
Software and Systems Modeling (2021) 20:711–724
https://doi.org/10.1007/s10270-020-00858-7

THEME SECT ION PAPER

Guaranteedmaster for interval-based cosimulation

Adrien Le Coënt1 · Julien Alexandre dit Sandretto1 · Alexandre Chapoutot1

Received: 28 February 2020 / Revised: 15 December 2020 / Accepted: 24 December 2020 / Published online: 19 January 2021
© The Author(s), under exclusive licence to Springer-Verlag GmbH, DE part of Springer Nature 2021

Abstract
In this paper, we tackle the problem of guaranteed simulation of cyber-physical systems, an important model for current engi-
neering systems. Their is always increasing complexity which leads to models of higher and higher dimensions, yet typically
involving multiple subsystems or even multiple physics. Given this modularity, we more precisely explore cosimulation of
such dynamical systems, with the aim of reaching higher dimensions of the simulated systems. In this paper, we present
a guaranteed interval-based approach for cosimulation of continuous time systems. We propose an algorithm which first
proves the existence and returns an enclosure of global solutions, using only local computations. This mitigates the curse of
dimensionality faced by global (guaranteed) integration methods. Local computations are then realized with a safe estimate of
the other sub-systems until the next macro-step. We increase the accuracy of the approach by using an interval extrapolation
of the state of the other sub-systems. We finally propose some possible further improvements including adaptive macro-step
size. Our method is fully guaranteed, taking into account all possible sources of error. It is implemented in a C++ prototype
relying on the DynIbex library, and we illustrate our approach on multiple examples of the literature.

Keywords Cosimulation · Guaranteed simulation · Integration methods

1 Introduction

Context Modern system design involves more and more
model-based design [35,49]. In a few words, model-based
design requires modeling a plant, analyzing and synthesizing
a controller for the plant, simulating the plant and controller,
and finally integrating all these phases by deploying the con-
troller. Such design process requires strong safety guarantees
in each part of the design process, particularly when the
final system in safety critical. Many dynamical systems are

Communicated by Eugene Syriani and Manuel Wimmer.

This work was supported by the “Chair Complex Systems
Engineering - École polytechnique, THALES, DGA, FX, Dassault
Aviation, Naval Group Research, ENSTA Paris, Télécom Paris, and
Fondation ParisTech”.

B Adrien Le Coënt
adrien.le-coent@ens-cachan.fr

Julien Alexandre dit Sandretto
julien.alexandre-dit-sandretto@ensta-paris.fr

Alexandre Chapoutot
alexandre.chapoutot@ensta-paris.fr

1 ENSTA Paris, 828 Boulevard des Maréchaux, 91762
Palaiseau Cedex, France

modeled with differential equations, and current controller
synthesis methods are performed and applied with comput-
ers. Systems involving physical and software components
belong to the class of cyber-physical systems (CPS) [41]. In
this paper, we present some tools with strong safety guaran-
tees for the simulation of the plant and controller. The main
issue faced with strong guarantees and formal methods in
general is usually the scalability [2,30,31], meaning that for-
mal methods can only be applied to systems of dimension
much smaller than industrial scale models. In order to over-
come this issue, we propose to apply cosimulation principles
in a guaranteed way, so that our methods get closer to appli-
cability on industrial scale models.

In a cosimulation setting, the global system is divided in
(or is composed of different) sub-systems, forwhich different
simulation units (and possibly schemes) are used. This type
of approaches is particularly appropriate for two different
types of systems:

(i) Systems presenting different types of dynamics, such as
stiff [29] and non-stiff [28] dynamics, or multi-physics
dynamics such as fluid–structure interaction [12], but one
could add linear and nonlinear, symplectic or not, etc. In
this case, they are particularly appropriate because they

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10270-020-00858-7&domain=pdf

712 A. Le Coënt et al.

allow to use, e.g., implicit and explicit schemes simul-
taneously for the different parts of the system, allowing
to spend less time and energy on the easier parts of the
simulation. The fluid–structure interaction [32] is one
such interesting example since a fluid in usually mod-
eled using and Eulerian description, while structures use
Lagrangian descriptions. The numerical methods used to
simulate both systems are thus inherently different .

(ii) Systems modeled by large-scale ordinary differential
equations (ODEs), such as discretized partial differential
equation (PDE) models for example used in structural
mechanics computations [5,52]. Often, these models
can be decomposed in sub-problems, for example using
domain decomposition methods [50].

Cosimulation consists in enabling simulation of a coupled
system through the composition of simulators, or simulation
units (SUs) [25,36]. SUs are given an initial state and an input
and produce an output and a simulation trace. SUs advance
their simulation without exchange of information with the
other SUs for given amounts of time that, in this paper,we call
macro-steps. They exchange values of their outputs only at
the end of these (macro) steps, usually called communication
times. In order to develop a guaranteed procedure in this
setting, the exchange of information done at communication
times is crucial, and must contain all the information needed
to safely simulate over the next macro step. Note that the
SUs used here should be considered as white box SUs (as
opposed to black box SUs [24]) since the dynamics of the
sub-systems is written explicitly.

Given an ODE of the form ẋ(t) = f (t, x(t)) with f con-
tinuous in t and globally Lipschitz in x , and a set of initial
values X0, a symbolic (or “set-valued” since the symbols
used here are sets) integration method consists in computing
a sequence of approximations (tn, x̃n) of the solution x(t; x0)
of the ODE with x0 ∈ X0 such that x̃n ≈ x(tn; x0). Note that
the Lipschitz property guarantees the existence and unicity
of solutions and is almost universally used in the domain
of guaranteed integration, but smoother functions (of class
Ck for some k > 1) can be required if high-order meth-
ods are used. Symbolic integration methods extend classical
numerical integration methods which correspond to the case
where X0 is just a singleton {x0}. The simplest numerical
method is Euler’s method in which tn+1 = tn + h for some
step-size h and x̃n+1 = x̃n + h f (tn, x̃n); so the derivative
of x at time tn , f (tn, xn), is used as an approximation of
the derivative on the whole time interval. This method is
very simple and fast, but requires small step-sizes h. More
advanced methods coming from the Runge–Kutta family use
a few intermediate computations to improve the approxima-
tion of the derivative. The general form of an explicit s-stage
Runge–Kutta formula of the form x̃n+1 = x̃n + h�s

i=1bi ki

where ki = f (tn+ci h, x̃n+h�i−1
j=1ai j k j) for i = 2, 3, . . . , s.

A challenging question is then to compute a bound on the dis-
tance between the true solution and the numerical solution,
i.e., ‖x(tn; xn−1) − xn‖. This distance is associated to the
local truncation error (LTE) of the numerical method; its
interval formulation can be bounded if f is of class C p+1 for
an s-stage Runge–Kutta method of order p.

Contribution In this paper, we suppose that the system is
provided with a suitable decomposition, and we propose to
use SUs that rely on symbolic (set-valued) Runge–Kutta-
based integration methods. In this case, the computation
of the LTE is the most time-consuming task. For each
integration time step, it requires the computation of the
Picard–Lindelöf operator and its evaluation on the trunca-
tion error. The computation times quickly blow up with the
dimension of the ODE and increase exponentially with the
order of the scheme, limiting in practice the dimensions
of the ODE to a few dozens or even less if the order of
the scheme exceeds 4. The Picard–Lindelöf operator merely
over-approximates (bounds) the state of the system over a
given time step. This operator cannot be computed on a
full composed (industrial scale) system. We thus propose
to distribute its computation using local computations in an
iterative way and call this procedure the cross-Picard opera-
tor, which is the main ingredient of guaranteed cosimulation.
The cross-Picard operator is used at communication times to
yield over-approximations of the global state of the system
over the next macro-step (using only local computations).
Local Picard–Lindelöf operators can then be used with safe
approximations of the global state as parameters. Once the
cross-Picard operator is established, further improvements
are proposed, such as the use of extrapolation of inputs
based on interpolation polynomials in order to improve the
accuracy of the cosimulation. This allows to use past macro-
steps information in order to improve the input bounding of
the next macro-step. We also discuss some practical issues
regarding macro-step size choice, as well as the initializa-
tion of the cross-Picard computation. Our implementation is
available at [1].

Related work Computing the solution at discrete times of a
linear ODE when the initial condition is given as a box can
be easily done using zonotopes [4,23,37], and this, because
we know exactly the solution of the ODE, can be written as
an affine transformation. Yet, generally, the exact solution
of nonlinear differential equations cannot be obtained, and
a numerical integration scheme is used to approximate the
state of the system.

