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Abstract

In model-based systems engineering projects, engineers from multiple domains collaborate by establishing a common system
model. Multi-level modeling is a technique that can be used to model the development from abstract ideas to concrete
implementations. However, current multi-level modeling approaches are not adequate for processes with multiple modeling
phases that might have to be rearranged later. In this paper, we introduce multi-phase modeling that utilizes concepts of multi-
level modeling by considering a description of the expected phase ordering per domain. Constraints aware of this context
can express that certain elements are only valid in specific phases without having to determine a concrete phase ordering for
a particular model. This enables using multi-phase modeling in flexible workflows, adapting to changing requirements and
the definition of access rules in domain notation. We show feasibility of this multi-phase modeling by applying it to multiple

real-life systems engineering projects of the aerospace domain.

Keywords Model-based systems engineering - Multi-level modeling - Domain-specific languages - Systems engineering

1 Introduction

Creating a spacecraft requires different engineering domains
working together. This collaboration is backed by a systems
engineering process, defining project phases, milestones and
deliverables [12]. These project phases cover aspects such
as the design, assembly, integration, operation and finally
the disposal of the system. Along these phases, informa-
tion has to be shared across involved domains. Classical
systems engineering handles this information exchange by
manually produced documents. Model-based systems engi-
neering improves this information exchange by data models
[35]. Most of these data models are inspired by classical mod-
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eling approaches, such as SysML and UML. In early phases,
engineers start modeling coarse and abstract models of the
system. In later phases, the system models get reused and
refined [17].

Figure 1 illustrates a corresponding engineering use-case.
It presents a model of camera-based navigation systems. The
displayed system consist of cameras and computers. The
engineering process of this use-case follows the order of Def-
inition, Configuration and Assembly, as often applied in the
space domain. During design definition, engineers collect
and model required components. These components, such
as a Small-Camera, HD-Camera or UV-Camera, are later
used in the final products. In the next step, these compo-
nents are configured into first product templates, such as a
budget version including a Small-Camera. Finally, configu-
rations are assembled to reflect the real-life products. Along
this process, different properties of the system are modeled.
For example, at design definition, the resolution of different
camera types is specified. Other properties such as the posi-
tion are composition-related. They can only be modeled in
the configuration or later. It cannot be specified during the
first definition phase because an abstract camera does not yet
have a position. This simple example indicates that modeled
information depends on a process. The resolution should not
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Fig. 1 Example engineering use-case depicting a model-based devel-
opment process with three steps. Each step is based on previous
information and adds more details to the model

be edited after the definition, a position in this first phase
does not exist.

Implementing the above model in classic SysML/UML
leads to various problems. Modeling the camera as a class
with attributes for position and resolution has two drawbacks.
First, it can only be instantiated once, e.g. in the design defi-
nition step. As a consequence, it cannot be instantiated in the
configuration or assembly step anymore. Second, the position
property is already present during design definition which is
semantically incorrect. As mentioned, an isolated element in
the definition cannot have a position.

Multi-level modeling solves some of these issues. In its
classic form, it is based on elements that combine class and
object facets and thereby allow instantiation in multiple clas-
sification levels [5]. In the previous example, this enables to
first instantiate the camera in the design phase and, then,
to re-instantiate it in the configuration and assembly levels.
Some multi-level modeling approaches, such as M-Objects,
allow specifying in which level a value can be set [31]. That
allows to specify, e.g., that the resolution property has to be
modeled in the configuration level.

Recent work by Guerra and de Lara [20] argues that we
need more flexibility in modeling and they propose a mod-
eling process with configurable flexibility for the different
process phases. They propose an architecture which is based
on an explicitly modeled process model.

While our use-case requires a similar amount of flexibility
for the different phases, a process model can help to model the
process-dependent information of Fig. 1. To specify which
information is modeled in which process phase, we need a
mapping of system aspects to the phase when these have to
be modeled.

To achieve this, this paper defines an engineering model-
ing paradigm based on a new context model. It indicates what
system details are intended to be modeled at which mod-
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eling phase. It captures the modeling process and enables
constraints, such as that a position is only available after a
specific phase. Every set of new types added to the model
is accompanied with such a context model. This approach
offers several advantages:

1. Itallows to specifically define a modeling process for new
model elements. This modeling process can be adjusted
to domain specific semantics and needs.

2. The order of modeling phases is defined by the individual
context model. Adding new phases to the context model
introduces new layers in the system model.

3. The context model is the basis for constraining proper-
ties. Their validity can be customized to flexible ranges
of modeling phases. This way, the order and content of
elements is based on semantic context rather than num-
bers.

The context model represents the development pro-
cess and contains its phases as elements. For the pre-
vious use-case, the context model contains elements for
Definition, Configuration and Assembly.
Constraint-wise, it allows instantiating the resolution in the
definition phase and the position in the configuration phase.
Altogether this approach enables an effective use of multi-
level modeling concepts in systems engineering. It is based
on the initial idea of context-aware potencies, but offers a
fundamental addition by the context model.

This paper is structured as follows: Sect. 2 introduces
relevant literature in the field of systems engineering and
multi-level modeling. Section 3 highlights the problems of
these techniques and poses requirements for an application
of multi-phase modeling for systems engineering. Section 4
presents a new engineering modeling paradigm for devel-
opment process with multiple modeling phases. Section 5
evaluates these concepts by applying them to scenarios
of interdisciplinary projects for model-based space system
development. Finally, Sect. 6 discusses related work and
compares our methodology with similar concepts.

2 Background

Model-based systems engineering (MBSE) targets substi-
tuting classic system engineering documents with models
[35]. Introduced models may be used for specifications and
analysis of systems. Collecting system information in a cen-
tralized model also improves communication. Such a central
model provides clear rules for information exchange across
all stakeholders.

Systems engineering usually follows certain phases. For
space systems, these phases are known as lifecycle phases
and are defined in standards by the European Cooperations
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for Space Standardization (ECSS) [12]. The lifecycle starts
with Phase 0 andis followed by A, B, C, D, E and F. Each
phase describes tasks, deliverables and design reviews that
have to be fulfilled in the phase. However, project goals and
derived requirements in these phases are subject to frequent
changes [19].

Paige et al. [34] describe that models have to be updated
along the development process. They distinguish between
two different model evolution strategies: one where the
underlying metamodels change, the other where theses
metamodels remain without changes. In implementations
whereby metamodels evolve, corresponding system models
have to be transformed to comply to newer versions of the
metamodel. According to Galvao and Goknil [17], system
models thereby transform from abstract system descriptions
to models with more concrete details. Every evolution step
has its own metamodel and modeling language. Thus, mod-
eled elements in later system models cannot be implicitly
traced back to their previous models. Such traces have to be
modeled explicitly. Galvao and Goknil [17] present a mecha-
nism to automatically model explicit traces within the system
model transformation. In contrast, in implementations where
metamodels do not evolve, metamodels need to anticipate
future needs of the system model [34]. Fischer et al. [14]
present a data model that is used for several project phases
of space system development projects. In their approach, the
metamodel provides generic modeling elements. Types for
these generic elements can be created later. This mechanism
is based on the Type Object and the dynamic template pattern
[23,28]. These pattern introduce elements to decouple classes
from their instance [28]. Implementations thereby contain
metamodel types for type definitions and their instances
(e.g. TypeDefinition and Typelnstance) [28]. Atkinson and
Kiihne [8] argue that the mismatch between a problem and
its technical implementation leads to accidental complexity.
To reduce accidental complexity, they introduced a new mod-
eling paradigm, multi-level modeling (MLM).

