt associated with effect predicates of task t , we need a
successor-state axiom that succinctly encodes both direct

123

Modeling and reasoning about uncertainty in goal models: a decision-theoretic approach 2255

Fig. 6 Translation by example

effects and non-effects and specifies exactly when the fluent
changes. Such axioms are generated according to Lines 16-
24 of Alg. 2. In short, a satisfaction fluent will retain its
truth value unless one of the associated nature actions is
performed, which will necessarily make it true. The nature
actions ai

t associated with the fluent are known by examining
if q is a domain predicate that is part of the effect associated
with ai

t—see again Lines 14-16 of Alg. 1.
An example is shown in Table 4 of Fig. 7. Thus, for t2

there are four axioms, each describing how each satisfaction
fluent constructed from Qt2 becomes or remains true.

Procedures. For each goal g, we also introduce a DT-
Golog procedure procg , which comprises of a test action φ?
that waits for the preconditions of the procedure to hold,
followed by some program δ. The precondition requires
that conjunction of all incoming

pre→ links must be satisfied
and the disjunction of all incoming

npr→ links must not be
satisfied. If g is AND-decomposed, δ consists of the inter-

leaving of its subtasks and subgoal procedures. On the other
hand, if g is OR-decomposed, the program δ consists of the
non-deterministic choice between its various subgoals and
subtasks. The generation of procedures is described in Algo-
rithm 3.

In Table 5 of Fig. 7, the translation of the AND/OR struc-
ture of Fig. 6 through applying these ideas can be seen as an
example. Note that (a‖b‖c) denotes the non-deterministic
choice between all possible interleaving of actions a, b, and
c—though somemaynot be feasible due to lower-level prece-
dence constraints. Note also that the top-level procedure is
augmented with the final action a f at the end, in a way that
no policy is successful without concluding with that action.

Once the core Golog aspect has been developed as above,
the decision-theoretic component is added by defining the
probability distributions and the reward functions as follows.

Probabilities. Recall that effects are used for the con-
struction of effect profiles, which are triples of the form

123

2256 S. Liaskos et al.

Fig. 7 Examples of DT-Golog specifications for Fig. 6

(ei
t , φ

i
ct
, pi) representing the probability of effect et occur-

ring with probability pi , if φi
ct

is true, once task t is
performed. For each such effect profile we introduce pred-
icates of the form prob(ai

t , pi , s), where ai
t is the nature

action associated with effect ei
t (see Line 12 of Algorithm 1)

whose probability we define to be pi for each situation s
(Lines 1-4 ofAlgorithm4). The formula iswritten in the form
prob(ai

t , pi , s) if φi
ct
(s), i.e., the pi probability is assigned

in situation s if φi
ct
is true in situation s.

Finally we assign the final action to be certainly success-
ful. Table 6 of Fig. 8 shows the probability definitions for
nature actions related to tasks t1, t2 and t3 of Fig. 6.

Rewards.The reward function is calculated in a very sim-
ilar way, with the difference that, since a reward is a unique
value that characterizes an entire solution, values from indi-
vidual reward tables are merged together based on the given
quality goal preference profile. Recall that a priority spec-
ification describes the relative importance of each of the
top-level goals. At the same time, for each truth assignment

Algorithm 2: Generating Axioms
Let G be the set of hard-goals, T the set of leaf-level tasks, Et the
set of probabilistic effects of task t and Qt the effect predicates of
a task t .

/* set up precondition axioms for nature
actions */

1 APA ← ∅; /* initialize the set of action
precondition axioms */

2 for n ∈ N do
3 ψn ← true;
4 Let I n Pre be the set of nodes from which there is an

incoming
pre→ to t ;

5 for i ∈ I n Pre do
6 ψn ← ψn ∧ φatt

i ; /* φatt
i is attainment

formula for i */
7 end
8 Let I nN pr be the set of nodes from which there is an

incoming
npr→ to t ;

9 for i ∈ I nN pr do
10 ψn ← ψn ∧ ¬φatt

i ; /* φatt
i is attainment

formula for i */
11 end
12 APA ← APA ∪ {Poss(n, s) ↔ ψn};
13 end

/* φroot below is the attainment formula of
the root goal */

14 APA ← APA ∪ {Poss(as-e f , s) ↔ φroot , Poss(a f -e f , s) ↔
φroot };

15

/* set up successor-state axioms for
satisfaction fluents */

16 SSA ← ∅; /* initialize the set of
successor-state axioms */

17 for φe ∈ F do
18 ψe ← φe(do(a, s)) ↔ φe(s);
19 Let Nφe be the set of nature actions that make φe true; /* a

task is associated with various nature
actions as described above */

20 for n ∈ Nφe do
21 ψe ← ψe ∨ a = n;
22 end
23 SSA ← SSA ∪ {ψe};
24 end

for the effects, the satisfaction function of each quality has a
specific value. Gathering all those values, multiplying them
by theweight of their corresponding quality in the preference
specification, and adding them up gives us the overall reward
value for the situation. Lines 6-15 of Algorithm 4 describe
the logic of the translation.

In the reward formulation, the rationale for the inclusion of
the final action a f finally becomes apparent. Specifically, we
want DT-Golog to assign values only to complete policies,
i.e., policies in which a f has been included, which allows
for accurate calculation of expected utility. Omission of a f

will add to the final utility value the values of intermediate
states, which may be counter-intuitive in most applications
of our framework, in which successful performance of a task

123

Modeling and reasoning about uncertainty in goal models: a decision-theoretic approach 2257

Algorithm 3: Translating the Goal Structure
Let G be the set of hard-goals

/* set up procedures for each goal g ∈ G */
1 for g ∈ G do
2

/* first set up the preconditions of g */
3 Preg ← true;/* initialize the preconditions

of g */
4 Let I n Pre be the set of nodes from which there is an

incoming
pre→ to g;

5 for i ∈ I n Pre do
6 Preg ← Preg ∧ φatt

i ; /* φatt
i is attainment

formula for i */
7 end
8 Let I nN pr be the set of nodes from which there is an

incoming
npr→ to g;

9 for i ∈ I nN pr do
10 Preg ← Preg ∧ ¬φatt

i ; /* φatt
i is attainment

formula for i */
11 end
12

/* now deal with the structure for g */
13 Let c be the first child of g;
14 Let Cg be the rest of the children of g;
15 δg ← c;
16 if g is AND-decomposed then
17 for c′ ∈ Cg do
18 δg ← δg ‖ c′;
19 end
20 else
21 for c′ ∈ Cg do
22 δg ← δg | c′;
23 end
24 end
25

26 δg ← Preg?; δg ; /* add preconditions of g to
δg */

27

28 if g is the top level goal then
29 δg ← δg; a f ;
30 end
31 end

brings about a reward only once and for the entire policy.
This is indeed the case in our running example. However,
for problems in which effects can be undone by subsequent
tasks, it may be more pertinent to keep track of the values
of the intermediate states by simply omitting any mention of
the final action a f in the translation.

