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Abstract
Model transformations play an essential role in most model-driven software projects. As the size and complexity of model
transformations increase, their reuse, evolution and maintenance become a challenge. This work further details the Model
Transformation TEst Specification (MoTES) approach, which leverages contract-based model testing techniques to assist
engineers in model transformation evolution and repairing. The main novelty of our approach is to use contract-based model
transformation testing as a foundation to derive suggestions of concrete adaptation actions. MoTES uses contracts to specify
the expected behaviour of the model transformation under test. These contracts are transformed into model transformations
which act as oracles on input–output model pairs, previously generated by executing the transformation under test on provided
input models. By further processing, the oracles’ output model, precision and recall metrics are calculated for every output
pattern (testing results). These metrics are then categorised to increase the user’s ability to interpret and act on them. The
MoTES approach defines 8 cases for precision and recall values classification (test result cases). As traceability information is
retained from transformation rules to each output pattern, it is possible to classify each transformation rule involved according
to its impact on the metrics, e.g. the number of true positives generated. The MoTES approach defines 37 cases for these
classifications, with each one linked to a particular (abstract) action suggested on a rule, such as relaxation of the rules.
A comprehensive evaluation of this approach is also presented, consisting of three case studies. Two previous case studies
performed over two model transformations (UML2ER and E2M) are replicated to contrast MoTES with an existing model
transformation fault localisation approach. An additional case study presents how MoTES helps with the evolution of an
existing model transformation in the context of a reverse engineering project. Main evaluation results show that our approach
can not only detect the errors introduced in the transformations but also localise the faulty rule and suggest the proper repair
actions, which significantly reduce testers’ effort. From a quantitative perspective, in the third case study, MoTES was able
to indicate one faulty rule from 19 possibilities for each result case and suggest one or two repair actions from 6 possibilities
for each faulty rule.
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1 Introduction

In the context of model-driven engineering, models are the
primary development artefacts and model transformations
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are crucial elements to define operations over models, such
as querying, synthesising and transforming models. Model
transformations are essential for Model-Driven Engineering
to be practical. However, they are challenging to maintain
and adapt when requirements and implementation platforms
change [1].

As the size and complexity of model transformations
increase, the cost and complexity of their reuse, evolution
and maintenance become a challenge, e.g. during their adap-
tation to new application contexts. Hence, new mechanisms
and tools are needed to help engineers with the complex
activities involved in model transformation evolution and
maintenance.

As a response to this, several model transformation test-
ing approaches have been proposed during recent years.
Some of these approaches allow engineers to specify and run
regression tests to assess the behaviour of their model trans-
formations, but they only report whether a test has passed or
failed, e.g. [2–7]. In other cases, actual fixes are proposed,
or even automatically applied, for a given error, e.g. [8–10].
These techniques are based on static analysis of the code,
and the fixes they propose are still based on single errors.
This kind of unitary information helps find errors in model
transformations, yet we think it falls short. Engineers have to
review the errors and fix them one by one to detect the source
of the problem and figure out how to solve it, which implies
interpreting the error correctly within its context. This task is
incredibly cumbersome in the case of transformations com-
posed of a large number of rules. Consequently, we believe
that there is a need for more meaningful results which pro-
vide a deeper understanding of how a model transformation
is behaving. In this sense, metrics—i.e. aggregated numeric
values—might give additional information about an error,
such as its extension for an actual input or some hints about
its nature. Although there are previous works that use metrics
for pinpointing guilty rules in a model transformation, e.g.
[11,12], they neither suggest repairing actions nor offer hints
at the cause of the errors.

In this work, we present a Model Transformation TEst
Specification (MoTES), an approach to easily leverage test-
ing results to automatically derive proper corrective actions
when tests fail. Those adaptations are derived from the com-
putation of precision and recall metrics for every output
pattern whose generation is controlled by an invariant con-
dition or contract between input and output patterns. Those
metric values are then analysed and categorised to identify
a probably guilty model transformation rule (fault locali-
sation) and propose a corrective action (fault repair). As a
result, engineers can focus their efforts on applying specific
corrective actions to particular model transformation rules.
Note that our results are independent of how the contracts
are specified and executed and the results collected. That is,
the main novelty of this work lies in (1) defining a metric-

based test oracle, (2) generating output-centred test results
for enhanced interpretation and (3) recommending abstract
repairing actions [13] based on these results.

This paper is an extension of previous papers presented
at the MoDELS 2015 conference [14] and the Fifth Interna-
tional Workshop on the Verification of Model Transformation
2016 [15]. Besides a comprehensive presentation of our
approach to make it self-contained, this article introduces a
substantial extension over previous papers. The result com-
putation and interpretation section has been extended with
the subdivision of False Positive results into input or output-
originated. We have also thoroughly rewritten the section
on suggesting adaptations to encompass such subdivision,
including mutation operators as a base for repairing actions,
introducing a new adaptation action, and, finally, providing
an extended and revised version of our adaptation cheatsheet.
Moreover, a whole new evaluation section has been added,
which presents several empirical studies to assess the validity
and applicability of our approach. In this sense, we present
herein the results obtained by the replication of the muta-
tion test analysis originally performed in [7] for two case
studies.

The rest of this paper is organised as follows. Sect. 2 gives
an overview of our approach. Contract definition in MoTES is
explained in Sect. 3. Sections 4 and 5 present the main contri-
bution of this paper: how the resulting metrics are interpreted
and how to map them to adaptation suggestions, respectively.
Section 6 presents our evaluation using a replica of two case
studies and an application case study. Section 7 discusses the
related works. Furthermore, finally, Sect. 8 outlines the main
conclusions of this work and indicates future directions for
the approach.

2 MoTES overview

The main goal of MoTES is to provide engineers with a fast
and lightweight model transformation repairing approach
that they can seamlessly use in any stage of their model-
driven development process. Therefore, using our approach,
engineers can (1) specify what the expected behaviour of
a model transformation is, (2) get easy-to-interpret results
about its correctness, and (3) automatically obtain a list of
suggested repair actions for every transformation rule of
interest. In that sense, our approach uses model transforma-
tion testing as a foundation to derive suggestions of concrete
adaptation actions.

2.1 MoTES structure

In Fig. 1, a graphical overview of our approach is presented.
On the left-hand side, a simple model-driven development
scenario is depicted, which mainly entails an input model,
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the model transformation under test (MTUT), a transfor-
mation engine and the products of such transformation: the
output model and the execution trace model. Input models
and MTUTs are manually specified by modelling engineers,
while a particular engine automatically generates output and
trace models.

On the right-hand side, our approach’s primary artefacts
and activities are organised into two fundamental stages: test-
ing and repairing.

At the testing stage, modelling engineers have to man-
ually specify the expected behaviour of the MTUT using
contracts (number 1 in the figure), as in [5,6,16]. Contracts
are a structured and formal way of defining invariants, pre-
and postconditions, which must be fulfilled by the model
transformation execution. Although our approach can define
pre- and postconditions, we focus on invariants since they
are the only relevant properties to compute our metrics upon.
It is important to note that a contract can be related to several
rules, i.e. it can express a requirement in a concise manner that
actually requires multiple rules to be fulfilled, rendering con-
tracts a lightweight method for model transformation testing.
As stated by [17], a dedicated language for contract defini-
tion allows designers of transformations to make explicit the
desired properties of a transformation before implementing
or evolving it. The abstract syntax of MoTES is partially
shown in Fig. 2. A detailed explanation of contract specifi-
cation with MoTES is provided in Sect. 3.

Once contracts are defined, test oracles can be automati-
cally derived from them (number 2 in the figure), as [2] sug-
gests. For convenience, we automatically generate test oracle
artefacts as model transformations (see Sect. 3.3) whose main
mission consists in querying input–output model pairs from
the MTUT and yielding a result report model, which con-
forms to the MoTES Result metamodel (see Fig. 3). That
metamodel conveniently allows representing precision and
recall values for every output pattern whose generation is
constrained by contracts. Note that every Result element
is labelled as True Positive (TP), False Positive (FP), True
Negative (TN) and False Negative (FN) for metric compu-
tation. Basically, given an input model, the execution of the
MTUT (number 0 in the figure) generates its corresponding
output model, so the input–output model pair is compared
against the inclusion and exclusion criteria. Additionally, for
easier interpretation, we propose a categorisation of various
valid result combinations (see Sect. 4). Testing results are
quickly computed utilising a transformation engine taking as
input a test oracle (number 3 in the figure), i.e. contracts, an
input model and its corresponding output model. Addition-
ally, a testing report provides an overall vision of the MTUT
behaviour for a concrete input model because the generation
of all the output patterns is correctly reported: error and non-
error results. MoTES assumes a complete enough test input
model, i.e. covering all the specified constraints, is provided.

Fig. 1 Approach overview

Fig. 2 MoTES contract metamodel

Fig. 3 MoTES result metamodel

Therefore, the generation of test input models is out of the
scope of this work.

The final stage of our approach, the repairing stage, is
shown on the right side of the figure. In this stage, a spe-
cific algorithm (see Algorithm 1) is responsible for matching
contract results to MTUT execution traces to derive a partic-
ular repair suggestion for every transformation rule involved
(number 4 in the figure).

Note that a transformation trace model mainly provides
a mapping from output elements to transformation rules.
Even though these recommendations refer to specific model
transformation rules, our approach can still be considered
black-box testing since we do not require the static analysis
of the actual model transformation code, but only the trace-
ability information, which is provided as a byproduct after
the MTUT is executed. A complete specification is presented
in Sect. 5.

123



84 R. Rodriguez-Echeverria et al.

Table 1 Star example transformation rules

Rule Input pattern Output pattern

S_R1 sq:Square (sq.name!=“E”) st:Star st.name=sq.name

S_R2 el:Ellipse (el.light==true) st:Star st.name=el.name

S_R3 sq:Square (sq.name==“E”) st:Star st.name=“F”

2.2 Running example

In the following, we introduce a running example 1 to present
our approach better. This example will be used for contract
definition, fault localisation, and fault repair.

Let us suppose that a model transformation is defined
between a metamodel defining shapes and another one just
specifying stars. In the input metamodel there are two types
of shapes: Squares and Ellipses. All Shape elements
contain two attributes: name (String) and light (Boolean).
Stars are the only type of elements defined in the output
metamodel, and they have just the attribute name (String).
Both metamodels are presented in Fig. 4 (at top). Table 1
shows the rules defining such transformation in a language-
agnostic manner: rule S_R1 generates stars from squares
whose name is not “E”; rule S_R2 generates stars from
ellipses with light, and rule S_R3 generates stars with name
“F” from squares with name “E”. Those rules then define the
MTUT.

As aforementioned, our approach, in addition to contract
specification, needs the input model, its corresponding output
model, and the trace model produced by MTUT execution.
Figure 4 shows an example of those three models (at the bot-
tom). In this case, the input model contains four squares (A,
B, C and E) and one ellipse (D). According to the MTUT
specification, all of them are generating stars in the output
model and the trace model stores the name of the partic-
ular rule generating each concrete star. Every trace stores
the name of the applied rule and relates input (inElems
reference) to output elements (outElems reference). The
elements pointed by such references can be of any type of
the input and output models because their actual type is
EObject. For the sake of simplicity, in Fig. 4 those ref-
erences are pointing to concrete types in the input and output
models, but they can reference any type.

3 Contract specification with MoTES

MoTES defines a minimalistic, declarative, domain-specific
language (DSL) for the specification of model transforma-
tion contracts, initially presented in [15]. The syntax of this
language is based on three main elements: input–output ele-

1 https://www.eweb.unex.es/eweb/migraria/motes/stars.html.

ment relationships, detection criteria and inclusion/exclusion
criteria. This syntax is specifically designed to simplify the
calculation of precision and recall metrics.

Note that other approaches have already defined specific
languages to define contracts for model testing (see Sect. 7).
Although some of them are not clearly tailored to compute
our metrics because they lack an explicit definition of pattern,
for instance, Tracts [5] (see Sect. 6.2 for more differences),
others may be successfully applied, for instance, PAMoMo
[6]. Indeed previous contracts already defined by those lan-
guages might be reused to apply our approach, playing a
complementary role in a testing scenario. Hence, we could
provide additional test results for the same model transfor-
mations.

Therefore, the MoTES language might not be considered
a novel contribution, but it plays a relevant role for the illus-
trative purposes of our approach. In the following, we present
its abstract syntax, concrete syntax, and semantics.

3.1 Abstract syntax

The abstract syntax of MoTES is defined as an Ecore meta-
model, partially shown in Fig. 2, whose main concept is
Contract. A contract contains the following elements:

– Contract name: the identifier for the contract.
– Input pattern: the typed elements to match over in the

input model.
– Input exclusion: input elements that fit these criteria will

not be matched.
– Input inclusion: only the input elements which fit these

criteria will be matched.
– Output pattern: the typed elements to match over in the

output model.
– Output exclusion and inclusion: same as for input.
– Detection: it defines a relationship between an input pat-

tern and an output one, i.e. a constraint between the input
model and the output model, consequently constraining
the model transformation.