Multi-level modeling is based on the concept of a new
element, called clabject [8]. It combines aspects of class and
object. Assuming the facet of a class, a clabject can be instan-
tiated to a clabject with the facet of an object. Due to its nature
as clabject, this element can assume the facet of a class again.
Therefore, it can be instantiated several times, thus, introduc-
ing multiple levels of instantiation [5].

This kind of type-instance relation differs from the clas-
sic language-defining linguistic typing dimension [6]. The
classic modeling dimension was introduced by the Object
Management Group (OMG) to support metamodeling [30].
Their four-level hierarchy starts with a metametamodel,
named M3 or Meta-Object Facility (MOF). The M3 model
defines a basic language to create metamodels in the M2 level.
A prominent example of a M2 model is the UML metamodel.
M2 models describe the elements of M1 models. In case of
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Fig. 2 Multi-level modeling with Potency (top) and M-Objects (bot-
tom)

the UML metamodel, M1 models are written in UML. Mod-
els in the M1 layer represent elements from the real world
(MO). In contrast to this dimension, Atkinson and Kiihne [6]
call their new typing dimension ontological dimension. The
ontological type-relation describes a classification within one
linguistic level. To express that ontological levels are usually
within one linguistic level, Atkinson and Kiihne [7] intro-
duced the term Orthogonal Classification Architecture.

Potency is a constraint mechanism to control the instantia-
tion depth of elements in multi-level modeling [5]. As shown
in the upper part of Fig. 2, it is a positive numeric value.
Potencies can be assigned to clabjects as well as their prop-
erties. On properties, it describes at which level a property is
instantiated and thus values can be assigned [8]. The prop-
erty price on the Equipment can be instantiated until
Level 0; the pwrType only until Level 1. Additionally, in
recent work, Kiihne [25] discussed a mechanism called order-
alignment schemes. With this principle it is possible to shift
a classification ensemble up and down in the level hierarchy
[25]. Macias et al. [29] presented another way of specifying
potencies by allowing to set a min and max potency value,
thus, enabling ranges as potency value.

Fischer [13] applied multi-level modeling techniques to an
example of systems engineering. He highlights the potential
of multi-level modeling for systems engineering. Thereby, he
shows several levels of instantiation and that some properties
of objects are only semantically valid in certain stages of the
modeling process. He argues that potency based on static
numbers introduces limitations in case the process needs to
be adjusted [13].

Besides potency, there exist further concepts how types
and their properties can be bound to specific levels: Neu-
maryr proposes a mechanism called multi-level objects
(M-Objects), which are not assigned to an explicit level but
allow the direct concretization of objects on different lev-
els [32]. As shown in the bottom part of Fig. 2, M-Objects’
properties explicitly target a level when they have to be
instantiated.

@ Springer
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The literature also shows how multi-level modeling can
be integrated into practical modeling processes: Hinkel [21]
proposed an approach where deep modeling can be imple-
mented with the existing EMOF standard, thus, enabling
to use existing tools and transformation mechanisms with
multi-level modeling. Guerra and de Lara [20] argue that
modeling needs more flexibility and propose a configurable
architecture that allows different levels of flexibility within
the modeling process. Their idea is based on an explicit
description of the modeling process and thereby allows dif-
ferent levels of strictness within this process. Atkinson and
Kiihne [4] also discussed modeling process and introduced
metamodeling spaces to recognize that it is hard to integrate
different modeling domains into a single modeling hierarchy.
Neumayr et al. [33] presented dual deep modeling, which
enables integration of models with different clabject hier-
archies into a global consistent representation. Dual deep
modeling differentiates between source and target potency,
where source potency corresponds to the level in the own
clabject hierarchy whereas the target potency specifies the
level in the referenced hierarchy.

3 Modeling of phase-specific information

Interdisciplinary systems engineering involves several differ-
ent domains working on a central system model. As shown
in Fig. 3, information in models is re-used in consecutive
process phases and follow-up projects. Thus, information
modeled in early project phases is foundation for models
of later phases. However, in the process, new projects, sys-
tem variants, configurations and prototypes splinter from the
common base model. This leads to divergence of the mod-
els in later phases of projects. Follow-up projects might,
e.g. focus on specific aspects of a system or integrate
ideas/solutions into another system.

Multi-level modeling can be used to model the relation
between abstract concepts in the beginning of the project
and concrete solutions in later phases. However, with mod-
els diverging from each other in the modeling process, the
same base types have to be used in different project con-
texts. Figure 4 shows two different modeling contexts with
an equipment. In the upper context, a first derived element is
a UVCamera. In the lower context, the first derived element
is a camera and the UVCamera is the third element. Both
modeling contexts are derived from a common initial phase,
creating the equipment. Different project requirements, then,
led to different levels of detail when modeling the camera
aspects.

(1) Wedefine a process in which domain aspects are modeled

in multiple consecutive development phases as multi-
phase modeling.
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Although elements in different phases are modeled from dif-
ferent abstraction levels, their relation is not necessarily the
non-transitive classification relation. This highlights a key
difference between our use-case and classic multi-level mod-
eling: systems engineering requires model ‘levels’ that are
not classification levels. Thus, in contrast to levels, phases
have to allow other inter-phase relationships between ele-
ments than classification. To reflect this, we call the relation
of elements between different phases derived from. Multi-
level modeling was not designed for multiple modeling
phases and, thus, does not support re-purposing elements
based on different contexts. However, adding a dedicated
modeling phase for the Camera in all contexts would intro-
duce modeling overhead. Some projects require modeling
special camera attributes, others not. It is context-dependent
inhow many modeling phases the camera needs to be present.
This poses the challenge how to target the UVCamera with
modeling constraints (in the sense of e.g. potency). As argued
in our initial example in Fig. 1, engineering data are phase-
specific. Indeed, engineering processes usually clearly define
what has to be modeled in which process phase. For example,
the configuration of the camera has to be done before it is
assembled, thus, the resolution must not be changed in later
project phases. This needs to be reflected in a modeling envi-
ronment. There needs to be some way to specify what has to
be modeled, e.g., in the modeling phase of the UvCamera
in Fig. 4. As shown in the figure, however, it depends on the
project context in which phase the UvCamera is modeled.

3.1 Requirements for multiple modeling phases

Modeling constraints can be used to reflect a systems
engineering process by specifying that, e.g., the camera’s
resolution cannot be created after a specific phase. However,
constraints with references to, e.g., static numbers need to be
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Fig. 4 Equipment in different application contexts. Depending on
the project’s required level of detail, different modeling phases are
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adjusted if the process changes. As types and corresponding
constraints might be created in a common base model and are
then reused in different specific project contexts, changing
the common base model is impossible. Thus, model elements
and their modeling constraints need to be reusable in models
with different processes.

Furthermore, constraints need to reflect various different
process requirements: in our example (Fig. 1), the camera’s
serialID can only be specified starting from the assembly
phase on. Thus, to prevent misunderstandings, values must
not be set before. Moreover, a position of an element in a bare
collection of types does not make sense. Thus, the position
property in a definition phase is not valid. When defining
properties, it needs to be possible to specify in which phases
these can be used.

In systems engineering, it is necessary to incorporate mod-
els from different domains into one system model. These
models from various domains will have different phases, so
some kind of integration/synchronization mechanism is nec-
essary.

If model elements are implemented similar to clabjects in
multi-level modeling, thus having a class and object facet, it is
possible to add new properties to their ‘instances’. However,
in interdisciplinary systems engineering it is problematic if
everyone can add their own properties to the model. The
same property might be created multiple times, potentially
with different names and not aligned within the project team.
To solve this problem, creation of new properties needs to be
restricted to specific modeling phases.

Thus, to facilitate modeling in interdisciplinary engineer-
ing environments with multiple modeling phases, we pose
the following requirements:

R.1 Model elements have to be able to be re-used in con-
texts with different modeling phases.

