Software and Systems Modeling (2022) 21:805-837
https://doi.org/10.1007/510270-021-00937-3

REGULAR PAPER l')

Check for
updates

Contrasting dedicated model transformation languages versus
general purpose languages: a historical perspective on ATL versus Java
based on complexity and size

Stefan Hoppner'® - Timo Kehrer? - Matthias Tichy'

Received: 17 June 2021 / Revised: 19 August 2021 / Accepted: 15 September 2021 / Published online: 17 November 2021
© The Author(s) 2021

Abstract

Model transformations are among the key concepts of model-driven engineering (MDE), and dedicated model transformation
languages (MTLs) emerged with the popularity of the MDE pssaradigm about 15 to 20 years ago. MTLs claim to increase
the ease of development of model transformations by abstracting from recurring transformation aspects and hiding complex
semantics behind a simple and intuitive syntax. Nonetheless, MTLs are rarely adopted in practice, there is still no empirical
evidence for the claim of easier development, and the argument of abstraction deserves a fresh look in the light of modern
general purpose languages (GPLs) which have undergone a significant evolution in the last two decades. In this paper,
we report about a study in which we compare the complexity and size of model transformations written in three different
languages, namely (i) the Atlas Transformation Language (ATL), (ii) Java SE5 (2004-2009), and (iii) Java SE14 (2020);
the Java transformations are derived from an ATL specification using a translation schema we developed for our study. In a
nutshell, we found that some of the new features in Java SE14 compared to Java SES help to significantly reduce the complexity
of transformations written in Java by as much as 45%. At the same time, however, the relative amount of complexity that
stems from aspects that ATL can hide from the developer, which is about 40% of the total complexity, stays about the same.
Furthermore we discovered that while transformation code in Java SE14 requires up to 25% less lines of code, the number
of words written in both versions stays about the same. And while the written number of words stays about the same their
distribution throughout the code changes significantly. Based on these results, we discuss the concrete advancements in newer
Java versions. We also discuss to which extent new language advancements justify writing transformations in a general
purpose language rather than a dedicated transformation language. We further indicate potential avenues for future research
on the comparison of MTLs and GPLs in a model transformation context.

Keywords ATL - Java - Model transformations - Model transformation language - General purpose language - Comparison -
MTL versus GPL - Historical perspective - Complexity measure - Size measure

1 Introduction

Model transformations are among the key concepts of the
model-driven engineering (MDE) paradigm [1]. They are a
Communicated by Esther Guerra. particular kind of software which needs to be developed along
with an MDE tool chain or development environment. With
the aim of supporting the development of model transfor-
mations, dedicated model transformation languages (MTLs)
have been proposed and implemented shortly after the MDE
paradigm gained a foothold in software engineering.

B Stefan Hoppner
stefan.hoeppner @uni-ulm.de

Timo Kehrer
timo.kehrer @informatik.hu-berlin.de

Matthias Tichy
matthias.tichy @uni-ulm.de

Ulm University, 89081 Ulm, Germany
2 Humboldt University Berlin, 10099 Berlin, Germany

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s10270-021-00937-3&domain=pdf
http://orcid.org/0000-0001-7028-131X

806

S.Hoppner et al.

1.1 Context and motivation

In the literature, many advantages are ascribed to model
transformation languages, such as better analysability, com-
prehensibility or expressiveness [2]. Moreover, model trans-
formation languages aim at abstracting from certain recurring
aspects of a model transformation such as traversing the input
model or creating and managing trace information, claiming
to hide complex semantics behind a simple and intuitive syn-
tax [1,3-5].

Nowadays, however, such claims have two main flaws.
First, as discussed by Gotz et al., there is a lack of actual
evidence to have confidence in their genuineness [2]. Sec-
ond, we argue that most of these claims emerged together
with the first MTLs around 15 years ago. The Atlas Trans-
formation Language (ATL) [6], for example, was first
introduced in 2006, at a time when third-generation gen-
eral purpose languages (GPLs) were still in their infancy.
Arguably, these flaws are underpinned by the observa-
tion that MTLs have been rarely adopted in practical
MDE [7].

Within our research group as well as in conversations
with other researchers, the presumption that transformations
can just as well be written in a GPL such as Java has been
discussed frequently. In fact, in our own research, we have
implemented various model transformations using a GPL;
examples of this include the meta-tooling facilities of estab-
lished research tools like SiLift [8] and SERGe [9,10], or the
implementation of model refactorings and model mutations
in experimental setups of more recent empirical evalua-
tions [11,12]. The presumption that model transformations
can just as well be written in a GPL has been confirmed by
a community discussion on the future of model transforma-
tion languages [7], and, at least partially, by an empirical
study conducted by Hebig et al. [13]. Our argumentation
for specifying model transformations using a modern GPL
is mainly rooted in the idea that new language features
allow developers to heavily reduce the boilerplate code that
MTLs claim to abstract away from. There are also other
features that certain model transformation languages can
provide such as graph pattern matching, incrementality, bidi-
rectionality or advanced analysis, but for now our study
focuses solely on the abstraction and ease of writing argu-
ment.

1.2 Research goals and questions

To validate and better understand this argumentation, we
elected to compare ATL, one of the most widely known
MTLs, with Java, a widespread GPL. More specifically, we
compare ATL with Java in one of its recent iterations (Java
SE14) as well as at the level of 2006 (Java SE5) when ATL

@ Springer

was introduced.! The goal of this approach is twofold. First,
we intend to investigate how transformation code written
in Java SE14 can be improved compared to the Java code
using the Java version SES that was timely when ATL was
released. Second, we want to contextualize these improve-
ments by relating them to transformation code written in
ATL. We opted to use both size and complexity measures
for this purpose because both can provide useful insights for
this discussion.

In order to achieve these goals, we developed four research
questions to guide our research efforts:

RQ1 How much can the complexity and size of transforma-
tions written in Java SE14 be improved compared to
Java SE5?

RQ2 How is the complexity of transformations written in
Java SES & SE14 distributed over the different aspects
of the transformation process compared to each other
and ATL?

RQ3 How is the size of transformations written in Java SES5 &
SE14 distributed over the different aspects of the trans-
formation process compared to each other and ATL?

RQ4 How does the size of query aspects of transformations
written in Java SE5S & SE14 compare to each other and
ATL?

RQ1 aims to provide a general overview of how both
size and complexity of transformations in Java might be
improved using language features provided in newer Java
versions. For a more detailed discussion and comparison it
is then necessary to inspect and compare how the transfor-
mation code based is associated to the different aspects of
a transformation, e.g. model traversal, tracing or the actual
transformation of elements. This is the goal of RQ2 and
RQ3 for complexity and size, respectively. With these two
research questions we aim to investigate for which aspects
new language features of Java help to reduce size and com-
plexity of the associated code segments and what this means
compared to ATL. Lastly, it is often assumed that querying
aided by language constructs in MTLs is one key factor for
their suitability over GPLs [14]. With RQ4 we aim to inves-
tigate this assumptions via an explicit comparison between
queries written in Java and ATL.

1.3 Research methodology

The process to answer the discussed research questions was
structured around four consecutive steps. First, we selected
a total of 12 existing ATL transformations taken from the

! Interestingly, there was no significant evolution of the ATL language
since its initial introduction in 2006 [7].

Contrasting dedicated model transformation languages versus general purpose languages:... 807

Table 1 Meta-data about the selected transformation modules

Transformation name LOC # rules # helpers
ATL2BindingDebugger 41 0
ATL2Tracer 96 0
DDSM2TOSCA 582 19 2
ExtendedPN2ClassicalPN 86 0
Families2Persons 49 2
istar2archi 99 6 1
Modelodatos2FormHTML 127 3
Palladio2UML 189 19 0
R2ML2XML 1125 60 1
ResourcePN2ResourceM 44 1
SimpleClass2RDBMS 63 3
UML22Measure 371 27 11
Average 236.25 13.3 2

ATL Zoo? and several projects from GitHub? to the basis for
our study. References to all included transformations can be
found in our supplementary material in Hoppner, Tichy, and
Kehrer [15]. The selection of ATL modules was done with
several goals in mind. First, we wanted to include transforma-
tions of different size and purpose. We also aimed to include
both transformations using ATLs’ refining mode and normal
transformations. Lastly, due to the fact that our translations
would be done manually, we decided to limit the total number
of transformations to 12 and the maximum size of a single
transformation to around 1000 LOC. Since our work is, in
part, based on the work presented in G6tz and Tichy [16] and
their selection criteria align with ours, we opted to make the
selection of modules from the set of transformations analysed
by them. The module selection process resulted in a total of
12 ATL transformations, from a variety of sources including
the ATL Zoo. Basic meta-data about the transformations can
be found in Table 1, while further details can be found in the
supplementary materials.

Next, we devised, and tested, a schema to translate the
selected ATL transformations to Java. To develop the trans-
lation schema, we followed the design science research
methodology [17] using an iterative pattern for designing
and enhancing the schema until it fit our purpose. To validate
the correctness of the translated transformations, we used the
input and output models that were provided within the ATL
transformation projects. The input models were used as input
for the Java transformations, and the output models were then
compared with the output of the ATL transformations.

Afterwards, we developed a classification schema to
divide Java code into its components and relate each com-

2 https://www.eclipse.org/atl/atl Transformations.

3 https://www.github.com.

ponent to the different aspects of the transformation process,
i.e. transforming, tracing, and traversing. All Java code was
then labelled based on the classification schema. For ATL, a
similar schema from Go6tz et al. [16] already exists which we
adopted and applied to the selected ATL transformations.

Lastly, we decided on and applied several code measures
to allow us to compare the transformations. For comparing
transformations specified in Java SES and SE 14, we use a
combination of four metrics for measuring size and complex-
ity, namely lines of code (LOC), word count (# words) [18],
McCabe’s cyclomatic complexity [19], and weighted method
count (WMC). We use WMC based on McCabe complexity,
i.e. the sum of the McCabe complexities of all elements, as
the complexity measure in cases where the complexities of
several elements need to be grouped together. Word count is
used to supplement the standard code size measure LOC as
a measure that is less influenced by code style and indepen-
dent from keyword and method name size [18]. Furthermore,
word count allows a direct size comparison between ATL and
Java, which is hardly possible with LOC due to the languages’
significantly different structure.

Our comparison of complexity and size distributions is
thus based on LOC, word count, McCabe’s cyclomatic com-
plexity, and WMC, and we incorporate the findings of Gotz
et al. on how code is distributed within ATL transforma-
tions [16].

1.4 Results

Our analysis for RQ1 shows that newer Java versions allow
for a significant reduction in code complexity and lines of
code, while the number of required words stays about the
same. We attribute this to a more information dense style of
writing single statements in the more functional program-
ming style enabled by Java SE8 (2014) and newer.

The results for RQ2 reflect the reduction in complexity
overhead mainly in the methods involving model traversal.
We also conclude that in newer language versions the most
prominent remaining complexity overhead stems from man-
ual trace management in Java compared to ATL.

The more detailed investigation done for RQ3 supports
these observations. We show that tracing is not only a promi-
nent part in the methods dedicated to trace management but
also in the methods that are dedicated to actually transform-
ing input into output elements.

Overall the results for RQ2 and RQ3 suggest that still,
a lot of complexity and size overhead for traversal, trac-
ing, and supplementary code is required in Java even though
newer Java versions improve the overall process of writing
transformations. Of these, tracing is the biggest obstacle for
efficiently developing transformations in a general purpose
language. The overhead associated with this transformation
aspect is the most significant and, arguably, most error-prone

@ Springer

https://www.eclipse.org/atl/atlTransformations
https://www.github.com

808

S.Hoppner et al.

one. A large portion of the advancements of Java SE14 over
Java SES5 stem from the inclusion of more recent language
aspects such as streams and functional interfaces. This fact is
highlighted in our results from RQ4 where those two aspects
are the main factors for improvements in the size of OCL
expressions written in Java.

1.5 Contributions and paper structure

This paper extends prior work on comparing Java and ATL
transformations [20]. The extension consists of (i) a more
detailed description of the applied translation schema from
ATL to Java, (ii) the inclusion of an additional measure,
namely number of words, for comparison, and (iii) the con-
sideration of a larger set of transformations. Furthermore,
we (iv) greatly expanded our discussion of overhead intro-
duced by using Java for transformations based on the results
from the newly included measure. This includes a more
detailed inspection of Java code as well as a direct compar-
ison between Java and ATL. Additionally, based on all the
results and our own experiences, we (v) are now able to dis-
cuss more explicitly what newer Java versions improve over
older ones and where the language is still lacking compared
to ATL. Finally, we (vi) present a description of scenarios
where these advancements are enough to justify Java over
ATL and (vii) consider other features of model transforma-
tion languages not present in ATL and their impact on the
suitability of general purpose languages.

The remainder of this paper is structured as follows: First,
Sect. 2 introduces the relevant aspects of ATL as well as the
relevant differences between Java 5 and Java 14. Afterwards,
in Sect. 3, we give an overview of how we translate ATL
transformations to Java. Because the discussions for RQ2&3
require a precise classification of how code segments in Java
are associated to the different transformation aspects, we pro-
vide an explanation for this in Sect. 4. In Sect. 5, we present
our detailed method for analysing the size and complexity
of the translated transformations. The results of our analysis
and extensive comparison between the different transforma-
tion approaches are then presented in Sect. 6. Based on these
results, Sect. 7 discusses our take-aways for what newer Java
versions improve over older ones, where the language did not
advance, and when these advancements are enough to justify
Java over ATL. Section 8 then discusses potential threats to
the validity of our work, while related work is considered
in Sect. 9. Lastly, Sect. 10 concludes the paper and presents
potential avenues for future research.

2 Background

In this section, we briefly introduce the relevant background
knowledge required for this paper. First, since model trans-

@ Springer

formations can only be specified precisely based on some
concrete model representation, we introduce the structural
representation of models in MDE which is typically assumed
by all mainstream model transformation languages, includ-
ing ATL. Afterwards, since our work builds on ATL as well
as the technological advancement of Java, it is necessary to
introduce the relevant background knowledge on ATL and to
present the important differences between Java SES and Java
SE14, respectively.

2.1 Models in MDE

In MDE, the conceptual model elements of a modelling lan-
guage are typically defined by a meta-model. The Eclipse
Modeling Framework (EMF) [21], a Java-based reference
implementation of OMG’s Essential Meta Object Facility
(EMOF) [22], has evolved into a de-facto standard technol-
ogy to define meta-models that prescribe the valid structures
that instance models of the defined modelling language may
exhibit. It follows an object-oriented approach in which
model elements and their structural relationships are rep-
resented by objects (EObjects) and references whose types
are defined by classes (EClasses) and associations (ERefer-
ences), respectively. Local properties of model elements are
represented and defined by object attributes (EAttributes).
A specific kind of references are containments. In a valid
EMEF model, each object must not have more than one con-
tainer and cycles of containments must not occur. Typically,
an EMF model has a dedicated root object that contains all
other objects of the model directly or transitively.

2.2 ATL

ATL distinguishes among three kinds of so-called Units,
being either a module, a library or a query. Depending on
the type of unit, they consist of rules, helpers and attributes.
For data types and expressions, ATL uses the Object Con-
straint Language (OCL) [23].

2.2.1 Units

As illustrated in Listing 1, transformations are defined in
Modules, taking a set of input models (line 3) which are
transformed to a set of output models (line 2) by rule and
helper definitions which make up the transformation (line 6).

Libraries do not define transformations but only consist
of a set of helper definitions. Libraries can be imported into
modules to enhance their functionality (line 5).

Queries are special types of libraries that are used to define
transformations from model elements to simple OCL types.
They are comprised of a query element and a set of helper
definitions.

Contrasting dedicated model transformation languages versus general purpose languages:... 809

1 | module NAME

> | create OUT1:MetaModelB,

3 | [from|refining] IN1:MetaModelA,
4

5

6

[uses LIBRARY]*
[RULEDEF|HELPERDEF]*

List. 1 Structure of an ATL module.

1 | helper [context MODELTYPE]? def :
NAME [(PARAMETERS)]? :TYPE = EXPR;

List. 2 Syntax to define Helpers.