Input and output patterns are defined according to a collec-
tion of input/output elements and some conditional criteria
for their inclusion and exclusion. Note that it is possible to
replace exclusion criteria with negative inclusion criteria, but
we have found our choice of using both as more intuitive,
and it conveys better the set-oriented view of our approach.
It is also important to stress that only input metamodel types
are allowed in the input pattern, while only output meta-
model types are allowed in the output pattern. Conversely,
only detection criteria can specify expressions concerning
elements from input and output elements because their mis-
sion is to express conditions that input–output relationships
must hold (invariants).
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Fig. 4 Star example: input, output, and trace (meta)models

Although patterns allow for the specification of many-
to-many relations between input and output elements, each
input pattern is associated with exactly one output pattern at
the pattern level. The support for pattern cardinality would
be very interesting, but it remains as future work. Neverthe-
less, given that a MoTES contract establishes a one-to-one
relationship between an input pattern instance and an output
pattern instance, multiplicity (set/size) invariants are implic-
itly held in MoTES contracts. As a result, this feature would
reduce the number of contracts, for example, compared to
Tracts (see 6.2 for more details).

Furthermore, the definition of input or output patterns
is not mandatory for two special cases: preconditions and
postconditions. Only the input pattern needs to be speci-
fied to define a precondition contract. Meanwhile, to define
a postcondition, only its output pattern needs to be specified.
Detection criteria are not necessary in those special cases
because there is no need to define a relationship between
input and output patterns. Preconditions and postconditions
may define additional constraints in input and output models,
respectively, but they are not used for precision and recall
computation. Therefore, we do not consider preconditions
and postconditions in the rest of this work for the sake of
brevity and clarity.

3.2 Concrete syntax

The textual concrete syntax of MoTES is defined using Xtext
[18]. This simple syntax permits specifying all the relevant
concepts of our approach. As shown in Listing 1, input and

Listing 1 MoTES Concrete Syntax

contract <cname >{
input: { (<iT1 >:<iv1 >, ... <iTN >:<ivN >)
inclusion: <p_name >(<p_expression >)...
exclusion: <p_name >(<p_expression >)...
}
output: { (<oT1 >:<ov1 >, ... <oTN >:<ovN >)
inclusion: <p_name >(<p_expression >)...
exclusion: <p_name >(<p_expression >)...
}
detection: <p_name >(<p_expression >)...
}

output patterns are specified as a list of typed in/out elements,
while all the different criteria are specified as a list of named
predicates.

We use predicate expressions for the specification of all the
different criteria of a contract (inclusion, exclusion and detec-
tion). Specifically, the following subset of first-order logic is
used for criteria definition: the universal quantifier (variables
of a contract are universally quantified), the existence quan-
tifier (for expressing some conditions of output elements),
conjunction, disjunction, negation and equality. Moreover,
predicates can be logically connected by conjunction and
disjunction operators. Nevertheless, for implementation pur-
poses, we are using OCL because its expressiveness is far
more than enough, and we have no intention of defining a
new expression language.

Named predicates is another pragmatically convenient
feature of the MoTES language. Named predicates provide
testers with fine-grained test results by presenting the partic-
ular predicate failing in a contract. For instance, let us assume
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a contract that defines an invariant between input and output
elements to check that output elements are generated and
their properties are appropriately bound. If the binding is
complex (many properties involved and difficult assignment
expressions), providing testers with the specific faulty bind-
ing may significantly reduce the repairing effort. By means of
named predicates, testers can assign a name to each expres-
sion guarding a concrete property binding. Therefore, when
an error occurs, MoTES will yield the name of the predicate
whose expression is not satisfied, and testers can pinpoint the
source of error more accurately.

Another interesting feature of the MoTES language con-
sists of inter-contract invocation. One contract can use the
special predicate invoke to call a previously defined con-
tract by passing as arguments: the invoked contract name,
an input instance matching its input pattern, and another one
for its output pattern. The usage of this special predicate is
constrained to the detection clause of a contract. Therefore,
it works as a modularisation means by fostering code reuse
(see 6.2 for more details).

Regarding the star example, let us suppose modelling
engineers now decide stars must be only generated from
lighted squared shapes. In this sense, the MoTES contract,
shown in Listing 2, defines the constraints to consider for
the transformation, i.e. squared shapes with its light property
True must generate stars with the same name.

Listing 2 An example of a MoTES contract for the star example

contract Square2Star{
input { (Square:i)
inclusion: pi1(i.light = True)
}
output { (Star:o) }
detection: p1(i.name = o.name)
}

3.3 Semantics

In this section, we will outline a denotational semantics of the
contracts definition language. We translate the contracts from
the MoTES DSL syntax presented in Fig. 2 and Listing 1 to
ATL2 [19] by means of a code generator built upon Xtend3.

For each contract, an ATL matched rule will be generated
using a template. That rule will generate Result elements
in the resulting model by querying the input/output models to
relate an input pattern instance to an output pattern instance,
according to the inclusion/exclusion and detection criteria
(see Sect. 4.2 for a detailed description). For example, the
test oracle for Listing 2 is shown in Listing 3.

The generated rule takes the name and the input pattern of
the MoTES contract (Square2Star and Square, respec-

2 We chose ATL for convenience, but MoTES contracts could also be
transformed to other transformation languages.
3 https://www.eclipse.org/xtend/.

tively). As output it generates a Result element (line 5)
containing input/output patterns, the contract name and the
result value of type ResultEnum. The inputPattern
refers to a particular input pattern instance (line 20), while
the outputPattern may refer to one or many instances
of the output pattern (line 21). The function getOutput
(line 47) is responsible of returning all the output instances
related to a concrete input pattern instance.

Contract inclusion/exclusion and detection criteria are
used to generate final isExcluded (line 26) and
isTransformed (line 29) helpers for the input type,
which act as proxies of the defined predicates. Eventually
resultValue helper (line 33) computes the proper result
(FP, FN, TP, TN) for the matching input–output relationship
at instance level (see Sect. 4.1 for a detailed description).
For example, if the MTUT has generated a Star (named C)
from a lighted Square with the same name, the output of
this ATL transformation would be a Result element named
“Square2Star”, whose input pattern refers to Square C and
output pattern to Star C and its result value is TP (True Pos-
itive).

The oracle in Listing 3 is executed using an ATL engine,
as shown in Fig. 1 (oracle execution), by taking as input:
the input and output model of the MTUT and the contract
specification (test oracle). As a result, the oracle execution
produces an output model conforming to the results meta-
model presented in Fig. 3. In Sects. 4 and 5 we detail how
we interpret these results and what actions can be performed
based on these results, which are also the main contributions
of the paper.

3.4 Formalisation

We will use Triple Graph Grammars (TGGs) [20] as the
foundation to formalise the MoTES contract specification
DSL, the result interpretation and classification of input and
output elements into the sets TN, FN, TP, and FP. Details
of TGGs are out of the scope of this paper, and the inter-
ested reader may consult [20]. Here we only explain how we
employ TGGs in our formalisation. TGGs is a declarative
formalism for the specification of bidirectional translations
between different graph languages. They generate languages
of graph triples which consist of a source graph and a target
graph, plus a correspondence graph between them (hence the
name “triple”). The correspondence graph is used to define
the traces between the source and target graphs explicitly.

These three graphs (Source
src←− Corr

trg−→ T arget) are
connected by two graph morphisms src, trg (i.e. maps which
send nodes to nodes and edges to edges while respecting
the source and target of the edges) from the correspondence
graph to the source and target graphs. In the bidirectional
transformations literature, TGGs are used for forward and
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Listing 3 MoTES sample Oracle generated from Listing 2

1 rule Square2Star{
2 from
3 input : inMM!Square
4 to
5 result : resultMM!Result (
6 inputPattern <-inPattern ,
7 outputPattern <-outPattern ,
8 contract <-contract ,
9 value <-thisModule ->resultValue(

10 input.isExcluded ,input.is
11 Transformed)
12 ),
13
14 inPattern: resultMM!Pattern
15 (name <-inMM!Square.name),
16
17 outPattern: resultMM!Pattern
18 (name <-outMM!Star.name),
19
20 contract: resultMM!Contract
21 (name <-’Square2Star ’)
22
23 do {
24 result.inputPattern.object <- input;
25 result.outputPattern.object <-
26 thisModule ->getOutput(outMM!Star ,
27 input.name);
28 }
29 }
30
31 helper context inMM!Square def : isExcluded :
32 Boolean = not (self.light=True);
33
34 helper context inMM!Square def : isTransformed :
35 Boolean = outMM!Star.allInstances()->
36 one(obj | self.name=obj.name);
37
38 helper def:
39 resultValue(excluded:Boolean ,
40 transformed:Boolean ):
41 resultMM!ResultEnum =
42 if excluded then
43 if transformed then #FP
44 else #TN
45 endif
46 else
47 if transformed then #TP
48 else #FN
49 endif
50 endif;
51
52 helper def :
53 getOutput(e1: OclAny , name: String) :
54 OclAny =
55 e1.allInstances()->select(obj |
56 name=obj.name);

backward translations, which take either the source or the
target graph as input and produce as output, respectively,
an appropriate target or source graph in addition to the
correspondence graph. TGGs are also used for incremental
synchronisation, which are operational programs that prop-
agate changes made in one artefact (source or target graph)
to corresponding changes in another existing artefact (target
or source graph), respectively [21].

As in the Graph Transformations (GT) framework [22],
the component graphs in TGGs may be typed, attributed
graphs with type-inheritance [23]. This kind of graphs is
inspired by UML- and EMF-like models in which graph

Fig. 5 TGG rule corresponding to contract in Listing 2

Fig. 6 TGG match

nodes can have (1) attributes with values from a predefined
domain, e.g. String or Integer, and (2) inheritance edges
which are used in the same sense as in object-oriented mod-
els.

Figure 5 shows a TGG rule which represents the contract
in the illustrative example in Listing 2, i.e. Square2Star.
We use some syntactic sugar to indicate that the parts which
are marked with ++ will be added in forward translations—
i.e. when a match of the Source is found in an I nput graph,
co-matches of the Corr , T arget , and the corresponding mor-
phisms src, trg will be created, as shown in Fig. 6. As an
example, a match of a TGG rule corresponding to the con-
tract in Listing 2 in a trace model like the one shown in Fig. 4
corresponds to a TGG morphism, which in turn consists of a
triple of graph morphisms from the source (i:Square), target
(o:Star) and correspondence (Sq2:St) graphs into the input,
output, and trace models, respectively, in the lower part of
Fig. 4.

Considering the concrete syntax in Listing 1, input cor-
responds to Source while output corresponds to T arget .
Moreover, inclusion and exclusion criteria corre-
spond to pre- and postconditions which are formulated as
expressions over attribute values. For input patterns, neg-
ative and positive application conditions can also be used to
express these criteria. Finally, detection criteria corre-
spond to the graph morphisms src, trg from Corr to Source
and T arget , which may also be augmented with expressions
over attribute values. By employing TGG as the formal foun-
dation, we can rely on the rich theory and results of TGG (and
GT) to verify the contracts, e.g. one can reason about con-
flicts, contradictions and relations between contracts [17].

4 Result computation and interpretation

4.1 Metric-based test oracle

A metric-based test oracle and output-centred reports are
keys to simplifying result interpretation. We use precision
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Fig. 7 Candidate set and subsets

Fig. 8 Illustrative example to define TP, FP and FN

and recall metrics for this purpose, which are calculated for
every output pattern. That way, we can get an overall measure
of the correctness of all the transformation rules generating
that kind of output pattern. Test result reports that are focused
on contracts are only helpful to locate failures, while result
reporting focused on output can provide additional informa-
tion, e.g. how many output elements are affected by a specific
error. Furthermore, we believe output-focused result report-
ing aligns better with the way model transformation designers
think since they are usually concerned about the output (not
contracts) when building transformations.

In the following, we use the star example again to illustrate
the different definitions presented herein.

4.1.1 The candidate set

Precision and recall metrics are defined in terms of true posi-
tives (TP), false positives (FP), false negatives (FN) and true
negatives (TN). We explain what these four categories repre-
sent using the sets of input elements (candidate input pattern
for generating a particular output pattern) depicted in Fig. 7.
Considering the MoTES contract defined in Listing 2, we
can compare the input–output model pair generated by the
MTUT, shown in Fig. 8.

The larger set, Candidates, represents all the patterns in the
input model suitable for generating a concrete output pattern.
In the star example, all square shapes in the input model are
candidates. Inside the candidate set, two other subsets are
depicted: Transformed and Excluded. All the input patterns
generating output patterns belong to the Transformed subset.