R.2 Accessibility of individual elements has to be config-
urable to flexible ranges of phases.

R.3 Models have to allow integration of elements from dif-
ferent domains (originated in different models).

R.4 The modeling environment has to constrain type exten-
sions (e.g. definition of new properties).

4 Context-aware multi-phase modeling

This paper introduces an engineering modeling paradigm that
enables to model interdisciplinary systems throughout multi-
ple project phases. To represent different abstraction levels of
these phases, we utilize multi-level modeling concepts. How-
ever, as classic multi-level modeling is not explicitly designed
for multiple modeling phases, we extend and customize
its concepts. As developed in Sect. 3, systems engineering
requires modeling concepts to be customized to different
application contexts. A specification of what has to be mod-
eled in which development phase provides a description of
such context. Therefore, this section introduces a context
model that describes the modeling process of an applica-
tion. It outlines the modeling phases and their order in the
corresponding application context.

(2) We define the context model as a formal description of
the phases a set of domain elements passes through along
a development process.

An instance of a domain element in a particular modeling
phase is automatically in a state defined by the respective
phase in the context model. If no corresponding phase is
defined in the context model, creation of the domain element
is not possible in the current modeling phase.

4.1 Modeling phases in a development process

In systems engineering, the development process and orga-
nizational structures capture how experts from multiple
domains contribute to the development of a system model.
The development process has direct influence on how a model
is created, edited and used. Successive development phases
derive output developed in previous phases and add fur-
ther details. Thus, in a broader sense, evolution of projects
resembles instantiation over multiple phases. As a conse-
quence, context models in systems engineering resemble
process models. A domain expert will probably not be able
to answer the question of an instantiation depth of a domain
element, whereas it is more likely to be successful to ask
when in a development process it can be edited. Thus, a con-
text model maps the development process to a multi-phase
system model. It corresponds to a plan in which modeling
phase the different aspects have to be added.

As shown in Fig. 5, elements are derived to multiple
modeling phases. In our running navigation system project
example, as part of a first brainstorming session, relevant con-
cepts are defined. The camera concept is derived two times, in
a system configuration and finally again in multiple assembly
prototypes. Elements in these phases can belong to different
abstraction levels: the camera type (CameraDef) is classi-
fier for the two HDCamera instances. It would be possible
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Camera Domain: Default Modeling Process
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Fig. 5 Multi-phase modeling process for the camera example project.
The camera is derived to a repository of the configuration phase and
finally to multiple production prototypes

to model this example in a three level multi-level model that
would look similar to Fig. 5. The Brainstorming mod-
eling phase corresponds to a model level 2, the Systeml
Config resembles level 1 and finally the Production
phase represents level 0. However, our example is based on a
modeling process. In the initial definition phase, we might not
yet know if the project is continued and which of the concepts
are going to be used. Maybe the finalized system is actually
reused and further customized in a follow-up project. We
know, however, that our development process requires cer-
tain properties to be handled at specific phases in the process:
to pass an early milestone we have to successfully run specific
simulations, that require a system configuration to be done.
Furthermore, we can only assemble the system, if we know
the specific serial ids of the system parts. To incorporate this
information and to handle corresponding model evolution,
multi-phase modeling is designed around an explicit process
description, which can be seen in Fig. 5. Each process phase
is represented in a context model, and the domain elements
in a repository always belong to one of these phases.

4.2 Context description as guide for model evolution

To reflect that results from previous project phases are
re-used, enriched with details and applied in consecutive
steps, Phases are inspired by levels in multi-level mod-
eling. Elements can have instances in each of these phases,
which are represented in the context model. Initially, ele-
ments are in the first phase of a context model; deriving
them to a new modeling phase changes their phase state
to the next phase in the context model. The CameraDef
domain element in the Brainstorming model is auto-
matically in the Definition phase, as defined in the
context model. Recreating the camera in the Systeml
Config model, automatically changes its state to be in the
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Configuration phase. In contrast to levels in multi-level
modeling, the phase state (an element’s level) is not derived
from the container of the element (the level in MLM), but
from a context model. If the derivation depth of an element
is two, then its state is in the second phase of the context
model, independently of its container.

4.2.1 Structure of multi-phase modeling

Figure 6 shows an excerpt of the metamodel for multi-phase
modeling. Central types are:

— Repositories are the root containers and have a specific
modeling goal, such as “Model the configuration of a
satellite” or “Create domain elements for the thermal
domain”. They combine required modeling aspects from
other repositories if needed.

— Domain elements are used to model this specific goal.
They are implemented similar to clabjects in classic
multi-level modeling and, thus, as clabjects can be
instantiated in multiple levels, domain elements can be
added into multiple phases. This is archived by the
DerivableElement whose instances can be derived
from other instances, thus, creating derivation chains.

— Domain Initial creation of domain elements is done
within a package element, called domain. Derived domain
elements, optionally from different domains, are added
into repositories directly. The domain affiliation (con-
taining package of the initial element) is passed on to all
derived elements. Thus, the domain of a domain element
can be determined by the first element in the derivation
chain. Domain elements of the same domain share a com-
mon context model.

— The Context Model is a directed graph with modeling
Phases as vertices. Each phase represents a state of corre-
sponding domain elements in their life-cycle. This means
a context model describes in how many modeling phases
adomain element can be represented. Compared to multi-
level modeling, phases are similar to levels, however a
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phase is not a (conceptual) container within a model,
but it is a (life-cycle) state of corresponding domain ele-
ments. Repositories contain and manage these states.

— A State is automatically created once a domain element
is added into a repository. All of a domain’s elements in
a repository have to be in the same phase. To specify this
phase state, the State contains a context model and a
link to the currently active phase. If an existing context
model is reused, the context model can also be refer-
enced. The descent relation links to the previous state
space and thereby specifies which elements of a domain
can be derived into this space (in form of a repository).
The combination of a repository and a contained state
corresponds to a level in multi-level modeling.

Repositories are bare structural containers and do not
influence the domain element’s phase state. Instead, the
domain element ‘emits’ its state to the repository. If one
domain element in a repository is in, e.g., the configuration
phase, then all elements of this domain have to be in this
state. To achieve this, the state links to the domain, not to the
domain element: it influences all elements of a domain. After
the camera concept was added into the Systeml Config
repository, all further domain elements in this repository are
automatically in the configuration phase. Then, domain ele-
ments with a different derivation depth cannot be added into
such a repository.

As shown in Fig. 7, elements of different domains in the
same repository can be in a state defined by different con-
text models. Thus, they are in different phases. Elements of
different domains in the same repository do not even need
to have a common phase. By using context models, phases
are broken down to domains. Repositories themselves do not
have any conceptual order. Ordered are the domain elements
within the repository, as specified by the context model. The
SystemlConfig repository in Fig. 7 combines domain
elements from other repositories with elements from differ-
ent domains. The HDCameral and the Camera Driver
are in the same repository, but in different states, defined by
different context models. In the example, the data handling
aspects are relevant for the system configuration; the produc-
tion repository, again, contains only domain elements from
our navigation system.

4.2.2 Context model notation

Contexts are modeled by describing the phases of the sur-
rounding modeling process. This description can be an
ordered list of phase identifiers or a more complex directed
graph. As shown in Fig. 6, the phase’s property next allows
multiple next phases and, thus, multiple paths in the con-
text model. If a domain element is instantiated into a new

Brainstorming | Data Handling |

=
T ® state state @]

NavSys DH
System1 Config

|
HDCameral
e ol -
[

% Production |

NavSys T - I

—_
NavSys

Fig. 7 Modeling with multiple domains and their context models.
Repositories can combine domain elements from multiple other repos-
itories. The phase state of the domain elements is evaluated locally
with their domain’s context model. A global phase/level for different
domains does not exist

stateless repository and the domain element’s state has mul-
tiple options for the next phase, then the modeler can select
which of these paths in the context model is followed. The
directed graph can also contain circles, enabling iterative pro-
cesses and effectively allowing an infinite derivation depth
of domain elements.

