Software and Systems Modeling (2021) 20:1653-1688
https://doi.org/10.1007/510270-021-00870-5

REGULAR PAPER l')

Check for
updates

Handling nonconforming individuals in search-based model-driven
engineering: nine generic strategies for feature location in the
modeling space of the meta-object facility

Jaime Font' - Lorena Arcega’ - @ystein Haugen? - Carlos Cetina’

Received: 11 February 2019 / Revised: 22 January 2021 / Accepted: 28 January 2021 / Published online: 6 March 2021
© The Author(s), under exclusive licence to Springer-Verlag GmbH, DE part of Springer Nature 2021

Abstract

Lately, the model-driven engineering community has been paying more attention to the techniques offered by the search-based
software engineering community. However, even though the conformance of models and metamodels is a topic of great interest
for the modeling community, the works that address model-related problems through the use of search metaheuristics are not
taking full advantage of the strategies for handling nonconforming individuals. The search space can be huge when searching
in model artifacts (magnitudes of around 10"° for models of 500 elements). By handling the nonconforming individuals, the
search space can be drastically reduced. In this work, we present a set of nine generic strategies for handling nonconforming
individuals that are ready to be applied to model artifacts. The strategies are independent from the application domain and
only include constraints derived from the meta-object facility. In addition, we evaluate the strategies with two industrial case
studies using an evolutionary algorithm to locate features in models. The results show that the use of the strategies presented
can reduce the number of generations needed to reach the solution by 90% of the original value. Generic strategies such as
the ones presented in this work could lead to the emergence of more complex fitness functions for searches in models or even
new applications for the search metaheuristics in model-related problems.

Keywords Model-driven engineering (MDE) - Search-based software engineering (SBSE) - Feature location (FL) -
Evolutionary algorithm (EA)

1 Introduction maintenance [47], requirements [47] and Software Product

Lines [45]. Part of the success of SBSE resides in the fact

Since the term search-based software engineering (SBSE)
was coined [46]in 2001, it has attracted many research efforts
from many different research fields such as testing [3,6],

Communicated by Manuel Wimmer, Gray, Jeff.

B Jaime Font
jfont@usj.es

Lorena Arcega
larcega@us;j.es

Dystein Haugen
oystein.haugen @hiof.no

Carlos Cetina

ccetina@usj.es

SVIT Research Group, Universidad San Jorge, Zaragoza,
Spain

Department of Information Technology, @stfold University
College, Halden, Norway

that many of the problems present in the field of software
engineering can be expressed in a way that can be success-
fully addressed by existing metaheuristic algorithms, such
as evolutionary algorithms. In fact, only three key ingredi-
ents are needed to begin: (1) a representation (encoding) of
the problem, (2) the definition of a fitness function and (3)
the definition of a set of operators. Then, candidate solutions
(which are encoded following the representation chosen) are
evolved (by applying the operators) and are evaluated (by the
fitness function) in an iterative process until optimal solutions
to the problem are found.

Similarly, model-driven engineering (MDE) [52] aims
to facilitate the development of complex systems by using
models as the main artifacts of the software development pro-
cess. However, with the widespread application of MDE to
larger and more complex systems, new software engineering
issues are emerging to support the development, evolution
and maintenance of large models. SBSE techniques are best

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s10270-021-00870-5&domain=pdf

1654

J.Fontetal.

applied in situations where a large search space is present
with a set of conflicting constraints.

This has led to the combination of MDE and SBSE tech-
niques into a new field of study known as search-based
model-driven engineering (SBMDE) [14,53], where search-
based techniques are applied for MDE-related tasks, such as
discovering or optimizing models, automatically generating
test procedures, and maintaining consistency between mod-
els and metamodels.

However, when applying SBSE to model artifacts, the
search space can grow too large (a model of 500 elements can
yield a search space of around 1019 individuals [35]), mak-
ing the search impractical if the search space is not reduced.
Another problem that has originated when SBSE techniques
are applied to MDE is the generation of models that do not
conform to the metamodel. Conformance between the model
and its metamodel has been widely studied [39,72] and is
required by existing tools [62,80,81].

One solution for reducing the search space while manag-
ing the conformance between the metamodel and the models
generated by the search metaheuristic is the use of strate-
gies to handle nonconforming individuals. In other words,
the conformance between a model and its metamodel can be
formulated as a constraint that needs to be guaranteed by the
metaheuristic algorithm being applied. Therefore, we will
refer to conforming or nonconforming individuals, depend-
ing on whether or not the model encoded by the individual
conforms to its metamodel. There are several methods pro-
posed in the literature [19,60] to handle these constraints,
which belong to different categories:

Penalty functions The application of penalty functions to
the nonconforming individuals that hinders their spread
during the evolution. [10,51,75,89]

Strong encoding The use of a representation for the
problem that guarantees (by construction) that all the
individuals are conforming individuals [12].

Closed operators The use of operators that return con-
forming individuals as output when provided with con-
forming individuals as input [61].

Repair operators The use of repair operators that trans-
form nonconforming individuals into conforming ones.
[18,65,66]

The application of these strategies will result in a reduction
of the search space and fine-grained control over the con-
formance between the models and the metamodel. However,
most of the works in the literature do not apply these strate-
gies to MDE problems [19,60], or they do not encode model
artifacts as individuals. This results in a lack of strategies
to handle nonconforming individuals when working directly
with model artifacts as individuals.

@ Springer

The meta-object facility (MOF) [64] is a specification
from the Object Management Group to define a universal
metamodel for describing modeling languages. In this paper,
we present and compare nine different generic strategies
for coping with nonconforming individuals when applying
SBSE techniques that encode model artifacts built within
the MOF modeling space. Specifically, we present and com-
pare: (1) a set of five different penalty functions; (2) a strong
encoding and its associated operations; (3) a set of closed
operations; and (4) a set of two repair operators. All of these
strategies have been designed to work with MOF models as
individuals, and, therefore, are generic in the sense that they
do not contain any particularities of the application domain;
they only include constraints derived from the definition of
MOF models.

In our previous works [37,38] we have successfully
applied SBSE techniques to perform Feature Location in
Models (FLiM). Feature Location (FL) is one of the most
common activities performed by developers during software
maintenance and evolution [26] and is known as the process
of finding the set of software artifacts that realize a specific
feature. We use the FLiM problem as a running example
throughout the paper.

We evaluate the different strategies for coping with non-
conforming individuals by applying them to perform FLiM
on the product models from two industrial domains: BSH,
the leading manufacturer of home appliances in Europe; and
CAF, a leading company that manufactures railway solutions
all over the world. The evaluation is performed using two fit-
ness functions, an optimal fitness based on an oracle and a
state-of-the-art fitness based on textual similarity. The results
show that these strategies for handling nonconforming indi-
viduals can reduce the number of generations needed to reach
the solution to 90% of the original value. This can result in
gains in performance of more than 20% for some of the met-
rics analyzed. In addition, we provide a statistical analysis to
ensure the significance of the results obtained.

The community that is currently applying SBSE solutions
to MDE problems is not taking full advantage of the improve-
ments that the use of strategies such as the one presented in
this paper can provide. Therefore, we want to provide evi-
dence of their benefits and contribute to the community with
a set of domain-independent strategies that have been evalu-
ated on two industrial case studies of FLiM and can be applied
by other researchers when applying SBSE to MDE problems.
The strategies can be applied without modification to other
FLiM problems whose models are created with any MOF
domain-specific language expecting similar results. In addi-
tion, the encoding presented has been used in other SBMDE
problems as Bug Location [7] and Traceability Link Recov-
ery [70] and we expect similar results when applying the
strategies. For SBMDE problems requiring a different encod-
ing (with expressiveness to generate model fragments that are

Handling nonconforming individuals in search-based model-driven engineering: nine generic 1655

not part of the parent model), modifications of the strategies
may be required, and further experimentation is needed to
evaluate if the results are similar.

The rest of the paper is structured as follows. Section 2
discusses related work. Section 3 establishes the foundations
for the rest of the paper, including the problem of FLiM and
the Evolutionary Algorithm that we use to address it, the
model and metamodel conformance, and the search space.
Section 4 presents the nine generic strategies for handling
the nonconforming individuals introduced in this work. Sec-
tion 5 presents the evaluation performed with two industrial
case studies. Section 6 provides a discussion of the results
obtained. Section 7 discusses the threats to validity, and
Sect. 8 concludes the paper.

2 Related work

This section presents works from the literature that are related
to the approach presented here. There are some works that
apply SBSE strategies to address MDE problems. However,
not all of them use models as the individuals; some apply the
searches to model transformation rules, while others focus
on the improvement of the metamodel through the use of
Object Constraint Language (OCL) rules. We also present
works about feature location in models. Finally, we discuss
works that are related to models in the context of a Software
Product Line.

2.1 Model transformation rules

Some works that apply EAs to models use model trans-
formation rules to encode the individuals. Nonconforming
individuals are mainly handled through repair operators or
death penalties:

The work from [2] applies a Non-dominated Sorting
Genetic Algorithm (NSGA) to the problem of rule-based,
design-space exploration. The aim is to find the candi-
dates that are reachable from an initial model by applying
a sequence of exploration rules. In that work, the authors
make use of a custom repair operator that fixes nonconform-
ing individuals. However, their individuals are encoded as
sequences of exploration rules, not models themselves, and,
therefore, their repair operator is specific to their particu-
lar domain. In our work individuals are encoded as model
fragments and the repair operators that we propose in this
paper can be applied to individuals encoding models from
any domain.

In [25], the authors apply search directly to model transfor-
mations, without the need for an intermediate representation.
The approach proposes the creation of model transformation
rules that are capable of performing the tasks associated with
an Evolutionary Algorithm (EA), such as the creation of the

initial population. The approach is applied to a problem of
resource allocation, where the nonconforming individuals are
pruned out through the use of one of these model transforma-
tion rules. Similarly to our work, the authors apply a death
penalty to prune out nonconforming individuals. However,
the rule that is used to identify those individuals is specific
to their particular domain, and cannot be applied to identify
nonconforming model fragments from other domains.

In [32], the authors present MOMOoT, a tool that applies
SBSE strategies to optimize the set of model transforma-
tion rules needed to maximize the requested quality goals
of a given model. The approach is further refined in [31] to
include support for many objectives and an exhaustive perfor-
mance comparison of different search strategies is presented
in [13]. The tool makes use of three different strategies to han-
dle duplicated or non-executable sets of transformations that
could arise when performing genetic operations. The first one
is the use of a death penalty, removing those transformations
sets. The second one is the replacement of the malformed
transformation by a random transformation (or a placeholder
transformation) so the set of transformations can be executed.
The third strategy is the use of a dedicated re-combination
operator (such as the partially matched crossover [42]) that
is able to consider some constraints avoiding the creation
of non-executable transformation sets. However, the strate-
gies used in those works are designed to work on individuals
encoding the order of the transformations, and cannot be
applied to repair nonconforming individuals that encode
model fragments. Furthermore, the impact of the use of those
strategies on the performance of the approach is not evalu-
ated.

In [15], the authors describe strategies for generating
closed operators. They use graph transformation rules to
encode the mutation operators that are then automatically
generated in the form of transformations. These operators
guarantee the consistency of the mutated models with the
metamodel multiplicity constraints. The resulting operators
are similar to the closed operators proposed in this work, but
their operators are generated taking into account the mul-
tiplicities from the metamodel. In this work, we obtain the
constraints for the closed operators from the inherent con-
straints of the metalanguage used to build the metamodels,
instead of using the multiplicities of the metamodel. In addi-
tion, our operations are designed to work over EA encoding
model fragments.

2.2 Metamodel enhancement

Other works try to enhance the metamodel to avoid the gen-
eration of models that should not be part of the modeling
space for that metamodel. This is usually done through the
use of the Object Constraint Language (OCL) rules defined
throughout the metamodel.

@ Springer

1656

J.Fontetal.

In [43], the authors propose an approach that helps the
modeler find the boundaries of the modeling space of a meta-
model. To do this, the approach generates samples of all of
the models that can be built with a given metamodel and iter-
ates those samples (through a simulated annealing algorithm)
to maximize the coverage of the sample. Then, the sample is
presented to experts so that they can fix the metamodel if any
of the presented models should not be allowed. By doing this,
the gap between the modeling space (all of the models that
are reachable from a metamodel) and the intended modeling
space (the models that the experts want to be built with the
metamodel) can be reduced, and the accuracy of the meta-
model can be increased. Similar to our work, their work deals
with nonconforming individuals. However, in [43], the unde-
sired individuals are identified by experts and then turned
into nonconforming by modifications of the metamodel that
was used to create the individuals. In its current form, their
approach cannot be applied to handle nonconforming indi-
viduals of a running EA.

In [29], the authors take two sets of models (one that
includes valid models and another one that includes invalid
models) and use an EA to automatically generate well-
formedness rules that are derived from the two sets of models
provided. As a result, they provide a set of OCL rules that
can be used to improve the metamodel into a more precise
metamodel + well-formedness rules.

Other works, such as [4], take into account the OCL con-
straints that are embedded throughout the metamodel and
try to generate sets of parameters that fulfill the OCL con-
straints with the aim of using them as test data. The approach
is further refined in [5] to include more types from OCL
and heuristics to guide the search. They compare themselves
with the most widely used OCL constraint solver, achiev-
ing better results. Similarly, the graph solver presented in
[78,79] generates consistent models of a designated size
from a specification defined by a metamodel and a set of
well-formedness constraints. However, these approaches do
not solve the problem of handling nonconforming individu-
als when using search strategies. They do take into account
constraints that models should fulfill and use EAs or other
generators to help in this task. In contrast, the strategies that
we present in this paper are designed to be applied to existing
searches in models that are not benefiting from the advantages
associated with the proper management of nonconforming
individuals.

In [86,87], the authors propose Crepe, a domain-specific
language (DSL) that can be used to specify individuals that
represent any model conforming to a specific metamodel.
Thus, they are able to encode individuals in the form of a
model (or model fragments) as we do in our work. In [88],
the authors report the generation of nonconforming individ-
uals when applying their encoding for models as individuals,
which allowed them to improve the DSL being used. In [56],

@ Springer

the authors identify the generation of nonconforming indi-
viduals in Crepe, and propose a repair operator to address this
issue. After an individual is modified, they use a re-coding
operation to repair the individual, preserving the semantics
of the model in those aspects not directly affected by the
crossover and mutation operations. However, individuals are
only partially repaired as the expressiveness of the operators
and encoding being used allows for the generation of individ-
uals that cannot be automatically repaired. We believe that
approaches such as [56,88] could be improved through the
use of the strategies to handle nonconforming individuals
presented in this paper.

2.3 Feature location in models

Some works from the literature focus only on capturing
guidelines and techniques for manual transformations of a
set of existing products into assets of a Software Product
Line. Those works are interesting because they are based on
industrial experiences; however, there is almost no automa-
tion in the process.

Other works [35,40,49,58,85,90,91] focus on the location
of features in models through comparisons with each other.
As aresult, the variability is expressed in the form of a model
expressing the differences (which is eventually turned into a
Software Product Line). These include the following:

— The authors in [90] present a generic approach that is able
to perform comparisons of MOF models, resulting in the
features being located in the form of a Common Variabil-
ity Model [82]. The approach in [90] was further refined
in [91] to allow the extension of the model capturing the
features, when new models are added to the comparison.
This reduces the complexity of the process, avoiding the
need for executing all of the comparisons from scratch
and allowing them to be performed incrementally.

— Wille et al. [85] present an approach based on an
exchangeable metric that is used to measure the sim-
ilarity between different attributes of the models. The
approach in [85] was further refined in [49] to minimize
the number of comparisons needed to obtain the model
representing the similarities and differences among the
different models.

— Martinez et al. [58] propose an extensible approach based
on models’ comparisons that can obtain the features from
afamily of related models. The approach can be extended
through a system of templates, allowing the identification
of differences of any type of model-based content (as long
as the comparison method is provided)

However, all of these approaches are based on mechani-
cal comparisons among the models, classifying the elements
based on their similarity, identifying the dissimilar elements

Handling nonconforming individuals in search-based model-driven engineering: nine generic 1657

and formalizing them as the feature realizations. In contrast,
in our work the feature location is applied to a single model,
so it does not rely on model comparisons to locate the fea-
tures; instead it relies on searches across the modeling space
performed by an EA.

Some of our previous works focus on the topic of fea-
ture location in models, ranging from approaches based on
comparisons [40] to human-in-the-loop approaches [35] or
searches based on metaheuristics [16,36-38]. One of them
focuses on the influence of genetic operations on the quality
of the results [71]. Some of them focus on the possibility of
sharing the information scattered among different engineers
in order to empower them to produce better queries that guide
the EA [68,69], while other works explore the use of Multi-
Objective Evolutionary Algorithms [16,70]. However, none
of those works has ever investigated the possibility of han-
dling nonconforming individuals to boost the search process,
as is the case in this work.

2.4 Software product lines

Finally, some works report problems when nonconform-
ing individuals are automatically generated by their genetic
operations in the context of a software product line. In
[20], the authors propose a representation of a software
product line architecture that can be used by search-based
techniques. This allows the optimization of the architecture
model through the use of different search operations. The
authors report the generation of some solutions that are non-
consistent with their definition of the product line architecture
that are repaired by a domain-dependant repair operator.

In [77], the authors present ETHOM, an EA that is capable
of generating computationally hard feature models in order
to use them to feed analysis tools for feature models. To
this end, the EA encodes feature models as a combination
of a tree and the related cross-tree constraints. Since the use
of this encoding leads to the generation of nonconforming
individuals, the authors use a repair operator or discard the
individual (death penalty), depending on the complexity of
repairing the individual. However, since the encoding used
by the authors is particular to their specific domain (their rep-
resentation of feature models), the repair operator proposed
is also particular to their domain and captures inconsistencies
that only occur in their representation of feature models. In
contrast, the strategies presented in our work are designed to
work with models created with any domain-specific language
created using the meta-object facility [64] metalanguage,
improving its re-usability by different practitioners whose
domain-specific languages are created using MOF.

3 Overview of the problem

This section provides the foundation for the rest of the paper.
It describes the following: (1) what Feature Location in
Models is; (2) how it is achieved through an evolutionary
algorithm; (3) what model and metamodel conformance is
and what makes an individual nonconforming; (4) what the
search space is when searching for model fragments and what
it looks like.

3.1 Feature location in models (FLiM)

Feature Location [26,74] is the process of identifying the set
of software artifacts that realize a specific feature. That is,
Feature Location requires to find and indicate all the soft-
ware artifacts that are used for the design, development and
further maintenance of a specific feature (such as require-
ments, source code, documentation, or tests). Depending on
the nature of the software artifacts and the features being
located, a different granularity may be applied; for instance,
when features are located across source code, a feature could
correspond to a single class, a set of methods from different
classes, some conditions inside a switch statement, or even a
whole package.

We define the Feature Location in Models (FLiM) as the
process of identifying the set of model elements that realize
a specific feature. The results of the FLiM process are model
fragments that represent a specific feature. At this point, it
is important to define what a model fragment [36-38] is: A
model fragment is always defined in reference to a parent
model. A model fragment is a subset of the elements of the
parent model. Therefore, all of the model fragments of a given
parent model are subsets of the parent model.

Similarly to other software artifacts, the granularity can
vary depending on the nature of the models and the features
being located. Taking into account the MOF specification
from the Object Management Group (OMG) and our experi-
ence with models from industrial domains [37-39], we divide
the relevant elements of a model into a set of atomic elements
(meta-class, meta-reference and meta-property), and we do
not consider further subdivisions of those units in this work.