Most of the recent work on the symbolic (or set-valued)
integration of nonlinearODEs is based on the upper bounding
of the Lagrange remainders either in the framework of Tay-
lor series or Runge–Kutta schemes [2,3,8,10,13,14,18,45].

123

Guaranteed master for interval-based cosimulation 713

Sets of states are generally represented as vectors of intervals
(or “rectangles”) and are manipulated through interval arith-
metic [46] or affine arithmetic [17]. Taylor expansions with
Lagrange remainders are also used in the work of [3], which
uses “polynomial zonotopes” for representing sets of states
in addition to interval vectors. Affine arithmetic and its geo-
metrical representation through zonotopes help to counteract
two of the main limitations coming with interval analysis: (i)
the wrapping effect is reduced during integration [2]; (ii) a
convex set is more tightly enclosed by a zonotope than a box
[37].

Theguaranteed or validated solution ofODEsusing inter-
val arithmetic is studied in the framework of Taylor series
in [19,42,46,48] andRunge–Kutta schemes in [2,8,9,22]. The
former is the oldest method used in interval analysis com-
munity because the expression of the remainder of Taylor
series is simple to obtain. Nevertheless, the family of Runge–
Kutta methods is very important in the field of numerical
analysis. Indeed, Runge–Kutta methods have several inter-
esting stability properties which make them suitable for an
important class of problems. The recent work [1] implements
Runge–Kutta-based methods which prove their efficiency at
low orders and for short simulations (fixed by the sampling
period of the controller). Runge–Kutta methods, however,
present some inherent limitations. In a guaranteed context,
the accumulation of error is taken into account and often
leads to sets quickly growing within time. An experienced
user would mitigate this effect by choosing the right order
of method, using more or less tolerance on local errors and
thus using finer or larger time steps, or using an appropriate
number of zonotope generators [37].

In the methods of symbolic analysis and control of
hybrid systems, the way of representing sets of state val-
ues and computing reachable sets for systems defined by
autonomous ordinary differential equations (ODEs) is fun-
damental (see for example [3,23]). Many tools using, among
other techniques, linearization or hybridization of these
dynamics are now available (e.g., SpaceEx [21], Flow* [14],
iSAT-ODE [20]). An interesting approach appeared recently,
based on the propagation of reachable sets using guaranteed
Runge–Kutta methods with adaptive step-size control (see
[8,33]). An originality of our work is to use such guaran-
teed integration methods in a cosimulation framework. This
notion of guarantee of the results is very interesting, because
it allows applications in critical domains, such as aeronauti-
cal, military and medical ones.

Cosimulation has been extensively studied in the past
years [24,25] and has been reported in a number of industrial
applications (see [24] for an extensive list domain applica-
tions and associated publications). However, most of the uses
and tools developed rely on theFMI/FMUstandard [6,11,51],
whichdonot allowguaranteed simulation.Toour knowledge,
guaranteed cosimulation of systems has never been studied,

and, as pointed out in [26], remains an important challenge.
The main original contribution of this paper is to provide a
first approach to guaranteed cosimulation.

However, compositional principles are close to the ideas
we use here. A recent work [16] proposes to safely simulate
nonlinear systems by using hybrid automata abstractions that
can be computed in a decomposed (compositional) way. Sim-
ilarly in [15], compositional abstractions are computed, but
the abstractions are performed using relations expressed in
linear arithmetic. In [7], numerical integration is performed
locally by using a splitting of the vector field that can also
be performed in a compositional way. Nevertheless, none
of these works perform actual simultaneous simulations, but
rather rely on pre-computations and abstractions. The work
closest to guaranteed cosimulation is the error analysis car-
ried out in [6]; it provides strong stability results as well as
some error estimates, but does not allow to formally bound
the global state of the system.

Organization of the paper In Sect. 2, we present some nota-
tions and preliminaries before introducing the mathematical
setting classically used for (guaranteed) numerical simula-
tion and for cosimulation. In Sect. 3, we give the main ideas
that are used in guaranteed Runge–Kutta-based integration,
as well as its limits. The main contribution is presented in
Sect. 4, in which we present the computation of the cross-
Picard operator, the cosimulation orchestration, aswell as the
practical improvements that can be used. We present some
numerical applications issued from the literature in Sect. 5,
and we conclude in Sect. 6.

2 Problem setting

2.1 Notations and preliminaries

The simplest and most common way to represent and manip-
ulate sets of values is interval arithmetic (see [46]). An
interval [x] = [x, x] defines the set of reals x such that
x ≤ x ≤ x . IR denotes the set of all intervals over reals. The
diameter or the width of [x] is denoted by w([x]) = x − x .

Interval arithmetic extends to IR elementary operators
over R. For instance, the interval sum, i.e., [x1] + [x2] =
[x1 + x2, x1 + x2], encloses the image of the sum function
over its arguments.
Considering a generic operator⊕ onR, its interval extension
is obtained as follows:

[x1] ⊕ [x2] = [min{x1 ⊕ x2, x1 ⊕ x2, x1 ⊕ x2, x1 ⊕ x2},
max{x1 ⊕ x2, x1 ⊕ x2, x1 ⊕ x2, x1 ⊕ x2}]

Nowadays, interval arithmetic libraries follow a stan-
dard, and thus, implement special intervals such as ∅ and

123

714 A. Le Coënt et al.

[−∞,+∞] and associated set operations to handle forbid-
den operations without exception like a division by zero for
example.

An interval vector or a box [x] ∈ IR
n is a Cartesian prod-

uct of n intervals. The enclosing property basically defines
what is called an interval extension or an inclusion function.

Definition 1 (Inclusion function) Consider a function f :
R
n → R

m , then [f] : IRn → IR
m is said to be an extension

of f to intervals if

∀[x] ∈ IR
n, [f]([x]) ⊇ { f (x), x ∈ [x]} .

It is possible to define inclusion functions for all elementary
functions such as ×, ÷, sin, cos, exp, etc. The natural inclu-
sion function is the simplest to obtain: all occurrences of the
real variables are replaced by their interval counterpart and
all arithmetic operations are evaluated using interval arith-
metic. More sophisticated inclusion functions such as the
centered form or the Taylor inclusion function may also be
used (see [34] for more details).

Finally, combining the inclusion function and the rectan-
gle rule, an integral can be bounded as follows:

∫ b

a
f (x) dx ∈ (b − a) · [f]([a, b])

2.2 Guaranteed simulation objective

We introduce the Initial Value Problem, which is the main
problem we want to solve.

Definition 2 (Initial value problem (IVP)) Consider an ODE
with a given initial condition

ẋ ∈ f (t, x, p) with x(0) ∈ [x0], p ∈ [p], (1)

with f : R
+ ×R

d ×R
m → R

d assumed to be continuous in
t and p and globally Lipschitz in x . We assume that param-
eters p are bounded in [p] (used to represent a perturbation,
a modeling error, an uncertainty on measurement, …). Solv-
ing an IVP consists in finding a function x(t) described by
Eq. (1) for all perturbation p lying in [p] and for all the initial
conditions in [x0] ⊆ R

d .

Since this problem cannot be solved exactly, numerical
schemes are used. In our case, the Runge–Kutta schemes
we use return sets of boxes {[xn]}n that cover the possible
trajectories for a given time interval [0, H]: for all t ∈ [0, H],
x(t) ∈ [xn] for some n. (We leave the number of covering
boxes arbitrary for now, see an illustration Fig. 1.)

We now suppose that the dynamics can be decomposed as
follows:

ẋ1 ∈ f1(t, x1, u1) with x1(0) ∈ [x01], u1 ∈ [u1],

ẋ2 ∈ f2(t, x2, u2) with x2(0) ∈ [x02], u2 ∈ [u2],
. . .

ẋm ∈ fm(t, xm, um) with xm(0) ∈ [x0m], um ∈ [um],
L(x1, . . . , xm, u1, . . . , um) = 0,

where the state x is decomposed in m components x =
(x1, . . . , xm), for all i ∈ {1, . . . ,m}, xi ∈ Xi , X1 × · · · ×
Xm = R

d , and L is a coupling function between the compo-
nents. The objective is now to compute, for each component
i ∈ {1, . . . ,m}, sets of boxes {[xki]}k that cover the possible
trajectories of the state xi . For the remainder of the paper,
index i is used to denote the state of a component.