2.2.2 Helpers and attributes

Helpers allow outsourcing of expressions that can be called
from within rules, similar to simple functions in general pur-
pose languages. Helper definitions can specify a so-called
context which defines the data type for which the helper is
defined as well as parameters passed to the helper. ATL also
allows the definition of attribute helpers. Attribute helpers
differ from helpers in that they do not accept any parameter
and always require a context data type. They serve as con-
stants for the specified context. Listing 2 shows the syntax to
define helpers and attribute helpers.

2.2.3 Rules

In ATL, transformations of input models into output models
are defined using rules. There are two main types of rules:
matched rules and called rules.

Matched rules The declarative part of an ATL transforma-
tion is comprised by matched rules which are automatically
executed on all matching input model elements, thus allow-
ing to define type-specific transformations into output model
elements. For this, the ATL engine traverses the input model
in an optimized order. Furthermore, matched rules generate
traceability links (trace links for short) between the source
and target elements. These links can be navigated through-
out the transformation specification to access references to
elements created from a source element. Matched rules are
comprised of four sections (see Listing 3):

— The In-Pattern (lines 2 to 3) defines the type of source
model elements that are to be matched and transformed.
An optional filter expression allows the definition of a
condition that must be met for the rule to be applied.

— An optional Using-Block (lines 4 to 6) allows to define
local variables based on the input element.

— The Out-Pattern (lines 7 to 10) then defines a number
of output model elements that are to be created from
the input element when the rule is applied. Each output

1 | [lazy| unique lazyl]? rule NAME {

2 from

3 INVAR : MODELATYPE [(CONDITION)]*
4 [using {

5 [VAR : VARTYPE = EXPR;]+

6 }1?

7 to

8 [OUTVAR : MODELBTYPE {

9 [ATR <- EXPR,]+

10 3,1+
[do {
[STATEMENT;] *
13 312
14 |}

List. 3 Syntax to define matched rules.

model element is defined using a set of so-called bind-
ings for assigning values to attributes of the output model
element.

— Lastly, an optional Action-Block (lines 11 to 13) can be
defined which allows the specification of imperative code
that is executed once the target elements have been cre-
ated.

Matched rules can also be defined as /lazy rules by adding
the keyword lazy to the rule definition (line 1). In contrast
to regular matched rules, lazy rules are only executed when
explicitly called for a specific model element that matches
both the rule’s type and its filter expression. They can be
called multiple times on the same model element to produce
multiple distinct output elements. To change the behaviour
of lazy rules to always produce one and the same output
element for the same source model element, lazy rules can
be declared as unique (line 1).

Called rules As opposed to matched rules, called rules
enable an explicit generation of target model elements in an
imperative way. Called rules can be called from within the
imperative code defined in the Action-Block of rules. They
are defined similarly to matched rules. The main difference
is that they do not contain an In-Pattern but instead allow
the definition of required parameters. These parameters can
then be used in the Out-Pattern and Action-Block to produce
output model elements.

2.2.4 Refining mode

The refining mode is a special execution mode for ATL
modules which aims at supporting an easy definition of in-
place transformations [24,25]. Normally, the ATL engine
only creates new output model elements from input model
elements matched by the rules defined in a module. How-
ever, in the refining mode, the ATL engine instead executes
all rules on matching input elements and produces a copy

@ Springer

810

S.Hoppner et al.

1 | public interface Function<T,R> {
2 public R apply (T par);
ER

List. 4 Definition of the Function interface.

1 | Function<Integer, Integer> doubleIt = (value)
-> value * 2;

List. 5 Lambda expression definition based on Function.

1 | List<String> myList =
Arrays.asList(1,2,3,4,5,6);

2> |myList.stream().filter(i -> i % 2 ==
0) .forEach(System.out::println);

List. 6 Finding and printing all even numbers in a list.

of all unmatched input elements automatically. This aims to
allow developers to focus solely on local modifications such
as model refactorings rather than also having to manually
produce copies of all other model elements.

2.3 Technological advancements in Java SE14
compared to Java SE5

Since the release of J2SE 5 in September of 2004, there have
been a lot of improvements made to the Java language. In
this section, however, we will only cover the ones relevant in
the context of this paper. All the relevant features relate to a
more functional programming style as they allow developers
to express some key aspects of a transformation specification
more concisely.

2.3.1 Functional interfaces
With the introduction of the functional interfaces in Java
SES, Java made an important step towards embracing the

functional programming paradigm, paving the way to define
lambda expressions in arbitrary Java code. Lambda expres-

@ Springer

sions, also called anonymous functions, are functions that
are defined without being bound to an identifier. This allows
developers to pass them as arguments.

In essence, a functional interface is an interface contain-
ing only a single abstract method. One example of this is the
interface called Function<T, R> (see Listing 4). It repre-
sents a function which takes a single parameter and returns
a value. This abstract method can then be implemented by
means of a Java lambda expression (see Listing 5).

Lambdas defined with the interface Function<T, R>as
their type are then nothing more than objects with their def-
inition as the implementation of the apply method wrapped
in a more functional syntax (see Listing 5).

Java provides a number of predefined functional inter-
faces, such as the aforementioned Function<T,R>, or
Consumer<T> which takes one argument and has void as
its return value.

2.3.2 Streams

Streams represent a sequence of elements and allow a number
of different operations to be performed on the elements within
the sequence. Stream operations can either be intermediate or
terminal. This means that the operations can either produce
another stream as their result or a non-stream result which
therefore terminates the computation on the stream. This also
means that intermediate operations work with all elements
within the stream without the developer having to define a
loop over it.

The example in Listing 6 shows how one can find and print
all even numbers in a list using streams.

3 Translation schema

In the following, we will present a detailed description of,
first, how the translation schema was developed (see Sect.
3.1), before then describing the translation schema itself
(Sects. 3.2 to 3.6).

Contrasting dedicated model transformation languages versus general purpose languages:... 811

) E Family)
familySon | .} —1 . familyDaughter
0.1 T lastName : String (5=

N\
familyFather/ 0.1 0.1 \familyMother
/ \

N
(/
\ A

\\ /f
father\1 L/mother
H Member 0.

T firstName : Strin
L 9| daughters

(a) The Families meta-model.

H Person
T fullName : String

i

H male H Female

(b) The Persons meta-model.

Fig.1 The Families and Persons meta-models from the families2persons case taken from the ATL wiki [27]

The description of the translation schema is split into five
parts. In Sect. 3.2, we describe the general setup used to
emulate ATL semantics in Java and the basic structure that
all translated modules follow. Then, in Sect. 3.3, we intro-
duce and describe three libraries to reduce repetitive code
between translated modules, one for trace handling, one for
model traversal, and one for model loading and persisting.
Sections 3.4 and 3.5 describe how the essential building
blocks, namely matched rules and called rules, of ATL trans-
formations are translated into Java. And lastly, in Sect. 3.6
we explain how helpers and general OCL expressions are
translated.

All descriptions are illustrated by the use of a running
example. For this, we use an ATL solution found in the ATL
Zoo for the families2persons case from the TTC 17 [26] the
code of which can be found in Listing 7, while its Java SE14
counterpart can be found in Listing 8. The meta-models for
the transformation case are shown in Fig. 1. The exam-
ple illustrates how different ATL elements are translated
into their corresponding Java code based on the described
schemata. Our descriptions will focus on the Java SE 14
translation schemata. Notable differences between the Java
SE 14 and Java SES translation schemata are highlighted as
such.

3.1 Schema development

To develop the translation schema, we followed the design
science research methodology [17]. We used the ATL solu-
tion found in the ATL Zoo for the families2persons case from
the TTC 17 [26] as our initial test input for the translation
scheme and focused on developing the schema for Java SE14.

The development process followed a simple, iterative pat-
tern. A translation schema was developed by the main author
and applied to the Families2Persons case. The resulting trans-
formation was then reviewed by one co-author, focusing on
completeness and meaningfulness. Afterwards, the results of
the review were used as input for reiterating the process.

In a final evolution step, the preliminary transformation
schema was applied to all 12 selected ATL transformations.
Afterwards, both co-authors reviewed the resulting trans-
formations separately based on a predefined code review
protocol. In a joint meeting, the results of the reviews were
discussed and final adjustments to the transformation schema
were decided. These were then used to create a final transla-
tion of all 12 ATL transformations.

Lastly we ported the developed transformations to Java
SES by forking the project, reducing the compiler compliance
level, and re-implementing the parts that were not compatible
with older compiler versions.

@ Springer

812

S.Hoppner et al.

To validate the correctness of the translated transforma-
tions, we used the input and output models that were provided
within the ATL transformation projects. The input models
were used as input for the Java transformations and the output
models were then compared with the output of the trans-
formations. Since neither an input nor an output model was
available for the RZML2XML transformation, we had to rely
solely on the results of our code reviews for its validation.
This validation approach is similar to how Sanchez Cuadrado
et al. [28] validate their generated code.

Our translation schema allows us to translate any ATL
module into corresponding Java code. The only assumption
we make is that all the meta-models of input and output mod-
els are explicitly available. The reason for this is that we work
with EMF models in so-called static mode, which means that
all model element types defined by a meta-model are trans-
lated into corresponding Java classes using the EMF built-in
code generator.

3.2 General setup and module translation

In our translation scheme, we generally assume that each
model contains a single root element. This is standard for
EMF but could be easily extended by using lists as input and
output.

An ATL module is represented by a Java class which
contains a single point of entry method that takes the root
element of the input model as its input and returns the root
element of the output model. The transform method in
line /3 of Listing 8 represents this entry point for the fami-
lies2persons transformation. It takes the root model element
of type Family from the input model and returns a List
of type Person which serves as the root element for the
Persons meta-model.*

4 In reality the Persons meta-model does not have a root element and
the list is used as a substitute for the transformation to conform with
the translation schema as well as general EMF standards. To produce
this list from the transformed elements the Family2List method in
lines 36-42 is introduced which does not have a counterpart in ATL.

@ Springer

module Families2Persons;

create OUT : Persons from IN : Families;

s W oN e

helper context Families!Member def: familyName
String =
if not self.familyFather.oclIsUndefined() then
self.familyFather.lastName

® 9 o u

else
if not self.familyMother.oclIsUndefined()
then
9 self.familyMother.lastName
10 else
11 if not self.familySon.oclIsUndefined()
12 then
13 self.familySon.lastName
14 else
15 self.familyDaughter.lastName
16 endif
17 endif
18 endif;

20 | helper context Families!Member def: isFemale()
21 : Boolean =

22 if not self.familyMother.oclIsUndefined() then
23 true

24 else

25 if not

self.familyDaughter.oclIsUndefined ()

26 then

27 true
28 else

29 false
30 endif

31 endif;

33 | rule Member2Male {

34 from

35 s Families!Member (not s.isFemale())

36 to

37 t Persons!Male (

38 fullName <- s.firstName + ' ' + s.familyName

39)

42 | rule Member2Female {

43 from

44 s Families!Member (s.isFemale())

45 to

46 t Persons!Female (

47 fullName <- s.firstName + ' ‘' + s.familyName

48)

49 }

List. 7 Families2Persons ATL solution.

Contrasting dedicated model transformation languages versus general purpose languages:... 813

Additionally, some setup code is needed for extracting a
model and its root element from a given source file, calling
the entry point of the actual transformation class, and serial-
izing the resulting output model. The code required for our
running example is shown in Listing 9. We utilize one of
our developed libraries, namely IO, for reading an xmi-file
containing a Fami1ies model, extracting the root object of
type Family and passing it to the transform method of
the Families2Persons class to initiate the actual trans-
formation. The resulting output of type List<Person> is
then written to an xmi-file, again, utilizing our IO library.

Because traceability links need to be created before
they can be used, we split the transformation process into
two separate runs. The first run creates all target elements
as well as all traceability links between them and their
source elements, while the second run can safely traverse
over model references and populate the created elements
by utilizing the traceability links when needed. Conse-
quently, the corresponding Java transformation class com-
prises two separate methods, dedicated to each run and being
called by the entry point method. In our example in List-
ing 8, the methods preTransform (Family root) and
actualTransform(Family root) in lines /8 and
25 represent these two runs. Their implementation will be
explained later throughout Sect. 3.4.

3.3 Libraries

For both model traversal as well as trace generation and
resolving, we developed generic libraries which can be
reused across all transformation classes. Additionally, we
also required a library to outsource the reading and writing
of models from and into files. The remainder of this section
will describe these libraries in more detail.

3.3.1 IO library

The IO library contains methods used for reading and
writing models from and to files. The library exposes
two methods, namely readModel (String uri) and
persistModel (EObject root, String uri)

which both bundle together several EMF and file-IO methods
to achieve the desired effects. To do so the library utilizes the
Resource’ type which represents a “persisted document”
in EMF and allows to read and write EObjects from and to
it. To be able to read and write different file types such as xmi
or ecore, a corresponding ResourceFactory needs to be
registered in the ExtensionToFactoryMap of the ResourceFa-
cotry registry. For this reason, we opted to only support xmi,

> https://download.eclipse.org/modeling/emf/emf/javadoc/2.4.3/org/
eclipse/emf/ecore/resource/Resource.html.

ecore and uml files since EMF provides default Resource-
Factory implementations for all three.

The persistModel method takes a root element of a
model as well as a desired output path, and creates a resource
containing the root element (and all its children) which is
then saved to the specified path. The readModels method
reverses this approach by extracting the resource pointed to
by the passed path and returning all contents of the referenced
resource to the caller. Due to the makeup of EMF compliant
files such as xmi, ecore or uml the first element within the con-
tents will then always contain the root element of the model
within the file which can then be used as seen in Listing 9.

3.3.2 Traversal library

The traversal library allows us to outsource the traver-
sal of the source model and thus reduce the amount of
boilerplate code written for each translated transformation.
It builds upon a HashMap that maps a Class<?> to
a Consumer<EObject>. The Consumer<EObject>
interface represents a function that takes an input object
of type EObject and has a return type of void. Dur-
ing traversal, which is encapsulated within the library, the
Consumer function that corresponds to an EObject can be
retrieved from the HashMap by using the class of the EOb-
ject as key. To achieve this, the library exposes the methods
addFunction and traverseAndAccept.

The addFunction method allows us to add a key-value-
pair to the encapsulated hashmap. The traverseAnd
Accept method then takes an ITterable collection con-
taining EObjects, iterates over all contained objects,
fetches the function that corresponds to the concrete class
of the EObject, and executes it. This way, we only have
to write code that adds the required key-value-pairs to the
traverser, while the code for traversing the input model as
well as resolving the correct function which is to be called is
completely outsourced. Note that adding such function calls
is only necessary for matched rules since lazy and called rules
are called within the transformation code and not automati-
cally executed based on element- type matching. An example
of how the traversal library is used can be found in lines 79-
22 and 28-31 of Listing 8 and will be explained in more detail
in Sect. 3.4.

For the Java SES5 solution we decided on an alternative
solution using the conditional dispatcher pattern instead of
outsourcing the traversal. The reason for this was a weighing
of alternatives. Outsourcing the traversal in Java SE5 would
require the utilisation of anonymous classes. This in turn
would offer a similar workflow and an equal McCabe com-
plexity for defining model traversal as with the functional
interface solution in Java SE14. It would however signifi-
cantly increase the required number of words and lines of
code compared to the conditional dispatcher solution. Only

@ Springer

https://download.eclipse.org/modeling/emf/emf/javadoc/2.4.3/org/eclipse/emf/ecore/resource/Resource.html
https://download.eclipse.org/modeling/emf/emf/javadoc/2.4.3/org/eclipse/emf/ecore/resource/Resource.html

814

S.Hoppner et al.