To find them, we propose the definition of detection criteria,
as explained in Sect. 3. In the example contract (Listing 2), the
criteria used is that both patterns must have the same name.
Therefore, squares A, B and C belong to the Transformed
subset because we can find stars with the same name in the
output model. Conversely, the input patterns contained in the
Excluded subset are those that should not be transformed.
Input patterns that are not supposed to be transformed are
those which are satisfying the exclusion criteria. To detect
them, we propose the definition of inclusion and exclusion
criteria, also presented in the previous section. In the example
contract (Listing 2), the exclusion criteria used for square
shapes is having the light attribute set to false. Therefore,
square C is part of the Excluded subset.

Using these three sets, it is possible to obtain the values
required to calculate the precision and recall metrics for each
output pattern. Thus, for every kind of output element, there is
a partition of the set of candidates in four subsets, as depicted
in Fig. 7.

– True Positives (TP). Number of non-excluded input ele-
ments that have been appropriately transformed in output
elements. In the example, Stars A and B are correctly
generated from Squares A and B, i.e. they are TP.

– False positives (FP). Number of excluded input elements
that have been transformed into output elements by mis-
take. Star C is incorrectly generated, but it can be related
to Square C, which is explicitly excluded by the contract,
i.e. it is a FPin

– True Negatives (TN). Number of excluded input elements
that have not been transformed.

– False negatives (FN). Number of non-excluded input ele-
ments that have not been transformed. Star E (dashed line
star in the figure) was expected because there is an input
element, Square E, eligible to generate a Star and inside
the contract scope. So the missing Star E is an FN.

Although we are using the terms TP, FP, TN and FN to
name these subsets defined in the candidate set (input model),
they classify the output elements generated from elements
of each subset. Therefore, output elements are conceptually
marked as TP, FP, TN or FN, as illustrated in Fig. 8.

4.1.2 Classifying output elements based on TGG rules

In Sect. 3.4, we outlined how the contracts are formalised as
TGG rules and briefly explained how such rules are applied
(see Fig. 6). We use these TGG rules in check mode with
forward translation semantics, i.e. instead of applying the
rules and generating a target model, we check whether for
each match of Source, there exist co-matches of Corr and
T arget . Based on these matches, we classify the output
model elements into the four above-mentioned sets as fol-
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lows, where s ∈ Source, t ∈ T arget , i ∈ I nput , and
o ∈ Output are all model elements. To make this classifi-
cation intuitive, we use the convention comatch(t) = ⊥ to
indicate that t does not have an image in Output . Moreover,
we simplify the formulae below by assuming that s and t
(resp. i and o) are in correspondence.

t ∈ T P: match(s) = i ∧ comatch(t) = o
s ∈ F N : match(s) = i ∧ comatch(t) = ⊥
t ∈ F P: match(s) = ⊥ ∧ comatch(t) = o
t ∈ T N : match(s) = ⊥ ∧ comatch(t) = ⊥

Note that here we include the TN set as a formula only
to explain its meaning in terms of matches of the TGG rule.
In practice, this desired situation means that unexpected ele-
ments were not generated; hence, no matches are found.

4.1.3 FPout

As a novel extension of this work, we propose herein to divide
FP into two different subsets: FPin (FP in Fig. 7) and FPout.
Note that in order to explain FPout thoroughly, we have added
a Star B to the output model in Fig. 8, whose generation is
not covered by the MTUT presented in Table 1 to keep the
example simpler. FPout are those output patterns incorrectly
generated that cannot be related to any input element from
the candidate set, for example, Stars B (second instance), D
and F. According to its origin, we distinguish three different
types of FPout:

– Replicas They are caused because there are more out-
put pattern instances than expected for a concrete input
pattern instance. For example, Square B has already gen-
erated another star, so the second instance (replica) is not
expected.

– Unrelated It means that the generation of the output pat-
tern is not constrained by any contract. For instance, Star
D has been generated from a different type of shape (input
pattern), which is not constrained by any contract.

– FN-associated They are a special case of unrelated,
which relates the unexpected output pattern instance
(FPout) to an FN case. For example, there is no Square
named F, so Star F does not match any candidate Square
(detection criteria), i.e. FPout unrelated. However, at the
same time, there is an FN case involving input element
Square E. Star F is supposedly generated from Square E,
but an error has been inadvertently introduced in prop-
erty binding, so their names do not match. Note that such
error produces two different consequences in the output
model: a FPout and its associated FN.

We have found FP additional subdivision helpful to inter-
pret test results for adaptations suggestion better. However,

concerning metrics computation (precision and recall calcu-
lation), all of them are aggregated as FP.

4.2 Metrics computation

In this work, we are interested in a fast and practical method
to assess if a model transformation is working as expected for
a concrete input model. Then, we also check to which degree
the generated output model satisfies a set of contracts. From
this point of view, a model transformation may be considered
an information retrieval process, i.e. patterns of input ele-
ments trigger the generation of patterns of output elements.
In pattern recognition and information retrieval with binary
classification, precision and recall are standard metrics of
the relevance of the results obtained. Precision is the fraction
of retrieved instances that are relevant, while recall is the
fraction of relevant instances that are retrieved. We compute
precision and recall using their classic formulae:

Precision = |TP|
|TP| + |FP| Recall = |TP|

|TP| + |FN|

According to these formulae, their values can range from
0 to 1, but we normalise them to the range 0–100 for the sake
of readability.

Metrics computation is implemented as a three-step pro-
cess (Results Report in Fig. 1). First, an intermediate result
model is generated by the execution of the test oracles,
which are model transformations derived from contracts (see
Sect. 3.3). This transformation queries input and output mod-
els and marks every input pattern instance as TP, TN, FPin

or FN (result types). Basically, it iterates over all the input
pattern instances inside the candidate set of every contract to
evaluate their isTransformed and isExcluded pred-
icates. According to such predicates, a particular result type
is selected for the Result element generated.

Secondly, we define an additional step to compute FPout,
because they need different processing. All output pattern
instances not related to an input pattern in the previous step
are marked as FPout because they are instances of unrelated
or FN-associated FPout. Note that, in this case, neither the
contract nor the input pattern can be set in the Result ele-
ment because it is not inside the candidate set defined by the
contracts. Therefore, default values are assigned in this case
to be further processed in repairs computation. Conversely,
replicas are detected by searching for results containing more
than one output pattern for a concrete input pattern. As the
final product of those two steps, a result model containing a
Result element for every relationship between input and
output pattern instances is generated. Output patterns are
then indirectly marked as TP, TN, FP or FN by marking the
Result instance defining its input–output relationship.
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Table 2 MoTES result cases

TP FP FN Precision Recall Case

> 0 0 0 100 100 CTP

> 0 > 0 0 tp 100 CTPFP

> 0 0 > 0 100 tr CTPFN

> 0 > 0 > 0 tp tr CTPFPFN

0 > 0 > 0 0 0 CFPFN

0 0 > 0 NA 0 CFN

0 > 0 0 0 NA CFP

0 0 0 NA NA C0

Finally, this result model is queried to aggregate all the
results and provide the developer with an easy-to-understand
comprehensive report, grouped by output patterns. All the
Result instances for a concrete output pattern are summed
to count for TP, TN, FP or FN, so precision and recall metrics
can be computed for every output pattern. Therefore, preci-
sion and recall provide a thorough examination of the MTUT
behaviour by output pattern according to all the MoTES con-
tracts defined.

In the star example, after the execution of the first two steps
of metrics computation, the generated result model contains 6
Result instances (illustrated in Fig. 8) for the output pattern
considered (Star): 2 are marked as TP, 1 is marked as FPin,
2 are marked as FPout, and 1 is marked as FN. Note that the
replica of Star B, marked as FPout, is not considered here to
be consistent with the running example defined. Therefore,
by applying the metrics formulae, we get a precision of 40
and a recall of 67 for the Star elements.

4.3 Results categorisation

To simplify result interpretation we reduce the set of possible
values for the metrics to four:

– 100. Perfect result.
– 0 < t < 100 (t from threshold: tp for precision and tr for

recall in Table 2).
– 0. Worst result.
– NA. Value cannot be computed (division by zero).

According to these values, Table 2 presents the eight pos-
sible result combinations. Those cases provide testers with
a uniform method to classify the results obtained for each
output pattern. In the star example, the result obtained (pre-
cision and recall values) for Stars (output pattern) can be
further classified as a CTPFPFNcase (see description below).
Following, a concise description of every case is introduced:

1. CTP This is the perfect situation. All expected ele-
ments were generated, and all generated elements were
expected.

2. CTPFP All expected elements were transformed; however,
excluded elements were also transformed.

3. CTPFN All transformed elements were expected; however,
not all expected elements were transformed.

4. CTPFPFN Neither all expected elements were transformed,
nor all transformed elements were expected.

5. CFPFN This is the worst situation. No expected ele-
ment was transformed, and no transformed element was
expected. It is an extreme version of CTPFPFN.

6. CFN There were expected elements, but no element was
transformed. It is an extreme version of CTPFN.

7. CFP There were no expected elements, but some elements
were transformed. It is an extreme version of CTPFP.

8. C0 There were no expected elements, and no element was
transformed. It represents an exceptional case: all the con-
tracts for that output pattern are not applicable to the input
model.

In CTPFP, CTPFN and CTPFPFN, different values for the
threshold t may imply diverse adaptation efforts. A proper
threshold value allows the user to find a balance between
effort and correctness. Therefore, we consider them in a
generic way in the following, since t can get different values
on each application scenario. For instance, in a reverse engi-
neering process, it might be acceptable to get some FP for
particular output patterns because they can be effortlessly
filtered out in a following step. Conversely, trying to fix
the faulty transformation rules might be comparatively more
complex and expensive.

5 Suggesting adaptations

At this point, precision and recall (test results) have been
calculated for each output pattern whose generation is con-
strained by the contracts defined, and the generation of every
output pattern then receives a classification according to
its test results. Recall that traceability knowledge is kept
for each output pattern (see Fig. 4), detailing which rules
operate on a particular output pattern. Combined with this
classification, MoTES can then suggest a fixing action per
output pattern, per contract, and per rule. Those actions
have been defined upon the observed consequences of fail-
ing transformation rules. A mutations catalogue for model
transformations, which defines mutation operators and their
consequences in the output model, has been analysed from
the perspective of precision and recall metrics complemented
by a more detailed examination of TP, FPin, FPout and FN
values.
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5.1 Mutations in transformations

As a foundation for repair actions, we have used the catalogue
of mutations for ATL transformations presented in [24],
which are also considered in Sect. 6 to perform an experiment
replication. Table 3 shows the set of mutations considered and
their consequences in the output model, where a consequence
enclosed within square brackets means that it may happen or
not.

Since our approach analyses only input and output mod-
els, we are primarily interested in getting good coverage
of the consequences of the mutations but not full cover-
age of potential mutations. Those consequences may be:
(1) Object Addition (OA), (2) Object Deletion (OD), (3)
Object Replacement (OR), (4) Relationship Addition (RA),
(5) Relationship Deletion (RD), (6) Object Property Initial-
isation (OPI), (7) Object Property changing to Null (OPN),
and (8) Object Property Modification (OPM).

Additionally, Table 3 presents those consequences in
terms of FPin, FN and FPout to better understand them from
the point of view of our approach. In the following, we
explain them organised by the mutant target.

Target: matched rule and in/out pattern element Mutants
with those targets produce a new input–output relationship
constrained by no contract. Those kinds of mutation opera-
tors generate output pattern instances that cannot be related
to any input pattern instances by the defined contracts (candi-
dates in Fig. 7). Therefore, all those output pattern instances
are marked as FPout, which may be replicas, FN-associated
or unrelated depending on the case.

Target: filter In contrast, these mutants would alter an
established input–output relationship constrained by an exist-
ing contract. Therefore, they only generate FPin (with or
without FN) because either they accept excluded input can-
didates or filter out too many included ones.

Target: binding Finally, these last mutants are only rele-
vant when they change a property included in the detection
criteria of the constraining contract. In that case, they always
produce FPout of the type FN-associated, so FN-FPout pairs
for the same output pattern appear.

Note that there exist other catalogues of mutant operators,
like the one defined in [25] which collects all mutant oper-
ators in the literature and proposes new ones derived from
the authors’ own experiences. They define new mutant oper-
ators to cover common syntactic errors in ATL divided into:
typing errors or faults causing a runtime error. Typing errors
are interesting for static analysis, but they entail no new out-
put consequences. Furthermore, introducing faults makes the
transformation not executable, hence not valid for dynamic
approaches. In conclusion, there are no other mutant opera-
tors that our approach needs to consider as far as we know.
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5.2 Repair actions

For the sake of simplicity, we believe that any evolution sce-
nario (or repair process) can be represented as a sequence
of six basic actions. The column Actions in Table 3 shows
how to canonically solve every mutation operator using these
basic actions. So, in order to adapt our original transforma-
tion to a new application scenario (or repair it), we need to
know the proper sequence of actions to perform over the
initial transformation rules. Those six basic actions are:

– Create (Creat.) A new transformation rule (or output tar-
get) should be created to satisfy a contract.