4.2.3 Customization of context models

One of the motivations for context models was to achieve
more flexibility where needed by keeping control where nec-
essary. In this section we discuss how this flexibility can
be utilized by customizing context models. Continuing the
camera example of Fig. 1, the basic context model contains
three elements for the phases of definition, configuration and
assembly. A customized context with an additional integra-
tion phase allows elements to be in a repository representing
the integration phase. In our example, the same camera defini-
tion is used in two different modeling projects, with different
development processes.

Figure 8 shows how this project-specific customization of
contexts works. The initial context model describes a com-
mon process in the navigation system developers’ company.
This common process contains phases for the already known
order of definition, configuration and assembly. It can be
described in an abstract context model, without any repos-
itory or domain elements. (Top of Fig. 8) A project that
follows this generic process re-uses the context model implic-
itly when instantiating a domain element into a repository.
A different project that targets to integrate this navigation
system into other systems, such as cars, requires an addi-
tional integration phase. Thus, a more complex project can
customize the existing common context model and derive its
extended context model. Domain elements in the project’s
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Fig. 8 Extension of Fig. 5: adds a project that customizes the context

model so that the domain elements can be derived to an additional
modeling phase for the integration of the camera elements into cars.
The red context models are customized

system model then contain an additional derived form of the
camera in a fourth modeling phase. This extended project
can then continue to use the system data from the first two
phases without having to modify them.

To ensure consistency, context customization has to follow
some rules:

1. No phases can be deleted

2. Phases can be added after the currently active phase

3. Phases can be edited (name, link to next phase) after the
currently active phase.

Since the domain elements in the referenced repositories
cannot be changed, only phases after the current phase in
the context model can be changed (add phase/change path).
This reflects that we cannot modify the past but only future
modeling phases. As context models resemble the model-
ing process, customization of contexts is usually done if the
process changes or if the model is used in projects or orga-
nizations with specific requirements.

4.2.4 Context models with multiple domains

Figure 9 visualizes the structure of multi-phase modeling
with multiple context models and projects. A Context scope
consists of arepository and its corresponding context models.
Every domain element in a repository needs to have a phase
specification in a context model within this context scope.
Repositories do not follow a strict order, they are free floating.
Ordering structure is the context model. Repositories can be
used to define new elements or to connect these e.g. in a
system model (which is then also contained in a repository).
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Fig.9 Flexible structure of multi-phase modeling with elements from
different domains. The context model of Domain A is shown left to the
Repository, the context model of Domain B is on the right side

The example shows an organization that models aspects
of two domains, Domain A and Domain B. Each domain
defines a set of generic domain elements and their corre-
sponding context model. Projects derive and customize these
domain elements in their system model. In the example,
Project I sticks to the common context model. Project II cus-
tomizes the context models so that elements of both domains
are represented in an additional phase. For Domain A, this
new modeling phase is added between the existing ones. Its
domain elements for this additional phase are contained in
a separate repository. This makes it possible to synchronize
phases of different domains. The last repository of Project II
contains elements derived from different other repositories.
There is no strict order of repositories. Instead, domain
elements are part of a conceptual typing dimension
specific to their domain and defined by the context models.

4.3 Context-aware constraints

The context model enables to specify in which model-
ing phases the domain elements can be created. However,
the main motivation for multi-phase modeling is to model
phase-specific information. Depending on the phase, domain
elements focus on different modeling aspects. In an initial
brainstorming session for elements needed in a system, it
does not yet make sense to model the position of these ele-
ments as a system does not yet exist. The information in
which modeling phase the elements of the current repository
are, is derived from the context model. We define context-
awareness as knowledge of the context model and the state
specifying the currently active context phase. In our camera
example (Fig. 10), after domain experts determined a spe-
cific resolution, it must not be changed in consecutive phases.
Production workers should not be able to change the resolu-
tion as corresponding prototypes might be used to evaluate
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Control <<derivable
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<<visible at;;‘ Assembly

Fig. 10 Context-aware model manipulation constraints. Context mod-
els can be used to specify to which phases an element can be added to,
when it is visible and can be edited

this property. Context-awareness enables to specify at which
point in the modeling process which system aspects have to
be modeled.

(3) We define context-aware constraints as a formal descrip-
tion of which constituents of a domain element are
accessible in which modeling phase.

Thereby, a context-aware constraint allows customizing dur-
ing which development phases selected properties of a
domain element are visible, mutable, and/or assignable as
well as whether the domain element may be derived or
extended.

4.3.1 Structure of context-aware constraints

Figure 11 shows the metamodel for context-aware con-
straints. Constraints always have a subject, a constraining
type and a context specifier. The subject is a reference to a
DerivableElement or one of its attributes, specifying
which element is affected. The constraint type can be one of
the following:

— derivable: customizes in which phases the Deriv-
ableElement can be created in. Without any constraint,
DerviableElements can be created in all phases as speci-
fied in the context model.

— extensible: defines in which phases new attributes
can be added to DerviableElements. Without constraint,
it is not possible to add new attributes in any phase.

— visible: specifies in which phases an attribute/a refer-
ence is visible. Without constraint, attributes are visible
in all phases.

— editable: specifies in which phases an attribute/a
reference can be assigned a value. Without constraint,
attributes are editable in all phases.

If required additional constraint types can be added. The
phase specifier allows to define when this constraining char-

DomainElement ContextModel

1
subject Ty 1 Tatm%utes phases .
| Context-Aware Constraint I\ Tooect next
> Context Specifier

operand
| Class Constraint [ Attribute Constraint |
AN

AtSpecifier -

| I Deriveable | I | Editable | 4
[ Extensible | | Visible |  E———

See Table 1 for more specifiers.

Fig. 11 Metamodel illustration showing relevant elements for context-
aware constraints. There are constraint types that target DerivableEle-
ments and others that target its attributes. Phase specifiers link into the
context model to select a range of modeling phases

acteristic is active in the modeling process. To mitigate
limitations of a fixed number of phases, constraints use refer-
ences to the context model rather than hard-coded numbers
(as derivation depth). Decoupling, achieved by these refer-
ences to the context model, does not predetermine an order
of phases and thus allows changing it later. It enables precise
constraints by leaving room for customization of the mod-
eling process. Model elements can be targeted by multiple
different constraints. This way, it is possible to, e.g., config-
ure if an element is visible and editable independently from
each other by using two separate constraints. Furthermore,
constraints are inherited to child types (both, through inher-
itance in the same phase and also derived elements in later
phases), but can be overwritten, similar to attributes in classic
object orientation. Constraints are bound to their subject and
share their life-cycle.