IS

© ® 9 @ »

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64

public class Families2Persons {

}

private static final PersonsFactory PERSONSFACTORY = PersonsFactory.eINSTANCE;
private static final Tracer TRACER = new Tracer();

private static boolean isFemale(Member member) {
return member.getFamilyDaughter() != null Il member.getFamilyMother() != null;

}

private static String familyName(Member member) {
return ((Family) member.eContainer()).getLastName();

}

public static List<Person> transform(Family family) {
preTransform(family);
return actualTransform(family);

}

private static void preTransform(Family root) {
var iterator = root.eAllContents();
var traverser = new Traverser(TRACER);
traverser.addFunction(Member.class, x —> {Member2MalePre((Member) x);Member2FemalePre((Member) x);});
traverser.traverseAnd AcceptPre(iterator);

}

private static List<Person> actual Transform(Family root) {
var newRoot = Family2List(root);

var iterator = root.eAllContents();

var traverser = new Traverser(TRACER);

traverser.addFunction(Member.class, x —> {Member2Male((Member) x);Member2Female((Member) x);});
traverser.traverseAnd Accept(iterator);

return newRoot;

}

private static List<Person> Family2List(Family root) {
var persons = new LinkedList<Person>();
persons.add(TRACER .resolve(root.getFather(), Male.class));
persons.add(TRACER .resolve(root.getMother(), Female.class));
persons.addAll(root.getDaughters().stream().map($ —> TRACER .resolve($, Female.class)).collect(Collectors.toList()));
persons.addAll(root.getSons().stream().map($ —> TRACER.resolve($, Male.class)).collect(Collectors.toList()));
return persons;

}

private static void Member2MalePre(Member m) {
if (lisFemale(m)) {
TRACER.addTrace(m, PERSONSFACTORY .createMale());
}
}
private static void Member2Male(Member m) {
var t = TRACER.resolve(m, PERSONSFACTORY .createMale());
t.setFullName(m.getFirstName() + " " + familyName(m));

}

private static void Member2FemalePre(Member m) {
if (isFemale(m)) {
TRACER.addTrace(m, PERSONSFACTORY .createFemale());
}
}

private static void Member2Female(Member m) {
var t = TRACER.resolve(m, PERSONSFACTORY .createFemale());
t.setFullName(m.getFirstName() + " " + familyName(m));

}

List. 8 The Families2Persons solution translated in Java SE14.

@ Springer

Contrasting dedicated model transformation languages versus general purpose languages:... 815

with the improved syntax provided through the functional
interfaces in Java SE8 could a decrease of the McCabe com-
plexity be accompanied with an uniform word count and
lines of code. Overall, the decision leads to an increase in
the McCabe complexity of the traversal code in Java SE5 but
allows for word count and LOC to remain stagnant. We will
come back and discuss the impact of this decision (in the
relevant parts of our results discussionl in Sect. 7.1) later on.

This design decision affects the methods preTransform
and actualTransform. Their implementation in Java
SES is shown in Listing 10. Instead of populating the tra-
verser objects we instead manually iterate over the whole
model and decide which methods to call based on the type
of the currently visited object.

1 | List<EObject> ins =
I0.readModel (' 'Family.xmi’ ") ;

2 | Family family = (Family) ins.get(0);

3 | List<Person> persons =
Families2Persons.transform(family) ;

4 | I0.persistModel (persons, '’'persons.xmi’’);

List. 9 Setup code for the Families2Persons transformation.

(/...
2 | private static void preTransform(Family root) {
Treelterator<EObject> iterator =
root.eAllContents() ;
while (iterator.hasNext()) {
EObject next = iterator.next();
if (next instanceof Member) {
Member m = (Member)
Member2MalePre (m) ;
Member2FemalePre (m) ;

next;

© ® 9 G e

11 }
12 }

13
14 | private static List<Person>
actualTransform(Family root) {

15 List<Person> newRoot = Family2List (root);

16

17 Treelterator<EObject> iterator =
root.eAllContents() ;

18 while (iterator.hasNext()) {

19 EObject next = iterator.next();

20 if (next instanceof Member) {

21 Member m = (Member) next;

22 Member2Male (m) ;

23 Member2Female (m) ;

24 }

25 }

26 return newRoot;

27

28 | // ...

List. 10 Translated model traversal in Java SES.

3.3.3 Trace library

The trace library emulates the management of traceability
links of ATL. Similar to the traversal library, the trace library
is built based on a HashMap. In this case, however, the
HashMap maps source EObjects to target EObjects and
thus can be used both in Java SES and Java SE14.

In essence, the trace library exposes two methods. First,
for adding a trace (addTrace), thus requiring the source
and target objects to be passed as parameters. Second, for
resolving a trace based on a source object named resolve.
To achieve type consistency resolve also requires the class
of the intended target object to be passed as parameter. An
example of how the trace library is used can be found in line
51 of Listing 8 and will be explained in more detail in Sect.
34.

For more advanced trace management, additional methods
exist that take an additional String parameter to be able to add
and distinguish multiple target objects for a single source
object. This functionality is sometimes required to access
not the direct target object but another object that was created
during the translation of a source object.

3.4 Matched rule translation

Matched rules are translated into two methods within the
transformation class. One method is responsible for creat-
ing a target object and its corresponding trace link, and one
method is responsible for populating the created target object
in accordance with the bindings in its corresponding ATL
rule. The second method will also incorporate all code corre-
sponding to the imperative code written in the Action-Block
of the translated rule. As already indicated in Sect. 3.2 when
introducing our two-step transformation process, the main
idea behind this separation is that all traces and referenced
objects can be safely resolved by the second method (called
during the second traversal) because they are created by the
first method (called during the first traversal). That s, calls for
the object and trace creation are put by the preTransform
method, while calls for the second method are put into the
body of the actualTransform method.

For the rules Member2Male and Member2Female,
this is illustrated in lines 45 and 50 of Listing 8. The
rule Member2Male from Listing 7 is translated into the
methods Member2MalePre (in line 45 of Listing 8) and
Member2Male (inline 50 of Listing §). Member2MalePre
creates an empty Male object as well as a trace from the input
Member, and method Member2Male fills the correspond-
ing Male object with data as defined through the bindings
from the ATL rule. To actually perform the transformation
on all Member objects, the methods preTransform and
actualTransformdefine for which type of object which
method should be executed. This is done using methods from

@ Springer

816

S.Hoppner et al.

1 | private static Female lazyMember2Female (Member

m) {

2 if (isFemale(m)) {

3 Female t = TRACER.add(m,
PERSONSFACTORY .createFemale()) ;

4 t.setFullName (m.getFirstName() + " " +

familyName (m)) ;
return t;
}

return null;

® 9 o w

}

List. 11 Example translated lazy rule.

the traversal library to add the corresponding function calls
for the Member class as shown in lines 2/ and 30 of Listing 8.

A special feature that comes from using our traversal
library is that we only need to translate the condition whether
a rule should be applied in the pre method that is translated
from it. This is because the traverseAndAccept method
only executes the corresponding function for an object after
it verified that an associated target object can be found via
a trace. If no target object can be found, the function is not
executed. An example of this can be found in the translation
of the Member2Male rule. Line 32 of Listing 7 states that
Member2Male is only executed under the condition that
not s.isFemale ().IntheJavacode in Listing 8, this is
only translated into the Member2MalePre method in line
46, whereas Member2Male in line 50 does not contain this
condition.

Lazy rules and unique lazy rules do not require as much
overhead as matched rules since they are called directly from
within other rules/methods and thus do not need to be inte-
grated into the traversal order. However, they do require
traces to be created and added to the global tracer. Addi-
tionally, methods translated from these types of rules have
the target object as their return value rather than the return
type being void. Suppose Member2Female was a lazy
matched rule. In that case, instead of the code in lines 27,
30, and 59-63 for Member2Female, only the code shown
in Listing 11 would be added to the Families2Persons
class. The method 1azyMember2Female returns an object
of type Female while also creating a trace from the passed
Member tothereturned Female. Incase Member2Female
was a unique lazy matched rule, a precondition using trace
links is added to the translated Java code that ensures that the
method always returns the same object when called for the
same input object. This is illustrated in Listing 12.

3.5 Called rule translation

Called rules, much like lazy rules, can be translated into a
single method that creates the output object, populates it
in accordance with the bindings of the ATL rule, and then
returns it. Other than the methods created for matched rules,

@ Springer

1 | private static B uniqueLazyMember2Female (A a) {

2 Female t = TRACER.resolve(m,
PERSONSFACTORY .createFemale()) ;

3 if (t == null) {

4 if (isFemale(m)) {

5 t.setFullName (m.getFirstName() + "

" + familyName (m)) ;
6 return t;

7 }

8 return null;

9 }

10 return t;

11 }

List. 12 Example translated unique lazy rule.

1 | rule calledMember2Female (Member m, String name)
{
to
t : Female (
fullName <- name

)

a v e W oN

}

List. 13 Example ATL called rule.

1 | private static Female

calledMember2Female (Member m, String name) {
Female t = PERSONSFACTORY.createFemale() ;
t.setFullName (name) ;

return t;

oo woN

}

List. 14 Example translated called rule.

the methods for called rules can take more than one parame-
ter as input since called rules in ATL can define an arbitrary
amount of parameters of varying types. Moreover, called
rules do not create or use trace links. A sample called rule
translated into Java can be found in Listings 13 and 14.

3.6 Helper and OCL expression translation

Helpers can be translated into methods much like called rules.
The contained OCL expressions can easily be translated into
semantically equivalent Java code. Examples of such seman-
tically equivalent translations can be found in lines 9-171 of
Listing 8 which correspond to the OCL code in lines 4-
17 of Listing 7. One distinction that can be made here is
again between the different Java versions used in terms of
our study. Streams can be used to simulate the syntax of
OCL, in particular the arrow symbol for implicitly navigat-
ing over collections, while older Java versions need to use
loops instead. Table 2 shows a number of OCL expressions
and their Java SE14 counterpart using streams. Note that in
contrast to OCL, Java requires all collections to be converted
to streams and back to be able to manage them in a func-

Contrasting dedicated model transformation languages versus general purpose languages:... 817

Table 2 A selection of OCL expressions translated to Java SE14

OCL

Java SE14

collection->select(e)
collection->collect(e)
collection->includes(x)
element.attribute
collection.attribute

ili>5

i->i>5

collection.stream().filter(e).collect(Collectors.toCollection())
collection.stream().map(x -> e.apply(x)).collect(Collectors.toCollection())
collection.stream().anyMatch(a -> x == a).collect(Collectors.toCollection())
element.getAttribute()

collection.stream().map(x -> x.getAttribute()).collect(Collectors.toCollection())

tional programming style. The same expressions written in
Java SE5 without streams can be found in Listings 24 to 29
in Appendix A.

4 Code classification schema

In this section we introduce the classifications of Java and
ATL code used throughout RQ2 and RQ3. The ATL classi-
fication described in Sect. 4.1 is taken from [16] and is based
on the hierarchical structure of ATL. The classification of
Java code described in Sect. 4.2 was developed specifically
for the analysis of this research. It is based in the structure of
Java code and its components as well as the relation thereof
to general transformation aspects and ATL. We will again
use the families2persons example to illustrate how the clas-
sification schemas are applied.

4.1 ATL

The hierarchy for the ATL classification was already estab-
lished by Gotz and Tichy [16] and consists of the following
levels and their corresponding categories:

. Module Level

. Rule Type & Helper Level
. Rule Blocks Level

. Content Level

. Binding Level

DN AW =

The aim of this classification system is to differentiate
the different components and their contained subcomponents
within an ATL module. As such, this classification represents
a way to indicate how a syntax element is contained within
the complete structure of the ATL code. This allows us to
make precise observations on the structure of ATL modules
based on their components and, for example, the distribu-
tion of number of words required to write each component.
An overview of the classification hierarchy can be found in
Fig. 2. And the complete labelling for the ATL solution of
Families2Persons can be found in Fig. 3.

Module

tatement
In Pattern

<

OutPattern

o
=1
o
o
[}
I
2
&)
= /

Helper

OutPatternElement

Binding

Fig.2 Overview of the ATL classification from Go6tz and Tichy ([16]

The Module Level defines the belonging of all elements
within a module to said module. Below it on the Rule Type
& Helper Level a distinction between helpers and the differ-
ent types of rules is made. In the Families2Persons example
from Listing 7 and Fig. 3 the helpers in lines 4 & 19 are
labelled as Helper, while both rules Member2Male and
Member2Female in lines 30 & 39 are labelled as Matched
Rule. All elements within the rules and helpers again inherit
the respective classification for this level from their parent
elements.

The Rule Blocks Level distinguishes between the dif-
ferent types of blocks that make up rules, i.e. Using Block,
OutPattern, InPattern, and Action Block. A more specific
distinction of helper contents is not done due to them
only containing OCL expressions. The rules in the Fami-
lies2Persons example only contain InPatterns (lines 37-32,
40-41) and OutPatterns (lines 33-36, 42-45).

Below the Rule Blocks Level the Content Level then
allows a more precise description of the elements con-
tained within the rule blocks. The potential classifications
on this level are: QutPatternElement, Statement, and Vari-

@ Springer

818

S.Hoppner et al.

able Declaration. Lines 43-45 for example are labelled as an
OutPatternElement.

Lastly, the Binding Level again only contains one char-
acteristic and allows to label bindings as exactly that. Lines
35 and 44 are bindings and thus labelled as such as seen in
Fig. 3.

4.2 Java

In order to draw parallels between transformation code writ-
ten in Java and ATL, it is necessary to relate all code
components in the Java code to the transformation aspects
they implement. For this purpose, we developed a hierar-
chical classification for Java code. The hierarchy follows
the natural structure of Java code much like the classifica-
tion for ATL. However, contrary to ATL, the code structure
of Java does not allow us to directly break it down into
transformation-related components. This is due to the fact
that Java is focused around object-oriented and imperative
components rather than transformation-specific ones. As a
result, the classification schema breaks Java code down into
its OO and imperative components and then relates those
components to transformation aspects. The hierarchy levels
of the classification are as follows:

1. Class Level

2. Attribute & Method Level
3. Statement-Type Level

4. ATL Counterpart Level

An overview of the classification levels and the charac-
teristics attributed to each level can be found in Fig. 4. A
sample labelling for the Java solution of Families2Persons
can be found in Fig. 5.

The Class Level stands on top of the hierarchy. The class
level itself is made up of only one type of characteristic, the
Class itself. In the Families2Persons example from Listing 8
the class definition and all elements contained within the class
body is thus labelled as belonging to the class characteristic
of the Class Level (as seen in Fig. 5). This also indirectly
represents a relation between the class and the transformation
module from which it was translated from, indicating that
the class and all its components relate to the transformation
module and its components. More specific relation between
the contained components is then described through the lower
levels within the classification system.

Below the Class Level lies the Attribute & Method
Level in which we classify to which transformation aspect
an attribute or method is related. The characteristics that can
be attributed on this level are: Traversal when a method is
used for the traversal of the input model. Transformation
when a method contains code for the actual transforma-
tion of one model element to another. Tracing for all

@ Springer

W N e

® N o o

10
11

12
13
14
15
16
17
18

19

20
21
22

23

24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45

46

module Families2Persons;
create OQUT : Persons from IN : Families;
helper context Families!Member def: familyName
: String =
if not self.familyFather.oclIsUndefined() then
self.familyFather.lastName

else
if not self.familyMother.oclIsUndefined()
then
self.familyMother.lastName
else
if not self.familySon.oclIsUndefined()
then
self.familySon.lastName
else
self.familyDaughter.lastName
endif
endif
endif;

helper context Families!Member def: isFemale()
: Boolean =
if not self.familyMother.oclIsUndefined() then
true
else
if not self.familyDaughter.oclIsUndefined()
then
true
else
false
endif
endif;

rule Member2Male {
from
s : Families!Member (not s.isFemale())
to
t : Persons!Male (
|[fullName <- s.firstName + ' ' + s.familyNameI

)

rule Member2Female {

from
s : Families!Member (s.isFemale())
to
t : Persons!Female (
|fullName <- s.firstName + ' ' + s.familyName
)

.Out Pattern
.Out Pattern Element

.Binding

. In Pattern

Fig.3 Labelled ATL solution for the Families2Persons case

Contrasting dedicated model transformation languages versus general purpose languages:... 819

~_ Class
Helper

% Binding
4

X Tracing

Fig.4 Overview of the makeup of our Java classification

methods that are related to the creation or resolution of
traces. Helper when a method corresponds to a helper
and lastly Serup for all attributes that are required to exist
for access throughout the transformation. The isFemale
method in lines 5-7 from Fig. 5 is thus assigned the label
Helper for the Attribute & Method Level in addition
to its Class label on the Class Level. The transform,
preTransform and actualTransform methods all
get assigned the Traversal label, while Family2List,
Member2Male and Member2Female are all labelled as
Transformation related on the Attribute & Method Level.
Lastly, Member2MalePre and Member2FemalePre
both relate to Tracing and are thus characterized as such.
All statements within the methods again inherit the classifi-
cation of the Class Level and the Attribute & Method level
from their respective parents in which they are contained
in and get more specialized again through the lower levels
within the system.

