
Software and Systems Modeling (2022) 21:2311–2328
https://doi.org/10.1007/s10270-021-00941-7

THEME SECT ION PAPER

A descriptive study of assumptions in STRIDE security threat modeling

Dimitri Van Landuyt1 ·Wouter Joosen1

Received: 16 October 2020 / Revised: 2 August 2021 / Accepted: 11 October 2021 / Published online: 17 November 2021
© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021

Abstract
Security threat modeling involves the systematic elicitation of plausible threat scenarios, and leads to the identification and
articulation of the security requirements in the early stages of software development. Although they are an important source of
architectural knowledge, assumptions made in this context are in practice left implicit or at best, documented informally in an
unstructured textual format. As guidelines and best practices are lacking, the nature, purpose and impact of assumptions made
in this context is generally not well understood. We present a descriptive study of in total 640 textual assumptions made in 96
STRIDE threat models of the same system. The study mainly focuses on the diversity in how assumptions are used in practice,
in terms of (i) the role or function of these assumptions in the threat modeling process, (ii) the degree of coupling between the
assumptions and the system under analysis, and (iii) the extent to which these assumptions are exclusively specific to security.
We observe large differences on all three investigated aspects: practitioners use the mechanism of assumption-making for
diverse purposes, but predominantly to exclude certain threats from further analysis, i.e. to scope the analysis effort by steering
it away from threat scenarios that are considered less relevant up front. Based on our findings, we argue against the exclusive
use of Data Flow Diagrams as the main basis for threat analysis, and in favor of integrating more expressive attacker and trust
models which can co-evolve with the threat model and the system.

Keywords Threat modeling · Security architecture · Secure development life-cycle (SDLC) · STRIDE · Security assumptions ·
Architecture knowledge management

1 Introduction

Threat modeling is an analysis activity that takes part in the
early stages of the development life cycle [13] and involves
assessing the applicability and relevance (i.e. plausibility) of
specific threat scenarios being enacted in the specific sys-
tem under analysis or design. A systematic threat modeling
methodology involves (i) establishment of an architectural
model of the system under analysis, (ii) systematic and
exhaustive elicitation of plausible threats, and (iii) priori-
tization and further documentation of the identified threats
as security requirements. Many threat modeling approaches
append these steps with additional support for mitigating
threats. Threat modeling is an integral part of secure devel-

Communicated by J. Araujo, A. Moreira, G. Mussbacher, and P.
Sánchez.

B Dimitri Van Landuyt
dimitri.vanlanduyt@cs.kuleuven.be

1 imec-DistriNet, Department of Computer Science, KU
Leuven, Heverlee, Belgium

opment life-cycles such asMicrosoft’s SDL [14,30], CLASP
[45], OWASP [22] andOpenSAMM [6]. STRIDE [30] is one
of the elicitative threat modeling approaches most widely
adopted by practitioners and researchers [48].

The threat elicitation stage is systematic and exhaustive
in the sense that it involves brute-force enumeration of threat
scenarios that may occur in the system under design. As a
consequence, this process commonly runs into the drawbacks
of threat explosion [39,47]: due to combinatorial explosions,
prohibitively large amounts of threats have to be consid-
ered, prioritized and documented. This effect hampers the
overall cost-effectiveness and practical feasibility of threat
modeling. In practice, many tactics are used to address this
issue, ranging from raising the abstraction level by omitting
lower-level details, over explicitly modeling trust bound-
aries in which specific threats are not to be considered, to
adopting domain-specific approaches [47] in which common
threats have already been instantiated for specific application
domains.

One practice particularly relevant in this regard involves
the formulation of assumptions that postulate system prop-

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10270-021-00941-7&domain=pdf

2312 D. Van Landuyt, W. Joosen

erties of relevance, the implications of which are relied upon
during threat documentation, prioritization and mitigation.
Although threat modeling approaches advocate explicitly
documenting such assumptions, very little practical guidance
is provided to threat modelers and it is unclear (i) what is an
appropriate way to document these assumptions, (ii) what is
their intended role or function in the threat modeling process,
(iii) what is their impact on the overall quality of the threat
analysis and (iv) and how to properly manage them beyond
the scope of a threat modeling exercise.

Regardless, assumptions made during threat modeling
represent architectural knowledge on the system that may
impede systematic reuse [10], hamper system evolution [17],
and hinder the compatibility of threat modeling with contin-
uous and agile development practices [20]. Particularly in the
context of cyber security, propermanagement of assumptions
is essential as in practice, security vulnerabilities are often
based on invalid assumptions or deliberate breakage of such
assumptions [46]. To illustrate the importance of assump-
tion management in a cyber security context, SecureDrop
is an open-source whistleblower submission system that
media organizations use to securely accept documents from
anonymous sources. The public design documentation of the
SecureDrop package [27] includes an extensive analysis of
the threats that have been anticipated and addressed during
development and more crucially, lists the key assumptions
under which the stringent security and privacy requirements
of this software package will be met. The documentation of
these assumptions as such is a key part of the architectural
documentation of the SecureDrop framework, to the extent
that is deliberately shared with a wide audience for public
review and scrutiny.

To obtain additional insights in how threat modeling
assumptions are used in practice, we conduct a descriptive
study of in total 96 STRIDE threat models, applied to a real-
istic industrial application, a Software-as-a-Service (SaaS)
offering that generates and delivers PDF documents such as
invoices and payslips in a batch-oriented manner. The bulk
of the investigated threat models has been created by stu-
dents in a controlled context: a project-driven master course
on software engineering, at a stage in which the participants
had already obtained in-depth familiarity of the application
case at hand, and with STRIDE and its supporting materials.
This main data set of 91 student threat models is extended
with a 5 additional threat models created by security experts
for confirmatory purposes.

We extensively investigate the in total 640 assumptions in
terms of (i) their role in the threat modeling process, (ii) the
degree of system coupling and the nature of system informa-
tion involved, and (iii) the degree to which these assumptions
are exclusively relevant in a security context. We specifi-
cally look at the nature of the information enclosed in the
assumptions, with emphasis on aspects such as trust and

attacker capabilities, assumed countermeasures and other
architectural elements of the system related to deployment,
implementation, etc.

We adopt a qualitative approach in which the assumptions
are systematically classified by means of categorical vari-
ables and metrics and text-based keyword analysis, which is
mainly a manual effort conducted through expert analysis.
The generated findings allow us to formulate recommenda-
tions and define a roadmap towards (i) improved treatment
of architectural assumptions in the specific context of secu-
rity threat modeling, and (ii) improved management of these
assumptions beyond the specific threat modeling or threat
analysis context, i.e. in security architecture and design, and
even in the broader context of the overall secure development
life-cycle (e.g. validating assumptions in a testing context).

The relevance and potential impact of implicit and poorly-
managed assumptions in secure software development is
broadly recognized [4,23,24,29].
Relation to prior work.The qualitative investigation involves
categorical variables/metrics and text-based lexical analysis
and uses an approach that is adopted from a prior study [44]
about assumptionsmade in the context of LINDDUNprivacy
threat modeling. In that regard, this study is a replica study
in terms of the study approach, with the following important
distinctions:

– Security assumptions, created as a by-product of STRIDE
are not necessarily equivalent to assumptions gener-
ated during privacy threat modeling using LINDDUN.
For example, although they have been constructed and
applies in an identical fashion, the security and privacy
lexicons created to assess the degree of specificity are
independent of each other and entirely distinct in both
studies.

– Weperformanalysis of assumptions generated in the con-
text of two very different applications: in this paper, we
focus on assumptions that apply to a document generation
SaaS application, whereas the prior study has focused on
privacy assumptions that apply to the architecture of an
IoT-based smart metering system [44].

Apart from the core research objectives of attaining a clearer
view on security assumptions as outlined above, it is a
potential side-effect to gain further insight on the common-
alities and fundamental differences between security and
privacy threat modeling, obtained via cross-comparison of
results. From that perspective, our studybuilds upon and con-
tributes to a reusable and versatile classification framework
of assumptions created as a by-product of secure software
development and lays the groundwork for further investiga-
tion and research on the articulation of such assumptions, for
example in other requirements elicitation or software design

123

A descriptive study of assumptions in STRIDE security threat modeling 2313

approaches [50] and the broader context of cyber security,
threat intelligence and risk management.
Paper outline The remainder of this paper is structured as
follows: Sect. 2 discusses the context and motivates the
paper. Section 3 outlines the research questions and the study
design. Section 4 presents the results which are subsequently
interpreted and discussed in Sect. 5. Section 6 concludes the
paper.

2 Context andmotivation

This section discusses the background on the role of assump-
tions in software engineering and on threat modeling. After
that, the more specific role of assumption-making in the con-
text of threat modeling is discussed and from this context,
the overall motivation for this descriptive study is provided.