A standard formalism introduced in [25] defines the
behavior of a continuous time simulation unit Si as:

Si = 〈Xi ,Ui ,Yi , δi , λi , xi (0),�UI 〉,
δi : R × Xi ×Ui → Xi ,

λi : R × Xi ×Ui → Yi , or R × Xi → Yi ,

xi (0) ∈ Xi ,

�Ui : R ×Ui × · · · ×UI → Ui ,

(2)

where

– Xi is the state vector space,
– Ui is the input vector space,
– Yi is the output vector space,
– δi (t, xi (t), ui (t)) = xi (t + H) or δi (t, xi (t), ui (t +

H)) = xi (t + H) is the function that instructs the SU
to compute a behavior trace from t to t + H , making use
of the input extrapolation (or interpolation) function�Ui

– λi (t, xi (t), ui (t)) = yi (t) or λi (t, xi (t)) = yi (t) is the
output function; and

– xi (0) is the initial state.

We consider that the entire state of each sub-system is
returned by each sub-system, so that we can omit the use of
functions λi . Furthermore, we need interval-based simula-
tions. For this purpose, we simply modify the δi functions as
follows. The notation is now :

([xi]′, {[xki]′}k) := δi ([t, t ′], [xi], [ui]).

They take as inputs:

– An interval of R: [t, t ′].
– A box of Xi : [xi].
– A box of Ui : [ui].

And they return:

– A box of Xi : [xi]′. This box over-approximates the state
xi (t) over the time interval [t, t ′] for any input varying

123

Guaranteed master for interval-based cosimulation 715

Fig. 1 Illustration of the outputs of functions δi . They return boxes cov-
ering the trajectories of their component over the next macro-step. The
three black lines are exact trajectories over the time interval [t, t ′]. The
red box is [xi]′, over-approximating the state over the whole time inter-
val. The blues boxes are the {[xki]′}k , covering the trajectories starting
in [xi]

in [ui]. It is thus a box that over-approximates xi (t) over
the next entire macro-step.

– A set of boxes of Xi : {[xki]′}k . This set of boxes covers
trajectories starting in [xi] over the time interval [t, t ′]
and any input varying in [ui]. The union of these boxes
forms a tube that gives a tight over-approximation of the
trajectories xi (t) over the time interval [t, t ′].

An illustration given in Fig. 1 shows these different boxes.
A continuous time cosimulation scenario with reference

cs includes at least the following information:

S = 〈Ucs,Ycs, D, {Si : i ∈ D}, L〉,

L :
(∏
i∈D

Yi

)
× Ycs ×

(∏
i∈D

Ui

)
×UUcs → R

m,
(3)

where D is an ordered set of SU references, each Si is defined
as in Eq. (2), m ∈ N, Ucs is the vector space of input exter-
nal to the scenario, Ycs is the vector space of outputs of the
scenario, and L induces the SU coupling constraints, that
is, if D = {1, . . . , n}, then the coupling is the solution to
L(y1, . . . , yn, ycs, u1, . . . , un, ucs) = 0̄, where 0̄ denotes
the null vector. Note that, compared to [25], we do not con-
sider approximation functions for inputs since we provide
guaranteed results which cannot be established with such
approximations.

In the following, we suppose that coupling constraints L
are explicit, i.e., inputs can be written as ui =
Ki (y1, . . . , yn, ycs) for all i . This means that we do not cur-
rently consider algebraic loops. In future work, we plan on
generalizing the coupling to arbitrary (algebraic) couplings,
using differential algebraic equation formulations, already
available with guaranteed integration methods such as in
[18].Note that the systemdefinition used here implies that the
global system is fully time-continuous. However, if the sys-
tem presents time-dependent piecewise behavior (as would

be found in, e.g., switching systems with time-dependent
switchings [39]), then the system can be simulated using the
present method as long as there is no switching during a
macro-step. Indeed, using minor modifications of the pro-
cedure, communications can be scheduled to happen at the
switching times and cosimulation can be performed safely
until the next switching. State-dependent switchings (i.e.,
guards in the state-space) are still very hard to handle in
guaranteed reachability analysis methods and are thus not
possible in the present method.

3 Guaranteed Runge–Kutta schemes

In this section, we describe our approach for validated sim-
ulation based on Runge–Kutta methods [2,8], the goal being
to obtain a set valued solution for a single system, described
like in IVP in Eq. (1) for a given time interval [T , T + H].
The approach is used inside simulation units, and index i is
omitted (only for this section). Note that the notations of this
section differ from the others in order to keep the number of
indexes as low as possible.

A numerical integration method computes a sequence of
values (tn, xn)with 0 ≤ n ≤ N , tn = T+n H

N , approximating
the solution x(t; x0) of the IVP defined in Eq. (1) such that
xn ≈ x(tn; xn−1). The simplest method is Euler’s method in
which tn+1 = tn+h for some step size h and xn+1 = xn+h×
f (tn, xn, p); so the derivative of x at time tn , f (tn, xn, p), is
used as an approximation of the derivative on the whole time
interval to perform a linear interpolation. This method is very
simple and fast, but requires small step sizes. More advanced
methods, coming from the Runge–Kutta family, use a few
intermediate computations to improve the approximation of
the derivative. The general formof an explicit s-stageRunge–
Kutta formula, that is using s evaluations of f , is

xn+1 = xn + h
s∑

i=1

bi ki ,

k1 = f
(
tn, xn, p

)
,

ki = f
(
tn + ci h, xn + h

i−1∑
j=1

ai j k j , p
)
, i = 2, 3, . . . , s .

(4)

The coefficients ci , ai j and bi fully characterize the method.
To make Runge–Kutta validated, the challenging question is
how to compute a guaranteed bound of the distance between
the true solution and the numerical solution, defined by
x(tn; xn−1)−xn . This distance is associated to the local trun-
cation error (LTE) of the numerical method.

To bound the LTE, we rely on order condition [28]
respected by all Runge–Kutta methods. This condition states

123

716 A. Le Coënt et al.

that a method of this family is of order p iff the p + 1 first
coefficients of the Taylor expansion of the solution and the
Taylor expansion of the numerical methods are equal. In con-
sequence, LTE is proportional to the Lagrange remainders of
Taylor expansions. Formally, LTE is defined by (see [8]):

x(tn; xn−1) − xn

= h p+1

(p + 1)!
(
f (p) (ξ, x(ξ ; xn−1), p) − d p+1φ

dt p+1 (η)

)

ξ ∈]tn, tn+1[and η ∈]tn, tn+1[. (5)

The function f (n) stands for the n-th derivative of function f
w.r.t. time t that is dn f

dtn and h = tn+1− tn is the step size. The
function φ : R → R

n is defined by φ(t) = xn +h
∑s

i=1 bi ki
where ki are defined as Eq. (4).

The challenge to make Runge–Kutta integration schemes
safe w.r.t. the true solution of IVP is then to compute a bound
of the result of Eq. (5). In other words, we do have to bound

the value of f (p) (ξ, x(ξ ; xn−1), p) and the value of
d p+1φ

dt p+1 (η)

with numerical guarantee. The latter expression is straight-
forward to bound because the function φ only depends on
the value of the step size h, and so does its (p + 1)-th
derivative. The bound is then obtained using the affine arith-
metic [17,18].

However, the expression f (p) (ξ, x(ξ ; xn−1), p) is not so
easy to bound as it requires to evaluate f for a particular
value of the IVP solution x(ξ ; xn−1) at an unknown time
ξ ∈]tn, tn+1[. The solution used is the same as the one found
in [9,48], and it requires to bound the solution of IVP on the
interval [tn, tn+1]. This bound is usually computed using the
Banach’s fixpoint theorem applied with the Picard–Lindelöf
operator, see [48]. This operator is used to compute an enclo-
sure of the solution [x̃] of IVP over a time interval [tn, tn+1],
that is for all t ∈ [tn, tn+1], x(t; xn−1) ∈ [x̃]. We can
hence bound f (p) substituting x(ξ ; xn−1) by [x̃]. This gen-
eral approach used to solve IVPs in a validated way is called
Lohner two step approach [43].