Below the Attribute & Method Level then lies the
Statement-Type Level in which all statements within meth-
ods are characterized based on whether they are Control Flow
statements (i.e. conditions or loops), Variable Declarations
or any other type of Statement. The categorization on this
level does not directly relate to any transformation aspect
but rather allows us to differentiate between different types
of statements in Java that are relevant for highlighting dif-
ferences between the structure of Java and ATL code. The
condition defined in line 46 of Fig. 5 is labelled as belong-
ing to Control Flow on this level while again inheriting its
Class Level and Attribute & Method Level from its container
Method Member2MalePre.

The next lower level is the ATL counterpart Level. On
this level, we categorize whether a statement fulfils the role

of a Binding in ATL or if it contains code to create or resolve
Traces or if it is any Other type of Java code that does not
directly relate to transformation aspects. At this level, one
would expect that the categorization of statements is depen-
dent on the categorization of the Attribute & Method Level
of the methods they are contained in, i.e. a statement within
a Transformation method should either be categorized as
Binding or Other. However, in Java transformations these
boundaries become somewhat blurred due to the fact that
traces need to be explicitly resolved to access the correspond-
ing output model elements when assigning them to output
attributes. This can for example be seen for line 57 of Fig.
5. The classification comes from it being a variable declara-
tion that assigns the result of a trace resolution call within a
method that performs the transformation of a Member into
aMale.

Lastly, we can also label different parts of a single line with
different labels based on their functionality. Line 38 of Fig.
5, for example, has elements that perform assignments, i.e.
bindings translated to Java, and elements that perform addi-
tional tracing operations. The labelling of this line reflects
these different functionalities within the line by labelling sub-
statements within the line instead of the whole line.

5 Size and complexity analysis methodology

Our analysis of the transformation specifications is guided
by the research questions introduced in Sect. 1.2.

5.1 RQ1: How much can the complexity and size of
transformations written in Java SE14 be
improved compared to Java SE5?

To compare the transformations written in Java SE14 and
Java SES, we decided to use code measures focused on code
complexity and size. For this reason, we chose McCabe’s
cyclomatic complexity and LOC which are shown to corre-
late with the complexity and size of software [29]. To keep
the LOC count as fair as possible, all Java code was devel-
oped by the same researcher and we used the same standard
code formatter for all Java code. Furthermore, we supple-
ment LOC with an additional measure for code size based
on word count, the combination of these two measures also
allowed additional insights. Word count means the number of
words that are separated either by whitespaces or other delim-
iters used in the languages, such as a dot (.) and different
kinds of parentheses (() [] {}). This measure supplements
LOC because it is less influenced by code style and inde-
pendent from keyword and method name size [18]. This
method for calculating transformation code size has already
been successfully used by Anjorin, Buchmann, Westfechtel,
et al. [18] to compare several (bidirectional) transformation

@ Springer

820 S.Hoppner et al.

1 | public class Families2Persons {
2 private static final PersonsFactory PERSONSFACTORY = PersonsFactory.eINSTANCE;
3 private static final Tracer TRACER = new Tracer();
4
5 private static boolean isFemale(Member member) {
6 return member.getFamilyDaughter() != null || member.getFamilyMother() != null;
7 }
8
9 private static String familyName(Member member) {
10 return ((Family) member.eContainer()).getLastName();
11 }
12
13 public static List<Person> transform(Family family) {
12 preTransform(family) ;
15 return actualTransform(family) ;
16 }
17
18 private static void preTransform(Family root) {
19 var iterator = root.eAllContents();
20 var traverser = new Traverser (TRACER);
21 traverser.addFunction(Member.class, x —> {Member2MalePre((Member) x);Member2FemalePre((Member) x);});
22 traverser.traverseAndAcceptPre(iterator);
23 }
24
26 private static List<Person> actualTransform(Family root) {
2 var newRoot = Family2List(root);
27
28 var iterator = root.eAllContents();
29 var traverser = new Traverser (TRACER);
30 traverser.addFunction(Member.class, x -> {Member2Male ((Member) x);Member2Female((Member) x);1});
31 traverser.traverseAndAccept (iterator);
32
33 return newRoot;
34 }
35
36 private static List<Person> Family2List(Family root) {
37 var persons = new LinkedList<Person>();
38 [persons . add|(TRACER . resolve(froot . getFather ()], [Male.class]);
39 persons.add(TRACER.resolve(root.getMother(), Female.class));
40 persons.addAll(root.getDaughters() .stream() .map($ -> TRACER.resolve($,
Female.class)).collect(Collectors.toList()));
at persons.addAll(root.getSons() .stream() .map($ -> TRACER.resolve($,
Male.class)).collect(Collectors.toList()));
42 return persons;
43 4
44
45 private static void Member2MalePre(Member m) {
46 |if ('isFemale(m)) {
a7 TRACER.addTrace (m, PERSONSFACTORY.createMale());
48 }
49 }
50 pLi i i rm {
51 |var t = TRACER.resolve(m, PERSONSFACTORY.createMale()); |
52 t.setFullName(m.getFirstName() + ™ " + familyName(m));
53 }
54
55 private static void Member2FemalePre(Member m) {
56 if (isFemale(m)) {
57 TRACER.addTrace(m, PERSONSFACTORY.createFemale());
58 }
59 }
60 private static void Member2Female(Member m) {
61 var t = TRACER.resolve(m, PERSONSFACTORY.createFemale());
62 t.setFullName (m.getFirstName() + " " + familyName(m));
63 }
64
[l rransformation Jll Helper [l Variable Declaration

| EE [l rracing [l raversal W sinding [l control Flow

Fig.5 Partially labelled Java solution for the Families2Persons case

@ Springer

Contrasting dedicated model transformation languages versus general purpose languages:... 821

languages including eMoflon [30], JTL [31], NMF Synchro-
nizations [32] and their own language BXtend [33]. Their
argument for using word count is that because it approxi-
mates the number of lexical units it more accurately measures
the size of a solution than lines of code.

We applied the Java code metrics calculator (CK) [34]
on all 24 transformations (12 Java SE5 + 12 Java SE14) to
calculate both metrics and used a program developed by us
to calculate the word count measure. For a basic overview
we then compare the total size between Java SES and Java
SE14 based on both LOC and word count and discuss obser-
vations as well as possible discrepancies between the two
measures. The same is done for McCabe complexity as well.
Because CK calculates metrics on the level of classes, meth-
ods, fields and variables we opted to additionally use the
values calculated on the level of methods, i.e. the LOC, word
count and McCabe complexity of the method bodies, to gain
a more detailed understanding of where differences in size
and complexity arise from. Since neither the fields level nor
the variables level contained values for McCabe complex-
ity and no interesting values for LOC and word count we
decided to omit data from those in our analysis. The metric
values calculated by CK were then analysed and compared
based on maximum, minimum, median, and average values.

RQ1 serves the purpose of providing a general overview
of the differences between the code size and complexity
between Java SE5 and Java SE14. The results from this
research question are analysed and discussed in more detail
in RQ2&3.

5.2 RQ2: How is the complexity of transformations
written in Java SE5 & SE14 distributed over the
different aspects of the transformation process
compared to each other and ATL?

To answer RQ2, we compare the distribution of complexity
within the Java code with regard to the different steps within
the transformation process. In particular, we want to see how
much effort needs to be put into writing those aspects that
ATL can abstract away from. To be able to analyse the com-
plexity distribution in Java transformations, it is necessary
to differentiate the different steps within the Java code, i.e.
model traversal, transformation, tracing, setup and helper.
Since cyclomatic complexity can not be calculated for each
line but only for set of instructions we decided to fall back
on the granularity of methods and use the classification and
labelling given to each method in Sect. 4.

Based on the classification introduced in Sect. 4.2, all Java
transformations were labelled by one author. The labelling
was verified by the other two authors with one of them cross-
checking 2 transformations and the other one checking 4. The
checked transformations were istar2archi, Palladio2UML,
and R2ML2XML all in both Java SE5 and Java SE14 which

in total meant that about 51% of the total Java code lines were
reviewed.

We then used the measures calculated for RQ1 to create
plots of the complexity distribution. The distribution shown
in the resulting plots was then analysed taking into account
the results of Gotz and Tichy [16] regarding the distribution
of different transformation aspects in ATL. The goal in this
step was to see how the complexity in Java transformations
is distributed onto transformation aspects, such as tracing
and input model traversal, that are abstracted or hidden away
in ATL as well as to see the evolution of this distribution
between the two different Java versions.

5.3 RQ3: How is the size of transformations written
in Java SE5 & SE14 distributed over the different
aspects of the transformation process compared
to each other and ATL?

The approach for this research question is twofold and
follows a top down methodology. First, we compare the dis-
tribution of code size within the Java code over the different
transformation aspects using the classification from Sect. 4.
Afterwards, we focus on the actual code. Here, we compare
how code written in ATL compares to the Java code that
represents the same aspect within a transformation.

We opted to use word count as a measure for the detailed
discussion of code size. The reason why we use word count
and not lines of code lies in their granularity. For some parts
of our analysis, it is necessary to split the value of single
statements up into that of their components. This is much
easier to do when using word count as a measure and does not
require code to be rewritten in an unintuitive way. Moreover,
the finer granularity also allows a more detailed look into the
structure of methods that was not possible in RQ2 due to the
limitation of cyclomatic complexity.

The idea behind our approach is to calculate the word
count for all transformations written in Java and ATL and then
compare both the total count of words as well as the number of
words required for specific aspects within the transformation
process. While the word count for Java transformations is
calculated specifically for this study, the data for the ATL
transformations are taken from the results of Gotz and Tichy
[16].

1 | rule SimpleBinding {

2 from s : Member

3 to t : Female (

4 name <- s.firstName
5)

s |}

List. 15 A rule with a simple binding.

Based on the introduced categorizations, we then create
Sankey diagrams for the distribution of word count in both

@ Springer

822

S.Hoppner et al.

1 | rule Trace {

2 from s : Member

3 to t : Male (

4 father <- s.familyFather
5)

s |}

List. 16 A rule with a binding using traces.

1 | helper context Class def: associations:
Sequence (Association) =
Association.allInstances() ->
select (asso | asso.value = 1);

List. 17 A typical helper in ATL.

Java and ATL. These graphs then form the basis for our
comparison. Here, we compare both the distributions of the
individual transformation aspects in Java with ATL as well
as the concrete sizes on the basis of the numbers. When com-
paring the size distribution, we analyse how the distribution
of the transformation aspects in Java differs from ATL, i.e.
which aspects are disproportionally large or small compared
to ATL. We also explicitly look at how much code is required
for tracing in Java. For this, we look at the proportion of the
transformations that require traces and how that compares to
the total size of Java code related to traces. Lastly, the total
number of words between Java and ATL are also directly
compared to see which language allows for shorter transfor-
mation code based on this measure.

To illustrate where the observed effects originate from,
we use a selection of three ATL fragments representing code
which is often written in ATL transformations. The first frag-
ment (see Listing 15) represents code that copies the value of
an input attribute to an attribute of the resulting output model
element, an action which constitutes 56% of all bindings in
the set analysed by [16]. The second fragment (see Listing
16) represents code that requires ATL to use traceability links,
which [16] found to constitute 15% of all bindings. Because
the attribute s . familyFather does not contain a primi-
tive data type, but a reference to another element within the
source model, the contained value cannot simply be copied
to the output element. Instead, ATL needs to follow the trace-
ability link created for the referenced input element to find its
corresponding output element which can then be referenced
in the model element created from s. The last code fragment
(see Listing 17) is a helper definition of average size and
complexity.

We use those code fragments and compare them with the
Java code that they are translated to in order to highlight
differences between the languages.

@ Springer

5.4 RQ4: How does the size of query aspects of
transformations written in Java SE5 & SE14
compare to each other and ATL?

As previously discussed, the goal of this research question
is to investigate the claim that writing queries for models
was improved with the introduction of model transformation
languages such as ATL and to check if this is still the case
when utilizing new languages features in general purpose
languages today. This discussion of Java vs OCL has already
been raised approaches to replace OCL with Java [35]. The
data basis for this analysis is formed by all helpers and their
corresponding Java translations in form of methods within
the 12 transformation modules subject in this study. Because
this set only contains a total of 15 helpers, we complement it
with a large collection of helpers and their translations from
a set of supplemental libraries used in the UML2Measure
transformation.

In our analysis, we compare Java and ATL helpers first
based on their total word count and then by contrasting each
ATL helper with its Java counterpart using regression analy-
sis. All observations in this analysis are supplemented with
code segments that highlight them. The regression analysis
uses a linear regression model to predict the word count of
Java methods (JSWC, J14WC) based on the word count
of ATL Helpers (Helper WC). This was chosen based on
an hypothesis that Java code entails an additional fix cost
compared to OCL expressions as well as an increase by
some factor due to the more verbose syntax of Java. This
approach allows us to both verify the hypothesis and identify
an approximation of the interrelationship between the code
sizes.

6 Results

In this section, we present the results of our analysis in accor-
dance with the research questions from Sect. 1.

6.1 RQ1: How much can the complexity and size of
transformations written in Java SE14 be
improved compared to Java SE5?

Table 3 presents an overview of lines of code (LoC), word
count (# words) and the sum of McCabe complexities of
all methods contained in the transformation classes (WMC).
Looking at the total lines of code and WMC, the numbers
display an expected decrease in both size and complexity.
Our transformations written in Java SES5 total 3252 lines of
code and have a WMC of 792. The same transformations
written in Java SE14 require only 2425 lines of code and have
a WMC of 411. Based on these measures, the size reduces by
about 25%, while the cyclomatic complexity is cut in half to

Contrasting dedicated model transformation languages versus general purpose languages:... 823

about 52% of its Java SES counterpart. This decreased WMC
can be attributed to the improvements made through utilizing
streams for handling collections. The traversal library also
contributes to this by removing all control flow branching
for the trans form methods and thus reducing the McCabe
complexity of these methods.

The word count measure, however, shows a different pic-
ture. While the Java SES implementation uses 13007 words,
the Java SE14 implementations use nearly the same amount
of words, 13118 to be exact. When combining this with the
reduced number of code lines provides and interesting obser-
vation. Transformation code written in Java SE14 for our
transformation set is more dense, i.e. a single line of code
contains a lot more words and thus more information about
the transformation.

Overall, both the total number of lines of code as well as
the WMC of transformations in the newer Java version are
greatly reduced. However, there is no notable change in the
number of required words, which hints at a more information-
dense code rather than simply less code.

Table 4 summarises the calculated size (LOC and word
count) and complexity (McCabe) measurements on the
method level for both the Java SES and Java SE14 trans-
formation code.

As expected from the total numbers, the average and
median length, measured in LoC, of methods in Java SE14 is
reduced by about 30%. The already low minimum of 3 lines
has not been further reduced in the newer version, but the
longest method is now 51 lines shorter.

Contrasting the numbers for lines of code with word count,
we see a small increase in both the average and median
method sizes in Java SE14 compared to Java SE5. How-
ever, the maximum number of words for a method is about
43% shorter in Java SE14 than in Java SES. This means that
while on average (or median) the number of words required
to implement transformation-related methods in Java SE14
increased compared to Java SES, newer Java versions help
to reduce the size of methods that required large number of
words in older Java versions.

The reduction in cyclomatic complexity seen in the total
numbers is also reflected for the more detailed consideration
on method level. The average transformations written in Java
SE14 are 45% less complex than in Java SES. A result also
reflected in the median. Furthermore, the maximum McCabe
complexity is reduced from 44 to 11, which is a significant
decrease as this suggests that even highly complex methods
within the transformations can be expressed a lot less com-
plex in newer Java versions. This, again, can be attributed
to the utilization of streams and functional interfaces which
help to remove the requirement to manually implement large
amounts of loops and nested conditions.

The more detailed results reflect what was already shown on a
coarse-grained level. Compared to Java SES, new language
features in Java SE14 help to reduce the required number
of code lines, while the number of words stays about the
same. The cyclomatic complexity is significantly reduced,
most prominently seen in the fact that the most complex
method in Java SE14 is only 1/4th of the complexity of the
most complex method in Java SES.

6.2 RQ2: How is the complexity of transformations
written in Java SE5 & SE14 distributed over the
different aspects of the transformation process
compared to ATL?

The results for this research question are split up into two
parts. We first report on our findings for Java SES and its
comparison to ATL in Sect. 6.2.1, before reporting the find-
ings for Java SE14 and its comparison to ATL and Java SES
in Sect. 6.2.2.