– Delete (Del.) A transformation rule (or output target) is
useless, and it can be marked for deletion.

– Constrain (Constr.) When FPin are generated, additional
restrictions may need to be included in the selection cri-
teria for input elements of a concrete transformation rule,
i.e. check the rule filter. Conversely, when FPout appear
in the test results, incorrect input pattern elements may
need to be deleted.

– Relax (Relax) Some restrictions may need to be removed
from the selection criteria for input elements of a concrete
transformation rule, i.e. check the rule input pattern or
filter.

– Check Binding (Bind.) Property binding should be checked
to avoid errors producing FN-FPout tandems.

– No Action (NoAct.) When no action needs to be per-
formed on a concrete transformation rule. No action is
defined to provide a comprehensive list of actions for all
the involved transformation rules in the MTUT. This is
the default action for some cases, like the rules that get
CTP as result.

Table 4 presents a listing of suggested actions to perform
for any possible test result case, according to the number of
transformation rules involved in the generation of a concrete
output pattern. Possible values for the number of transfor-
mation rules involved are 0 (no rules) or n (n>0). In order to
provide more concrete repair actions, the latter case may be
decomposed as:

– nTP rules generating only TP,
– nFP rules generating only FP,
– nTPFP rules generating both TP and FP,
– n0 rules not generating anything.

Table 4 can be used as a reference sheet to recommend
adaptation actions. It comprises 37 different possibilities:
thirty-three are related to concrete transformation rules, and
the remaining four are exceptional situations. These excep-
tions have no value in the fourth column, and they always
suggest the action Create new rules. Due to their exceptional

nature, the recommended action should only be performed
when other suggested actions for a concrete output pat-
tern have been already tried, but metric values are still not
good enough for our purposes. Additionally, for testing cases
CTPFPFN and CFPFN (FN and FPout both appear for the same
output pattern), it is worthy of considering whether we obtain
a similar number of FN and FPout, which may imply FN-
associated FPout for a concrete output pattern. In such a
situation, Check Binding is with significant probability the
right action to take.

Eventually, engineers get a comprehensive list of adap-
tations grouped by the transformation rules involved in the
generation of a particular output pattern or, from another
point of view, particular adaptation actions are suggested for
every transformation rule. The repairing of model transfor-
mations may then be completed with the assistance of the list
of recommended actions per transformation rule.

Regarding the star example, given the MTUT defined in
Table 1 and the MoTES contract defined in Listing 2, after
the execution of MoTES we get the CTPFPFN result for the
output pattern Star, because MoTES has labelled the gen-
erated stars as shown in Fig. 8. By analysing the trace model,
we can see that MoTES classifies rule S_R1 into the nTPFP

rule subset and rules S_R2 and S_R3 into the nFP subset.
As Table 4 suggests for such a result case, we decide to
delete S_R2 and S_R3 because they are just generating FPout,
while we constrain S_R1 because it is generating both TP and
FPin. In this case, the Star labelled as FPin is C, which has
been generated from a non-lighted square, and the failing
named predicate is pi1 (checking the light property is true),
specified in the input pattern inclusion criteria of the con-
tract. Therefore, the concrete repair action consists in adding
the following filter to S_R1: “(sq.light==true)”. Once repair
actions have been performed, we rerun MoTES to test new
MTUT behaviour and get the CTPFN result, which means
there are no more FP errors. Given that we have now only one
rule, S_R1, we applied the suggested abstract action Relax on
that rule. In this case, the failing named predicate is p1 (con-
tract detection criteria), which checks that input and output
pattern instances have the same name for the candidate input
element Square E. Therefore, by reviewing S_R1 we derive
the concrete action of deleting the filter “(sq.name!=“E”)”.
Again, we run MoTES to check whether our repair actions
have worked as expected, and we get the CTP result, meaning
the MTUT is now working properly.

5.3 Repairs computation

Adaptation reporting is defined as a model query mixing
both the MoTES result model and the transformation trace
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Table 4 Suggested adaptation/repair actions

Prec. Rec. Case Rules Actions

100 100 CTP n No Action

tp 100 CTPFP nTP No Action

nFP FPin Constrain

nFP FPout Delete rule/out target

nTPFP FPin Constrain

nTPFP FPout Delete out target

n0 Delete

100 tr CTPFN nTP Relax or No Action

nFP No Action (nFP = 0)

nTPFP No Action (nTPFP = 0)

n0 Relax

Create out target

– Create new rules

tp tr CTPFPFN nTP Relax or No Action

nFP FPin Constrain

nFP FPout Delete rule/out target

Check Binding

nTPFP FPin Constrain

nTPFP FPout Delete out target

Check Binding

n0 Relax

Delete

– Create new rules

0 0 CFPFN nTP No Action(nTP = 0)

nFP FPin Constrain

nFP FPout Delete rule/out target

Check Binding

nTPFP No Action (nTPFP = 0)

n0 Relax

Create out target

Delete

– Create new rules

NA 0 CFN 0 Create new rules

n0 Relax or Delete

– Create new rules

0 NA CFP nFP Delete

NA NA C0 0,n No action

model4, as illustrated by Alg. 1. The procedure defined com-
putes the list of adaptation suggestions for a particular tuple
of output pattern and result case, which can be obtained from
the SummaryItem elements of the resulting model.

Firstly (lines 4–8), for each Result element, we query the
trace model to obtain the identifier of the rule responsible for

4 Any rule-based transformation engine with trace support might
be used. Herein we use https://wiki.eclipse.org/ATL/EMFTVM#
Advanced_tracing.

Algorithm 1 Adaptation Actions query
1: procedure Adaptations(out , case, Adaptations)
2: Results ← get I nstances(mm R!Result, results)
3: Contracts ← get I nstances(mm R!Contract, contracts)
4: Result And Rules ← []
5: for all result ∈ Results do
6: rule ← get RuleI d(r , traces)
7: Result And Rules.insert(T uple(rule, result))
8: end for
9: Results PerContract ← []
10: for all c ∈ Contracts do
11: RC ← []
12: for all tuple ∈ Result And Rules do
13: if tuple.result .contract .name = c.name then
14: RC .insert(tuple)
15: end if
16: end for
17: Results PerContract[c] ← RC
18: end for
19: ruleI ds ← get All(mmT race!T raceLinkSet, traces)
20: Res PerContract Per Rule ← []
21: for all r pcwr ∈ Res PerContract do
22: R PC ← []
23: for all rule ∈ ruleI ds do
24: R P R ← []
25: for all tuple ∈ r pcwr .rules do
26: if tuple.rule = rule then
27: R P R.insert(tuple.result)
28: end if
29: end for
30: R PC(rule) ← R P R
31: end for
32: Res PerContract Per Rule(r pcwr .contract) ← R PC
33: end for
34: for all r pcpr ∈ Res PerContract Per Rule do
35: Adaptations[r pcpr ] ← get Actions(out, case, r pcpr)
36: end for
37: end procedure

the transformation of its input pattern instance into its output
pattern instance by searching for the Rule element containing
the relationship between those two instances (getRuleId). In
the case of Result elements marked as FPout, we also obtain
its input pattern from the trace model, so we can also assign
this result to the contract constraining such pattern. When
more than one contract is constraining that input pattern, we
assign the result to all of them because they may be relevant
for any of them. As a result, we get a list of tuples associating
each result with the corresponding rule.

Secondly (lines 9–18), all those tuples are grouped by
MoTES contract, so for each contract, we create the list of
tuples containing the results obtained and their corresponding
rules.

Thirdly (lines 19–33), for every contract, we aggregate the
results by rule, so for every rule, a list of results is created.

Finally (lines 34–36), we map every combination of result
case for an output pattern with the results obtained by every
rule involved into a particular list of adaptations suggestions
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for that rule. Tables 9, 11 and 17 show particular examples
of adaptation suggestions in an experimental setting.

As illustrated, our approach to suggest repair actions is
completely independent of the model transformation lan-
guage of the MTUT since rule identifiers are obtained by
means of the trace model. Therefore, it is not necessary to
statically analyse the model transformation rules to locate the
faulty ones. However, such independence also means that we
cannot execute concrete automatic fixes for model transfor-
mation rules. That is, our suggested actions define abstract
repairs following the terminology specified by [13], but how
to derive concrete repairs for a concrete transformation lan-
guage from them remains as future work.

5.4 Repair selection

Our approach provides testers with data about transformation
success according to the contracts defined, and eventually,
it derives some repair suggestions stemming from those
results. However, in some situations, human intervention is
still needed for the final decision: (1) when several actions
are suggested for a particular rule; (2) when conflicting sug-
gestions are provided; and (3) when there is a long list of
repair suggestions. Several examples of those situations are
illustrated in Sect. 6 and discussed in Sect. 8. Although a
detailed analysis of conflicts and prioritisation among repair
actions is out of the scope of this paper, in the remainder of
this section, we elaborate on them a little bit further.

Sometimes several actions may be suggested for a par-
ticular model transformation rule. In those cases, testers are
responsible for selecting the final repair action to apply, but
our approach helpfully narrows down the possibilities to a
shortlist for each faulty rule. Actually, testers always have
the final word because they can decide which suggestion
makes more sense in light of the particular transformation
rule involved.

Additional concerns might need to be taken into account
when conflicts appear. For instance, two different result
cases might suggest conflicting actions over the same model
transformation rule. Furthermore, another source of con-
flicts might be combining the results obtained from multiple
input/output model pairs. A deeper analysis of such con-
flicting suggestions should then be carried out, and proper
solutions should be derived.

In real scenarios, MTUTs may have many complex rules,
so many contracts need to be defined. In such cases, the list
of test results and repair suggestions might become too long.
Moreover, the order of application of repairs might also be
relevant because different orders may entail different efforts.
Therefore, for testers to select, some priority criteria could
be followed to provide them with the best sequence of adap-
tations to follow.

Finally, human intervention is error-prone, so testers
might incorrectly select the wrong repair action from the
choices provided. Nevertheless, if a repairing is wrongly
selected, the error will not be fixed, and test results will not
improve. Therefore, for any action taken, our approach can
be executed to see if results are getting better or worse for
a concrete output pattern. Our approach is designed to be
lightweight and easily interpretable, so it can be quickly re-
executed to assess the impact of every repair action applied
in the MTUT.

6 Evaluation

In this section, we discuss the validity and limitations of our
approach. More specifically, we aim to answer the following
research questions:

1. RQ1 - Applicability.

(a) RQ1.1: Are all the errors appropriately detected?
(b) RQ1.2: Are there appropriate suggested actions for

all the detected errors?

2. RQ2 - Correctness.

(a) RQ2.1: Are the detected errors (unsatisfied contracts)
correct in the sense that all reported errors are repre-
senting real model transformation failures?

(b) RQ2.2: Are the suggested actions correct in the sense
that they indicate which rules to fix and how?

3. RQ3 - Usefulness. Could the approach be successfully
used in a real application domain?

RQ1 and RQ2 have been answered by replicating a case
study aimed at locating errors and suggesting repair actions
in faulty model transformations by applying mutation anal-
ysis to two different transformation projects. In order to
answer RQ3, we have applied our approach to helping us
adapt to a new application scenario, an ATL transformation
that implements a static analysis in a Model-Driven Reverse
Engineering (MDRE) project. In particular, how to adapt it
to a different legacy project.

6.1 Experiment replication

Given that our approach is based on model transformation
testing, to assess its correctness and completeness, we have
performed a comparative experiment with the static analysis
approach based on Tracts [7]. Both in the original experiment
and here, the tests aim at locating faulty model transforma-
tions from the case study in [26]. Additionally, in our case,
we also propose repair actions for those faulty model trans-
formations. The authors in [7] used mutation analysis [27]
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Table 5 Transformation metrics overview

Metric UML2ER E2M JSP2View

ATL LoC 77 1397 525

#Rules 8 40 19

#Helpers 0 40 14

#Bindings 5 329 99

Table 6 Metamodel Metrics Overview

Metric UML ER Ecore Maude StrutsJSP MVC

#Class 4 8 18 45 16 61

#Atts 3 1 31 17 13 62

#Refs 4 2 34 46 12 87

#Inhs 3 6 16 38 13 57

to inject faults into model transformations [28] systemati-
cally and then used their approach to locate those bugs. The
purpose of a mutated rule is to emulate a model transforma-
tion that contains bugs and can be used to check whether the
model transformation testing approach can identify them. To
define the possible mutations of ATL transformations, they
use the list of transformation change types presented in [29].
We have used the same testing artefacts (model transforma-
tions, contracts and mutants) to compute our test oracle and
comparatively analyse the results of both approaches.