To illustrate the elements, Fig. 1 (top-left) shows the
induction hob domain-specific language (IHDSL) meta-
model, which is a simplification! of the DSL used by one
of our industrial partners. The DSL is used to model the
firmware of the Induction Hobs in the context of a model-
based software product line, where some of the features are
reused by different products. In the following, we explain the
concepts of meta-class, meta-reference and meta-property.

1 We use a simplification as running example in order to increase legi-
bility and due to intellectual property rights.

@ Springer

1658

J.Fontetal.

IHDSL Metamodel

Induction
Hob

inverters
*

pChOan*neIs }pManagers cChgn*nels

. 0 .

>{Inverter -

Foowsn Provider Power Consumer

PRI | |Channel| |Manager| | Channel
o 1A P I I I

inductors 0..*

Model Fragment 1
(conforming individual)

Inductor 150

4
o T
1.7

»

Model Fragment 2
(nonconforming individual)

150 =—o | O

HE R A T N
G, G1[G, |G, [G.[Gs |G, |G/ [G4 [G|

-——— Parent Model & Encoding ————

Fig.1 Running example including the induction hob domain-specific language (IHDSL) metamodel (top-left), the encoding of a parent model and
its mapping to the metamodel (bottom-left), and two model fragments encoded as individuals, one that is conforming and one that is nonconforming

(right)

Meta-class is the core element, holds a set of meta-
properties and meta-references, e.g., the Inductor meta-
class element from the metamodel in Fig. 1 (top-left).
Meta-reference relates two meta-class elements and
includes a source and a target meta-class element, a mul-
tiplicity for the target and the source meta-classes, and
a name. Meta-references can also be distinguished by
whether or not they are containment meta-references.
For instance, the inductors meta-reference from the meta-
model in Fig. 1 (top-left) is a containment meta-reference
whose source is the Induction Hob meta-class (multi-
plicity 1) and whose target is the Inductor meta-class
(multiplicity any), while the from meta-reference is a
meta-reference (non-containment) whose source is the
Provider Channel meta-class (multiplicity 1) and whose
target is the Inverter meta-class (multiplicity 1).
Meta-property gives information about a meta-class,
including the meta-property name, the type and the value.
For instance, the Inverter meta-class element from the
metamodel in Fig. 1 (top-left) contains a meta-property
named pow whose type is a String.

Based on this division, a model fragment is a subset of the
model elements that are present in the parent model, with
the granularity of the elements being meta-classes, meta-
references, or meta-properties.

@ Springer

3.2 Feature location in models by an evolutionary
algorithm (FLIMEA)

Figure 2 depicts an activity diagram for a generic EA.
First, a set of individuals is obtained (following a previously
designed specific representation) to be the initial population
of solution candidates for the EA. Then, a fitness function
is designed to assess the quality of individuals as solutions
to the problem. If the stop condition is met, the execution
ends; otherwise, a set of operators that is compatible with
the representation and capable of evolving the individuals is
executed to evolve the population. The following subsections
present each of the EA parts in detail.

3.2.1 Representation of the individuals

Traditionally, the representation used in EAs comes in the
form of binary strings [73]. For this EA, the individuals
encode model fragments that are defined in the context of a
parent model. Therefore, the representation needs to be able
to capture any model fragment that can be generated from a
given parent model. We use a binary string where each bit
in the sequence represents the presence or absence of one
specific element of the candidate solution.

In our case, the different elements that may or may not
be part of an individual are the ones defined in the previous
subsection (class, reference and property). Each of the ele-

Handling nonconforming individuals in search-based model-driven engineering: nine generic 1659

stop
condition? | [StP]

Population

0—{ Initialization [Fitness j—>

replacement

Assessed parent

i : parents
Population V[not stop] selection l
offspring <—[mutation j<— offspring crossover]

Fig.2 Activity diagram for the evolutionary algorithm

ments present in the parent model will be ‘tagged’ with a
position in the binary string, and then the binary string will
be filled with either O (to indicate the absence of that element
in the model fragment) or 1 (to indicate the presence of that
element in the model fragment).

Figure 1 (bottom-left) shows a parent model of an exam-
ple Induction Hob that contains one of each of the elements
defined by the metamodel and the encoding associated with
it. All of the individuals encoded in reference to this parent
model will use a string of the same length, one gene for each
of the elements” present in the parent model (G to Go, up to
a total of ten elements that may or may not be part of model
fragments of this parent model). It is important to note that all
of the elements (classes, references and properties) that are
present in the parent model need to be present in the encoded
binary string so that we are able to represent any possible
model fragment using it.

Figure 1 (right) shows two individuals that are encoded
in reference to this parent model (Model Fragment 1 and
Model Fragment 2). Below each individual, a string with ten
genes where the presence or absence of each element can
be indicated is depicted. For instance, Model Fragment 1
is composed of an Inverter class element (Gy), a Provider
Channel class element (G3), a Power Manager class element
(Gs), a from reference element (G2), a fo reference element
(G4) and a pow property element (G1).

The function value(mf, i) is used to retrieve the value of a
gene of a given model fragment (mf) and a given gene index
i. For instance, the value(MF1, 2) is 1 while value(MF2, 0)
is 0 (Fig. 1).

It is important to note that the presented encoding can
be applied without changes to any MOF-compliant meta-
model since it is expressed at the level of the building blocks
of MOF metamodels. No domain-dependant information is
embedded into the encoding (although it is presented in the
context of a specific Induction Hob metamodel).

2 Inthis figure, the containment references and the root node are omitted
for simplicity.

3.2.2 Fitness function

The fitness function is used to evaluate how good each of
the individuals is as a solution to the problem. In the past
[33,37,38], we have successfully applied fitness functions
based on textual similarity between a feature definition and
a model fragment. However, we identified some issues that
influenced negatively the value of the fitness when using tex-
tual similarity as the fitness for FLiM [16]: (i) some feature
descriptions may be incomplete (guiding the search to an
incomplete model fragment), (ii) there may be vocabulary
mismatch (the specific concepts defining the feature are dif-
ferent from those present in the feature, even though both
represent the same concept), and (iii) there may be some con-
cepts related to the domain that are not present in the model
fragments but that are present in the model transformation
rules applied afterward.

Therefore, in this work we perform the evaluation apply-
ing two different fitness functions. First, to isolate the effect
of the strategies used to handle nonconforming individuals
from the fitness function chosen, we make use of an optimal
fitness function. Secondly, to study the effect of the strate-
gies on a realistic scenario we apply a state-of-the-art fitness
function based on textual similarity.

The Optimal Fitness function is used only for evaluation
purposes; it relies on an oracle to guide the search (and the
existence of an oracle is not always the case on real scenar-
ios). An oracle (or golden set) is a set of problems and the
solutions to those problems. In the case of FLiM, we have two
oracles that were extracted from industry that include a set
of problems of Feature Location in industrial models. Each
of them includes a parent model where the feature should
be located and a model fragment that realizes the feature.
By using this oracle as the fitness function, we can remove
the noise that is produced by fitness functions based on tex-
tual similarity, and focus only on the different strategies for
handling nonconforming individuals and their impact on the
search.

@ Springer

1660

J.Fontetal.

Solution from Oracle

[D—0O

[1]of1]1][1]1]ofo]o]0]
G, G G, G, G, G, G, G, G, G,

Model Fragment 1

[—0 O

([t[1]1[1]1]oofo[1]
G, G, G, G, G, Gy Gy G, G, G,

T _compare

Y

G|G/[G.[G:e.[6s[Gi[]G &
1111111111

10 10 10 10 10 10 10 10 10 10
fitness calculation

fitness(mfl) = % = 0.6

Fig.3 Example of the fitness calculation

fitness(m) = Z &
n

i=0
@)= :
si)=1_

where m any given model fragment, 7 size of the model frag-
ment, 0 model fragment from the oracle.

Equation (1) shows how to compute the fitness of a model
fragment (m). The fitness is the result of adding the g(i)
values for all of the genes present in the model fragment
(from O to n) and dividing the sum by the size of the fragment.
The g(i) is 1 if the gene value is the same in the model
fragment and in the oracle (value(m, i) = value(o,i)) or
—1, otherwise.

Figure 3 shows an example of the fitness calculation for
Model Fragment 1 (left). First, the binary string of the indi-
vidual is compared with the solution that was extracted from
the oracle (right). If the value of the gene is the same in both
model fragments, % (it is divided by ten as there are ten
genes) is added to the result. If the value of the gene is not
the same in both model fragments, 1—10 is subtracted from the
result. Finally, the resulting fitness(mf1) is equal to 1—60.

The resulting fitness value of the model fragment ranges
from the worst value, —1 (if all of the genes are the opposite of
the oracle), to the best value, 1 (if all of the genes are the same
as the oracle). In the case of a randomly generated individual,
the fitness value should be close to O since the probability of
correctly guessing a gene is the same as incorrectly guessing
1t.

ey

if value(m, i) = value(o, i)

otherwise

The Textual Similarity Fitness that we apply in this work
relies on Latent Semantic Indexing (LSI) [48] to determine
how similar is each of the individuals of the population com-
pared to a textual query that describes the feature being
located. Before comparing the textual query and the texts
obtained from the individuals of the population, texts need
to be homogenized through the use of Natural Language Pro-
cessing techniques [54].

@ Springer

First, the text is tokenized into words, different tokenizers
can be applied based on the type of text being processed (i.e.,
white space for regular text, camelCase or underscore for
source code). Secondly, the Parts-Of-Speech (POS) tagging
technique can be applied to identify the grammatical role of
each word, allowing to filter out some categories that do not
contain relevant information and may introduce noise in the
search process (i.e., prepositions). Thirdly, some words may
not contain semantic information when used in particular
domains (given their widespread), so they can be automat-
ically removed if a list of stop words or domain terms is
provided (e.g., in the induction hob domain, the word ‘hob’
will appear too many times, being no useful at all). Fourthly,
stemming or lemmatization techniques can be applied to
reduce the words to its root or lemma, enabling grouping and
comparison of terms from the same family (e.g., ‘induction’
and ‘inductors’ would be reduced to ‘induct’).

LSI builds a vector representation of the query and a set
of text documents, arranging them as a term-by document
co-occurrence matrix. The rows of the matrix include all the
terms present across the documents, the columns represent
each of the individuals of the population and the query as
last column, each cell indicates the number of occurrences
of a particular term in an individual (or the query). Then, the
matrix is decomposed applying the Singular Value Decom-
position [54], resulting in a set of vectors that represents the
latent semantic (one vector for each individual of the popu-
lation and one vector for the query). Then, to compare the
vectors we apply the cosine similarity between each of the
vectors representing an individual and the vector of the query,
resulting in the fitness value of each individual. The values
range from —1 (no similarity at all) to 1 (both vectors are the
same).

3.2.3 Genetic operators

There are four basic operators that are generally applied in
EAs (as depicted in Fig. 2):

Parent selection This operator selects the parents that
will be used as the basis for the new individuals of the
population. In this case, we use the Roulette Wheel Selec-
tion operator. This selection strategy assigns a probability
of being selected to each individual in the population
proportional to their fitness score. As a result, the fittest
individuals are selected more often than individuals that
are unfitted.

Crossover The aim of the crossover operator is to com-
bine the genetic material from some individuals into new
ones. In our case, we use a crossover operation that is
based on a mask [37] that combines two parent individ-
uals into two new offspring individuals.

Handling nonconforming individuals in search-based model-driven engineering: nine generic 1661

Mutation The aim of the mutation operator is to emu-
late the spontaneous mutations that occur in nature. In
this case, we use an evenly distributed mutation where
each gene of each individual has the same probability of
undergoing a mutation.

Replacement The aim of the replacement operator is to
modify the population, adding the new offspring gen-
erated by the evolution and replacing some of the old
individuals of the population. In this case, we apply
widespread replacement of the least fit individuals by
the new offspring.

3.3 Model and metamodel conformance

A model conforms to a metamodel if it is expressed by the
terms that are encoded in the metamodel. In other words,
the metamodel specifies all of the concepts used by the
model, and the model uses those concepts following the rules
specified by the metamodel. Conformance between a model
and the metamodel can be described as a set of constraints
between the two [67,72]. For example, one of the constraints
could be that all multiplicities specified in references must
be fulfilled.

In addition, as presented in [30], current metamodel tech-
niques tend to define the metamodel as having two parts:
a domain structure that captures the context and relation-
ships used to build the models (typically expressed as class
diagrams), and well-formedness rules that impose further
constraints that must be satisfied by the models (typically
expressed as logical formulas). In this work, we focus on
the constraints imposed by the domain structure. The addi-
tional constraints imposed by the well-formedness rules are
out of the scope of this work, and some works on the topic
are available elsewhere [4,5].

MDE is built around the concept of modeling, and several
tasks can be automated through the use of models and specific
tools (e.g., the generation of graphical editors and tools [62,
80] or model-to-text transformation [22]). However, those
tools implicitly require that models conform to a metamodel
in order to be used. Model and metamodel conformance is a
topic that is widely studied in the field of software evolution
[39,72].

Model and metamodel conformance is a desired property
of models, which is implicitly required by the MDE tools
and approaches. However, when working with model frag-
ments, the constraints that ensure conformance are not so
clear (as we are not dealing with whole models, but only with
model fragments). In this work, we explore nine strategies
that are built around the conformance of model fragments
and metamodels in order to boost the search process of model
fragments that realize a specific feature (subsets of a parent
model that conforms to a metamodel).

In what follows, we will work with a conformance
between a model fragment and the metamodel where some
constraints should be preserved:

Valid reference A reference is considered to be valid if
both the source and target model classes pointed by the
reference are present in the model fragment. For instance,
Fig. 1 shows Model Fragment 1, where the reference
encoded by G2 is valid (the source of G2 is G3 and the
target is G 1, and both are present in the model fragment).
In contrast, in Model Fragment 2, the reference encoded
by G2 is not considered to be valid (the source of the
reference is G0, which is not present in the model frag-
ment).

Valid property A property is considered to be valid if
its parent class is present in the model fragment. For
instance, Fig. 1 shows Model Fragment 1, where the
property encoded by G1 is valid (the parent class, GO,
is present in the model fragment). In contrast, in Model
Fragment 2, the property encoded by G1 is not valid (the
parent class GO is not present in the model fragment).

With these conformance constraints, model fragments can
be classified into conforming individuals if they fulfill the
constraints for all of the elements present in the model frag-
ment (Model Fragment 1) or into nonconforming individuals,
where any of the constraints are violated by any of the ele-
ments present in the model fragment (Model Fragment 2).

3.4 Search space

The search space is the space where the EA performs the
search, i.e., the set of all possible individuals that an EA is
able to reach by applying the different operations. Depend-
ing on the encoding and operations being used by the EA,
different search spaces will result.

In general, a search space consists of two disjoint subsets
of feasible and unfeasible subspaces (F and U, respectively)
[59]. In this work, we use the term conforming subspace
instead of the term feasible subspace and nonconforming
subspace instead of unfeasible subspace. We make this dis-
tinction in order to focus on the conformance between models
and metamodels since it is what determines if an individ-
ual resides in one subspace or in the other. The individuals
in the F subspace satisfy the constraints for the problem
(conforming model fragments), while the individuals in the
U subspace do not satisfy the constraints (nonconforming
model fragments).

Figure 4 shows a representation of an example of a search
space. The gray areas correspond to the conforming sub-
space, and white areas correspond to the nonconforming
subspace. Each point corresponds to a specific individual,
while the star corresponds to the solution of the problem,

@ Springer

1662

J.Fontetal.

@ F - conforming space ® individual

() U - nonconforming space W solution

Fig.4 Example of a search space representation that includes the con-
forming and nonconforming spaces

which is the individual that gets the best fitness value. When
applying a Multi-Objective Evolutionary Algorithm such as
NSGA-II [24], the search is guided by a fitness with multi-
ple objectives and the solution is output as non-dominated
set of solutions where all the objectives are optimal. In this
work we apply a single objective fitness function, so we only
depict a solution in Fig. 4, but we plan to study the applica-
tion of these strategies in combination with Multi-Objective
Evolutionary Algorithms in the future.

For instance, the individual tagged with an ‘a’ is a con-
forming individual, such as the one depicted in Model
Fragment 1. The point tagged with a ‘d’ is a nonconforming
individual, such as the one depicted in Model Fragment 2.
The fittest individual that fulfills the constraints is considered
the best-solution to the problem and resides in the conform-
ing subspace. The fittest individual in Fig. 4 is depicted by
the star tagged with an ‘s’.

In the case of SBSE applied to MDE, we want the EA
to produce a conforming individual as a solution to the
problem. Nevertheless, exploring nonconforming individ-
uals could also lead to the solution faster and benefit the
search. Therefore, we will study different methods to cope
with nonconforming individuals. The next section presents
our strategies for handling nonconforming individuals and
how they can be applied to individuals encoding MOF mod-
els.

@ Springer

4 Handling nonconforming individuals in
SBSE encoding model artifacts

This section presents the main strategies that are available
in the literature for handling nonconforming individuals and
how they can be applied to work when individuals encode
model fragments. The main strategies studied are penalty
functions, strong representations, closed operators and repair
operators.

4.1 Penalty functions

Penalty functions [10,51,75,89] are functions applied to non-
conforming individuals that are designed to hinder their
spread during the evolution. There are different variants of the
penalty function method, ranging from static penalty func-
tions and dynamic penalty functions, to the death penalty
function, which is the most extreme one.

4.1.1 Static penalty

A static penalty applies a reduction to the fitness value of
nonconforming individuals. In static penalties, the value can
be a static constant or it can be proportional to the degree
of violation of the constraints. To apply a static penalty in
EAs, we need to identify nonconforming individuals and then
modify their fitness value by subtracting the penalty value.
This is done as an extra step after calculating the fitness value
of the individuals.

Equation 2 shows the definition of sta, which is a static
penalty function that applies a constant penalty value (Ag)
to the fitness of an individual (/) if it is a nonconforming
individual. The value of the penalty applied (A) needs to be
adjusted depending on the domain.

ifl e F
ifleld’

fitness(/)

2
fitness(/) — Ag @

sta(l) = {

Equation 3 shows the definition of staDeg, which is a
static penalty function that applies a penalty value (Agq) to
the fitness of a nonconforming individual proportional to the
degree of violation of the constraints (deg(/)) of the given
individual. The degree of violation of an individual (deg([/))
is calculated as the sum of the violation degree of each gene
(vio(7)), where all violations of a constraint are weighted the
same. A gene that is not violating any constraint is not taken
into account for the calculations.

Handling nonconforming individuals in search-based model-driven engineering: nine generic 1663

fitness(/)
staDeg(1) =
fitness(I) — Agq * deg([)

ifl e F
ifl eld

n
deg(l) = Z vio(i) where :
i=0
if G; is a property missing parent

if G; is a reference missing source

. (3

1

1
L 1 if G; is a reference missing target
vio(i) =)

if G; is a reference missing source

and target

0 otherwise

Static penalty functions can be easily applied to EAs that
are used to find model fragments, with the trickiest parts
being the adjustment of the constant (Agq) and the selection
of the method used to assess the degree of violation of the
constraints (deg(/)). As part of this work, we try different
values and use the ones that provide the best results.

4.1.2 Dynamic penalty

Dynamic penalty functions are similar to static penalty func-
tions in that they apply a reduction to the fitness value
of nonconforming individuals. The difference with static
penalty functions is that the penalty value applied is propor-
tional to the current generation, making it more difficult for
nonconforming individuals to survive as the evolution goes
on. This penalty is well suited for the problem since we do
not want nonconforming individuals as solutions; however,
nonconforming individuals can lead to better results early in
the process and removing them prematurely can affect the
search negatively.