For the example of Fig. 6 the translation can be seen in
Table 7 of Fig. 8; noting that, for comprehensibility, dis-
junctions are written in separate clauses as in a Prolog-style
program. In a situation in which s-e1, s-e′

2, s-e3 are true and
s-e2 is false, by looking at the tables, o1 is satisfied by 0.5
and o2 by 0.75, and given their relative importance 0.8 and
0.2, the total reward is 0.5 · 0.8 + 0.2 · 0.75 = 0.55.

Policies.Aswe saw, given the procedures and domain the-
ory, DT-Golog’s reasoner will return a policy that includes:

Algorithm 4: Translating Effect Tables/Groups and
Utility Tables

Let Pt be the set of effects profiles of task t
Let O be the set of quality goals oi , each with global priority wi
Let Uo be the set of utility profiles of quality goal o

1 RA ← ∅; /* initialize the set of probability
clauses */

2 for p ∈ Pt do
/* p is of the form (et , φ

i
ct

, pi) where each

et maps 1-1 with nature action ai
t */

3 RA ← RA ∪ {prob(ai
t , pi , s) ↔ φi

ct
(s)};

4 end
5

6 for o ∈ O do
7 ψo(r , s) ← false;
8 ψō(s) ← true;

/* each v below is of the form (q, φi
co

, ui),
where q the quality, ui a utility value,
φi

co
a condition under which ui is obtained

*/
9 for v ∈ Uo do

/* if φi
co

(s) then unify r with the

corresponding ui */

10 ψo(r , s) ← ψo(r , s) ∨ (φi
co

(s) ∧ (r = ui));
/* collect also the negations of the
conditions */

11 ψō(s) ← ψō(s) ∧ ¬φi
co

(s);
12 end

/* if none of the conditions apply unify
r to zero (0) */

13 ψô(r , s) ← ψo(r , s) ∨ (ψō(s) ∧ (r = 0));
14 end

/* unify all the r’s from each quality,
then weight-average them based on the
corresponding priorities; note the role of
φs-e f (s) */

15 reward(rT , s) ↔ φs-e f (s)∧ψô1 (r1, s)∧ψô2 (r2, s)∧ . . .∧(rT =
w1 · r1 + w2 · r2 + . . .) ∨ ¬φs-e f (s) ∧ (rT = 0)

stochastic actions a, senseEffect(a) actions to identify the
nature action ai that was evoked by the stochastic action,
test conditions (φ)? and if-then-else conditionals that lead to
different choices of subsequent actions based on the nature
actions that result from a. The abstract policies introduced in
Sect. 4 are simplified representations of the same policy con-
struct with reference to tasks and effects that correspond to
the mentioned action and fluent. Specifically, to produce the
high-level representations, we: (a) remove the senseEffect(a)

actions, (b) abbreviate branches that inevitably lead to fail-
ure/stop, and (c) remove references to a f .

6 Analysis and evaluation

We now turn our focus to steps we have taken to evaluate
and explore the capabilities and limitations of the proposed

123

2258 S. Liaskos et al.

Fig. 8 Examples of probabilities and rewards for Fig. 6

modeling and reasoning approach. We specifically report on
(a) a simulation analysis, (b) a sensitivity analysis approach,
and a (c) scalability analysis. The simulation code, themodels
used for performance evaluation described in this section, as
well as DT-Golog installation and execution instructions, can
be found in the accompanying technical report [32].

6.1 Simulation analysis

Asafirst evaluative step for themeaningfulness of the transla-
tion procedure and the tool output,we develop a simulation of
our running problem of Fig. 1. The program simulates a large
number of instances inwhich themain actor, the researcher, is
confronted with the problem of quickly scheduling a trip and
making the corresponding decisions. Monte Carlo sampling
of outcomes of stochastic actions is used in each run based
on probabilities defined in the model. Likewise, the reward
structure follows the one defined in the extended goal model
of Figs. 3 and 4. The simulation calculates success probabil-
ities by counting the proportion of runs in which the policy
led to the achievement of the root goal. The expected utility
is, likewise, calculated by averaging the values acquired in
each run, including the zero utilities acquired in policies that
led to failure. This calculation is suitable when the model
assumes reward upon the success of the final task in a policy,
maintaining a zero reward up to that point, as is the case in
our example model.

The two different scenarios for actor decisions include
following the policy generated by DT-Golog under the same
parameters, versus making a random choice every time. We
expect that, if DT-Golog’s proposed policy is optimal, then,

following that policy offers, on average in the long term, a
higher total value than simply making random actions.

For a total of 50 simulations, each including 100 runs,
the results acquired can be seen in Fig. 9. As expected, fol-
lowing the suggested policy offers a higher probability and
utility compared to choosing randomly each time. Further,
the probabilities and utilities that DT-Golog calculates fall at
all times within the 95% confidence interval of the observed
values, as can be seen in Fig. 10.

6.2 Number acquisition and sensitivity analysis

The presented extension and its use heavily rely on the iden-
tification of numbers of three kinds: probabilities, utility
values, and preference weights.

Within the decision theory literature methods for elicit-
ing probabilities and utility measures, as well as priorities
have long been studied (e.g., [7,25]). Probabilities can come
in the form of measurements in the domain. In our running
example, the majority of success rates of various tasks (e.g.,
success rate for authorization granting) can be assumed to
be available in past data. Whenever this is not possible,
probabilities can be subjective evaluations. Utility values,
on the other hand, can be more challenging to identify [46].
The problem is common in most quantitative goal model-
ing frameworks, decision-theoretic or otherwise [3,19]. As
has been shown [30], quantitative contributions can be the
results of a sequence of simple AHP-style pairwise compar-
isons [26], when certain structural assumptions can be made
about the models. In our diagram, this would imply treat-
ing each OR-decomposition as a separate decision problem
and (a) performing pairwise comparisons between each OR-
decomposition alternative with respect to each of the relevant
quality goals or conditions, effectively constructing utility
tables such as those of Fig. 4c–d, (b) performing pairwise
comparisons between soft-goals with respect to the overall
quality in meeting the root hard-goal, producing thereby the
preference table of Fig. 4e.

Sensitivity analysis can also assist utility and preference
value identification. To perform such analysis in our con-
text we start from an initial set of numbers that yields a
specific policy. Then, focusing on a specific utility or pref-
erence value, we identify the policies that DT-Golog would
generate if the value were to be replaced by values in the
entire [0.0,1.0] interval, leaving all other probability, utility,
and preference values unchanged. To acquire those results,
a linear traversal of the interval is performed, following a
precision step (e.g., 0.05, i.e., 21 evaluations). The goal is
to identify threshold values within the interval, above and
below which different optimal policies are produced.