Setup For this experiment replica, we have used the fol-
lowing model transformation projects: (1) UML2ER, which
takes as input a UML Class Diagram and outputs the equiv-
alent Entity-Relationship diagram, and (2) E2M, which
generates a Maude metamodel from an Ecore metamodel.
Tables 5 and 6 present complexity data for the projects con-
sidered. In these case studies, input and output elements are
uniquely identified; hence, concrete input–output relation-
ships can be established. The following steps have been taken
in order to set both experiments up properly:

1. Manual translation of the considered constraints from
Tracts to MoTES.

2. Slight adaptation of the ATL transformations’ source code
to the specific requirements of the EMFTVM engine 5 (to
meet the technical requirement for trace information of
our current implementation platform).

3. Analysis and completion of existing test input models in
order to check that they cover all the specified constraints.

4. Execution of the transformation under test using EMFTVM
engine.

5. Execution of the ATL-based implementation of our
approach for the MoTES contracts.

5 https://wiki.eclipse.org/ATL/EMFTVM.

6. Report elaboration with the obtained measures.

The last three steps have been repeated for all the mutations
considered in each case. Hence, in each iteration, a different
mutation is applied to the original model transformation, one
at a time.

Table 7 summarises the mutation operators considered and
their consequences. The affected rules are explained in the
following. As shown, most possible consequences are con-
sidered in this case study.

Measures For each mutation, we collect, grouped by out-
put pattern, the total number of TP, FP, TN and FN yielded
by checking all the contracts related to every output pattern.
From these data, our test oracle is computed, i.e. precision
and recall metrics are calculated. We then use the values
those metrics provide to categorise the results obtained for
every output pattern (result cases). Moreover, all the ATL
rules involved in the generation of every output pattern are
identified. By analysing those rules together with the previ-
ously collected and derived data, we are able to automatically
suggest a list of recommended repair actions for every faulty
transformation rule.

Results In this case, we have formatted into tables all the
results derived from applying our approach to simplify its
understanding. Those tables are presented in the context of
each case study.

6.2 UML2ER case

In this case, study6, the model transformation under test takes
as input a UML Class Diagram and outputs the equivalent
Entity-Relationship diagram.

6.2.1 Transformation rules

Table 8 shows the input–output pairs of every rule in this
transformation, as well as whether the rule is abstract (Abs)
and the rule it inherits from (Inh), if any. In ATL [19], rule
inheritance can be used as a code reuse mechanism. Subrules
have to match a subset of what their parent rules match, while
subrules’ target patterns need to extend their parent target
patterns. A parent rule can be abstract, which makes it useful
for inheritance but also non-executable.

6.2.2 Constraints and contracts

The constraints that should be satisfied by the model trans-
formation are:

1. U_Co1 All Package elements should generate a Model
element with the same name.

6 https://www.eweb.unex.es/eweb/migraria/motes/uml2er.html.
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Table 7 ATL mutations and
consequences considered
(defined by [7])

Case Mut. Desc. Rule Cons.

UML2ER U_M1 Binding change U_R1 OPM

UML2ER U_M2 Out pattern added U_R3 OA;RA;OPI

UML2ER U_M3 Filter addition U_R8 OD

UML2ER U_M4 Out pattern class change and binding deletion U_R5 OR;OPN

E2M E_M1 In pattern addition E_R9 OA;RA

E2M E_M2 Binding value change E_R9 OPM

E2M E_M3 Filter deletion E_R10 OA

E2M E_M4 Out pattern added E_R20 OA;OPI

E2M E_M5 Out pattern deletion E_R29 OD

E2M E_M6 Out pattern deletion E_R1 OD;RD

E2M E_M7 Filter addition E_R38 OD

Table 8 Transformation rules
(UML2ER)

Rule Input element Output element Abs Inh

U_R1 NamedElement Element � –

U_R2 Package ERModel – U_R1

U_R3 Class EntityType – U_R1

U_R4 Property Feature � U_R1

U_R5 Property Attribute – U_R4

U_R6 Property Reference � U_R4

U_R7 Property WeakReference – U_R6

U_R8 Property StrongReference – U_R6

2. U_Co2 For each Class in a Package an Entity in
its corresponding Model should be generated.

3. U_Co3 For each Property in a Class a Feature in
its corresponding Entity should be generated.

4. U_Co4 There should be as many Element instances as
NamedElement instances.

5. U_Co5 There should be as many Model elements as
Package elements.

6. U_Co6 There should be as many Entity elements as
Class elements.

7. U_Co7 There should be as many Feature elements as
Properties elements.

8. U_Co8 For each primitive Property in a Class an
Attribute in its corresponding Entity should be
generated.

9. U_Co9 For each complex non-containment Property
in a Class a WeakReference in its corresponding
Entity should be generated.

10. U_Co10 For each complex containment Property in
a Class a StrongReference in its corresponding
Entity should be generated.

For these ten constraints, ten contracts are defined in Tracts.
Listing 4 shows an excerpt of the Tracts contract definitions.
The interested reader might review [26] for more detailed

information about these contracts. Those same constraints
are defined in only five MoTES contracts (shown partially in
Listing 5). Such reduction is possible mainly because mul-
tiplicity (set/size) invariants are implicitly held in MoTES
contracts. Given that a MoTES contract establishes a one-
to-one relationship between an input pattern instance and
an output pattern instance, the number of input and output
pattern instances has to be the same, whereas Tracts must
make such invariants explicit (e.g. Tract U_Tr6). Another
interesting difference is that MoTES allows inter-contract
invocation. For instance, container correspondence of ele-
ments is checked by explicitly invoking a MoTES contract
whose input and output patterns fit; meanwhile, Tracts does
not provide any means of modularisation. Hence, this con-
tainer check should be redundantly checked in those Tracts
constraining deeper elements. In this sense, U_Tr10 includes
the code to check the container correspondence for a concrete
Property-StrongReference pair but also the code to
perform the same check for its container Class-Entity
pair. Conversely, U_Mo5 performs this check by invoking
U_Mo2, which correspondingly invokes U_Mo1.
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Listing 4 UML2ER Tracts excerpt

--Tract 06 (U_Tr6)
Class.allInstances ->size() =

EntityType.allInstances ->size()

--Tract 10 (U_Tr10)
Package.allInstances ->forAll(p | ERModel.allInstances

->one(e | p.name = e.name and p.ownedElements
->forAll(class | e.entities ->one(entity |
entity.name = class.name and class.ownedProperty
->forAll(prop | prop.complexType <> null
implies entity.features ->

select(f|f.oclIsTypeOf(Reference ))
-> one(f | f.name = prop.name and prop.isContainment
implies f.oclIsTypeOf(StrongReference )))))))

Listing 5 UML2ER MoTES contracts excerpt

contract U_Mo1{
input { (Package:i) }
output { (ERModel:o) }
detection: p1(i.name = o.name)
}

contract U_Mo2{
input { (Class:i) }
output { (EntityType:o) }
detection: p2(i.name = o.name) and
invoke(U_Mo1 ,i.immediateComposite ,

o.immediateComposite)
}

contract U_Mo5{
input {
(Property:i)
exclusion: pe5_1(i.complexType = null) or
pe5_2(i.isContainment = false)
}
output { (StrongReference:o) }
detection: p5(i.name = o.name) and
invoke(U_Mo2 ,i.immediateComposite ,

o.immediateComposite)
}

6.2.3 Mutations

Regarding the mutation analysis, the following mutations,
summarised in Table 7, have been performed in the UML2ER
ATL source code:

1. U_M1(U_R1). Modification of the value feature of a
binding in U_R1, which results in incorrectly initialised
features (name) in the target model.

2. U_M2(U_R3). Addition of an out pattern with two bind-
ings in U_R3, which results in the creation of unexpected
additional elements in the target model.

3. U_M3(U_R8). Modification of a filter in U_R8, resulting
in the generation of fewer elements than expected in the
target model.

4. U_M4(U_R5). Modification of the class feature in an out
pattern and deletion of a binding in U_R5, which results
in incorrectly initialised features in the target model.

6.2.4 MoTES results

For brevity, we do not present the final number of collected
TP, TN, FP, and FN. We present rather the values of the
metrics calculated from them. Table 9 presents, for each
mutation (column Mut.), the affected output elements (col-
umn Output), the result case obtained (column Case), the
MoTES contracts involved (column Contract), the types of
result obtained (column Res.) and the adaptations suggested
(column Act.) for every faulty rule (column Rule). Note that
bold text in the column Act. indicates which action was
finally selected in case of multiple suggestions. As shown, all
mutations were detected by our approach, and proper repair
actions were suggested for each case. In the following, a brief
explanation of each analysed mutation is presented.

U_M1 When analysing test results, we find that all the
contracts yield the same result: CFPFN, which means that
none of the expected elements has been generated, while
all generated elements were not expected. All the input ele-
ments are marked as FN because no output element has been
found to relate to, while all the elements of the output model
were marked as FPout elements, which means they could
not be related to an input element. In addition, we get the
same number of Fn and FPout. In such a situation (CFPFN

and FN=FPout), a thorough review of the bindings of every
transformation rule involved is recommended, as stated in
Table 4. Moreover, if specific named predicates have been
defined for that criteria, MoTES can indicate which predi-
cate is not satisfied and therefore narrow the search space for
the incorrect binding.

In the end, for this first mutation, a single change has made
all the rules fail. The rationale behind this is that all the rules
are bound to the mutated one by an inheritance relationship.
Since we use a black-box approach, we can conclude that
all the rules are failing, but we cannot mark U_R1 as the
source of the problem because this entails statically analyse
the transformation rules. However, in such a case, in which
all the contracts get the same extreme case, and we previously
knew that all the rules are inside the same inheritance hierar-
chy, we conceivable could conclude the problem might be in
the rules at the top of such hierarchy, again named predicates
may be helpful (p1 predicate failing implies the problem is
in U_R1).

U_M2 The obtained results indicate that everything is
working as expected, except for EntityType output
elements, whose contract yields a 50% precision (some
unexpectedEntityType elements have been wrongly gen-
erated in the output model). Our approach can indicate
straightforwardly that U_R3 (Class2EntityType) is the
only guilty rule involved in the generation of such output pat-
tern and responsible for the TP and FPout results. The default
suggested action when FPout appears is to delete the out-
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Table 9 Results and suggested
adaptations (UML2ER)

Mut. Output Case Contract. Rule Res. Act.

U_M1 ERModel CFPFN U_Mo1 U_R2 FN FPout Constr. Del.

U_M1 EntityType CFPFN U_Mo2 U_R3 FN FPout Constr. Del.

U_M1 Attribute CFPFN U_Mo3 U_R5 FN FPout Constr. Del.

U_M1 WeakRef CFPFN U_Mo4 U_R7 FN FPout Constr. Del.

U_M1 StrongRef CFPFN U_Mo5 U_R8 FN FPout Constr. Del.

U_M2 ERModel CTP U_Mo1 U_R2 TP NoAct.

U_M2 EntityType CTPFP U_Mo2 U_R3 TP FPout Constr.

U_M2 Attribute CTP U_Mo3 U_R5 TP NoAct.

U_M2 WeakRef CTP U_Mo4 U_R7 TP NoAct.

U_M2 StrongRef CTP U_Mo5 U_R8 TP NoAct.

U_M3 ERModel CTP U_Mo1 U_R2 TP NoAct.

U_M3 EntityType CTP U_Mo2 U_R3 TP NoAct.

U_M3 Attribute CTP U_Mo3 U_R5 TP NoAct.

U_M3 WeakRef CTP U_Mo4 U_R7 TP NoAct.

U_M3 StrongRef CFN U_Mo5 U_R8 FN Relax (Creat.)

U_M4 ERModel CTP U_Mo1 U_R2 TP NoAct.

U_M4 EntityType CTP U_Mo2 U_R3 TP NoAct.

U_M4 Attribute CFN U_Mo3 U_R5 FN Relax (Creat.)

U_M4 WeakRef CTPFP U_Mo4 U_R7 TP NoAct.

U_Mo4 U_R5 FPout Constr. Del.

U_M4 StrongRef CTP U_Mo5 U_R8 TP NoAct.

Table 10 Comparison Summary (UML2ER)

Mut. Description MoTES results Detection Direct

U_M1 Value changed in U_R1 binding CFPFN for all rules (inheritance) Both Both

U_M2 Out pattern element addition in U_R3 CTPFP for U_R3 Both Both

U_M3 Condition changed in U_R8 filter CFN for U_R8 Both MoTES

U_M4 Out pattern class change in U_R5 CTPFP and CFN for U_R5 Both Both

put target responsible for them. Therefore, our approach can
locate the faulty rule and suggest the right repair action.

U_M3 In this case, our approach indicates everything
is working as expected for any considered output pattern,
except for StrongReference. For that output pattern, it
yields a CFN result, which means that, although there were
expected elements, none of them has been generated. Only
U_R8 is responsible for generating that output pattern so that
it can be directly located by our approach. Different from
U_M1, in this case, there are no extra output elements gen-
erated by that rule. Therefore, we can infer that the problem
is related to the rule filter and not to the output pattern. As a
result, instead of deleting the rule, we would select “Relax”
and review the filter to know why it is filtering out too many
elements.