Depending on the representation used for the problem,
some of the optimal individuals (those with the highest fitness
scores) will be close to the boundaries between the I/ and F
subspaces. Therefore, evolving a nonconforming individual
into a conforming and optimal individual may be less expen-
sive (in computational costs) than reaching the same optimal
conforming individual through the evolution of another con-
forming individual (e.g., in Fig. 4, evolving ‘d’ to ‘s’ may be
less expensive than evolving ‘a’ to ‘s’).

Equation 4 shows the definition of dyn, which is a dynamic
penalty function that applies a penalty value (Ld) to the fitness
of a nonconforming individual proportional to the number of
the current generation (g).

ifl e F
ifleld’

fitness(/)

dyn(l) =
yn(D) fitness(I) — Ag * g

“

Similarly, Eq. 5 shows the definition of dynDeg, which is
a dynamic penalty function that applies a penalty value (Agqq)
to the fitness of a nonconforming individual proportional to
the degree of violation of the constraints (deg(7)) of the given
individual and the number of the current generation (g).

ifl e F
ifleud’
%)

fitness(/)

dynDeg(/) =
ynDeg(/) fitness(I) — Aqq * deg(l) x g

4.1.3 Death penalty

The death penalty is the most extreme case of penalty. When
new offspring are created through the combination of the
genetic operators, the individuals are evaluated to check
whether they belong to the conforming or the nonconforming
subspace. If they belong to the nonconforming subspace, they
are removed from the offspring, so they do not end up in the
population of the next generation. If they belong to the con-
forming subspace, the EA continues normally, adding them
to the population through the replace operator. When using
this strategy, the population will never contain a nonconform-
ing element, guaranteeing that the solution is a conforming
individual.

4.2 Strong encoding

The second strategy for handling nonconforming individu-
als is the use of a strong representation (or encoding) for the
problem. Changing the encoding may also involve a change
in some of the genetic operators being applied since the oper-
ations are designed to work on a specific representation. The
main idea is to devise a strong encoding that guarantees by
construction that any individual encoded using this repre-
sentation is a conforming individual. Having this type of
encoding makes the search space change reducing the ¢/ sub-
space to the empty set, thus simplifying the search space.

This solution has been successfully applied to problems
that can be represented as a permutation of a set of values.
For instance, the Travelling Salesman Problem poses the next
question: Given a set of cities and their distances from each
other, what is the shortest path to visits all of the cities? A
typically strong encoding to solve these problems is a list
that includes all of the cities. Each city appears once in each
individual in the order it is visited, ensuring that all of the
candidates fulfill the constraint (since all of the cities are
visited).

In the case of model fragments, some restrictions must be
introduced in the encoding to guarantee that all individuals
fulfill the constraints (valid references and valid properties)
in order to be considered a conforming individual. Our strong
encoding consists in introducing a hierarchy of requirements

@ Springer

1664

J.Fontetal.

Strong Encoding

Model Fragment 1
(conforming)

Model Fragment 2
(nonconforming)

Fig.5 Example of the strong encoding

among the genes; that is, some genes require other genes and
can only be set to true if the required genes are also true.

Figure 5 (left) shows an example of our proposed strong
encoding for models in EAs that use model fragments as indi-
viduals. It shows the encoding for a parent model, including
the correspondence between each gene and the model ele-
ments (dashed arrows) and the requirements among the genes
(regular arrows). For instance, the gene G indicates the pres-
ence or absence of the inverter class element, while the gene
G| corresponds to the pow property of the inverter class. The
gene G requires the gene Go, so G can only be true if G
is also true.

To ensure the ‘valid reference’ constraint, all of the ref-
erence elements require that their source and target class
element are present in the model fragment. Therefore, a ref-
erence element can only be set to true if both the source and
target class elements are also true. For instance, in Fig. 5
(left) the gene G, corresponds to the from reference of the
provider channel class element. G, can only be true if the
source of the reference (G3) and the target of the reference
(Gyp) are also true in the model fragment.

To ensure the ‘valid property’ constraint, all of the prop-
erty elements require their parent class element. Therefore,
a gene representing a property can only be set to true if the
parent element is also true.

By doing this, the representation ensures that both con-
straints are fulfilled by all of the individuals that are encoded
using this strong encoding. Therefore, all of the individuals
will be conforming individuals and the nonconforming space
is reduced to the empty set.

Figure 5 (center) shows the representation of a conforming
individual, Model Fragment 1, encoded following the strong
encoding instead of the regular encoding (as in Fig. 1). All of
the genes that require other genes (G1, G2, G4, Gg, Gg) can
only be set to 1 if the required genes (Go, G3, Gs, G7, Gg)
are also set to 1.

Figure 5 (right) shows a wrong and invalid representation
of a nonconforming individual, Model Fragment 2 (the same
model fragment as in Fig. 1). This is a nonconforming indi-
vidual and is not allowed by the strong encoding. It is only
depicted for clarification purposes (as the encoding will not
allow it to exist). Gene G requires G and since Gy is set to

@ Springer

0, G1 cannot be set to 1. Similarly, G, requires G¢ and can-
not be set to 1 either. Model Fragment 2 is nonconforming,
so it cannot be built using the strong encoding.

The new strong encoding just introduced also needs
genetic operations that are designed to work properly for
this representation. The selection and replacement operations
used by the regular encoding can also be applied directly
to the strong encoding. However, the new strong encoding
requires new mutation and crossover operations.

4.2.1 Mutation operation for strong encoding

The Mutation operation that is used with the strong encod-
ing is similar to the operation used with the regular encoding.
Each gene will have a probability of mutation, changing its
value (from 1 to 0 or from O to 1). However, the operator will
act differently in some cases due to the dependencies. Fig-
ure 6 shows a summary of how the mutation behaves when
a gene affected by requirements is going to mutate. It also
includes examples of mutations applied to Model Fragment
1.

The first row of Fig. 6 shows the behavior when the gene
that is going to mutate has a value of 0 and is going to mutate
to 1. The second row shows the behavior when the gene
mutates from 1 to 0. The first column shows the behavior
when the gene that is going to mutate requires other genes.
The second column shows the behavior when the gene that
is going to mutate is required by other genes.

For instance, in a mutation of a gene from O to 1 when
the mutating gene requires other genes (G¢ mutation), the
gene will only mutate if all of the genes required are set to
1 (otherwise, the strong encoding does not allow setting it to
1). Since G7 is set to 0, the mutation will not take place, and
G will remain unchanged with a value of 0.

In a mutation of a gene from 1 to 0 when the mutating
gene is required by other genes (G mutation), the gene can
mutate from 1 to 0, but then all of the genes that require it
also need to mutate to O (as the strong encoding requires).
Since G| and G, require G, they will also mutate to O (if
their previous value was already 0, nothing changes).

In a mutation of a gene from O to 1 when the mutating
gene is required by others genes (G¢ mutation), the mutation

Handling nonconforming individuals in search-based model-driven engineering: nine generic 1665

mutating gene requires others mutating gene is required by others
Gg mutation Gg mutation
the gene
mutation mutates to the gene O
from 0 1 only if mutatZs to1l
to1l all required
genes are 1
G mutation
the gene
. mutates to 0
mutation | the gene j —{
from1 mutates and all others
to 0 to 0 that depend
on it also
mutate to 0

Fig.6 Example of mutation operator for strong encoding

does not need any special action, so it proceeds as usual (e.g.,
mutating gene Gog from 0 to 1). Similarly, in a mutation of
a gene from 1 to O when the mutating gene requires other
genes (G mutation), the mutation proceeds without further
action (e.g., mutating gene G from 1 to 0).

4.2.2 Crossover operation for strong encoding

The crossover operation that is used with the strong
encoding needs to take into account the hierarchy of the rep-
resentation. To do this, it follows three steps: (1) generate
a random mask; (2) check the validity of the random mask;
(3) generate offspring. Figure 7 shows this three-step process
along with an example.

Generate a random mask The random mask is randomly
generated each time a crossover operation is performed.
The idea is to divide the set of genes that are present in
the representation of an individual into two subsets (G 4
and G p) and then use them to determine which elements
come from one parent and which from the other when
performing the crossover. First, a random point in the
encoding is selected (a random number from O to the size
of the individual). Then, all of the elements below that
index will be the first subset (G 4), while the rest will
be the second subset (G p). Figure 7 (center) shows an
example of a mask. In this case, the randomly selected
index is 3, so genes Go, G1, G2, and G3 are the subset
G 4 (the encoding is shaded in dark gray); the rest of the
genes are the second subset G p (the encoding is empty
and the elements of the individual are faded out).

Model Fragment 1

Model Fragment 3

[>— O

G, G, G, Ge Gs

Random Mask

i< valid? [not valid]

Model Fragment 4 Model Fragment 5

Fig.7 Example of crossover operator for strong encoding

Check validity The next step is to check the validity of the
mask. Some masks could lead to nonconforming individ-
uals (which is not possible in the strong encoding), so they
cannot be applied. The purpose of this step is to detect
those situations and generate a new mask when the cur-
rent one is not valid. First, the boundaries between the
two subsets are identified. In other words, any element

@ Springer

1666

J.Fontetal.

from subset S4 that requires or is required by an element
from subset Sp is considered a boundary. Each boundary
has two parts, a requiring gene and a required gene each
of which is in a different subset, S4 or Sg. Then, each
boundary is classified into one of the following categories
depending on the values of the boundary in each of the
parents:

The requiring gene is 0 in both parents In this case,
the value of the required gene does not matter since
the requiring gene is not going to be part of any of the
two combinations generated as offspring. The mask
is not invalidated.

The required gene is 1 in both parents In this case, the
value of the requiring gene does not matter since the
required gene will always be part of the two com-
binations generated as offspring. The mask is not
invalidated.

Otherwise In the rest of the cases, the value of the
requiring and required genes is different in each of
the parents. This leads to a situation where one of the
combinations generated as offspring is nonconform-
ing. The mask is invalidated (making it necessary to
generate a new mask)

Generate offspring Finally, the crossover is applied fol-
lowing the valid mask, and two new individuals are
generated. The first individual obtains the value for the
genes contained in subset S4 from the Parent 1 and the
value for the genes contained in subset Sz from the Par-
ent 2. The second individual is the opposite and takes
the values for genes in subset S4 from Parent 2 and the
values for genes in subset Sp from Parent 1.

Asaresult of the crossover operation, two new conforming
individuals that inherit genes from both parents are generated.
By using these two new operations, the resulting individual
will always be in the conforming subspace.

4.3 Closed operators

Another method for coping with nonconforming individuals
in EAs is the development of closed operators. Closed oper-
ators have their roots in mathematics. Specifically, a set has
closure under an operation if the application of that opera-
tion to elements of the set always produces an element of the
set. For instance, the set N of positive numbers (some defini-
tions also include 0) has closure under the addition operation
(+); the addition of any two numbers from N will produce a
number in N. Or more formally:

Va,beN|a+b=c=ceN. (6)

@ Springer

By extending this concept of closure, we can create oper-
ators that guarantee that if the individuals used as input are in
the conforming subspace, the resulting individual produced
by the operator will also be in the conforming space. Closed
operators are similar to the operators used with strong encod-
ing because they also ensure that resulting individuals reside
in the conforming subspace. In addition to the definition of
closed operations, the EA must be initiated with a set of con-
forming elements. By doing so, the population will always be
part of the conforming space, guaranteeing that the solution
will be a conforming individual.

In this work, we use two closed operators, which are
adapted from the ones presented for the strong encoding,
to apply them directly to the regular encoding. In order to
obtain the initial population, we generate two types of seeds:
(1) the empty model fragment (a model fragment where all
of the genes are set to 0), which is a conforming individ-
ual since no constraint is violated; and (2) the whole model
fragment (a model fragment where all of the genes are set
to 1), which is also a conforming individual since all of the
constraints are satisfied. The evolution of those individuals
(through mutations and crossovers) will eventually lead to
the solution model fragment.

4.4 Repair operators

Repair operators [18,65,66] are those capable of turning a
nonconforming individual into a conforming one. The repair
operator is an operator that is applied after the evolution has
taken place (selection, crossover, mutation) but before the
individuals are included in the population (replacement).

Repair operators are usually bound to the domain since
knowledge about how to repair an individual is needed.
However, in this work, we have identified different generic
scenarios where the repair operators can be applied. First,
when taking into account the valid reference constraint, two
scenarios may arise: missing Source and missing Target
(Table 1). Taking into account the valid property constraint,
a new scenario may arise: missing Parent (Table 2):

Missing source This scenario occurs when the individual
includes the reference element and the target element of
the reference but not the source element of the reference
(See Initial situation of the first row in Table 1).

Missing target This scenario occurs when the individual
includes the reference element and the source element of
the reference but not the target element of the reference
(See Initial situation of the second row in Table 1).
Missing parent This scenario occurs when a property ele-
ment is present in the individual, but the parent element
of the property is not present (See Initial situation of the
first row in Table 2).

Handling nonconforming individuals in search-based model-driven engineering: nine generic 1667

Table 1 Repair scenarios and repair operators for the ‘valid reference’ constraint

Initial situation Add repair Remove repair

Source Reference Target Source Reference Target Source Reference Target
Missing source v v v v v v
Missing target v v v v v v
Tablg 2 Repair scenarl(}s apd Initial situation Add repair Remove repair
repair operators for the ’valid
property’ constraint Property Parent Property Parent Property Parent

Missing parent v v v

To repair these scenarios, we propose two different repair
operators based on the addition or removal of elements

4.4.1 Add repair

Add Repair will be applied to the repair scenarios described
above and repair them by adding the missing elements:

Missing source The repair operator will add the source
element of the reference to the individual (See Add Repair
of the first row in Table 1).

Missing target The repair operator will add the target
element of the reference to the individual (See Add Repair
of the second row in Table 1).

Missing parent The repair operator will add the parent
element of the property to the individual (See Add Repair
of the first row in Table 2).

4.4.2 Remove repair

Remove Repair will be applied to the repair scenarios
described above and repair them by removing the elements
causing the individual to be nonconforming:

Missing source The repair operator will remove the ref-
erence element of the reference to the individual (See
Remove Repair of the first row in Table 1).

Missing target The repair operator will remove the ref-
erence element of the reference to the individual (See
Remove Repair of the second row in Table 1).

Missing parent The repair operator will remove the prop-
erty element of the individual (See Remove Repair of the
first row in Table 2).

After applying the operators, the nonconforming individ-
ual will turn into a conforming one (either by adding or
removing elements). One problem that may arise with the
remove operator is that it hinders the evolution of the model

fragment because the operator does not allow new elements
to emerge if they are not valid.

5 Evaluation

This section presents the evaluation performed to address the
following research questions.

RQ1I Can the strategies for handling nonconforming indi-
viduals presented so far (penalty functions, strong encoding,
closed operations or repair operators) improve the results of
SBSE on models in terms of the number of generations and/or
wall-clock time needed to reach the solution?

RQ?2 If so, which strategies produce better results?

RQ3 Can any of the strategies produce solutions of better
quality, in terms of precision, recall, F-measure and MCC,
than those produced by the baseline when combined with a
state-of-the-art fitness function as the textual similarity fit-
ness presented?

To address these research questions, the following sub-
sections present a description of the experimental setup, the
set of performance metrics used, a description of the two
case studies where the strategies were applied, the results
obtained, and the statistical analysis performed on the results.

5.1 Experimental setup

To evaluate the different strategies, we apply them as part of
the EA explained in Sect. 3.2 following the process depicted
in Fig. 8.

The oracles (left) contain a set of product models and
several features contained in those product models. The ora-
cles were obtained from industry and contain the realization
of each feature in the form of a model fragment. In other
words, the oracle can be considered a set of ‘problems’ and
the ‘answer’ to each one. We use it to evaluate the impact of
each of the strategies proposed in the search process. Each
oracle is organized as a set of test cases where each test case
contains a model (where the feature must be located) a feature

@ Springer

1668

J.Fontetal.

for each

Test Case X -
for 30 Baseline + Results Compare Statistical
repetitions (no strategy) Baseline #generations, Analysis
‘ . time
Test Case n i Tables
. t Baseline + Results Table 7:Quade
: Test Case 2 strategy s strategy s 4:Results 8 to 11:Holms & A12
Test Case 1 —————

Optimal Fitness
Average &

Feature
Located

Baseline + Results Compare Statistical
Oracle (no strategy) Baseline precision, recall, Analysis
: F-mes., MCC
for each -
Test Case Baseline + Results Table Tables
for30 strategy s strategy s 5:Results 7:Quade
repetitions gy . 12 to 19:Holms & A12

Textual Similarity Fitness
Average &

Fig.8 Overview of the evaluation

that is already located, and a feature description (elaborated
by the engineers of our industrial partners).

Most of the execution time of an EA is spent on the evalu-
ation of the fitness function. Specifically, in the case of FLiM
using a fitness function based on textual similarity [37], we
have reported that around 85% of the execution time is spent
on the fitness function. Therefore, to evaluate the impact of
the search strategies in the search process, we will perform
two experiments, using a different fitness function each time.
First, to avoid the impact of the fitness function on the results,
we use the optimal fitness function (see Sect. 3.2.2), which
indicates how far from or how close to the solution each of
the individuals is. This setup will allow to answer RQ1 and
RQ?2, although is not possible to apply it to solve real prob-
lems (as it needs the existence of an oracle containing the
answers to the questions beforehand). Secondly, to answer
RQ3 and test the impact of the strategies on a real scenario,
we repeat the experiment using a state-of-the-art fitness, the
textual similarity fitness function (see Sect. 3.2.2).

For each test case (n) and each of the strategies (s), we exe-
cuted 30 independent runs [8] (to avoid the effect of chance
due to the stochastic nature of EAs) for each of the exper-
iments. The set of strategies tested are the ones presented
in Sect. 4. The EA with no strategy for handling noncon-
forming individuals is used as the baseline. The resulting
data of the first experiment was averaged and is compared in
Table 4 and statistically analyzed to guarantee the validity
of the results obtained (Tables 7, 8, 9, 10 and 11, avail-
able in the Appendix). Similarly, the data obtained from
the second experiment was averaged and used to build the
confusion matrix of the result of each test case. Then, the per-
formance measures (precision, recall, F-measure and MCC)
were derived from the confusion matrix, compared in Table
5 and statistically analyzed to guarantee the validity of the

@ Springer

results obtained (Tables 7, 12, 13, 14, 15, 16, 17, 18 and 19,
available in the Appendix).

5.2 Performance metrics

To measure the performance of the strategies on the search
process, we make use of standard metrics from the literature,
so comparisons among different studies can be performed.
In general, there are two types of performance measures that
are relevant for EAs: solution quality and search effort. The
experiment using the optimal fitness is designed to measure
the impact of the strategies on the search effort of the algo-
rithm. To do so, we use the number of generations and the
wall-clock time. The experiment using the textual similar-
ity fitness is designed to measure the solution quality. To do
so, we use a confusion matrix to extract four metrics, preci-
sion, recall, F-measure and Mathew Correlation Coefficient
(MCC).

The performance of each of the strategies is directly
related to the number of times that the fitness function needs
to be executed (i.e., the number of generations). Therefore,
for the experiment using the optimal fitness we measure the
performance of each strategy as the number of generations
needed to find the optimal solution (extracted from the ora-
cle), as suggested in the literature [50]. The fitness function
is executed once for each individual in the population for
each generation. Using the number of generations as metric
allows us to compare the impact of the different strategies
and the baseline (no strategy) fairly.