The results of this analysis for utility values taken from
utility tables or utility links can be seen in the sensitivity
chart of Fig. 11. The figure shows an analysis based on Sce-

123

Modeling and reasoning about uncertainty in goal models: a decision-theoretic approach 2259

Fig. 9 Calculated (Experimental) versus random policies

Fig. 10 Observed versus theoretical probabilities and utilities

Fig. 11 Sensitivity analysis for individual utility values

nario 1 of Sect. 4, and numbers as in Figs. 3 and 4. Each
horizontal bar represents a different variable. For example,
the top bar represents the utility value taken from the utility
link from ‘Head Authorizes’ to ‘Privacy.’ The red vertical
bar represents the initial value of the variable in question
(0.8, in our case). The lightly shaded part of the bar repre-
sents the values of the contribution in which the policy is
the same as the initial one, [ref,onl,head] in our case
using the notation we introduced in Sect. 4 for abbreviat-
ing policies. Darker shades show values of the variable in

question in which DT-Golog would produce a different pol-
icy, even if all else stayed the same. The policy to which it
would switch is annotated in the corresponding area. Thus, to
switch from [ref,onl,head] to [ref,ppr,cmt] the
appreciation of how well it serves ‘Privacy’ to have the head
authorize the application (first bar from the top) must lower
from 0.8 to 0.32, assuming all else stays equal. Alternatively,
the perception of the contribution to privacy when having a
committee to authorize the application must increase from
0.2 to 0.6 (second bar from the top) for DT-Golog to decide
that [ref,ppr,cmt] is now a better policy, all else being
equal. Notice in the diagram that certain contributions do
not seem to have any effect in the determination of the opti-
mal policy, as, regardless of their value, the optimal policy
remains the same.

To perform such analysis with preferences or contribu-
tions that are results of comparisons (as per [30]), we relax
the holding-all-else-constant condition as follows. Consid-
ering a preference table such as that of Fig. 4e, to maintain
a total weight equal to 1.0, when considering an increased
(resp. decreased)weight for one component of the preference
by an amount e the other components must share a decrease
(resp. increase) of the same amount e. More specifically,
when testing sensitivitywith respect to the component i of the
preference, by updating its initial value wi intow′

i = wi + e,
e ∈ [−wi , 1 − wi], then for all other components j �= i
we adjust w′

j = w j − e
w j∑

k �=i wk
. Thus, the share of each of

123

2260 S. Liaskos et al.

Fig. 12 Sensitivity analysis for preferences

the other components to the overall amount of adjustment
is based on its weight compared to the weight of the other
affected components.

Following this approach, the sensitivity chart of the anal-
ysis for priority table of Fig. 4e can be seen in Fig. 12. For
example, if we were to increase ‘Reduce Cost’ from 0.3 to
0.49 the optimal policy switches from [ref,onl,head]
to [nRef,onl,head]. The switch is due to the effect of
both the increase in ‘Reduce Cost’ and the decrease in ‘Avoid
Loss’ as per the above preference-wide adjustment. The same
effect would be observed if we reduced the ‘Avoid Loss’
weight from 0.2 to 0.1. Increasing ‘Reduce Cost’ further to
0.63, discounting the other weights accordingly, the policy
switches to [nRef,ppr,cmt].

It may be of value to make identification of the most sen-
sitive parameter the focal point of this exercise. In our case,
it is ‘Avoid Loss,’ for which the value in which we obtain a
different policy (0.1) is the closest to its current one (0.2).
In addition, looking at what changes within the policy offers
information with regards to what the weight updates actually
affect. In the last example, it is the choice between a refund-
able and non-refundable ticket that appears to be sensitive to
parameter fluctuation.

6.3 Scalability

DT-Golog is able to offer us solutions for smaller problems
like the one we discussed in previous sections in fractions of
a second. However, MDP problems are known to be compu-
tationally intractable. DT-Golog, thanks to its constraining
the search/calculation space using pertinent domain infor-
mation, is expected to perform well in larger problems. To
evaluate this proposition we developed a number of goal
models of different sizes and structures and measured the
amount of time it takes for DT-Golog to produce the optimal

Table 1 Performance results for randomly generated models

Total nodes Goals Tasks Precedences Time (sec)

1 20 9 11 4 0.08

2 30 13 17 7 0.00

3 40 17 23 8 0.02

4 50 21 29 9 1.36

5 55 23 32 10 95.20

6 60 25 35 11 354.10

7 65 27 38 12 8031.80

8 70 29 41 13 16819.80

9 80 33 47 16 *

‘*’ means no result within 5 h

Table 2 Performance results for combined models

Total nodes Goals Tasks Precedences Time (sec)

1 35 20 15 10 0.57

2 40 19 21 12 1.60

3 45 21 24 15 10.73

4 55 25 30 17 285.24

5 65 29 36 21 *

‘*’ means no result within 5 h

policy. A first set of models is random and is constructed
manually from scratch. A second set of models was based
on re-purposing real goal models from a variety of domains
that we have developed in the past, including for a meeting
scheduler, an online bookstore, an automatic teller machine
as well as a geriatric clinic. Working manually we combined
these models in various ways to produce larger models. That
we used real goal models allows the resulting structures to
preserve some naturalness. For all probabilities and utilities,
automatically generated random numbers are used.

Experiments are run on an Intel ® CoreTM i7-6700 CPU@
3GHz x8 with 16GB of RAM running Linux 4.16.0 (Debian
10). The results for the random and combined realistic mod-
els can be seen in Tables 1 and 2, respectively. We observe
that the ‘knee’ in the running time emerges in model sizes
between 50 and 60 goals. Up to about 40 goals, reasoning
seems to be possible in a small number of seconds allowing
usable exploratory and sensitivity analysis. We note that the
presence of x number of tasks in themodel entails anMDP of
x actions and at least 22x states, assuming that each task has
a success and a fail effect, each modeled by the correspond-
ing binary variable. DT-Golog’s ability to encode detailed
domain information through a control program—in our case
the procedure resulting from translating the decomposition
tree—allows concise representation of the problem, ruling
out transitions that do not satisfy precondition axioms, while
also enabling quicker identifications of solutions.

123

Modeling and reasoning about uncertainty in goal models: a decision-theoretic approach 2261

For large models, a strategy to address increased com-
putational time is through breaking the problem into sub-
problems and efficiently solving each. This is possible when
the sub-problems do not depend on each other in any way.
For example, when the top goal is AND-decomposed into
two or more sub-trees with top-level precondition dependen-
cies between each other, the individual optimal policies can
be used to construct a combined optimal one.

6.4 Validity threats

Wenow discuss some of the validity threats that emerge from
our evaluation effort, focusing on external and internal valid-
ity.

External validity is concerned with the generalizability of
our analysis. In our case, this concerns the representative-
ness of the models we have applied the framework to and the
tests we run. Aspects of interest include computational per-
formance and the pragmatic quality of the language.We have
addressed performance by firstly, randomly generating goal
structures, and, secondly, generating structures by combining
existing goal models, so that the resulting model preserves
some of the naturalness of the original models. In case there
is a class of models that, unbeknownst to the current analysis,
possesses structural characteristics that are drastically detri-
mental to performance, the scalability tactics we described
above may offer a first line of defense. Pragmatic quality of
the language itself [42], i.e., the ability to develop models
such as the grants adjudication described here or the meeting
scheduling ones described in [33] that are useful for com-
munication and decision making in real-world settings is a
matter that requires extensive empirical work which we are
hoping to conduct in the future.

