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Abstract
The increasing complexity of embedded systems renders software verification more complex, requiring monitoring and
formal techniques, like model-checking. However, to use such techniques, system engineers usually need formal expertise to
express the software requirements in a formal language. To facilitate the use of model-checking tools by system engineers,
our approach uses a UML model interpreter through which the software requirements can directly be expressed in UML as
well. Formal requirements are encoded as UML state machines with the transition guards written in a specific observation
language, which expresses predicates on the execution of the system model. Each such executable UML specification can
model either a Büchi automaton or an observer automaton, and is synchronously composed with the system, to follow its
execution during model-checking. Formal verification can continue at runtime for all deterministic observer automata used
during offline verification by deploying them on real embedded systems. Our approach has been evaluated on multiple case
studies and is illustrated, in this paper, through the user interface model of a cruise-control system. The automata-based
verification results are in line with the verification of the equivalent LTL properties. The runtime overhead during monitoring
is proportional to the number of monitors.

Keywords Model-checking · Monitoring · Model interpretation · Embedded systems · Observation Language · Synchronous
Composition
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1 Introduction

In the context of embedded cyber-physical systems, the
software design becomes increasingly more complex. This
exposes software programs to several potential failures (e.g.,
design faults, bugs, security flaws) that are more and more
intricate to detect, understand, and fix. With model-driven
engineering, software systems can be designed using models
and verified with formal verification techniques (e.g., model-
checking) during early design phases. These techniques
give promising results (e.g., verification of Mars exploration
rovers and of medical device transmission protocols with
the Spin model-checker [31]), but require abstractions of
the system environment, which might miss some real exe-
cution cases and do not consider failures due to deficient
hardware components. For these reasons, embedded systems
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increasingly rely on monitoring as a way to continue formal
verification during runtime execution.

To perform all these verification activities, system require-
ments must be expressed in a formal language (e.g., linear
temporal logic (LTL)). For offline verification, these proper-
ties are typically transformed into Büchi automata and then
composed with the system model to verify its correctness
by model-checking. However, the transformation of prop-
erties from temporal logic into Büchi automata is usually
hidden to users, notably because the resulting automata are
expressed in a specific formalism (e.g., the Hanoi Omega-
Automata (HOA)1 format), which can be hard to master for
engineers without formal background. For online verifica-
tion, one technique [5,27] aims at synthesizing monitors from
formal safety properties to take advantage of the complemen-
tarity between model verification and runtime monitoring.
However, a transformation is usually required to specialize
the synthesized monitor on embedded targets, thus creating
a semantic gap between the monitor model and the mon-
itor code. Not only the executable code corresponding to
the monitors has to be generated, but instrumentation code
is also needed to expose system objects and link monitors
with them. Moreover, an equivalence relation has to be built
and proved to ensure that the generated code conforms to
the LTL properties (or the equivalent monitors) used during
model verification.

Through these observations, we notice that at least two
issues remain. First, monitors designed or synthesized for
model verification cannot be reused directly to monitor
system execution. They require a transformation for code
instrumentation. Second, languages used for formal proper-
ties specification and system modeling are usually different.
This makes the use of formal verification techniques a com-
plex task for system engineers who do not have a formal
background. Specifically, expressing properties in a formal
language as well as understanding verification results may be
difficult for them without the help of formal methods experts.

This study presents the first UML verification tool that
uses UML for both property specification and system model-
ing, and that bridges the gap between offline verification and
runtime monitoring through a unified transformation-free
approach. This work extends our embedded model interpreter
(EMI) introduced in [6–8]. EMI is a tool that can be used
to execute, simulate, and verify embedded systems, spec-
ified as UML [49] models, with the same implementation
of the UML semantics for all of these activities. Prior work
on this model interpreter showed how to perform simula-
tion, trace generation, and LTL model-checking activities,
but did not bridge the aforementioned gaps. The present work
addresses this shortcoming by focusing on a unified way
to verify and monitor formal properties. For this purpose,

1 HOA format: http://adl.github.io/hoaf/.

we introduce the concept of Property UML State Machines,
called PUSMs in the rest of this paper, to express system
requirements in UML. In our previous conference paper [10],
we show how PUSMs can encode the system requirements
as deterministic observer automata to model-check, and
monitor safety properties. This journal paper is an extension
that adds the UML support to encode and model-check more
complex properties with (i) Büchi automata and (ii) non-
deterministic observer automata expressed as PUSMs.
These PUSMs are interpreted with the same UML semantics
as the one used to execute the system model. Each PUSM
is then synchronously composed with the system execution
so that it can observe it and detect the failures as soon as
they occur. The resulting execution component can be used
either for offline verification by steering execution with a
model-checking algorithm, or for runtime monitoring by
deploying it on an embedded target. As a result, this tool
aims at validating system design specifications, i.e., high-
level representation of the intended final software system.
By continuing verification online, our tool enables to vali-
date the system behavior coupled with the actual embedded
target. This makes sense as the system is usually tightly linked
to the execution platform characteristics.

The main contributions of this work are the following:
(1) The introduction of an observation language, which by
exposing the system objects, enables the link between the
UML system and the properties to verify on it; (2) the
extension of executable UML models with this observation
language to obtain the PUSMs used for expressing and ver-
ifying temporal properties; (3) a transformation from LTL
to PUSM, which offers the possibility of using PUSMs as
a backend for LTL model-checking; (4) the formalization
of the concepts needed to link the language semantics, the
properties semantics, and verification tools; (5) the use of
deterministic UML observer automata, deployed unchanged
on real embedded targets, for runtime monitoring; (6) the use
of the observation language for expressing conditional break-
points during preliminary debug phases. Furthermore, to the
best of our knowledge, our approach is the first to support
multiverse debugging [58] on a practical language.

To validate our approach, several experiments have been
carried on different case studies including a level-crossing
system [8], a soccer player robot [9], a cardiac defibrilla-
tor2 from [23], and a landing gear system from [13]. One
of them, a UML model of a cruise-control user interface is
used as illustration in this paper. For all these case studies,
the system requirements can be modeled as PUSMs, exe-
cuted using the EMI UML semantics, and synchronously
composed with the system execution. The PUSM-based

2 Implementation of a cardiac defibrillator: https://github.com/
Pyponou/defibrillator.
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verification results obtained with OBP23 [8,14], an explicit-
state on-the-fly model-checker, are identical to the results
of model-checking equivalent LTL properties. While Büchi
and non-deterministic observer automata can only be used
for offline verification, all deterministic observer automata
have also been deployed on embedded targets (e.g., STM32
discovery boards) to monitor the system execution.

The remainder of this paper is structured as follows. Sec-
tion 2 describes the cruise-control interface used as a running
example. An overview of the approach is given in Sect. 3.
Then, Sect. 4 describes how to observe and control the model
execution on EMI, while Sect. 5 explains the process used to
express formal properties as PUSMs. The synchronous com-
position of these automata with the system model is presented
in Sect. 6, while in Sect. 7, we detail the process used to per-
form offline verification and runtime monitoring. In Sect. 8,
we present the results of applying the approach to our exam-
ple and we discuss some points of our work in Sect. 9. Section
10 reviews the state of the art, and we conclude this paper in
Sect. 11 emphasizing some future research directions. Some
appendices are also available. “Appendix A” provides a more
detailed description of the motivating example. “Appendix
B” describes more deeply our action and observation lan-
guages, while “Appendix C” gives the complete list of atomic
propositions used in this paper.

2 Motivating example

To illustrate our approach, we consider the user interface of
a cruise-control system (CCS). The CCS automatically con-
trols the speed of a vehicle by adjusting the throttle position
to maintain a steady speed as set by the driver. This motivat-
ing example has been designed for the purpose of this paper
and is partially based on [19,41] as well as past experiences
of some of the authors on similar systems.

To better understand how work a CCS (in which a CCI is
integrated), Fig. 1 presents a component diagram showing its
interactions with the driver and the physical vehicle. For this
example, we focus our design and verification efforts on the
user interface, which we call cruise-control interface (CCI),
because this subsystem contains most of the control logic of
the CCS. Hence, all components external to the CCI are con-
sidered as the environment of this subsystem. In “Appendix
A”, we describe the considerations that have helped us to
have a better understanding of this environment and make a
relevant abstraction of it for the verification step.

The behavior of the system, designed in UML, can
be summarized as follows. The driver interacts with the
CruiseControlInterface (CCI) through differentButtons (i.e.,
start, stop, inc, dec, set, pause, resume) and three pedals

3 OBP2: https://www.obpcdl.org.

(i.e., ClutchPedal, BrakePedal, Throttle pedal). These inter-
actions result in the sending of events to the CCI. Inside
the CCI subsystem, these events are received by the con-
troller either directly or through a pedal manager that makes
a preprocessing of all pedals events. Using these events, the
controller delegates the computation of the cruise-speed to a
cruise-speed manager and the activation/deactivation of the
ControlLoop to another object called actuation. The Con-
trolLoop is considered here as a black box that executes
a control algorithm for computing the command to apply
on the PhysicalVehicle engine. Finally, the PhysicalEnviron-
ment may apply some forces on the vehicle (e.g., road profile,
air friction) that disrupt its actual speed value.

To use the CCI and more globally the CruiseControlSys-
tem (CCS), in which it is integrated, the driver has first to
start the CCI. At this time, the CCS is turned on but still dis-
engaged (i.e., the CCS does not act on the engine). To engage
the CCS, the driver need to set the cruise-speed at the vehicle
speed to activate the ControlLoop acting on the engine. The
driver can then trigger the different behaviors of the system
including the change of the cruise speed. Please note that a
more complete description of this design model is given in
“Appendix A”.

This paper is focused on the verification and the monitor-
ing of formal properties. For this purpose we have selected six
system requirements of the CCI, which along with the CCI
model will serve as a basis for better understanding our con-
tribution. These requirements (the last three are taken from
[19,41]) have been picked out for their representative and
illustrative potential in the context of this paper. The chosen
requirements are the following:

(R1) When a “stop” event has been received, the CCS will
finally be disengaged.

(R2) When a “set” event has been received and if the system
is disengaged, the CCS will finally be engaged.

(R3) When a “pedalReleased” event has been received from
the throttle pedal and if the control loop can be resumed,
the “pedalReleased” event is not consumed until a
“resume” event is sent to the controller.

(R4) After the detection of an event that turns the control
loop off and until a contrary event is sent, the CCI
should not try to send new setpoints.

(R5) The cruise speed should not be below 40 km/h or above
180 km/h.

(R6) When the system is engaged, the cruise speed should
be defined.

Figure 2 gives two examples of specialized UML state-
machines, which we call PUSMs capturing two of the
requirements: one representing a non-deterministic Büchi
automaton encoding R2 in Fig. 2a and one representing a
deterministic observer automaton encoding R4 in Fig. 2b.
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Fig. 1 Component diagram of a
cruise control system

Fig. 2 State machines of
PUSMs for the CCI

(a) (b)

The former can be used only for offline verification, while
the latter can also be used for online verification by being
deployed on the actual embedded platform. Despite their
syntactic resemblance, these two automata are semantically
very different. On the one hand, as shown in [3], the non-
deterministic Büchi automata (encode ω-regular languages,
which can be seen as a generalization of the regular languages
to include infinite words) are commonly used in model-
checking to check temporal safety and liveness properties
through a reduction to the language inclusion problem. On
the other hand, the more restricted observer automata can be
defined as special processes that monitor changes in the state
of a model (e.g., attribute values, contents of event pools,
current state of state machines) and the events occurring in it
(e.g., signal events) [45]. Composed synchronously with the
monitored system, the observers can be used to verify safety
properties. By further constraining them to be deterministic,
the same observers (used during the verification process) can
be deployed as runtime monitors.