Complexity of LTE computation The validated computation
of the LTE, given in Eq. (5), of Runge–Kutta methods can
be performed using two different methods: symbolic differ-
entiation or automatic differentiation (AD). The first method
is based on Frechet derivatives and rooted trees [18], while
the second exploits automatic differentiation and a weighted
directed acyclic graph [47]. For a Runge–Kutta method of
order k and an ODE of dimension d, the complexities are
O(dk) for symbolic method andO(d3k) for AD [47]. A gain
in term of dimension, for example by splitting the problem
and using cosimulation, directly impacts the time of LTE
computations and then the time of simulation.

4 Guaranteed cosimulation algorithm

In this section, themain contributionof the paper is presented.
We first present in details the computation of the Picard–
Lindelöf operator. The operator being too time-consuming
to compute on industrial case studies, we then present the
cross-Picard operator, which contains a procedure comput-
ing an enclosure of the global state of the system using
local Picard–Lindelöf operators. Its computation is realized
at communication times in order to over-approximate the
state over the next macro-step. A given SU can then perform
safe simulations until the end of the macro-step, by con-
sidering the inputs from the other sub-systems as bounded
perturbations, the bounded set in which they lie being known
from the cross-Picard operator.

4.1 The Picard–Lindelöf operator

Let us consider Eq. (1) with an initial condition [xT] and
a perturbation set [p]; the guaranteed integration of such
a system on a time interval [T , T + H] is made possible
by over-approximating the state over [T , T + H] using the
Picard–Lindelöf operator. Its construction is detailed in the
following. We first recall the following theorem.

Theorem 1 (Banach fixed-point theorem) Let (K , d) be a
complete metric space, given by a set K and a distance func-
tion d : K × K �→ R, and let g : K → K be a contraction;
that is for all x, y in K there exists c ∈ (0, 1) such that

d (g(x), g(y)) ≤ c · d(x, y)

Then g has a unique fixed-point in K .

In the context of IVPs and schemes of order p, we
consider the space of continuously differentiable functions
C p+1([T , T + H], R

n) and the Picard–Lindelöf operator

P f (x) = t �→ x +
∫ t

T
f (s, x(s), [p])ds . (6)

The Picard–Lindelöf operator is used to check the contrac-
tion of the solution on an integration step in order to prove
the existence and the uniqueness of the solution of Eq. (1)
as stated by the Banach’s fixed-point theorem. Furthermore,
this operator is used to compute an enclosure of the solution
of IVP over a time interval [T , T + H].

This operator, based on the Theorem 1 and defined in
Eq. (6), allows one to compute the a priori enclosure [x̃]
such that

∀t ∈ [T , T + H],
{x(t; x(T)) : x(T) ∈ [xT], p ∈ [p]} ⊆ [x̃] .

123

Guaranteed master for interval-based cosimulation 717

In its simplest (rectangle) form, the operator is computed
as:

P f ([xT], [p], [r], H) = [xT] + f ([r], [p])[0, H] . (7)

The Picard–Lindelöf operator with Taylor expansion is
given by:

P f ([xT], [p], [r], h) = [xT] +
N∑

k=0

f [k]([xT], [p])[0, Hk]

+ f [N+1]([r], [p])[0, HN+1] .

(8)

If P f ([xT], [p], [r], H) ⊂ Int([r]), Int(·) denoting the inte-
rior of a set, then f is integrable and {x(t; x(T)) : x(T) ∈
[xT], p ∈ [p]} ⊂ [r] for any t ∈ [T , T + H].

In order to ease the reading, in the remainder of the paper,
the box [r] that verifies P f ([xT], [p], [r], H) ⊂ Int([r]) is
referred to as the Picard box on time interval [T , T + H],
and its computation is denoted by the operator PH

X ,D for an
initial set X at time t , a disturbance set D, and a time step H .

Once the Picard box is computed, we can safely simulate
the system on time interval [T , T + H] by computing the
LTE, and the result is validated for any disturbance p ∈ [p]
on the same time interval.

4.2 Cross-Picard operator

Thepurposeof the cross-Picardoperator is to over-approximate
the solutions of all the sub-systems over the next macro-
step, using only local computations. The principle is that we
compute local Picard operators, by considering the inputs
coming from the other sub-systems as disturbances, the main
issue being to compute the sets in which these disturbances
evolve. To compute these sets, we start by guessing a rough
over-approximation of the solutions over the next macro-
step. From there, the idea is that we consider the inputs ui (t)
of the sub-systems as bounded disturbances, the set in which
they are bounded being constructed from functions Ki and
the initial guesses. We then apply local Picard operators iter-
atively, until the proof of validity of the approximations is
obtained for all sub-systems.

More precisely, let us consider a cosimulation scenario
S = 〈∅,Ycs, D, {Si : i ∈ D}, L〉 with simulation units Si =
〈Xi ,Ui ,Yi , δi , λi , xi (0),�UI 〉. Let us suppose that the sets
of states are non-overlapping, i.e., simulation unit Si does not
share any state variables with simulation unit S j for i �= j .
Note that, in order to ease the reading, we suppose an empty
input set Ucs = ∅, but minor modifications would allow to
take bounded inputs into account (as long as they can be
bounded using intervals or boxes).

Let us denote by [xi,n] the initial state set xi (Tn). Let
us denote by [xHi,n] the over-approximation of xi (t) for t ∈
[Tn, Tn +H]. Let us denote by [uH

i,n] the over-approximation
of ui (t) for t ∈ [Tn, Tn + H]. A local Picard operator can
be computed as PH

[xi,n],[uHi,n]
. In order to prove that [xHi,n] are

indeed over-approximating xi (t) for all i over the nextmacro-
step, the condition to verify is: PH

[xi,n],[uHi,n]
⊂ Int([xHi,n]), for

all i .
The global Picard box is then approximated by

PH[x1,n]×···×[xm,n] := [xH1,n] × · · · × [xHm,n]

which ensures a safe over-approximation of the states over
the next macro-time step.

In order to compute such safe approximations of the states
over a macro-step, using only local computations, we per-
form the following procedure:

– For each i , compute rough guesses [r Hi,n] of the sets [xHi,n]
– From {[r Hi,n]}i=1,...,m , deduce input box guesses [kHi,n]

over-approximating the inputs ui ∈ Ui on [Tn, Tn + H]:
[kHi,n] := Ki ([r H1,n], . . . , [r Hm,n])

– For each i , compute a Picard box PH
[xi,n],[kHi,n]

– While [r Hi,n] � PH
[xi,n],[pHi,n]

, for all i , computes [r Hi,n] :=
PH

[xi,n],Ki ([r H1,n],...,[r Hm,n])

The computation of the initial guesses is discussed in
Sect. 4.5. The exact algorithm is detailed in Algorithm 1.
We abbreviate the computation of such safe approximations
of the states over a macro-step by the following operator, that
we denote the cross-Picard operator:

(
[xH1,n], . . . , [xHm,n]

)
= PH ([x1,n], . . . , [xm,n]) (9)

Please note that this operator involves an iterative procedure
for its practical computation.

Remark 1 Wewould like to point out that the computation of
the cross-Picard operator can fail if the local computations
[r Hi,n] := PH

[xi,n],Ki ([r H1,n],...,[r Hm,n]) lead to overly large sets. This
can be the case if:

– The system is hard to simulate due to, e.g., nonlinearities
– There is too much interaction between the sub-systems,
i.e., the sub-systems share too many variables.

– The macro-step is too large.

All these problems can be mitigated in practice by using
smaller macro-steps, which is why we provide an adaptive
macro-step version of the procedure in Sect. 4.5. Smaller

123

718 A. Le Coënt et al.

macro-steps mean a faster convergence of the cross-Picard
computations, and a generally more accurate simulation, but
they also need to be performed more often. In practice, the
accuracy required seems to bemore limiting than the possible
failure of the cross-Picard computation (see Sect. 5).