Let us turn to internal validity, which is concerned with
whether evaluation claims follow from our procedures and
the results. The performed simulations are chosen as eval-
uative instruments in that they constitute a sanity check of
the translation theory, the tool, and its utilization, as well
as the way we interpret its results. While the fact that both
the DT-Golog specification and the simulation (written in R)
are produced by the same team and on the basis of the same
probabilistic and reward model can be construed as a validity
threat, the observed consistency between calculated and sim-
ulated scenarios diminishes the chance of important issues
with the translation or our interpretation of the results such as
misunderstanding of DT-Golog’s constructs or its definition
of optimality. For example, if the optimal policies resulting
from our decision-theoretic analysis did not turn out optimal
in the simulation, this would raise questions with regards to
how the DT-Golog specification is produced and how it is
used. While this was not observed in the model we tried,
to rule out coincidental positive results, more and prefer-
ably independently conducted simulation analyses could be

conducted. In fact, given that simulationsmay also help iden-
tify problems with the models themselves, it may be a good
practice to generally accompany DT-Golog analysis with
an independently developed simulation. We are working on
developing toolsets for supporting such activities. Finally,
the development and correctness of the DT-Golog reasoner
itself are discussed at length in the DT-Golog literature [49].

7 Related work

The idea to view the performance of tasks and achievement
of goals within goal models as stochastic events has been
investigated in the literature. Letier and van Lamsweerde
[28] use the goal model structure to construct probability
functions for probabilistically measuring the achievement of
non-functional objectives. A top-down approach for select-
ing solutions that optimize such probabilistically constructed
objectives was later introduced by Heaven and Letier [20].
These techniques are most suitable when there is a need for
analyzing howvarious solutions of goalmodels affect the sat-
isfaction probability of high-level system goals—we review
more work with that goal below. Our work takes additional
aspects into consideration for when the problem at hand
requires more expressive modeling and analysis—and the
resources are available to pursue such expressiveness. This
includes dynamic aspects of agent actions (including effects
and preconditions), combining probability with measures of
utility and preference to allow for a decision-theoretic formu-
lation of the optimality criterion and the generation of agent
policies, i.e., ordered action sequences rather than simple
alternative selection within the goal model.

A view of goal models as tools for multi-criteria decision
representation is one that has attracted substantial interest
as well. Ma and de Kinderen, for example [37], introduce
a reference model and a process for performing MCDA
(Multi-criteria Decision Making) using goal models; though
not through a decision-theoretic perspective (e.g., consid-
ering probabilities and utilities). Elsewhere, Nguyen et al.
[43] offer an extended goal modeling language for effi-
cient reasoning with preferences among multiple objectives
backed by efficient optimization modulo theory solvers.
While the specific work also does not consider probabil-
ities and rewards, it is possible that SMT/OMT solvers
promoted in it can be adapted to perform some form of
decision-theoretic reasoning. This would assume that objec-
tive functions and temporal constraints are formulated in
a way that reflects, on the one hand, the probabilistic and
reward components of the decision-theoretic aspect and,
on the other hand, the components of the action theory
aspect (preconditions, effects, domain facts, etc.).While such
investigation may be warranted by SMT/OMT’s reported
computational performance, DT-Golog is readily suited to

123

2262 S. Liaskos et al.

satisfy the modeling requirements adding also the important
ability to refine specifications with procedures using com-
mon imperative constructs.

Earlier, we have utilized various forms of preference-
enabled planning for both reasoning about requirements
alternatives and for designing adaptive software [31,34,35].
In these efforts, priority is given to modeling the action-
theoretic aspect and the efficient generation of agent plans
that fulfill prioritized—through preference specifications—
high-level objectives. However, they are generally not con-
cerned with the quantitative representation of uncertainty,
although they feature some notion of utility. Nevertheless,
whenmodeling uncertainty is not a priority, these approaches
offer the advantage of scalable reasoning through state-of-
the-art planners such as HTNs [41]. A relatively different
notion of uncertainty within goal models is proposed by
Horkoff et al. [23]. Rather than modeling uncertainty in the
domain, the authors propose a way to model uncertainty
in the modeling process, by annotating modeling elements
with tags such as ‘may’ or ‘var’ indicating uncertainty about,
respectively, the existence or constancy of any elementwithin
a model.

The application of MDPs is common in the area of self-
adaptive systems. Solano et al. [14] augment contextual goal
models [1] with parametric symbolic formulae for reliabil-
ity and cost to effectively allow for MDP style reasoning
using PRISM [22]. The work has several features that serve
self-adaptiveness including future parameter values, run-
time goal substitution (incompleteness), contexts that are
evaluated at run time, and sensing noise, making it suitable
for later-stage analysis of the adaptive system. Our proposal
complements this work in that it is geared toward design-
time exploration and may fit better analyses earlier in the
lifecycle when, for example, analysis of a quality goal hier-
archy is more pertinent. More directly connected to goal
modeling, Dell’ Anna et al. [11,12] introduced a framework
that utilizes a translation of goal models into Bayesian Net-
works (BNs) to allow checking of run-time compliance to
requirements models and support thereby the evolution of
a socio-technical system (STS) that is modeled by the goal
models. The BNs, developed based on available system data,
encode how various factors, including design-time assump-
tions of the analysts, affect the satisfaction of high-level
requirements, in a vein similar to the one followed by Letier
et al. [20,28], albeit here with a stronger focus on adaptation.
With such a model in hand, the authors go on to propose a
way to allow run-time automatic revision of STS require-
ments. The work is complementary to ours in that it focuses
on the development and structure of the probability distribu-
tions of the effects of specific design decisions and optimize
accordingly–comparatively, our probability representations
are restricted to the level of low-level action effects—and
incorporate a run-time automation component. In compari-

son, our approach is based on decision-theoretic optimization
that includes expressions of the relative value of the top-level
objectives, for when the need for dealing with multiple con-
flictinggoals is pronounced. In addition, our proposal appears
to be more expressive at the level of complex interactions of
agents with their environment, modeled through precondi-
tions, effects, (potentially) procedures, etc., which is useful
when the problem at hand involves complex business pro-
cesses and agent operations.