The purpose of this paper is to convince the reader that, by
avoiding the use of model transformations, it is possible
to unify the verification and the runtime monitoring of UML
models while minimizing the gap between the specification
(UML-based PUSM in our case) and the design language (a
bare-metal executable subset of UML).4

3 Approach overview

To better understand the scope of this work, this section gives
an overview of our approach. It describes the integration of
a verification and monitoring infrastructure with EMI, our
UML model interpreter [8]. A main contribution of this work
is to show that properties can be encoded as a UML model and
then used for both offline verification and runtime monitoring
without the cost of proven model transformations.

4 In comparison with [10], this observer has been refined to be inde-
pendent of the vehicle engine implementation.
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Fig. 3 Model execution component overview

An overview of the Model Execution component used for
simulation, offline verification, and runtime monitoring is
illustrated in Fig. 3. This component takes as input both the
UML models of the System and of the Property, which con-
tains a PUSM. The system model is designed in UML from
its specification, while the property model is specified from
the system requirements. Formal properties can be specified
directly in the design language, here as PUSMs, or firstly in a
temporal logic formalism (e.g., LTL) before being automat-
ically transformed into UML. PUSMs can access the state
of the system model using the observation language of our
UML model interpreter, presented in Sect. 4.2.

Once the System and the Property have been designed
in UML, each model is interpreted by an EMI instance.
Thus, our UML interpreter is instantiated twice, such that
the same UML semantics implementation is used for both
parts. Then, a Synchronous Composition operator produces
the synchronous product of the property model execution
with the system model execution. This operator, external to
the UML semantics, is central to our contribution. This com-
position is made such that each time a transition is fired in
the system model, a transition is also fired on the PUSM of
the property model. For this purpose, a set of Boolean predi-
cates, called atomic propositions, is evaluated on the system
model by the system interpreter. The resulting valuations give
a Kripke view [40] on the system execution to the property
model, which can be used to decide which transition has to be
composed with the system transition. Using this mechanism,

the property model execution is closely following the system
execution without the need of any model transformation.

This synchronous composition operator is also able to con-
sider the system execution scheduling because the system
semantics (that result of the composition of active objects in
the system model) is usually not deterministic. The Scheduler
is responsible for selecting which transition of the system
will be fired on the next step. This component can be config-
ured with a Scheduling Policy that specifies how the choice
is made.

Finally, a Sequencer is used to control the execution of
the product automaton, resulting from the Synchronous com-
position, through our Semantic Transition Relation (STR)
interface. The Sequencer can be of different natures depend-
ing on which activity theModel Execution component is used
for. (i) To perform interactive simulation, it may be the user
through a graphical user interface. (ii) For offline verifica-
tion, a Model-checking Algorithm adapted to the appropriate
(Büchi or observer automata) formalism is used to control
Model Execution as shown on Fig. 4a. In both cases (sim-
ulation and model-checking), the system model is closed
with an Abstract Environment model used to interact with
the system. This abstraction is designed as another UML
model connected to the I/O port. (iii) For runtime moni-
toring, the sequencer is the algorithm in charge of running
the main Execution Loop of the execution platform. In this
case, the system model is connected to its Real Environment
through actual I/O of the embedded execution platform. An
additional component called Assertion Acceptance checks if
a failure has been detected by PUSMs and outputs the Mon-
itoring Status.

4 Controlling and observingmodel
execution

A key point in the application of the synchronous composi-
tion lies in facilities offered by EMI to control and observe
model execution. This section introduces the communication
interface of EMI, as well as both the action language used in
this work for system modeling, and the observation language
required, in property models, to speak about the system exe-
cution.

4.1 Steering execution of UMLmodels

To control the model execution, our approach uses a Semantic
Transition Relation (STR) interface, which is presented here
with a formal syntax strongly inspired by Lean5 [18]. This
formal syntax removes ambiguities due to the notation and
provides a machine-checkable version of our mechanisms

5 Lean Prover: https://leanprover.github.io/.
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Fig. 4 Model-checking and
monitoring architecture
overview

(a) (b)

as pseudo-code (see our GitHub repository6 for the fully
Lean-compliant version). The Semantic Transition Relation
abstracts over the system and property semantics, enabling a
language independent formalization of our approach. In prac-
tice the real semantics is bound to this abstraction through a
thin adaptation layer. Given the following types:

– C: the type of configurations. A configuration is a memory
dump of all runtime data handled by an execution engine
(i.e., its execution state) at a given time.

– A: the type of actions. An action is an abstract represen-
tation of fireable transitions or execution steps.

An execution engine can be controlled using the STR inter-
face which provides the three following functions:

structure STR (C, A : Type) :=
(initial : set C)
(actions : C → set A)
(execute : C → A → set C)

The initial function returns the possible initial con-
figurations (set C) of the model. The actions function
is used to get all actions (set A) that are enabled in a given
source configuration (C). Note that this function exposes
the scheduling non-determinism (if each action returned is
seen as belonging to a ready process). The execute func-
tion executes one action (A) in a source configuration (C)
and returns the possible target configurations (set C) that
can be reached. While typical execution functions are deter-
ministic, the STR abstraction allows for non-deterministic
execution, which is sometimes necessary for high-level spec-
ification languages. For instance, some non-determinism

6 GitHub repository: https://github.com/ValentinBesnard/emi-
verifying-and-monitoring-uml-models.

appears when an attribute takes a value in an interval (e.g.,
for an integer x , x = [0; 2] leads to three different configu-
rations: x = 1, x = 2, and x = 3). Note, however, that this is
not the case in the context of this paper since the UML run-
to-completion step semantics is deterministic. While UML
has language non-determinism because multiple transitions
can be fireable at the same time, it does not have execution
non-determinism. Indeed, with the same execution context,
the execution of a given UML run-to-completion step always
leads to the same target configuration.

Our model interpreter also has its own communication
interface, and the goal is now to implement the STR inter-
face using this communication interface. For this purpose, it
is important to know that EMI keeps in memory both the cur-
rent model being executed as well as a dynamic memory
area where the current configuration is stored as a byte array.
As a state-monad, all functions of the EMI communication
interface can also access this state or modify it by side-effect.
A simple definition of the EMI type and of the EMIState
monad is given here. In practice, our C implementation of
the EMI structure is more complex, but the definition pre-
sented here offers a suitable abstraction for the purpose of this
paper. In particular, UMLModel, EMIDynamicMemory,
and EMITransition are complex data structures that are
informally described and only considered as abstract data
types in this paper.

def UMLModel := the UML model to
interpret

def EMIDynamicMemory := the current
configuration of EMI

def EMITransition := internal
representation of an EMI action

structure EMI : Type :=
(model : UMLModel)
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(dynamic : EMIDynamicMemory)

def EMIState := state EMI

Our model interpreter has different functions in its com-
munication interface to: reset the model execution, get and
set the current configuration, collect the set of fireable tran-
sitions, and fire a transition. They are based on EMIState,
the internal state of the interpreter, and EMITransition,
the internal representation of UML run-to-completion steps.
The full implementation of all these functions cannot be pre-
sented here because it depends on the UML semantics, which
is quite complex. However, signatures of these functions can
be defined in the following way:

def reset : EMIState unit
def get_configuration : EMIState

EMIDynamicMemory
def set_configuration (c :

EMIDynamicMemory) : EMIState unit
def get_fireable_transitions : EMIState

(set EMITransition)
def fire (t : EMITransition) : EMIState

unit

Given these definitions, it is now possible to express the
STR interface in terms of the EMI interface. For this pur-
pose, we define three adapter functions, which rely on the
EMIState monad, to present the appropriate interface con-
version.

def emi_initial :
EMIState EMIDynamicMemory :=
do reset, c ← get_configuration, return c

def emi_actions (c : EMIDynamicMemory) :
EMIState (set EMITransition) :=
do set_configuration c,
a ← get_fireable_transitions, return a

def emi_execute (c : EMIDynamicMemory) (t :
EMITransition) :

EMIState EMIDynamicMemory :=
do set_configuration c, fire t,
x ← get_configuration, return x

def EMI_to_STR
(emi : EMI)

: @STR EMIDynamicMemory EMITransition := (
initial ← { prod.fst (emi_initial.run emi) },
actions ← λ c, prod.fst ((emi_actions c).run emi

),
execute ← λ c a, { prod.fst ((emi_execute c a).

run emi) })

As a result, EMI_to_STR gives the possibility to steer
the execution of a UML model running on EMI with the STR
interface. In the general case, both initial and execute
functions of STR can return several possible configurations
(e.g., with generic specification languages). However, in our
case, EMI_to_STR highlights the fact that only one config-
uration is returned (the initial one or the one obtained after
executing an action).

4.2 Action language and observation language for
UMLmodels

This section presents the action language used for system
modeling, and the observation language used in PUSMs to
speak about model execution. The foundational subset of
UML, called fUML [48], already has a standardized action
language called Alf [46]. Even if Alf can be used with state
machines, thanks to the Precise Semantics of UML State
Machines (PSSM) standard [47], its roots are deeply linked
with UML activities. Unlike Alf, the goal of our action lan-
guage is to define a minimal set of concepts that can be
used with UML state machines without the need to support
UML activities. Moreover, the Alf reference implementation
is in Java, whereas we use an embedded model interpreter
implemented in C. This makes the reuse of the Alf reference
implementation difficult. For all these reasons, we choose to
define our own action language to better fit our needs. Addi-
tionally, this action language offers the possibility of being
easily extended with additional operators to define the obser-
vation language needed for PUSMs.

Figure 5 gives an overview of both the action language and
the observation language used in this work. These languages
may read and/or write runtime data used during model execu-
tion. We distinguish two kinds of runtime data: (i) data linked
to explicit model attributes (e.g., instance variables) and (ii)
data internally defined in the execution engine to implement
the language semantics. Using this classification, language
operators can be divided into four groups: expression lan-
guage, effect language, expression language extension, and
effect language extension.

4.2.1 Action language

The action language is the language used to detail the
fine-grained behavior of the system in UML models. This
language is only composed of the expression language and
of the effect language used respectively to read and write
explicit model attributes. It can be used in UML models to
specify guards and effects of state machines transitions. For
this purpose, it offers read/write access to model attributes. In
practice, the action language should not give access to inter-
nal runtime data for two reasons: (i) to prevent interfering

123



1832 V. Besnard et al.

Fig. 5 Overview of the action
language and the observation
language

with the execution engine and (ii) to keep the UML model
independent of the execution platform.