4.3.2 Constraint specification

The graphical notation for constraints, applied in Fig. 10, uses
a link between a domain element and a phase in the context
model. Start point of the link is the constraint’s subject; end
point the context phase in which it is active. The color repre-
sents the constraining type. As textual representation of the
edit until constrain in Fig. 10 we recommend a struc-
ture like this:

<Subject> <Constraint Type>
resolution edit

<Phase Specifier>
until Configuration

The different constraint types (collected in Table 1) use
specifiers for ranges of phases in which they are valid.
For example, according to the edit until constraint,
the camera’s resolution can be edited until the configura-
tion phase. With a context model as shown in Fig. 10,
this means it can be edited in the first two phases. Its
position and serialID property are visible in the assembly
phase. The derivable until constraint specifies that
the Control Interface canbeadded to the first phases.
This kind of constraint corresponds to potency in multi-level
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Table 1 Specifiers for Subject Type Phase specifier
context-aware model
manipulation constraints DerivableElement Derivable Always
Extensible Never; x = {}
Attribute/Reference Visible AtA; x = A
Editable AfterA; x > A
Before A; x < A
UntilA; x <= A

FromA;x >= A
BetweenA and B; A <x < B

Product
Definition
Camera
resolution
position
seriallD

CameraDef [+ HD Camera [+ Camerai1X2

800x800 1900x1080 1900x1080

(34,23 2,23)
STAS7A

Process Redefinition

Product
Definition

Camera
resolution
Conflguratlon
position

seriallD - Integration
<<visible at>> ~
Assembly

CameraDef [+| HD Camera [¢| CameraP1 [<+] CameraiX2
800x800 1900x1080
(34,232,23) | | (34,23 2,23)
S7AS7A

Fig. 12 Context-aware element creation and context customization. Depending on the constraints, properties are mapped to the elements. Range

constraints can be used to consider process customization

modeling. It allows specifying that elements are applicable
to not all of the phases introduced by its domain’s context
model. To fulfill Requirement 4, new properties cannot be
added to domain elements in all modeling phases but only in
these where it is explicitly allowed.

To increase flexibility of editing rules, the constraint
mechanism supports targeting ranges of modeling phases.
This enables to specify that properties are, e.g., editable after
or between specific phases. Figure 12 shows how this map-
ping of properties to domain elements works. The figure
contains three constraints:

Cl Camera.resolution edit until
Configuration The camera’s resolution can be seen
in all phases of this domain element, however, it can only
be edited until the element is in the configuration phase.
(until: configuration phase included; before would
not include it).

C2 Camera.position visible after
Configuration The camera’s position property is
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visible after the configuration phase (after: configu-
ration phase not included; £rom would include it). It is
also editable because we do not have any edit constraint.

C3 Camera.seriallID visible at Assembly
The camera’s serialID property is visible in the assembly
phase.

The first element of the camera will be in the Product
Definition phase and according to constraint (C1) it con-
tains the resolution property. A specification of a resolution
in a phase before the (final editable) configuration phase is
handled as default value. The element with a derivation depth
of three is in a phase after the Configuration phase (C2)
and at the Assembly phase (C3), so it also contains the posi-
tion and seriallD property. According to (C1) the resolution
property can still be seen but not edited anymore.

When specifying constraints, it is only possible to refer-
ence already modeled context elements. Range
constraints, however, provide a way to consider con-
text customization. As the camera’s position in Fig. 12 is
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visible after the configuration phase, it is also accessible in
an additional integration phase. This makes the selection of
phase specifiers from Table 1 more relevant. While the spec-
ifiers after Configuration and from Assembly
result in the same outcome with the initial context model,
an offspring in an additional integration phase in between is
accessible with the after keyword.

4.3.3 Composition of constraints

As mentioned before, it is possible to address one ele-
ment with multiple constraints and each constraint can have
multiple phase specifiers. While this is necessary to, e.g.,
specify when elements are visible and editable independently
from each other, it may also lead to conflicts. Constraints
could specify that attributes are editable when not even
visible. Constraints of attributes and their corresponding
DerivableElement could be conflicting. To ensure consis-
tent behavior, constraints are evaluated following the order:
derivable, extensible, visible,
Phase specifiers are evaluated according to the order of their
specification. So if an element is not visible but editable, it is
simply not visible. Furthermore, if necessary in the modeling
environment, constraint editors can support model users by
highlighting inconsistencies and conflicts.

Summarizing, the combination of context models and
context-aware constraints allow to specify when in the mod-
eling process domain elements can be created, and their
representation can be customized to model phase-specific
information.

5 Systems engineering case study

To evaluate multi-phase modeling against the requirements
in Sect. 3, we apply it to examples of industrial relevance. In
detail we analyze if it:

— fulfills the requirements from Sect. 3
— is possible to be integrated into systems engineering
projects.

Fischer [13] presented a systems engineering scenario in
which he showed challenges of potency-based multi-level
modeling. In his example, projects exist in which it is neces-
sary to add an additional model ‘level’ because one system
configuration might be used for the integration of differ-
ent payloads. He models a telecommand, which represents a
command for remote control. Aspects of this telecommand
need to be modeled at different abstraction levels of the sys-
tem. Furthermore, the telecommand has properties which are
required but only known at specific modeling phases. Mod-

editable.

eling this scenario requires customization of the modeling
process as required by Requirement R.1.

Furthermore, to demonstrate the extension’s practical
applicability and to analyze its impact on the modeling pro-
cess, we implemented a prototype and applied it to real-world
data. Therefore, we integrated multi-phase modeling into
a model-based systems engineering tool for space system
development. Besides the constraint mechanism for model
elements, as required by Requirement R.2, we also evaluate
how concepts from different domains can be integrated, as
required by Requirement R3.

5.1 Handling of changes in the numbers of phases

Figure 13 shows how, according to Fischer [13], a typi-
cal structure describing an attitude and orbit control system
(AOCS) can be modeled using multi-level modeling. Part of
the AOCS domain is an element for telecommands that is
used to specify commands for remote control of the system.
Telecommands have properties, which are known in specific
phases of the engineering process only. In this example, the
telecommand is controlling a reaction wheel, which is a com-
ponent of the AOCS subsystem. Its initial type definition in
the system model is derived to different configurations of
a satellite. These configured elements are then derived as
assembly units in different prototypes per configuration. In
the first level, as part of the definition of the reaction wheel,
engineers specify that this element can be turned on with a
telecommand. Each telecommand, however, needs informa-
tion that is accessible in later levels only. Examples for such
information are the satellite and equipment id. The scenario’s
challenge is the expectation that additional modeling phases
have to be integrated between existing ones.

To model this use-case with multi-phase modeling, one
has to create a context model first. The different levels,
described by Fischer, are handled as modeling phases in our
approach. Describing the development process in the con-
text model allows mapping the telecommand properties to
the different project phases. The purpose of a telecommand
is only editable in the first definition modeling phase; the
satelliteID in the assembly phase. With an additional phase,
e.g. for the integration of different payload components, the
satellite id needs to be edited in the fourth phase/level instead
of the third. A customized context model for this development
process solves this problem: the integration phase is added
into the context model. As the property satelliteId
was assigned to the assembly phase, the constraint remains
valid also with an additional phase between the previously
existing phases. It cannot be edited in the third integration
phase. Thus, the main challenge of this scenario, handling
of changes in the number of phases/model levels, is explic-
itly addressed and fulfilled by the introduction of the context
model.
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Fig. 13 Mapping of element properties to model levels. Overriding the
context model allows adding new levels to a system model

5.2 Interdisciplinary modeling environments

An important requirement for a systems engineering method-
ologies is to support composition of elements from different
domains (Requirement R3). This section evaluates how
multi-phase modeling handles this ‘synchronization’ of mod-
eling phases. Figure 14 shows an example where elements
from different domains are integrated into one system model.
Domain elements are reused in several locations of a system.
A camera concept is derived according to the modeling pro-
cess of definition, configuration and assembly. It has two
derived elements in a system configuration. A network port,
modeled in another repository can be used to, e.g., connect
the cameras and an onboard computer in the configura-
tion repository. As shown in the figure, a specification of a
DSub2BusPort with two pins can be instantiated in other
repositories of the system model. Elements of this type, then,
automatically contain the modeled pins and a reference to the
type description. In this particular case, the ‘derived from’
relation between domain elements of different phases is actu-
ally an ‘instance of” relation. Thus, multi-phase modeling can
be used to model multi-level modeling aspects.