In the same context of self-adaptive systems, expressing
goal models in terms of model predictive control (MPC)
formulations has been suggested [4] as a way to calculate
optimal adaptations with respect to AHP-elicited preference
aggregations of performance indicators and environmental
parameters. The benefit of MPCs is that they optimize on the
basis of future predicted states of the system.Aswithworkwe
discussed above [11,12,20,28], the focus is on macroscopic
evaluation of high-level requirements (e.g., that ‘80% of par-
ticipants show up in a meeting,’ in the meeting scheduling
domain) to inform low-level run-time adaptations, through
what can be seen as a learning process. These features are
complementary to our approach which puts forth and tackles
the problem of reasoning in the presence of complex agent
actions and ordering thereof, leaving run-time adaptation and
learning outside its current scope.WorkbyMoreno et al. [38],
investigates the use of MDPs within the context of adaptive
systems while taking adaptation latency into account. On the
matter of accuracy of probability values, the use of paramet-
ric MDPs (PMDPs) has been proposed for the analysis of
the effects of perturbations inMDPmodel probabilities [36].
While the focus of that work is model-checking of reachabil-
ity properties rather than enriching requirements goalmodels
with decision-theoretic elements and reasoning capabilities,
the toolset utilized could be suitable for the kind of investi-
gation we here perform through sensitivity analysis.

Another run-time-focused effort is offered by Bencomo et
al. [5,6]. They apply Dynamic Decision Networks (DDNs),
through modeling soft-goals as chance nodes and contribu-
tion links as probabilities that are conditional to alternative
strategies employed as realizations of hard-goals (decision
nodes). Furthermore, Paucar and Bencomo employ par-
tially observable MDPs (POMDPs) for modeling MAPE-K
(Monitor–Analyze–Plan–Execute over a shared Knowledge)
adaptive architectures, where while goal models do not
occupy the center stage in the model, NFRs (Non-Functional
Requirements) aremodeled as themain state-describing vari-
ables [18]. Interestingly, the same group has proposed an
approach to combine to elicit NFR weighting through P-
CNP (Primitive Cognitive Network Process) [45], which
may be applicable to priority and reward elicitation in our
proposal. These proposals are, again, geared toward run-
time adaptation offering several features to facilitate such
use. Through the use of claims, for example, a goal model-

123

Modeling and reasoning about uncertainty in goal models: a decision-theoretic approach 2263

ing construct [5], assumptions about the operational context
are modeled and checked at run time through associated
monitorable variables. This way, effects to quality goals are
predicated on environmental sensing.Our approach can com-
plement such methods by focusing on design-time solution
exploration with an emphasis on expressive power includ-
ing, e.g., nuanced preconditions, successor-state axioms, and
probability and reward schemes, with also a strong focus on
expressive policies. Further comparing the merits and draw-
backs of this approach with that of DDNs in the context
of run-time adaptation, specifically on the front of com-
putational performance, is an interesting topic to pursue.
Moreover, the adoption of POMDPs [18] adds expressive-
ness in the model, in that the sensing of action outcomes and
of the state of the environment is not assumed to be deter-
ministic, as we do in our plain MDP-based work. It follows,
however, that the choice to work with POMDPs may imply
additional modeling and computational burden.

While in many of the efforts we discussed above the focus
is run-time adaptation—versus design-time exploration and
analysis on which we focus here—DT-Golog has several
features that can allow extension of our work to support run-
time policy calculation and execution. Possibilities include
systematic use of sensing actions and utilization of the full
policy, as well as utilization of the online DT-Golog inter-
preter.

As a final remark, probabilistic model checkers such
as PRISM [22] based on MDPs or Discrete-Time Markov
Chains (DTMCs) [16] have been used in a variety of con-
texts, particularly for verification of system requirements and
adaptive systems engineering as discussed above. Given this
trend, our choice of DT-Golog over those model checkers,
such as PRISM, is worth some justification. The fundamen-
tal difference of DT-Golog from such model checkers is its
Golog component rather than its MDP component, that is,
its ability to allow specification of complex executable pro-
grams that go beyond state-transition specifications. Thus,
while we would use PRISM to explore various properties of
the underlying MDP formulation, translation to DT-Golog
gives us a basis for developing executablemodules. The result
of our automated translation to DT-Golog remains on the
surface of the expressive power of Golog and constitutes a
skeleton for formalizing and developing the domain theory
in much more detail, including, for example, domain objects
(as action parameters), while loops, or complex condition-
als. Given Golog’s expressive power and its potential use as
a programming language, for, e.g., simulations or actual con-
trollers, we found it to be particularly appealing for modeling
requirements. Similar translations of goal models to non-
decision-theoretic Golog have been successfully attempted
in the past, e.g., by Lapouchnian et al. to ConGolog [27].
Nevertheless, the merits of model checkers such as PRISM
for a variety of queries and analyses that are not the focus of

DT-Golog, make a study of the translation of our extended
goal models into such languages a worthwhile future project.

8 Concluding remarks

We presented an extension to the iStar modeling language
that allows modeling probabilistic tasks and reasoning about
goal satisfaction alternatives on the basis of optimal expected
value, for the purpose of design-time solution exploration and
model analysis. Tasks are augmented with effects describ-
ing their possible outcomes and goal satisfaction is redefined
based on such effects. The extendedmodel is translated into a
DT-Golog specification, which allows identification of opti-
mal policies in terms of both expected utility and probability
of successful execution. We further introduce a sensitivity
analysis procedure and visualization approach that can be
used to assist elicitation of relevant numbers. In our scalabil-
ity analysis, the reasoning tool is found to perform reasonably
well for models of practical size.

The toolset is particularly useful for design-time analy-
sis of operationally complex requirements problems, where
it is important to understand the risks associated with spe-
cific policy options and incorporate that risk in the definition
of optimality. A very fitting use case is, for example, the
early design of a business process, in which the various actor
tasks are stochastic or run a probability of failure which is
important to analyze, while, at the same time, process ana-
lysts have specific conflicting process quality objectives in
mind. We briefly discuss below the possibility of extending
this framework to process languages. Another application
area example is that of assisting the design of self-adaptive
systems, especially when there are complex human and/or
software agent actions involved in the domain of interest.

One of themajor advantages of our approach is the utiliza-
tion of DT-Golog, which allows for writing imperative style
programs of varying degrees of determinism.Hence, analysts
can further refine the result of the translation to develop accu-
rate models of the domain. Furthermore, compared to related
frameworks, our approach is strongly focused on the gener-
ation of policies, that is sequences of agent actions, and, as
such, it allows reasoning about how decisions and outcomes
early in the policy affect probabilities, values, and decisions
that take place later, making even small models, like the run-
ning example we considered in this paper, difficult to analyze
manually and unsystematically.

Nevertheless, more complex problems imply more com-
plex effect and utility tables, making their elicitation and
comprehension harder. We perceive this as the main focus
for our future work, which is coping with the elicitation and
representation of complex, conditional effect probabilities
and utilities. Thankfully, a variety of approaches for dealing
with this have long existed in the literature and can serve as a

123

2264 S. Liaskos et al.

source of inspiration. For example, expected utility networks
(EUNs) [39] and UCP-Networks [8] could allow for modu-
lar representation of probability and utility dependencies in
a more compact way compared to exhaustively specifying
the effect and utility relations. Further, elicitation techniques
such as regret-based [46], inwhich reward is elicited based on
minimization of maximum deviation from optimality seem
promising directions for studying the number acquisition
problem.