6.2.1 Java SE5

Figure 6 shows a plot over the distribution of WMC split up
into the different transformation aspects involved in a trans-
formation written in Java SES and Java SE14. It shows that
about 60% of the complexity involved in writing a transfor-
mation in Java SES5 stems from the actual code representing
the transformations and helpers. The other 40% are dis-
tributed among the model traversal, tracing, and setup code.
In ATL, these three aspects are completely hidden behind
ATL’s syntax. In other words, this means that 40% of the
complexity within the transformations written in Java SES
stems from overhead code.

Overall, the results support the consensus from back when
ATL was introduced that a significant portion of complexity
can be avoided when using a dedicated MTL for writing
model transformations.

6.2.2 Java SE14

Given the observations from RQ1 combined with the gen-
eral improvements that Java SE14 brings to the translation
scheme, one would expect better results for the complexity
distribution of transformations written in that Java version.
However, when looking in Fig. 6, which again shows a plot
over the distribution of McCabe complexity split up into the
different transformation aspects involved in a transformation
written in Java, there is still a significant portion of complex-
ity associated with the model traversal, tracing, and setup
code in Java SE14.

While the complexity associated with model traversal is
greatly reduced by the use of the traversal library, the overall

@ Springer

824

S.Hoppner et al.

Table 3 Measurement data on the translated transformation modules

Transformation Name LOC # words WMC
Java SES Java SE14 Java SES Java SE14 Java SES Java SE14

ATL2BindingDebugger 22 19 93 88 4
ATL2Tracer 74 17 285 283 7
DDSM2TOSCA 509 339 2137 2036 103 44
ExtendedPN2ClassicalPN 147 107 569 553 37 19
Families2Persons 72 62 273 297 22 14
istart2archi 184 115 689 714 57 24
Modelodatos2FormHTML 215 178 761 750 58 40
Palladio2UML 303 253 1066 1100 70 47
R2ML2XML 1181 855 4720 4966 303 139
ResourcePN2ResourceM 99 67 380 389 29 13
SimpleClass2RDBMS 163 111 629 581 50 26
UML22Measure 283 249 1405 1356 52 38
Total 3252 2425 13007 13118 792 411
Median 173.5 113 599 647 51 25
Average 271 202.1 1088.9 1092.75 66 34.25
Table 4 Measurement data on the methods in the translated transformation modules
Measure Minimum Median Average Maximum

Java SE5 Java SE14 Java SE5 Java SE14 Java SE5 Java SE14 Java SES Java SE14
LoC 3 3 12.5 9.4 135 105
words 1 2 5 5.2 6.4 64 37
McCabe complexity 1 3 1.6 44 11

800

Model Traversal 26.1%

600

Tracing 12.5%

Model Traversal 13.1%

Tracing 25.2%

WMC
400

200

T T
Java 14 Java 5

Langyeageersion

Category . Helper . Model Traversal Setup Tracing . Transformation

Fig. 6 Distribution of WMC over transformation aspects in Java SES
and SE14

@ Springer

distribution between the actual code representing the trans-
formations and helpers and the model traversal, tracing, and
setup code does not change much. About 40% of the over-
all transformation specification complexity still stems from
overhead code. Moreover, not only did this ratio stay sim-
ilar compared to Java SES5, also the ratio between helper
code complexity and transformation code complexity stayed
about the same. One potential reason for this is that while
newer Java features help to reduce complexity, they do so for
all aspects of the transformation, thus the distribution stays
about the same.

The reason that the code related to trace management
experiences an increase in its complexity ratio compared to
other parts of the transformation can be explained by the fact
that this code stayed the same between the different Java ver-
sions. Thus, while the complexity of all other components
shrank, the complexity of trace management methods stayed
the same, leading to higher relative complexity.

Overall, the results point towards even newer versions of
Java still having to deal with the complexity overhead that
ATL is able to hide. Specifically, handling traces still entails
a large overhead.

Contrasting dedicated model transformation languages versus general purpose languages:... 825

[racing
11294 |
871 CoptrolFlow PuteBi
S ufeBinding
e eeed 2880
(%) X
3 9 PureTrading
S Class| Trar :g;gé- tion 2356 Valuel
H 13007 || 13007
+ Statemgnt
37 5545
3
Othel
5787
arDe
s
o
T T T T T
Class Attribute & Statement-Type ATL Counterpart Source
Method
Level
Attribute & Method Level Helper Tracing I Traversal
. Setup Transformation

(a) Distribution in Java SE5.

[racin
11294 |

THrof
B84

eBinding

3654

10000

(%]
° Trarjsformption l
S Class / Value|
o L |751 s
s 3118 HeES / Sk eTraging 13118
+ i 2724
o
8
w
Othe-
4811
U arDe: 8
2520 3130
o
T T T T T
Class Attribute & Statement-Type ATL Counterpart Source
Method
Level
Attribute & Method Level Helper Tracing . Traversal
. Setup Transformation

(b) Distribution in Java SE14.

Fig.7 Distribution of word count over transformation aspects in Java SE5 and SE14

6.3 RQ3: How is the size of transformations written
in Java SE5 & SE14 distributed over the different
aspects of the transformation process compared
to ATL?

The reporting of results for this research question follows the
same structure as Sect. 6.2. First in Sect. 6.3.1 the results of
our analysis of Java SE5 and its comparison with ATL are
reported. Afterwards in Sect. 6.3.2 the results for Java SE14
and its comparison with ATL are discussed. This section also
contains a comparison to the results of Java SES.

6.3.1 Java SE5

The total size of Java SES transformations compared to ATL
transformations is much larger when using word count as a
measure. All ATL transformations in our set together amount
to 7890 words, while the Java SE5 code needs 13007. This
is an increase of 64.8%. Figure 7a allows us to look at the
distribution of written words over the transformation aspects
introduced in Sect. 4. The x-axis of the graph describes the
hierarchy levels from Sect. 4. The word count is depicted on
the y-axis, and on each hierarchy level on the x-axis the word
count distribution of its different aspects is shown. How each
level is made up of its sub-levels is then shown by means of
the alluvial lines flowing from left to right. The flow lines
are coloured according to the Attribute & Method level as it
represents the top level of separation and eases readability.

Looking at the graph we see a large portion of the number
of words is actually associated with the transformation code
itself. Overhead from tracing, traversal, and setup exists, but
it is not as prevalent as expected from the results presented
in Sect. 6.3. However looking more closely into each of the
aspects and their makeup reveals that there is more overhead
still hidden in the transformation-related code. In the follow-
ing, we will look at the individual aspects and their more
precise breakdown and what this means for transformations
written in Java SES5, also in comparison with ATL.

The number of words required to express Helper code for
our transformation set is low. It constitutes 2.9% of all words
within the transformation class which is in line with the size
of helpers in ATL as seen in Fig. 8.

Similarly, the number of words required for setup code is
also of little consequence as it constitutes only about 2.2%
of the total word count in the transformations considered in
this work. However, even though the amount is small, the
code still has to be written and maintained when evolving
the transformation.

Another part of the code within the transformation classes
that represents overhead in Java SES compared to ATL is the
code related to tracing. While ATL abstracts away tracing and
does target element creation implicitly, in Java this behaviour
has to be recreated by hand. The library for tracing introduced
in Sect. 3.3 helps reduce the implied overhead, but the cre-
ation of target objects as well as traces for them still has to be
initiated manually. The methods involved in this constitute
for 9.9% of words used in our translated transformations and

@ Springer

826

S.Hoppner et al.

8_ —
8 —
ActionBlock
InPattdrn
37 |764] (
5
)
LMatchedRule \
flerz Expresgion
% 6283
5 e odule OPaéEIzeé'lent
= 7890
* OutPattern
5163
i MatchedRule Binding
8 ‘268 4355
5 b
54 —
Statement
- &8 StdticVdlue
UsingBlpck arDgc 1607
i 638 628
o
T T T T T T
Module Rule Type Rule Blocks Content Binding Source
& Helper
Level

Rule Type & Helper [caliedrue [Jl] Helper LMatchedRule MatchedRule

Fig.8 Distribution of word count “complexity” measure over transfor-
mation aspects in ATL calculated based on Go6tz and Tichy[16]

are made up of methods in style of what is described in Sect.
3.4.

As previously stated, a large portion (65.8%) of the word
count comes from methods and attributes related to the actual
transformation. This however changes when looking at the
lower levels of classification within those methods. In ATL
60% of the total number of words and 61% of the words
within rules stem from bindings, i.e. the core part responsible
for transforming input into output. In our Java SES translation
this differs greatly. The translated binding code only makes
up 22% of the total word count or 33.5% within the trans-
formation methods. This points to the fact that much less of
what is written in Java SES actually relates to actual trans-
formation activities. In Java many more words are spent on
code not directly transformation-related but rather on tasks
necessary for the transformation to work. Three such types
of code stand out.

One is statements that resolve traces built up in the trac-
ing methods discussed in the last section (as seen by the flow
from Transformation over Statement and Variable Declara-
tions towards Tracing in Fig. 7a). Examples of such code in
the Families2Persons example from Fig. 5 and Listing 8 can
be found in lines 38,39 and 51.

The second one is code to initialise temporary variables
used for processing steps within the transformation (as seen
by the flow from Transformation over Variable Declarations
into Other in Figure 7a).

And lastly there are a large number of words associated
with control flow via loops and conditions to process col-
lections in order to bind their transformed contents onto
attributes of the current output object (as seen by the flow

@ Springer

private void simpleBinding (Member s) {

t.setName (s.getFirstName()) ;

s W e

}

List. 18 A rule with a simple binding in Java SES.

1 private void simpleBinding (Member s) {

2 PR

3 t.setName (TRACER.resolve (
s.familyFather, Male.class));

4 }

List. 19 A rule with a binding using traces in Java SES.

from Transformation over Control Flow towards Other in
Fig. 7a).

Code relating to traversal is again overhead introduced due
to the usage of Java over ATL. The number of words required
for writing traversal-related code for our set of transformation
constitutes 18.9% of the total word count of transformation
classes.

Overall, the overhead produced by Tracing, Traversal and
Setup code amounts to 31% of the total number of words for
our Java SES transformations. Furthermore, while 65.8%
of words within the transformation classes are related to the
process of transformation, many of them are again overhead
from manual trace resolving, model traversal and supple-
mental code.

When comparing a simple binding (see Listing 15) writ-
ten in ATL with its translation in Java SES5 (see Listing 18),
there is not much difference. Both require nothing more than
their language constructs for accessing attribute values and
assigning them to a different attribute.

This is not the case when traces are involved. While ATL
allows developers to treat source elements as if they were
their translated target element (see Listing 16), some explicit
code needs to be written in Java (see Listing 19). As a result,
the transformation specification gets larger since it is not only
required to call the trace resolution functionality, but it is also
necessary to put some additional type information in so the
Java compiler can handle the resulting object correctly. The
type information is necessary since, as described in Sect.
3.3.3, the trace library holds EObjects which have to be
converted to the correct type after they have been retrieved
based on the source object.

The increase in size is even more prevalent when looking
at the translation of a typical helper. The helper in Listing 17
requires OCL code that works with collections which, thanks
to OCL’s “— syntax”, can be expressed in a concise manner.
In Java SES, however, as seen in Listing 20, the code gets a

Contrasting dedicated model transformation languages versus general purpose languages:... 827

1 | private List<Association>
associations(Class self

{

)
2 List<Association> list = new
LinkedList<Association> () ;
3 for (Association asso
ALLASSOCIATIONS) {
if (asso.getValue() == 1) {

list.add(asso) ;
}
}

return list;

(R R NS

}

List. 20 A typical helper in Java SES.

lot more complex and bloated. This is due to, as previously
stated in Sect. 6.3, the fact that the only way to implement the
selection is to iterate over the collection through an explicit
loop (lines 3 to 9) and to use an if-condition within the loop
(lines 4 to 6). We investigate and discuss this in more detail
later in Sect. 6.4.

Overall, the examples show that simple bindings can be
expressed easily in both ATL and Java SES. Bindings involv-
ing trace resolution require some additional effort in Java
SES while ATL can handle those like any other binding. The
most significant difference, however, comes from expressions
involving collections. Due to the required usage of explicit
loops, the Java SES code blows up in size and complexity
compared to the more compact ATL notation.

6.3.2 Java SE14

Comparing the total number of words in Java SE14 transfor-
mations with ATL, a similar picture as for Java SE5 arises.
The translated transformations require 13118 words, while
ATL only requires 7890. Surprisingly, as also discussed in
Sect. 6.1, the number of words in Java SE14 is higher than
that of Java SES, although only by around 100 words, despite
requiring less lines of code and cyclotomic complexity. We
believe this to be the result of two effects. One, using streams
for processing collections reduces the lines of code and cyclo-
matic complexity because they are single statements and are
thus not split over as many lines as when using loops. But,
setting up streams and transforming them back into the origi-
nal collection requires several additional method calls which
offset the overall reduction of number of words.

The distribution of the number of words between Java
SES and Java SE14 also differs immensely, especially around
the makeup of transformation methods, as evident from Fig.
7b. It also again highlights key differences between the ATL
transformations and their Java counterparts.

1 | for (InElement i1 : input.getInElements()) {

2 output.getOutElements ()

3 .add (TRACER.resolve (i, OutElement.class));
a |}

List. 21 Trace resolution example of a collection in Java SES.

The portion of words required for writing Setup and
Helper code has slightly reduced compared to Java SES,
while the proportion of words for Transformation and Traver-
sal methods increased. The Methods & Attributes for setting
up helpers does not change which is due to the fact that the
underlying code does not change between Java SES and Java
SE14.

Thus, more can be concluded from how the number of
words are distributed within the Transformation and Traver-
sal methods in Java SE14.

For Traversal, it is noticeable that almost no control flow
statements are used any more. Instead, most words now come
from simple statements. This is because in Java SE14 we
make use of the Traversal library, which allows us to pass
only the classes to be matched and the methods to be called
to the traverser instead of having to write loops and condi-
tions manually. This evidently does not reduce the number
of words, but it creates a different way of defining traversal.

Similarly, the transformation-related methods in Java
SE14 also contain much less words that define control flow.
The number of words for other statements not directly per-
forming transformation tasks is also reduced. Instead, the
translated bindings now make up a larger proportion of the
word count. In our Java SE14 transformations, the code for
translated bindings now makes up 27.8% of all words com-
pared to the 22% in Java SES and 41.9% of words within
the transformation methods. This stems from the usage of
streams for processing collections of input elements rather
than explicit loops and conditions. As a result the Java SE14
implementation is less control flow driven and focuses more
on the data involved. However, while this allows for less lines
of code and areduction in cyclomatic complexity as shown in
Sect. 6.1, it does not improve the required number of words.
This is because in some cases, the setup overhead for streams
counteracts their conciseness gain when using number of
words as a measure. An example of this can be seen when
comparing Listings 21 and 22. Both code segments resolve
all InElements from the input into their corresponding
OutElements and add them to the OutElements list of
the output. The number of words required in Java SES for
this totals 14, whereas the number of words in Java SE14
amounts to 17.

@ Springer

828

S.Hoppner et al.

1 output.getOutElements ()

2 .addAll (input.getInElements () .stream()

3 .map (i -> TRACER.resolve (i, OutElement.class))
4 .collect (Collectors.toList()));

List. 22 Trace resolution example of a collection in Java SE14.

Overall, our translated transformations in Java SEI14 do
not reduce the number of words compared to their Java
SES5 counterpart. Newer language features do however help
in reducing the amount of explicit control flow statements
and supplemental code required. Most of this is now done
directly in translated bindings which more closely follows
the ATL-style. In this sense, Java SE14 helps to take a more
data-oriented approach to transformation development com-
pared to Java SES. However, there is still much overhead from
manual traversal, tracing and supplemental code compared
to ATL.

When comparing the code segments for writing simple
bindings and bindings involving traces in Java SE14 with
ATL, there is no difference to the findings from comparing
Java SES to ATL. This is due to the fact that no Java features
introduced since SES help in reducing the complexity of code
that needs to be written here.

1 | private List<Association>
associations(Class self) {

return ALLASSOCIATIONS.stream()
.filter (asso -> asso.getValue()==1)
.collect(Collectors.toList());

[C I NN

}

List. 23 A typical helper in Java SE14.