2.1 Assumptions in software engineering

An architectural assumption [10,25] is a specific type of
development assumption [20,35], made during the architec-
ture design phase. Lago et al. [18] highlight the difficulty
of distinguishing between constraints, requirements and
assumptions, yet as they exert an impact on the architec-
tural decision-making process, they are integral part of the
architectural knowledge [1] of a system. A main difference
is that constraints and requirements are in practice docu-
mented explicitly whereas assumptions are left implicit or
documented in an ad-hoc fashion [8,19].

Industry survey studies [49–51] show that the inherently
vague concept of development assumptions is notwell known
in practice, and that interpretations differ between practition-
ers. In the context of these studies, assumptions are defined
as the reasoning behind an architectural decision and explicit
distinction is made between technical, organizational and
management assumptions.

In terms of their impact, assumptions are similar to archi-
tectural decisions, yet they represent uncertainty about the
system and its environment. The potential impact of assump-
tions [50] on software development is significant. Garlan
[10] refers to implicit architectural assumptions as one of
the causes of architectural mismatch, impeding systematic
reuse of software components. In practice, keeping track of
and documenting architectural assumptions is a costly and
non-trivial task, mainly because clear definitions, guidelines
and tools are lacking [49].

In addition, assumptions are dynamic in nature [19,
51]: they can be valid or invalid, and this status may
change over time as the system or its environment evolves.
Assumptions may contradict, subsume, and replace other
assumptions. They can change form over time, into require-
ments, design decisions, or they may become invalid or

irrelevant over time. Documenting and keeping track of
assumptions is called assumption management [19]. The
mapping study of Yang et al. [50] highlights the importance
of explicit assumption management throughout the software
development life-cycle. Other relevant development activ-
ities include the retroactive reconstruction of architectural
assumptions [25].

2.2 Threat modeling

Threat modeling involves the elicitation and mitigation of
security and/or privacy threats [22,48]. It is a systematic pro-
cess that entails: (i) Modeling the system under analysis,
commonly in the form ofData FlowDiagrams (DFDs)which
represent the system under design as a combination of data
flows, entities, processes, data stores and trust boundaries;
(ii) Threat analysis in turn involves instantiating threats in
the context of theDFD, documenting and prioritizing threats,
and (iii) Mitigation through selecting appropriate counter-
measures to reduce the identified risks.

STRIDE is a threat modeling approach for security threats
[14,30]. It is an acronym of: Spoofing, Tampering, Repudia-
tion, Information disclosure, Denial of service, and Elevation
of privilege, which are threat categories or threat types that
represent goals of potential attackers. For each of these cate-
gories, threat trees are provided. These provide hierarchical
refinements of the threat categories that can be used to further
concretize threats.

The relevance and applicability of each threat type is rigor-
ously investigated in the context of the systemunder analysis,
at the level of the elements or interactions depicted in the
DFD [30,38]. Threats considered relevant are subsequently
documented (instantiated as threat scenarios in accordance
with specific threat specification templates) and added to the
corpus of requirements that should be taken into account
during design and implementation. As such, threat mod-
eling is tightly intertwined with requirements engineering
and architecture design [13,40]. Threat modeling starts with
establishing initial architectural abstractions of the system
(encoded in DFDs), and leads to architectural decisions that
mitigate the identified threats.

2.3 Assumptions in threat modeling

Literature on threat modeling explicitly stresses the impor-
tance of assumptionmanagement and documentation. Torr et
al. [37] use the term ‘implementation assumptions’ whereas
Microsoft’s SDL book [14] refers to ‘security assumptions’,
and defines them as “the guarantees you expect from the
external dependencies”. Haley et al. [12] discuss the role
of trust assumptions in the context of security requirements.
Shostack [30] advises to document assumptions during the
threat modeling process. The template for recording assump-

123

2314 D. Van Landuyt, W. Joosen

tions suggested by Shostack strongly emphasizes on aspects
of life-cycle management, such as a procedure to verify
assumptions and the impact if falsified, and the appoint-
ment of a responsible to follow-up in such a case (‘Impact if
wrong’, ‘Who to talk to’, ‘Who’s following up’).Additionally,
Shostack stresses the need to continuously validate assump-
tions throughout later development activities and integrates
these validation steps in issue tracking systems. As to the
description of the assumption itself or its impact, a free-form
textual notation is suggested.

When it comes to the support for assumptions in tool-
ing, Microsoft’s Threat Modeling tool [21] provides support
for documenting assumptions as meta-data attributed to the
DFD model via a free-from and unstructured text input
field. SPARTA [31,32], our own tool implementation of
STRIDE that emphasizes on automation through model-
driven engineering, currently does not yet support explicitly
documenting or considering assumptions in the threat elici-
tation process.

In threat modeling and threat analysis, assumptions play
a significant and non-trivial role. For example, the goal to
prevent repudiation of user actions in a system may lead
to the architectural decision to keep system logs in which
all actions are recorded, or alternatively, the active decision
to not address the threat altogether. Both decisions rely on
implicit assumptions: in the former case, that the solution of
keeping logs sufficiently guarantees that the user will not be
able to still repudiate its actions (e.g., the logs themselves are
accurate and tamper-proof and thus provide sufficient proof),
in the latter case that the user is sufficiently trustworthy and/or
will not have an incentive to deny actions.

2.4 Motivation

Assumption-making is an integral part of threat modeling,
and the documentation of such architectural assumptions
contributes to the body of architectural knowledge [17],
i.e. knowledge about the system under construction or the
construction process itself.

When assumptions are tightly coupled to or highly spe-
cific to the system, they represent architectural information
and have to co-evolve with the system and its design doc-
umentation. Especially when the system changes, or when
assumptions are invalidated, the implications on the overall
threat analysis may become non-trivial, e.g. unanticipated
threats have to be mitigated, or ripple effects emerge that
invalidate the findings. As such, they potentially have large
impact on the effectiveness and cost-efficiency of threatmod-
eling efforts.

In addition, assumptions play a significant role in the
security architecture of a system as they affect the secu-
rity properties of the ensuing system. In practice, successful
attacks on systems often come down to invalidating assump-

tions. Many security vulnerabilities are based on invalid
assumptions or deliberate breakage of assumptions [46].

However, concrete guidelines are lacking on how to doc-
ument and manage assumptions in this specific context. It
is particularly unclear (i) what is the intended role, purpose
or function of assumptions in threat modeling, and (ii) what
types of assumptions are meaningful in this specific context.

As such, we want to improve our understanding about the
nature of the information commonly encoded in the assump-
tions made during threat elicitation. More specifically, we
focus on identifying (i) to which extent they provide addi-
tional information about the decisions and rationale that drive
the threat elicitation process itself (RQ1), to which extent
they postulate characteristics or properties about the system
under analysis and which types of characteristics (RQ2), and
to which extent they provide additional information about
the documented security threats, the interpretation of spe-
cific threat categories, or assumed security countermeasures
and mitigations (RQ3). These broad research questions are
further refined in the following section.

3 Study design

To gain insight in the nature and function of the assump-
tions made in practice during threat elicitation, we conduct a
controlled descriptive study1 of a collection of assumptions
made in STRIDE. We target the following concrete research
questions:

RQ1. What is the role or function of assumptions in the
threat elicitation effort?
RQ2. How tightly coupled are these assumptions to the
system under analysis (its functionality, its context, its
model representation)?
RQ3. How specific are the assumptions to security?

The Goal-Question-Metric (GQM)2 tree [2] that under-
pins the descriptive study is depicted in Fig. 1. As shown,
we have defined nine distinct metrics or variables. These are
introduced below in Sect. 3.2.

1 The main purpose of a descriptive study is to generate insights and
increase understanding of a phenomenon through observation, data col-
lection, categorization and characterization [11].
2 A GQM tree is a hierarchical structure that gradually refines an over-
all goal into specific questions and further concretizes these questions
by stating relevant metrics that allow discrimination. As such, it partic-
ularly suited to structure this descriptive study.

123

A descriptive study of assumptions in STRIDE security threat modeling 2315

Fig. 1 Goal-question-metric structure of the descriptive study

Table 1 Overview of the participants and assumptions in the study

Total Student participants Expert participants

Participants 91 5

Threats 630 52

Assumptions 602 38

3.1 Study data

As shown in Table 1, we have collected data in a STRIDE
study involving 91 master students and 5 expert participants.
These threat models are the outcome of applying per-element
STRIDE3.
Application case. The threat elicitation step was applied
to an industrial document generation Software-as-a-Service
(SaaS) application, for which the Data Flow Diagram (DFD)
is presented in Fig. 2. This subset of the application dealswith
delivery of generated documents (stored in DS1 in Fig. 2) via
a range of channels such as E-mail (E3 in Fig. 2), via on-line
banking (E2 in Fig. 2), or via printed postal delivery service
(E1 in Fig. 2). Additional access to the generated documents
is offered to recipients via a personal archive, called the Per-
sonal Document Store (PDS) (P3 in Fig. 2).