4.2.2 Observation language

The observation language is composed of the expression lan-
guage and its extension such that it can have read access to
both model attributes and internal runtime data to express
properties. In the same way as the expression language exten-
sion, it may be possible to define an effect language extension
to write internal runtime data. This is outside the scope of this
paper, but this possibility, that goes beyond observation, may
be useful for some analysis activities like debugging.

The observation language is used to express (i) guards of
PUSMs and (ii) atomic propositions of LTL properties. These
atomic propositions are composed with temporal logic oper-
ators to form LTL properties. Given that formal properties
are expressed about dynamic execution paths of model exe-
cution, they are verified for a given UML model executed
on a given execution engine. This language provides some
introspection capabilities required to specify properties that
cannot be expressed in relation to observable facts in the
environment of the verified system. In addition to providing
access to runtime data, this expression language extension
also provides more relaxed navigation rules and facilities for
model verification. As the observation language is based on
UML concepts, it can help engineers to specify or understand
the atomic propositions used in the formal properties.

As mentioned before, both the action language and the
observation language defined in this work are based on the
programming language C extended with a set of operators
defined as C macros. Contrary to conventional programming
languages, the particularity of these languages is that they
manipulate external data (i.e., some data declared and defined
in UML models). To get references on these external data, the
parsing phase is entirely separated from the symbol resolu-
tion phase. Each identifier of the parsing phase is associated
with the appropriate symbol using lookup tables. Each sym-

bol can be an attribute or a method of an object, or a global
symbol of the model. In practice, we rely on facilities offered
by the C compiler (especially the C preprocessor) to perform
all these lookup operations statically (without a runtime cost).

All operators provided by the action language and the
observation language in addition to C language constructs are
detailed in “Appendix B”. Among them, the GET operator is
used to navigate the model (e.g., to get a model attribute).
ROOT_instMain gives access to the instance of the Main
composite structure from which all system objects can be
accessed. IS_IN_STATE checks if the current state of an
active object is a given state of its state machine.

As an example, all atomic propositions of the six proper-
ties of the CCI motivating example have been expressed with
this observation language (see “Appendix C” for all atomic
proposition definitions). For the sake of simplicity, these
propositions have been defined as predicates with labels. The
ccsEngaged predicate that “checks if the current state of
the actuation state machine is Engaged” is shown here for
illustration purposes:

ccsEngaged = "IS_IN_STATE(GET(GET(ROOT_instMain, cci),

actuation), STATE_Actuation_Engaged)"

5 Expressing properties as UMLmodels

This section presents how formal properties can be expressed
in UML by mapping Büchi automata and observer automata
to UML state machines. The specificities of each formalism
regarding UML modeling are discussed. Moreover, a tool
used to convert automatically LTL properties into PUSMs is
also introduced.

5.1 Modeling properties in UML

In this work, formal properties are expressed directly in UML
using the observation language and the same UML subset
as the one used for system modeling. In the design phase,
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each property is encoded as a PUSM. More concretely, a
PUSM is an instance of an active UML class whose behav-
ior is described with a UML state machine. All PUSMs are
instantiated as parts of a composite class called Prop and its
instance specification instProp. The Prop class is used as a
root composite structure for PUSMs instantiation.

PUSMs are intentionally designed to represent either
Büchi or observer automata. According to the literature [3],
we can give a common definition for both kinds of automata.
An automaton is defined by a tuple A = (�, Q, δ, q0, F)
where:

– � is a finite set of labels called the alphabet of A,
– Q is a finite set of states of A,
– δ ⊆ Q × � × Q is the transition relation of A,
– q0 ∈ Q is the initial state of A,
– F ⊆ Q is a finite set of acceptance states of A.

The main difference between Büchi automata and observer
automata concerns their acceptance condition. For Büchi
automata (operating on infinite traces), a word (or a trace)
is accepted if an acceptance state is reached infinitely often,
while for observer automata (operating on finite traces), a
word is accepted if an acceptance state is reached once.

Given this formal background, we can define a map-
ping from these automata to PUSMs. In PUSMs, labels
of the alphabet are Boolean predicates expressed with the
observation language. These predicates, also called atomic
propositions, are used to define guard constraints of PUSMs
transitions. These guards are used to specify how the cor-
responding state machine goes from one state to another
and potentially reaches acceptance states. Each state (respec-
tively, transition) of the Büchi or observer automaton is
modeled as a UML state (respectively UML transition) of
the PUSM. The initial state is preserved and easily identified
in UML by an incoming transition coming from the initial
pseudostate of the state machine.

The goal of these automata is to detect failures in the sys-
tem behavior. For this purpose, UML state machines used
for PUSMs need to define acceptance states. The accep-
tance states are specified with global state invariants in our
approach. For instance, the state invariant to verify the prop-
erty encoded by the observer automaton of Fig. 2b is:

“IS_IN_STATE(GET(ROOT_instProp, observer4), STATE_Observer4_Fail)”.

The use of state invariants generalizes more language-
specific approaches such as the use of UML profiles with
stereotypes for the acceptance states.

As an additional constraint, PUSMs used to model these
automata do not interact with objects of the system model,

(e.g., send or receive events) but only observe changes in the
state of this model.

5.2 Modeling Büchi automata in UML

A first formalism that can be encoded into PUSMs is the
Büchi automata formalism. Such automata are typically used
in model-checking to encode both safety and liveness prop-
erties.

In terms of expressivity, Büchi automata can encode any
ω-regular language, i.e., any regular language with infinite
execution traces. These automata are even more expressive
than LTL. With our solution, it remains possible to manu-
ally write Büchi automata as UML state machines to exploit
the full expressivity of Büchi automata. In this way, some
properties that cannot be encoded in LTL can still be model-
checked.

In general, Büchi automata have non-determinism that
enables to explore different possible paths at the same time.
Moreover, these automata do not require to be complete, i.e.,
some execution paths can be cut intentionally such that they
will not be explored if, provably, no failure can happen on
those paths.

To perform the verification task, Büchi automata encodes
the negation of the property to verify. All bad behaviors that
should not be observed in the system are expressed in this
automaton. Using a synchronous composition with the sys-
tem, a failure is detected if an acceptance state is reached
infinitely often [22]. In other words, a failure is detected if
a bad behavior specified by the Büchi automaton is found in
the system.

As an example, the first requirement (R1) of the CCI moti-
vating example has been expressed into a PUSM to model
a Büchi automaton. The state machine of this PUSM is
described in Fig. 6 where the shaded state Accept_1 denotes
an acceptance state. This automaton starts in the Init state
and can stay in it indefinitely using the self-transition with
the guard “true”. This enables to explore the whole model
state-space. Therefore, during this state-space exploration, if
the cruise control has not been disengaged and a “stop”
event has been received, the guard “!ccsDisengaged &&
evStop” expressed using our observation language becomes
true (cf. “Appendix C” to see the meaning of ccsDisengaged
and evStop). In this case, the Accept_1 state is reached. If

the “!ccsDisengaged” atom remains true indefinitely, the
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Fig. 6 State machine of PUSM (Büchi1) for R1 of the CCI

self-transition on this state can be fired continually and an
acceptance loop is detected. Hence, the property is violated
and a counterexample has been found.

Moreover, only one PUSM is synchronously composed
with the system at a time. Theoretically, only one property
can be verified at a time. However, a trick can be used to make
the verification of N properties, named P1 to PN , simulta-
neously. All these properties can be composed together in
one property (Pall ) using the “and” operator (&& in LTL):
Pall = P1 && P2 && . . . && PN . Then, a Büchi automa-
ton can be produced for the Pall property and verified with
a model-checker. Nevertheless, this technique has one draw-
back. If a counterexample is found, the engineer cannot know,
without further analysis, which property has been violated.

5.3 Modeling observer automata in UML

The second kind of formalism which is considered in this
work is the observer automata formalism, which is commonly
used to monitor the system execution.

For runtime monitoring, the verification capabilities are
restricted to the analysis of the current run of the system, as
opposed to model-checking that analyzes all runs. This par-
tial observation of the running system limits the expressivity
of the verified properties tomonitorable properties [5], which
includes all safety properties. Nevertheless, this constraint
can also be seen as a benefit for offline verification because
the use of observer automata reduces the model-checking
problem to a reachability problem. The model-checker has
only to check if the acceptance states, also called “fail” states,
of the observer automata are reached in at least one configu-
ration of the whole state-space.

For runtime monitoring, PUSMs used to model observers
must satisfy two additional constraints. The determinism
constraint ensures that observer automata do not introduce
(language) non-determinism in the running system but just
follow model execution. To ensure determinism, we require
that the guards of outgoing transitions of an observer state are
exclusive. The completeness constraint ensures that observer
automata do not block system execution when composed
synchronously with the system. This constraint is automat-

ically enforced by the synchronous composition operator,
which completes the observer automata with implicit loop
transitions (stuttering steps). Therefore, only deterministic
and complete observers (i.e., with exactly one fireable tran-
sition at a time) must be deployed on the actual system for
runtime monitoring. Due to the determinism constraint, mul-
tiple observer automata can be composed synchronously with
the system. Therefore, any number of monitors can be used
simultaneously on the actual execution platform to check
the system behavior. Even in this case, it is quite easy to
know which property has been violated simply by identify-
ing which observer automaton reached a fail state.

As an example, the last requirement of the CCI motivating
example (R6) has been expressed as a deterministic observer
automaton, while requirements R5 and R6 have been com-
bined together in a non-deterministic observer automaton.
The state machines of these observer automata are described
in Fig. 7. Each of them defines at least a “fail” state, shaded in
the figure, that has to be reached in case of failure. All tran-
sition guards are expressed with our observation language
(cf. “Appendix C”). Both observers are not complete yet but
this will be inferred automatically during the synchronous
composition.

Observer6 starts in its Running state and stays in it until
the guard “ccsEngaged && unknownCS” expressed with our
observation language becomes true. In this case, theFail state
is reached and the property is violated.

ObserverND switches between its Engaged state and its
Disengaged state according to the system execution. Two
kinds of failures can be detected. If the cruise control is dis-
engaged and the cruise speed is not in its working interval
and not unknown (i.e., not equal to −1), the Fail_1 state is
reached. If the cruise control is engaged and the cruise speed
is not in its working interval, the Fail_2 state is reached.
ObserverND is non-deterministic because Engaged and Dis-
engaged states have two outgoing transitions that may be
fireable at the same time (i.e., both guards can be true at the
same time). If this happens, two execution paths (one for each
transition) are thus required to explore and verify the system
behavior.

5.4 Conversion of LTL properties into PUSMs

We strongly believe that the formal verification of a UML
model should be based on the UML executable seman-
tics captured via an interpreter and not via transformations
and intermediate languages. However, from the specification
point of view, we do not want to overly constrain the designer
in terms of the input language, providing the ltl4uml as an
alternative to manual PUSMs modeling.