U_M4 This is an interesting case because two different
but related mutation operators have been applied simulta-
neously. Therefore, we get two test error cases (CFN and

CTPFP) for two different output patterns (Attribute and
WeakReference). However, only one model transforma-
tion rule is affected: U_R5. CFN is just indicating that none
of the expected elements have been generated (FN), while
CTPFP is indicating that some of the generated elements were
not expected (FPout), decreasing precision. By analysing both
cases at the same time, we find that the source of the problem
is just the rule U_R5 (Property2Attribute), which is
incorrectly generating WeakReference elements (FPout)
but no Attribute elements (FN), and that the number of
affected elements are the same for both cases. In this case,
different (partially contradicting) actions are suggested:

– CFN suggests to “Relax” rule U_R5.
– CTPFP suggests to “Delete” rule U_R5 or “Delete one of

its output targets”.
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Interestingly, we get that FPout(WeakReference) =
FN(Attribute), which generally means that bindings
must be reviewed instead of relaxing or deleting the rule.
In the end, we can easily conclude that U_R5 might be
incorrectly generating WeakReference elements when it
should generate Attribute elements. Therefore, the sug-
gested actions can be properly applied to fix the rule.

6.2.5 Comparison summary

In this case, we have been able to run all the originally defined
mutations under our approach, and the comparative results
are presented in Table 10. Basically, both approaches can
detect all the mutations (detection column), although slight
differences appear when considering how easy it is to find the
guilty rule (direct identification column). In the following, we
present the comparison of locating the faulty rule for every
mutation:

1. U_M1 Since it is a black-box approach, MoTES cannot
deal with inheritance relationships between transforma-
tion rules. Therefore, it concludes that all the rules are
failing according to the provided contracts. However, by
using named predicates, it is straightforward to identify
the source of error and, therefore, the faulty rule. A simi-
lar result is yielded by Tracts in this case: more than half
of the Tracts contracts fail, specifically U_Tr1, U_Tr2,
U_Tr3, U_Tr8, U_Tr9 and U_Tr10. Therefore, a testing
engineer has to thoroughly review the values from three
different tables to detect the guilty rule for each of the
failing constraints.

2. U_M2 MoTES and Tracts can identify U_R3 as the faulty
rule straightforwardly.

3. U_M3 MoTES can directly identify the faulty rule and
suggest a repair action; however, Tracts yields four failing
constraints: U_Tr3, U_Tr4, U_Tr7 and U_Tr10. So the
engineer has to check table values for those 4 constraints
to find one guilty rule, in this case. U_Mo4 is reported to
be the most cumbersome case taking seven steps to find
out the guilty rule.

4. U_M4 MoTES and Tracts can identify U_R5 as the faulty
rule straightforwardly.

Summarising, MoTES might not precisely identify the
faulty rule when syntactic relationships hold among rules
if no named predicates are wisely used, as in U_M1; how-
ever, it provides additional information to testing engineers
to help them with faulty rule identification. Conversely,
MoTES seems to perform better than Tracts when the muta-
tion changes filter conditions of the rules, e.g. U_M3. As
a result, we may conclude that, for this case, our approach
seems to be as correct and complete as Tracts-based static
analysis presented by [7] when localising faulty model trans-

formation rules. However, our approach is not just locating
the faulty rules, but it also provides engineers with valuable
action suggestions to guide their reparation.

6.3 E2M case

In this case, study7, the model transformation under test takes
as input a model which conforms to the Ecore metamodel and
outputs an equivalent model which conforms to the Maude
metamodel [26].

6.3.1 Transformation rules

As shown in Table 6, the E2M case is a large case study con-
taining 40 transformation rules and more than one thousand
lines of code. Nevertheless, the constraints already defined
for this case only affect a subset of those rules. The relevant
model transformation rules are shown in Table 11.

6.3.2 Constraints and contracts

The following constraints should be satisfied by the MTUT:

1. E_Co1. All EPackage, EClass, EReference,
EAttribute and EEnumLiteral elements should
generate an Operation with the same name.

2. E_Co2. For each Class a Sort in its corresponding
Module should be generated with the same name.

3. E_Co3. Size constraints should be observed on some of
the output element sets.

In this case, three Tracts are defined, as Listing 6 shows.
Meanwhile, the same constraints are defined by seven
MoTES contracts (shown in Listing 7). In this case, we
require more MoTES contracts than Tracts to express the
same constraints. Firstly, we should define five different
MoTES contracts to express E_Tr1 constraints: one contract
for every input pattern that may generate Operation ele-
ments in the output. Note that those contracts are defined in a
reverse manner compared to E_Tr1, checking the input for a
concrete output. Additionally, no MoTES contract is defined
from E_Tr3, because it specifies a postcondition. Postcondi-
tions can be expressed by MoTES, but they are not relevant
for metrics computation, just focused on invariants. There-
fore, that Tract is not considered in this case study.

6.3.3 Mutations

Regarding the mutation analysis, the following mutations
have been performed in the E2M ATL source code (see
Table 7):

7 https://www.eweb.unex.es/eweb/migraria/motes/e2m.html.
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Table 11 Transformations
(E2M)

Rule Input element Output element

E_R1 (entrypoint) MaudeSpec, SModule, ModImpor-
tation, ModuleIdModExp, Sort and
operation

E_R4 EPackage Operation

E_R9 EClass Sort, SubsortRel and operation

E_R10 EClassifier Sort

E_R19 EClassifier Equation, RecTerm and constant

E_R20 EReference Operation

E_R29 EAttribute Operation

E_R32 ENum Sort, SubsortRel and operation

E_R38 EEnumLiteral Operation

Listing 6 E2M Tracts

-- Tract 01 (E_Tr1)
trg_Operation.allInstances ->forAll(p|
src_EPackage.allInstances ->exists

(o | p.name = o.name) or
src_EClass.allInstances ->exists

(o | p.name = o.name) or
src_EReference.allInstances ->exists

(o | p.name=o.name) or
src_EAttribute.allInstances ->exists

(o | p.name=o.name) or
src_EENum.allInstances ->exists

(o | p.name = o.name) or
src_EEnumLiteral.allInstances ->exists

(o | p.name=o.name))

-- Tract 02 (E_Tr2)
src_EClass.allInstances ->forAll(c |
trg_Sort.allInstances ->exists

(s | c.name = s.name))

-- Tract 03 (E_Tr3)
trg_MaudeSpec.allInstances ->size ()=1 and
trg_SModule.allInstances ->size ()=2 and
trg_ModImportation.allInstances ->size ()=1 and
trg_ModuleIdModExp.allInstances ->size ()=1 and
trg_Sort.allInstances ->size()>0

Listing 7 E2M MoTES contracts excerpt

contract E_Mo1_1_EPackage2Operation{
input { (EPackage:i) }
output { (Operation:o) }
detection: nameMatch(i.name = o.name)}

contract E_Mo1_2_EClass2Operation {
input { (EClass:i) }
output { (Operation:o) }
detection: nameMatch(i.name = o.name)}

...

contract E_Mo2{
input { (EClass:i) }
output { (Sort:o) }
detection: nameMatch(i.name = o.name)}

1. E_M1 (E_R9). Addition of an input pattern in E_R9, so
that more output elements than expected could be gener-
ated (Cartesian product of all input patterns).

2. E_M2 (E_R9). Modification of the value in a binding in
E_R9, which might result in incorrectly initialised fea-
tures (name) in the target model.

3. E_M3(E_R10). Filter condition in input pattern removed
in E_R10, supposedly it might mean to generate more
output elements than expected.

4. E_M4(E_R20). An output pattern element added to
E_R20 with one binding, which might also mean an over-
generation of output elements.

5. E_M5(E_R29). An output pattern element deletion in
E_R29, likely resulting in the generation of fewer ele-
ments than expected in the target model.

6. E_M6(E_R1). An output pattern element deleted from
E_R1 with the same consequences as the previous muta-
tion.

7. E_M7(E_R38). Filter condition in input pattern added to
E_R38, so the model transformation could not generate
all the output elements expected.

6.3.4 MoTES results

Table 12 shows that all considered mutations were detected
by our approach, and proper repair actions were suggested
for each case. Unfortunately, some mutations cannot be
considered because of operational issues (see 6.3.5 for a
description). Note that, for the sake of consistency, we are
keeping the original numbering for the mutations.

E_M2 This case is similar to U_M1, but now the mutation
is just affecting one specific rule (Class2Sort, E_R9),
which can be directly marked as the faulty one. Again, we
get CFPFN and FN(Sort) = FPout(Sort): the involved rule
may be generating the expected output elements but some
of their detection constraints are not fulfilled, e.g. they are
given a different name. In such cases, a thorough revision
of the bindings of each transformation rule is recommended,
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Table 12 Results and suggested
adaptations (E2M)

Mut. Output Case Cs. Rule Res. Act.

E_M2 Operation CTP E_Mo1.1 E_R4 TP NoAct.

E_Mo1.2 E_R19 TP NoAct.

E_Mo1.3 E_R20 TP NoAct.

E_Mo1.4 E_R29 TP NoAct.

E_M2 Sort CFPFN E_Mo2 E_R9 FN FPout Constr. Del.

E_M5 Operation CTPFN E_Mo1.1 E_R4 TP Relax NoAct.

E_Mo1.2 E_R19 TP Relax NoAct.

E_Mo1.3 E_R20 TP Relax NoAct.

E_Mo1.4 E_R29 FN Relax Creat.

E_M5 Sort CTP E_Mo2 E_R9 TP NoAct.

E_M7 Operation CTPFN E_Mo1.1 E_R4 TP Relax NoAct.

E_Mo1.2 E_R19 TP Relax NoAct.

E_Mo1.3 E_R20 TP Relax NoAct.

E_Mo1.4 E_R29 TP Relax NoAct.

E_Mo1.5 E_R32 TP Relax NoAct.

E_Mo1.6 E_R38 FN Relax Constr.

E_M7 Sort CTP E_Mo2 E_R9 TP NoAct.

which can be significantly reduced by identifying the failing
predicate of a MoTES contract.

E_M5 CTPFN is obtained in this mutation for the out-
put element Operation, i.e. some input elements had not
been generated, but they were expected. By means of the
analysis of the different rules generating Operation ele-
ments, we find all the rules are generating TP, except for
E_R29 Attribute2Operation, which is the source of
false negatives, because there are Attribute elements in
the input model not transformed into Operation elements.
According to the suggested actions, we should select which
action to take for both E_R29 and all rules generating TP.
For the latter ones, we choose “No Action” because there
is another rule causing FN: Attribute2Operation
(E_R29). In this case, there is no issue related to the fil-
tering condition of input elements, but the problem is in the
output pattern of the rule. Both issues look the same from a
black-box point of view since we are missing some expected
output elements. Therefore, for E_R29 we choose to “Create
a new output target” as suggested in Table 4.

E_M7 This mutation defined a new input filter that was
not applicable for the input type of the rule. It raised a VM
Exception in both EMFTVM and ATL2006 engines. There-
fore, we need to redefine this mutant to make it executable
without modifying its basic semantics (filtering some valid
input candidates out), as shown in Listing 8.

Regarding MoTES results, CTPFN is again obtained
for the output element Operation. Through the anal-
ysis of different rules generating Operation elements,
we find that all rules are generating TP except for rule
EnumLiteral2Operation (E_R38), which is the ori-

Listing 8 E2M mutation 7 redefined

rule EnumLiteral2Operation { -- E_R38
from enumLit : Ecore ! EEnumLiteral

( enumLit.value = 0 )

gin of the false negatives. In contrast to E_M5 results, in
this case, we can safely perform the default suggested action
“Relax” for this faulty rule.

6.3.5 Comparison summary

In Table 13, we present the comparison results for the suc-
cessful mutations, while for the mutations with operational
issues, only a brief description of them is included. For this
case study, we were not able to run all the originally defined
mutations under our approach because different operational
issues appeared in some of them (see additional material8 for
more information). In the following, firstly, the comparison
of the mutation results are presented, and secondly, the muta-
tions with operational issues are briefly described. Regarding
the mutation results to compare to Tracts, they are:

1. E_M2 MoTES and Tracts can identify E_R9 as the faulty
rule straightforwardly.

2. E_M5 In this case, Tracts is not able to find the guilty rule.
According to the authors: “This leads to a false negative
(FN) and the impossibility to detect the guilty rule. This
happens in this concrete case because [E_]R29 has very

8 https://www.eweb.unex.es/eweb/migraria/motes/e2m.html.
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Table 13 Comparison
Summary (E2M)

Mut. Description MoTES results Detection Direct

E_M1 In pattern element addition in R9 ATL runtime exception

E_M2 Value changed in E_R9 binding CFPFN for E_R9 Both Both

E_M3 Condition deleted in R10 filter Mutation will never change output

E_M4 Out pattern element added in R20 Mutation not constrained by contracts

E_M5 Out pattern element deletion in E_R29 CTPFN for E_R29 MoTES MoTES

E_M6 Out pattern element deletion in R1 Postcondition (not considered)

E_M7 Filter addition in E_R38 CTPFN for E_R38 Both Both

few types, so removing some of them implies a significant
loss of information.” In contrast, MoTES can easily find
the guilty rule E_R29.