In addition, we use the wall-clock time as metric to mea-
sure the performance of each strategy. However, the time
spent by the EA to find the solution does not depend only on
the strategy being applied, the computing power of the com-
puter used to run the experiments will influence the results.
Similarly, the differences in performance of the implemen-

Handling nonconforming individuals in search-based model-driven engineering: nine generic 1669

tation of each of the strategies can also introduce noise into
the results. Therefore, the number of generations should be
used to compare the performance of different strategies and
the wall-clock time can be used as an indicator on the time
needed by each strategy but should not be used to compare
performance among strategies.

For the experiment using the textual similarity fitness, the
EA will run for a fixed amount of time and then the best candi-
date obtained so far will be compared to the optimal solution
from the oracle. To perform that comparison we make use
of a confusion matrix, a table typically used to describe the
performance of a classification model (the EA + strategy) on
a set of test data (each of the test cases) for which the true
values are known (the optimal solution from the oracle). The
confusion matrix distinguishes between the predicted values
(solution of the EA + strategy) and the real values (optimal
solution from oracle) and arranges the elements (each of the
genes of each individual) into four categories:

— True Positive (TP) Values that are true in the real scenario
and have been predicted as true.

— True Negatives (TN) Values that are false in the real sce-
nario and have been predicted as false.

— False Positive (FP) Values that are false in the real sce-
nario but have been predicted as true.

— False Negative (FN) Values that are true in the real sce-
nario but have been predicted as false.

Then, performance metrics can be derived from the con-
fusion matrix, in this experiment we use precision, recall,
F-measure and MCC.

Precision (see Eq. 7) measures the number of elements
from the solution that are correct according to the optimal
solution from the oracle. Precision values can range from 0%
(no single element present in the solution is also present in the
optimal solution from the oracle) to 100% (all the elements
present in the solution are also present in the optimal solution
from the oracle).

TP

Precision = ———.
TP + FP

(N

Recall (see Eq. 8) measures the number of elements of
the optimal solution that have been correctly retrieved in the
solution. Recall values range from 0% (none of the elements
that are true in the oracle solutions is present in the solution)
to 100% (all the elements that are true in the optimal solution
are also present in the solution).

TP
Recall = ———. ®)
TP + FN

However, achieving a high value in precision or recall
alone is not enough. The empty model fragment (where all
the genes are set to false) would achieve 100% in precision
(but 0% in recall). Similarly, the complete model fragment
(where all the genes are set to true) would achieve 100%
recall (but 0% in precision). Therefore, there is a need for
overall measures that take into account all the figures present
in the confusion matrix.

F-measure (see Eq. 9) is the harmonic mean between pre-
cision and recall, and provides a good overview of the overall
performance of a strategy. Values can range from 0% (either
precision or recall is 0%) to 100% (both, precision and recall
are 100%).

2 - precision - recall
F-Measure =

(€))

precision + recall

Finally, MCC (see Eq. 10) has recently proven to be more
informative than F-measure as metric of the overall perfor-
mance [17], as it takes into account all the values from the
confusion matrix (including the TN, which is not used by the
F-measure). The values range from —1 (worst value possi-
ble) to 1 (best value possible).

TP - TN — FP - FN

MCC = .
/(TP FP) - (TP + FN) - (IN + FP) - (IN + FN)

(10)

5.3 Case studies: BSH and CAF

The present work has been evaluated in two industrial case
studies. The first case study used for the evaluation was BSH,
the leading manufacturer of home appliances in Europe.
Their induction division has been producing induction hobs
(under the brands of Bosch and Siemens among others) for
more than 15 years. The second case study used for the eval-
uation was CAF, a worldwide provider of railway solutions.
They have been developing a family of PLC software to con-
trol their trains for more than 25 years.

The BSH case study has already been used as a run-
ning example throughout the paper. Their newest induction
hobs include full cooking surfaces where dynamic heating
areas are dynamically generated and activated or deactivated
depending on the cookware placed on top of them. In addi-
tion, the new hobs have increased the amount and type of
feedback provided to the user while cooking, providing data
such as the temperature of the food being cooked or real-
time measures of the power consumption of the hob. These
changes have been made possible by increasing the complex-
ity of the software that drives the induction hob.

The DSL used by our industrial partner to specify the
induction hobs is composed of 46 meta-classes, 74 references
with each other, and more than 180 properties. The running
example presented in 3.2 shows a simplification of their DSL

@ Springer

1670

J.Fontetal.

(to increase legibility and due to intellectual property rights
concerns).

Their oracle is composed of 46 product models (induction
hob), where each product contains (on average) around 500
model elements. The oracle is composed of 96 features that
may or may not be part of a specific product model. Those
features correspond to products that are currently on the mar-
ket or will be released to the market in the near future. Each
of the 96 features can be part of several product models, mak-
ing a total of 608 occurrences of any of the features in any
of the product models. Therefore, there are 608 test cases,
each of which includes the product model where the feature
should be located and the model fragment itself that realizes
the feature (which is used as fitness).

The CAF case study is based on the family of software
products used to manage their trains in different forms (reg-
ular train, subway, light rail, monorail, etc.) all over the world.
Each train unit is equipped with different pieces of hardware
installed on their vehicles and cabins. Those pieces of equip-
ment are often provided by different companies, and their
aim is to carry out specific tasks for the train such as trac-
tion, compression for the hydraulic brakes and harvesting
of power from the overhead wires. The control software is
responsible for making the cooperation among all the equip-
ment possible in order to achieve the functionality desired for
a specific train and guaranteeing compliance with the specific
regulations of each country.

The DSL used to specify the products from CAF has
expressiveness to describe the interaction among the equip-
ment pieces. In addition, the DSL also provides expressive-
ness to specify non-functional aspects that are related to
specific regulations (such as the quality of the signals or the
different levels of redundancies needed).

The CAF oracle is composed of 23 product models (train
units), where each product contains (on average) 1200 ele-
ments. The products are built from 121 different features that
may or may not be part of a specific product model. Again,
some features are present in more than one product model,
making a total of 140 occurrences. For each occurrence, there
is a test case that includes the product model and the model
fragment that realizes the feature (which is used as fitness).

For the evaluation with the BSH oracle, we performed 608
(test cases) * 30 (repetitions) * 10 (baseline + strategies) * 2
(fitness functions) = 364,800 independent runs. For the eval-
uation with the CAF oracle, we performed 140 (test cases)
* 30 (repetitions) * 10 (baseline + strategies) * 2 (fitness
functions) = 84,000 independent runs.

To prepare the oracles, our industrial partners provided us
with the product models and the model fragments that were
used to build those product models. Therefore, the informa-
tion about which elements realize each of the features comes
directly from industry. For each test case, we had previously
checked that the model fragment exists in the provided prod-

@ Springer

uct model and that there are no inconsistencies (such as the
empty model fragment or the complete model fragment).

5.4 Implementation details

The presented strategies were implemented within the
Eclipse environment and the source code has been released to
the public [34] as part of this work. We have used the Eclipse
Modeling Framework [81] to manipulate the models from
our industrial partner. The EA is based on the watchmaker
framework [27] for evolutionary computation, creating cus-
tom genetic operators and representations to implement the
strategies. The IR techniques that were used to process the
language were implemented using OpenNLP [1] for the POS-
Tagger and the English (Porter2) [83] as stemming algorithm.
Finally, the LSI fitness was implemented using the Efficient
Java Matrix Library (EJIML [28]). We performed the execu-
tion of the EA with the strategies using an array of computers
with processors ranging from 4 to 8 cores, clock speeds
between 2.2 and 4 GHz, and 4-16 GB of RAM. All of them
were running Windows 10 Pro N 64 bits as the hosting oper-
ative system and the Java SE runtime environment (build
1.8.0_73-b02).

5.5 Parameters and budget

There are some parameters in EAs that need to be config-
ured prior to running them. We use default parameter values
extracted from the literature [9] (and previously tested for this
EA [38]) when available. However, the new penalty functions
proposed in Sect. 4.1 also need values for some parameters.
To give those values we have performed a tuning to deter-
mine which parameters work better for this problem. In other
words, we have tried different combinations of parameters to
determine the ones that result in a faster search. The param-
eters that we use are shown in Table 3.

Regarding the stop condition of the EA for the first experi-
ment (optimal fitness), since we want to compare the different
strategies against the baseline, we allocate a budget that is
larger than three times the number of generations needed by
the baseline. If the strategies find the solution in the allocated
number of generations, we obtain the number of generations
needed and compare it against the baseline; if the strategies
do not help the algorithm to find the solution within the allo-
cated number of generations we indicate that in the results
table. Since the baseline results were about 6400 generations
for the BSH case study and 9700 for the CAF case study, we
allocated a budget of 30,000 generations.

Regarding the stop condition of the EA for the second
experiment (textual similarity fitness), since we want to deter-
mine if the use of the strategies has an impact on the solution
quality, we allocated a fixed amount of time for each test case
(10 s for BSH and 20 s for CAF), based on the size of the

Handling nonconforming individuals in search-based model-driven engineering: nine generic 1671

Table 3 Parameters for the evolutionary algorithm and for the penalty
strategies

Parameter Description Value

Size Size of population 100

Pe Probability of crossover 0.75
Probability of mutation,

Pm Where n is the length of 1/n
The individual being mutated

As Constant for static penalty 2.5 % 1072
Constant for static penalty

Asd With degree of violation 1.8 x 1073

Ad Constant for dynamic penalty 2% 1074
Constant for dynamic penalty

Add With degree of violation 1.0 x 1073

model being explored and the times needed in a pilot test.
After that time, we will stop the execution of the EA, get
the best candidate obtained so far and compare it against the
optimal solution obtained from the oracle using the metrics
presented in Sect. 5.2. This will result in measures of pre-
cision, recall, F-measure and MCC for the EA when using
each of the strategies and the baseline.

5.6 Results

Table 4 shows the results of the application of the different
strategies presented (and the baseline) to the two case studies
presented, using the optimal fitness. For each of the strategies
(rows), the table shows the average number of generations
needed to find the solution model fragment (and the standard
deviation +0) and the mean time in seconds needed to locate
each test case (and the standard deviation 4=o'). The first two
columns show the averaged results for the 608 test cases from
BSH, and the next two columns show the averaged results for
the 140 test cases from CAF. The first row shows the results
for the baseline, without applying any strategy; the second to
sixth rows show the different penalty functions presented; the
seventh row shows the results for strong encoding; the eighth
row shows the results for closed operations; and the last two
rows show the results for the repair strategies. The strategies
that needed fewer generations or less time than the baseline
to find the solution are shown with italics in the table.

For BSH, the baseline was 6,405 generations and 0.164
s, so the results for strong encoding (456 generations and
0.010 s), closed operations (1011 generations and 0.022 s)
were below the baseline for both metrics. For CAF the base-
line took 9,759 generations and 0.441 s to find the solution,
while the strong encoding (2,448 generations and 0.058 s)
and the closed operations (6,372 generations and 0.225 s)
were able to find the solution in fewer generations and less

time than the baseline. When applying the remove repair,
the number of generations needed to reach the solution in
the BSH case study (4049 generations) was fewer than the
number of generations needed by the baseline, but the mean
time needed by the remove repair (1.304 s) was bigger than
the time needed by the baseline. The same happens when
applying the remove repair operator to the CAF case study.
When applying the death penalty, the EA was unable to find
the solution in the number of generations allocated (30,000),
so it is marked with an asterisk (*). Thus, in answer to RQ]1,
there are strategies that are capable of helping the EA to
find the solution in fewer generations and less time than the
baseline.

Table 5 shows the results of the application of the dif-
ferent strategies (and the baseline) to the two case studies
presented,90.8 & 4.7 using the textual similarity fitness. For
each of the strategies (rows), the table shows the mean pre-
cision values, the mean recall values, the mean F-measure
values and the mean MCC values obtained. All the metrics
are presented along with its standard deviation (£o'). The first
four columns show the averaged results for the 608 test cases
from BSH, and the next four columns show the averaged
results for the 140 test cases from CAF. The first row shows
the results for the baseline, without applying any strategy;
the second to sixth rows show the different penalty func-
tions presented; the seventh row shows the results for strong
encoding; the eighth row shows the results for closed oper-
ations; and the last two rows show the results for the repair
strategies. The strategies that obtained better values than the
baseline on any of the four metrics are shown with italics in
the table.

For BSH, the baseline achieved an average value of 33.6%
in precision, 58.5% inrecall, 41.2% in F-measure and 0.38 in
MCC, so the results for strong encoding (48.8% in precision,
93.7% in recall, 61.6% in F-measure and 0.62 in MCC) and
closed operations (51.1% in precision, 85.6% inrecall, 58.8%
in F-measure and 0.60 in MCC) were above the baseline
for the four metrics. For CAF, the baseline achieved a value
of 36.0% in precision, 58.1% in recall, 39.2 in F-measure
and 0.35 in MCC, while the results for the strong encoding
(53.8% in precision, 84.9% in recall, 61.2% in F-measure
and 0.61 in MCC), and the results for the closed operations
(50.4% in precision, 78.0% in recall, 55.1 in F-measure and
0.53 in MCC) were above the baseline. When applying the
death penalty, the results in recall were 99.9% for BSH and
90.8 for CAF (way beyond the results achieved by the base-
line), but the results in precision (4.3% for BSH and 6.0% in
CAF) were too low when compared to the values obtained
by the baseline, resulting in a worse value of the more gen-
eral metrics (F-measure and MCC). Thus, in answer to RQ3,
there are strategies that are capable of helping the EA to find
the solution when applied in combination to a state-of-the-

@ Springer

1672

J.Fontetal.

Table 4 Results of the optimal fitness for BSH and CAF, including the number of generations and the wall-clock time for each strategy and the

baseline
EA + optimal fitness + strategy BSH CAF

Generations + o Time £+ o (s.) Generations + o Time + o (s.)
Baseline 6405 £ 2484 0.164 £ 0.063 9759 £ 5248 0.441 + 0.227
Static penalty 6740 £ 2671 2.726 + 1.085 12085 £ 7702 8.540 £+ 10.759
Static degree penalty 10281 £ 4112 3.893 £ 1.593 11560 + 6897 10.094 + 5.397
Dynamic penalty 9452 £ 5021 3.852 £2.115 19591 £ 9121 13.231 £5.572
Dynamic degree penalty 7945 £ 3651 3.288 £+ 1.462 17504 £ 11265 13.393 + 7.561
Death penalty 30000* £ 0 13.061 £ 1.292 30000* £ 0 14.023 £ 1.237
Strong encoding 456 £ 509 0.010 £ 0.012 2448 £ 1267 0.058 +0.033
Closed operations 011 £ 1034 0.022 £ 0.022 6372 £ 4164 0.225 £ 0.180
Add repair 29431 £+ 2611 13.802 + 1.281 23453 £ 9201 16.269 + 6.054
Remove repair 4049 £+ 1936 1.304 £ 0.619 6789 £ 3363 3.620 + 1.616

The strategies that needed fewer generations or time than the baseline are shown with italics

art fitness function, outperforming the baseline in terms of
precision, recall, F-measure and MCC.

The values for standard deviations achieved by the differ-
ent metrics are due to the differences in size and complexity
of each test case. Bigger test cases require more generations
to be solved, while smaller test cases require less generations
(and thus time). Similarly, the values of precision. Recall, F-
measure and MCC that can be achieved in a fixed time vary
depending on the size of the model being explored and the
size of the solution [11]. When the experiment is performed,
the execution of each combination of strategy and test case
is performed 30 times (as suggested in the literature [8]) to
mitigate the stochastic nature of the EA and ensure that the
result is not due to mere chance. Those 30 values are aver-
aged and the standard deviation in that case was below 1%
for all the test cases, showing the robustness of the search
and ensuring that solutions of similar quality are produced
each time that the search is performed.

5.7 Statistical analysis

To compare the results from the different strategies, all of the
data resulting from the runs of the algorithms were analyzed
following the statistical methods and guidelines described in
[8].

To provide an answer for RQ2, we performed a statisti-
cal analysis to: (1) provide formal and quantitative evidence
(statistical significance) that the different strategies have an
impact on the search (ensuring that the differences in results
are not obtained by mere chance); and (2) show that those dif-
ferences are significant in practice (effect size). The analysis
is performed for each experiment separately.

@ Springer

5.7.1 Statistical significance

First, all of the strategies should be run a large enough num-
ber of times (30 independent runs) to collect information
about the probability distribution for each strategy. Then, a
statistical test is run to assess where there is enough empirical
evidence to claim (with a high enough level of confidence)
that there are differences among the results of the strategies
(and thus be able to claim that one strategy is better than
another). To achieve this, two hypothesis are defined. Hp: is
the null hypothesis, stating that there is no difference among
the strategies; H is the alternative hypothesis, stating that at
least one strategy differs from another. Finally, a statistical
test is run to determine whether or not the null hypothesis
(Hp) can be rejected.

A statistical test returns a probability value (p value) that
ranges between 0 and 1. The lower the p value the higher the
probability of the null hypothesis being false (and, therefore,
there are differences among the strategies). In this field of
study, a p value under 0.05 is considered to be statistically
significant [8], enabling the null hypothesis to be considered
false.

The statistical test used to determine this significance
depends on the properties of the data. The data obtained in
this evaluation does not follow a normal distribution, which
requires the use of nonparametric tests. Of the nonparametric
tests available, we applied the Quade test, which has shown
to be more powerful than the rest when working with real
data [41].

Table 7 (available in the Appendix) shows the results for
the Quade tests applied to the result sets of the experiments.
The Quade testis applied to the result sets of each experiment,
metric and case study separately. The p value for each metric
and case study is smaller than 0.05, which is considered to
be statistically significant [8]. Therefore, we can conclude

Handling nonconforming individuals in search-based model-driven engineering: nine generic 1673

Table 5 Results of the textual similarity fitness for BSH and CAF, including the precision, recall, F-measure and MCC achieved by each strategy and the baseline

CAF

BSH

EA + textual similarity fitness + strategy

F-meas. + o MCC + o Precision & o Recall + o F-meas. + o MCC + o

Recall + o

Precision + o

0.35+0.28
0.19 +£0.27
0.15 +£0.32
0.13 £0.24
0.23 +£0.30

39.2 +£20.0
26.6 +15.3
253+ 149
22.1£11.3
305 £ 17.7

58.1 £20.9
53.1 £22.7
58.1 £24.4
50.2 £21.0
574 £23.5
90.8 +£4.7
84.9+ 16.4

36.0 £22.2
224+ 155

0.38 £ 0.28
0.26 +0.20
0.20 +£0.18
0.16 £0.14
0.20 £ 0.16
0.01 £0.02
0.62 +0.23

41.2+£26.3
28.0 £19.7
21.8 £17.7

58.5+£28.0
55.7 £26.6
55.8 £26.0
54.9 £24.0
59.0 +24.9
99.9 £ 0.4

93.7 £ 19.9

33.6 £28.7
20.1 £20.3

Baseline

Static penalty

19.8 £13.3
16.6 9.6
259+ 184
6.0 £4.0

14.6 £16.3
11.6 £ 12.8
13.5+ 129
43+45

Static degree penalty

18.0 £ 14.2
20.7 £ 15.7
79+£79

Dynamic penalty

Dynamic degree penalty

-0.01 £0.24
0.61 £0.24
0.53 £0.29

10.9 £ 6.9
61.2+21.0
55.1 £24.6

Death penalty

61.6 +23.1 53.8+24.7

58.8 +£26.3

48.8 £27.6
51.1+30.9
6.7+£72

Strong encoding

78.0£21.0

504 £28.7
7.1£42

0.60 £ 0.27
0.10 £ 0.08
0.25 £0.12

85.6 £26.7
65.9 £ 19.6
22.8£9.5

Closed operations

Add repair

-0.05 £ 0.31
0.26 £ 0.18

123+ 6.6

29.3 £10.7

67.9+17.0
292 +£11.7

11.4 £10.7
252 +£10.8

382+ 184

38.5+21.1

Remove repair

The strategies that obtained better values than the baseline on any of the four metrics are shown with italics

that there are statistically significant differences among the
results of, at least, a pair of strategies. However, the Quade
test is not able to answer the question: Which strategy gives
the best performance (in terms of the metrics analyzed in each
experiment)? To answer that question, the results from each
strategy should be pairwise compared, determining whether
or not there are statistically significant differences among
the strategies. Therefore, we applied an additional post hoc
analysis after the Quade test that performed these pairwise
comparisons. In this evaluation, we applied the Holm’s post
hoc procedure, as suggested by [41].