Algorithm 1 Computation of the cross-Picard operator
Data: cs = 〈∅, Ycs , D = {1, . . . ,m}, {Si }i∈D, L,∅〉, a time interval
[t, t + H], initial intervals [xi,n] and initial guesses [r Hi,n]
Result: {[XH

i]}i=1,...,m , a set of boxes over-approximating the global
state on [Tn, Tn + H]

for i = 1, . . . ,m (in parallel) do
[X̃ H

i] := [r Hi,n]
[UH

i] := Ki ([X̃ H
1,n], . . . , [X̃ H

1,n])
[XH

i] := PH
[xi,n],[UH

i]
while [XH

i] � [X̃ H
i] for all i do

for i = 1, . . . ,m (in parallel) do
[X̃ H

i] := [XH
i]

[UH
i] := Ki ([X̃ H

1,n], . . . , [X̃ H
1,n])

[XH
i] := PH

[xi,n],[UH
i]

return [XH
i]

4.3 Orchestration of simulation units

Once a valid over-approximation of the states is computed,
cosimulations can be performed. The principle of cosimula-
tion orchestration is illustrated in Fig. 2. The main idea is to
compute (in a distributed way) safe and accurate simulations
of each sub-system, by considering the other sub-systems
as disturbances. Sub-systems exchange information every H
time units. This exchange of information is used to update
the disturbance set to consider in the next time step. This
orchestration scheme is very close to a Jacobi orchestration
scheme [27], which asks all units to simulate in parallel,
exchanging their input values at the end of the macro-step.
The main difference is that we rely on sets instead of point
values. One could also argue that our method differs from a
Jacobi scheme in the sense that we exchange values at the
beginning of macro-step, in order to predict the global state
of the system, and not at the end in order to readjust the input
values.

The detailed orchestration procedure is given in Algo-
rithm 2. We would like to point out that the cross-Picard
operator used in Algorithm 2, as abbreviated in Eq. (9),
actually includes the iterative computations detailed in the
previous subsection and Algorithm 1.

Complexity discussion Let us recall that, for a Runge–
Kutta method of order k and an ODE of dimension d, the

Algorithm 2Cosimulation orchestrator for autonomous sys-
tems
Data: cs = 〈∅, Ycs , D = {1, . . . ,m}, {Si }i∈D, L,∅〉, a macro-step H
Result: A cosimulation trace given as a set of boxes
n := 0
Tn := 0
[xi,n] := xi (0) for i = 1, . . . ,m
while True do

Compute ([xH1,n], . . . , [xHm,n]) := PH ([x1,n], . . . , [xm,n])
for i = 1, . . . ,m (in parallel) do

[uH
i,n] := Ki ([xH1,n], . . . , [xH1,n])

Advance simulation ([xi,n+1], {[xki,n+1]}k) :=
δi ([tn, tn+1], [xi,n], [uH

i,n])
tn+1 := tn + H
n := n + 1

return {[xi,n], {[xki,n]}k}n

complexities for computing the LTE are O(dk) for sym-
bolic differentiation andO(d3k) for automatic differentiation
[47]. When the system is decomposed in two components of
dimension d1 and d2 with d = d1+d2 and d1 = O(d/2) and
d2 = O(d/2), the complexities become, for each SU, respec-

tivelyO(d
k

2k
) andO(d2 3

k). The first one is divided by twowith
a simple Euler scheme. We, however, need to compute the
cross-Picard operator, which adds an iterative computation
before each macro-step.

4.4 Guaranteed interval extrapolation

The guaranteed extrapolation relies on an interpolation of
the previous time steps. As stated in Sect. 3, function �Ui

is the input function, it is given as an input to system i . In
other words, inputs ui (t) is replaced by a function �Ui (t).
The simplest approach is to consider �Ui (t) constant on the
next macro-step [Tn, Tn+1]. In order to yield more accurate
results, a classical approach (see [6]) is to build a extrapola-
tion function based on interpolation polynomials:

�Ui ,n(t) =
k∑

l=0

ui (Tn−l)

k∏
p=0
p �=l

t − Tn−p

Tn−l − Tn−p

= ui (t) + O(Hk+1) (10)

Inorder to yield guaranteed results using such an approach,
the formula has to be extended to interval values, and the
remainder in O(Hk+1) has to be bounded. This remain-
der is given by 1

(k+1)!u
(k+1)
i (ξt)

∏k
i=0(t − Tn−k) for some

ξt ∈ [Tn, Tn+1]. The exact interpolation is then given by:

�Ui ,n(t) =
k∑

l=0

ui (Tn−l)

k∏
p=0
p �=l

t − Tn−p

Tn−l − Tn−p

123

Guaranteed master for interval-based cosimulation 719

Fig. 2 Orchestration of two
guaranteed simulation units
between times Tn and Tn + 2H

S1 : [x1,n] [x1,n+1] [x1,n+2]

S2 : [x2,n] [x2,n+1] [x2,n+2]

[xH
1,n]

δ1(Tn, [x1,n], [uH
2,n])

[xH
2,n]

δ2(Tn, [x2,n], [uH
1,n])

[xH
1,n+1] [xH

2,n+1]

δ1(tn+1, [x1,n+1], [uH
2,n+1])

δ2(tn+1, [x2,n+1], [uH
1,n+1])

+ 1

(k + 1)!u
(k+1)
i (ξt)

k∏
i=0

(t − Tn−k)

Inputs ui (t) being given by functions Ki , an interval
bounding the derivatives u(k+1)

i , can be evaluated exactly
from the global Picard box. Recall that for all i ,

ui (t) = Ki (x1(t), . . . , xm(t))

The k-th derivative of ui can be evaluated exactly, either by
hand if Ki is simple enough or using a higher chain formula
[44] of the form:

uki (t) = k! ∂r1+···+rm Ki

∂xr11 . . . ∂xrmm

s∏
j=1

m∏
l=1

1

m jl !
[

1

p j ! x
(p j)

i

]m jl

wheremulti-indexes r ,m, and p are given in [44]. In any case,
the derivative in the remainder only depends, numerically,

on derivatives x
(p j)

i (ξt), which can fortunately be evaluated
(symbolically) in DynIbex [1,18]. In the end, we have a safe
over-approximation of u(k)

i (t) for any t ∈ [Tn, Tn+1], that we
denote by [u(k),H

i,n]. We thus have the following guaranteed
interval formula for extrapolating the inputs over the next
macro-step:

[�Ui ,n](t) =
k∑

l=0

[ui,n−l]
k∏

p=0
p �=l

t − Tn−p

Tn−l − Tn−p

+ 1

(k + 1)! [u
(k),H
i,n]

k∏
i=0

(t − Tn−k) (11)

The orchestration of simulation units using such an extrapo-
lation is given in Algorithm 3.

4.5 Practical improvements

Adaptive time step Guaranteed simulation can sometimes
be overly conservative; it leads to simulations in the shape
of trumpets (such as Fig. 4b); one of the main disadvantages
is that it can sometimes fail to compute a Picard box. In this
case, a smaller time stepmakes it easier to compute the Picard
box. An adaptive time step is already used for local computa-
tions [18]. Algorithm 4 implements an adaptive macro-step

Algorithm 3Cosimulation orchestrator for autonomous sys-
tems with extrapolation
Data: cs = 〈∅, Ycs , D = {1, . . . ,m}, {Si }i∈D, L,∅〉, a macro-step
H , an order of interpolation k
Result: A cosimulation trace given as a set of boxes
n := 0
Tn := 0
[xi,n] := xi (0) for i = 1, . . . ,m
while True do

Compute ([xH1,n], . . . , [xHm,n]) := PH ([x1,n], . . . , [xm,n])
for i = 1, . . . ,m (in parallel) do

for j = 1, . . . , k do

Evaluate [x (j),H
i,n]

for i = 1, . . . ,m (in parallel) do
[ui,n] := Ki ([x1,n], . . . , [x1,n])
Compute [�Ui ,n]

Advance simulation ([xi,n+1], {[xki,n+1]}k) :=
δi ([tn, tn+1], [xi,n], [�Ui ,n])

tn+1 := tn + H
n := n + 1

return {[xi,n], {[xki,n]}k}n

guaranteeing that the simulation always succeeds. In this
implementation, the computation

([xH1,n], . . . , [xHm,n]) := PH ([x1,n], . . . , [xm,n])

is limited to a given number of iterations, after which a
Boolean marker SUCCESS is set to 1 or 0 depending of
the computation of a valid Picard box or not.

Computation of the initial guess We discuss here the com-
putation of the initial guesses ofAlgorithm1.More precisely:
for each i , compute rough guesses [r Hi,n] of the sets [xHi,n].

Several heuristics are possible for this. The first and sim-
plest one is to take the previous Picard box [xHi,n−1] and inflate
it of some given percentage ε :

[r Hi,n] := [xHi,n−1 − ε%, xHi,n−1 + ε%],

and hope that it is inflated enough to obtain PH
[xi,n],[uHi,n]

⊂
Int([xHi,n]), for all i .