An example of a relevant Information Disclosure threat
in this application case involves guessing or enumerating
the document identifiers to obtain access to documents that
belong to different users (e.g., via data flow DF8 depicted in
Fig. 2).
Data acquisition and treatment. The data was obtained in a
controlled setting: to avoid any external influence or commu-
nication between the participants, the exercisewas conducted
on paper in a scoped exercise that was time-boxed in a 2.5
hour session. Tomeet these timing requirements, participants
were asked to focus exclusively on Spoofing, Tampering,
Repudiation and Information Disclosure threats. In addition,
only a subset of the entire application case was subjected to

3 This is the variant of STRIDE that involves considering security
threats at the basis of DFD elements, as opposed to the per-interaction
variant, that focuses on the identification of threats at the basis of spe-
cific interactions among DFD elements [30].

analysis (the document delivery part, and not the actual gen-
eration of documents) and the trust boundary (as depicted in
Fig. 2 with a dashed line) allowed participants to focus exclu-
sively on threats in the context of the system (i.e., originating
on the outside of the system). Despite these limitations, this
still allowed for the identification of a sufficiently diverse set
of relevant application threats.

Participants were provided with this Data Flow Diagram
(DFD) of the document generation application which was a
system they were strongly familiarized with (as they have
worked on this system in the context of an intensive software
architecture project). In the exit questionnaire of the study,
when asked about this, 98% of participants agreed that they
were sufficient familiar with the document generation sys-
tem to complete the task. When asked whether their domain
knowledge of the document processing system was useful to
conduct the exercise, 94% of students agreed.

Master student participants had limited prior experience
with STRIDE: in the intake questionnaire, only 41% claimed
to have some prior awareness, most of these claiming famil-
iarity only with the keywords of the acronym but not the
systematic threat modeling approach. To mitigate this, an
introductory lecture was given to these students, and they
were provided with additional printed resources during the
exercise (printed slides and all resources such as threat trees).
When asked in the exit questionnaire whether they found that
this lecture and the supported materials were sufficient to
understand the STRIDE methodology, 85% of participants
agreed.

In addition to the threatmodels created bymaster students,
we have obtained threat models from 5 experts, experienced
practitioners of secure software engineering and STRIDE.
This additional data is used to augment and enrich the data
set, but is insufficient in size to draw statistical conclusions
about the extent to which student assumptions would differ
significantly from expert assumptions.

The main outcome per participant is a threat model, com-
prising of (i) a mapping table that provides an overview of
the identified threats, (ii) individual threat descriptions, and
(iii) a separate sheet of assumptions made during the exer-
cise that lists textual assumptions. For illustration purposes,
“Appendix A” presents an excerpt of such an assumption
sheet.

Figure 3 depicts the overall data acquisition process. Three
student participants were excluded as they did not manage to
participate or complete the exercise in a satisfactory man-
ner (no results). The study was conducted on paper and
an extensive digitization step was first performed, which
also involved pseudonymization of subjects, correcting of
spelling mistakes and expanding abbreviations. In addition,
(and as explained in Sect. 3.2), some text-based manip-
ulations were performed to expand textual, non-verbatim
references to DFD elements for the sake of analysis.

123

2316 D. Van Landuyt, W. Joosen

Fig. 2 The data flow diagram (DFD) of the document processing applications, as used in the study

Fig. 3 The data acquisition and treatment approach that involves combining threat models obtained frommaster students and experts in a controlled
and time-boxed session

Data quality Apart from the exclusion of missing and incom-
plete student submissions (3 in total), we have refrained from
a-priori removal of data points at the basis of quality (e.g.,
the validity of the assumptions). Assumptions that are con-
sidered invalid or the consequence of mistakes, for example
against the system or in the execution of the threat modeling
approach, are considered equally interesting from the per-
spective of the study goals which are of a broad, descriptive
nature. Section 5.1 provides a further view on the quality of
the data set in terms of the notions of plausibility and redun-
dancy of each assumption.
Obtained data. Figure 4 plots the obtained threat models in
terms of the amount of threats and the amount of assump-
tions included, variables that are both normally distributed.
Applying the PearsonChi-squared test indicates that the null-
hypothesis of independence between both variables cannot

be rejected (p = 0.2099, α = 0.05). There is in this data
no discernible correlation between the amount of threats and
the amount of assumptions in the threat models obtained for
this system.

Figure 5 plots the distribution of the respective textual
length (word count) of the collected assumptions, which is a
positively skewed distribution.

3.2 Variables andmetrics

We have defined 9 metrics/variables to answer the research
questions4. Some of these variables are categorical (nominal)

4 As explained in Sect. 1, these are identical to the metrics/variables
used in our earlier study on LINDDUN assumptions [44] as we adopt
the same classification methodology.

123

A descriptive study of assumptions in STRIDE security threat modeling 2317

Fig. 4 Overview of the data set of threat models, in terms of the amount
of threats and assumptions. The horizontal and vertical marker axes
represent the mean values of the respective data sets

Fig. 5 Overview of the investigated assumptions, in terms of word
count (median: 85 words, sdt. dev.: 48 words)

in nature and obtained through expert assessment, whereas
other variables are count-based and calculated with text-
based analysis techniques.

M1EXPL_RAT.Assumptionsmade during threat elicitation
play a certain role in the context of that activity (i.e., it exerts
an impact on threats). This first metric quantifies the degree
to which this role is explicitly documented as part of the
assumptions.

To accomplish this, we impose the format ‘condition →
role’ on the assumptions, in which condition stipulates a cer-
tain property of interest and motivates the assumption (i.e., a
rationale is given), and the role documents the impact on
potential threats: the assumption either motivates the inclu-
sion of specific threats (include), the exclusion (exclude), or

further explains the priority attributed to a threat (prioritize).
The EXPL_RAT categorical variable is defined as follows:

EXPL_RAT(a)

=
⎧
⎨

⎩

condition : a only describes a property of interest
role : a only describes its role
both : a describes both

M2 T_ROLE. Further focusing on the actual role of the
assumptions, we make distinction between assumptions
whose role it is to exclude threats, include threats, or have an
impact on the prioritization of threats. T_ROLE is defined as
a nominal variable that classifies assumptions as follows:

T_ROLE(a, tm)

=

⎧
⎪⎪⎨

⎪⎪⎩

exclude : a explains threat absence in tm
include : a explains threat occurrence in tm
prioritize : a explains threat priority in tm
undetermined

For those assumptions inwhich the role is not documented
explicitly, the assessment is performed manually. The role
of an assumption depends highly on the specific context of
the threat model (tm) in which the assumption was made.
Therefore, in such cases, this exercise involved manual inter-
pretation of the documented threats, priorities given and the
mapping tables.

M3 DFD_LINK. This metric involves counting the explicit
references to DFD elements in the textual description of the
assumptions, and is defined as follows:

DFD_LINK(a) = n, the amount of references in a to

distinct DFD elements

We have implemented this metric with the pattern matching
libraries of the R statistical data processor. This involved
constructing regular expressions that match with the specific
identifiers given to the elements in the DFD (e.g., “DF11”
or “delivery scheduler”).

To increase accuracy, we have manually pre-processed
the assumptions to identify existing textual references to
DFD elements and augment them with the explicit DFD
element identifiers (between brackets). In some cases, this
entailed straightforward extension, e.g. changing the occur-
rence of ‘PDS User’ to ‘PDS User (E4)’. In other
cases, this involved inserting a more extensive listing
of DFD elements: e.g., extending the textual reference
to ‘the data flows mentioned in Assumption
#2’ with ‘DF1, DF2, [..], DF9’, which is an explicit
enumeration of the referenced data flows. Indirect or vague
references left open for interpretationwere not counted, e.g. a

123

2318 D. Van Landuyt, W. Joosen

reference to ‘data stores’ without further naming or con-
cretizing them is not taken into account.

M4 FUNCT. This variable involves identifying whether the
assumption refers to or relies upon system functionality,
and makes distinction between functionality that contributes
exclusively to security (i.e. countermeasures or other miti-
gations assumed to be in place) and broader types of system
behavior. This classification is performed manually.

FUNCT(a)

=

⎧
⎪⎪⎨

⎪⎪⎩

n/a : a does not refer to functionality
functionality : a refers to system functionality
security : a refers to functionality that exclusively
contributes to security

M5ARCH expresses the extent towhich the assumptions refer
to architectural information about the system under analysis
that is not present in the DFD. We more specifically distin-
guish between (i) assumptions that further extendor refine the
data flows depicted in the DFD (e.g. assumptions about the
nature of the involved data types), (ii) assumptions related to
the trust boundary explicitlymodeled in theDFD, and (iii) on
architectural information that could have been provided in
complementary architectural views (e.g. in an client-server
view, an implementation view, a deployment view, a decom-
position or module view, a process view, etc).

Again, this involves interpreting the assumptions and thus
this classification is performed manually.