Values above the diagonal of Tables 8, 9, 10, 11, 12, 13,
14, 15, 16, 17, 18 and 19 (available in the Appendix) show
the Holm’s post hoc results for each metric and case study.
Each cell shows the p value obtained when comparing the
pair of strategies from the row and the column using the
Holm’s method. Again, values below 0.05 are considered to
be statistically significant. In all tables, the values that are
over 0.05 are shown with italics. For example, in Table 8, the
first column, static penalty, first row, Baseline, shows a value
of 0.066, indicating that the differences between the results
of the two strategies in terms of number of generations do
not differ enough to be considered statistically significant. In
contrast, the differences between the remove repair and all of
the other strategies (the last column) are always below 0.05.

For the optimal fitness (Tables 8, 9, 10 and 11), most of the
results are significant when compared pairwise. The differ-
ences in number of generations between the static penalty and
the baseline are not significant enough. In fact, if we com-
pare the results in Table 4, the difference between the two
is minimal (6,405 generations for the baseline versus 6740
generations for the static penalty). The effect of the static
penalty strategy is not big enough to be noticeable. Similarly,
the difference in number of generations between the death
penalty and the add repair for the BSH case study (Table 8
death penalty row, add repair column) also provides a value
(0.701) over the threshold, indicating that the differences are
minimal (Table 4 shows that the difference is low). For the
CAF case study, we confirm that the differences between the
baseline and the static penalty are not significant (Table 9). In
addition, the static degree penalty does not have significant
differences with the baseline or with the static penalty, either.
In this case, the differences between the closed operations and
the remove repair are also not significant, which differs from
the BSH case study. When comparing the time needed to
reach the solution, the differences between dynamic penalty
and dynamic degree penalty are not significant enough for
the BSH case study. For the CAF case study, the differences
between both dynamic penalties and the death penalty are not
significant either. This indicates that the strategies behaved
differently in each of the case studies and, therefore, all of
them could be relevant for a specific case study (depending
on the nature of the models).

@ Springer

1674

J.Fontetal.

For the textual similarity fitness (Tables 12, 13, 14, 15, 16,
17, 18 and 19), we can observe that the differences between
the baseline and the static and dynamic penalties are not
significant for some of the metrics and case studies (such as
the precision in BSH and the recall in both case studies). This
effect is spread also to the more general metrics of F-measure
and MCC. Similarly, the remove strategy does not provide
significant differences when compared to other strategies in
terms of precision, F-measure and MCC for the CAF base
study. This is due to the low differences achieved by those
strategies on the performance metrics (Table 5).

5.7.2 Effect size

After we have determined that there are differences among
the results of the strategies (using the Quade and Holm’s anal-
ysis), we need to determine how big those differences are.
Even after obtaining statistically significant differences, they
can be too small and have no practical value [8] (especially
when dealing with a large enough number of runs). There-
fore, it is important to assess the magnitude of the difference,
using an effect size analysis.

For a nonparametric effect-size measure [44], we used
Vargha and Delaney’s A 12 [84]. A 12 is applied to two groups
of data (e.g., the results of two strategies S1 and S») and is
related to the probability that an observation in one group
will be greater than an observation in the other group. In
other words, a Alz = 0.5 indicates that the two strategies are
equivalent and will need a similar number of generations (or
any other metric being compared) in any case. However, A
= (.7 would mean that the number of generations needed by
S1 will be higher than the number of generations needed by s>
70% of the times (similarly, we can state that S> will need less
generations 30% of the times). When comparing number of
generations or wall-clock time, the lower the value the better.
However, When comparing precision, recall, F'-measure or
MCC, the greater the value the better. Therefore, a Alz =
0.2 applied to the precision values of two strategies indicates
that the first strategy will achieve a greater value of precision
than the second strategy 20% of the times (so first strategy
provides better performance than the second strategy 20% of
the times).

Values below the diagonal of Tables 8, 9, 10, 11, 12, 13,
14,15,16, 17, 18 and 19 (available in the Appendix) show the
results of the A 12 for each metric and case study. The values of
each cell indicate the number of times (in percentage) that the
strategy in that row will yield a higher value than the strategy
in the column for the metric being analyzed. For example, in
Table 8 the last row (remove repair), second column (static
penalty) shows 19.71%, indicating that remove repair needs
more generations than static penalty around 20% of the times.
Values of the strategies that perform best than the baseline

@ Springer

are shown with italics in the tables, in the tables, so a quick
overview allows to observe the essence of the results.

For the optimal fitness (Tables 8, 9, 10 and 11, a low
value indicates that the strategy from the row will outper-
form the strategy of the column. For instance, the results
for strong encoding and the closed operations are much bet-
ter than the rest of the strategies for both case studies. In
particular, strong encoding outperforms the baseline always
when the number of generations is compared and 99.53%
of the times when wall-clock time is compared for the BSH
case study. A similar behavior is observed for the CAF case
study (strong encoding outperforms the baseline 96.3% of
the times when comparing the number of generations and
95.67% of the times when wall-clock time is compared. The
closed operation performs worse than the strong encoding
but also able to outperform the baseline in terms of number
of generations (99.22% of the times for BSH and 70.27% of
the times for CAF) and time (98.82% of the times for BSH
and 77.5% of the times for CAF) required to find the solu-
tion. The remove repair is also able to outperform most of the
other strategies in terms of number of generations. However,
when comparing the time needed to reach the solution, the
remove repair will be outperformed by the baseline most of
the times (96.64% of the times for BSH and 97.43% of the
times for the CAF case study).

When comparing the two best strategies for the BSH case
study, it can be observed that the strong encoding outperforms
the closed operations 65.64% of the times when number of
generations is compared and 68.79% of the times when the
wall-clock time is compared. Similarly, for the CAF case
study, the strong encoding outperforms the closed opera-
tions most of the times for both metrics (87.21% of the times
when comparing number of generations and 82.32% of the
times when comparing the time needed to reach the solu-
tion). Therefore, as an answer to RQ2, we can conclude that
the best strategy to be applied is strong encoding, followed
by the closed operations, and both are able to outperform the
baseline in terms of number of generations and time required
to find the solution.

For the textual similarity fitness (Tables 12, 13, 14, 15, 16,
17, 18 and 19), a high value indicates that the strategy from
the row outperforms the strategy from the column. Again,
the results of strong encoding are better than the baseline for
all the metrics analyzed, outperforming the baseline in preci-
sion (68.40% of the times for BSH and 70.18% of the times
for CAF), recall (91.55% of the times for BSH and 84.62%
of the times for CAF), F-measure (70.61% of the times for
BSH and 77.94% of the times for CAF) and MCC (77.37%
of the times for BSH and 79.79% of the times for CAF). The
same tendency can be observed for the closed operations,
although the results are worse than the results of the strong
encoding. Some strategies outperform the baseline for one of
the metrics (as we indicated when analyzing the results) but

Handling nonconforming individuals in search-based model-driven engineering: nine generic 1675

they are not able to outperform the baseline for the overall
metrics of F-measure and MCC. As a response to RQ3, we
can conclude that the strong encoding and the closed opera-
tions strategies are able to outperform the baseline in terms
of solution quality when applied in combination with a state-
of-the-art fitness function as the textual similarity fitness.

6 Discussion

This section provides a discussion about the results
obtained in the evaluation, giving some explanations to the
results of each of the strategies. To determine the rationale
behind the results obtained, the EA has been observed at run-
time, checking how the individuals were evolving while each
of the strategies was applied. To illustrate the findings, we use
the parent model used as running example (see bottom-left of
Fig. 1). Table 6 shows a subset of the models fragments that
can be generated using that parent model. Each row shows
the encoding of one of the possible individuals (randomly
selected out of the 1024 individuals present in the search
space). The first column shows a name to allow the identi-
fication of each model fragment (the name assigned to each
of them corresponds to the binary string of the encoding in
decimal representation). The rows with italics correspond to
conforming individuals; the rows not in italics correspond to
nonconforming individuals. The columns named from G to
Gy show the value for each specific gene of the individual.
The last column shows the value obtained by each individual
for the optimal fitness function (see Sect. 3.2.2).

When the baseline EA with no strategies is executed, the
only guide of the search is performed by the fitness function.
The individuals that can be present in the population can
belong to any subspace (conforming or nonconforming), so
any of the individuals present in Table 6 could be part of the
population. Each time a new generation is produced, the indi-
viduals with higher fitness values have better opportunities
to survive an eventually the EA will find the solution.

The results of the penalty strategies when combined with
the optimal fitness are low in general and are not able to
outperform the baseline in any of the versions (static and
dynamic, with or without the violation degree) for either of
the case studies. This is due to the penalty strategies reduce
the fitness value of some individuals (that have good fitness
values) since they belong to the nonconforming subspace.
This reduces the possibilities of the algorithm to improve
the population generation after generation; the genetic opera-
tions need to produce individuals that have high fitness values
and also belong to the conforming space.

For example, consider the selection in a population com-
posed of MF-299, MF-885 and MF-0 (see Table 6), whose
fitness are 0.4, 0 and — 0.2, respectively. If there are no
penalty strategies being applied, the probabilities of MF-299

being selected as parent for the next generation are twice the
probabilities of MF-885 being selected and four times the
probabilities of MF-0 being selected; when the penalties are
applied, the fitness of MF-299 and MF-885 is reduced as they
belong to the nonconforming subspace and thus their proba-
bilities of being selected as parents for next generation. This
kind of situations slows down the search, as the EA needs
that the offspring generated not be only fitter than current
generation, but also belong to the conforming subspace.

This is not always the case for penalties, and their effect
can be positive in some situations (as we have found when
observing the strategies at runtime). For example, if the pop-
ulation is composed by the individuals from the five last rows
of Table 6, the penalty will penalize individuals whose fitness
value is lower than the only conforming one (MF-0), and thus
will boost the search. In overall, results show that there are
more situations where the penalties are affecting negatively
than those where they are affecting positively.

When the penalty strategies are applied in conjunction
with the textual similarity fitness, the results are similar, not
being able to outperform the baseline in terms of precision, F-
measure or MCC. However, the values obtained in recall are
almost as good as those obtained by the baseline. This is due
to the fact that model fragments with more genes set to true
tend to achieve better fitness values than those with less genes
set to true. This results in the EA exploring more solutions
around those conforming model fragments that have more
genes set to true (such as MF-15 in Table 6), that contain more
genes that are also present in the solution and yield greater
recall values. However, those fragments also contain more
genes set to true that are not present in the solution and thus
the precision is reduced and resulting in lower values than
those from the baseline in the overall metrics (F-measure and
MCC).

The case for the death penalty is even more extreme, not
allowing the existence of any individual outside of the con-
forming space. Consider an offspring obtained in a generation
composed by the five last rows of Table 6. Four individuals
will be removed from the population and the only survivor
will be MF-O0 since it belongs to the conforming space. The
problem is that the removal of the nonconforming elements
can drastically reduce the ability to explore the search space
of the EA [21]. If this situation is repeated across genera-
tions, and no new areas of the search space are reached, the
EA can be unable to find the solution.

In the evaluation of the death penalty using the optimal
fitness, all of the attempts to evolve individuals toward the
solution eventually result in nonconforming individuals that
are removed by the death penalty. This creates an endless loop
that lasts for the allocated generations (30,000), resulting in
the strategy not being able to find the solution. The population
resides on an island of the conforming space (as depicted
in Fig. 4) and reaching the solution is not possible without

@ Springer

1676 J.Fontetal.

Ii';ﬁgmf‘;?ﬁé g§ ‘:;;dreulnnmg Individuk GO Gl G2 G3 G4 G5 G6 G7 G8 G9 Fitness

example model presented in Fig. ME-127 1 1 1 1 1 1 1 0 0 0 0.8

! MF-15 i i i i o o o o 0o o0 06
MF-38 0 1 1 0o 0 1 o 0 0 0 0.4
MF-42 0 1 0 1 0 1 o 0 0 0 0.4
MF-379 1 1 0 1 1 ! ! 0 1 0 0.4
MF-14 0 ! ! 1 0o 0 o 0o 0 0 0.4
MF-243 1 ! 0o 0 1 1 ! 1 0o 0 0.2
MF-139 i i 0 i o o0 o0 i o 0 02
MEF-885 1 0 ! 0 1 1 ! 0 1 1 0
MEF-329 1 0o 0 1 0o 0 ! 0 1 0 ~02
MF-0 o o o o o o 0o 0o 0o 0 —02
MF-784 0 o 0o o0 1 0 0o 0 1 1 —04
MEF-578 0 ! o 0o 0 0 ! 0o 0 1 — 04
MF-834 0 1 o 0o 0 0 ! 0 1 1 —06
MF-898 0 1 o 0o 0 0 0 1 1 1 —06

Rows with italics correspond to conforming individuals while rows not in italics correspond to nonconforming

individuals

traversing the nonconforming space. Strategies as the death
penalty will keep the individuals from getting outside of the
conforming island and will therefore not be able to find the
solution.

When the death penalty is applied in conjunction with the
textual similarity fitness, a similar situation can be observed.
However, this time the search gets stuck around a conform-
ing model fragment that has most of its genes set to true.
This results in a value of recall close to 100% for the BSH
case study and 90.8% for the CAF case study. However, as
happened with the other penalty strategies, there is a dras-
tic reduction in the precision metric and low values for the
F-measure and MCC metrics.

The strong encoding strategy uses a different encoding to
solve the problem, and, therefore, the search space is differ-
ent. The search space is a single conforming subspace, which
enables the emergence of faster evolution paths between the
individuals and the solution. This results in a lower number
of generations and time needed to reach the solution, as the
results show. This type of encoding reorders the conforming
search space into a space that is easier to navigate. For exam-
ple, in the case of the running example (Table 6) the search
space (1024 individuals) is reduced to the conforming space
(144 individuals), so the EA has better chances of reaching
the solution.

This effect is also happening when applying the textual
similarity fitness, resulting in performance values higher than
those from the baseline for both case studies. In particular,
the F-measure is 20% points better when using the strong
encoding compared to the baseline for the BSH case study
and around 22% points better for the CAF case study. The
improvement is also noticeable for the MCC metric, obtain-

@ Springer

ing values around 0.25 units (out of 1) higher than the baseline
for both case studies.

The closed operations strategy guarantees that the results
of genetic operations remain in the conforming space. This is
done through a wise combination of the individuals, result-
ing in larger steps each time an operator is applied. Some of
the mutations and crossovers will result in bigger changes
to the individual, and if those changes result in higher fit-
ness values and preservation across generations, there will
be a lower number of generations and less time needed to
reach the solution. When an individual is generated by the
use of closed operations, it will remain in the conforming
subspace. For example, if MF-0 is evolved (through muta-
tions or crossover), it will not produce any nonconforming
individual (like MF-329 or MF-885) but a conforming one
(like MF-139). This results in a smaller search space (as is
the case of the strong encoding) and thus in a lower number
of generations needed to reach the solution.

The same behavior can be observed when the closed oper-
ations are used in combination with the textual similarity
fitness. Again, values in precision, recall, F-measure and
MCC are above the values obtained by the baseline for both
case studies. The performance of the closed operations in
terms of solution quality is slightly below the performance
of the strong encoding.

Finally, the two types of repair show totally opposite
behavior when used in conjunction with the optimal fit-
ness: while the remove repair improves the search process
and results in a lower number of generations, the add repair
hinders the process, resulting in a much higher number of
generations. Both are repairing the individuals to ensure that
they remain in the conforming subspace after applying the

Handling nonconforming individuals in search-based model-driven engineering: nine generic 1677

operator. However, the modifications done by the add repair
are counterproductive since they include elements that are
not part of the solution, while the modifications done by the
remove repair are more productive, making the individual
more similar to the solution. Anyhow, even if the remove
repair needs less generations than the baseline to reach the
solution, the time spent is above the baseline (due to the com-
plexity of the operation performed). This can be illustrated
by model fragments from Table 6. For example, the individ-
ual MF-14 might be repaired into MF-15 (by the add repair)
or repaired into MF-0 (by the remove repair). In some situa-
tions, the repair operator is boosting the search (MF-15 has
higher fitness value than the MF-14), while in other situa-
tions the repair operator is obstructing the search (MF-0 has
lower fitness value than MF-14).

In fact, we have checked the individuals while they are
evolving, and the add repair hinders the evolution since it is
adding new genes to the individuals that need to be removed
later by the mutation and crossover operations (since those
genes do not form part of the solution). This can lead to a
loop that makes the solution unreachable in the number of
generations allocated (as is the case for the BSH case study,
where the number of generations is close to the 30,000 limit).

When the repair operators are used in conjunction with the
textual similarity fitness, a similar behavior can be observed.
The add repair is performing much worse than the baseline,
while the remove repair obtains values better than the add
repair (but still worse than the values obtained by the base-
line). It is interesting to see how the add repair has lower
values in precision than the baseline, as it is adding elements
(that may not be present in the solution and thus reduce the
precision) to repair the individuals. By contrast, the recall
values are higher (outperforming the baseline) as some of
the elements added during the repair may be part of the solu-
tion. Similarly, the remove repair achieves better values of
precision but worse values of recall. Most of the elements
removed during the repair are not part of the solution (so
the precision rises) but some of the elements removed were
correctly placed in the model fragment as they are part of
the solution (so the recall is reduced). However, the repair
strategies are not able to outperform the baseline in terms of
F-measure or MCC.

7 Threats to validity

In this section, we present some of the possible threats
to validity of the evaluation performed and how we have
addressed or mitigated them. We follow the guidelines sug-
gested by De Oliveira et al. [23] to identify those that apply
to this work. The threats are divided into four groups:

Conclusion validity threats These are concerned with the
relationship between the treatment of the data and the out-

come. The design must ensure the statistical relationship
between the parts. We have identified four threats of this

type:

— Not accounting for random variation: To address this
threat, we considered 30 independent runs for each exe-
cution of each of the nine strategies and the baseline.

— Lack of good descriptive statistics: In this work, we have
used several metrics to compare the different approaches,
including the number of generations (as suggested in the
literature [50]) and wall-clock time needed to find the
solution when using the optimal fitness, and precision,
recall, F-measure and MCC when using the textual sim-
ilarity fitness. In addition, some works [63] argue that
the use of the Vargha and Delaney’s A1 metric may
be unrepresentative and that the data should be treated
before applying it. We did not find any use case for data
pre-transformation that applies to our case studies.