An additional direction for future investigation is, as we
saw, exploring how the framework can best serve run-time
adaptation. One opportunity for investigation is tapping into
DT-Golog’s expressiveness [49] as a way to develop pro-
grams utilizable formaking run-time decisions. For example,
modulo a fixed horizon, DT-Golog allows the specifica-
tion of continuous problems—compared to episodic ones
which goal models describe—and, as mentioned, can also
feature richer representations of the domain. Further, pro-
posedonline versions of the interpreter [15,49] allowefficient
weaving of planning and execution which can be useful in
run-time adaptive context.

Moreover, our framework is founded on pre-calculated
probabilities. In the absence of initial probabilities, the ques-
tion that emerges, which is also particularly relevant for
adaptive systems, is how goal models can guide the learning
process for accurate and efficient acquisition of those prob-
abilities, as well as utilities. It appears that meta-constructs
such as, for example, goal fulfillment episodes might need to
be introduced for formulating such analyses.

Finally, it is easy to envision possible adaptation of this
framework to modeling languages beyond goal models, such
as BPMN [44], UML Activity Diagrams [17], or other lan-
guages for modeling processes and behavior. Taking BPMN
as an example, the question would be the identification of
optimal decisions within gateways (i.e., decision nodes in
BPMN) given probabilities and rewards of success of indi-
vidual process steps. For such reasoning to be possible in
DT-Golog, the appropriate probabilistic and reward exten-
sions would need to be introduced in the language, and a
translation procedure would need to be designed, whereby,
e.g., processes translate to DT-Golog actions and flow links
into precondition axioms. Noting work that has already been
conducted in the field—e.g., using stochastic simulations
[13] or PRISM [21]—an attempt to utilize DT-Golog for
decision-theoretic analysis of BPMN models appears to be
very promising.

References

1. Ali, R., Dalpiaz, F., Giorgini, P.: A goal-based framework for con-
textual requirements modeling and analysis. Requir. Eng. 15(4),
439–458 (2010). https://doi.org/10.1007/s00766-010-0110-z

2. Amyot, D., Ghanavati, S., Horkoff, J., Mussbacher, G., Peyton,
L., Yu, E.S.K.: Evaluating goal models within the goal-oriented
requirement language. Int. J. Intell. Syst. 25(8), 841–877 (2010)

3. Amyot, D., Mussbacher, G.: User requirements notation: the first
ten years, the next ten years (Invited Paper). J. Softw. (JSW) 6(5),
747–768 (2011)

4. Angelopoulos, K., Papadopoulos, A.V., Silva Souza, V.E.,
Mylopoulos, J.:Model predictive control for software systemswith
CobRA. In: Proceedings of the 11th International Symposium on
Software Engineering for Adaptive and Self-Managing Systems
(SEAMS’16), pp. 35–46. Madrid, Spain (2016). https://doi.org/
10.1145/2897053.2897054

5. Bencomo,N., Belaggoun,A.: Supporting decision-making for self-
adaptive systems: from goal models to dynamic decision networks.
In: Proceedings of the 19th International Working Conference on
Requirements Engineering: Foundation for Software Quality, pp.
221–236. Essen, Germany (2013)

6. Bencomo, N., Belaggoun, A., Issarny, V.: Dynamic decision net-
works for decision-making in self-adaptive systems: a case study.
In: Proceedings of the 8th International Symposium on Software
Engineering for Adaptive and Self-Managing Systems (SEAMS),
pp. 113–122. San Francisco, CA (2013). https://doi.org/10.1109/
SEAMS.2013.6595498

7. Boland, P.J.: Statistical and ProbabilisticMethods in Actuarial Sci-
ence. Chapman and Hall, London (2007)

8. Boutilier, C., Bacchus, F., Brafman, R.I.: UCP-networks: a directed
graphical representation of conditional utilities. In: Proceedings
of the 17th Conference in Uncertainty in Artificial Intelligence
(UAI’01), pp. 56–64 (2001)

9. Boutilier, C., Reiter, R., Soutchanski, M., Thrun, S.: Decision-
theoretic, high-level agent programming in the situation calculus.
In: Proceedings of the 17th Conference on Artificial Intelligence
(AAAI-00), pp. 355–362. AAAI Press, Austin, TX (2000). http://
www.cs.toronto.edu/cogrobo/Papers/dtgologaaai00.ps.Z

10. Dalpiaz, F., Franch, X., Horkoff, J.: iStar 2.0 Language
Guide. The Computing Research Repository (CoRR) abs/1605.0
arXiv:1605.07767 (2016)

11. Dell’Anna, D., Dalpiaz, F., Dastani, M.: Validating goal models
via Bayesian networks. In: Proceedings of the 5th International
Workshop on Artificial Intelligence for Requirements Engineering
(AIRE), pp. 39–46. Banff, AB, Canada (2018). https://doi.org/10.
1109/AIRE.2018.00012

12. Dell’Anna, D., Dalpiaz, F., Dastani, M.: Requirements-driven evo-
lution of sociotechnical systems via probabilistic reasoning and hill
climbing. Autom. Softw. Eng. 26(3), 513–557 (2019). https://doi.
org/10.1007/s10515-019-00255-5

13. Durán, F., Rocha, C., Salaün,G.: Stochastic analysis of BPMNwith
time in rewriting logic. Sci. Comput. Program. 168, 1–17 (2018).
https://doi.org/10.1016/j.scico.2018.08.007

14. Félix Solano, G., Diniz Caldas, R., Nunes Rodrigues, G., Vogel,
T., Pelliccione, P.: Taming uncertainty in the assurance process of
self-adaptive systems: a goal-oriented approach. In: Proceedings of
the 14th IEEE/ACM International Symposium on Software Engi-
neering for Adaptive and Self-Managing Systems (SEAMS), pp.
89–99.Montreal, Canada (2019). https://doi.org/10.1109/SEAMS.
2019.00020

15. Ferrein, A., Fritz, C., Lakemeyer, G.: On-line decision-theoretic
Golog for unpredictable domains. In: Proceedings of the 27th
Annual German Conference on AI (KI 2004), pp. 322–336. Ulm,
Germany (2004)

16. Filieri, A., Ghezzi, C., Tamburrelli, G.: Run-time efficient prob-
abilistic model checking. In: Proceedings of the 33rd ACM
International Conference on Software Engineering, ICSE ’11, pp.
341–350. Waikiki, Honolulu, HI (2011)

17. Fowler, M., Scott, K.: UML Distilled. Addison Wesley, London
(1997)

123

https://doi.org/10.1007/s00766-010-0110-z
https://doi.org/10.1145/2897053.2897054
https://doi.org/10.1145/2897053.2897054
https://doi.org/10.1109/SEAMS.2013.6595498
https://doi.org/10.1109/SEAMS.2013.6595498
http://www.cs.toronto.edu/cogrobo/Papers/dtgologaaai00.ps.Z
http://www.cs.toronto.edu/cogrobo/Papers/dtgologaaai00.ps.Z
http://arxiv.org/abs/1605.07767
https://doi.org/10.1109/AIRE.2018.00012
https://doi.org/10.1109/AIRE.2018.00012
https://doi.org/10.1007/s10515-019-00255-5
https://doi.org/10.1007/s10515-019-00255-5
https://doi.org/10.1016/j.scico.2018.08.007
https://doi.org/10.1109/SEAMS.2019.00020
https://doi.org/10.1109/SEAMS.2019.00020