ARCH(a)

=

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

n/a : a does not refer to system architecture
DFD : a clarifies or extends information about data flows
in the DFD
trust boundary : a clarifies/refines the trust boundary
in the DFD
other : a refers to information of different architectural
viewpoints

M6 TRUST. The level of trust bestowed upon an external
entity or party (an organisation, a technology, a service) influ-
ences the decision to document a threat and the determination
of its priority. The mechanism of trust is one way to exter-
nalize the responsibility of threat mitigation, e.g. by assum-
ing party ‘The E1, E2 and E3 are trustworthy
and will not disclose documents’ , we do not
have to take explicit countermeasures to mitigate poten-
tial document leakage to third parties. Therefore, we expect
assumptions to refer to this notion of ‘trust’ (either in exter-
nal entities as depicted in the DFD, or in external parties not
depicted). Implicit references to trust include mentioning of
service-level agreements (SLAs), or refer to expected coun-
termeasures or best practices from external entities. Explicit
references literally refer to the terminology of ‘trust’ or ‘trust-

worthiness’. The TRUST variable is defined as follows:

TRUST(a) =
⎧
⎨

⎩

n/a : a does not refer to trust
implicit : a implicitly refers to trust
explicit : a explicitly refers to trust

M7 ATTACKER. Threat modeling is inherently attacker-
centric. Similar to the above variable, the decision to doc-
ument or prioritize threats is influenced by the assumptions
about potential attackers. This variable, ATTACKER, there-
fore identifies the extent to which an assumption refers to
potential attacker(s), attacker goals, incentives or capabili-
ties.

ATTACKER(a)

=
⎧
⎨

⎩

n/a : a does not refer to the attacker
implicit : a implicitly refers to attacker
explicit : a explicitly refers to attacker

M8 TCAT_LINK determines the link between assumptions
and threat categories, by counting the amount of explicit
references to the STRIDE threat categories.Wemore specifi-
cally look for threat categories explicitly referenced by name,
or the use of a derivative keyword. For example, we count
‘repudiation’, ‘repudiate’, but not ‘deny’.

We define the metric as follows:

TCAT_LINK(a) = n, amount of references in a to

distinct threat categories

Themetric is calculated in an automated fashion, but relies
on a manual pre-processing step that deals with aspects of
disambiguation and interpretation.Multiple references to the
same threat category are counted only once.
M9 KW The final variable, KW, quantifies the amount of
explicit references to security-related concepts and key-
words. Themetric depends on the establishment of a security
lexicon L . Based on the involved terminology, this lexicon
makes distinction between attack-related, countermeasure-
related, goal-related and other terminology. A keyword-
based classification of an assumption a is performed as
follows:

KW(a, L) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

attack : a includes attack keywords from L
counter measure : a uses

counter measure keywords from L
goal : a uses goal keywords from L
other : a uses other keywords from L
none : a includes no terms from L

Again, thismetric is applied in an automated fashion using
pattern matching.

123

A descriptive study of assumptions in STRIDE security threat modeling 2319

Table 2 Excerpt of the security lexicon L used in the study

Keyword Category

Access control Countermeasure

Backdoor Attack

Certificate Countermeasure

Confidential Goal

Credential Countermeasure

SQL injection Attack

Unregistered Other

Table 3 The results of applying EXPL_RAT

EXPL_RAT Student assumptions Expert assumptions

Condition only 422 (70.1%) 22 (57.89%)

Role only 28 (4.65%) 2 (5.26%)

Both condition and role 152 (25.2%) 14 (36.84%)

The security lexicon was established by manually high-
lighting security-related keywords in the assumptions (using
text frequency analysis). In an additional step, we asked an
independent expert on secure software engineering to verify
the keywords and to annotate themwith the most appropriate
category (attack, countermeasure, goals, and other). Table 2
shows an excerpt of the resulting lexicon L (which consists
of in total 71 keywords and is provided in the supporting
materials [42].

4 Results

This section presents the results obtained by applying the
variables and metrics defined in the previous section to the
corpus of threat models. In all cases, the results for both data
sets (students and experts) are presented separately.

4.1 RQ1: role of assumptions

We first examine the extent to which the role or the rationale
behind the assumptions is explicitly documented in their tex-
tual description (the EXPL_RAT variable). The EXPL_RAT
results are presented in Table 3.

In both data sets, the majority of assumptions did not pro-
vide an explicit explanation about the role of the assumption
in the context of the threat model (70.1% of the student and
57.89% of the expert assumptions). An example of such
assumption is “passwords are encrypted”, which
does not directly discuss the role or implications of that
assumption in the threat model.

Most rare were assumptions stating an impact on threats
without any explicit assumption or condition of interest

Table 4 The results of applying T_ROLE

T_ROLE Student assumptions Expert assumptions

Exclude 351 (58.31%) 28 (73.68%)

Include 144 (23.92%) 7 (18.42%)

Prioritize 95 (15.78%) 1 (2.63%)

Undetermined 12 (1.99%) 2 (5.26%)

(4.65% of the student and 5.26% of the expert assumptions).
An example of such an assumption is “Repudiation by
the print service poses no threat” which
lacks any explanation why such threats are excluded.

25.25% of the student and 36.89% of the expert assump-
tions explicitly state both a condition and the role, i.e. they
complement the assumption (condition) with a discussion of
the implications in terms of the security threats. An exam-
ple is “Due to the encryption of data flows
[..], P2 is immune to tampering by passing
malicious parameters. [..]”.

We have manually categorized the assumptions based on
their impact on threats (T_ROLE). The results are summa-
rized in Table 4.

The majority of assumptions were meant to exclude
threats, i.e. to remove them from further consideration: in
the student data set, this amounts to 58%, and in the expert
data set to 73.68%. An example of such an assumption
is “Encryption keys are stored safely’, which
eradicates a number of threats caused by encryption keys
obtained by an adversary.

In the student data set, 23.92% of assumptions were
found to explain or motivate the occurrence of specific
threats, similarly in the expert data set this is 18.42%. An
example of such an assumption is “the data flow DF4
channel not encrypted”, which allows for a Tam-
pering threat scenario in which unprotected data is changed
in transit by a malicious adversary.

15.78% of the student assumptions were used to pri-
oritize threats, and this was less common in the expert
data set (2.63%). An example of such an assumption is
the assumption that “The P3 and the data stores
are each on another machine”, which implies
that if an attacker can take control of the machine that hosts
the P3 process, he or she can not directly access the data
stores which lowers the impact and thus the priority of such
threats.

For the assumptions classified as ‘undetermined’, wewere
unable to retro-actively identify their role in the context of
the threat model. For example, we were unable to trace back
the role of assumption “communication between P2
and E3 happens through sockets” in the threat

123

2320 D. Van Landuyt, W. Joosen

Fig. 6 Results of counting the number of references to the elements of
the DFD (DFD_LINK)

model in which it was stated. It was simply not clear why
this assumption was made.

4.2 RQ2: system context

The results of applying the DFD_LINKmetric are presented
in Fig. 6. In total 65% of all assumptions include a direct
reference to a DFD element, most of which refer to just one
DFD element. Only in rare cases do assumptions refer to
more than four distinct DFD elements (8%).

An example of an assumption that applies to many DFD
elements is: “Data flows between P3 and DS3
(DF21 DF22 DF23) should have higher
priority than DF19 and DF20, because
user data is much easier to make use. And
since the attacker gets user data,
it’s easier for the attacker to login to
P3 and get specific documents of these
users”.

An example of an assumption that is tightly coupled to
the DFD only after the pre-processing step: “the data
flows internal to the eDocs system are
all happening within a local area
network, so we don’t consider them to be
tampered with”. Although the assumption does not
literally refer to DFD elements, the reference to ‘data
flows internal to the eDocs system’ implic-
itly refers to a large set of DFD elements and is thus counted
as such.

The results of applying the metrics that further investigate
the nature of the information postulated in the assumptions
(FUNCT, ARCH, ATTACKER, TRUST) are percentage-wise
summarized in Fig. 7.

The results of FUNCT show that of all studied assump-
tions, over 60% of the assumptions postulate a form of
system functionality, of which the largest part is exclusively

related to security (40% of all assumptions). An example
of such an assumption is the assumption that “passwords
are encrypted”. An example of an assumption postu-
lating system functionality not related to security or pri-
vacy is “a customer does not need to verify
the creation of his account”.

Applying the ARCH metric indicates that 16% of the
assumptions were used to further refine data flows in the
DFD (e.g. “login credentials are sent hashed”), and around
13% used to instill semantics upon the trust boundary
(e.g., “eDocs employees can access the data
stores from the outside”). 7% of the studied
assumptions refer to other architectural elements, decisions
or considerations that are not included in a DFD. Exam-
ples of these types of assumptions are “E-mail traffic
is sent over the public internet”, and “DS1
and DS2 are replicated on multiple
nodes”, both examples of assumptions that would be dif-
ficult to express in a DFD and for which complementary
architectural views would be more suited (a deployment or
a network topology view). This is information that would be
presented in a complementary deployment model or view but
cannot be expressed in a DFD.