A more conservative possibility is to compute it as an
inflation of the union of the previous Picard box and the

123

720 A. Le Coënt et al.

Algorithm 4Cosimulation orchestrator for autonomous sys-
tems with extrapolation and adaptive macro-step
Data: cs = 〈∅, Ycs , D = {1, . . . ,m}, {Si }i∈D, L,∅〉, a macro-step
H , an order of interpolation k
Result: A cosimulation trace given as a set of boxes
n := 0
Tn := 0
tn+1 := H
[xi,n] := xi (0) for i = 1, . . . ,m
while True do

Compute ([xH1,n], . . . , [xHm,n]) := PH ([x1,n], . . . , [xm,n])
if SUCESS then

for i = 1, . . . ,m (in parallel) do
for j = 1, . . . , k do

Evaluate [x (j),H
i,n]

for i = 1, . . . ,m (in parallel) do
[ui,n] := Ki ([x1,n], . . . , [x1,n])
Compute [�Ui ,n]

Advance simulation ([xi,n+1], {[xki,n+1]}k) :=
δi ([tn, tn+1], [xi,n], [�Ui ,n])

tn+1 := tn + H
n := n + 1

else
H := H/2

return {[xi,n], {[xki,n]}k}n

current one:

[r Hi,n]temp := [xHi,n−1] ∪ PH
[xi,n],Ki ([r H1,n],...,[r H1,n])

,

and

[r Hi,n] = [r H temp
i,n − ε%, r H temp

i,n + ε%].

Finally, the most conservative way to compute it is to
ensure that an over-approximation of [xHi,n] is obtained. It
can be done in an iterative way as follows:

– Initialize

[r Hi,n]temp := [xHi,n−1] ∪ PH
[xi,n],Ki ([r H1,n],...,[r H1,n])

,

– For m iterations, compute:

[r Hi,n]temp := PH
[xi,n],Ki ([r H1,n]temp,...,[r Hm,n]temp)

,

– Return

[r Hi,n] = [r Hi,n]temp.

Just as in [2], m iterations are used to ensure that the
growth of the input sets have propagated to all the dimen-
sions.

m1 m2
cc

dc
x2x1

c1

d1

c2

Fig. 3 Illustration of the two mass-spring-damper system

5 Numerical examples

The algorithms presented here are implemented in a C++
prototype relying on theDynIbex library [1].Note that, in this
prototype, the cosimulations are not performed in a parallel
manner, but in a sequential one. On a given macro-step, the
different simulation units compute their simulation step one
after the other. Parallel executions of the DynIbex library is
one of our future plans. The computation times given in the
following are performed on a Intel Core i5-4430 associated
to 8GB of RAM, running on Ubuntu 18.04 LTS.

5.1 Double mass-spring-damper oscillator

We consider a double mass-spring-damper oscillator consid-
ered in [25]. A figure of the system is given in Fig. 3.

The dynamics of the system is given by the following
system of equations:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ẋ1 = v1

m1v̇1 = −c1x1 − d1v1 + cc(x2 − x1) + dc(v2 − v1)

ẋ2 = v2

m2v̇2 = −cc(x2 − x1) − c2x2 − dc(v2 − v1)

(12)

with the initial conditions x1(0) = x2(0) = v1(0) = v2(0) =
[1, 1] (a point interval).

The system is divided in two sub-systems of state (x1, v1)
and (x2, v2), respectively. The coupling is realized with a
displacement-displacement approach as follows:

K1(x1, v1) = (x1, v1),

K2(x2, v2) = (x2, v2).
(13)

Simulations of the system are depicted in Figs. 4 and 5. In
the figures, x1 is plotted in red, and x2 in blue; both are plotted
within time with a time horizon of 3. These simulations are
performed with a simple (guaranteed) Heun scheme in Fig. 4
for illustration purposes. The macro-step is set to H = 0.05

123

Guaranteed master for interval-based cosimulation 721

in order to amplify the accuracy gains obtained with extrap-
olation. In Fig. 5, an 4th order Runge–Kutta scheme is used,
with a macro-step H = 0.01. For both cosimulations, the
cross-Picard operator took between 13 and 14 iterations to
compute when using macro-steps of size H = 0.05, and 8 to
9 iterations for macro-steps of size H = 0.01. The cosimu-
lation with extrapolation is performed with an interpolation
of order 3 in both macro-step cases.

5.2 Industrial 11-room house heating case study

This case study, proposed by the Danish company Seluxit,
aims at controlling the temperature of an eleven rooms house,
heated by geothermal energy. The continuous dynamics of
the system is the following:

d

dt
Ti (t) =

n∑
j=1

Ad
i, j (Tj (t) − Ti (t))

+Bi (Tenv(t) − Ti (t)) + Hv
i, j .v j (14)

The temperatures of the rooms are the Ti . The matrix Ad

contains the heat transfer coefficients between the rooms,
matrix B contains the heat transfer coefficients between the
rooms and the external temperature, set to Tenv = 10 ◦C for
the computations. The control matrix Hv contains the effects
of the control on the room temperatures, and the control vari-
able is here denoted by v j . We have v j = 1 (resp. v j = 0) if
the heater in room j is turned on (resp. turned off). We thus
have n = 11 and N = 211 = 2048 switching modes.

Note that the matrix Ad is parameterized by the open of
closed state of the doors in the house. In our case, the average
between closed and open matrices was taken for the compu-
tations. The controller has to select which heater to turn on in
the eleven rooms. Due to a limitation of the capacity supplied
by the geothermal device, the 11 heaters cannot be turned on
at the same time. In our case, we limit to 4 the number of
heaters that can be on at the same time.

We choose to simulate the system on a given sequence of
switched modes, for a time horizon T = 150 minutes and
initial conditions Ti (0) = [20, 21] for all i = 1, . . . , 11. We
compare, for different cosimulation methods, the computa-
tion time and final area covered at final time in Table 1. The
final area is representative of the accuracy of the method.
More precisely, at the end of the simulation, we obtain a set
of intervals Ti (150) = [T f ,min

i , T f ,max
i]. The final area is

A(150) = (T f ,max
1 − T f ,min

1) × (T f ,max
2 − T f ,min

2) × · · · ×
(T f ,max

11 − T f ,min
11). Using different simulation methods, we

obtain different values for the area. A smaller value means
that the simulation is more accurate. The system of dimen-
sion 11 is naturally divided in two subsystems of dimension 5
and 6 (as in [38,40]) that can be cosimulated using the above
procedure. We perform standard simulations, cosimulations

Table 1 Simulation results for the 11-room case study

Scheme Computation time (s) Final area (m2)

HEUN 7.96 0.2165

Co-HEUN 5.95 0.2407

Co-HEUN-interp 27.05 0.2335

RK4 27.60 0.1821

Co-RK4 17.87 0.1932

Co-RK4-interp 122.17 0.1854

without interpolation, and cosimulation with interpolation
(of order 3), for two different numerical schemes (Heun and
Runge–Kutta 4).

5.3 Discussion

In the first case study, the system has to be expressed as
a system of dimension 5 (taking the time as a fifth variable,
which derivative is equal to 1). The subsystems are expressed
as systems of dimension 3. Thus, in terms of computation
time, given the low dimension of the example, no gains are
made, since the cross-Picard operator iterations take most of
the simulation time. We, however, notice a substantial accu-
racy improvement using the extrapolation of inputs, which
is, unsurprisingly, consistent with the results of [6].

In the second case study, given the sequential imple-
mentation of this prototype, the computation times show
encouraging results, and the accuracy of the methods is com-
parable. The dynamics of this example being contractive, we
observe a good accuracy for all the different methods since
they all manage to capture the contractive behavior of the
system. However, the interpolation does not show interesting
time gains in this case. Higher dimensions and more com-
plex dynamics seem to be more appropriate for using this
approach.

In conclusion, given the complexity of the LTE computa-
tion, our recommendations would be to use cosimulation for
systems of dimensions exceeding 6. The interpolation should
be used only if the time horizon to consider is long enough
to observe significant growth of the box areas.