3. E_M7 Both approaches can straightforwardly identify
E_R38 as the faulty rule.

Basically, both approaches can detect all the mutations
(detection column), although small differences appear when
considering how straightforwardly the guilty rule can be
found (direct identification column). In conclusion, our
approach appears at least as correct and complete as [7] for
this second case study. Moreover, MoTES can provide those
results while remaining a dynamic testing approach, so no
additional static analysis of the model transformation under
test is required. Furthermore, our approach is not just locating
the faulty rules, but it also provides engineers with practical
repair actions to guide them to their fixing.

Finally, a brief description of the commented operational
issues is provided for each mutation involved:

1. E_M1 In its original form, this mutation yields an ATL
runtime exception, so no test is needed to detect it.
Although we tried to define a valid modified version of
this mutation, it was not possible because of the tight
coupling between the input and output patterns, i.e. most
output pattern bindings depend on concrete elements of
the input pattern.

2. E_M3 This mutation deletes a filter condition of the input
pattern of an ATL lazy rule. Because that lazy rule is
always invoked by just one rule which is already filter-
ing its input pattern, an implicit filter is present on all its
invocations. As a result, it behaves correctly according to
contracts, so this mutation does not lead to any negative
consequences in the output model.

3. E_M4 After the mutation, for every Reference in the
input model, anOperation is added to the output model
as it should be, but in addition, a Parameter is added
too. However, no contract is actually constraining the
generation of Parameter output elements. Hence, no
failure has to be detected by any of the tools.

4. E_M6 This mutant is constrained by E_Co3 that is spec-
ifying a postcondition, so it is not relevant for our study,
given our focus on invariants.

As aforementioned, mutations are useful to introduce
synthetic changes to model transformations. However, some-
times those mutations make transformation rules invalid
because they create syntax errors, e.g. E_M1, or they could
not have any real or measurable impact on the transfor-
mation output, e.g. E_M3 and E_M4. Therefore, although
those mutations can be useful for assessing static analysis
approaches, they have no real consequences in the output
model.

6.4 MDRE case study

This final case study9 is framed inside the MIGRARIA
project [30–32], which defines a model-driven re-engineering
process over Legacy Web Applications (LWAs) aimed to
obtain Rich Internet Applications (RIAs) and mobile clients
(Fig. 9). In the reverse engineering stage inside this process, a
static analysis on the software artefacts of the LWA is defined
using MTs, in order to abstract its information and organise
it according to the structure of our technology-independent
metamodel: the MIGRARIA MVC metamodel. Contrary to
the two previous case studies, in this one, we do not apply
mutations to the MTUT. Nevertheless, the transformation,
which is working properly in an application scenario, behaves
wrongly for a new one. As a result, we can apply our approach
to evolve such transformation to the new application scenario.
For the sake of brevity, we just report herein the results and
adaptations suggested.

In MDRE, one of the main goals is to increase the reusabil-
ity of the model transformation chain that implements a static
or dynamic analysis of the legacy system. For example, in the
MIGRARIA project, it has been necessary to adapt or extend
the transformation rules already defined so they contemplate
new code patterns. This necessity arises since the code style
guidelines used in the development of these LWAs may dif-

9 https://www.eweb.unex.es/eweb/migraria/motes/mdre.html.
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Fig. 9 MIGRARIA Process

fer from the ones considered so far, even if all of them use
the same technological platform. The final goal is to reuse
an existing reverse engineering (RE) process most optimally
and effortlessly.

In this section, we present one of the case studies in
MIGRARIA to validate our approach. In this case, the model
transformation chain defined for a legacy system named CRS
has to be adapted to the characteristics of another legacy sys-
tem named AL-SIGM. That model chain has two steps. The
first one is a text-to-model transformation to get a model rep-
resentation of the software artefacts of a legacy system. This
transformation is implemented by means of the MoDisco
project [33]. And the second one is a model transformation
that defines a static analysis of the software artefacts (mod-
els) and generates a MIGRARIA MVC model. This model
transformation is implemented in ATL.

In this paper, we are just considering that model transfor-
mation (second step). MIGRARIA MDRE process should
execute a model transformation for each of the components
of the MIGRARIA MVC metamodel, i.e. Model, View and
Controller components. In this work, for brevity, we are just
going to focus on the generation of the View Component.

For the original legacy system (CRS), 19 ATL transforma-
tion rules had been defined to implement the static analysis.
Table 14 lists them.

For the target legacy system (AL-SIGM), new contracts
were defined to assess the feasibility of the original model
transformation to this new system. For the sake of brevity,
Table 15 describes some of them employing the fundamental
terms of our approach.

After computing our metrics according to AL-SIGM con-
tracts, we get the results summarised in Table 16. As shown,
most of the result cases defined appear in this analysis. Our
approach covers all different situations that may appear,

being cases CTPFN and CFP the most common ones. This
is a clear indicator that many input elements are not being
transformed when they should be. One interesting case is
the one for Data_PA output elements. It has got a perfect
precision score and a recall of 91. As shown in Table 14,
Data_PA elements are generated by six different transfor-
mation rules. In these circumstances, a score of 91 seems to
be a high enough value to decide not to take any action to
increase it. Actually, the threshold defined for the recall of
this output element is 80. Values over that threshold mean
that the effort to take (analysing and fixing at least six rules)
is much greater than the potential benefits.

Table 17 only lists a small group of the adaptations sug-
gested. Here the most interesting case is the Request
output element, which contains three different contracts and
involves four different transformation rules. As shown, dif-
ferent adaptation actions are suggested for different rules
according to the kind of results they are generating (TP, FP,
FN). Note that this is the final listing of actions performed,
so we selected a concrete action (bold in the table) when two
alternative ones were suggested. For the rules generating only
TP (M_R15 and M_R16) it was suggested to either “Relax”
or “No Action”. After the analysis of M_R15 and M_R16 we
concluded that the action to take was “No Action”. A similar
situation happened for the contract M_Mo4.2. M_R19 was
only generating FP, and it was marked for deletion. That way,
M_R14 was also marked for deletion because it was not gen-
erating anything. And finally, after the suggested adaptation
actions were performed, we computed the metrics again, and
there were still FN in the output model. So we applied the
exceptional case “Create new rules” to solve this situation, as
recommended by the approach. In this case, the tester might
have taken an educated guess and selected the create action in
the first execution. However, given that other actions applied
in the same rule or different ones might impact the results,
our approach always suggests applying only one repair action
per rule by default. Therefore, in this case, the second round
of execution would also show the tester that there are no
more errors detected except the FN, simplifying the decision
making.

In conclusion, after performing this case study, we believe
the usefulness of our approach is assessed in real scenarios.

6.5 Evaluation discussion

In the following, we summarise the results obtained from the
evaluation experiments, which were guided by the questions
at the beginning of this section.
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Table 14 Transformations
(CRS)

Rule Input pattern Output pattern

M_R1 Page Page

M_R2 BeanWriter PresentationObject

M_R3 BeanWriter Data_PA

M_R4 LogicIterate ObjectPresentationCollection

M_R5 LogicIterate ObjectPresentationCollection

DataSet_PA

M_R6 Bean Derived_PA

M_R7 HTMLForm PresentationObject

M_R8 HTMLFormTag Data_PA

M_R9 HTMLFormTag DataSet_PA

M_R10 HTMLFormSelectOption LiteralItem

M_R11 HTMLFormTag LiteralPresentationCollection

M_R12 HTML FormSelectOption ObjectPresentationCollection

Data_PA

Data_PA

M_R13 HTMLFormSelectOption ObjectPresentationCollection

M_R14 HTML FormTag Submit_PA

Request

ObjectRequestParameter

M_R15 HTMLLinkAction Request

M_R16 HTMLLinkAction Request

ObjectRequestParameter

Data_PA

M_R17 HTML ValueRequestParameter

M_R18 HTML ObjectRequestParameter

Data_PA

M_R19 HTMLLinkPage Request

6.5.1 RQ1: Applicability

Results suggest that MoTES is complete enough for the case
studies shown in this paper (RQ1.1). MoTES have properly
detected all errors introduced by mutations. Indeed, com-
paring MoTES to Tracts, MoTES was able to detect one
case (E_M5) not detected by the static analysis reported in
the original case study. Additionally, MoTES is supposed
to perform properly in any other case study because, in
a more general point of view, it can accurately deal with
generic mutation operators. Moreover, in both case studies,
MoTES provided relevant and appropriate repair actions for
all the errors detected so that the faulty rules may be properly
repaired (RQ1.2).

6.5.2 RQ2: Correctness

As aforementioned, MoTES may be seen as a two-step
approach: (1) a contract-based model transformation testing
step, and (2) a suggestion-based model transformation fix-

ing step. Concerning the first step, MoTES can always detect
misbehaving model transformations by contrasting their out-
put with contracts definition. We have replicated two previous
case studies performed over two ATL model transformations
[7]: UML2ER and E2M. Eleven mutations (see Table 10 and
Table 13) have been introduced into those transformations to
test if MoTES can properly detect them. Moreover, MoTES’
results have been compared to results obtained in the original
case studies to assess the correctness and performance of the
approach. As a result, in those case studies, errors detected
by MoTES were always caused by faulty model transfor-
mations (RQ2.1). Additionally, our approach suggested the
right set of adaptations or repair actions to guide to their
fixing (RQ2.2), as presented.

6.5.3 Q3: Usefulness

In order to assess the usefulness of MoTES, we have applied
it in the context of a model-driven migration project. The
model transformation chain that the project uses for MDRE
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Table 15 Contracts (AL-SIGM)

# In pattern Out pattern Detection

M_Mo1 Page Page Same path property

M_Mo2 BeanWriter PresentationObject (output) Container pages with same
path and name properties
in both input and output
matches

M_Mo3 HTMLFormSelectOption LiteralPresentationCollection Container pages with same
path property and container
elements with same name
property

M_Mo4.1 HTMLLinkAction Request Container pages with same
path property and value of
composed attribute in input
matches name of output

M_Mo4.2 HTMLLinkPage Request Container pages with same
path property and value of
composed attribute in input
matches name of output

M_Mo4.3 HTMLFormTag Request Container pages with same
path property and value of
value property or composed
attribute input matches name
of output

M_Mo5 Bean Derived_PA Container pages with same
path property and value of
id property input matches
name of output

Table 16 Results (AL-SIGM) Output element Pr Rc Case

Page 100 100 CTP

PresentationObject (input) 100 100 CTP

PresentationObject (output) 100 25 CTPFN

ObjectPresentationCollection NA 0 CFN

LiteralPresentationCollection NA 0 CFN

ObjectRequestParameter NA 0 CFN

ValueRequestParameter NA NA C0

LiteralItem NA 0 CFN

Request 50 14 CTPFPFN

Data_PA 100 91 CTPFN

DataSet_PA 100 100 CTP

Derived_PA NA NA C0

Submit_PA NA 0 CFN

required adaptation to a new application scenario: new legacy
application models conforming to the same metamodel but
featuring slightly different input patterns (see [14]). Once we
adapted the contract definitions to the new scenario, MoTES
provided us with a clear insight of what was working cor-
rectly and which model transformations were misbehaving.
Additionally, suggested adaptations were helpful in order to
guide the modifications introduced into the original model

transformations. Furthermore, the information reported by
MoTES was easily actionable to make decisions regarding
the trade-offs of repairing model transformations, e.g. when
repairing faulty transformations is more expensive than pro-
viding a post-transformation solution such as an ad-hoc filter
for the output.

From a quantitative perspective, in this case, testers effort
has been greatly reduced because: (1) MoTES was able to
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Table 17 Selection of
adaptations (AL-SIGM) from
Table 16

Output Case Cs. Rule Res. Act.

Page CTP M_Mo1 M_R1 TP NoAct.

PresentationObject (output) CTPFN M_Mo2 M_R2 FN Relax (Creat.)

LiteralPresentation Collection CFN M_Mo3 M_R11 FN Del.

Request CTPFPFN M_Mo4.1 M_R15 M_R16 TP Relax NoAct.

M_Mo4.2 M_R19 FP Del. Constr.

M_Mo4.3 M_R14 FN Del. (Creat.)

Derived_PA C0 M_Mo5 M_R6 – NoAct.

indicate one faulty rule from 19 possibilities for each result
case; and (2) MoTES could suggest one or two repair actions
from 6 possibilities for each faulty rule. In real application
scenarios, when size and complexity are compelling, contract
specification overhead pays off.

6.6 Threats to validity

In this section, we elaborate on several factors that may jeop-
ardise the validity of our results. As stated by [34], in applied
research, the relationships under study (internal validity) and
the generalisation (external validity) are of high priority.