The ATTACKER results show that few assumptions were
found to refer to the attacker: only around 5% of assumptions
do so implicitly, and only 4% explicitly.

Examples of assumptions that implicitly refer to attacker
capabilities are:

– “The employees are trained in password
management. Therefore they all have
an unguessable, strong password which
is secretly stored in their mind”, which
implicitly states that an attacker does not have the capa-
bility to guess the password or obtain it otherwise,

– “Attacker can use vulnerabilities/
backdoors to get access to internal
data flows”.

Conversely, an example assumptions that explicitly refers
to attacker capabilities or incentives is: “There is no
point for an attacker to tamper with the
dataflow for registration”.

Applying the TRUST metric yields similar results: 7%
of the studied assumptions were found to implicitly rely on
trust in external parties or entities, yet again a smaller set of
assumptions was found to do so explicitly (5%).

Examples of assumptions that include an implicit refer-
ence to trust:

– “External delivery services are
assumed to be professional [..] and
have proper authentication [..]”.

123

A descriptive study of assumptions in STRIDE security threat modeling 2321

Fig. 7 Summary results of
FUNCT, ARCH, ATTACKER,
TRUST.
(labels:o: other, e/ex.: explicit, im.:
implicit.)

Fig. 8 Results of linking assumptions to the STRIDE threat categories
(T_CAT)

– ‘With each of the external service
providers, an SLA has been negotiated.
They will behave accordingly [..]”.

Conversely, examples of assumptions that explicitly refer
to trust are:

– “Edocs uses a trustworthy E-mail
provider”,

– “External services are assumed to have
no malicious intent but are however
still not trusted”.

4.3 RQ3: relation to security

Figure 8 presents the results of the T_CAT assessment.
Only around 26% of assumptions include an explicit and
direct reference to a threat category or threat type.

The results of keyword analysis (KW) shown in Fig. 9
shows that 35% of assumptions lacks any reference to
security terminology. Although they are documented in the
specific context of a security threat modeling and analysis

exercise, a majority of these assumptions are more broadly
relevant in the context of architecture knowledge manage-
ment.

An example of an assumption that extensively uses secu-
rity terminology: “Invoices have confidentiali-
ty and integrity because they are signed
with a key”.

5 Discussion and findings

This section discusses the results presented in the previous
section, as well as implications and recommendations for
future work. Section 5.1 first discusses the most relevant
threats to validity of this empirical study. Sections 5.2 to 5.4
individually discuss the findings for respectively RQ1-RQ3.

5.1 Threats to validity

A descriptive study is a form of empirical study, in which
phenomena are studied through observation [11] and as such,
threats to the validity of the findings and the results should
not be ignored.

We discuss threats to validity related to (i) the focus on
a single application case, (ii) the data acquisition strategy,
(iii) involvement of master students, (iv) data treatment,
(v) bias introduced by interpretation, (vi) bias introduced as a
result of textual manipulation of the assumptions and finally,
(vii) applicability of the findings beyond STRIDE.

(i) Single application case We have assessed the nature of
the assumptions made in the context of a specific system,
a document generation SaaS application, and therefore our
findings about assumptions may be specific to this applica-
tion (type). Possibly, in other applications, different types
of threats may play a more significant role (e.g., Denial of
Service threats that were not considered in this particular sys-
tem) and these different threat categories might influence the
nature of assumptions made during their elicitation.

123

2322 D. Van Landuyt, W. Joosen

Fig. 9 Results of keyword
analysis (KW)

We as such acknowledge this possible threat to validity
that may imply that our findings would be biased towards
the nature of application studied, and further investigation
and evaluation is required towards understanding the extent
to which the (i) nature of an assumption is influenced by the
threat category under investigation, or (ii) the nature of the
application under analysis and its inherent threat profile.

However, the adopted SaaS application is highly realis-
tic, as it was adopted from a collaborative research project
with industry, and as any cloud application, it is subject to a
number of challenging and non-trivial security requirements.

(ii) Data acquisition strategyAs explained in Sect. 3, the data
set (consisting of threat models) taken into account in this
study was obtained in a controlled, restricted and time-boxed
setting: the exercise was held in a 2.5 hour time window,
participants were denied access to external resources (other
than the course material provided), the presented DFD was a
reduced version of the entire system and students were asked
to focus on Spoofing, Tampering, Repudiation and Informa-
tion Disclosure threats and exclude Denial of Service and
Elevation of Privilege threat categories. Thesemeasureswere
all taken to ensure practical feasibility and completion of the
exercise in the provided time window, but in turn may have
had a specific effect on the outcome: as discussed above,
by not focusing on different application cases and different
threat types, specific findings may not be straightforward to
generalize.

However, as the descriptive study focuses on getting a bet-
ter view on the degree of variation in the nature and function
of these assumptions in this specific threat modeling context,
the restricted and controlled nature can also be considered
beneficial as opposed to the alternative of amore open-ended,
free-form exercise. In this study, the participants started with
identical inputs, yet the diversity in the output assumptions
is clearly shown.

(iii) Student participation Master students may not be rep-
resentative of practitioners when it comes to their prior

understanding of security threat modeling and thus our find-
ings may not be applicable to assumptions made in the
context of threat modeling conducted by expert or experi-
enced practitioners.

In the study questionnaire, 41% of students claimed some
familiarity with STRIDE beforehand, whereas 98% of stu-
dent participants stated that they were made sufficiently
familiar with STRIDE through the introductory lecture and
the supporting materials. Noteworthy, 85% indicated that
they found the specification of assumptions difficult.

We argue firstly that the main goal of this study was not
evaluate the data in terms of the actual validity of the threats
identified in the context of the case nor that of the assump-
tions, which are both aspects that may be heavily influenced
by expertise and experience. Instead, we set out not to char-
acterize how experienced practitioners use the mechanism
of assumption-making, but to broadly explore the different
functions assumptionsmay fulfill in this context. As such, we
argue that lack of expertise or experience may play a smaller
role in our findings.

Secondly, to further mitigate the problem of variation
between participants, we have conducted our descriptive
study in a strictly controlled context: students attended the
same mandatory introduction session, were provided with
the same supporting materials, and were given the same time
window to conduct the assignment.

Thirdly, results of the comparison study performed by
Salman et al. [26] indicate that the discrepancy between
students and practitioners may be smaller than commonly
expected.

Conducting a confirmatory descriptive study at a similar
scale involving more experienced practitioners and industry
participants would evidently be highly desirable, but this is
no straightforward endeavor as it would also raise a num-
ber of practical issues (finding a large set of representative
participants, maintaining comparability, controlling external

123

A descriptive study of assumptions in STRIDE security threat modeling 2323

variables such a system and domain knowledge, prior expe-
rience, etc).

(iv) Data treatment Building upon the previous argumenta-
tion, we deliberately did not conduct an extensive exclusion
of data points to remove those threat models that could be
considered to be of low quality or invalid. Evaluation of qual-
ity or validity of assumptions would be highly difficult if
not impossible: even if a specific assumption turns out to
be invalid, this may either be a consequence of the threat
modeler making mistakes against the system scope (which
may be due to limited prior knowledge of the system under
design), or the threat modeler not performing the threat mod-
eling correctly.

In the latter case (incorrect execution of threat model-
ing), the assessment of validity would take on a normative
stance: whether the stipulation of the assumption is to
be considered correct in the context of threat modeling,
would assume that such best practices exist and are well-
documented, and this study is exactly a first step towards
better knowledge of the function of assumptions in this con-
text in a longer trajectory towards solidifying guidelines.

In the former case (mistakes w.r.t. the systems), even in
such cases, we still consider it interesting and worthwhile to
record what is the function of the invalid assumption in the
broader context of the descriptive study. The main argument
behind this is that invalid assumptions are considered equally
interesting in the context of the study goals, which are of a
broad descriptive nature.

To obtain a better view on the data quality, we have per-
formed another iteration over the assumptions, assessing
(i) whether or not the assumption is considered plausible
in the context of the system under analysis and the threat
modeling exercise, and (ii) if the assumption is consid-
ered redundant, because the information is already specified
elsewhere (and the inclusion of the assumption is thus not
necessary to draw the conclusion), e.g. in a different assump-
tion, or in the DFD5. As with the other assessments, both
variables have been scored by expert assessment, andwehave
generally taken a conservative stance, ranking an assumption
as implausible and/or redundant only when this is objectively
and clearly the case. This additional verification has led to
the following insights:

– 39 out of 602 student assumptions (6.5%)was considered
implausible, and 23 out of 91 student participants make
at least one implausible assumption. 1 out of 38 expert
assumptions (2.6%) was considered implausible, with
obviously 1 out of 5 experts making at least one implausi-
ble assumption.An example of an assumption considered

5 For example, the assumption that “Data stores are
accessed only by the internal components” is con-
sidered redundant as this information is depicted in the DFD.

implausible is the statement that “delivery status
reports only contain information that
is useless to attackers” because in the sys-
tem, delivery status reports provide details about recipi-
ents having received and/or read a delivered document
(an implementation of ’receipt tracking’) which leaks
meta-information that may be valuable to attackers (e.g.,
to infer personal informationor delivery information such
as E-mail addresses) - an Information Disclosure threat.
Another such example is “Payslip/invoice does
not contain very sensitive
information”.