Modeling and reasoning about uncertainty in goal models: a decision-theoretic approach 2265

18. Garcia Paucar, L.H., Bencomo, N.: Knowledge base K models to
support trade-offs for self-adaptation using Markov processes. In:
Proceedings of the 13th IEEE International Conference on Self-
Adaptive and Self-Organizing Systems (SASO), pp. 11–16. Umeå,
Sweden (2019). https://doi.org/10.1109/SASO.2019.00011

19. Giorgini, P., Mylopoulos, J., Nicchiarelli, E., Sebastiani, R.: For-
mal reasoning techniques for goal models. In: Spaccapietra, S.,
March, S., Aberer, K. (eds.) Journal on Data Semantics I, pp. 1–20.
Springer, Berlin (2003)

20. Heaven, W., Letier, E.: Simulating and optimising design deci-
sions in goal models. In: Proceedings of 19th IEEE International
Requirements Engineering Conference (RE 2011). Trento, Italy
(2011)

21. Herbert, L.T., Hansen, Z.N.L., Jacobsen, P.: SBOAT: a stochas-
tic BPMN analysis and optimisation tool. In: M.G. Karlaftis,
N.D. Lagaros, M. Papadrakakis (eds.) Proceedings of the 1st
International Conference on Engineering and Applied Sciences
Optimization (OPT-i), pp. 1136–1152. Kos Island, Greece (2014).
http://www.opti2014.org/

22. Hinton, A., Kwiatkowska, M., Norman, G., Parker, D.: PRISM: a
tool for automatic verification of probabilistic systems. In: Proceed-
ings of the 12 International Conference on Tools and Algorithms
for the Construction and Analysis of Systems (TACAS 2006), Lec-
ture Notes in Computer Science (LNCS), vol. 3920, pp. 441–444.
Vienna, Austria (2006)

23. Horkoff, J., Salay, R., Chechik,M., Di Sandro, A.: Supporting early
decision-making in the presence of uncertainty. In: Proceedings
of the 22nd International Requirements Engineering Conference
(RE’14), pp. 33–42. Karlskrona, Sweden (2014). https://doi.org/
10.1109/RE.2014.6912245

24. Horkoff, J., Yu, E.: Comparison and evaluation of goal-oriented sat-
isfaction analysis techniques. Requir. Eng. 18(3), 199–222 (2011)

25. Ishizaka, A., Nemery, P.: Multi-criteria Decision Analysis: Meth-
ods and Software. Wiley, London (2013)

26. Karlsson, J., Ryan, K.: A cost-value approach for prioritizing
requirements. IEEE Softw. 14(5), 67–74 (1997)

27. Lapouchnian, A., Lespérance, Y.: Using the ConGolog and CASL
Formal Agent Specification Languages for the Analysis, Verifica-
tion, and Simulation of i* Models. In: Borgida, A.T., Chaudhri,
V.K., Giorgini, P., Yu, E.S. (eds.) Conceptual modeling: founda-
tions and applications: essays in honor of John Mylopoulos, pp.
483–503. Springer, Berlin (2009)

28. Letier, E., van Lamsweerde, A.: Reasoning about partial goal satis-
faction for requirements and design engineering. In: Proceedings of
the 12th International Symposium on the Foundation of Software
Engineering (FSE-04), pp. 53–62. ACM Press, Newport Beach,
CA (2004). http://www2.info.ucl.ac.be/people/eletier/

29. Levesque, H.J., Reiter, R., Lespérance, Y., Lin, F., Scherl, R.B.:
GOLOG: a logic programming language for dynamic domains. The
Journal of Logic Programming 31(1–3), 59–83 (1997). https://doi.
org/10.1016/S0743-1066(96)00121-5

30. Liaskos, S., Jalman, R., Aranda, J.: On eliciting preference and
contribution measures in goal models. In: Proceedings of the 20th
International Requirements Engineering Conference (RE’12), pp.
221–230. Chicago (2012)

31. Liaskos, S., Khan, S.M., Litoiu, M., Jungblut, M.D., Rogozhkin,
V., Mylopoulos, J.: Behavioral adaptation of information systems
through goal models. Inf. Syst. 37(8), 767–783 (2012)

32. Liaskos, S., Khan, S.M., Mylopoulos, J.: Replication data for:
modeling and reasoning about uncertainty in goal models: a
decision-theoretic approach (2021). https://doi.org/10.5683/SP3/
R8PGP8

33. Liaskos, S., Khan, S.M., Soutchanski, M., Mylopoulos, J.: Model-
ing and Reasoning with Decision-Theoretic Goals. In: Proceedings
of the 32th International Conference on Conceptual Modeling,
(ER’13), pp. 19–32. Hong-Kong, China (2013)

34. Liaskos, S., McIlraith, S.a., Mylopoulos, J.: Towards augment-
ing requirements models with preferences. In: Proceedings of the
24th IEEE/ACM International Conference on Automated Soft-
ware Engineering (ASE’09), pp. 565–569.Auckland,NewZealand
(2009). https://doi.org/10.1109/ASE.2009.91. http://ieeexplore.
ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5431732

35. Liaskos, S., McIlraith, S.A., Sohrabi, S., Mylopoulos, J.: Integrat-
ing preferences into goal models for requirements engineering. In:
Proceedings of the 10th IEEE International Requirements Engi-
neering Conference (RE’10). Sydney, Australia (2010)

36. Llerena, Y.R.S., Su, G., Rosenblum, D.S.: Probabilistic model
checking of perturbedMDPswith applications to cloud computing.
In: Proceedings of the 2017 11th Joint Meeting on Foundations of
Software Engineering (ESEC/FSE 2017), pp. 454–464. Paderborn,
Germany (2017)

37. Ma, Q., de Kinderen, S.: Goal-based decision making. In:
M. Daneva, O. Pastor (eds.) Proceedings of the 22nd International
Working Conference on Requirements Engineering: Foundation
for Software Quality (REFSQ 2016), pp. 19–35. Göteborg, Swe-
den (2016)

38. Moreno, G.A., Cámara, J., Garlan, D., Schmerl, B.: Proactive
self-adaptation under uncertainty: a probabilistic model checking
approach. In: Proceedings of the 10th JointMeeting onFoundations
of Software Engineering (ESEC/FSE 2015), pp. 1–12. Association
for Computing Machinery, Bergamo, Italy (2015). https://doi.org/
10.1145/2786805.2786853