— Lack of a meaningful comparison baseline: To address
this threat, we compare the nine different strategies
against a baseline, the same EA without any strategy for
handling nonconforming individuals.

— Lack of formal hypothesis and statistical tests: To address
this threat we have performed a standard statistical anal-
ysis, following accepted guidelines [9].

Internal validity threats If a relationship between treatment
and outcome is observed, the experimental design must guar-
antee that it is a causal relationship. We have identified four
threats of this type:

— Poor parameter settings: In this work, we use standard
values for the evolutionary algorithm that have been
tested in similar conditions for feature location [38,55].
For the parameters that have no values reported yet
(penalties in models), we have performed a parameter
tuning (based on procedures described in the literature
[9]) to find the ones that provide the best results. For
each penalty parameter, we tested different sets of val-
ues, selected the best-performing one and repeated with
values above and below the best-performing so far, until
there was no further improvement. Further evaluation
could be needed to find the best values (as we plan to do in
the future) although there is no guarantee that those val-
ues will perform similarly when the approach is applied
to other problems or domains.

— Lack of discussion on code instrumentation: To avoid the
inclusion of tweaks or instrumentation to favor certain
algorithms, we have made public the source code [34]
of an open-source implementation of the nine strategies
presented, as suggested in the literature [50].

— Lack of clarity of data collection tools and procedures:
The set of 748 test cases used in the evaluation has

@ Springer

1678

J.Fontetal.

been provided by domain experts from our industrial
partners (BSH and CAF). The test cases provided are
representative of their respective domains, and the only
pre-processing performed was to identify malformed test
cases (where the solution was the whole model fragment
or the empty model fragment).

— Lack of real problem instances: The evaluation of this
paper was applied to industrial case studies, (BSH and
CAF), with the problem instance being obtained directly
from industry.

Construct validity threats These are concerned with the rela-
tions between theory and observation. We have identified one
threat of this type:

— Lack of assessing the validity of cost measures: To
address this threat, we have performed a fair comparison
between the different strategies and the baseline by using
the number of generations as the cost measure [50]. In
addition, the solution quality measures used (precision,
recall, F'-measure and MCC) are widely used in the field
of information retrieval [17,57,76].

External validity threats Concerned with the generalization
of observed results to a larger population outside of the exper-
iment. We have identified three threats of this type:

— Lack of clear definition of target instances: To address
this threat, the test cases are explained, giving as much
detail as possible (such as the number and type of items of
the models from the test cases and the languages used to
build them). The non-disclosure agreements signed with
our industrial partners prevent us from providing the test
cases themselves as they correspond to products that are
currently on the market.

— Lack of aclear object selection strategy: We have detected
three situations where this threat could prevent the appli-
cation of the presented approach (as is) to different
scenarios:

— Clear test cases selection strategy: the strategy has
been described in the internal threat about data collec-
tion tools and procedures. The domain experts from
our industrial partners provided us with a set of test
cases that are representative of their domains (cov-
ering the full range of products) and we performed
only a sanity check to remove malformed test cases.

— Problem selected for evaluation (feature location): the
nine techniques presented in this work are generic and
they do not include any particularity of the problem
being addressed (feature location) or the domain-
specific language used; the constraints included are
derived from the conformance between the model and

@ Springer

the metamodel. They can be applied directly to other
problems where the EA is using model fragments as
individuals. We expect that the strategies will behave
similarly when applied to other problems; However,
we cannot guarantee that the results will be the same
and further evaluation could be needed to determine
if the results vary when applied to other problems or
when adapted to work with a different encoding.

— Fitness selected for the evaluation: the techniques
presented have been evaluated with two different fit-
ness functions, optimal fitness and textual similarity
fitness. The optimal fitness is based on an oracle to
reduce the noise that could be introduced by the fit-
ness function, making it impossible to apply to a real
scenario. The textual similarity fitness is a state-of-
the-art fitness and shows how the strategies behave on
a real scenario. There are multiple fitness functions
being applied to solve different MDE related prob-
lems available in the literature [14] and the results
could vary depending on the specific details of each
fitness. Both of the fitness used in this work provided
results that are consistent; however, further evalua-
tions with different fitness functions are needed to
determine if the behavior is the same with any fitness
function.

— Lack of evaluation instances of growing size and com-
plexity: To mitigate this threat, we have applied the
strategies to two case studies varying in size and com-
plexity.

8 Conclusion

EAs can be applied to find solutions to several problems
related to MDE practices. Reducing the number of genera-
tions needed by the EA to find those solutions can be the
difference between (i) a search process that is not able to
find the solution in a reasonable time, (ii) the same search
being applied as an offline process, (iii) the same search
being applied at run-time, providing the results while the
user is interacting with the system and (iv) the usage of more
complex fitness functions that can now be applied given the
reduced number of generations required by the search.

In this work, we have presented nine different strategies
that can be applied to handle nonconforming individuals
when applying EAs encoding model fragments. The strate-
gies presented are generic and include only constraints that
are derived directly from MOF, making them independent
from the domain of application (Induction hobs and train
control systems in this work). Bigger improvements in per-
formance could be achieved if the strategies were tailored
with domain knowledge and adapted to specific problems.

Handling nonconforming individuals in search-based model-driven engineering: nine generic 1679

The nine strategies have been applied in combination =
with two different fitness functions to solve feature location =
problems from two different industrial domains, providing = é &
statistically significant results and comparison among them. =| V&
The evaluation using the optimal fitness shows that some of . =
the strategies were able to boost the search process, resulting sl =
in alower number of generations needed to reach the solution g he §
(ten times fewer generations in the most extreme case) and k| VR
less time spent. The evaluation using the textual similarity ©
fitness confirms the results, showing that the strong encod- '9
ing and closed operation strategies were able to outperform = é g
the baseline in terms of solution quality for both case studies. E v &

From the related work analysis performed, we have °
discovered that strategies for handling nonconforming indi- - TE
viduals are being applied by some researchers using SBSE :% X =
solutions to solve MDE problems, but its spread is not gen- S| =
eralized yet. To help in the spread of this kind of strategies, - OV *
an open-source implementation of the nine generic strate- To
gies has been made publicly available in order to facilitate its PR
adoption by the community. In addition, we provide insights 2| o =
of the behavior of the different strategies when solving the SN IS
feature location problem that could benefit other practition- 2 =
ers when choosing which strategy should be applied when % =
solving his MDE problem. We believe that this work could & g 4 i
lead to the application of strategies for handling noncon- SO | v &
forming individuals that yield to the results faster by more 2
researchers of the SDMDE community. Similarly, we expect =
more research to evaluate if the results are similar when O g <
applying the strategies to other SBMDE problems and when (2) v §
adapting them to work with other encoding if required by ©
the problem. As aresult, new generic strategies may emerge, £ '9
resulting in a catalogue of strategies that can be reused and é é X 5
improved by the community. % R §
Acknowledgements This work has been partially supported by the E i
Ministry of Economy and Competitiveness (MINECO) through the < =
Spanish National R+D+i Plan and ERDF funds under the Project ALPS % = é =
(RTI2018-09641 1.—B—IOO). We thank William B. Langd.on apd Justyna g E v 5
Petke because their feedback while Carlos stayed at University College a
London inspired this work. M il’

.Aq:) = =
= S| %
A Statistical analysis results 2| Elva
= E
See Tables 7, 8,9, 10, 11, 12, 13, 14, 15, 16, 17, 18 and 19 "c% é
NPT
g =l V=
A
) gl o
HREEE
HEH N
Elr0O| VS
2 s g
[Q[

@ Springer

J.Fontetal.

1680

SOITe)T Ul PAIYSIYIIY oI duI[aseq
oy Sururogredino senjep “(uwnjod) A391ens puodads ay) uey) asiom suofrad (smorx) A301ens 3sIy oyl Jey) sAWI) Jo IdqUINU Y} SunedIpul ‘Onfea Tly oy} Moys [BUOSEIP Y} MO[q SAN[BA "SOI[BIL
ut pyySTySTy o8 JuedyIuSIs 10u sanfeA Juedyrusis A[eansnels Suraq G('() MO[aq SAN[eA (M (UWN[0d pue so1) sarderens Jo 1red yoea 10§ 90y 150d s, WOH) MOYS [EUOSEIP) SA0GE SINeA

- %B6L L %BLS9S %T6'06 %0 BET'ST %EO'T1 BYT 6T %BTY'6T %LYEE arowy
o101 X T > - %08°€6 %ES 66 %Y10E %99°S9 %509 %YI°EY %91°T8 %9¥°98 PPV
PESSI0 9101 X T>> - BITLY %0 %6ETT %91°01 %BYS 9T %61°9C %EL6T paso[)
101 X T 9101 X T>> 10-01 X T'T - %0 %8Y'€ %60 %19 %OV’ BOL'E 3uong
0101 X T > 826000 101 X T > o101 X T > - %58°08 %TS 98 %6T°66 BLY'L6 %001 peaq
0101 X T>> 9101 X T>> o101 X T>> o101 X T>> 101 X T - %S1°Sh BTTEY %9079 %TH'99 daa
0101 X T > 90000 101 X T > o101 X T > 9101 X T>> 90-0T X §'L - %BLY YL BLTEL %LI08 da
101 X T>> 9101 X T>> o101 X T>> o101 X T>> 9101 X T>> $2000°0 9101 X T>> - BLLSY %6T'9S das
0101 X T>> 0101 X T>> 0101 X T > 0101 X T>> 9101 X T > 8€000°0 10T X T>> £9¥68°0 - %T6'9S ds
101 X 0T 9101 X T>> o101 X T>> o101 X T > 9101 X T>> 20-01 X 8'6 9101 X T>> 029¢2°0 029+2°0 - suraseq
anoway PPV paso[) uong ypeaq daa da das ds aurpeseq

Apnjs 9sed VD) WO} SUONBIAUAS JO JoquINU dy) 10 SISK[eUE [eI1SHE)S 9Y) JO SINSAY 6 el

SOITe)T Ul PAIYSIYIIY oI QUI[aseq
oy} Suruzogradino sonfep “(uwnjoo) £Saren)s puooas oy uey) asiom suograd (morx) £591ens ISy oY) Jey) Sow) JO Ioquinu Iy} SunedIpur ‘onfea Cly oY) MOYS [RUOSEIP 9y} MO[2q SIN[BA “SOT[EIT
ut poyyS1ySty ore JuesyIusIs 10u sanfep Juesyrudis A[eansners Suraq G('() MO[aq SAN[eA (M (UWN[0d pue so1) sarderens Jo 1red yoea 10§ 90y 150d S, WOH) MOYS [PUOSEIP) 9SA0GE SINEA

- %10°0 %09°€6 %6L 66 %0 %Y6Y1 %E6'6 %S0'9 BIL61 BLY'IT arowy
o1-01 X T>> - %001 %001 %SS %08°66 %61°86 %BYY 66 %Y6'66 %96°66 PPV
0101 X T> 0101 X T > - %¥9°'59 %0 %6T°0 %LO0 %100 %650 %8LO paso[)
o101 X T>> o101 X T>> 0-01 X €% - %0 %0 %0 %0 %100 %0 Suong
o101 X T>> 10L°0 o101 X T>> 0101 X T>> - %001 %TS'86 %866 %001 %001 weaq
0101 X T > 0101 X T > 0101 X T > 9101 X T > 101 X T > - BTV OF %YS'TE %68'8S %819 daa
o101 X T>> o101 X T>> o101 X T> o101 X T>> o101 X T>> 60-01 X T'S - %60' T %LS'89 BYETL da
o101 X T > 0101 X T > 0101 X T > 0101 X T > 101 X T > 101 X T>> 10-01 X 8T - %61'LL %18 6L das
o101 X T > 0101 X T>> o101 X T>> o101 X T>> o101 X T>> 90-01 X €T 9101 X T>> 9101 X T>> - %61°ES ds
0101 X T > 0101 X T > 0101 X T > 0101 X T > 0101 X T > 0101 X §'L 10T X T > 10T X T>> 990°0 - ourpseg

anoway PPV paso[) uong g daa da das ds oureseq

Apnjs osed S WOl SUONEIAUAS JO JoquInu dy) J0J SIsA[eue [ed1SHE)S oY) JO S)NSAY g 3|qel

pringer

Qs

1681

Handling nonconforming individuals in search-based model-driven engineering: nine generic

SOITe)T Ul PAIYSIYIIY oI duI[aseq
oy Sururogredino senjep “(uwnjod) A391ens puodads ay) uey) asiom suofrad (smorx) A301ens 3sIy oyl Jey) sAWI) Jo IdqUINU Y} SunedIpul ‘Onfea Tly oy} Moys [BUOSEIP Y} MO[q SAN[BA "SOI[BIL
ut pyySTySTy o8 JuedyIuSIs 10u sanfeA Juedyrusis A[eansnels Suraq G('() MO[aq SAN[eA (M (UWN[0d pue so1) sarderens Jo 1red yoea 10§ 90y 150d s, WOH) MOYS [EUOSEIP) SA0GE SINeA

- BITT %9Y°86 %91°66 %0 BELOT %99y %6T°T1 %E6'TE BEY'L6 dAOWRY

o101 X T > - %BYE 66 %BYE 66 %8579 %Y 19 %6579 %96'LL BYYEL %YE 66 PPV
o101 XT> 01 XT> - %TETY %0 %6E Y %68°0 BT BET'TT %0S°TT paso[)
o101 XT> 401 XT> 0-01 X §°€ - %0 %STY %890 %01t %8812 BEEH 3uong
o101 X T > g-0T X¥'8 01 XT>» ¢ 01 X7>» - %06'0S BYT9S %BOT'LL %00°0L %001 peaq
0101 X T>> 001 X6T o 01XT>» ¢ 0IXxXT>» 160 - B6ETS %BYIH9 %9E 9 BSE'S6 daa
0101 X T > =0T XOT 01 XT>» 4 01 XT>» 780 L60 - %19'69 %L9 Y9 %066 da
g0 XT> g 01XT>» o 01XT>» o 01XT>» o 01XT>» o 0IXT> 01 X T¥ - BSEFS %66 das
00T XTT g 0IXT>» g 01XT>» o 0IXT>» o 01XT>» g 0[XT>» 6 0lXT> g0-01 X ¥'L - B6E'LL ds
o0 XT> 01 XT> 0001 X0€ 01 XT> g 0IXT>» g 0IXT> g 0IXT> g 0IXT> o 0IXT> - ourpeseg

anowy PPV paso) uong yeaq daa da das ds ourseg

Apmys ased [y WOIJ OLIJOUW AW} I0[d-[[EM I0J SISK[EUE [2ONSIIBIS) JO SINSAY | | d|qel

sorer ur pAySIy3ry oIe aureseq
o Suruuiopradino senfep “(uwn[od) £S9rens puodas ay) uey) asiom suojiad (smox) A301ens 1sIy oY) Jey) SAWI) JO Iaquinu Yy} SunedIpur ‘anfea <ly ay) Moys [BUOSEIP Y} MO[q SIN[BA "SII[BII
ur pawySTySTy oxe JueoyTuSIs J0u sonfeA Jueoytusis A[eonsne)s Suraq O'(MO[Oq SANTEA YIIm ‘(UWN[0d pue MoI) sarSaens Jo ared yoea 1oy 90y 1s0d s, WO) MOYS [BUOSEIP O} 9A0qE SINEA

- %0 %88°L6 %I6'L6 %0 %Y1°01 %61°TI %8T'9 BYSTI %BY996 AOWRY
o101 X T > - %001 %001 %69'S9 %001 %001 %001 %001 %001 PPV
o101 XT> 401 XT>» - %6L'89 %0 %Y1’ %01y %01'1 %LY0 BSI'T paso[)
o101 XT> 01 XT> TT10°0 - %0 BST'T %80 %90'T %99°0 BLEO uong
o101 X T>> 95000 ¢-01 XT>» 401 XT> - %001 %001 %6666 %001 %001 yeaa
o101 X T> g 01 XT>» g 01XT>» o 01XT» o 0IXT> - BSETH %91°8€ %LY'T9 %08'86 daa
oi-0I X T G 01XT>» 4_0IXT» o 0IXT>» o 0lXT>» 26110 - %SO'TS %S6'L9 %IS'S6 da
g0 X T> g 01 XT>» g 01XT>» o 01XT>» o 0IXT> 0-0T X L'S 72100 - %89°9T %SS'86 aas
g0 X T> g 0IXT>» g 01XT>» o 01XT>» o 0IXT> c0-01 X 89 g0-01 X ST 401 XT> - %60°66 ds
g0 X T> g 01 XT>» o 01XT>» o 01XT>» o 01XT>» g 01XT>» o 01XT> o 0IXT> o 0IXT> - oupeseg
arowy PPV pasor) Suong yeaq daa da das ds ourpseg

Apnis 9sed HSg WO1J OLIouW W) JO0[o-[[em I0J sisA[eur [eonsnels ay) Jo synsay 0l d|qel

pringer

As

J.Fontetal.