– 22 out of 602 student assumptions (3.7%) were consid-
ered redundant, and 14 out of 91 student participants
make at least one redundant assumption. None of the
38 expert assumptions were considered redundant. Two
examples of assumptions considered are “the DS1
has no flow going outside the trust
boundary assumption” and “P1 can only be
accessed internally”, as in both cases, this infor-
mation is entirely available in the DFD and the assump-
tion itself provides no additional information.

The above numbers give an indication of the overall qual-
ity of the data set: while not even implying that redundant
assumptions are necessarily a bad practice, theymay indicate
a certain degree of uncertainty of the participant in terms of
their interpretation of the inputs materials. In addition, mak-
ing implausible assumptions is often more an indication of
making an error in judgement, rather thanmaking fundamen-
tal mistakes against threat modeling in general.

(v) Researcher interpretation and bias As discussed in
Sect. 3.2, some of the investigated variables6 required us
to manually interpret the assumptions in specific context
of the threats being documented alongside, and of the sys-
tem under analysis and in terms of references made to these
assumptions. As thiswas amanual effort, this step potentially
introduced interpretation issues or bias.

This validity threat was managed by first creating a clear
and unambiguous classification procedure for each variable
(these can be found in the supporting materials [42]). Sec-
ondly, we adopted a two-phased approach in which two
involved experts classified the assumptions separately using
these classification procedures, whichwas then followed by a
phase in which discrepancies were discussed and consensus
was reached.

(vi) Pre-processing and assumption manipulation As dis-
cussed in Sect. 3.2, we have manipulated the textual descrip-

6 T_ROLE, for those assumptions in which the explicit rationale was
not provided explicitly in the description of the assumption, FUNCT,
ARCH, TRUST, and ATTACKER.

123

2324 D. Van Landuyt, W. Joosen

tions of some of the assumptions (i) to sanitize the data (e.g.,
correct writing errors), and (ii) in preparation of automated
processing (i.e., for DFD_LINK and T_CAT_LINK)). This
step may have introduced error and implicit bias.

We managed this threat by adopting a conservative stance
in terms of these manual changes. For example, we only
replaced substrings when the reference to DFD elements was
clear, unambiguous and objectively undebatable. Secondly,
in those cases in which such manipulations were performed
automatically, the outcome was double-checked manually
afterwards.

(vii) Generalization beyond STRIDE We have studied
assumptions that were generated in the specific context of
per-element STRIDE threat elicitation and as such the find-
ings may only apply to STRIDE threat elicitation. As argued
above, the nature of the threat types investigated indeed may
impact the nature of the ensuing assumptions, which is some-
thing that warrants further investigation.

Some of the studied assumptions are inherently trust- or
attacker-centric, and this certainly is a consequence of the
inherent attack-centric focus of STRIDE threat elicitation.

Our mirror study conducted over LINDDUN assumptions
[44] in the context of a different system largely has similar
results, with the main difference that the privacy threat cate-
gories are inherently more specific and less intuitive and thus
lead to the formulation of more assumptions.

Further investigation is required to assess whether differ-
ent threatmodeling paradigms (e.g., goal-based threat elicita-
tion [41]) involve the stipulation of architectural assumptions
of a similar nature. Different threat modeling paradigms
are considered to be complementary to scenario elicitation
approaches such as LINDDUN and STRIDE [5].

5.2 Findings on RQ1: role of assumptions

The classification of the role of an assumption in the threat
model (T_ROLE) allowed us to provide explanations for
98% of all assumptions studied. However, this role was only
explicitly stated in 30% of assumptions (EXPL_RAT).

We found that the majority of the studied assumptions
(59%) were made for the purpose of explaining why spe-
cific threats have not been considered nor documented,
i.e. assumptions are used as a means to scope the threat
modeling effort. Although this may also be caused by the
time-boxed and time-constrained nature of the threat model-
ing exercise conducted by the participants, we argue that such
time constraints are also at play in larger-scale exercises, for
example in an industry context [7,28].

A substantial set of assumptions (19%) is furthermore
used to document pre-conditions to specific threats, i.e. these
assumptions contribute to the rationale behind considering

these threats to be relevant. These assumptions are as such
tightly coupled to the documented threats.
Recommendations/implications Especially for the types of
assumptions that exclude (or reduce the priority of) threats,
we strongly advocate in favor of improving the traceabil-
ity and rationale documentation: the impact is substantial if
such an assumption is found to be invalid afterwards, and
in such case, the threats excluded at the basis of the invalid
assumption should be systematically reconsidered. For such
purposes, an analyst or architect should be able to retro-
actively query a threatmodel tofindoutwhyexactly a specific
threat was excluded or ignored. This calls for more explicit
documentation of the rationale and traceability logging of the
decision process itself, not just the outcome or the assump-
tion itself, but both the condition and the role. This in turn
will force the analyst to explicitly document andmotivate the
impact of a specific assumption, with reference to excluded
or ignored threats as a consequence.

Assumptions that clarify the existence of threats or the
priority given are in turn better documented alongside the
specific threat as this information is tightly related. In both
cases, the information stipulated in the assumption acts as a
precondition to the threat itself.

The above recommendations in turn are key enablers for
more systematic impact analysis support and assumption
management, for example, to assess the implications when
one of the assumptions turns out to be invalid at a later
stage, or assumptions are later refined for example, when
the assumption that “sufficient countermeasures
are taken to present spoofing” is replaced
with the assumption that “the system performs
authentication”.

5.3 Findings on RQ2: system context

Many assumptions (65%)were found to refer directly toDFD
elements (DFD_LINK). These assumptions are tightly cou-
pled to themodel of the system under analysis, and when that
model changes (e.g. as a consequence of continued develop-
ment or system evolution), these assumptions will have to
co-evolve (be revised, rephrased, removed, merging or split-
ting assumptions, etc).

In terms of the system-related information encoded in the
studied assumptions, there is large diversity. Many assump-
tions postulate the existence of specific security-related
countermeasures or mitigations. Other functionality-related
assumptions postulate system behavior, for example about
the control flow of the application (e.g. “the customer is reg-
istered before registering a destination address”). The main
use of such assumptions is to circumvent the limited expres-
siveness of theDFDnotation inwhich functionality or control
flow logic is not expressed as a first-class element, as these are
merely represented in terms of the data flows in the system.

123

A descriptive study of assumptions in STRIDE security threat modeling 2325

Secondly, the DFD notation is largely agnostic of security
countermeasures, and in the best case, these are represented
in terms of their effects on data flows (e.g. credentials or
tokens being shared between processes is the visible repre-
sentation of an authentication mechanism being in place).

The results of theARCHmetric confirm the problem:many
assumptions exist exclusively to refine or postulate specific
properties of the data elements involved in the data flows
depicted in the DFD, or the trust boundary itself.
Recommendations/implications Although initial steps have
been taken to augmentDFDnotationswith for example coun-
termeasure information [33], or even to instill formal security
semantics onto DFD models [9,34,36], these observations
lead us to recommend altogether reconsidering the use of
DFDs as the single source of system information in threat
modeling.

While DFDs are easy to comprehend and create, they
clearly lack the expressiveness to represent all information of
relevance for efficient threat elicitation. More concretely, we
advocate in favor of using architectural descriptions that sup-
port (i) explicit data modeling and classification (data types),
(ii) explicit first-class modeling of countermeasures and mit-
igations (security architecture) and (iii) to allow the threat
modeler to draw upon the information typically encoded
in complementary architectural views (deployment, process
views, implementation views, etc) [3,15,16].

This will fundamentally change the way in which threat
elicitation methods work and calls for improved tooling and
automation [31]. Specific to threat elicitation approaches,
instead of iterating over all data flows or interactions, threat
elicitation can be based on iterating over all threat cate-
gories and explicitly checking the individual pre-conditions
for individual threat types (e.g. as model-based patterns
or constraints). Continuously assessing whether these pre-
conditions are met in the context of a more complex software
architecture model will then allow for closer alignment of
threat modeling with the other practices of software archi-
tecture design.

External elements The ATTACKER and TRUST variables
do not focus on inherent properties of the system under anal-
ysis but on external elements such as capabilities of attackers
and aspects of trust (TRUST) in entities (employees, third-
parties). Although these assumptions represent 17% of all
assumptions in the studied data sets, only in 7% of assump-
tions, reliance on these aspects was made explicit.

As mentioned, an elicitative scenario-driven threat mod-
eling approach such as STRIDE is by definition attacker-
centric: assessing the viability of specific threats implicitly
involves assessing the technical feasibility of that specific
attack, but also takes into account the trust bestowed upon
insiders and outsiders. Many factors come into play, such
as the estimated technical capabilities of adversaries, the
system’s attack surface, and the incentives and motives of

potential attackers. Determining appropriate mitigations is
contextually strongly dependent on these elements.