While our approach gives the possibility to write Büchi
automata in UML by hand, the generation of such automata
in UML (or in another formalism) can be easily automated
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Fig. 7 State machines of
PUSMs (representing observer
automata) for the CCI

(a) (b)

when a formal description of the property is given. For this
purpose, this work presents a tool called ltl4uml that can
automatically convert LTL properties into tUML [34,35], a
textual formalism for UML. This tool adds a UML front-
end to the powerful ltl3ba [2] library that performs efficient
conversion of LTL properties into Büchi automata. ltl3ba
has been initially designed by Paul Gastin and Denis Odd-
oux under the name ltl2ba in [25] before being improved by
Tomáš Babiak et al. in [2]. Our ltl4uml tool takes as input the
LTL property to verify. It captures all atomic propositions
expressed into our observation language and adds a negation
to the property. The resulting LTL property is sent to ltl3ba
that produces the Büchi automaton encoding all undesired
behaviors. A code generator made with Xtend7 is then used
to generate the tUML code corresponding to the PUSM rep-
resenting the produced Büchi automaton.

For instance, the requirement R1 of the motivating exam-
ple can be expressed in LTL as:
"[] (|evStop| -> (<>|ccsDisengaged|))" where
|evStop| and |ccsDisengaged| denote atomic proposi-
tions. Given this LTL property, ltl4uml generates the PUSM
shown in Listing 1. This PUSM encodes the state machine
presented in Fig. 6.

6 Synchronous composition

Given a property model and a model of the system, an essen-
tial concept of the verification and monitoring process is the
synchronous composition of these models. This section dis-
cusses our synchronization operator.

6.1 Theoretical description

Informally, the principle of synchronous composition is quite
simple: each time a transition of the system model is fired,
the PUSM, representing the property model, also makes a
step to follow the system execution. In fact, at each step,
a synchronous transition composed of one transition of the

7 Xtend: https://www.eclipse.org/xtend/.

system and one transition per PUSM is fired. This way, a
failure in the system execution is detected as soon as it occurs.
This offers a fail-fast detection mechanism.

class |PropBüchi1| behavesAs SM {
stateMachine SM { region R {
Initial −> Init;
Init −> Init :

[constraint "true" is
opaqueExpression =

’true’ in C;] /;
Init −> Accept_1 :

[constraint "!ccsDisengaged &&
evStop" is
opaqueExpression =

’(!(IS_IN_STATE(GET(GET(
ROOT_instMain, cci),

actuation),
STATE_Actuation_Disengaged))

&& (EP_CONTAINS(GET(GET(
ROOT_instMain, cci),

controller), SIGNAL_stop)))’ in C;] /;
Accept_1 −> Accept_1 :

[constraint "!ccsDisengaged" is
opaqueExpression =

’(!(IS_IN_STATE(GET(GET(
ROOT_instMain, cci),

actuation),
STATE_Actuation_Disengaged)))’ in C;] /;
initial pseudoState Initial;

}}
}

Listing 1 Generated tUML code for property 1 of the CCI motivating
example.

We will now give a formal description of our synchronous
composition operator to show how it works more concretely.
The synchronous operator takes as inputs two execution
engines: one EMI instance running the system model and
another EMI instance running the property model contain-
ing a PUSM (cf. Fig. 3). For this definition, we assume that
the system automaton is the lhs term while the PUSM is the
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rhs term. In Sect. 4, we show that the EMI communication
interface can be easily converted into an STR interface. The
synchronous composition operator uses this STR interface to
steer each model interpreter. One evaluation function is also
required for each execution engine.

To define this operator, L is the type of labels (or atomic
propositions). The synchronous_composition of the
system model (lhs) with the property model (rhs) gives an
STR defined as:

def sychronous_composition (C1 C2 A1 A2 L1 :
Type)

(lhs : @STR C1 A1)
(eval1 : L1 → C1 → A1 → C1 → bool)
(rhs : @STR C2 A2)
(eval2 : C2 → A2 → L1)

: @STR (C1 × C2) (A1 × A2) := 〈
initial ← { (c1, c2) |

∀ c1 ∈ lhs.initial c2 ∈ rhs.initial },
actions ← λ (c1, c2), { (a1, a2) |

∀ a1 ∈ lhs.actions c1

a2 ∈ rhs.actions c2

t1 ∈ lhs.execute c1 a1,
eval1 (eval2 c2 a2) c1 a1 t1 },

execute ← λ (c1, c2) (a1, a2),{ (t1, t2) |
∀ t1 ∈ lhs.execute c1 a1

t2 ∈ rhs.execute c2 a2 }〉

The initial configuration of the composition (initial)
is the concatenation of both the initial system configuration
and the initial PUSM configuration. To build synchronous
transitions (actions), the execution engine of the PUSM
executes its eval2 function on all available actions and
returns a list of atomic propositions (or atoms) needed for
actions evaluation. These atoms are predicates that are eval-
uated with eval1 on each executed step of the system (the
tuple source configuration c1, action a1, target configuration
t1). Hence, the step a1 has to be executed to get the tar-
get configuration of the system. Using the atoms valuations,
transition guards of the PUSM can now be computed to know
if the corresponding transitions are fireable. If a guard evalu-
ates to true, it means that this transition of the PUSM (a2) can
be synchronized with the one of the system automaton (a1).
As a result, we get a synchronous transition corresponding
to the tuple (a1, a2). The last part concerns the execution of a
synchronous transition (execute). From a given configu-
ration of the synchronous product, a synchronous transition
is fired to obtain its target configuration. This means that the
system transition (a1) is fired on the system automaton and
that the PUSM transition (a2) is fired on the PUSM. The con-
catenation of both target configurations (t1, t2) results in the
target configuration of the synchronous composition.

6.2 Optimization for runtimemonitoring

For runtime monitoring, we can optimize this synchronous
composition operator since only one execution path is cov-
ered. Before building synchronous transitions, the scheduler
is called to choose the system transition to fire at the next exe-
cution step. In this case, the synchronous composition only
has to compute one synchronous transition, which is more
efficient than doing it for all fireable transitions of the system
automaton. These fireable transitions are always computed
in the current configuration of the system interpreter and the
next transition to fire is always fired from this configuration.
The target configuration of the fired transition is then consid-
ered as the current configuration for the next execution step.
When the selected system transition has been fired, we can
determine which transition of the PUSM can be synchronized
with it and then fire this transition on the PUSM. Not only
does this make more sense for runtime monitoring because
the system transition is only fired once but it also helps to
improve execution performance.

6.3 Adding implicit transitions

Using this generic synchronous composition operator, dif-
ferent formalisms can be supported. Each one has, however,
its own specificities such that the synchronous composition
has to be slightly adapted for each formalism. One common
adjustment is to add implicit transitions either on the system
automaton or on the PUSM such that the resulting automaton
cannot result in deadlock. This mechanism is used to com-
plete one automaton such that its execution will never block.
For this purpose, the add_implicit_transitions
operator can be used before the application of the syn-
chronous composition operator to complete one automaton.
Its principle is quite simple. If some actions from the input
STR are available, these actions are used for model execu-
tion. Otherwise, if a deadlock is detected (i.e., no action is
available), an implicit action is added such that a new self
execution step can be taken from the current configuration.

def add_implicit_transitions
(str : @STR C A)
[∀ c, decidable (str.actions c = ∅)]

: @STR C (completed A) := 〈
initial ← str.initial,
actions ← λ c, if str.actions c = ∅ then

(singleton completed.deadlock)
else

{ oa | ∀ a ∈ str.actions c, oa = completed.some
a },

execute ← λ c oa, match oa with
| completed.deadlock := singleton c
| completed.some a := str.execute c a 〉
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Given this common basis, we will now describe the speci-
ficities of each formalism.

6.4 Synchronous composition with a Büchi
automaton

In case of a Büchi automaton as PUSM, several specific cases
need to be handled to apply the synchronous composition.

If no transition of the PUSM can be synchronized with a
system transition, the execution trace provided by this system
transition is cut. This means that this execution trace is of no
interest for the property verification (e.g., the model-checker
is sure that no violation can occur on this trace).

Another special case is linked to the Büchi automata for-
malism, which focuses only on infinite execution traces.
If the system execution results in a deadlock, the execu-
tion trace is finite and no synchronous transition can be
built. The execution of the PUSM is blocked and some
failures may be missed. To overcome this limitation, an
implicit self-transition is added to the system automaton,
using add_implicit_transitions, such that some
synchronous transitions can be computed and the execution
of the property model can always proceed.

6.5 Synchronous composition with an observer
automaton

A particularity of the synchronous composition with an
observer automaton as PUSM concerns the computation of
synchronous transitions. An observer automaton fires an
explicit transition if one outgoing transition of its current
state is fireable. Otherwise, the observer automaton will
fire an implicit self-transition, created in accordance with
add_implicit_transitions, to ensure the complete-
ness requirement. As a result, observer automata will never
block the system execution. Using this setup, it means that
PUSMs representing observer automata in Figs. 2b and 7 are
complete because implicit self-transitions are inferred auto-
matically.

7 Verification andmonitoring architecture

Based on PUSMs, this section describes the verification pro-
cess used (i) to verify formal properties with a model-checker
or (ii) to monitor the system execution running on an actual
embedded target.

7.1 Model-checking architecture

With the Model Execution component, it becomes possible
to connect a model-checker to our UML model interpreter
for verifying properties encoded by PUSMs. An important

Fig. 8 Architecture for model-checking with PUSMs

prerequisite for applying model-checking techniques is to
close the system model with a proper abstraction of its oper-
ational environment. For this reason, we strive to understand
as much as possible the context in which the CCI operates for
modeling a relevant abstraction of it (cf. “Appendix A.1”).

The software architecture used for model verification with
PUSMs is shown in Fig. 8. For offline verification, the Model
Execution component is connected to the System Model, the
Abstract Environment Model, and the Property Model that
have all been designed in UML. This component is also con-
nected to an abstraction of the scheduling policy (Scheduling
Policy Abstraction) to consider a superset of all possible
cases. A suitable, very general, abstraction is to return all
fireable transitions of the system to explore all the model
state-space.

Moreover, the model-checker is connected to the Model
Execution component through a Language Server that pro-
vides language specific facilities such that verification tools
remain as modular as possible. A model-checking algorithm,
called here Emptiness Checking Algorithm in a generic way,
is used as the main sequencer of the verification process. It
explores all the model state-space by communicating with
the Execution Environment through the view exposed by the
Synchronous Composition with the STR interface.

Furthermore, the execution of the Emptiness Checking
Algorithm requires to store one additional bit in each explored
configuration. The value of this bit is computed at each step
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by the Acceptance Asserting component that takes as input
the acceptance predicate given by the property model. The
acceptance predicate is a Boolean expression that enables to
determine if the PUSM is in one of its acceptance states.
The resulting Boolean value is added to the current con-
figuration before being sent to the model-checker. During
the state-space exploration, the model-checker checks if the
acceptance condition (cf. Sect. 5.1) has been fulfilled. As
soon as this condition is satisfied, the model-checker stops
the verification and returns the counterexample found as a
trace. Otherwise, it will explore the entire model state-space
to ensure that the property encoded by the PUSM is verified.
This approach offers the advantage to express verification
results directly in terms of design concepts. This also avoids
the use of model transformations (from code back to model)
to obtain the same result, approach sometimes used in other
works [16,44,45].