The input and output properties of the components repre-
sent a link of the structural domain to the networking domain.
Besides the type of this relation, it is also possible to specify
the phase of the referenced type: components only accept
ports in the application phase as input and output (the Port
type is rendered green, the application phase’s color).

Context-aware constraints utilize a description of the mod-
eling process to allow controlling how system elements are
used. The port’s property voltage is editable until the spec-
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Fig. 14 Reuse of model elements in different locations of the system
model. The DSub2BusPort instantiates the port from the network
repository and defines a new attribute sealed. The new port type
is then instantiated in the configuration repository. Attributes that are
read-only are shown gray, new properties red and others black

ification phase. This prevents users from changing it in
the network domain’s application phase. There, the prop-
erty is still visible but read-only. Furthermore, according to
the derivable at constraint, users cannot create domain
instances of the network protocol in the application phase.
The number of pins of a port is only editable in the specifi-
cation phase, whereas the actual connection of these pins is
done in the application phase. Cameral uses Pinl to con-
nect to the onboard computer; Camera2 uses Pin2. This
way, context-aware constrains make it possible to distinguish
between the different facets of the network elements. In the
specification phase, model users can edit the aspects of the
network specification (Port name, pins, voltage, protocol); in
the application phase, users can connect elements with this
network technology, but cannot change its internal attributes
(voltage, pins) anymore.

The extensible at constraint for the port speci-
fies that model users can define new properties for ports
in the specification phase. An example for such an exten-
sion is the sealed property, which is defined in the
InterfaceTypeCollection repository. Instances of
this DSub2BusPort, in the application phase, have to spec-
ify a value for this property. Port elements in the application
phase cannot be extended with new properties (because its
not explicitly allowed via constraint). This way, the modeling
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environment enables extension of the class facet of domain (" Generic Multi-Phase Environment A
eleme.nts, however, in a conﬁgurable way (Re.qulr'ement R4). Eclipse Modeling Framework
This use-case shows the difference of repositories + phases
and levels. With different context models for elements from
different domains, repositories do not have a global linear Extension Base Context
order. Instead, they are free floating and their contained L Language Editor
domain elements are in (ordered) phase states depicted b
e In ( )P : pictec by (" Multi-Phase Virtual Satellite A\ ( Other )
the context model. First-phase elements of different domains Tools
do not have to be in the same repository: the first derived ele- Eclipse Modeling Framework
ment of a camera and port are neither in the same phase nor VirSat Multi-Phase Modeling
in the same repository. As shown in the figure, elements of Metamodel Metamodel
different domains are derived following their own dimen- Pt Multi-Phase | Context
} ] . g . - Core Services Editor
sion. This enables to incorporate several different domains . ]
into one system model and thereby fulfills Requirement R3. L VIl L )

5.3 Integration into engineering processes

To analyze the impact on tools and the underlying process of
modeling, we implemented a prototype for multi-phase mod-
eling. As our approach targets modeling of multiple project
phases in interdisciplinary system engineering projects, Vir-
tual Satellite! is a suitable tool. It enables modeling space
systems and supports engineering for the whole life-cycle of
systems [14].

Modeling systems from different abstraction levels with
multi-level modeling is not supported in the current version
of Virtual Satellite. However, it is using a concept similar
to levels to handle configuration problems, such as defini-
tion, configuration and assembly of satellites. If elements are
reused in different of these ‘levels’, they are copied. Thus, ele-
ments are not customized to the different abstraction levels.
Elements in the different ‘levels’ all have the same attributes.

To change that, we developed a generic environment
for context-aware multi-phase modeling and integrated it
into Virtual Satellite. Figure 15 shows the structure of our
implementation. It defines types for the context model and
context-aware constraints (as shown in Figs. 6 and 11). To
specify context-aware constraints, it contains a textual lan-
guage definition that implements the specifiers from Table 1.

Virtual Satellite provides an extension mechanism that is
based on the type-object pattern and uses a textual language
to define new types. To support context-aware constraints for
these types, we updated Virtual Satellite’s extension mecha-
nism to include the language for constraint specification. We,
furthermore, updated system model elements to be an imple-
mentation of a DerivableElement to enable usage in multiple
modeling phases. This way, it is possible to use multi-phase
modeling and to define context-aware constraints within
Virtual Satellite. While an in-depth description of this imple-

! Virtual Satellite: https:/github.com/virtualsatellite developed by the
Institute for Software Technology at German Aerospace Center: https://
www.dlr.de/sc/en.

Fig. 15 Structure of the prototype implementation. The modeling envi-
ronment is domain independent and can also be used in other tools than
Virtual Satellite

mentation is out of scope of this paper, the tool environment
uses a realization dimension comparable to the approach
described by Igamberdiev et al. [22] to enable deep modeling.
Both, the user interface and the model infrastructure, are now
extended to be context-aware. The UI only shows elements
that are visible according to the context model and context-
aware constraints; the underlying model engine checks every
change for compliance with the current context.

Figure 16 shows the context-aware Virtual Satellite edi-
tor. Most left, the context model is opened in its diagram
editor. The text editor screenshot shows the domain-specific
language for defining new types in Virtual Satellite. Besides
the definition of a camera element, it contains three inline
context-aware constraints (inline because they are within the
definition of the camera type). The UI editor, then, shows
three camera elements in different phases. The most left UI
editor screenshot shows the creation of a generic camera
element. The camera element in the second derivation step
(middle) allows to edit the camera’s resolution. The serial
id property is only visible in the element of the assembly
phase. In a later added integration phase, between configu-
ration and assembly, the editor would not show the serial id
and the resolution would be read-only.

The prototype implementation shows that an implemen-
tation of context-aware multi-phase modeling has a direct
benefit for system engineering tools. It does not only support
dynamic changes of the order of phases but it also enables
phase-specific modeling. As shown in Fig. 16, users of the
editor then only see the properties which are semantically
correct in the given phase.

Multi-phase modeling provides a unified way how data
models can be derived to new development phases. The
methodology respects that development phases can require
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Fig. 16 Diagram editor for the context model, text editor for type-
definition and a context-aware Ul-editor with a camera element in
different modeling phases. As defined by the inline context-aware con-

a different level of abstraction. It relieves engineers from
re-creating MBSE infrastructure for new development steps,
because elements can be derived natively to new modeling
phases. As shown in Fig. 14, it thereby allows modeling
different engineering perspectives: for example, one phase
enables specifying the port’s ‘technology’, the second phase
enables its application. To achieve backward-compatibility
and to avoid superfluous context models, DerivableElements
can also be used without context. In such a case, elements
are always in a single state defined by an implicit context
model. As a result, these elements can be added to all repos-
titories, but without a life-cycle definition in a context model
they cannot be derived. This mechanism enables to use ele-
ments that are not relevant in multiple phases without context
model. Users have to create a context model only when ben-
eficial for the modeling process. Future work will have to
provide quantitative analysis of the modeling effort saved
through multi-phase modeling. Independently, the explicit
derived from relation between elements of different
modeling phases improves data continuity. Re-using already
modeled aspect is key to improving engineering processes
[27]. However, development phases usually require model-
ing the system from different abstraction levels. Multi-phase
modeling is beneficial when classic multi-level modeling is
too strict, e.g. when required phases/levels are not mere clas-
sification levels. In engineering, this is can be the case as
‘levels’ might come from configuration control [37]. Multi-
phase modeling can be used with configuration levels by still
enabling to trace back, e.g., why a component on a space-
craft was added and how it evolved during the course of the
development process.