In security architecture (i.e., the process of securing a
systemagainst threat by actively introducing appropriatemit-
igations), aspects of attacker capabilities and trust relations
to external parties are highly relevant, yet in practice, they are
documented informally or implicitly. This is problematic as
these are both inherently dynamic in time: trust relations will
change over time, attacker capabilities improve, and what
was first considered technically infeasible may become pos-
sible due to newly-discovered vulnerabilities, technological
advancements, data leaks, etc.
Recommendations/implications Therefore, we advocate in
favor of approaches that involve explicit modeling of attack-
ers and trust relationships. These models, which are an
integral part of the security architecture of a system, can then
serve as tangible inputs to be taken into account during threat
modeling.

In turn, as the system evolves over time, these models can
be revised and co-evolve, and this in turn will again allow
for more extensive support for change impact analysis. For
example, we could leverage a threat model as a means to
automatically assess the impact in case a previously trusted
stakeholder were to misbehave by dynamically re-assessing
howmany andwhich security threats thiswould raise (threats
that were excluded on the assumption of trustworthiness of
said stakeholder).

5.4 Findings on RQ3: relation to security

We found that in the studied assumptions, a substantial subset
(78%) was in direct reference to security-related concepts
(KW). This is a strong indication that these assumptions will
mainly be relevant in the threat modeling effort (i.e. they are
part of the threat modeling process rationale documentation)
or by extension, the security architecture of the system under
design.

In terms of the types of keywords being used (KW), the
results show that the assumptions mainly focus on attack and
countermeasure-terminology which is not surprising given
(i) the inherent attack-centric nature of the STRIDE secu-
rity threat modeling approach and (ii) the observation from
Sect. 5.2 that most of the assumptions are used to exclude
threats from consideration, typically by stipulating existence
of appropriate countermeasures in the system.
Recommendations/implications Assumptions that stipulate
countermeasures aremainly caused by the lack of expressive-
ness in the input model. In line with the recommendations
described above, we argue in favor of explicitly modeling
countermeasures and security primitives in the system mod-
els (DFDs or more complicated models) on which threat
elicitation is conducted.

123

2326 D. Van Landuyt, W. Joosen

Further investigation is required to assesswhether security
specific assumptionswill differ fundamentally from the other
types of assumptions discussed in literature, e.g. assumptions
made during requirements elicitation [43], or in later stages of
the development life-cycle. For example, it will be an inter-
esting track of follow-up research to properly characterize
and compare the different types of architectural assumptions
encountered in practice, in extension of descriptive mapping
studies such as the one of Yang et al. [50].

Although the data shows differences between students
and experts—experts seem to adopt a more attack-centric
vocabulary,whereas students focusmore on countermeasure-
related assumptions—, we refrain from drawing any strong
conclusions due to the limited size of the expert data set.
Exploring the differences between expert threatmodelers and
novices in terms of their focal points is definitely an interest-
ing target for future empirical research in this context.

6 Conclusion

We have presented a descriptive study of 640 assumptions
made in the context of STRIDE security threat modeling.We
summarize our observations as follows: firstly, the studied
assumptions are most commonly used to scope the threat
modeling process, i.e. to reduce the amount of threats to be
investigated. Secondly, many of the assumptions stipulate
architectural information that cannot be expressed in theDFD
notation that is commonly used in this context. Thirdly, some
assumptions explicitly refer to other notions not typically
modeled in a system architecture such as trust relations and
attacker capabilities.

Based on our findings, we state the following recommen-
dations for improvement of threat elicitation approaches such
as STRIDE primarily and security architecture design prac-
tices in general:

– Proper process rationale and traceability documentation
is required when assumptions are used to exclude or
ignore threats.

– Assumptions that motivate the relevance of a threat (or
the priority given) are more ideally documented as part
of the threat documentation itself (e.g., as preconditions).

– We argue in favor of rethinking the role ofDFDmodels as
the main input and see value in adopting more expressive
architectural descriptions that are structured according to
complementary viewpoints.

– Explicit modeling of assumptions related to attackers and
their capabilities (e.g., different attacker profiles), as well
as trust modeling will greatly benefit not only the threat
modeling process but security architecture design in gen-
eral.

Aside from providing insights and recommendations, our
study also provides a systematic and reproducible set of met-
rics and variables for assessing security-related assumptions.
This is a complementary classification tool to for exam-
ple, the more generic conceptual taxonomy of architectural
assumptions proposed by Yang et al. [49]. Further investiga-
tion is required to compare the specific assumptions made in
this study with architectural assumptions made in a different
context.

These results highlight the necessity of further research
into the impact of assumptions on the effectiveness of threat
modeling in general, for example by quantifying the impact
of invalid assumptions in case studies, or the integration of
threat modeling in iterative development practices (e.g. con-
tinuous or agile threat modeling) which requires further
systematization. Especially from the perspective of threat
elicitation, these assumptions are relevant inputs that exist
outside of the actual models (DFDs). Further improving their
documentation (e.g. by annotating them in the input DFD
model as a minimal step) will be essential to increase repro-
ducibility and automation.

A Appendix: assumption sheet

See Fig. 10.

123

A descriptive study of assumptions in STRIDE security threat modeling 2327

Fig. 10 Excerpt of an assumption sheet (subject id 32)

References

1. Babar, M.A., Dingsoyr, T., Lago, P., van Vliet, H.: Software Archi-
tecture Knowledge Management: Theory and Practice. Springer,
Berlin (2009)

2. Basili, V.R.: Software modeling and measurement: The
goal/question/metric paradigm. Technical report, College Park,
MD, USA (1992)

3. Bass, L., Clements, P., Kazman, R.: Software Architecture in Prac-
tice, 3rd edn. Addison-Wesley Professional, Boston (2012)

4. Bazarhanova, A., Smolander, K.: The review of non-technical
assumptions in digital identity architectures. In: Proceedings of the
53rd Hawaii International Conference on System Sciences (2020)

5. Bulusu, S.T., Laborde, R., Wazan, A.S., Barrère, F., Benzekri,
A.: Which security requirements engineering methodology should
i choose?: Towards a requirements engineering-based evaluation
approach. In: Proceedings of the 12th International Conference on
Availability, Reliability and Security. p. 29. ACM (2017)

6. Chandra, P., et al.: Software assurance maturity model. A guide to
building security into software development v1. 0 (2009)

7. Dhillon, D.: Developer-driven threat modeling: lessons learned in
the trenches. IEEE Secur. Priv. 9(4), 41–47 (2011)

8. Feilkas, M., Ratiu, D., Jurgens, E.: The loss of architectural knowl-
edge during system evolution: An industrial case study. In: 2009
IEEE 17th International Conference on Program Comprehension.
pp. 188–197 (2009)

9. France, R.B.: Semantically extended data flow diagrams: a formal
specification tool. IEEE Trans. Softw. Eng. 18(4), 329–346 (1992).
https://doi.org/10.1109/32.129221

10. Garlan, D., Allen, R., Ockerbloom, J.: Architectural mismatch or
why it’s hard to build systems out of existing parts. In: Proceedings
of the 17th International Conference on Software Engineering. pp.
179–185. ICSE ’95, ACM (1995)

11. Grimes, D.A., Schulz, K.F.: Descriptive studies: what they can and
cannot do. Lancet 359(9301), 145–149 (2002)

12. Haley, C.B., Laney, R.C., Moffett, J.D., Nuseibeh, B.: Using trust
assumptions with security requirements. Requir. Eng. 11(2), 138–
151 (2006)

13. Heyman, T., Yskout, K., Scandariato, R., Schmidt, H., Yu, Y.: The
security twin peaks. In: International Symposium on Engineering
Secure Software and Systems. pp. 167–180. Springer (2011)

14. Howard, M., Lipner, S.: The Security Development Lifecycle:
SDL: A Process for Developing Demonstrably More Secure Soft-
ware. Microsoft Press (2006)

15. ISO/IEC/IEEE: ISO/IEC/IEEE Systems and software engineering:
Architecture description. ISOIEC/IEEE 42010:2011(E) (2011)

16. Kruchten, P.: The 4+1 ViewModel of Architecture. IEEE software
(1995)

17. Kruchten, P., Lago, P., van Vliet, H.: Building Up and Reason-
ing About Architectural Knowledge, pp. 43–58. Springer, Berlin
(2006)

18. Lago, P., van Vliet, H.: Explicit assumptions enrich architectural
models. In: Proceedings of ICSE ’05. pp. 206–214. ACM (2005)

19. Lewis, G., Mahatham, T., Wrage, L.: Assumptions management in
software development. Techniacl report CMU/SEI-2004-TN-021,
Software Engineering Institute, Carnegie Mellon University, Pitts-
burgh, PA (2004), http://resources.sei.cmu.edu/library/asset-view.
cfm?AssetID=6941