Comparing translated helper code, however, does show
some improvements of Java SE14 over Java SES. Because
of the introduction of the streams API, Java SE14 (see List-
ing 23) can now handle expressions involving collections
nearly as seamless as ATL (see Listing 17). Only the overhead
of calling stream () and .collect (Collectors.to
List ()) remains. This and other observations regarding
OCL expressions translated to Java are discussed in more
detail later in Sect. 6.4.

Overall, the examples show that code for both simple bind-
ings and bindings involving traces in Java SE14 stays just as
complex in comparisontoATL as in Java SES. Code involving
collections, however, can now be expressed nearly as seam-
less as in ATL due to the introduction of the streams API in
Java which offers a notation that is close to OCL notation.

@ Springer

6.4 RQ4: How does the size of query aspects of
transformations written in Java SE5 & SE14
compare to each other and ATL?

Comparing the word count numbers of helpers from the
transformation modules and libraries with their translated
counterparts we can once again observe an increase in Java.
While all helpers in ATL combined total 2299 words the
Java SES5 code totals 3801 words which is an increase of
about 65.3%. This was to be expected since Java SES is
more verbose, especially when handling collections which
are required for all helpers within the libraries. This becomes
clear when looking at the Java SES translation of Listing 17 in
Listing 20. Not only does Java require a loop and if-condition
to filter out the desired association subset, a new results list
also has to be created and filled with values. Compared to
OCLs “— syntax” this increases the number of required
words to produce the same result drastically.

Next, as described in Sect. 5.4 a linear regression was cal-
culated to predict the word count of Java SES code for Helpers
based on their word count. We were able to find a significant
regression model (p < 2.2¢ — 16) with an adjusted R? of
0.649. The predicted word count of Java SE5 expressions
for OCL expressions is estimated as 4.85364 + 1.31554 *
Helper WC. The hypothesis of a linear relationship is also
supported by a Pearson coefficient of 0.81 indicating this
linear relationship.

Overall, we see a linear relationship between OCL expres-
sion code and the translated Java SE5 code. The factor with
which the Java code increases in size more quickly is 1.53.
This combined with the subjectively less clear way of han-
dling collections through loops leads to the observation that
Java5 was not well suited for defining expressions on models.

Looking at the number of words of Java SE14 Helpers
compared with their ATL counterparts we see a similar
but slightly smaller size than with Java SES. As stated
earlier all ATL library helpers total 2299 words and with
3350 words their Java SE14 counterpart is only about
45.8% larger compared to the 65.3% of Java SE5. This
fits well into our observation that the verbose handling
of collections is responsible for large portions of the size
increase. The streams API, introduced in Java SE8, allows
developers a less verbose way of handling collections as
can be seen when comparing Listings 20 and 23. While
there is still some overhead compared to the OCL coun-
terpart, namely the necessary calls to stream() and
.collect (Collectors.toList ()), the total over-
head is greatly reduced. Moreover, this difference could in
principal be eliminated by using an alternative GPL. The
Scala programming language, for example, does not require
a conversion between streams and collections.

Contrasting dedicated model transformation languages versus general purpose languages:... 829

o
© °

50

Java translation word count
30 40

20

10

0 10 20 30 40
ATL Helper word count
Word count values actuall4 == actual5
== predicted14 predicted5

Fig.9 Comparison of actual Java SE5 and SE14 helper size with pre-
dicted size based on linear the regression models

The decrease in size can also be observed in our linear
regression model that predicts the word count of Java SE14
code for OCL expressions based on the word count of those
expressions. The model we were able to find is significant
(p < 2.2¢—16) and has an adjusted R? of 0.64. The predicted
word count of Java SE14 expressions for OCL expressions
is estimated as 5.26631 + 1.09064 * Helper WC. And the
hypothesis of a linear relationship is again supported by a
Pearson coefficient of 0.8. Figure 9 shows how well both the
regression models fit the data. It also highlights the decrease
of words required for translated helpers in Java SE14 com-
pared to Java SES.

The x-axis depicts the word count value of OCL expres-
sions, while the y-axis depicts the word count of Java SES
codes. The dots within the graph then show the corresponding
Java SES code word count for each translated OCL expres-
sion. Lastly, the red line shows the predicted correspondence
based on our regression model.

Overall, we still see a linear relationship between OCL
expression code and the translated Java SE14 code. However,
the factor with which the Java code increases in size more
quickly is only approximately 1.1. This leads us to believe
that a well trained Java developer should be able to express
OCL queries in Java without much difficulties.

7 Discussion

In this section we discuss our findings from Sect. 6 as well as
our experiences from the process of translating and using
transformations in Java. Our discussion revolves around
two main topics. First, we want to discuss the impact that
the design decision to not use anonymous classes to out-
source traversal in our Java SES solution, explained in Sect.
3.3.2, has on the presented data. Then we discuss how the
advancements that have been achieved in newer Java versions
influence the ability for developers to efficiently develop
transformations in Java. This also includes a conversation
about what shortcomings still exist. And second we present
a guide that suggests in what cases general purpose languages
such as Java can be used in place of ATL. We also show cases
where we would advise against writing transformations in
Java because of its disadvantages. The argumentation of this
part is based on the results presented in this publication as
well as our experiences, both from this study as well as previ-
ous works [8—12]. Finally, we want to have a short discussion
beyond the results of our study. Here we want to talk about
other features that MTLs can provide and what those could
mean for the comparison of MTLs vs. GPLs.

7.1 The impact of not outsourcing model traversal in
JavaSE5

As explained in Sect. 3.3.2, we decided on using the condi-
tional dispatcher pattern to implement traversal in our Java
SES solution as opposed to implementing a traversal library,
similar to the one used in Java SE14, using anonymous
classes. This design decision has implications for the data
presented throughout Sect. 6 which we discuss here.

As mentioned, using the presented approach leads to an
increased McCabe complexity for the traversal implementa-
tion in Java SES5, while it reduces the LOC and number of
words. This has concrete implications for the numbers dis-
cussed in Sections 6.1 to 6.3.

For one, this means that when comparing the concrete
numbers as done in Sect. 6.1, the stagnation of number of
words observed between the Java SE 5 and Java SE 14
variants, would not be present with the alternative Java SE
5 implementation. This is because it would be 812 words
longer (making the total number of words 13819) than
the presented implementation and thus one would instead
observe the expected decrease in number of words in the
Java SE 14 implementation. It would still not be as signif-
icant, because only the traversal part of all transformations
are affected, but it would be more in line with the reduction
in code size observed with the LOC measure in the presented
implementations. Moreover, the LOC reduction itself would
also be more pronounced because the alternative traversal
implementation does require more lines of code per rule.

@ Springer

830

S.Hoppner et al.

Specifically the total of the Java SE 5 implementation would
be increased by 1020 LOC to a total of 4272 as opposed to
3252.

The difference in WMC between the Java SE 5 and Java
SE 14 implementation on the other hand would be less clear-
cut. As shown in Fig. 6 a significant portion of the WMC
in the presented Java SE5 implementation stems from model
traversal. In the alternative implementation this complexity
would be significantly reduced by 152 to a total of 640 as
opposed to 792. The overall WMC of the Java SE 5 trans-
formations would still be higher, because the utilisation of
streams in Java SE 14 reduces the McCabe complexity of
other parts of the transformation as well, but it would no
longer be nearly halved.

Our observations regarding the differences between imple-
mentations in the two different Java versions would, however,
not change significantly with the alternative Java SE 5 imple-
mentation. Thanks to the functional interfaces and streams,
in newer Java versions, a more declarative style for defining
transformations can still utilised. The WMC of the code is
also still reduced, and the general focus can be directed a
more towards the actual transformation aspects. In addition,
the observations regarding the comparison of Java and ATL
do not change.

7.2 Language advancements and their influence on
the ability to write transformations: a historical
perspective

The overall number of words required to write transforma-
tions in Java SE14 compared to Java SES has not reduced, as
shown in Sections 6.1 and 6.3. However, we have also seen
that less explicit control flow needs to be written and the
focus shifts more to the binding expressions. This shows in
the results discussed in Sections 6.1 and 6.2 as the cyclomatic
complexity of transformations written in Java SE14 is greatly
reduced. In principle, a shift towards more data-driven devel-
opment of transformations is therefore possible. Whether this
brings an overall advantage or not is still a debated topic [2]
and in our eyes depends on the experience and preference of
the developers. However, there are many studies in the field
of object-oriented programming that establish a connection
between cyclomatic complexity and reliability [36—40], i.e.
fault-proneness and error rate, as well as some that establish
a connection between cyclomatic complexity and maintain-
ability [41,42], i.e. change frequency and change size.

It has been our experience that newer Java features such as
streams and the functional interfaces make the development
process easier because less work has to be put into building
the traversal, and the assignments within the transformation
methods are now a more prominent part of them, i.e. they are
less hidden in loops and conditions. Whether these advance-

@ Springer

ments justify writing transformations in Java compared to
ATL is discussed in the next section.

7.3 A guideline for when and when not to use Java
or similar GPLs

As shown in Sections 6.2 and 6.3, while newer Java fea-
tures shift the focus more towards a transformation-centric
development, there is still significant overhead from setup,
manual traversal, and especially tracing. Of those three, we
believe the setup overhead to be of least relevance. That is
because the total overhead for setup is small and it is only an
initial overhead that, for the most part, does not need to be
maintained throughout the lifecycle of a transformation. The
situation is similar for traversal overhead. The code required
to be added for all rules or transformation methods, while
more significant in its size still only needs to be written once
and can be ignored for most of the remaining development.
There is little to no room for errors to be introduced , in any
Java implementation that follows a style similar to our imple-
mentations, as each new rule requires nearly identical code
to be added.

Tracing is where, in our opinion, most of the difficult over-
head arises from. It is thus the main argument for writing
transformations in ATL or similar MTLs compared to gen-
eral purpose languages. Managing traces and implementing
their complete semantics cannot be outsourced into a library,
but we can only use a library to reduce the required effort. For
many of the advanced use cases, the mapping semantic relies
on String constants that are passed to both the creation and
resolution methods, which is error-prone. Such cases arise
when traces to objects are needed that were only a side effect
of a transformation rule and not its primary output.

There is also little support through type-checking since
the only way to store traces for all elements is to use the
most generic type possible (i.e. EObject). This results in
the burden of creating and fetching objects of the correct
type to be shifted to the developer , which constitutes a clear
disadvantage compared to ATL, where trace resolution is
type-safe. In simple cases, this problem is less conspicuous,
but in cases where advanced tracing is required, much of
the described difficulties arise and can lead to errors that are
hard to track to its origin. It also forces developers to be
more aware of all parts of the transformation at all times, to
make sure not to miss any possible object types that could
be returned from resolving a trace. There are approaches,
such as Goldschmidt, et al. [43], that bring type safety to
GPL transformations, but they also come with their own set
of limitations when considering advanced features such as
incrementality and reusability of the introduced templates,
that developers need to be aware of, as well as other boiler-
plate code that is required to set it up.

Contrasting dedicated model transformation languages versus general purpose languages:... 831

Based on the presented reflection, we believe that general
purpose languages largely excel in transformations where
little to no tracing and especially no advanced tracing is
required. The overhead for setup and traversal is manage-
able in these cases. Moreover, when no traces are required
for the transformation, we can scrap the two-phase mecha-
nism completely and thus half the total overhead of traversal
is required.

There is also an argument to be made about the expres-
siveness of Java for complex algorithms compared to the
limited capabilities of OCL. We were faced with such a
concrete case during the development of a model differenc-
ing tool called SiLift [8]. SiLift takes a so-called difference
model as input and aims at lifting the given input to a higher
level of abstraction by applying in-place transformations to
group together interrelated changes. To achieve this low-level
changes comprised by the given difference model are first
grouped to so-called semantic change sets in a greedy fash-
ion. This greedy strategy, however, can lead to too many
change sets. Specifically, we need to get rid of overlapping
change sets in a second phase of the transformation, referred
to as post-processing in Kelter, and Taentzer [44]. The post-
processing poses a set partitioning problem which may be
framed as an optimization problem: We want to cover all low-
level changes by a minimum amount of semantic change sets
which are mutually disjoint. We implemented the heuristics
presented in Kehrer, Kelter, and Taentzer [44] in Java. This
can be hardly expressed in OCL, which was developed as
a language for querying object structures but not for imple-
menting complex algorithms like the post-processing step of
the in-place model transformation scenario described above.

Lastly, related to the previously discussed point of expres-
siveness, the heterogeneity of Java code compared to ATL
code also sticks out. The structure of ATL rules, enforced
by ATL’s strict syntax, allows for writing consistent code
across different transformations. This means that developers
can quickly see the basic intent of a rule. The same can-
not be said for Java methods. While our translation scheme,
combined with the developed libraries, produces an internal
DSL for transformations, Java code is far less homogeneous
due to the absence of any dedicated structure within meth-
ods that perform transformations. This can also be seen in
our classification from Sect. 4.2. Each Java statement can
either have transformation-specific semantics (i.e. Binding
or Tracing) or perform any other transformation-unrelated
task. This problem of intermixed transformation and non-
transformation code within GPLs also persists throughout
other internal transformation DSLs such as the NMF trans-
formation languages [45], YAMTL [46], RubyTL [47], or
SiTra [48]. But this does not only bring disadvantages. The
strict structure of ATL allows to easily design mappings from
one input type to one output type. This can suffice in many
cases as highlighted by Gotz and Tichy [16]. However, in

cases where several different input types need to be matched
to the same output type (n-to-1), one input type needs to be
matched to several output types (1-to-n), or a combination of
the two cases (n-to-m), code duplicates are often unavoidable.
In heterogeneous Java code, such situations can be handled
more easily. All in all, the relationship between the input and
output meta-models should also be considered when decid-
ing between using an MTL or a GPL.

7.4 Limits of our results in the context of the
research field

Up till now our discussion of MTL vs. GPL largely boiled
down to the abstraction of model traversal and tracing pro-
vided by ATL. This is of course by design as our study
focused on the comparison of Java and ATL. ATL being the
most used model transformation language and Java being
one of the most dominant programming languages of the last
decade. Nonetheless, there are more model transformation-
specific features that other model transformation languages
provide. Depending on the situation these features could also
influence the decision of using a specific model transforma-
tion language over general purpose languages.

An extension of the model traversal and matching fea-
tures of ATL comes in the form of graph pattern matching in
graph-based model transformation languages such as Hen-
shin [25]. This allows transformation developers to define
complex model element relationships that are automatically
searched and matched by advanced matching engines. There
exist some advances of trying to replicate this behaviour in
general purpose languages for example FunnyQT [49] or
SDMLib/Fujaba [50], but even in those cases DSLs are used
for defining the graph patterns.

Some model transformation languages allow to run anal-
ysis on the written transformations such as critical pair
analysis [51] or even verify property preservation by a trans-
formation [52], both of which are not easily accessible for
transformations written in general purpose languages. The
better analysability of MTLs stems from their syntax being
transformation-specific, as also seen in the structure of our
classification schemata from Sect. 4.

Being able to design bidirectional transformations based
on only one transformation script is also a unique prop-
erty of model transformation languages. Examples of such
languages are detailed and compared in Anjorin, Buch-
mann, Westfechtel, et al. [18] or [53]. Some languages like
eMoflon Leblebici et al.[30], NMF Synchronizations [45],
or Viatra [54] extend this further by providing the ability
to perform incremental transformations both being features
that are hard to reproduce in general purpose languages in our
experience. Even ATL now has several extensions allowing
it to run incremental transformations [55,56].

@ Springer

832

S.Hoppner et al.

Currently, for general purpose languages to be considered
for writing transformations, all the stated advanced features
such as graph pattern matching, bidirectional and incremen-
tal transformations as well as transformation analysis and
verification should not be an essential requirement of the
development. This is because none of them can be imple-
mented with justifiable effort in GPLs.

8 Threats to validity

This section addresses potential threats to the validity of the
presented work.

8.1 Internal validity

The manual steps done throughout our study pose some threat
to the internal validity of our study. Both the translation based
on our translation schema and the labelling of the Java code
were done manually and thus open the possibility of human
error. Furthermore the program we developed to calculate
the word count of the Java code could also contain errors.
We counteracted these threats by testing the correctness of
the resulting transformations to the extent that was possible
based on available resources. This was done by testing the
output of the translated transformations against the output
of the ATL transformations from which they originated as
well as through rigorous peer reviews. We further verified
the correctness of our labels and the produced word counts
through reviews as detailed in Sect. 5.