5.4 Integrity and limitations

Customization of the context model allows to completely
reorder the modeling phases. Such a fundamental change of
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straint in the camera definition, the resolution property is visible after the
first phase and editable in the configuration phase (not in the assembly
phase)

the modeling process might lead to inconsistencies. However,
with the rules for customization of Sect. 4.2.3, phases can-
not be deleted. This removes the risk of dangling references
of, e.g., context-aware constraints. New phases can only be
added/edited after the currently active phase to ensure that
no inconsistency between context and system model appears.
Adding phases, as done in the example of, e.g., Fig. 13, leads
to modeling phases differing between different contexts. The
satellite ID in the example of the initial project is modeled
in the third phase; in the customized context it is modeled
in the fourth phase. From a global modeling perspective,
without context model, this might be considered inconsis-
tent. However, with the context model, these changes of the
process are formalized and, thus, can be traced. Reorder-
ing phases that are referenced by context-aware constraints
might lead to ‘missing dependencies’. For example, accord-
ing to constraints, property X is visible after phase A and can
be edited in the following phase B, switching the phases A
and B results in X not being visible in B. X could then not be
edited in any phase. However, as context-aware constraints
reflect the modeling process, such a case also indicates a
broken development process. Furthermore, tool-support can
validate customization of context models and warn if, e.g.,
properties are not visible but are configured to be editable.

5.5 Implications of multi-phase modeling

Multi-phase modeling, as described in this paper, was
inspired by multi-level modeling but focuses on use-cases
with multiple modeling phases. Although the abstraction
level of elements decreases along the modeling process,
multi-phase modeling is based on more than one abstrac-
tion principle. For example, we do not explicitly require the
relation of elements between different phases to be only the
non-transitive classification one. For our engineering pro-
cess this does not cause any serious issues, as we do not rely
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on the classification characteristic in any way. Regardless of
the semantics of the relation of elements between different
phases, it can at least be used to trace elements throughout the
modeling process. However, when using multi-phase model-
ing, one has to keep in mind that phases differ from levels and,
thus, not all multi-level modeling concepts might be directly
applicable. We do not preclude, however, that context-aware
modeling can directly be used for multi-level modeling. If
relations between elements of different phases are enforced
to be multi-abstraction relationships, then, phases might actu-
ally be seen as levels. Nevertheless, driven by our engineering
use-case, we intentionally do not require the relation between
phases to be non-transitive. Not having clear and consistent
semantics of this relation might make it difficult to discover
modeling anomalies and inconsistencies. A solution to this
disadvantage can be a parametrization of the derivedFrom
relation via context model. Specifying that all inter-phase
relationships between two specific modeling phases require
to be classification relations, allow to run MLM soundness
checks on these specific phases. For example, we could spec-
ify that the relation between the Specification and
ApplicationphaseinFig. 14 requires all inter-phase rela-
tions to be of type instance0Of, thus, conforming to MLM
rules. Such a parametrization of phase transitions enables to
run customized soundness checks on the different phases.

This section applied multi-phase modeling to two exam-
ples of the systems engineering domain and presented a
tool implementation. Our first example demonstrated that
multi-phase models can be used in contexts with different
level hierarchies than the base model. It thereby shows that
Requirement R.1 is fulfilled. The second example shows
that models from different domains can be integrated into
one system model and thereby solves Requirement R.3.
The attributes of ports are, furthermore, configured to be
either editable in the specification or in the application phase
and thereby demonstrate the behavior requested by Require-
ment R.2. The last Requirement R.4 is demonstrated by the
Port being configured to be extensible in the specifica-
tion phase only. By modeling the pin-connector engineering
example, and showing the integration into the Virtual Satel-
lite engineering tool, we show a direct benefit for systems
engineering projects.

6 Related work

This work uses multi-level modeling concepts and applies
them to a development process with multiple phases. In
this section, we compare multi-phase modeling with related
approaches of multi-level modeling.

6.1 Multi-level modeling

The way we utilize multi-level modeling differs from strict
implementations, such as by Atkinson and Kiihne [7]. Our
approach of using multi-level modeling is closer related to
Materialization and M-Objects [9,32]. However, the concept
of separate metamodeling spaces is strongly related to our
approach of evaluating the phase state locally per domain [4].
This local handling of the phase of a domain element also
results in the fact that repositories, the structural containers
of domain elements, are not ordered in any way. An ordering
of instances of a domain element exists only if explicitly
specified in a context model. A domain element without a
context model (for consistency that is an implicit context
model with one phase) can be instantiated in all repositories
without further restrictions. Then, it is always in the one state
defined by the implicit context model. Such a domain element
corresponds to an orderless type in the modeling theory of
Almeida et al. [1].

One of the most advanced tools for multi-level modeling is
Melanee [2]. Our multi-phase modeling implementation and
the Derivable Element is based on the concept of a Clab-
Jject, presented in their work. While it is not in the focus of
this work, they provide advanced means to dynamically cus-
tomize element visualization by also combining textual and
graphical domain-specific languages [3]. With a mapping
of element properties to modeling phases, as presented in
this work, element visualizations can be further customized.
A combination of both modeling approaches could allow
new customization techniques for phase/level and domain-
specific editors. Melanee also contains a constraint language
to specify level-spanning constraints, which are aware of
the ontological modeling dimension [26]. Concepts, such
as potency, however, which are a foundation for these con-
straints, are based on consecutively numbered level labels.
Thus, they do not allow inserting new model levels. Fis-
cher [13] highlights this problem for the domain of systems
engineering. Kiihne [24], furthermore, points out challenges
of the concept of potency for order-aligned model levels and
suggests to consider these locally. Using dedicated context
models for different domains describing the order of mod-
eling phases corresponds to the idea of different modeling
spaces and a total local order alignment. However, this paper
introduces a formalism to explicitly specify and manipulate
the expected order of levels/phases of these modeling spaces.

Controlling element extensions, as our approach does it
with the extensible constraints, has a related concept in the
literature: MetaDepth allows controlling weather an element
can be extended by two different types of ontological instan-
tiation (strict and extensible) [10].
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Frank presented a concept of domain-specific language
hierarchies based on multi-level models [15]. He suggests
using languages in different levels of organizations. Abstract
languages can be shared between different groups while con-
crete ones add project-specific details. Such an approach can
be supported and implemented by a modeling environment
aware of context models. The application domain introduced
in Fig. 9 implicitly considers such a usage already.

Deep references, as defined by de Lara et al. [11], allow
referencing clabjects by their most abstract type. In combi-
nation with a potency, indicating the depth of the instance to
be referenced, this allows specifying references to concrete
instances not yet known. Our approach uses a similar way of
referencing other model elements. As shown in Fig. 14, ref-
erences to other model elements can contain a phase specifier
(a reference into a context model) to define at which phase a
referenced element needs to be. In the example of Fig. 14, the
Component references derived elements of ports by their
most abstract type (Port), but specifies that these have to
be in the application phase.