20. Mamun, M.A.A., Hansson, J.: Review and challenges of assump-
tions in software development (2011)

21. Microsoft: Microsoft Threat Modeling Tool: documentation.
https://docs.microsoft.com/en-us/azure/security/develop/threat-
modeling-tool (2019)

22. OWASP: Application threat modeling. https://www.owasp.org/
index.php/Application_Threat_Modeling (2017)

23. Piasecki, S., Urquhart, L., McAuley, D.: Defence against dark arte-
facts: An analysis of the assumptions underpinning smart home
cybersecurity standards. Available at SSRN 3463799,(2019)

24. Ramkumar, M.: Cybersecurity: It’s All About the Assumptions.
National Cyber Summit (NCS), Huntsville pp. 8–9 (2016)

25. Roeller, R., Lago, P., van Vliet, H.: Recovering architectural
assumptions. J. Syst. Softw. 79(4), 552–573 (2006)

26. Salman, I., Misirli, A.T., Juristo, N.: Are students representatives
of professionals in software engineering experiments? In: Software
Engineering (ICSE), 2015 IEEE/ACM 37th IEEE International
Conference on. vol. 1, pp. 666–676 (2015)

27. SecureDrop: SecureDrop 0.3 Threat Model. https://docs.
securedrop.org/en/stable/threat_model/threat_model.html

28. Shevchenko, N., Chick, T.A., O’Riordan, P., Scanlon, T.P., Woody,
C.: Threat modeling: a summary of available methods. Technical
report (2018)

29. Shostack, A.: Experiences threat modeling at microsoft. In: Mod-
eling Security Workshop. Department of Computing, Lancaster
University, UK (2008)

30. Shostack, A.: Threat Modeling: Designing for Security. Wiley,
Crosspoint (2014)

31. Sion, L.: Automated threat analysis for security and privacy (2020),
https://lirias.kuleuven.be/retrieve/589409/thesis.pdf

32. Sion, L., Van Landuyt, D., Yskout, K., Joosen,W.: SPARTA: Secu-
rity & privacy architecture through risk-driven threat assessment.
In: 2018 IEEE International Conference on Software Architecture
Companion (ICSA-C). pp. 89–92. IEEE (2018)

33. Sion, L., Yskout, K., Van Landuyt, D., Joosen, W.: Solution-aware
data flow diagrams for security threat modelling. SAC2018: SA-
TTA track (2018)

123

https://doi.org/10.1109/32.129221
http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=6941
http://resources.sei.cmu.edu/library/asset-view.cfm?AssetID=6941
https://docs.microsoft.com/en-us/azure/security/develop/threat-modeling-tool
https://docs.microsoft.com/en-us/azure/security/develop/threat-modeling-tool
https://www.owasp.org/index.php/Application_Threat_Modeling
https://www.owasp.org/index.php/Application_Threat_Modeling
https://docs.securedrop.org/en/stable/threat_model/threat_model.html
https://docs.securedrop.org/en/stable/threat_model/threat_model.html
https://lirias.kuleuven.be/retrieve/589409/thesis.pdf

2328 D. Van Landuyt, W. Joosen

34. Soudani, N., Raggad, B.G., Zouari, B.: A formal design of secure
information systems by using a formal secure Data Flow Diagram
(FSDFD). Risks and Security of Internet and Systems (CRi-
SIS), 2009Fourth International Conference on pp. 131–134 (2009).
https://doi.org/10.1109/CRISIS.2009.5411965

35. Steingruebl, A., Peterson, G.: Software assumptions lead to pre-
ventable errors. Secur. Priv. IEEE 7(4) (2009)

36. Tao, Y., Kung, C.: Formal definition and verification of data flow
diagrams. J. Syst. Softw. 16(1), 29–36 (1991). https://doi.org/10.
1016/0164-1212(91)90029-6

37. Torr, P.: Demystifying the threat-modeling process. IEEE Secur.
Priv. 3(5), 66–70 (2005)

38. Tuma, K., Scandariato, R.: Two architectural threat analysis
techniques compared. In: EuropeanConference onSoftwareArchi-
tecture. pp. 347–363. Springer (2018)

39. Tuma, K., Scandariato, R., Widman, M., Sandberg, C.: Towards
security threats that matter. In: Computer Security, pp. 47–62.
Springer (2017)

40. Turpe, S.: The trouble with security requirements. In: 2017 IEEE
25th InternationalRequirements EngineeringConference (RE). pp.
122–133. IEEE (2017)

41. Van Lamsweerde, A.: Goal-oriented requirements enginering: a
roundtrip from research to practice [enginering read engineering].
In: Proceedings. 12th IEEE International Requirements Engineer-
ing Conference, 2004. pp. 4–7. IEEE (2004)

42. Van Landuyt, D., Joosen, W.: Supporting materials consisting of
raw data sets and data sets after pre-processing, R scripts used for
assessment, and the calculated scores (CSV) per assumption for
each metric

43. Van Landuyt, D., Joosen, W.: Modularizing early architectural
assumptions in scenario-based requirements. In: FASE, pp. 170–
184. Springer (2014)

44. Van Landuyt, D., Joosen, W.: A descriptive study of
assumptions made in LINDDUN privacy threat elicitation.
ACM (2019). https://people.cs.kuleuven.be/dimitri.vanlanduyt/
dvanlanduyt_sosym20_r2_supporting_materials.zip

45. Viega, J.: Building security requirements with CLASP. In: ACM
SIGSOFT Software Engineering Notes. vol. 30, pp. 1–7. ACM
(2005)

46. Williams, L., McGraw, G., Migues, S.: Engineering security vul-
nerability prevention, detection, and response. IEEE Softw. 35(5),
76–80 (2018)

47. Wuyts, K., Van Landuyt, D., Hovsepyan, A., Joosen, W.: Effective
and efficient privacy threat modeling through domain refinements.
In: Proceedings of the 33rd Annual ACM Symposium on Applied
Computing. pp. 1175–1178. ACM (2018)

48. Xiong,W., Lagerström,R.: Threatmodeling: a systematic literature
review. Comput. Secur. 84, 53–69 (2019)

49. Yang, C., Liang, P., Avgeriou, P.: A survey on software architectural
assumptions. J. Syst. Softw. 113, 362–380 (2016)

50. Yang, C., Liang, P., Avgeriou, P.: Assumptions and their manage-
ment in software development: a systematic mapping study. Inf.
Softw. Technol. 94, 82–110 (2017)

51. Yang, C., Liang, P., Avgeriou, P., Eliasson, U., Heldal, R., Pel-
liccione, P., Bi, T.: An industrial case study on an architectural
assumption documentation framework. J. Syst. Softw. 134, 190–
210 (2017)

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

Dimitri Van Landuyt is a research
manager at iMinds-DistriNet, the
Distributed Systems research
group of the Department of Com-
puter Science of KU Leuven, Bel-
gium. Having obtained a PhD in
Computer Science in 2011, his
current research efforts are diverse
yet focus on the primary appli-
cation of core software engineer-
ing principles and techniques to
contemporary software develop-
ment, with topics ranging from
security and privacy by design,
to cloud computing, decentralized

cloud storage systems, to customization of Software-as-a-Service
applications.

Wouter Joosen is full professor in
distributed software systems at the Depart-
ment of Computer Science of KU Leu-
ven, Belgium. He obtained a PhD degree
from KU Leuven in 1996. He has
also co-founded spin-off companies of
KU Leuven: Luciad, a company spe-
cializing in software components for
Geographical
Information Systems, and Ubizen (now
part of Verizon Business
Solutions), where he has been the CTO
from 1996 till 2000, and COO from
2000 till 2002. His research interests
are in cloud computing, focusing on

software architecture and middleware, and in security aspects of soft-
ware, including security in component frameworks and security archi-
tectures.

123

https://doi.org/10.1109/CRISIS.2009.5411965
https://doi.org/10.1016/0164-1212(91)90029-6
https://doi.org/10.1016/0164-1212(91)90029-6
https://people.cs.kuleuven.be/dimitri.vanlanduyt/dvanlanduyt_sosym20_r2_supporting_materials.zip
https://people.cs.kuleuven.be/dimitri.vanlanduyt/dvanlanduyt_sosym20_r2_supporting_materials.zip

	A descriptive study of assumptions in STRIDE security threat modeling
	Abstract
	1 Introduction
	2 Context and motivation
	2.1 Assumptions in software engineering
	2.2 Threat modeling
	2.3 Assumptions in threat modeling
	2.4 Motivation

	3 Study design
	3.1 Study data
	3.2 Variables and metrics

	4 Results
	4.1 RQ1: role of assumptions
	4.2 RQ2: system context
	4.3 RQ3: relation to security

	5 Discussion and findings
	5.1 Threats to validity
	5.2 Findings on RQ1: role of assumptions
	5.3 Findings on RQ2: system context
	5.4 Findings on RQ3: relation to security

	6 Conclusion
	A Appendix: assumption sheet
	References