1682

SOITeII Ul PAYSIYSIY 218 AUI[dseq Ay} Suruioyrodino
sanfeA ‘uorsioald Jo sulia) ur (uwnjod) £39)ens puodas ay) uey) 19)9q suttograd (mox) A391ens 1sIy oY) Jey) sewn Jo Joquinu oY) Suneorpur ‘anfeA Ty ay) MOySs [RUOSRIP Y} MO[Aq SAN[BA "SII[BII
ur pawyStySTy o1 JueoyTuSIs Jou sonfeA Jueoyrusis A[eonsne)s Suraq O'(MO[Oq SANTEA YIIm ‘(UWN[0d pue mox) saraens Jo ared yoea 1oy 90y 1sod s, WO oY) MOYS [BUOSEIP 9} 9A0qE SINEA

- %9096 %BEY'LE BTO'TE %S6'96 %ST'69 BTT'SY %BET 6L BLIVL %SEES arowy
o101 X T > - %E6'9 %90°€ BST'8S %8191 %¥00T %80T %19°81 %¥801 PPV
0FISO0 o101 X T>> - %BOT %Y1'Y6 %80°SL %S0'S8 %7918 %L6'SL BI9F9 pasol)
€60000 ¢;-01 X T>> 192450 - BST'L6 %LOTS %BTO'16 %8S'L8 %BY0'S8 %BST0L uong
o1-01 X T>> 72£09°0 0101 X T>> 0101 X T>> - WBLS € %YS 91 %6Y L1 %SS'ST %616 yreaq
PP0000 o—01 X T>> 01-0T X L' p1-0T X ¥'1 o101 X T> - BLIHY %Y8'8S BTY VS %999¢ daa
o1-01 X T>> «-01 XTI 0101 X T>> 0101 X T>> 40-01 X 8% 0-01 X T'S - BT %Ly OF %98'€T da
=01 X 6T 60-01 X ¥ 0101 X T>> 0101 X T>> 2101 X €1 SL¥TO0 €8L75°0 - %8 'SP BTEST das
60-01 X €T =01 X 9'T 9101 X T>> 101 X T>> 101 X 6'L 198210 PLIETO 7T€09°0 - BEOTE ds
786$S0 9 —01 X T> 620000 10-01 X §°S 0101 X T> SEF90°0 =01 X T'T 10-01 X 6T 90-01 X L'6 - ourpseg
arowy PPV pasol) 3uong yeaq daa da das dS duiseg

Apnis 9sed v Woij oLnoul uoistoard dyy 103 SISA[eue [BI1ISTIEIS 9Y) JO SNy €1 d|qel

SOTTeIT ur pAYSIYSIY oIk duraseq ay) Sururoyrodino
sanfeA "uoIs1oald Jo suid) ur (uwnjod) A3a1er)s puodas ay) uey) Joyeq swiioyrad (morx) A391ens 1s1y dy) jey) sown Jo Jquinu Yy SunedIpur ‘anfea Iy oy) Moys [RUOSEIP 9} MO[oq San[eA “SoI[ell
ut paySiyS1y ore JueoyIUSIs j0u sanfep JUeoyIUSTS A[eonsners 3uraq ¢('() M0[aq SIN[EA IM ‘(UWN[0d pue mol) sardarens Jo Ired yows 10y ooy Isod s, WOH oY) Moys [2UOTeIp) 9A0QE SIN[BA

- %I8€6 %6E 0F %T0'TH %€8°96 BT By LY %BLEEY %81°9L %I66S dAOWRY
0101 X T>> - BSEY BY6y %0Y'19 %00°TE %61°SE %BLYTE %BYYHT %BOLYT PPV
o101 XT> 01 XT> - %6°0S %BLELE %6E 68 %IV’ 16 %S1'88 %BSETS %brE89 paso[)
01—0T X 8L 401 X T> I - %6596 %SH 68 BYET6 %BTI'88 %99°C8 %089 uong
0101 X T > H-0I X L9 g _0IXT>» 4_0IXT>» - %80°€T BTL'ST BIY'ET %08'L1 %EY 01 yreaq
g0 X T> 01 XT> g 0IXT> o 01XT>» §_0IXT> - %LEYS %6v 6v %ET OV %90'92 daa
o101 X T> g 01 XT>» g 01XT>» g 01XT>» o 0[XT> ¥200°0 - BLTSH %EY'SE %6V TT da
o-0I XT> G 0IXT>» 4 _0IXT>» o 0IXT>» o 0lXT>» I 21000 - %BILOY %56'9C das
g0 X T> g 0IXT>» g 01XT>» o 01XT>» o 0IXT> 01 X¥T 901 XT> =0T X €7 - %BY8HE ds
€6900 01 XT>> 401 XT>» o 0IXT>» g 0IXT>» g 0IXT> o 0IXT> . 01XT> 4_00xXT> - oureseg
arowy PPV pasolD Suong yreaq daa da das ds ourpseg

Apms 9sed S Wolj dujour uoisroaid ay) 10§ SISATeue [ednsnels ay) Jo synsay | dqel

pringer

Qs

1683

Handling nonconforming individuals in search-based model-driven engineering: nine generic

SOITeII Ul PAYSIYSIY 218 AUI[dseq Ay} Suruioyrodino
SAN[BA "[[8991 JO SULId) UI (UWIN[0d) AT2)ens puodas ay) uey) 19y3eq swrojrad (morx) £3a1ens 1sIy oy Jey) Sawm Jo Iaquinu ay) SunedIpur ‘onfea <ly oyl moys [BUOSEIP 9y} MO[oq SIN[BA "SOI[BII Ul
paySIySIy oI JueoYIUSIS Jou son[eA JuRoYIUSIS A[[eonsne)s Suraq ¢’ MO[Oq SINeA [PIM (UWN[OD puB moI) sarSajens jo ared yoea 10y o0y 1sod S, W[OH AY) MOYs [2UOTRIP oY) dAOqE SIN[BA

- %BSY'€ %BEY'E %S8°0 %0 BITST %TO'61 %0671 %S0'S1 BITTI arowy

o101 X T > - %89°€€ BSETT %8101 %9E°€9 BI6HL %LTTY %6869 %TLE9 PPV
o1-01 X T>> ¥S110°0 - %S0 1Y YT LE BETYL %ES18 BTTEL %ES8L BESL pasol)
o101 X T > 10-0T X T'T 10821°0 - %619 %18°T8 %9768 %ES'TS %8L98 BT uong
o1-01 X T>> =01 X L'L 1£€00°0 I - %BLS'16 %LI"96 %59°88 %S6'€6 %ES'E6 yread
101 X T8 «-0T X 9°€ 10T X §°€ 9101 X T>> 0101 X T>> - %60°65 %BTE 6 %I0°SS %YO 61 daa
g0-0T X 8'9 11-01 X 8% 9101 X T>> 9101 X T>> 0101 X T > #6410 - %BYTOF %Y1 %OL'8E da
¢-01 XTT «-01 X 9L (-0l X T o101 X T>> o1-01 X T>> I 10821°0 - %00°9S %00°0S das
=0T X €1 10-01 X 6T 9101 X T > 9101 X T > o101 X T > I I I - %L6'TY ds
o101 X T > 820000 2101 X T'T 9101 X T>> 0101 X T>> I £8290°0 I I - suraseq

arowy PPV pasolD Suong yeaq daa da das ds aurpaseq

Apnis ased VD WOIJ OLIOU [[BI91 AY) 0] SISA[UR [BO1ISIIRIS o) JO SINSAY G| d|qe]

SOTTeIT ur pAYSIYSIY 218 duraseq ay) Sururoyrodino
san[eA [[991 JO SWIQ) Ul (UWn[od) A39)ens puodds Ay Uey) 19)aq swrojrod (morx) A391ens 1s1y o) Jey) saw) Jo Joquinu) Sunesipur ‘onfea Iy oyl moys [eUOSEIP Y} MO[oq San[eA "SIIe)I ul
pay3iysry o1 JueoyIUSTS jou son[EA JueoyIuSIs A[reonsne)s Suraq (') MO[dq SINeA [IM “(UWNOD puB MoI) saTSatens jo ared yoes 10y 00y 150d s, WOH 9Y) MOYS [2UOSeIp 9Y) 9A0qE SIN[BA

- %68'€ %8LY BYLT %0 %966 %6111 BITEL %06'C1 %0S'TI arowy
o1-01 X T>> - %6E'1T %ITOT BLTT 9t'LS %61'€9 %€6'09 %L6°09 %8895 PPV
o101 X T>> o101 X T>> - %BSETY %BI0°LE %SS18 %TYTY %66'T8 %SO'€S %I0°TY pasol)
o1-01 X 7> o1-01 X T>> 00-01 X ¥ - BIL VY %BILT6 BTI'T6 %BIET6 %6€'T6 %SS'I6 Suong
o101 X T>> o101 X T>> o101 X T>> £9000°0 - %0686 BEL'S6 %LO66 %9066 %96 qrea(y
o1-01 X T>> -0 X 9' o101 X T>> o101 X T>> o101 X T>> - %E6YS %BSY'ES %8Y'ES %5667 daa
o101 X T>> o101 X T>> o101 X T>> o101 X T>> o101 X T>> LFIOE0 = %898 %LO6Y BLE'SY da
o101 X T>> o1-01 X T>> o101 X T> o101 X T>> o101 X T>> 642810 I - %E0°0S BEL' M das
o1-01 X T>> o1-01 X T>> o101 X T > o101 X T>> o101 X T>> 19$S1°0 I I - %BIY ds
o1-01 X T>> P01 X T'T o101 X T> 0101 X T > o101 X T>> I £0621°0 L¥90€°0 LFIOE0 - surjoseq

arowy PPV pasolD Suong yreaq daa da das ds aurpeseq

Apms 9se0 S WOI OLIIOW [[8d3I 9Y) IO SISA[eU. [BO1SIIRIS Y} JO SINSAY | d|qel

pringer

As

J.Fontetal.

1684

SOTTeIT ur pAYSIYSIY oIk duraseq ay) Sururoyradino
San[eA ‘2INSBAW-,/ JO SULIS) UI (UWN[0d) AS9)eNs puodds ay) uey) 19))aq suriojrad (mox) A39)ens IsIy o) Jey) sawn Jo Joquuinu ay) Sunedipur ‘anfea Zly o) moys [BUOSEIP) MO[dq SIN[eA “SOI[ell
ut poySiyS1y oIe JueoyIUSIS jJou sanfep JUeoyIUSTS A[eonsners Sureq ¢('() MO[aq SIN[EA IM ‘(UWN[0d pue mol) sardarens Jo Ired yows 10y ooy Isod S, WOH oY) Moys [2UOTeIp) 9A0QE SIN[BA

- %ET06 %86°L1 %BIS'6 %9L'T6 %S6'St %9L L9 %IL'SS %5598 %LYEE arowy
0101 X T>> - %ES'9 %T0'E %08°9S %SY'S1 %YTHT %89°€T %BYL'TT %96'T1 PPV
101 X ST o101 X T>> - BEG'TY %06'€6 %ES'SL %0T' LY BTE'ES %Y9°T8 %EL69 pasor)
o1-01 X T>> 0101 X T>> £0SIS0 - %BST'L6 %5598 %IS’E6 %LOT6 %7668 Br6LL Suong
o101 X T > I 9101 X T>> 0101 X T > - %TTI1 %YO'1T %EO'TT %90°61 %TS 01 yreaq
I 0101 X T > (01 X Th 0101 X T > 101 X T>> - %0179 %ET'SS %198 %BTELE daa
0S100°0 90-0T X L'9 9101 X T>> 101 X T > 10-01 X 0T 760000 - %TY Y %86’ T %LOYT da
SI961°0 0101 X 1’8 o101 X T>> 0101 X T>> 2101 X 66 980S1°0 £0SIS0 - %88 LY %6562 das
£0SIS°0 =0T X €T 9101 X T>> 0101 X T > 101 X T'T 02280 STEET0 I - %6T'TE ds
99000 101 X T>> 90-01 X 9°G 0101 X €T 0101 X T>> 9600 60-01 X 0' 00-01 X 6'L 10000 - ourjoseq
arowy PPV pasolD Suong yreaq daa da das ds ouroseq

Apmis 9580 Iy WOI OLIIOW QINSBIW-,]) J0J SISA[eUL [BONSIIRIS Y} JO SINSAY /| d|qel

So11e)l Ul pAYSIYSIY 216 duI[dseq Ay} Surwroyredino
San[eA 2INSeIW-,/ JO SWIA) UT (UWNn[0d) £59)e1ns puodas ay) uey) 10)eq suriojrad (morx) £503ens 1SIy oY) Jey) Sawn Jo Jaquunu oy} Surnjedrpur ‘onjea Cly oyl Moys [eUoSeIp 9y M0[dq SINJeA “SoIeIr
ut pyyS1ySty o1e JuesyIusIs 10u sanfep Juedyrudis A[feansners Suraq G('() MO[aq SAN[eA (M (UWN[0d pue mol) sarderens Jjo 1red yoea 10§ 90y 15od s, WOH) MOYS [EUOSEIP A1) 9SA0GE SINEA

- BEE'EY %9T11 BSY'L %ET 06 %BEO 19 %8L99 BET6S %6L Y BEFOE drOWRY
o1-01 X T>> - %BES'E BIST %Y0'19 %9E'6¢ %6T 1€ %68'LT %10°61 BELOT PPV
o101 XT> 01 XT> - %61°Sh %886 BITLY BTY'88 %6978 %SE'SL BITL9 paso[)
g 01 XT> g 0l XT> PLYO'0 - %Y0'66 %E6'68 %9€"06 BEE'LS BLLTS BI90L Suong
0101 X T > Ho0T X 9T 01 XT>» 0l XT> - %89°0C BET'TT %SH 61 %9V'TI %EE'9 peaq
PLEO0 o0l X T o0l XT> g 0IXT> ¢ 0lXT> - BYTES BST'8Y BTY'LE %10'9C daa
00T X ST g 0IXT> g 0IXT> o 01XT> o 0IXT> 01000 - %88 ¥ %EOTE BY6'TT da
79200 01 XT> o 0IXT>» 4 0IXT>» 4 0lXT>» 14590 20000 - %65°6€ BII'ST das
001 XTE 0IXT>» 4 0IXT>» o 0IXT>» 4_0IXT>» H-0T X 9T 01 XT> 01-01 X 6T - %S0'LE ds
o101 XT> 01 XT> 10-01 X 6T pOTXTT g 0IXT>» g 0IXT>» g 0IXT>» g 0IXT> o 0IXT> - ourpeseg
anoway PPV paso) uong yeaq daa da das ds ourpseq

Apnjs 9sed S WOIJ JLIOW AINSEAW -/ 10J SISK[EUE [2ONSIIBIS) JO SINSAY 9| d|qel

pringer

Qs

1685

Handling nonconforming individuals in search-based model-driven engineering: nine generic

So11eIl Ul pAYSIYSIY 216 duI[dseq Ay) Surwroyredino
sanfeA "DDIA JO SWId) ur (Uwnjod) A39)ens puosds ay) uey) 19y3eq swrojrad (morx) A3eiens ISy Y Jey) sown Jo Joquunu dy) SunedIpul ‘onfea Cly oY) moys [BUOSEIP dU) MO[oq SIN[BA "SOI[BII UL
payS1ySIy oIe JuROYIUSIS 10U san[eA UedyIUSIS A[[eonsnels Suraq ¢o'() MO[q SanfeA IImM ‘(UWN[od pue mol) sarsarens Jo ared yoes 10y 50y 150d s, W[OH Y) MOYS [BUOSEIP 3Y) 9A0QE SIN[EA

- %58°€8 %SO°LI BYLL %90°€8 BTY Y %61°89 BYI'LS %S0'LS BIEVE arowy
o101 X T > - %68°9 BYS'T %BOT L %08°TT %99°1€ %LOST %59°9T BETYI PPV
1101 X ¥'C 9101 X T>> - BTETH %EO'E6 %BSY6L %6788 BLI'EY %TE'EY %L 0L paso[)
o1-01 X 7> 9101 X T>> FILITO - %T6'96 BYLLS %676 %79°06 %YS'16 %6L 6L Suong
10T X €1 #8569°0 0101 X T > 9101 X T>> - BYLET %OL'TE %89°6T %IL'LT %Y1 peaq
9£966°0 o101 X L'S 101 X 81 o101 X T>> 1101 X §'T - %6E 9 %BLS9S BSE9S %65°LE daa
¥¥100°0 90-0T X ST 0101 X T > 9101 X T>> £€8000°0 €8510°0 - BITTH BIS TH %69'€T da
TSLOO'0 10-01 X €71 o101 X T>> 9101 X T>> 210000 6£950°0 9£966 0 - %BEL 6 %Y 1€ das
S69K1°0 01-0T X &' 0101 X T > 0101 X T>> 10-01 X 8°S 66¥55°0 PLFT90 08828°0 - BET'TE ds
6¥SET°0 9101 X T>> -0 X '€ 01-0T X §'T o101 X T>> LY1T0'0 60-01 X T'8 10-01 X T'T c0-01 X ¥'€ - suraseq
anowy PPV paso[) uong g daa da das ds suraseq

Apmys ased JyD) WOl dLjew DDAl Y3 10§ SIsA[eue [eoNsHe)s o) Jo SHNSAY 61 d|qel

SOTTeIT ur PAYSIYSIY oIk duraseq ay) Sururoyradino
saneA "DDIA JO SWId) Ul (Uwn[od) A39)ens puodds A Uey) 19)aq swrograd (morx) A391ens 1sIy oY) Jey) sauw) Jo Jaquinu ay) Sunesipur ‘onfea Iy oyl moys [BUOSEIP Y} MO[oq San[eA "SIIe)I ul
pay3iysry o1 JueoyIUSTS jou son[EA JuRoyIUSIs A[reonsne)s Suraq ¢('() MO[Oq SINeA IM “(UWNOD puUR MmoI) sATSatens jo red yoes 10y 00y 150d s, W[OH 9Y) MOYs [2UOSeIp 9y} 9A0qE SIN[BA

- %Y1°S8 %8601 %T0'L BIS'LL BILTY BEY'TL %YL€Y %16TS %OI'SE onoway

0101 X T>> - BEL'E %OT'E %LS'89 %Y0"6T %L6'SE %0¥ 0€ %89'1C %EOYT PPV
o101 XT> g0l XT> - BLT L BYLLL %SE 06 %68°C6 %BIL6S BTL'SY BILHL paso[)
g0 XT> 01 XT> I - BITLL %Y8°T6 %BLY V6 %88°16 %IL'SS BLELL Suong
0101 X T > A-01XT9 g0l XT>» ¢_0IXT> - BTELT %06'8T %LY'ST %1692 %ES'ST yreaq
0001 X 9T g0l XT> 4 0IXT>» ¢_0lXT> 4 0lxXT>» - %BTESS %80°1S By 1Y %BTL 6T daa
00T X0 g0l XT>» o 0IXT>» g_0IXT>» 4 0IxXT>» $9°0 - BI6TH %ST'EE %T6TT da
00-0I X T'€ g 0IXT>» g _0IXT>» 4 00XT>» ¢ 0IXT> I 650 - %YS OF %BET6T das
I 01 XT>» o 0IXT>» g_0IXT>» 4 0IxXT>» 60-01 X 6'6 10T X T'8 0-01 X €T - BIT'LE ds

g-0I XT> g 0IXT®» g 0IXTP» 4_00XT> o 01XT> g 0IXT>» o 01XT>» 4 00XT> ¢ 00%X¥T - oureseg

anoway PPV pasol) Suong yead daa da das ds oureseg

Apnys ased HS g WOl o1maw DDA Y} 10 SISA[eue [eONSIIRIS Y3 JO SINSay | d|qel

pringer

As

1686

J.Fontetal.

References

10.

11.

12.

13.

14.

15.

17.

19.

Apache opennlp: toolkit for the processing of natural language text.
https://opennlp.apache.org/ (2016). Accessed 22 Feb 2021
Abdeen, H., Varré, D., Sahraoui, H., Nagy, A.S., Debreceni,
C., Hegediis, A., Horvéth, A.: Multi-objective optimization in
rule-based design space exploration. In: Proceedings of the 29th
ACM/IEEE International Conference on Automated Software
Engineering, pp. 289-300. ACM (2014)

Afzal, W., Torkar, R., Feldt, R.: A systematic review of search-
based testing for non-functional system properties. Inf. Soft.
Technol. 51(6), 957-976 (2009)

Ali, S., Igbal, M.Z., Arcuri, A., Briand, L.: A search-based ocl con-
straint solver for model-based test data generation. In: 2011 11th
International Conference on Quality Software, pp. 41-50. IEEE
(2011)

Ali, S., Igbal, M.Z., Arcuri, A., Briand, L.C.: Generating test data
from ocl constraints with search techniques. IEEE Trans. Softw.
Eng. 39(10), 1376-1402 (2013)

Alshahwan, N., Harman, M.: Automated web application testing
using search based software engineering. In: 26th IEEE/ACM Inter-
national Conference on Automated Software Engineering (ASE),
pp- 3-12 (2011)

Arcega, L., Font, J., Haugen, @., Cetina, C.: An approach for bug
localization in models using two levels: model and metamodel.
Softw. Syst. Model. 18(6), 3551-3576 (2019)

Arcuri, A., Briand, L.: A hitchhiker’s guide to statistical tests for
assessing randomized algorithms in software engineering. Softw.
Test. Verific. Reliab. 24(3), 219-250 (2014)

Arcuri, A., Fraser, G.: Parameter tuning or default values? an empir-
ical investigation in search-based software engineering. Empir.
Softw. Eng. 18(3), 594-623 (2013)

Bick, T., Schiitz, M., Khuri, S.: A comparative study of a penalty
function, a repair heuristic, and stochastic operators with the
set-covering problem. In: European Conference on Artificial Evo-
lution, pp. 320-332. Springer (1995)

Ballarin, M., Marcén, A.C., Pelechano, V., Cetina, C.: Measures to
report the location problem of model fragment location. In: 21th
ACM/IEEE International Conference on Model Driven Engineer-
ing Languages and Systems. MODELS’ 18, pp. 189-199. ACM,
New York (2018)

Bean, J.C.: Genetic algorithms and random keys for sequencing
and optimization. ORSA J. Comput. 6(2), 154-160 (1994)

Bill, R., Fleck, M., Troya, J., Mayerhofer, T., Wimmer, M.: A local
and global tour on momot. Softw. Syst. Model. 18(2), 1017-1046
(2019)

Boussaid, I., Siarry, P., Ahmed-Nacer, M.: A survey on search-
based model-driven engineering. Autom. Softw. Eng. 24(2), 233—
294 (2017)

Burdusel, A., Zschaler, S., John, S.: Automatic generation of atomic
consistency preserving search operators for search-based model
engineering. In: ACM/IEEE 22nd International Conference on
Model Driven Engineering Languages and Systems (MODELS),
pp- 106-116 (2019)

Cetina, C., Font, J., Arcega, L., Pérez, F.: Improving feature loca-
tion in long-living model-based product families designed with
sustainability goals. J. Syst. Softw. 134, 261-278 (2017)

Chicco, D., Jurman, G.: The advantages of the matthews correla-
tion coefficient over f1 score and accuracy in binary classification
evaluation. BMC Genom. 21(1), 6 (2020)

. Chootinan, P., Chen, A.: Constraint handling in genetic algorithms

using a gradient-based repair method. Comput. Oper. Res. 33(8),
2263-2281 (2006)

Coello, C.A.C.: Theoretical and numerical constraint-handling
techniques used with evolutionary algorithms: a survey of the state

@ Springer

21.