Given this generic verification architecture, different for-
malisms can be supported. The only difference is the model-
checking algorithm used as Emptiness Checking Algorithm.
For Büchi automata, we use the acceptance cycle detec-
tion algorithm defined by Gaiser and Schwoon in [24]. For
observer automata, the verification problem is reduced to a
reachability problem (cf. Sect. 5). Therefore, only a reach-
ability algorithm can be used as the main sequencer of the
verification process.

7.2 Runtimemonitoring architecture

Once the model verification has been performed, the UML
model can be deployed on the actual embedded target. To
continue verification of monitorable properties at runtime,
it is possible to embed all PUSMs representing determin-
istic observer automata. Contrary to model-checking that
verifies the software program offline in an abstract environ-
ment, monitoring enables the verification of a running system
online in its real (or simulated) environment.

The software architecture used for monitoring is shown in
Fig. 9. The Model Execution component used during model
verification is reused for monitoring with the same System
Model and Property Model. However, this time, Model Exe-
cution is linked to actual I/O of the embedded board and the
Actual Scheduling Policy of the system is used rather than an
abstraction of it. At each step, the scheduler will select one
and only one transition to fire among the set of fireable tran-
sitions of the system. For monitoring, the choice of the next
transition to fire is made before applying the synchronous
composition to eliminate the risk of scheduler-interference
on the system monitoring and keep efficient monitoring per-
formance. To steer the Model Execution component, the
main Execution Loop on the deployment platform is used
as a sequencer. For each step, three main operations are per-
formed. First, it computes the next synchronous transition

Fig. 9 Runtime monitoring architecture with PUSMs

to fire. Then, it fires this transition. Finally, it delegates the
verification of formal properties to the Acceptance Asserting
component. This last component checks if observer automata
have reached one of their acceptance states and updates the
Monitoring Status.

One main advantage of our approach is that the same
deterministic observer automata used during the verification
phase can be deployed on the target and reused for run-
time monitoring without effort (i.e., without transformation,
code generation, or model binding). Despite the possibil-
ity of offline verification, it still remains useful to monitor
system execution for several reasons. First, if the abstrac-
tion of the environment used during model-checking is not
complete or badly defined, it is possible that not all real
cases have been covered and that a bug has been missed.
Second, due to the state-space explosion problem, it is not
always possible to model-check safety properties. With our
approach, such properties can always be monitored at runtime
without the need of costly model transformations. Another
benefit is that monitoring can detect violation of safety prop-
erties caused by deficient hardware components, which is not
possible with model-checking. When a failure is detected,
PUSMs can notify the problem to the user (e.g., by printing
an error message) or activate the appropriate fail-safe con-
trollers (e.g., error recovery, runtime-safety enforcement).
Finally, the traces of observer automata can be used in post-
mortem analysis to understand why the system has failed.

In terms of limitations, the use of observer automata
in monitoring, like most of monitoring activities, has a
resource overhead both in memory footprint and execu-
tion performance. A trade-off between verification quality
and execution performance must be found for each con-
text. Another drawback is that monitoring can only detect
the presence of errors. Monitoring, unlike exhaustive veri-
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fication techniques, observes execution steps taken by the
system under the actual environment. Therefore, its effi-
ciency depends on the failure coverage provided by monitors
embedded with the system.

8 Experiments and results

The UML language is used as the de facto standard in
industry to design software systems. In the context of our
work, we especially focus on critical embedded systems that
require to apply analysis activities (i.e., simulation, debug-
ging) during early design phases as well as formal verification
activities such as model-checking and runtime monitoring.
Our approach is especially valuable for this kind of sys-
tem because V&V efforts are huge and applied all along
the development cycle to check critical behaviors of these
embedded systems. For these reasons, multiple experiments
have been applied on UML models in different fields of this
target domain: automotive [10], railway [8], aeronautics [13],
robotics [9], healthcare [23]. This section sums up all anal-
ysis activities that have been applied on these models using
EMI. These experiments aim at evaluating our approach for
checking the validity of formal requirements expressed for
each system.

During these experiments, system requirements have been
expressed as PUSMs in the same way as requirements of the
CCI motivating example (introduced in Sect. 2). The verifica-
tion of these properties as PUSMs has been made using model
verification with the OBP2 model-checker and results have
been compared with verification results of identical proper-
ties expressed in LTL. Deterministic observer automata have
also been deployed on an actual embedded target (an STM32
discovery board) to perform runtime monitoring and measure
the induced overhead.

8.1 Simulation and debugging

Before applying formal verification, an essential step has
been to design the UML models for each system. To help
in this task, OBP2 provides a graphical interface, shown in
Fig. 10, enabling simulation and multiverse debugging [58].
To perform these activities, OBP2 is connected to EMI run-
ning either on a desktop computer or on an embedded target.

The state-based simulator enables to explore some exe-
cution traces. It also provides a back-in-time functionality
such that it is possible to change the current configuration of
the model interpreter and continue the simulation from this
point.

Based on the same setup, we have also applied multiverse
debugging on our UML models. This analysis activity has
been introduced in [58] as the possibility to define break-
points that can halt the execution in different execution paths,

Fig. 10 OBP2 graphical interface for simulation and multiverse debug-
ging

also called universes. This functionality has been imple-
mented in OBP2 with a reachability algorithm. Indeed, from
a given configuration, it is possible to explore the state-space
until a predicate becomes true (or false). In the graphical
interface of OBP2, we add the possibility to define some con-
ditional breakpoints as predicates in the observation language
of EMI (cf. Sect. 4.2). As a result, the reuse of the observa-
tion language simplifies this task for engineers because these
predicates are directly expressed in terms of design concepts.
OBP2 evaluates these predicates in each new configuration
explored and shows the result to the user using a green or a
red indicator if the predicate evaluates, respectively, to true
or false.
Results: Both state-based simulation and multiverse
debugging are very helpful to finely tune the system model

8.2 Model-checking the system behavior

For offline verification, system requirements of each modeled
system have been designed as PUSMs. Liveness properties
(corresponding for instance to R1, R2 and R3 in the moti-
vating example) have been encoded into Büchi automata,
while safety properties (corresponding to R4, R5 and R6 in
the motivating example) have been expressed as determin-
istic observer automata. Following the setup in Fig. 8, these
PUSMs have been loaded in the Execution Environment with
OBP2 as model-checking component.

This process has been performed with PUSMs of the
motivating example and we obtain the following results. For
liveness properties, each Büchi automaton has been verified
separately and no property violation has been detected by
OBP2 for any of them. Using the trick mentioned in Sect. 5.2,
the Büchi automaton resulting from the conjunction of these
three properties has also been generated and successfully
verified (cf. “Appendix A.2”). For safety properties, both
properties 4 and 5 are verified, while property 6 is violated.
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To check the validity of our approach, we have compared
these results with model-checking results of identical prop-
erties expressed in LTL. For this purpose, all system require-
ments have been specified in LTL (cf. “Appendix A.2”).
These LTL properties link the atomic propositions, which
are directly evaluated on the UML model interpreter, with
different LTL operators: not (!), or (or), and (&&), globally
([]), eventually (<>), until (U), weak until (W), and implies
(->). Atomic propositions involved in these LTL properties
are the same as the ones used for transition guards of PUSMs
and thus defined using the observation language.

As a result, expressions of these properties in LTL are more
complex to write because it requires the knowledge of LTL
operators and especially temporal modalities (e.g., globally,
weak until). For instance, the safety property 4 of the moti-
vating example, which is not a state-invariant, is not trivial to
express in LTL while the corresponding observer automaton
(Fig. 2b) is quite simple to design. Model-checking of these
LTL properties with OBP2 reports the same results to those
obtained with PUSMs. For instance, for the CCI example,
all properties were verified except the property 6 which is
violated.

To understand why property 6 of the CCI is violated, the
counterexample returned by OBP2 has been analyzed (see
[10]). A design error due to a bad event interleaving has
been identified and fixed. With this fix, the corrected CCI
model has a state-space containing 17,134,122 configura-
tions linked by 29,088,210 transitions.8

We have also made a comparison of performances
between LTL-based and PUSM-based model-checking both
in terms of time and memory taken by the model-checker
to make the verification. In average for this CCI example,
PUSM verification is more efficient than LTL verification of
6.7% in memory and 7.4% in time. These improvements can
be explained by the fact that the C implementation of the
synchronous composition used with PUSMs is apparently
more efficient than the Java implementation used with LTL
properties.
Results: PUSMs verification gives equivalent results to
LTL verification without adding overhead.

8.3 Model-checking fail-safe mechanisms

During these experiments, we have also explored the possi-
bility to use fail-safe mechanisms. For the CCI, if a failure is
detected, an appropriate action can be to turn off the system
such that the driver regains the control of the vehicle. For
this purpose, we add the sending of a “stop” event to the con-
troller on transitions incoming into “fail” states of observer
automata. In this case, observer automata are not only observ-

8 The difference that can be observed with our paper [10] is due to the
fact that we have improved the abstraction of the environment model.

ing the system execution but they are also reacting when a
failure occurs. The good behavior of this mechanism can be
verified using the following LTL property:

"[] (|observerInFailState| ->

[] (|evStopToController| -> (<> |ccsDisengaged|)))"

This property has been successfully verified with OBP2 for
observer 6 that reaches its “fail” state on the initial version
of the model.
Results: Our observation language is sufficiently expres-
sive to express properties about the monitored system and
our observer automata can be used for creating fail-safe
mechanisms.

8.4 Monitoring

Once verified, the UML model of each designed system
has been deployed with our embedded model interpreter on
STM32 discovery boards. For runtime execution, these mod-
els interact either with the real environment through inputs
and outputs of the board, or with a simulated environment
when real sensors and actuators could not be used. In the lat-
ter case, for simplicity, the simulated environment matches
with the environment abstraction used for verification. The
objects of the environment are thus managed by the schedul-
ing policy and the sequencer of the Execution Environment.
These objects send events to the system under development
(as the real environment would have done) according to their
abstract behavior. PUSMs representing observer automata
have also been deployed with the UML model of the system
to perform runtime monitoring following the setup in Fig. 9.
No failure has been detected on the model-checked version
of the UML models. These results are consistent with results
obtained through model-checking. Moreover, for the moti-
vating example, the deployment of the initial version of the
CCI model has shown that the observer automaton for prop-
erty 6 would have succeeded to detect the failure if it had
occurred.

In terms of performance, runtime monitoring induces
resource overheads compared to the execution of the same
UML model without observer automata. In addition to the
costs of monitors, monitoring increases the execution time
of 6.5% due to the use of the synchronous composition. The
cost of monitors depends on the size of the system model
and on the number of observer guard evaluations required
at each step. An estimation of the overhead (in %) induced
by N monitors in terms of execution time is given by the
following equation:

overhead ≈ 6.5 + 100

nb_ao

N∑

i=1

nb_outgoingsi
nb_statesi
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where nb_ao is the number of active objects in the system,
nb_statesi is the number of states (excluding pseu-
dostates and “fail” states) of monitor i , andnb_outgoingsi

is the sum of outgoing transitions of considered states. For
instance, the use of one observer automaton with a system
model containing 10 active objects will add an overhead
of 10%, while this overhead would only be 1% if 100
active objects were used. For each observer, this cost is then
weighted by nb_outgoings

nb_states i.e., the average number of guards
evaluated at each step for this observer automaton. For the
CCI model, this equation gives an estimated overhead of
50.2%, while in practice we obtained 50.8%. In terms of
memory footprint, the measured overhead is 8.2% includ-
ing approximately 1.2% for the synchronous composition
and 7% for the three monitors. These measures have been
made by comparing the time taken by the Execution Envi-
ronment to fire 1,000,000 transitions and the size of binary
executables with and without observer automata. From our
perspective, these resource overheads are acceptable for
execution on embedded systems. However, in general, the
overhead metrics should be corroborated with the specific
constraints and criticality level of each system. From the
overhead equation, it follows that this approach is scalable for
runtime monitoring, because the relative cost of integrating
one observer automaton decreases as the size of the system
model increases.
Results: Monitoring results are consistent with model-
checking results and the proposed solution for monitoring
is scalable.