39. Mura, P.L., Shoham,Y.: Expected utility networks. In:K.B. Laskey,
H. Prade (eds.) In Proceedings of the 15th Conference on Uncer-
tainty in Artificial Intelligence (UAI ’99), pp. 366–373. Morgan
Kaufmann, Stockholm, Sweden (1999)

40. Mylopoulos, J., Chung, L., Liao, S., Wang, H., Yu, E.: Exploring
alternatives during requirements analysis. IEEE Softw. 18(1), 92–
96 (2001)

41. Nau, D.S., Au, T.C., Ilghami, O., Kuter, U., Murdock, J.W., Wu,
D., Yaman, F.: SHOP2: an HTN planning system. J. Artif. Intell.
Res. 20, 379–404 (2003)

42. Nelson, H.J., Poels, G., Genero, M., Piattini, M.: A conceptual
modeling quality framework. Softw. Qual. J. 20, 201–228 (2012)

43. Nguyen, C.M., Sebastiani, R., Giorgini, P., Mylopoulos, J.:
Multi-objective reasoning with constrained goal models. Requir.
Eng. 23(2), 189–225 (2018). https://doi.org/10.1007/s00766-016-
0263-5

44. Object Management Group: Business Process Model and Notation
(v2.0). Technical report (2011)

45. Paucar, L.H.G., Bencomo, N.: ARRoW: Tool support for auto-
matic runtime reappraisal of weights. In: Proceedings of the 25th
IEEE International Requirements Engineering Conference (RE),
pp. 458–461. Lisbon, Portugal (2017). https://doi.org/10.1109/RE.
2017.58

46. Regan, K., Boutilier, C.: Regret-based reward elicitation for
Markov decision processes. In: Proceedings of the 25thConference
on Uncertainty in Artificial Intelligence (UAI’09), pp. 444–451.
Montreal, QC, Canada (2009)

47. Reiter, R.: Knowledge in Action. Logical Foundations for Speci-
fying and Implementing Dynamical Systems. MIT Press, London
(2001)

48. Soutchanski, M.: An on-line decision-theoretic Golog interpreter.
In: Proceedings of the 17th International Joint Conference on Arti-
ficial Intelligence (IJCAI-2001), pp. 19–24. Seattle, Washington
(2001). http://www.cs.toronto.edu/cogrobo/Papers/onlinedtgi.ps

49. Soutchanski, M.: High-Level Robot Programming in Dynamic and
Incompletely Known Environments. Ph.D. thesis, Department of
Computer Science, University of Toronto (2003)

50. Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduc-
tion. MIT Press, London (2018)

123

https://doi.org/10.1109/SASO.2019.00011
http://www.opti2014.org/
https://doi.org/10.1109/RE.2014.6912245
https://doi.org/10.1109/RE.2014.6912245
http://www2.info.ucl.ac.be/people/eletier/
https://doi.org/10.1016/S0743-1066(96)00121-5
https://doi.org/10.1016/S0743-1066(96)00121-5
https://doi.org/10.5683/SP3/R8PGP8
https://doi.org/10.5683/SP3/R8PGP8
https://doi.org/10.1109/ASE.2009.91
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5431732
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5431732
https://doi.org/10.1145/2786805.2786853
https://doi.org/10.1145/2786805.2786853
https://doi.org/10.1007/s00766-016-0263-5
https://doi.org/10.1007/s00766-016-0263-5
https://doi.org/10.1109/RE.2017.58
https://doi.org/10.1109/RE.2017.58
http://www.cs.toronto.edu/cogrobo/Papers/onlinedtgi.ps

2266 S. Liaskos et al.

51. Yu, E.S.: GRL-Goal-oriented Requirement Language. http://www.
cs.toronto.edu/km/GRL/

52. Yu, E.S.K.: Towards modelling and reasoning support for early-
phase requirements engineering. In: Proceedings of the 3rd IEEE
International Symposium on Requirements Engineering (RE’97),
pp. 226–235. Annapolis, MD (1997)

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

Sotirios Liaskos is an associate
professor with the School of Infor-
mation Technology at York Uni-
versity, Canada, where he serves
as the academic director of the
School since 2016. He holds a
PhD and an MSc degree in Com-
puter Science from the University
of Toronto and an undergradu-
ate Diploma of Engineering from
the School of Electrical and Com-
puter Engineering, National Tech-
nical University of Athens,Greece.
His research is in the broad areas
of requirements engineering and

conceptual modeling, with an emphasis on the application of auto-
mated reasoning for analyzing requirements and system designs as
well as the use of empirical methods for evaluating conceptual mod-
eling language designs.

Shakil M. Khan is currently
appointed as the SaskPower Assis-
tant Professor in Artificial Intelli-
gence at the University of Regina.
Prior to joining Regina, Dr. Khan
spent 2 years as a postdoctoral
research fellow in the Department
of Computer Science at Ryerson
University and a year as aResearch
Associate in the School of Infor-
mation Technology at York Uni-
versity. He received his Ph.D. in
Computer Science from York Uni-
versity in 2018 and his B.Sc. in
Computer Science from the Uni-

versity of Windsor in 2001. Khan’s research is in the areas of Artificial
Intelligence (AI), knowledge representation and automated reasoning,
multiagent systems, and cognitive robotics.

John Mylopoulos holds a profes-
sor emeritus position at the Uni-
versities of Toronto (Canada) and
Trento (Italy), and is working at
the University of Ottawa on a
project titled ‘Engineering Smart
Contracts’ as visiting researcher.
He earned a PhD degree from
Princeton University in 1970 and
joined the faculty of the Depart-
ment of Computer Science at the
University of Toronto the same
year. His research interests include
conceptual modelling,requirements
engineering, data semantics, and

knowledge management. Mylopoulos is a fellow of the Association
for the Advancement of Artificial Intelligence (AAAI) and the Royal
Society of Canada (Academy of Applied Sciences). He has served
as program/general chair of international conferences in Artificial
Intelligence, Databases and Software Engineering, including IJCAI
(1991), Requirements Engineering (1997, 2011), and VLDB (2004).
Mylopoulos was project leader for a project titled ‘Lucretius: Founda-
tions for Software Evolution,’ funded by an advanced grant from the
European Research Council (2011-16).

123

http://www.cs.toronto.edu/km/GRL/
http://www.cs.toronto.edu/km/GRL/

	Modeling and reasoning about uncertainty in goal models: a decision-theoretic approach
	Abstract
	1 Introduction
	2 Background and running example
	2.1 Goal models
	2.2 Probabilistic effects of tasks

	3 Goals, probabilities, and utilities
	3.1 Overview
	3.2 Domain predicates and probabilistic effects
	3.3 Probabilistic goal satisfaction, utilities, and preferences

	4 Reasoning with the extended model
	5 Translating to DT-Golog
	5.1 DT-Golog basics
	5.2 From goal models to DT-Golog

	6 Analysis and evaluation
	6.1 Simulation analysis
	6.2 Number acquisition and sensitivity analysis
	6.3 Scalability
	6.4 Validity threats

	7 Related work
	8 Concluding remarks
	References