22.

23.

24.

25.

26.

217.

28.
29.

30.

31.

32.

33.

34.

35.

36.

37.

of the art. Comput. Methods Appl. Mech. Eng. 191(11), 1245-1287
(2002)

. Colanzi, T.E., Vergilio, S.R.: Representation of software product

line architectures for search-based design. In: 2013 1st Inter-
national Workshop on Combining Modelling and Search-Based
Software Engineering (CMSBSE), pp. 28-33 (2013)D
Crepinéek, M., Liu, S.H., Mernik, M.: Exploration and exploitation
in evolutionary algorithms: a survey. ACM Comput. Surv. (CSUR)
45(3), 1-33 (2013)

Czarnecki, K., Helsen, S.: Classification of model transformation
approaches. In: 2nd OOPSLA Workshop on Generative Techniques
in the Context of the Model Driven Architecture, vol. 45, pp. 1-17.
USA (2003)

de Oliveira Barros, M., Dias-Neto, A.C.: 0006/2011-threats to
validity in search-based software engineering empirical stud-
ies. RelaTe-DIA, vol. 5 (2011) http://seer.unirio.br/index.php/
monografiasppgi/article/view/1479

Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and eli-
tist multiobjective genetic algorithm: Nsga-ii. IEEE Trans. Evol.
Comput. 6(2), 182-197 (2002)

Denil, J., Jukss, M., Verbrugge, C., Vangheluwe, H.: Search-based
model optimization using model transformations. In: D. Amyot,
P. Fonseca i Casas, G. Mussbacher (eds.) System Analysis and
Modeling: Models and Reusability, pp. 80-95. Springer, Cham
(2014)

Dit, B., Revelle, M., Gethers, M., Poshyvanyk, D.: Feature location
in source code: a taxonomy and survey. J. Softw. Evol. Process
25(1), 53-95 (2013)

Dyer, D.: The watchmaker framework for evolutionary computa-
tion. http://watchmaker.uncommons.org/ (2016). Accessed 22 Feb
2021

Efficient java matrix library. http://ejml.org/. Accessed 22 Feb 2021
Faunes, M., Cadavid, J., Baudry, B., Sahraoui, H., Combemale, B.:
Automatically searching for metamodel well-formedness rules in
examples and counter-examples. In: International Conference on
Model Driven Engineering Languages and Systems, pp. 187-202.
Springer (2013)

Faunes, M., Cadavid, J., Baudry, B., Sahraoui, H., Combemale,
B.: Automatically searching for metamodel well-formedness rules
in examples and counter-examples. In: Moreira, A., Schitz, B.,
Gray, J., Vallecillo, A., Clarke, P. (eds.) Model-Driven Engineering
Languages and Systems, pp. 187-202. Springer, Berlin (2013)
Fleck, M., Troya, J., Kessentini, M., Wimmer, M., Alkhazi, B.:
Model transformation modularization as a many-objective opti-
mization problem. IEEE Trans. Softw. Eng. 43(11), 1009-1032
(2017)

Fleck, M., Troya, J., Wimmer, M.: Search-based model transfor-
mations with momot. In: Van Gorp, P., Engels, G. (eds.) Theory
and Practice of Model Transformations, pp. 79-87. Springer, Cham
(2016)

Font, J.: Location of features as model fragments and their co-
evolution. Ph.D. thesis, University of Oslo, Norway (2017)

Font, J.: Source Code for Feature Location in Models through an
Evolutionary Algorithm—Handling NonConforming Individuals
(2020). https://bitbucket.org/svitusj/flimea-hci. Accessed 22 Feb
2021

Font, J., Arcega, L., Haugen, @., Cetina, C.: Building software
product lines from conceptualized model patterns. In: 19th Interna-
tional Conference on Software Product Line, SPLC’15, pp. 46-55
(2015)

Font, J., Arcega, L., Haugen, @., Cetina, C.: Feature location in
model-based software product lines through a genetic algorithm.
In: 15th International Conference on Software Reuse: Bridging
with Social-Awareness, Vol. 9679, ICSR 2016, pp. 39-54 (2016)
Font, J., Arcega, L., Haugen, @., Cetina, C.: Feature location
in models through a genetic algorithm driven by information

https://opennlp.apache.org/
http://seer.unirio.br/index.php/monografiasppgi/article/view/1479
http://seer.unirio.br/index.php/monografiasppgi/article/view/1479
http://watchmaker.uncommons.org/
http://ejml.org/
https://bitbucket.org/svitusj/flimea-hci

Handling nonconforming individuals in search-based model-driven engineering: nine generic

1687

38.

39.

40.

41.

42.

43.

44,

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

retrieval techniques. In: ACM/IEEE 19th International Conference
on Model Driven Engineering Languages and Systems, MOD-
ELS’16, pp. 272-282 (2016)

Font, J., Arcega, L., Haugen, @., Cetina, C.: Achieving feature loca-
tion in families of models through the use of search-based software
engineering. IEEE Trans. Evol. Comput. PP(99), 1-1 (2017)
Font, J., Arcega, L., Haugen, @., Cetina, C.: Leveraging variability
modeling to address metamodel revisions in model-based software
product lines. Comput. Lang. Syst. Struct. 48, 20-38 (2017)
Font, J., Ballarin, M., Haugen, @., Cetina, C.: Automating the
variability formalization of a model family by means of common
variability language. In: 19th International Conference on Software
Product Line, SPLC’15, pp. 411-418 (2015)

Garcia, S., Fernandez, A., Luengo, J., Herrera, F.: Advanced
nonparametric tests for multiple comparisons in the design of
experiments in computational intelligence and data mining: exper-
imental analysis of power. Inform. Sci. 180(10), 20442064 (2010)
Goldberg, D.E., Lingle, R., et al.: Alleles, loci, and the traveling
salesman problem. In: International Conference on Genetic Algo-
rithms and Their Applications, vol. 154, pp. 154—159. Carnegie-
Mellon University Pittsburgh, PA (1985)

Gomez, J.J.C., Baudry, B., Sahraoui, H.: Searching the bound-
aries of a modeling space to test metamodels. In: 2012 IEEE Fifth
International Conference on Software Testing, Verification and Val-
idation, pp. 131-140 (2012)

Grissom, R.J., Kim, J.J.: Effect Sizes for Research: A Broad Prac-
tical Approach. Erlbaum, Mahwah (2005)

Harman, M., Jia, Y., Krinke, J., Langdon, W.B., Petke, J., Zhang,
Y.: Search based software engineering for software product line
engineering: a survey and directions for future work. In: 18th Inter-
national Software Product Line Conference, Vol. 1, SPLC’ 14, pp.
5-18 (2014)

Harman, M., Jones, B.F.: Search-based software engineering. Inf.
Softw. Technol. 43(14), 833-839 (2001)

Harman, M., Mansouri, S.A., Zhang, Y.: Search-based software
engineering: trends, techniques and applications. ACM Comput.
Surv. 45(1), 11:1-11:61 (2012)

Hofmann, T.: Probabilistic latent semantic indexing. In: 22nd
Annual International ACM/SIGIR Conference on Research and
Development in Information Retrieval (1999)

Holthusen, S., Wille, D., Legat, C., Beddig, S., Schaefer, 1., Vogel-
Heuser, B.: Family model mining for function block diagrams in
automation software. In: 18th International Software Product Line
Conference, Vol. 2, pp. 36-43 (2014)

Johnson, D.S.: A theoretician’s guide to the experimental anal-
ysis of algorithms. In: Data Structures, Near Neighbor Searches,
and Methodology: Fifth and Sixth DIMACS Implementation Chal-
lenges, vol. 59, pp. 215-250 (2002)

Joines, J.A., Houck, C.R.: On the use of non-stationary penalty
functions to solve nonlinear constrained optimization problems
with ga’s. In: Evolutionary Computation. First IEEE World
Congress on Computational Intelligence., pp. 579-584. IEEE
(1994)

Kent, S.: Model driven engineering. In: Integrated Formal Methods,
pp. 286-298. Springer Berlin (2002)

Kessentini, M., Langer, P., Wimmer, M.: Searching models, mod-
eling search: on the synergies of sbse and mde. In: 2013 Ist
International Workshop on Combining Modelling and Search-
Based Software Engineering (CMSBSE), pp. 51-54 (2013)
Landauer, T.K., Foltz, PW., Laham, D.: An introduction to latent
semantic analysis. Discourse Process. 25(2-3), 259-284 (1998)
Lopez-Herrejon, R.E., Linsbauer, L., Galindo, J.A., Parejo, J.A.,
Benavides, D., Segura, S., Egyed, A.: An assessment of search-
based techniques for reverse engineering feature models. J. Syst.
Softw. 103, 353-369 (2015)

56.

57.

58.

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

70.

71.

72.

73.

74.

75.

76.

Mandow, L., Montenegro, J.A., Zschaler, S.: Mejora de una rep-
resentacion genética genérica para modelos. In: Actas de la XVII
Conferencia de la Asociacion Espaiiola para la Inteligencia Artifi-
cial (CAEPIA) (in press) (2016)

Marcus, A., Sergeyev, A., Rajlich, V., Maletic, J.: An informa-
tion retrieval approach to concept location in source code. In: 11th
Working Conference on Reverse Engineering, pp. 214-223 (2004)
Martinez, J., Ziadi, T., Bissyandé, T.F., Klein, J., Traon, Y.L.:
Bottom-up adoption of software product lines: a generic and exten-
sible approach. In: 19th International Conference on Software
Product Line (SPLC), pp. 101-110 (2015)

Michalewicz, Z.: Do not kill unfeasible individuals. In: Fourth
Intelligent Information Systems Workshop, pp. 110-123 (1995)
Michalewicz, Z.: A survey of constraint handling techniques in
evolutionary computation methods. In: 4th Annual Conference on
Evolutionary Programming, pp. 135-155. MIT Press (1995)
Michalewicz, Z., Nazhiyath, G.: Genocop iii: a co-evolutionary
algorithm for numerical optimization problems with nonlinear con-
straints. In: Evolutionary Computation, 1995., IEEE International
Conference on, vol. 2, pp. 647-651. IEEE (1995)

Moore, B.: Eclipse Development: Using the Graphical Editing
Framework and the Eclipse Modeling Framework. https://dl.acm.
org/doi/book/10.5555/14076091. (2004)

Neumann, G., Harman, M., Poulding, S.: Transformed Vargha-
Delaney Effect Size, pp. 318-324 (2015). Accessed 22 Feb 2021
(OMG), O.M.G.: Meta Object Facility (MOF) Version 2.4.1
(2013). http://www.omg.org/spec/MOF/2.4.1/. Accessed 22 Feb
2021

Orvosh, D., Davis, L.: Shall we repair? genetic algorithms com-
binatorial optimization and feasibility constraints. In: 5th Interna-
tional Conference on Genetic Algorithms, p. 650 (1993)

Orvosh, D., Davis, L.: Using a genetic algorithm to optimize prob-
lems with feasibility constraints. In: Evolutionary Computation,
1994. First IEEE World Congress on Computational Intelligence,
pp. 548-553 (1994)

Paige, R.F., Brooke, P.J., Ostroff, J.S.: Metamodel-based model
conformance and multiview consistency checking. ACM Trans.
Softw. Eng. Methodol. (TOSEM) 16(3), 11 (2007)

Pérez, F., Font, J., Arcega, L., Cetina, C.: Automatic query refor-
mulations for feature location in a model-based family of software
products. Data Knowl. Eng. 116, 159-176 (2018)

Pérez, F., Font, J., Arcega, L., Cetina, C.: Collaborative feature
location in models through automatic query expansion. Autom.
Softw. Eng. 26(1), 161-202 (2019)

Pérez, F., Lapeiia, R., Font, J., Cetina, C.: Fragment retrieval on
models for model maintenance: applying a multi-objective perspec-
tive to an industrial case study. Inf. Softw. Technol. 103, 188-201
(2018)

Pérez, F., Ziadi, T., Cetina, C.: Utilizing automatic query reformu-
lations as genetic operations to improve feature location in software
models. IEEE Trans. Softw. Eng. 2020, 1-1 (2020)

Rose, L.M., Kolovos, D.S., Paige, R.F,, Polack, F.A.C.: Model
migration with epsilon flock. In: Tratt, L., Gogolla, M. (eds.) The-
ory and Practice of Model Transformations, pp. 184—198. Springer,
Berlin (2010)

Rothlauf, F.: Representations for genetic and evolutionary algo-
rithms. In: Representations for Genetic and Evolutionary Algo-
rithms, pp. 9-32. Springer (2006)

Rubin, J., Chechik, M.: A survey of feature location techniques.
In: Domain Engineering, pp. 29-58. Springer, Berlin (2013)
Runarsson, T.P., Yao, X.: Stochastic ranking for constrained evo-
lutionary optimization. IEEE Trans. Evol. Comput. 4(3), 284-294
(2000)

Salton, G., McGill, M.J.: Introduction to Modern Information
Retrieval. McGraw-Hill Inc, NY (1986)

@ Springer

https://dl.acm.org/doi/book/10.5555/14076091
https://dl.acm.org/doi/book/10.5555/14076091
http://www.omg.org/spec/MOF/2.4.1/

1688

J.Fontetal.

7.

78.

79.

80.

81.

82.

83.

84.

85.

Segura, S., Parejo, J.A., Hierons, R.M., Benavides, D., Ruiz-Cortés,
A.: Automated generation of computationally hard feature models
using evolutionary algorithms. Expert Syst. Appl. 41(8), 3975-
3992 (2014)

Semerith, O., Barta, A., Horvith, A., Szatmari, Z., Varré, D.: For-
mal validation of domain-specific languages with derived features
and well-formedness constraints. Softw. Syst. Model. 16(2), 357—
392 (2017)

Semerath, O., Nagy, A.S., Varr6, D.: A graph solver for the auto-
mated generation of consistent domain-specific models. In: 40th
International Conference on Software Engineering, ICSE’18, p.
969-980 (2018)

Steinberg, D., Budinsky, F., Merks, E., Paternostro, M.: EMF:
Eclipse Modeling Framework. Pearson Education, London (2008)
Steinberg, D., Budinsky, F., Paternostro, M., Merks, E.: EMF:
Eclipse Modeling Framework 2.0, 2nd edn. Addison-Wesley Pro-
fessional, Boston (2009)

Svendsen, A., Zhang, X., Lind-Tviberg, R., Fleurey, F., Haugen, @.,
Mgller-Pedersen, B., Olsen, G.K.: Developing a software product
line for train control: a case study of cvl. In: 14th international
conference on Software product lines (SPLC) (2010)

The english (porter2) stemming algorithm. http://snowball.
tartarus.org/algorithms/english/stemmer.html (2016). Accessed 22
Feb 2021

Vargha, A., Delaney, H.D.: A critique and improvement of the cl
common language effect size statistics of mcgraw and wong. J.
Educ. Behav. Stat. 25(2), 101-132 (2000)

Wille, D., Holthusen, S., Schulze, S., Schaefer, I.: Interface variabil-
ity in family model mining. In: 17th International Software Product
Line Conference: Co-located Workshops, pp. 44-51 (2013)

@ Springer

86.

87.

88.

89.

90.

91.

Williams, J.R.: A novel representation for search-based model-
driven engineering. Ph.D. thesis, University of York (2013)
Williams, J.R., Paige, R.F., Kolovos, D.S., Polack, F.A.: Search-
Based Model Driven Engineering. Technical report, Citeseer
(2012)

Williams, J.R., Poulding, S., Rose, L.M., Paige, R.F., Polack, FA.:
Identifying desirable game character behaviours through the appli-
cation of evolutionary algorithms to model-driven engineering
metamodels. In: International Symposium on Search Based Soft-
ware Engineering, pp. 112-126 (2011)

Yeniay, O.: Penalty function methods for constrained optimization
with genetic algorithms. Math. Comput. Appl. 10(1), 45-56 (2005)
Zhang, X., Haugen, @., Moller-Pedersen, B.: Model comparison
to synthesize a model-driven software product line. In: 2011 15th
International Software Product Line Conference (SPLC), pp. 90—
99 (2011)

Zhang, X., Haugen, @., Mgller-Pedersen, B.: Augmenting prod-
uct lines. In: 19th Asia-Pacific Software Engineering Conference
(APSEC), vol. 1, pp. 766-771 (2012)

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

http://snowball.tartarus.org/algorithms/english/stemmer.html
http://snowball.tartarus.org/algorithms/english/stemmer.html

	Handling nonconforming individuals in search-based model-driven engineering: nine generic strategies for feature location in the modeling space of the meta-object facility
	Abstract
	1 Introduction
	2 Related work
	2.1 Model transformation rules
	2.2 Metamodel enhancement
	2.3 Feature location in models
	2.4 Software product lines

	3 Overview of the problem
	3.1 Feature location in models (FLiM)
	3.2 Feature location in models by an evolutionary algorithm (FLiMEA)
	3.2.1 Representation of the individuals
	3.2.2 Fitness function
	3.2.3 Genetic operators

	3.3 Model and metamodel conformance
	3.4 Search space

	4 Handling nonconforming individuals in SBSE encoding model artifacts
	4.1 Penalty functions
	4.1.1 Static penalty
	4.1.2 Dynamic penalty
	4.1.3 Death penalty

	4.2 Strong encoding
	4.2.1 Mutation operation for strong encoding
	4.2.2 Crossover operation for strong encoding

	4.3 Closed operators
	4.4 Repair operators
	4.4.1 Add repair
	4.4.2 Remove repair

	5 Evaluation
	5.1 Experimental setup
	5.2 Performance metrics
	5.3 Case studies: BSH and CAF
	5.4 Implementation details
	5.5 Parameters and budget
	5.6 Results
	5.7 Statistical analysis
	5.7.1 Statistical significance
	5.7.2 Effect size

	6 Discussion
	7 Threats to validity
	8 Conclusion
	Acknowledgements
	A Statistical analysis results
	References