All assumptions we make about cause and effect of
increase or decrease of size and complexity as well as of
overhead is supported by more detailed investigations and
analysis throughout our research.

8.2 External validity

To mitigate a potential threat to the external validity of our
work due to a bias in the selected transformation modules
we chose the analysed transformations from a variety of
sources and different authors. Moreover, both the purpose
and involved meta-models differ between each transforma-
tion module, thus providing a diverse sample set.

However, the transformations chosen for evaluation in our
work were subject to a number of constraints which poses a
threat to the generalizability of our results. While we aimed
to select a variety of transformation modules w.r.t. scope and
size, the limitation of LOC may introduce a threat to the
external validity of our work.

Due to the study setup of selecting ATL transformations
and translating those into Java, there is the possibility of a
bias in favour of ATL. It is potentially more likely for an ATL
solution to exist, if the problem it solves is well suited for

@ Springer

being developed in ATL. As a result the results of our study
might not be applicable to all model transformations. How-
ever, our study does not try to confirm that ATL is the superior
language for developing transformations, but discusses based
on the presented observations, which advantages a dedicated
language like ATL can offer. In order to be able to recognise
why ATL is a good solution for certain cases, it is necessary
to look at precisely such cases. In order to validate our results,
a further study should be carried out. There, the study design
should be reversed so that ATL solutions are derived from
existing Java solutions.

Lastly, all our observations are limited to the comparison
between ATL and Java which limits their generalizability.
While the observations might also hold for comparing Java
or similar languages with transformation languages similar to
ATL, e.g. QvT-O, they cannot be transferred to graph-based
transformation languages such as Henshin or even QvT-R.

8.3 Construct validity

The next threat concerns the appropriateness and correctness
of our translation schema and the resulting transformations.
We tried to mitigate this threat by following the design sci-
ence research method and using two separate reviewers for
the proposed transformation schema.

The used metrics for measuring complexity and size need
also be discussed. We opted to use cyclomatic complex-
ity for measuring the complexity of Java transformations
because it is one of the most widely used measures for
object-oriented languages and has been shown in numerous
publications to relate both to the maintainability and reliabil-
ity of code [29]. Because both quality attributes are of interest
in the discussion of MTLs vs. GPLs, we believe the cyclo-
matic complexity to be a good measure to assess the impact
that overhead Java code has on the quality of transformations.
Likewise lines of code are a popular measure for size in all of
programming but has also been criticized due to its disregard
for the difference in programming styles and formatting. To
counteract this problem, all Java code was developed by the
same researcher using the same standard code formatter. To
further counterbalance issues with lines of code as a solitary
size measure, we supplemented it with the additional mea-
sure word count that has been argued to be more accurate in
measuring the size of a programmed solution [18]. In cases
where their ranking differs, we then investigated the cause
of the discrepancy and discussed what this means for our
observations and analysis.

8.4 Conclusion validity
To ensure reproducible results, we provide all the data and

tools used for our study in the supplementary materials for
this work. A repetition of our approach using the provided

Contrasting dedicated model transformation languages versus general purpose languages:... 833

materials will end with the same results as those presented
here. However, more than one way of translating ATL con-
structs into Java constructs and thus multiple translation
schemas are possible. This impacts the conclusion validity
of our study because different design decisions for the trans-
lation schema may impact the reproducibility of our results.

9 Related work

To the best of our knowledge, there exists no research that
relates the size and complexity of transformations written in
a MTL with that of transformations written in a GPL. How-
ever, there do exist several publications that provide relevant
context for our work.

Hebig et al. investigate the benefit of using special-
ized model transformation languages compared to general
purpose languages by means of a controlled experiment
where participants had to complete a comprehension task,
a change task, and they had to write one transformation
from scratch [13]. They compare ATL, QVT-O, and the GPL
Xtend, and they found no clear evidence for an advantage
when using MTLs. In comparison with their setup, we focus
on a larger number of transformations. Furthermore, exam-
ples shown in the publication also suggest that they did not
consider ATLs refining mode for their refactoring task nor
did their examples focus on advanced transformation aspects
such as tracing.

As previously described, parts of our research build upon
the work presented in Gotz and Tichy [16]. Here, the authors
use a complexity measure for ATL proposed in the literature
to investigate how the complexity of ATL transformations
is distributed over different ATL constructs such as matched
rules and helpers. Their results provide a relevant data set to
compare our complexity distributions in Java transformations
to.

In Amstel and Brand [57] the authors use McCabe com-
plexity to measure the complexity of ATL helpers. Among
others, this is also done in Vignaga [58]. Similar to this, we
use McCabe complexity on transformations written in Java,
which includes translated helpers, to measure the complexity
of the code.

The Model Transformation Tool Contest (TTC)® aims to
evaluate and compare various quality attributes of model
transformation tools. While some of these quality attributes
(e.g. readability of a transformation specification) are related
to the MTL used by the tool, most of the attributes are related
to tooling issues (such as usability or performance) which
are out of the scope of our study. Moreover, the contest
is about comparing different MTLs with each other rather
than comparing them with a GPL. Nonetheless, some cases
have been presented along with a reference implementation

6 https://www.transformation-tool-contest.eu/.

in Java [59,60], which could serve as another source for com-
paring MTLs and GPLs more widely, including tooling- and
execution-related aspects.

Sanchez Cuadrado et al. [28] propose A2L, a compiler for
parallel execution of ATL model transformations. A2L takes
ATL transformations as input and generates Java code that
can be run from within their self-developed engine. Their
data-oriented ATL algorithm describes how ATL transfor-
mations are executed by their code and closely resembles the
structure embodied in our translation schema.

Our approach to utilise libraries and define certain restric-
tions on the structure of code in Java defines an internal DSL
for developing transformations. There exists a large body of
research into the topic of the design of internal transformation
languages for several general purpose languages. It would be
impossible to list them all here. For this reason, we will limit
our discussion to a small selection of internal DSLs which
have points of contact with our Java DSL.

The Simple Transformation Library in Java (SiTra) intro-
duced in Akehurst et al. [48] provides a simple set of
interfaces for defining transformations in Java. Their inter-
faces abstract rules and traversal in which they follow an
approach similar to ours. However, they do not provide ways
for trace management.

Another JVM-based transformation DSL is presented by
Boronat [46]. The language YAMTL is a declarative internal
language for Xtend. In contrast to our approach, this language
breaks with the imperative concepts of its host language and
offers an ATL-like syntax for defining transformations.

Batory and Altoyan [61] describe Aocl, an implementa-
tion of OCLs underlying relational algebra for Java. Much
like OCL, Aocl allows developers to define constraints and
queries for a given model using a straightforward syntax. The
authors further argue that, if expanded, Aocl could be used
to write model-to-model transformations, but currently this
feature does not exist. Using a MDE tool it is possible to
generate a Java package that allows to use Aocl for a class
diagram passed to the tool.

In Hinkel and Burger [45] the authors introduce NMF-
Synchronisations, an internal DSL for C# for developing
bidirectional transformations. The language is built with the
intention to reuse as much of the tool support from its host
language as possible. Much like our Java SE14 approach,
they utilise functional language constructs added to C# to
allow a more declarative way of defining transformations
while still retaining the full potential of the host language.

10 Conclusion
In this work, we presented how we developed and applied a
translation schema to translate ATL transformations to Java.

We also described our results of analysing the complex-
ity and size as well as their distribution over the different

@ Springer

https://www.transformation-tool-contest.eu/

834

S.Hoppner et al.

transformation aspects. For this purpose, we used McCabe
complexity, LOC, and word count to measure the size and
complexity of 12 transformations translated to Java SES and
Java SE14, respectively. Based on our findings, we then dis-
cussed improvements of Java over the years as well as how
well suited these newer language iterations are for writing
model transformations.

We found that new features introduced into Java since
2006 help to significantly reduce the complexity of transfor-
mations written in Java. Moreover, while they also help to
reduce the size of transformations when measured in lines of
code, we saw no decrease in the number of words required to
write the transformations. This suggests an ability to express
more information dense code in newer Java versions. We also
showed that, while the overall complexity of transformations
is reduced, the distribution of how much of that complex-
ity stems from code that implements functionality that ATL
and other model transformation languages can hide from the
developer stays about the same. This observation is further
supported by the analysis of code size distribution. Here,
we found that while large parts of the transformation classes
relate to the transformation process itself, within those parts
there is still significant overhead from tracing as well as
general supplemental code required for the transformations
to work. We conclude that while the overall complexity is
reduced with newer Java versions, the overhead entailed by
using a general purpose language for writing model transfor-
mations is still present.

Our regression models for predicting Java code size based
on OCL expressions suggest a linear relationship for both
Java SES and Java SE14 with the newer Java version having
a slightly lower growth factor.

Overall we find that the more recent Java version makes
development of transformations easier because less work is
required to set up a working transformation, and the creation
of output elements and the assignment of their attributes are
now a more prominent aspect within the code. From our
results and experience with this and other projects, we also
conclude that general purpose languages are most suitable for
transformations where little to no tracing is required because
the overhead associated with this transformation aspect is the
most prominent one and holds the most potential for errors.
However, while we do not see them as prominently used, we
believe that advanced features such as property preservation
verification or bidirectional and incremental transformation
development cannot currently be implemented with justifi-
able effort in a general purpose language.

For future work, we propose to also look at the trans-
formation development process as a whole, instead of only
at the resulting transformations. In particular, we are inter-
ested in investigating how the maintenance effort differs
between transformations written in a GPL and those writ-
ten in a MTL. For this purpose, the presented artefacts can

@ Springer

be reused. Simple modifications to the ATL transformations
can be compared to what needs to be adjusted in the cor-
responding Java code. Furthermore, because developers are
the first to be impacted by the languages, it is also important
to include users into such studies. For this reason, we pro-
pose to focus on user-centric study setups to be able to better
study the impact of the language choice on developers. Such
studies could also investigate several other relevant aspects.
For example, how well users are aided by rool support or the
impact of previous knowledge of the languages or involved
models on the resulting GPL or MTL code. Moreover, the
impact of language choice on transformation performance,
an aspect that gets more relevant with the ever increasing size
of models [62], can also be investigated with our setup. Here,
we envision the use of run-time measures like execution time
and memory or CPU utilization to compare MTL solutions
with their GPL counterparts, to investigate the scalability of
the underlying technologies.

Another potential avenue to explore is the comparison
with a general purpose language that has a more complete
support for functional programming such as Scala. Addi-
tional features such as pattern matching and easier use of
functional syntax for translating OCL expressions could
potentially help to further reduce the complexity of the result-
ing transformation code.

Funding Open Access funding enabled and organized by Projekt
DEAL.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, you will need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

A OCL expression translations in Java SE5

1 | Collection<Type> newCollection = new
Collection<> () ;
for (Type t: collection) {
if (e) {
newCollection.add(t) ;

a v oe W on

}

List. 24 Translation of collection->select(e) in Java SES.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

Contrasting dedicated model transformation languages versus general purpose languages:...

835

1
2
3
4
5

Collection<ResultType> newCollection = new Collection<>();
for (Type t: collection) {

ResultType r = //manipulate t in accordance with e

newCollection.add (r) ;

}

List. 25 Translation of collection->collect(e) in Java SES.

1
2
3
4

boolean includes = false;

for (Type t: collection) {
includes |= t == x;

}

List. 26 Translation of collection->includes(x) in Java SES.

1 [element.getAttribute() ;]

List. 27 Translation of element.attribute in Java SES.

2
3
4
5
6

Collection<AttributeType> newCollection =
new Collection<>();

for (Type t: collection) {
if (e) {
newCollection.add(t.getAttribute()) ;
}

}

List. 28 Translation of collection.attribute in Java SES.

1[if (i > 5) {} J

List. 29 Translation of i | i > 5 in Java SES.

References

1.

3.

Sendall, S., Kozaczynski, W.: Model transformation: the heart and
soul of model-driven software development. IEEE Softw. (2003).
https://doi.org/10.1109/MS.2003.1231150

Gotz, S., Tichy, Matthias, Groner, R.: Claimed advantages and
disadvantages of (dedicated) model transformation languages: a
systematic literature review. Softw. Syst. Model. 20(2), 469-503
(2021). https://doi.org/10.1007/s10270-020-00815-4

Jouault, Frédéric., et al.: ATL: a model transformation tool. Sci.
Comput. Program. (2008). https://doi.org/10.1016/].scico.2007.
08.002

Krikava, F., Collet, P., France, R.: Manipulating models using
internal domain-specific languages. In: Symposium On Applied
Computing. Gyeongju, South Korea (2014). https://doi.org/10.
1145/2554850.2555127

5.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

Gray, J., Karsai, G.: An examination of DSLs for concisely rep-
resenting model traversals and transformations’. In: Proceedings
of the 36th Annual Hawaii International Conference on System
Sciences (2003). https://doi.org/10.1109/HICSS.2003.1174892

. Jouault, F. et al.: ATL: a QVT-like transformation language. In:

Companion to the 21st ACM SIGPLAN Symposium on Object-
Oriented Programming Systems, Languages, and Applications
(2006). https://doi.org/10.1145/1176617.1176691

. Burguefio, L., Cabot, J., Gerard, S.: The future of model trans-

formation languages: an open community discussion. In: Journal
of Object Technology 18.3. Ed. by Anthony Anjorin and Regina
Hebig. The 12th International Conference on Model Transforma-
tions, 7:1-11. ISSN: 1660-1769 (2019). https://doi.org/10.5381/
jot.2019.18.3.a7

. Kehrer, T., Kelter, U., Ohrndorf, M. et al.: Understanding model

evolution through semantically lifting model differences with
SiLift. In: 28th IEEE International Conference on Software Main-
tenance (ICSM), pp. 638-641. IEEE (2012)

. Kehrer, T., Taentzer, G. et al.: Automatically deriving the spec-

ification of model editing operations from meta-models. In:
International Conference on Theory and Practice of Model Trans-
formations, pp. 173-188. Springer (2016)

Rindt, M., Kehrer, T., Kelter, U.: Automatic generation of
consistency-preserving edit operations for MDE tools. In:
Demos@ MODELS 14 (2014)

SchultheiB, A., Bittner, PM. et al.: On the use of product-line vari-
ants as experimental subjects for clone-and-own research: a case
study. In: SPLC *20: 24th ACM International Systems and Software
Product Line Conference, Montreal, Quebec, Canada, October 19—
23,2020, Volume A. ACM, 27:1-27:6 (2020)

SchultheiB, A., Boll, A., Kehrer, T.: Comparison of graph-based
model transformation rules. J. Object Technol. 19(2), 1-21 (2020)
Hebig, R. et al.: Model transformation languages under a magni-
fying glass: a controlled experiment with Xtend, ATL, and QVT.
In: Proceedings of the 2018 26th ACM Joint Meeting on European
Software Engineering Conference and Symposium on the Founda-
tions of Software Engineering. New York, NY, USA (2018). https://
doi.org/10.1145/3236024.3236046

Rentschler, A. et al.: Designing information hiding modularity for
model transformation languages. In: Proceedings of the 13th Inter-
national Conference on Modularity. MODULARITY 14 (2014).
https://doi.org/10.1145/2577080.2577094

Hoppner, S., Tichy, M., Kehrer, T.: Contrasting Dedicated Model
Transformation Languages vs. General Purpose Languages: A His-
torical Perspective on ATL vs. Java based on Complexity and
Size: Supplementary Materials (2021). https://doi.org/10.18725/
OPARU-38923

Gotz, S., Tichy, M.: Investigating the origins of complexity and
expressiveness in ATL transformations. In: The 16th European
Conference on Modelling Foundations and Applications (ECMFA
2020) Journal of Object Technology 19.2. Ed. by Richard Paige
and Antonio Vallecillo, 12:1-21 (2020). https://doi.org/10.5381/
j0t.2020.19.2.a12

Wieringa, R.J.: Design science methodology for information sys-
tems and software engineering. Undefined (2014). https://doi.org/
10.1007/978-3-662-43839-8

Anjorin, A., Buchmann, T., Westfechtel, B., et al.: Benchmarking
bidirectional transformations: theory, implementation, application,
and assessment. Softw. Syst. Model. (SoSyM). (2019). https://doi.
org/10.1007/s10270-019-00752-x