6 Conclusion and future works

In this paper, a guaranteed cosimulation method is pro-
posed. The main ingredient of our approach is the cross-
Picard operator, which allows to compute, using only local
computations, a (safe) over-approximation of the global
state of the system. The cross-Picard operator itself relies
on the possibility of considering bounded perturbations.
Given a sub-system, its safety is verified by considering

123

722 A. Le Coënt et al.

Fig. 4 Guaranteed simulations of the spring case study using a Heun scheme with tolerance 10−6 and macro-step H = 0.05: a global simulation;
b cosimulation with constant extrapolation; c cosimulation with guaranteed extrapolation based on interpolation

Fig. 5 Guaranteed simulations of the spring case study using a RK4 scheme with tolerance 10−8 and macro-step H = 0.01: a global simulation;
b cosimulation with constant extrapolation; c cosimulation with guaranteed extrapolation based on interpolation

the other sub-systems as bounded perturbations, so that
an over-approximation is determined, by iterating over the
sub-systems, verifying that all the sub-systems do stay in
their bounded (perturbation) set. Cosimulation then allows
to update to perturbation sets to consider over the macro-
steps. These sets can furthermore be replaced by a guaranteed
extrapolation function, allowing to improve the accuracy of
themethod, substantially in some cases, marginally in others.
The cosimulation algorithm thus has to be properly chosen in
accordance to the case-study. Some practical details are pre-
sented, such as the adaptive macro-step which ensures the
success of the procedure, as well as some pre-computations
fastening the cross-Picard operator computation. Numerical
applications are presented, showing the applicability of the
method on an industrial case study.

In a broader setting, the decomposition of the system can
have a crucial role in the success of the method and should be
performed carefully. Industrial case studies can be designed
in a component-basedway, providingnatural decompositions
in sub-systems, but if the system is written as a large system
of equations, the decomposition should be chosen so as to
minimize the number of overlapping states, thus facilitat-
ing the computation of the cross-Picard operator. Indeed,
the main limit of our procedure is the iterative computa-
tions involved in the cross-Picard operator. Less interactions
mean faster convergence of the cross-Picard computations.
Furthermore, the macro-step size should be chosen so that

time-step adaptation is avoided in order to avoid useless
cross-Picard computations.

Our future work will be devoted to the parallel imple-
mentation and distribution of a tool containing the presented
methods, as well as applications to more case studies. We
would also like to apply thesemethods to other domains, such
as control synthesis. Since guaranteed simulation (or reacha-
bility analysis) is required in several symbolic andguaranteed
control synthesis methods, we would like to implement our
method in one of these tools, possibly with compositional
principles as well, in order to get closer to industrial scale
applications with such methods.

References

1. Alexandre dit Sandretto, J., Chapoutot, A.: DynIbex. https://perso.
ensta-paris.fr/~chapoutot/dynibex/

2. Alexandre dit Sandretto, J., Chapoutot, A.: Validated explicit and
implicit Runge–Kutta methods. Reliab. Comput. 22, 79 (2016)

3. Althoff, M.: Reachability analysis of nonlinear systems using
conservative polynomialization and non-convex sets. In: Hybrid
Systems: Computation and Control, pp. 173–182 (2013)

4. Althoff, M., Stursberg, O., Buss, M.: Verification of uncertain
embedded systems by computing reachable sets based on zono-
topes. In: Proceedings of the 17th IFACWorldCongress, vol. 41(2),
pp. 5125–5130 (2008)

5. Ames,W.F.: NumericalMethods for Partial Differential Equations.
Academic Press, Cambridge (2014)

123

https://perso.ensta-paris.fr/~chapoutot/dynibex/
https://perso.ensta-paris.fr/~chapoutot/dynibex/

Guaranteed master for interval-based cosimulation 723

6. Arnold, M., Clauß, C., Schierz, T.: Error analysis and error
estimates for co-simulation in FMI for model exchange and co-
simulation v2.0. In: Schöps, S., Bartel, A., Günther, M., ter Maten,
E., Müller, P. (eds.) Progress in Differential-Algebraic Equations,
pp. 107–125. Springer, Berlin (2014)

7. Blanes, S., Casas, F.,Murua,A.: Splitting and compositionmethods
in the numerical integration of differential equations. Boletin de la
Sociedad Espanola de Matematica Aplicada 45, 89–145 (2008)

8. Bouissou, O., Chapoutot, A., Djoudi, A.: Enclosing temporal evo-
lution of dynamical systems using numerical methods. In: Brat, G.,
Rungta, N., Venet, A. (eds.) NASA Formal Methods, LNCS, vol.
7871, pp. 108–123. Springer, Berlin (2013)

9. Bouissou, O., Martel, M.: GRKLib: a guaranteed Runge Kutta
Library. In: Scientific Computing, Computer Arithmetic and Vali-
dated Numerics (2006)

10. Bouissou, O., Mimram, S., Chapoutot, A.: HySon: set-based sim-
ulation of hybrid systems. In: Rapid System Prototyping. IEEE
(2012)

11. Broman, D., Brooks, C., Greenberg, L., Lee, E.A.., Masin, M.,
Tripakis, S., Wetter, M.: Determinate composition of FMUs for co-
simulation. In: 2013 Proceedings of the International Conference
on Embedded Software (EMSOFT), pp. 1–12. IEEE (2013)

12. Bungartz, H.-J., Schäfer, M.: Fluid–Structure Interaction: Mod-
elling, Simulation, Optimisation, vol. 53. Springer, Berlin (2006)

13. Chen, X., Abraham, E., Sankaranarayanan, S.: Taylor model flow-
pipe construction for non-linear hybrid systems. In: IEEE 33rd
Real-Time Systems Symposium, pp. 183–192. IEEE Computer
Society (2012)

14. Chen, X., Ábrahám, E., Sankaranarayanan, S.: Flow*: an analyzer
for non-linear hybrid systems. In: Sharygina, N., Veith, H. (eds.)
ComputerAidedVerification, pp. 258–263. Springer, Berlin (2013)

15. Chen, X., Mover, S., Sankaranarayanan, S.: Compositional rela-
tional abstraction for nonlinear hybrid systems. ACM Trans.
Embed. Comput. Syst. 16(5s), 1–19 (2017)

16. Chen,X., Sankaranarayanan, S.:Decomposed reachability analysis
for nonlinear systems. In: 2016 IEEE Real-Time Systems Sympo-
sium (RTSS), pp. 13–24. IEEE (2016)

17. de Figueiredo, L.H., Stolfi, J.: Self-Validated Numerical Meth-
ods and Applications. Brazilian Mathematics Colloquium Mono-
graphs. IMPA/CNPq, Rio de Janeiro (1997)

18. dit Sandretto, J.A., Chapoutot, A.: Validated simulation of dif-
ferential algebraic equations with Runge–Kutta methods. Reliab.
Comput. 22, 57 (2016)

19. Dzetkulič, T.: Rigorous integration of non-linear ordinary differ-
ential equations in Chebyshev basis. Numer. Algorithms 69(1),
183–205 (2015)

20. Eggers, A., Fränzle,M., Herde, C.: SATmoduloODE: a direct SAT
approach to hybrid systems. In: Cha, S., Choi, J.Y., Kim,M., Lee, I.,
Viswanathan,M. (eds.)AutomatedTechnology forVerification and
Analysis. LNCS, vol. 5311, pp. 171–185. Springer, Berlin (2008)

21. Frehse, G., LeGuernic, C., Donzé, A., Cotton, S., Ray, R., Lebeltel,
O., Ripado, R., Girard, A., Dang, T., Maler, O.: SpaceEx: scalable
verification of hybrid systems. In: Gopalakrishnan, G., Qadeer, S.
(eds.) Computer Aided Verification. LNCS, vol. 6806, pp. 379–
395. Springer, Berlin (2011)

22. Gajda, K., Jankowska, M., Marciniak, A., Szyszka, B.: A survey of
interval Runge–Kutta and multistep methods for solving the initial
value problem. In:Wyrzykowski, R., Dongarra, J., Karczewski, K.,
Wasniewski, J. (eds.) Parallel Processing and Applied Mathemat-
ics. LNCS, vol. 4967, pp. 1361–1371. Springer, Berlin (2008)

23. Girard, A.: Reachability of uncertain linear systems using zono-
topes. In: Hybrid Systems: Computation and Control, 8th Interna-
tional Workshop, HSCC 2005, Zurich, Switzerland, March 9–11,
2005, Proceedings, pp. 291–305 (2005)

24. Gomes, C., Thule, C., Broman, D., Larsen, P.G., Vangheluwe,
H.: Co-simulation: state of the art (2017). arXiv preprint
arXiv:1702.00686

25. Gomes, C., Thule, C., Broman, D., Larsen, P.G., Vangheluwe, H.:
Co-simulation: a survey. ACM Comput. Surv. 51(3), 1–33 (2018)