9 Discussions

In this section, we want to discuss some points in relation to
our approach and its application on EMI.

9.1 Trade-off between language expressivity and
verifiability

Our work tends to establish a balance between two often
contradictory intentions: (1) the design of models that can be
verified and analyzed by automated tools and (2) the design
of industrial software applications by engineers that are not
formal experts. While the former requires well-defined con-
cepts (most of the time defined in a formal way) to apply
V&V activities, the latter is usually looking for highly expres-
sive languages using semantically complex concepts. In this
paper, we aim at providing an approach for both objectives
by allowing a uniform handling of V&V activities on embed-
ded system models designed by engineers. Admittedly, our
model interpreter only implements a subset of UML that
can be represented by class, composite structures and state
machines diagrams. Nevertheless, the implementation of the

UML semantics captures by our tool can be extended to take
into account additional UML concepts. Among them, let us
take the example of hierarchical states and compound transi-
tions that may be interesting to add in EMI such that engineers
may benefit of these extensions to design UML models and
encode formal properties as PUSMs. Some other tools like
AnimUML [33] or USMMC [42] used for executing and
analyzing UML models have already implemented these con-
cepts with no major difficulty. Adding such concepts to the
UML subset supported by EMI is only a technical limitation
(not a scientific one). However, a trade-off has to be found
between language expressivity and code certifiability, which
is really important for embedded systems. Indeed, increasing
the supported UML subset also increases code complexity
and renders code certifiability more difficult. In particular,
some highly expressive concepts may have complex seman-
tics that could easily make V&V of the models impractical.

9.2 Mapping UML concepts on property formalisms

Regarding our automatic conversion from LTL to UML with
the ltl4uml tool, adding hierarchical states and compound
transitions is not needed because the Büchi automata for-
malism does not have such concepts. Therefore, the UML
subset supported by EMI is currently sufficient to map Büchi
automata concepts on those of UML. Nevertheless, adding
hierarchical states and compound transitions may be useful
to extend our work with other automata formalisms that have
such concepts.

9.3 Richness of the execution semantics

In general, the more the execution engine supports a rich exe-
cution semantics, the more the engineers can design models
easily and in a compact way. However, the complexity of the
supported execution semantics is implementation-specific
and quite independent of the substantial part of our approach
that relies on the STR interface to connect analysis tools
to the execution engine. The analysis tools have no idea if
the supported language semantics implementation supports
hierarchical states, compound transitions, or any other con-
cepts. The way the semantics is implemented is hidden to
analysis tools through the STR interface. Indeed, the execu-
tion semantics is only exposed in terms of configuration and
observable execution steps. Extending the UML subset sup-
ported by our model interpreter is thus independent of our
verification architecture due to the use of the STR interface.

9.4 Action and observation languages

Another interesting point concerns our action and obser-
vation languages used for expressing guards and effects
on transitions of UML state machines. The alignment of
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these languages with the underlying C system has been
made possible by using, respectively, opaque expressions and
opaque behaviors for guards and effects of transitions. These
UML concepts enable engineers to define some expres-
sions in a different language than UML (the C language in
our case). Loading these expressions in the memory of our
model interpreter, also using C language for its implemen-
tation, makes these expressions executable. The C macros
used for implementing operators of these languages are thus
directly operating on runtime data at implementation-level.
Our action and observation languages can thus be easily
extended by defining additional C macros that access differ-
ent runtime data of the execution engine. These mechanisms
based on opaque expressions and opaque behaviors also offer
the possibility to replace our languages by different ones on
condition that they respect the UML run-to-completion step
semantics.

9.5 Limitations

The fact that guards and effects of state machine transitions
are specified using C brings benefits (e.g., well-known lan-
guage, certifiability) in the context of our approach but this
can also be a limitation. In fact, it is difficult to ensure that
these opaque expressions and actions respect the atomicity
of the UML language and its run-to-completion step seman-
tics (e.g., how to ensure that there is no infinite loop in C
expressions?). These consistency checks still have to be made
by the model designer itself. Another limitation is that our
UML models have to be well designed such that the model
state-space would be bounded. For instance, for the CCI
model, the integer variable used to represent speed has been
defined into the [0; 200] range and not into the full integer
range (i.e., [−232; 232 − 1]) to avoid state-space explosion.
Moreover, the speed cannot be more abstract for verification
purpose because it has to stay sufficiently concrete for being
deployed on an embedded target. Nevertheless, our approach
can enforce some analysis hypothesis (e.g., the hypothesis on
reactive systems [20]) in a modular way and without modi-
fying the design model. This is performed by applying some
filters on the actions returned by the STR interface but this
is out of the scope of this paper.

Regarding more global limitations, our approach currently
targets embedded systems running on a single core and with-
out temporal constraints. To overcome these limitations, it
would be interesting to see how our approach can be trans-
posed in (i) a distributed context where the system is deployed
on multiple cores, and in (ii) a real-time context where prop-
erties about real-time constraints have to be verified.

10 Related work

The work presented in this paper proposes to use PUSMs
for specifying, verifying and monitoring formal properties
on UML models. The particularity of our approach is the use
of a semantically homogeneous framework, based on UML
statecharts, which relieves the need for model transforma-
tions. Multiple other works use Büchi or observer automata
to specify and verify system requirements. This section is
divided in two parts: the first one focuses on the use of both
Büchi and observer automata for offline verification while
the second one is dedicated to monitoring.

10.1 Offline verification with Büchi automata or
observer automata

Büchi automata are typically used in model-checking [51]
to exhaustively check if a property holds on a model
state-space [3]. LTL properties can be easily transformed
into Büchi automata using automatic translation tools like
ltl2ba [25], ltl3ba [2], or SPOT [22]. The Büchi formalism is
then used in model-checkers (e.g., OBP2 [56,57], SPOT [22])
to synchronously compose the property automaton with the
system automaton and verify the validity of the property.
In comparison with the use of Büchi automata in model-
checkers, our approach enables to express Büchi automata in
the design language. The understanding of these automata by
engineers is simplified, and more expressive properties can
be encoded than with LTL.

Observer automata are used to ensure that a system model
or an implementation satisfies its requirements. One typical
approach applies model transformation techniques for con-
verting UML observer automata to the automaton formalism
used by the verification tool [43]. A similar work [44,45] uses
a UML profile to express timing constraints of embedded
real-time systems as UML observer automata. A mapping
of these observer automata to extended timed automata
is made with the IF language. Another technique [38,39]
used by Hugo/RT aims at transforming interaction dia-
grams into observer automata for checking that UML state
machines interact according to the scenarios described as
UML collaboration diagrams. In our approach, neither model
transformation nor mapping towards an intermediate lan-
guage is required because, with the UML model interpreter,
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verification activities are directly applied to the design model.
More tools about verification of models using the UML for-
malism can be found in [17].

The synchronous language Lustre [26] can be used to
describe reactive systems and express safety properties using
synchronous observer automata. In [11], Airbus uses such
synchronous observer automata to specify safety properties
and perform their verification with the SCADE model-
checker. The main advantage of this technique is the use
of a synchronous language that renders the synchronous
composition straightforward. The technique presented in our
paper can be seen as a transposition of these research efforts,
from the synchronous-language community, to the world of
model-based executable specification with UML. In brief,
our approach enables the use of observer-based verification
and monitoring in the context of UML with the same simplic-
ity as synchronous languages. Moreover, our approach does
not require code generation for deployment as it is usually
the case in the context of synchronous languages.

10.2 Monitoring

Regarding monitoring, multiple works have defined efficient
software architectures or algorithms to perform runtime ver-
ification of monitorable properties.

A first approach is to define monitoring algorithms for ded-
icated logics. The work in [28] defines two techniques to ana-
lyze Java programs by checking if a trace of events satisfies
LTL properties. The first one is based on a rewriting-based
framework that allows defining new logics for monitoring
execution traces. The second one [27] aims at synthesizing
monitors for safety properties by generating efficient code
from LTL formulas. This work has been extended in [54] to
synthesize monitors for an extension of past time LTL, called
ptCaRet. This logic offers the ability to express safety prop-
erties about procedural programs that cannot be specified
using LTL. This automatic synthesis of monitors is also used
in [5] to focus on runtime verification of LTL properties by
analyzing finite prefixes of infinite traces. Other works define
new temporal logics (e.g., ALTL [53] or EAGLE [4]), based
on LTL, that are better suited for runtime monitoring. These
logics enable to define more efficient monitoring algorithms
that reduce either space and/or time complexity. While these
approaches focus more on the monitoring synthesis process,
we noticed that none of these related works mention the pos-
sibility to perform runtime verification by directly deploying
monitors on actual embedded systems, while this opportu-
nity is offered by our tool. However, these works provide
interesting mechanisms, to synthesize monitors from formal
properties, that may be used to extend our ltl4uml tool.

For the analysis of Java programs, different tools can be
used to perform runtime verification. The Monitoring and
Checking (MaC) architecture [37] defines a modular and

flexible architecture with a clear separation between high-
level requirements, independent of the implementation, and
low-level behaviors on which they rely. Inspired by MaC,
Java PathExplorer [29] facilitates the instrumentation of Java
bytecode to check high-level requirements with an observer
but also low-level errors like deadlocks or data-races. The
Monitoring-Oriented Programming (MOP) framework [15]
enables to express formal specifications using annotations
in the design program. Based on these annotations, moni-
tors are automatically synthesized and inserted at appropriate
locations in the program. The Java-MOP prototype relies on
AspectJ aspects to weave monitors into the executable code.
In the same spirit, Temporal Rover [21] can check tempo-
ral logic assertions written as annotations in Java, C, C++,
Verilog or VHDL programs. For program instrumentation,
AspectJ aspects are also used in Clara [12] and MARQ [52]
to weave monitoring code into Java programs. Clara uses
partial evaluation to statically optimize monitoring aspects
such that only what fails to be proved safe at compile-time
is monitored. This tool reduces the monitoring overhead
and renders the remaining monitors more efficient. MARQ
also focuses on monitoring performance. For this purpose, it
implements different optimizations to check efficiently prop-
erties expressed as Quantified Event Automata (QEA). In
comparison with these works that instrument the executable
code using aspects, our approach brings a solution to monitor
the system execution by operating only at model-level.

