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Abstract
Model transformation plays an important role in developing software systems using the model-driven engineering paradigm.
Examples of applications of model transformation include forward engineering, reverse engineering of code into models, and
refactoring. Poor-quality model transformation code is costly and hard to maintain. There is a need to develop techniques
and tools that can support transformation engineers in designing high-quality model transformations. The goal of this paper
is to present a process, called MUPPIT (method for using proper patterns in model transformations), which can be used by
transformation engineers to improve the quality of model transformations by detecting anti-patterns in the transformations
and automatically applying pattern solutions. MUPPIT consists of four phases: (1) identifying a transformation anti-pattern,
(2) proposing a pattern-solution, (3) applying the pattern-solution, and (4) evaluating the transformation model. MUPPIT
takes a transformation design model (TDM), which is a representation of the given transformation, to search for the presence
of an anti-pattern of interest. If found, MUPPIT proposes a pattern solution from a catalogue of patterns to the transformation
engineer. The application of the pattern solution results in the restructuring of the TDM. While MUPPIT, as a process, is
independent of any transformation language and transformation engineering framework, we have implemented an instance
of it as a tool using transML and MeTAGeM, which support exogenous transformations using rule-based transformation
and OCL-based languages such as ATL and ETL. We evaluate MUPPIT through a number of case studies in which we
show howMUPPIT can detect four anti-patterns and propose the corresponding pattern solutions. We also evaluate MUPPIT
by collecting a number of metrics to assess the quality of the resulting transformations. The results show that MUPPIT
optimizes the transformations by improving reusability, modularity, simplicity, and maintainability, as well as decreasing
the complexity. MUPPIT can help transformation engineers to produce high-quality transformations using a pattern-based
approach. An immediate future direction would be to experiment with more anti-patterns and pattern solutions. Moreover,
we need to implement MUPPIT using other transformation engineering frameworks.
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1 Introduction

Models play an important role in specifying, understand-
ing, analyzing, and visualizing software systems [1]. In
model-driven engineering (MDE), model transformation,
converting a model from one domain into another, is as
essential as the models themselves [2]. Examples of model
transformations include generating executable code from
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models (forward engineering), reverse engineering code to
models (backward engineering), refactoring, and migration
between different platforms [3].

Similar to other software artifacts, the quality of model
transformations can be improved by applying engineer-
ing principles [3–8]. Several “transformation engineering”
frameworks have been proposed to generate and manage
models and facilitate transformations. In recent years, a con-
siderable effort has been devoted to the definition of transfor-
mation patterns to assist software developers in developing
effective transformation models [9–13], similar to the way
design patterns are used in software development [14,15].
An important aspect of pattern application is the ability to
identify opportunities when a specific pattern is needed and
to apply the pattern correctly on the transformation. To this
end, many studies have been proposed, ranging from the
development of metrics for the evaluation of transformation
models according to predefined patterns [13,16,17] to the
automatic application of patterns on a transformation design
model (TDM), which is a representation of a transforma-
tion [7,18–20]. Although these approaches have been shown
to be useful, they only provide a partial solution to the broader
problem of automatic application of transformation patterns.
In addition, they almost always require from developers to
manually (or semi-automatically) examine the transforma-
tion structure in order to recognize situations where the
application of pattern solutions is needed [13].

In this paper, we propose a process, called MUPPIT
(method for using proper patterns in model transformation),
which consists of four steps: (I) identifying the transfor-
mation anti-patterns, (II) proposing transformation pattern
solutions, (III) applying the pattern solutions, and (IV)
evaluating the resulting transformation design model and
providing feedback. MUPPIT takes a TDM as input and gen-
erates a new pattern-based model as output, which can then
be evaluated to show the benefits of using the transformation
pattern solution.

MUPPIT is implemented as an Eclipse plug-in, and one
of its distinctive features over existing frameworks is that it
enables the definition and generation of TDMs using high-
level abstraction models as opposed to formal specification
languages. The current implementation ofMUPPIT relies on
transML [3,21] and MeTAGeM [6,22] specifications, which
support exogenous transformations using mapping (rule)-
based transformation andOCL-based languages such asATL
and ETL. Although MUPPIT uses transML and MeTAGeM,
we believe that it is readily extensible to other frameworks
such as TROPIC [5], UMLRSDS [23], and the framework
proposed by Didonet Del Fabro [24].