6.6.1 Internal validity

Are there factors that might affect the results of this case
study? First, MoTES contracts have to be manually defined.
If they do not contain valuable constraints, the results pro-
vided by MoTES turn out useless. Nevertheless, given that
we have created a DSL tailored for such definitions, accord-
ing to our approach, the overall complexity is reduced.
Moreover, MoTES can be complementary to other testing
approaches, providing richer results for the same contracts.
Second, concerning the experiments with faulty transfor-
mations (UML2ER and E2M cases), we relied on the
state-of-the-art of mutation operators for model transfor-
mations. However, in the future, we may find that further
operators are required to deal with more fine-grained muta-
tions. As a result, these new operators might have an impact
on the results obtained in our experiments. Finally, in [14] one
of the authors was in charge of both contract definition and
result interpretation which might have altered the perceived
usefulness of the approach.

6.6.2 External validity

To what extent is it possible to generalise our findings? First,
our approach is, to some extent, independent of the trans-
formation language. This is because it was designed for
rule-based transformation languages (e.g. ATL) and requires
an engine producing transformation trace information in

order to be able to suggest repair actions (see Sects. 2, 5.3 for
additional details). Therefore it is possible to apply it to other
model transformation languages fulfilling those require-
ments. Second, as a proof of concept, we have implemented
it in the ATL language. MoTES contracts are specified in our
DSL and later translated to ATL by means of Xtext templates
[18]. Nevertheless, other technologies may have been used
for this implementation because MoTES executes in its own
isolated process without interacting with the existing trans-
formation technology stack used. Regarding its usability, we
have assessed it in an MDRE project developed by our own
research group. Therefore, additional case studies might be
needed to assess it in a broader scope and make our results
more generally applicable.

7 Related work

According to [3], model testing presents three main issues:
(1) test model generation, (2) test adequacy criteria defini-
tion, and (3) test oracle construction. In this work, we assume
the existence of real input models for the model transfor-
mation under test. Our goal is then to adapt such a model
transformation to the specific characteristics of these mod-
els, so the tests should just cover all the cases related to those
characteristics. We deal with incorrect outputs, i.e. transfor-
mation logical errors according to the classification provided
by [35]. In that sense, herein, we do not deal with the issue of
the generation of artificial input test models nor the definition
of test adequacy criteria. Nevertheless, our approach can be
used in conjunction with existing approaches [6,16] for the
generation of input test models.

7.1 Test oracles

Regarding the aforementioned three model testing issues, this
work is focused on the construction of test oracles. According
to the different categories of oracle generation approaches,
our approach belongs to generic contract specification [36–
38].
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Among the existing contract-based model testing
approaches, the works in [6,16,17,39] present clear sim-
ilarities with our own. These works test model trans-
formation (light) correctness, focusing on scalability and
time-efficiency. They use the concept of contract definition,
considering the model transformations as a black box. These
approaches propose their own language to specify contracts
and can automatically generate test models and test oracles
from such specifications, following the approach pointed out
by [3]. However, they are mainly focused on the specifica-
tion of contracts and not on interpreting the test results to
suggest concrete adaptation actions. Their test results are just
reported as a list of passed/failed tests.

7.2 Faulty rule localisation

As aforementioned, one goal beyond detecting errors in
transformation outputs by testing consists of the localisa-
tion of the particular transformation rule responsible for such
error. For this goal, static and dynamic approaches have been
proposed.

7.2.1 Static approaches

Leveraging those previous contract-based approaches, the
work in [7] may locate the failing model transformation
rule responsible for a contract violation by applying static
analysis techniques to match contracts and rules. We have
partially evaluated our approach by comparing it to this one
(see Sect. 6). Moreover, in [40], ATL model transformations
are translated to DSLTrans, and symbolic execution is applied
to generate representations of all possible input models to
the transformation. Another contract-based work is VeriATL
[8,41,42], which proposes a formal (propositional logic) and
static approach based on pre- and postconditions (contracts)
for ATL transformations. The result is a set of possible fail-
ing scenarios, but testers must manually understand them and
apply the proper corrections. Compared to MoTES, they just
used postconditions to look for violations and cannot explic-
itly indicate the faulty rule.

There are also some static approaches not based on con-
tracts. For example, the work in [43] also proposes a static
analysis of ATL model transformations to discover typing
and rule errors, which applies constraint solving to assert
whether a source model triggering the execution of a given
problem statement can exist.

All of these works define white-box approaches. Con-
versely, our work defines a black-box approach with a
two-fold purpose: (1) to keep its independence from the
model transformation platform used for development; and (2)
to foster its reusability in different platforms and domains.

7.2.2 Dynamic approaches

More recently, several works [11,12] propose using Spectrum-
Based Fault Localisation (SBFL), which is a popular tech-
nique used in software debugging for the localisation of bugs
[44], to the problem of debugging model transformations. In
[11], authors can determine which assertions are not satisfied
and can rank the rules according to their probability of being
the faulty rule. Another work [12] has recently proposed an
improvement of SBFL by adjusting the spectrum informa-
tion of test models covered rules according to the weights of
different test models. Both works use contracts as test oracles
and define dynamic techniques, as we do.

Among the dynamic approaches, some can be collected
together because they leverage the information in transfor-
mation trace models to localise the faulty rule. One of the
first approaches in this collection is presented in [45], which
proposes a generic trace metamodel for model transforma-
tions, the different ways in which models may be generated
from it (language-dependent), and the algorithm for error
localisation. The paper [35], from a mostly theoretical stand-
point, advocates for an offline, a-posteriori verification based
on trace models and some sort of oracle capturing the
expected output elements according to the input. The authors
also adopt two debugging strategies used in Prolog and
other declarative programming languages (analysis through
queries and partial re-execution) and propose algorithms (in
pseudocode) for computing a slice of the program in order
to narrow down the scenario causing a bug.

A different approach is to apply metamorphic testing tech-
niques to model transformation testing, whose effectiveness
has been empirically proved by [46]. A metamorphic rela-
tion is a necessary property of the target program that relates
two or more input data and their expected outputs, i.e. a
contract. More recently [47] proposes an approach to auto-
matically infer metamorphic relationships from the analysis
of transformation trace models, which is specifically tai-
lored at detecting faults in model transformations under three
application scenarios, namely regression testing, incremental
transformations and migrations among different transforma-
tion languages.

7.3 Repairing transformation rules

The repairing of transformation rules has been studied in dif-
ferent contexts: (1) in testing to repair faulty transformation
rules; (2) in co-evolution to adapt the rules to changes on
metamodels; and (3) in refactoring to improve their quality.

7.3.1 Testing

Although, as previously presented, many works dealing with
the localisation of faulty transformation rules can be found,
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there is still a significant scarcity of works for their assisted
repairing. The work presented in [9,48] is one of the few
exceptions to the rule. The authors propose a static analy-
sis approach to detect and fix errors in ATL transformations
automatically. For each error, a list of ranked quick fixes is
presented, which in their most recent work is sorted based
on speculatively applying them in the background and check-
ing their effects and side effects. The paper presents a rich
taxonomy of quick fixes (concrete repairs) collected from
their own experience and previous works. Furthermore, their
repair actions can syntactically fix a transformation, but they
do not consider semantic issues (the intent of the transforma-
tion developer). To solve that issue, they plan to use contracts
in future works. A similar technique can also be found in [49],
applied to the Eclipse Java IDE for code refactoring.

7.3.2 Co-evolution

Regarding co-evolution of models and transformations, dif-
ferent approaches have been published. Some techniques also
propose (semi)automatically repairing MT rules by analysing
changes on the source or target metamodels, based on a pre-
defined set of atomic changes and combinations of these.
The authors of [50,51] define a set of atomic actions to adapt
ETL rules [52] to changes in the metamodels and a default
set of compositions of them which can be extended at will.
Other approaches that deal with co-evolution of transforma-
tions once the metamodels change are [53] and [54], with
a slightly different focus. The former deals with complex
changes that border semantic analysis, while the latter priori-
tises the co-evolution of other artefacts like the models based
on the changed metamodels. For the sake of completeness,
it is also worth mentioning the works in [55,56], which con-
sider similar scenarios but direct their efforts towards both the
estimation of the effort that the adaptation (i.e. co-evolution)
of the transformations may entail and the application of co-
evolution to model-to-text transformations.

7.3.3 Refactoring

Model transformation refactoring consists of applying a pre-
defined set of actions to improve the code quality of the
transformations rules (syntax changes) without modifying
its behaviour. The authors of [57] adapt the notion of object-
oriented refactoring to model-to-model transformations and
propose a catalogue of 24 refactor actions for ATL. More-
over, in [58], an interesting fully-automated search-based
approach to refactor model transformations is presented for
ATL, which uses a multi-objective algorithm to optimise a
set of ATL-based quality metrics.

7.3.4 Comparison to MoTES

All the works aforementioned in this subsection propose
some taxonomy or classification of concrete repair actions
for model transformations, whose main advantage is their
automatic application, and the main disadvantage is their
dependency on the transformation language. In testing and
co-evolution, most of the actions proposed may be consid-
ered a particular implementation of MoTES abstract repair
actions, whose goal is aligned with MoTES, i.e. fixing rules
with a faulty behaviour. Those works may be considered
as the foundation for future research in automating repair
actions application. Conversely, in refactoring, though its
relevance and interest, the proposed repair actions (refactor-
ings) are not directly applicable to our approach because they
are specifically designed to deal with a completely different
problem.

7.4 Synopsis

In summary, our approach is, to the best of our knowledge,
the first work proposing a categorisation of contract-based
test results according to the output pattern generated. Such
categorisation provides engineers with a quick diagnosis of
the kind of transformation error they are facing. Additionally,
rather than just locating the failing rules, our approach can
also suggest proper actions to repair them according to the
category of errors detected.

8 Conclusions and future work

In this paper, MoTES, a novel approach to assist engineers
in repairing model transformations, is presented. The main
contributions of this work can be summarised into (1) the
definition of a metric-based test oracle, (2) the generation of
output-centred test results for enhanced interpretation and (3)
the recommendation of specific repairing actions for concrete
transformation rules based on testing results.

MoTES uses contracts to specify the expected behaviour
of the model transformation under test. Given a test input
model, the derived input–output model pair is processed to
mark input–output pattern relationships as TP, TN, FP or FN.
Those marks are then stored as a result model, queried to cal-
culate precision and recall metrics for every output pattern
(testing results). In this work, a classification for the relevant
combinations of precision and recall is defined to simplify
the interpretation of testing results. Moreover, MoTES allows
classifying each transformation rule based on its output pat-
tern classification, according to its testing results, and the
traceability information of the MTUT. MoTES defines 37
cases for these classifications, so for each specific rule, a
particular (abstract) action is suggested, such as constrain.
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Three case studies are presented in great detail for eval-
uation purposes. In order to assess MoTES applicability
and correctness, two previous mutation testing case studies
dealing with fault localisation in model transformations [7]
(UML2ER and E2M) are replicated. As the main results, our
approach has shown to be able to detect the errors introduced
in the transformations, localise the faulty rule and suggest the
proper abstract repair actions. Regarding MoTES usefulness,
a model transformation evolution case study is presented in
the context of a reverse engineering project. From a quantita-
tive perspective, MoTES was able to indicate one faulty rule
from 19 possibilities for each result case and suggest one or
two repair actions from 6 possibilities for each faulty rule.
In conclusion, testers’ effort can be significantly reduced by
applying MoTES.

As future work, we envision the following lines of
research.
Priority, dependency and consequences of adaptation actions.
In real scenarios, several adaptation actions may be sug-
gested; hence some priority criteria could be followed to
indicate to engineers the best sequence of adaptations to fol-
low. Such priority criteria have to be domain-dependent, but
it may be partially generic, e.g. actions with a more signifi-
cant impact in the output model may have a higher priority.
Moreover, conflicting actions may be suggested for the same
model transformation rule in some cases. Therefore, it could
be necessary to properly specify different conflict relation-
ships (dependencies) that might appear among adaptation
actions. Furthermore, a concrete repairing action may gen-
erate unwanted consequences or side effects in the model
transformation, e.g. introducing a new error. Although we
are not providing concrete repairing actions, further anal-
ysis of those side effects might be insightful. Some works
already propose interesting approaches to deal with repair
consequences on models [51] and source code [49]. Conse-
quences, dependency and priority should provide engineers
with the proper sequence of actions to fix the model trans-
formation.
Automatise adaptations application. We envision automation
of the whole process of model transformation evolution once
contracts are defined. Every adaptation action taken on the
model transformation may imply a change in the sequence
of adaptations suggested, e.g. a corrective action on a single
model transformation may satisfy several contracts previ-
ously violated. Various potential sequences of adaptations
define a search space; hence, search-based algorithms may
be applied to find the best sequence. As the main trade-
off, automatic repairing techniques of model transformations
should be defined for the model transformation language used
for development, as in [9]. Deriving concrete repairs from
our abstract actions for a concrete transformation language
remains still as future work.
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