Furthermore, monitoring can be achieved by tracing
model execution. In [32], a debugger uses an embedded mon-
itor to produce back annotated traces and build sequence and
timing UML diagrams in real-time for visualizing the model
behavior. In the same way, the project in [16] aims at mon-
itoring extra-functional properties using annotations in the
UML design model and back-propagation of analysis results
to this model. In the same way as our work, both approaches
give analysis results in terms of the design concepts. How-
ever, none of them is able to make runtime verification of
embedded systems requirements.

Regarding critical systems, the literature provides multi-
ple solutions for monitoring these systems. The work in [30]
proposes a model-based architecture to monitor the execu-
tion of real-time and embedded systems. This framework
allows connecting various monitoring tools to observe the
system execution (e.g., for runtime verification) but also
to interact with it (e.g., for debugging purposes). A proto-
type has been designed for UML-RT in the Papyrus-RT tool.
The instrumentation of UML-RT models has been automated
using model transformations. For hard real-time programs,
monitors can be designed in a dataflow language called
Copilot [50]. From the monitor specifications, the Copilot
compiler generates embedded monitors in C as well as its own
scheduler for the real-time operating system. In [36], a soft-
ware architecture has been designed to monitor safety-critical
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embedded systems that rely on black-box components. In
this architecture, a communication bus is used to communi-
cate with the different components of the system and check
high-level properties. More inline with the philosophy of our
work, a model-based framework for testing and monitoring
hybrid embedded systems has been designed in [55] to nar-
row the semantic gap between designs and implementations.
At the modeling level, the system is composed of a mon-
itoring automaton and a testing automaton to check safety
properties when executing the testing scenarios. A code gen-
erator can then convert the system model and both the testing
and the monitoring automata into code to check the same
properties at the implementation level. In comparison with
our work, all these approaches rely on model transforma-
tions or code generation to monitor system execution. Our
approach avoids such techniques to ensure that the observer
automata used for monitoring are exactly the same as the
ones used during model verification.

Finally, we are not aware of other approaches enabling
both observer-based model-checking and runtime monitor-
ing of executable UML specifications without the use of
costly model transformations.

11 Summary and future work

The approach presented in this paper aims at modeling formal
properties with PUSMs in order to facilitate their design by
engineers, and to unify model verification and runtime mon-
itoring of UML models. Execution of these models relies on
EMI, a UML model interpreter based on a single implemen-
tation of the UML semantics.

With this technique, formal properties can be expressed
as Büchi automata or observer automata in UML. These
automata are modeled as UML state machines and rely on
an observation language to access system objects and their
attributes as well as internal runtime data of the execution
engine. Each automaton formalism provides different bene-
fits. Büchi automata can express any temporal logic property,
and are even strictly more expressive than LTL. Observer
automata can only encode monitorable properties but they
can also be used unchanged for runtime monitoring (if they
are deterministic). Each PUSM can be directly executed by an
instance of our UML model interpreter, and is synchronously
composed with the system execution. The synchronous com-
position operator is the main UML extension on which our
approach relies in order to synchronize PUSMs with the sys-
tem execution. For offline verification, this setup can be used
to check exhaustively, with a model-checker, that proper-
ties encoded by PUSMs are not violated. It does not require
any model transformation because verification is directly
applied on the design model interpreted by EMI. For run-
time monitoring, all deterministic observer automata used

during offline verification can be deployed on embedded tar-
gets without the need of costly proven model transformations
or code instrumentation. As a result, what is monitored at run-
time is exactly what is checked during model verification.

This approach uses the same design language for both
system modeling and property specification, thus facilitating
the use of formal verification techniques by system engineers.
In practice, not only this facilitates the expression of formal
properties but also the analysis of verification results, which
are directly captured within the UML formalism.

The approach was evaluated on a UML model of a
cruise control interface through different V&V activities.
We applied multiverse debugging by reusing the observa-
tion language to specify conditional breakpoints. We have
also performed model-checking and runtime monitoring with
PUSMs. The results show that system requirements can be
easily expressed as a UML property model. For offline verifi-
cation, the PUSM-based verification results are equivalent to
LTL-based model-checking, while being slightly more effi-
cient in terms of performance. For online verification, the
deployment of observer automata on an STM32 embedded
board induces a slight overhead, both in memory footprint
and execution performance. However, this overhead does not
impede scalability because the relative cost of one observer
automaton decreases as the size of the system increases.

Possible extensions of this work also include the integra-
tion of other model-based specification formalisms such as
Property Sequence Chart (PSC) [1] that relies on an exten-
sion of UML 2.0 interaction diagrams. We are interested in
showing the applicability of our approach outside the UML
world by transposing our verification and monitoring infras-
tructure to other design languages and other design contexts
(e.g., real-time, distributed). In terms of performance, further
work also includes making a performance-wise comparison
of the OBP2 back-end with other model-checkers and veri-
fication tools.
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A Additional information about the
motivating example

This appendix gives more detailed information on the moti-
vating example used in this paper. “Appendix A.1” describes
the context used to model the system and its environment
as realistically as possible and the system behavior that has
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Fig. 11 Composite structure diagram of the CCI model

been captured in the design model. “Appendix A.2” presents
the formal properties that have been expressed on this model
using PUSMs or the LTL formalism.

A.1 Description of themotivating example

To apply our approach to the motivating example, we have
designed a UML model of a CCI. The composite structure
diagram of this model is shown in Fig. 11. The Main class is
the root composite class of the model. It contains the cci part,
which is the system under study, and the env part that mod-
els its environment. Both parts communicate by exchanging
signals through ports.
Environment abstraction The env part contains a buttons
object that models the different buttons (i.e., start, stop, inc,
dec, set, pause, resume) that can be manipulated, as well as
the three pedals (i.e., clutchPedal, brakePedal, throttlePedal)
that can be pressed or released by the driver. According to
Fig. 1, both thePhysicalVehicle and theControlLoop are also
parts of the environment. In our UML model, they have been
abstracted as the engine object. In a real vehicle, the CCS
will try to adjust the speed of the vehicle to the cruise speed
given by the CCI, but, due to physical constraints (e.g., road
profile, air friction), it is not always possible for the CCS to
maintain the vehicle at the user-set speed. To take that into
account, the engine does not make any correlation between
the cruise speed given as input and the current speed it returns.
As a result, the speed can go non-deterministically from 0 to
100 km/h in one step. This abstraction enables to consider a
superset of all possible cases for the verification activity.
System under test The cci part describes the system that we
want to verify. This system aims at sending new setpoints
(i.e., the current value of the cruise speed) to the engine
according to user actions and the current speed of the vehicle.
The behavior of active objects contained in the cci is defined

by state machines presented in Fig. 12. The fine-grained
behavior of these state machines is described with our action
language described in Sect. 4.2 of this paper. The controller
(Fig. 12a) receives events from buttons and from pm (the
pedals manager in Fig. 12b), which is connected to the three
pedals (clutchPedal, breakPedal, and ThrottlePedal) through
ports. Based on these events, the controller determines the
status of the CCS and delegates generation of output events to
both actuation and csm (cruise speed manager) objects. The
actuation (Fig. 12c) sendsOn andOff signals to, respectively,
activate the control loop when the CCS is engaged (i.e., the
CCS is turned on and acts on the engine), and deactivate
the control loop when the CCS is turned off or disengaged
(i.e., the CCS is turned on but does not act on the engine).
The cruise speed manager (Fig. 12d) computes the value of
the cruise speed according to buttons events filtered by the
controller, and sends new setpoints each time the actuation
requests it. On all these state machines, some additional self-
transitions (i.e., transitions that start and end in the same state)
may be needed to explicitly ignore some events according to
the event dispatching strategy chosen by the model inter-
preter.

A.2 Formal properties

For the CCI, the six formal properties have been expressed as
PUSMs from the system requirements expressed in Sect. 2.
In addition to the previously introduced PUSMs (cf. Fig. 6 for
R1, Fig. 2 for R2 and R4, and Fig. 7 for R6), state machines of
PUSMs representing a Büchi automaton for R3 and a deter-
ministic observer automaton for R5 are shown in Fig. 13.

To verify the three requirements R1, R2, and R3 at the
same time, the mechanism in Sect. 5.2 has also been used to
generate one Büchi automaton that checks all three require-
ments. The state machine of this PUSM is shown in Fig. 14.

For our experiments, all system requirements have also
been specified in LTL. The resulting LTL properties are:

1. P1 = "[] (|evStop| -> (<> |ccsDisengaged|))"
2. P2 = "[] ((|ccsDisengaged| && |evSet|) ->

(<> |ccsEngaged|))"

3. P3 = "[] ((|canResume| && |evThrottleReleased|) ->
(|evThrottleReleased| U |evResume|))"

4. P4 = "(!|evUpdateSetPoint| W |evOn|) &&
([] (|evOff| -> (!|evUpdateSetPoint| W |evOn|)))"

5. P5 = "[] (|intervalCS| or |unknownCS|)"
6. P6 = "[] (|ccsEngaged| -> !|unknownCS|)"

Atomic propositions involved in these LTL properties are
defined such as |atom| where atom is one of the labeled
predicates (cf. “Appendix C”) defined using our observation
language.
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Fig. 12 State machines of the
CCI model

(a)

(b)
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Fig. 12 continued

(c)

(d)

123



1848 V. Besnard et al.

Fig. 13 State machines of
PUSMs for the CCI

(a) (b)

Fig. 14 Combination of all
PUSMs in one that checks R1,
R2, and R3

B Action and observation languages
operators

This appendix presents operators of the action language used
for system modeling and of the observation language used for
property specification. These operators are brought together
in four languages depending on whether they have reading or
writing access to model attributes or internal runtime data of
the model interpreter. These four languages are the expres-
sion language, the effect language, the expression language
extension, and the effect language extension. The action lan-
guage gathers operators of the expression language and of
the effect language, while the observation language gathers
operators of the expression language and its extension. All
these languages rely on external data declared and defined
in UML models. Figure 15 presents the metamodel of global
references that can be used to refer to UML elements.

B.1 Expression language

The expression language is employed to model guards of
state machine transitions. For this purpose, any C expres-

sion without side effect on model execution can be used. As
shown in Fig. 16, four additional operators are added to C
language constructs. This (with C macro this) is used to
access the current execution context (typically the context of
an object). Get is used to navigate the model (e.g., to get a
model attribute). At is employed to access an element at a
specific index (e.g., when a model attribute is a sequence).
Call is used to call side-effect free methods. In the general
case, the corresponding C macros can be obtained by putting
the name of metaclasses in upper case and changing the defi-
nition style from camel case to snake case. For instance, GET
is the macro associated with the Get metaclass.

B.2 Effect language

The effect language is used to perform actions as effects
of state machine transitions. Any C statement can be used
to perform this task. Figure 17 shows that several operators
have also been defined : Set to assign a new value to a model
attribute and SetAt to assign a new value at a specific index
in a sequence. Inc, IncAt, Dec, and DecAt can be used to
increment or decrement a model attribute. However, these

123



Unified verification and monitoring of executable UML specifications 1849

Fig. 15 Metamodel of
references

Fig. 16 Metamodel of
additional operators of the
expression language

Fig. 17 Metamodel of additional operators of the effect language

four operators are not shown in Fig. 17 because they only
provide syntactic sugar for both Set and SetAt operators. Send
is used to send an event to another UML object and Call is
used to call methods that have side-effects.