6.2 Potency

One of the main contributions of this work is to enable
phase-specific modeling, thus, explicitly specifying in which
phase/level a model element is supposed to be modeled.
Foundation for this idea is the initial concept of potency
[5]. Our counterpart, context-aware constraints, work on
types and properties, as do Single/Multi-potency [36]. How-
ever, we do not explicitly differentiate in our terminology.
The constraining types editable and visibile in our
approach, correspond to mutability and durability
in other modeling implementations [18]. However, in con-
trast to phases, only the non-transitive classification relation
is allowed between levels. Thus, with classic multi-level
modeling, inserting classification levels between existing
ones is impossible. However, the general principle of potency
is still related to our context-aware constraints. In the liter-
ature, several extensions and customization of the original
potency can be found. Figure 17 shows a comparison of these
different potency-related concepts. The original potency is
based on a number that specifies the depth to which a model
element can be instantiated. As shown in the table in Fig. 17,
this allows specifying that a model element can be instan-
tiated until Level X. Star potency allows to define that an
element can be instantiated in an arbitrary number of lev-
els and allows refinement to a regular potency in one of its
instances [18]. Thus, the difference between both approaches
is that star potency does not require target committal early
on. Star potency corresponds to our phase specifier always
(Both, star potency and our specifier can be customized
later). Leap potency allows to specify that an element can
be instantiated exactly X levels from the current element
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k C(.0] B [X,0]

- | S |
l | L | | I

A(1LX]
Level | Level X Level 0
Level Range A Level Range B Level Range C Level X

Potency X - -- -
Star-Potency X X -
Leap-Potency X -- X
Range-Potency X X X X
M-Objects X X
Contigent Level Classes X X X X
Context-Aware Constraints X X X X

Fig. 17 Comparison of different extensions of the original potency or
concepts that have a similar effect. The table presents if the different
potency types can be used to specify if model elements in Level I can
appear only in the subset of levels defined by A, B and C

[11]. Intermediate levels are skipped. This potency type cor-
responds to our phase specifier at X. Range potency uses
min and max values to specify flexible ranges for instantia-
tion [29]. These ranges allow targeting all the subsets of levels
shown in Fig. 17. Individual levels can be targeted by using
the same min and max value; a * as max value allows instan-
tiation until Level 0. Our level specifier between X and
Y (Table 1) directly corresponds to range potency. M-Objects
use labels instead of level numbers to specify at which level a
contingent object has to be instantiated [32]. Contingent level
classes allow specifying a ‘range of possibly represented lev-
els’ and thus also supports all subsets of levels [16]. Note that
we further discuss M-Objects, contingent level classes, Join
potency and source/target potency in Sect. 6.4.

Range potency and contingent level classes enable to con-
figure flexible ranges of levels in which model elements can
be instantiated. However, using numbers to target levels pre-
vents using this mechanism in environments where additional
levels might be added later. This problem is solved with a con-
text model that can be updated when knowledge about further
modeling phases arises. The context model provides an ordi-
nal scale for environments where numbers cannot be used
because of incomplete knowledge about how many deriva-
tion steps are required for an element. Level labeling without
a context model (e.g. in M-Objects) does not provide an intu-
itive ordinal scale: individual labels do not directly show
where in the hierarchy they are located. In contrast, con-
straints with a reference into the context model automatically
point to a structure that shows the current ordering of phases.

6.3 Process modeling

Guerra and de Lara [20] presented a related approach that
also explicitly describes the modeling process. Their pro-
cess targets to improve flexibility when creating multi-level
models. The presented architecture supports configurable
meta-modeling options to switch between different amount
of flexibility. Their process model is used to configure the
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strictness of the environment in the different phases and to
do configurable conformance checks. In contrast, our current
approach enforces similar modeling strictness in all phases,
but allows to map modeling aspects to the specific phases.
However, as mentioned in Sect. 5.5, it might make sense that
the context model could also be used to configure the strict-
ness and conformance checks on the different phases.

6.4 Modeling hierarchies

There exists multiple related approaches to integrate models
with different modeling hierarchies into one model:

A related concept is the Join potency [38]. It also targets to
integrate models from multiple domains with different mod-
eling hierarchies. Join potency uses meta-level-pointers to
specify which clabjects of the different models have to be
joined to integrate them into one multi-level ‘megamodel’.
In comparison, until know, our approach assumes that no
clabjects have to be joined when creating system models.
We target to integrate models from different domains, where
elements represent different system aspects, and can coexist
in the combined system model. This might be too simple for
complex systems engineering use-cases where models are
overlapping. A future approach could combine join potency
with context models to have a strong connection to the mod-
eling process and to join elements where necessary.

Another related concept that uses non-numbered labels for
model levels are M-Objects [32]. Similar to context models,
their concretization hierarchies describe the order of these
levels. While it would be possible to model the telecom-
mand example from Sect. 5 with M-Objects, their approach
does not describe an explicit description of the level order-
ing. Explicitly modeling the context allows using different
context models in projects. This way, a common base model
can be used and it is still possible to e.g. rearrange the order
of phases in specific projects. Furthermore, the same system
aspects can be modeled in different phases of projects by still
keeping consistency: the mapping of properties to phases via
context model can be used to backtrace what is modeled in
the different development phases.

Contingent level classes are elements without an explicit
level but with the ability of direct concretization on differ-
ent levels [16]. Similar to M-Objects, properties can target
flexible levels for concretization. In contrast to M-Objects
and context models, contingent level classes use numbered
levels. To allow instantiation in contexts with different level
hierarchies, properties can be assigned to contingent instan-
tiation levels. Contingent instantiation levels enable to refine
the level for concretization later and thus enable handling
of incomplete knowledge. However, as levels are numbered,
it is not possible to use contingent level classes in environ-
ments where levels can be added later (if renumbering is not
an option).

Dual deep modeling also aims to connect different mod-
eling hierarchies [33]. Like classic multi-level modeling,
their approach is based on level numbers. However, differ-
ent hierarchies can be modeled independently from each
other. Properties have a source and a target potency. The
source potency is specified relative to the source clabject’s
hierarchy; the target potency relative to the target clabject’s
hierarchy. Both have an implicit equivalent in our approach:
the source potency corresponds to a context-aware constraint
with the property as subject (e.g. ‘output editable until con-
figuration’ in Fig. 14). While the target potency corresponds
to the optional phase specifier for referenced types from
other domains (See the component inputs/outputs in Fig. 14).
Furthermore, dual deep modeling allows specialization of
deep properties. This enables to customize source and target
potency and thereby allows handling incomplete knowledge
when creating the property. We do not have a direct repre-
sentation of that mechanism, however, updating the context
model of a referenced element can have a similar effect. Nev-
ertheless, specialization of deep properties, as described by
Neumayr et al., goes beyond the handling of properties in our
approach. On the other hand, context models and their mech-
anism of reordering, allow more flexibility within one level
hierarchy because it is also possible to e.g. add phases/levels
between existing ones.

7 Conclusion and future work

In this paper we present an engineering modeling paradigm
for development processes with multiple modeling phases. It
is based on a context model that describes the order of these
modeling phases. Based on this context, it is possible to map
aspects to be modeled to the development phases. The pro-
cess, thereby, allows phase-specific modeling. Thus, it allows
to configure, when in a development process, it is possible
to model which system aspects. Changes in the develop-
ment process are handled by updating the context model.
For example, new modeling phases can be added by insert-
ing a corresponding phase to the context model. This paper’s
exemplary evaluation applies the new multi-phase model-
ing approach to real-life systems engineering uses-cases. It
shows that the number of phases can be adjusted to the sys-
tem’s development process and that system properties are
only accessible if semantically correct. Furthermore, to sup-
port interdisciplinary environments, the modeling approach
facilitates integration of multi-phase models from different
domains. As the ordering of phases via context model is
done separately per domain, system models can integrate
multi-phase models from other domains without having to
consider a global phase ordering (as it would be in clas-
sic multi-level modeling approaches with levels). While this
paper presented the conceptual basis for context-aware mod-
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eling, future work will present our implementation in depth
and also compare it with existing multi-level modeling tools.
Quantitative analysis needs to compare the modeling effort
with and without multi-phase modeling. It also makes senses
to discuss if multi-level modeling in general benefits from
context-aware modeling. Future work should, furthermore,
evaluate if this modeling approach can be combined with join
potency, to enable joining clabjects from different models to
be integrated [38]. In addition, specialization of properties,
as presented by Neumayr et al. [33] could be integrated to
improve reference handling between elements of different
domains. This way, integration of models from different hier-
archies into one system model can be improved by keeping
the strong connection to the modeling process.
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