McCabe, T.J.: A complexity measure. IEEE Trans. Softw. Eng. SE-
2(4), 308-320 (1976). https://doi.org/10.1109/TSE.1976.233837
Gotz, S., Tichy, M., Kehrer, T.: Dedicated model transformation
languages vs. general-purpose languages: a historical perspective
on ATL vs. java. In: Proceedings of the 9th International Confer-
ence on Model-Driven Engineering and Software Development—

@ Springer

https://doi.org/10.1109/MS.2003.1231150
https://doi.org/10.1007/s10270-020-00815-4
https://doi.org/10.1016/j.scico.2007.08.002
https://doi.org/10.1016/j.scico.2007.08.002
https://doi.org/10.1145/2554850.2555127
https://doi.org/10.1145/2554850.2555127
https://doi.org/10.1109/HICSS.2003.1174892
https://doi.org/10.1145/1176617.1176691
https://doi.org/10.5381/jot.2019.18.3.a7
https://doi.org/10.5381/jot.2019.18.3.a7
https://doi.org/10.1145/3236024.3236046
https://doi.org/10.1145/3236024.3236046
https://doi.org/10.1145/2577080.2577094
https://doi.org/10.18725/OPARU-38923
https://doi.org/10.18725/OPARU-38923
https://doi.org/10.5381/jot.2020.19.2.a12
https://doi.org/10.5381/jot.2020.19.2.a12
https://doi.org/10.1007/978-3-662-43839-8
https://doi.org/10.1007/978-3-662-43839-8
https://doi.org/10.1007/s10270-019-00752-x
https://doi.org/10.1007/s10270-019-00752-x
https://doi.org/10.1109/TSE.1976.233837

836

S.Hoppner et al.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

Volume 1: MODELSWARD, INSTICC. SciTePress, pp. 122-135
(2021). https://doi.org/10.5220/0010340801220135

Steinberg, D., et al.: EMF: Eclipse Modeling Framework. Pearson
Education (2008)

OMG.: Meta Object Facility (MOF) (2016). https://www.omg.org/
spec/MOF

OMG.: Object Constraint Language (OCL) (2014). https://www.
omg.org/spec/OCL/2.4/PDF

Czarnecki, K., Helsen, S.: Feature-based survey of model transfor-
mation approaches. IBM Syst. J. 45(3), 621-645 (2006)

Striiber, D. et al.: Henshin: a usability-focused framework for emf
model transformation development. In: International Conference
on Graph Transformation, pp. 196-208. Springer (2017)

Anjorin, A., Buchmann, T., Westfechtel, B.: The families to persons
case. In: TTC’17 (2017)

Jouault, F.: ATL/Tutorials—Create a simple ATL transforma-
tion (2013). https://wiki.eclipse.org/ATL/Tutorials_-_Create_a_
simple_ATL_transformation. Accessed 12 June 2021
SanchezCuadrado, J., et al.: Efficient execution of ATL model
transformations using static analysis and parallelism. IEEE Trans.
Softw. Eng. (2020). https://doi.org/10.1109/TSE.2020.3011388
Jabangwe, R., et al.: Empirical evidence on the link between
object-oriented measures and external quality attributes: a system-
atic literature review. Empir. Softw. Eng. 20(3), 640-693 (2015).
https://doi.org/10.1007/s10664-013-9291-7

Weidmann, N. et al.: Incremental (unidirectional) model trans-
formation with eMoflon::IBeX. In: Transformation, Graph (ed.)
Esther Guerra and Fernando Orejas, pp. 131-140. Springer, Cham
(2019) 978-3-030-23611-3

Cicchetti, A., et al.: JTL: a bidirectional and change propagating
transformation language. In: Malloy, B., Staab, S., van den Brand,
M. (eds.) Software Language Engineering, pp. 183-202. Springer,
Berlin (2011)

Hinkel, G.: NMF: A Modeling Framework for the. NET Platform,
KIT (2016)

Buchmann, T.: BXtend-a framework for (bidirectional) incremen-
tal model transformations. In: MODELSWARD, pp. 336-345
(2018)

Aniche, M.: Java code metrics calculator (CK) (2015). https:/
github.com/mauricioaniche/ck

Batory, D.S., Altoyan, N.: Aocl: a pure-java constraint and trans-
formation language for MDE. In: MODELSWARD, pp. 319-327
(2020)

Singh, Y., Kaur, A., Malhotra, R.: Application of logistic regression
and artificial neural network for predicting software quality mod-
els. In: Software Engineering Research and Practice, pp. 664—670
(2007)

Aggarwal, K.K., et al.: Investigating effect of design metrics on
fault proneness in object-oriented systems. J. Object Technol.
6(10), 127-141 (2007)

Pai, J.G., BechtaDugan, J.: Empirical analysis of software fault
content and fault proneness using bayesian methods. IEEE Trans.
Softw. Eng. 33(10), 675-686 (2007). https://doi.org/10.1109/TSE.
2007.70722

Guo, Y. et al.: An empirical validation of the benefits of adhering to
the law of demeter. In: 2011 18th Working Conference on Reverse
Engineering, pp. 239-243 (2011). https://doi.org/10.1109/WCRE.
2011.36

GopalakrishnanNair, T.R., Selvarani, R.: Defect proneness estima-
tion and feedback approach for software design quality improve-
ment. Inf. Softw. Technol. 54(3), 274-285 (2012). https://doi.org/
10.1016/j.infsof.2011.10.001

Olbrich, S. et al.: The evolution and impact of code smells: a case
study of two open source systems. In: 2009 3rd International Sym-
posium on Empirical Software Engineering and Measurement, pp.
390-400 (2009). https://doi.org/10.1109/ESEM.2009.5314231

@ Springer

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

Alshayeb, M., Li, W.: An empirical validation of object-oriented
metrics in two different iterative software processes. IEEE Trans.
Softw. Eng. 29(11), 1043-1049 (2003). https://doi.org/10.1109/
TSE.2003.1245305

Hinkel, G., Goldschmidt, T., et al.: Using internal domain-specific
languages to inherit tool support and modularity for model trans-
formations. Softw. Syst. Model. 18(1), 129-155 (2019). https:/
doi.org/10.1007/s10270-017-0578-9

Kehrer, T., Kelter, U., Taentzer, G.: A rule-based approach to the
semantic lifting of model differences in the context of model ver-
sioning. In: 2011 26th IEEE/ACM International Conference on
Automated Software Engineering (ASE 2011), pp. 163-172. IEEE
(2011)

Hinkel, G., Burger, E.: Change propagation and bidirectionality in
internal transformation DSLs. Softw. Syst. Model. 18(1), 249-278
(2019). https://doi.org/10.1007/s10270-017-0617-6

Boronat, A.: Expressive and efficient model transformation with
an internal DSL of Xtend. In: Proceedings of the 21th ACM/IEEE
International Conference on Model Driven Engineering Languages
and Systems. MODELS ’18. Copenhagen, Denmark: Associa-
tion for Computing Machinery, pp. 78-88. ISBN: 9781450349499
(2018). https://doi.org/10.1145/3239372.3239386

Cuadrado, J.S., Molina, J.G., Tortosa, M.M.: RubyTL: a practical,
extensible transformation language. In: Rensink, A., Warmer, J.
(eds.) Model Driven Architecture-Foundations and Applications,
pp. 158-172. Springer, Berlin (2006)

Akehurst, D.H. et al.: SiTra: simple transformations in java. In:
Model Driven Engineering Languages and Systems, pp. 351-364.
Springer (2006), ISBN: 978-3-540-45773-2

Horn, T.: Model querying with FunnyQT. In: Duddy, K., Kappel, G.
(eds.) Theory and Practice of Model Transformations, pp. 56-57.
Springer, Berlin (2013)

Ziindorf, A. et al.: Story driven modeling libary (SDMLib): an
Inline DSL for modeling and model transformations, the Petrinet-
Statechart case. In: Sixth Transformation Tool Contest (TTC 2013),
ser. EPTCS (2013)

Born, K., et al.: Analyzing conflicts and dependencies of rule-
based transformations in henshin. In: Egyed, A., Schaefer, I. (eds.)
Fundamental Approaches to Software Engineering, pp. 165-168.
Springer, Berlin (2015)

Ehrig, H., Ermel, C., et al.: Semantical correctness and complete-
ness of model transformations using graph and rule transformation.
In: Ehrig, H. (ed.) Graph Transformations, pp. 194-210. Springer,
Berlin (2008)

Leblebici, E. etal.: A comparison of incremental triple graph gram-
mar tools. In: Electronic Communications of the EASST 67 (2014).
https://doi.org/10.14279/tuj.eceasst.67.939

Bergmann, G., et al.: Viatra 3: a reactive model transformation
platform. In: Kolovos, D., Wimmer, M. (eds.) Theory and Practice
of Model Transformations, pp. 101-110. Springer, Cham (2015)
Martinez, S., Tisi, M., Douence, R.: Reactive model trans-
formation with ATL. In: Science of Computer Program-
ming 136, pp. 1-16 (2017). ISSN: 0167-6423. https://doi.
org/10.1016/j.scico.2016.08.006. https://www.sciencedirect.com/
science/article/pii/S016764231630106X

Le Calvar, T., et al.: Efficient ATL incremental transformations. J.
Object Technol. 18(3), 1-2 (2019)

van Amstel, M.E, van den Brand, M.G.J.: Using metrics for
assessing the quality of ATL model transformations. In: MtATL @
TOOLS (2011)

Vignaga, A.: Metrics for measuring ATL model transformations.
In: MaTE, Department of Computer Science, Universidad de Chile,
Tech. Rep (2009)

Getir, S. et al.: State elimination as model transformation problem.
In: Transformation Tool Contest at the Conference on Software

https://doi.org/10.5220/0010340801220135
https://www.omg.org/spec/MOF
https://www.omg.org/spec/MOF
https://www.omg.org/spec/OCL/2.4/PDF
https://www.omg.org/spec/OCL/2.4/PDF
https://wiki.eclipse.org/ATL/Tutorials_-_Create_a_simple_ATL_transformation
https://wiki.eclipse.org/ATL/Tutorials_-_Create_a_simple_ATL_transformation
https://doi.org/10.1109/TSE.2020.3011388
https://doi.org/10.1007/s10664-013-9291-7
https://github.com/mauricioaniche/ck
https://github.com/mauricioaniche/ck
https://doi.org/10.1109/TSE.2007.70722
https://doi.org/10.1109/TSE.2007.70722
https://doi.org/10.1109/WCRE.2011.36
https://doi.org/10.1109/WCRE.2011.36
https://doi.org/10.1016/j.infsof.2011.10.001
https://doi.org/10.1016/j.infsof.2011.10.001
https://doi.org/10.1109/ESEM.2009.5314231
https://doi.org/10.1109/TSE.2003.1245305
https://doi.org/10.1109/TSE.2003.1245305
https://doi.org/10.1007/s10270-017-0578-9
https://doi.org/10.1007/s10270-017-0578-9
https://doi.org/10.1007/s10270-017-0617-6
https://doi.org/10.1145/3239372.3239386
https://doi.org/10.14279/tuj.eceasst.67.939
https://doi.org/10.1016/j.scico.2016.08.006
https://doi.org/10.1016/j.scico.2016.08.006
https://www.sciencedirect.com/science/ article/pii/S016764231630106X
https://www.sciencedirect.com/science/ article/pii/S016764231630106X

Contrasting dedicated model transformation languages versus general purpose languages:...

837

Technologies: Applications and Foundations (TTC@STAF), pp.
65-73 (2017)

60. Beurer-Kellner, L., von Pilgrim, J., Kehrer, T.: Round-trip migra-
tion of object-oriented data model instances. In: Transformation
Tool Contest at the Conference on Software Technologies: Appli-
cations and Foundations (TTC@STAF) (2020)

61. Batory, D.S., Altoyan, N.: Aocl: a pure-java constraint and trans-
formation language for MDE. In: MODELSWARD, pp. 319-327
(2020)

62. Groner, R., et al.: A survey on the relevance of the performance
of model transformations. J. Object Technol. 20(2), 1-27 (2021).
https://doi.org/10.5381/jot.2021.20.2.a5

Publisher’s Note Springer Nature remains neutral with regard to juris-

Matthias Tichy is full professor for
software engineering at the Uni-
versity of Ulm and director of the
institute of software engineering
and programming languages. His
main research focus is on model-
driven software engineering, par-
ticularly for cyber-physical sys-
tems. He works on requirements
engineering, dependability, and val-
idation and verification comple-
mented by empirical research tech-
niques. He is a regular member of
programme committees for con-
ferences and workshops in the area

dictional claims in published maps and institutional affiliations. of software engineering and model driven development. He is co-
author of over 110 peer-reviewed publications.

Stefan Hoppner is a Ph.D. student
at Ulm University. His research
is focused on topics surrounding
the development and evaluation of
model transformation languages.
In particular, he is interested in
the advantages and disadvantages
that these languages offer in con-
trast to general purpose languages.
Prior to his work as a Ph.D. stu-
dent he was a student of Soft-
ware Engineering at Ulm Univer-
sity where he received his M.Sc.
in.

Timo Kehrer is professor at Hum
boldt-Universitidt zu Berlin (Ger-
many), heading the Model-Driven
Software Engineering Group at the
Department of Computer Science.
Before that, Kehrer was working
as research assistant in the Soft-
ware Engineering and Database
Systems Group at University of
Siegen (Germany) from 2011 to
2015, and as postdoctoral research
fellow in the Dependable Evolv-
able Pervasive Software Engineer-
ing Group at Politecnico di Milano
(Italy) from 2015 to 2016. He has
active research interests in various fields of model-driven and model-
based software and system engineering, with a particular focus on
model evolution.

@ Springer

https://doi.org/10.5381/jot.2021.20.2.a5

	Contrasting dedicated model transformation languages versus general purpose languages: a historical perspective on ATL versus Java based on complexity and size
	Abstract
	1 Introduction
	1.1 Context and motivation
	1.2 Research goals and questions
	1.3 Research methodology
	1.4 Results
	1.5 Contributions and paper structure

	2 Background
	2.1 Models in MDE
	2.2 ATL
	2.2.1 Units
	2.2.2 Helpers and attributes
	2.2.3 Rules
	2.2.4 Refining mode

	2.3 Technological advancements in Java SE14 compared to Java SE5
	2.3.1 Functional interfaces
	2.3.2 Streams

	3 Translation schema
	3.1 Schema development
	3.2 General setup and module translation
	3.3 Libraries
	3.3.1 IO library
	3.3.2 Traversal library
	3.3.3 Trace library

	3.4 Matched rule translation
	3.5 Called rule translation
	3.6 Helper and OCL expression translation

	4 Code classification schema
	4.1 ATL
	4.2 Java

	5 Size and complexity analysis methodology
	5.1 RQ1: How much can the complexity and size of transformations written in Java SE14 be improved compared to Java SE5?
	5.2 RQ2: How is the complexity of transformations written in Java SE5 & SE14 distributed over the different aspects of the transformation process compared to each other and ATL?
	5.3 RQ3: How is the size of transformations written in Java SE5 & SE14 distributed over the different aspects of the transformation process compared to each other and ATL?
	5.4 RQ4: How does the size of query aspects of transformations written in Java SE5 & SE14 compare to each other and ATL?

	6 Results
	6.1 RQ1: How much can the complexity and size of transformations written in Java SE14 be improved compared to Java SE5?
	6.2 RQ2: How is the complexity of transformations written in Java SE5 & SE14 distributed over the different aspects of the transformation process compared to ATL?
	6.2.1 Java SE5
	6.2.2 Java SE14

	6.3 RQ3: How is the size of transformations written in Java SE5 & SE14 distributed over the different aspects of the transformation process compared to ATL?
	6.3.1 Java SE5
	6.3.2 Java SE14

	6.4 RQ4: How does the size of query aspects of transformations written in Java SE5 & SE14 compare to each other and ATL?

	7 Discussion
	7.1 The impact of not outsourcing model traversal in Java SE 5
	7.2 Language advancements and their influence on the ability to write transformations: a historical perspective
	7.3 A guideline for when and when not to use Java or similar GPLs
	7.4 Limits of our results in the context of the research field

	8 Threats to validity
	8.1 Internal validity
	8.2 External validity
	8.3 Construct validity
	8.4 Conclusion validity

	9 Related work
	10 Conclusion
	A OCL expression translations in Java SE5
	References