B.3 Expression language extension

Additional operators provided by the expression language
extension are presented in Fig. 18. With this extension, it
is possible to access the type of the current object, its state
machine, its event pool (i.e., the set of events received by the
object), and the current transition being fired. More specif-
ically, it is possible to check if the current object is a given
object (IsObject) or an instance of a given class (IsTypeOf ).
IsInState checks if the current state of an active object is a
given state of its state machine. TransitionExp relates to the

current transition being fired to know if its source (Transi-
tionHasSource) or its target (TransitionHasTarget) is a given
state, or if this transition is a given transition (IsTransition).

As shown in Fig. 19, several operators are also available
to introspect the content of event pools. It is possible to know
if the event pool is empty (EpIsEmpty) or full (EpIsFull), to
get the number of events currently stored (EpGetLength), to
get the first event (i.e., the oldest one) (EpGetFirst), to get
the event at a given index (EpGetAt), and to get the last event
(i.e., the newest one) (EpGetLast). Two other operators can
also be used to check if the event pool of an object contains
an occurrence of a specific event received on a given port
(EpContainsWithPort), or on any port (EpContains).

Regarding more relaxed navigation rules,ROOT_instMain
give access to the Main composite structure instance con-
taining system objects. ROOT_instProp gives access to the
Prop composite structure instance containing PUSMs. All
system objects and PUSMs can be accessed from these two
objects using eponymous C macros (i.e., ROOT_instMain

and ROOT_instProp). GetActivePeer gives a direct access
to active objects (e.g., objects of the environment) connected
to the other end of communication links without the need to
explicitly navigate the model through UML ports.

This extension also provides two operators to facilitate
formal verification: ObserverFail to check if an observer
automaton detects a failure in a given configuration, and
Deadlock that becomes true when the system execution
results in deadlock.
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Fig. 18 Metamodel of
additional operators of the
expression language extension

Fig. 19 Metamodel of event
pool operators of the expression
language extension

C List of atomic propositions

This section sums up all the atomic propositions that have
been used in this paper for model verification. For each
atomic proposition, we give its meaning in natural language

([NL]), its intuition in a pseudo-code ([PC]) with dotted
notation, and the corresponding predicate expressed with our
observation language ([OL]).
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[NL] ccsDisengaged: check if the current state of the actuation
state machine is Disengaged

[PC] ccsDisengaged = "ROOT_instMain.cci.actuation.
IsInState(STATE_Actuation_Disengaged)"

[OL] ccsDisengaged = "IS_IN_STATE(GET(GET(ROOT_instMain, cci),
actuation), STATE_Actuation_Disengaged)"

[NL] ccsEngaged: check if the current state of the actuation state machine is Engaged
[PC] ccsEngaged = "ROOT_instMain.cci.actuation.
IsInState(STATE_Actuation_Engaged)"

[OL] ccsEngaged = "IS_IN_STATE(GET(GET(ROOT_instMain, cci),
actuation), STATE_Actuation_Engaged)"

[NL] evStop: check if the event pool of csm contains the stop signal
[PC] evStop = "ROOT_instMain.cci.csm.EpContains(SIGNAL_stop)"

[OL] evStop = "EP_CONTAINS(GET(GET(ROOT_instMain, cci),
csm), SIGNAL_stop)"

[NL] evSet: check if the event pool of csm contains the set signal
[PC] evSet = "ROOT_instMain.cci.csm.EpContains(SIGNAL_set)"

[OL] evSet = "EP_CONTAINS(GET(GET(ROOT_instMain, cci),
csm), SIGNAL_set)"

[NL] canResume: check if the canResume attribute of pm is TRUE
[PC] canResume = "ROOT_instMain.cci.pm.canResume == TRUE"

[OL] canResume = "GET(GET(GET(ROOT_instMain, cci), pm),
canResume) == TRUE"

[NL] evThrottleReleased: check if the event pool of pm contains a pedalReleased signal received on the pmThrottlePedal-
Port port

[PC] evThrottleReleased = "ROOT_instMain.cci.pm.
EpContainsWithPort(SIGNAL_pedalReleased,
PORT_PedalsManagerPedalPort_pmThrottlePedalPort)"

[OL] evThrottleReleased = "EP_CONTAINS_WITH_PORT(
GET(GET(ROOT_instMain, cci),pm), SIGNAL_pedalReleased,
PORT_PedalsManagerPedalPort_pmThrottlePedalPort)"

[NL] evResume: check if the event pool of controller contains the resume signal

[PC] evResume = "ROOT_instMain.cci.controller.
EpContains(SIGNAL_resume)"

[OL] evResume = "EP_CONTAINS(GET(GET(ROOT_instMain, cci),
controller), SIGNAL_resume)"
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[NL] evOff: check if the first event in event pool of the object linked to actuation through cciOnOffPort is the off signal

[PC] evOff = "ROOT_instMain.cci.actuation.
GetActivePeer(cciOnOffPort).EpGetFirst() == SIGNAL_Off"

[OL] evOff = "EP_GET_FIRST(GET_ACTIVE_PEER(GET(GET(ROOT_instMain,
cci), actuation), cciOnOffPort)) == SIGNAL_Off"

[NL] evOn: check if the first event in event pool of the object linked to actuation through cciOnOffPort is the on signal

[PC] evOn = "ROOT_instMain.cci.actuation.
GetActivePeer(cciOnOffPort).EpGetFirst() == SIGNAL_On"

[OL] evOn = "EP_GET_FIRST(GET_ACTIVE_PEER(GET(GET(ROOT_instMain,
cci), actuation), cciOnOffPort)) == SIGNAL_On"

[NL] evUpdateSetPoint: check if the first event in event pool of the object linked to actuation through cciOnOffPort is the
updateSetPoint signal

[PC] evUpdateSetPoint = "ROOT_instMain.cci.actuation.
GetActivePeer(cciOnOffPort).EpGetFirst() == SIGNAL_updateSetPoint"

[OL] evUpdateSetPoint = "EP_GET_FIRST(
GET_ACTIVE_PEER(GET(GET(ROOT_instMain, cci),
actuation), cciOnOffPort)) == SIGNAL_updateSetPoint"

[NL] intervalCS: check if the cruiseSpeed is in the [40, 180] km/h working interval

[PC] intervalCS = ROOT_instMain.cci.csm.cruiseSpeed >= 40
&& ROOT_instMain.cci.csm.cruiseSpeed <= 180"

[OL] intervalCS =
"GET(GET(GET(ROOT_instMain, cci), csm), cruiseSpeed) >= 40
&& GET(GET(GET(ROOT_instMain, cci), csm), cruiseSpeed) <= 180"

[NL] unknownCS: check if the cruiseSpeed attribute of csm is equal to -1

[PC] unknownCS = "ROOT_instMain.cci.csm.cruiseSpeed == -1"

[OL] unknownCS = "GET(GET(GET(ROOT_instMain, cci),
csm), cruiseSpeed) == -1"

[NL] observerInFailState: check if the observer6 reaches a “fail” state

[PC] observerInFailState = "observer6.ObserverFail()"

[OL] observerInFailState = "OBSERVER_FAIL(observer6)"

[NL] evStopController: check if the event pool of controller contains the stop signal

[PC] evStopController = "ROOT_instMain.cci.controller.
EpContains(SIGNAL_stop)"

[OL] evStopController = "EP_CONTAINS(GET(GET(ROOT_instMain, cci),
controller), SIGNAL_stop)"
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15. Chen, F., D’Amorim, M., Roşu, G.: A formal monitoring-based
framework for software development and analysis. In: Davies, J.,
Schulte, W., Barnett, M. (eds.) Formal Methods and Software Engi-
neering, pp. 357–372. Springer, Berlin, Heidelberg (2004). https://
doi.org/10.1007/978-3-540-30482-1_31

16. Ciccozzi, F.: From models to code and back: a round-trip approach
for model-driven engineering of embedded systems. Mälardalen
University, Embedded Systems. Ph.D. thesis (2014)

17. Ciccozzi, F., Malavolta, I., Selic, B.: Execution of UML models:
a systematic review of research and practice. Softw. Syst. Model.
(2018). https://doi.org/10.1007/s10270-018-0675-4

18. de Moura, L., Kong, S., Avigad, J., van Doorn, F., von Raumer,
J.: The lean theorem prover (system description). In: Felty, A.P.,
Middeldorp, A. (eds.) Automated Deduction—CADE-25, pp. 378–
388. Springer, Cham (2015). https://doi.org/10.1007/978-3-319-
21401-6_26

19. Dhaussy, P., Le Roux, L., Teodorov, C.: Vérification formelle de
propriétés : Application de l’outil OBP au cas d’étude CCS. Génie
logiciel 109 (2014)

20. Diot, C., de Simone, R., Huitema, C.: Communication Protocols
Development Using ESTEREL (1994)

21. Drusinsky, D.: The temporal rover and the ATG rover. In: Havelund,
K., Penix, J., Visser, W. (eds.) SPIN Model Checking and Software
Verification, pp. 323–330. Springer, Berlin, Heidelberg (2000).
https://doi.org/10.1007/10722468_19

22. Duret-Lutz, A., Poitrenaud, D.: SPOT: an extensible model check-
ing library using transition-based generalized Büchi automata. In:
Proceedings of The IEEE Computer Society’s 12th Annual Inter-
national Symposium on Modeling, Analysis, and Simulation of
Computer and Telecommunications Systems, MASCOTS ’04, pp.
76–83. IEEE Computer Society, Washington, DC, USA (2004).
https://doi.org/10.1109/MASCOT.2004.1348184

23. Ferretti, J., Di Pietro, L., De Maria, C.: Open-source automated
external defibrillator. HardwareX 2, 61–70 (2017). https://doi.org/
10.1016/j.ohx.2017.09.001

24. Gaiser, A., Schwoon, S.: Comparison of algorithms for checking
emptiness on Büchi automata. In: Hlinený, P., Matyáš, V., Voj-
nar, T. (eds.) Annual Doctoral Workshop on Mathematical and
Engineering Methods in Computer Science (MEMICS’09), Ope-
nAccess Series in Informatics (OASIcs), vol. 13, pp. 18–26. Schloss
Dagstuhl-Leibniz-Zentrum fuer Informatik, Dagstuhl, Germany
(2009). https://doi.org/10.4230/DROPS.MEMICS.2009.2349

25. Gastin, P., Oddoux, D.: Fast LTL to Büchi automata translation.
In: Berry, G., Comon, H., Finkel, A. (eds.) Computer Aided Verifi-
cation, pp. 53–65. Springer, Berlin, Heidelberg (2001). https://doi.
org/10.1007/3-540-44585-4_6

26. Halbwachs, N., Lagnier, F., Raymond, P.: Synchronous observers
and the verification of reactive systems. In: Nivat, M., Rattray,
C., Rus, T., Scollo, G. (eds.) Algebraic Methodology and Software
Technology, vol. AMAST’93, pp. 83–96. Springer, London (1994).
https://doi.org/10.1007/978-1-4471-3227-1_8
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