26. Gomes, C., Thule, C., Deantoni, J., Larsen, P.G., Vangheluwe, H.:
Co-simulation: the past, future, and open challenges. In: Margaria,
T., Steffen, B. (eds.) Leveraging Applications of Formal Meth-
ods, Verification andValidation.Distributed Systems, pp. 504–520.
Springer, Cham (2018)

27. Gomes, C., Thule, C., Larsen, P.G., Denil, J., Vangheluwe, H.: Co-
simulation of continuous systems: a tutorial (2018). arXiv preprint
arXiv:1809.08463

28. Hairer, E., Norsett, S.P., Wanner, G.: Solving Ordinary Differential
Equations I: Nonstiff Problems, 2nd edn. Springer, Berlin (2009)

29. Hairer, E., Wanner, G.: Solving Ordinary Differential Equations II:
Stiff andDifferential-AlgebraicProblems, 1st edn. Springer,Berlin
(1996)

30. Heitmeyer, C.: On the need for practical formal methods. In:
International Symposium on Formal Techniques in Real-Time and
Fault-Tolerant Systems, pp. 18–26. Springer, Berlin (1998)

31. Heitmeyer, C., Kirby, J., Labaw, B.: Tools for formal specifica-
tion, verification, and validation of requirements. In: Proceedings
of COMPASS’97: 12th Annual Conference on Computer Assur-
ance, pp. 35–47. IEEE (1997)

32. Hou, G., Wang, J., Layton, A.: Numerical methods for fluid-
structure interaction: a review. Commun. Comput. Phys. 12(2),
337–377 (2012)

33. Immler, F.: Verified reachability analysis of continuous systems.
In: Baier, C., Tinelli, C. (eds.) Tools and Algorithms for the Con-
struction and Analysis of Systems. LNCS, vol. 9035, pp. 37–51.
Springer, Berlin (2015)

34. Jaulin, L., Kieffer,M., Didrit, O.,Walter, E.: Applied Interval Anal-
ysis. Springer, Berlin (2001)

35. Jensen, J.C., Chang, D.H., Lee, E.A.: A model-based design
methodology for cyber-physical systems. In: 2011 7th International
Wireless Communications andMobile Computing Conference, pp.
1666–1671. IEEE (2011)

36. Kübler, R., Schiehlen,W.:Modular simulation inmultibody system
dynamics. Multibody Syst. Dyn. 4(2–3), 107–127 (2000)

37. Kühn, W.: Zonotope dynamics in numerical quality control. In:
Hege, H.C., Polthier, K. (eds.) Mathematical Visualization, pp.
125–134. Springer, Berlin (1998)

38. Larsen, K.G., Mikučionis, M., Muniz, M., Srba, J., Taankvist, J.H.:
Online and compositional learning of controllers with application
to floor heating. In: International Conference on Tools and Algo-
rithms for the Construction and Analysis of Systems, pp. 244–259.
Springer, Berlin (2016)

39. Le Coënt, A., Sandretto, J.A., Chapoutot, A., Fribourg, L.: An
improved algorithm for the control synthesis of nonlinear sam-
pled switched systems. FormalMethods Syst. Des. 53(3), 363–383
(2018)

40. Le Coënt, A., Fribourg, L., Markey, N., De Vuyst, F., Chamoin,
L.: Compositional synthesis of state-dependent switching control.
Theor. Comput. Sci. 750, 53–68 (2018)

41. Lee, E.A.: Cyber physical systems: Design challenges. In: 2008
11th IEEE International Symposium on Object and Component-
Oriented Real-Time Distributed Computing (ISORC), pp. 363–
369. IEEE (2008)

42. Lin, Y., Stadtherr, M.A.: Validated solutions of initial value prob-
lems for parametric odes. Appl. Numer. Math. 57(10), 1145–1162
(2007)

43. Lohner, R.J.: Enclosing the solutions of ordinary initial and bound-
ary value problems. In: Kaucher, E., Kulisch, U., Ullrich, Ch. (eds.)
Computer Arithmetic, pp. 255–286. Teubner, Stuttgart (1987)

123

http://arxiv.org/abs/1702.00686
http://arxiv.org/abs/1809.08463

724 A. Le Coënt et al.

44. Ma, T.-W.: Higher chain formula proved by combinatorics. Elec-
tron. J. Comb. 16(1), N21 (2009)

45. Makino, K., Berz,M.: Rigorous integration of flows and odes using
Taylor models. In: Proceedings of the 2009 Conference on Sym-
bolic Numeric Computation, SNC ’09, pp. 79–84. ACM,NewYork
(2009)

46. Moore, R.E.: Interval Analysis. Series in Automatic Computation.
Prentice Hall, Upper Saddle River (1966)

47. Mullier, O., Chapoutot, A., Sandretto, J.A.D.: Validated compu-
tation of the local truncation error of Runge–Kutta methods with
automatic differentiation. Optim. Methods Softw. 33(4–6), 718–
728 (2018)

48. Nedialkov, N.S., Jackson, K.R., Corliss, G.F.: Validated solutions
of initial value problems for ordinary differential equations. Appl.
Math. Comp. 105(1), 21–68 (1999)

49. Nielsen, C.B., Larsen, P.G., Fitzgerald, J., Woodcock, J., Peleska,
J.: Systems of systems engineering: basic concepts, model-based
techniques, and research directions. ACM Comput. Surv. 48(2),
1–41 (2015)

50. Quarteroni, A., Valli, A.: Domain DecompositionMethods for Par-
tial Differential Equations. OxfordUniversity Press, Oxford (1999)

51. Schierz, T., Arnold, M., Clauß, C.: Co-simulation with commu-
nication step size control in an fmi compatible master algorithm.
In: Proceedings of the 9th International MODELICA Conference;
September 3–5; 2012; Munich; Germany, number 076, pp. 205–
214. Linköping University Electronic Press (2012)

52. Zienkiewicz,O.C., Taylor,R.L.,Nithiarasu, P., Zhu, J.Z.: TheFinite
Element Method, vol. 3. McGraw-hill, London (1977)

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

Adrien Le Coënt has been an associate professor at Université Paris-
Est Créteil since 2020. Before that, he was a postdoctoral researcher
in the Semantics of Hybrid Systems team at ENSTA Paris. From
2017 to 2019, he was a postdoctoral researcher in the Department of
Computer Science of Aalborg University. Adrien Le Coënt obtained
a Ph.D. in applied mathematics in 2017 from CMLA, ENS Paris-
Saclay. Between 2010 and 2014, he was a student at ENS Paris-Saclay,
where he obtained a master’s degree in Structural Mechanics. His
main research interests include control of switched systems, formal
verification, and guaranteed simulation.

Julien Alexandre dit Sandretto is associate professor in the Seman-
tics of Hybrid System team at ENSTA Paris, Palaiseau, France. He is
also associate member of the Cosynus team, part of the LIX laboratory
at Ecole Polytechnique. He received the bachelors degree in Applied
Mathematics and Computer Science from the University Joseph Fourier,
Grenoble, France, in 2002 and the engineering degree in Industrial
Computing and Instrumentation from Polytechnic school of Greno-
ble, France, in 2006. In 2013, he obtained his Ph.D. degree in Com-
puter Science from University of Nice-Sophia Antipolis, France. His
research interests deal with verification methods in presence of uncer-
tainties. He currently focuses on parameter identification, simulation,
modeling, and control problems for cyber-physical systems.

Alexandre Chapoutot is an associate professor at ENSTA Paris. He
received his master degree in Computer Science from University Pierre
et Marie Curie (UPMC) in 2005 and his Ph.D. in Computer Science
from Ecole polytechnique in 2008. His research activities are focused
on static analysis by abstract interpretation and interval-based meth-
ods for the verification of cyber-physical systems and for the analysis
of floating-point accuracy in programs.

123

	Guaranteed master for interval-based cosimulation
	Abstract
	1 Introduction
	2 Problem setting
	2.1 Notations and preliminaries
	2.2 Guaranteed simulation objective

	3 Guaranteed Runge–Kutta schemes
	4 Guaranteed cosimulation algorithm
	4.1 The Picard–Lindelöf operator
	4.2 Cross-Picard operator
	4.3 Orchestration of simulation units
	4.4 Guaranteed interval extrapolation
	4.5 Practical improvements

	5 Numerical examples
	5.1 Double mass-spring-damper oscillator
	5.2 Industrial 11-room house heating case study
	5.3 Discussion

	6 Conclusion and future works
	References