The benefits of the MUPPIT approach are demonstrated
using three case studies. Firstly, we perform a walk-through
of the MUPPIT process in a case study to verify the flow and
logic of theMUPPIT steps in details. Secondly,MUPPITper-

formance is assessed for all case studies using a quantitative
evaluation in which several metrics such as syntactic com-
plexity and modularity are measured on the transformations
before and after using MUPPIT. These metrics can be used
to evaluate a TDM against many indicators of inefficiencies
and poor quality, i.e., bad smells. Moreover, we use these
metrics in a feedback loop to further suggest new patterns
that can enhance the quality of the generated transformation
model.

MUPPIT is built on our previous study [17], where we
showed how two specific model transformation patterns,
namely the Phased Construction and the Auxiliary Model
Patterns, can be recommended to transformation engineers
on the basis of analyzing TDMs. MUPPIT is a major exten-
sion to the work presented in [17]. More precisely, this paper
makes the following new contributions:

– Proposing an end-to-end pattern-based transformation
process that enables transformation engineers to automat-
ically identify anti-patterns and apply the corresponding
pattern solutions.

– Defining several bad smells that may indicate the pres-
ence of anti-patterns by analyzing TDMs.

– Implementing the MUPPIT process as an Eclipse plug-
in using Epsilon family of languages (e.g., EOL, ETL,
EPL) [25] and Java.

– Applying MUPPIT to three case studies to detect four
predefined anti-patterns and propose the corresponding
pattern solutions.

The rest of this paper is structured as follows. Sec-
tion 2 provides preliminary knowledge about transformation
engineering and an overview of the transformation engi-
neering frameworks. Section 3 introduces the concept of
transformation patterns and anti-patterns and offers four
examples of anti-patterns and their corresponding pattern
solutions. In Sect. 4, the MUPPIT approach is explained
using a motivation scenario. Section 5 presents the frame-
work implementation. MUPPIT evaluation is presented in
Sect. 6, followed by threats to validity in Sect. 7. Section 8
reviews the related work. Finally, Sect. 9 concludes the paper
by summarizing the main contributions and indicating areas
for future work.

2 Background on transformation
engineering

2.1 Transformation engineering

In MDE, models are the main artifacts that drive software
development [26]. A key aspect of MDE is the ability to
convert models from one type (or domain) to another.Model-
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ing approaches employ different specification languages for
defining newmodeling languages (meta-models), specifying
models, and defining the transformations between models at
different levels of abstraction. Model transformation is seen
as code written using a transformation language to transform
a source model into a target model. Developing transforma-
tions tends to be a challenging and error-prone process [3].
This is due to the complexity of the syntax of the transforma-
tion languages, the need to understand the target and source
model syntax and semantics, the lack of best practices, and
the limited expertise in these languages. In MDE, once the
transformations are written and deployed, they are treated as
a black box that does the transformation magic. Any error
in the transformation code can break the whole MDE solu-
tion, not to mention that any inefficiencies would result in
important performance issues.

For these reasons, developing high-quality transforma-
tions is crucial for the successful adoption of the MDE
paradigm in software engineering.To this end,many researchers
have examined the application of best software development
practices to the development of model transformations [3,
4,6,27,28], which led to the emergence of a relatively new
field, often referred to as model transformation engineering
or “transformation engineering” for short [3].

In the following section, we review two state-of-the-art
transformation engineering frameworks, and elaborate on
how our study in related to these frameworks.

2.2 Transformation engineering frameworks

Transformation engineering frameworks aim to enforce the
adoption of best practices of software engineering when
developing transformationmodels, meaning that transforma-
tions should be analyzed, designed, implemented, tested, and
maintained based on sound software engineering techniques.
This paper uses two transformation engineering frameworks,
namely, transML [3,21] and MeTAGeM [22], which, to the
best of our knowledge, are the most comprehensive transfor-
mation engineering frameworks to date.

transML is a family of modeling languages, which cov-
ers the whole life cycle of transformation development,
i.e., requirements analysis, architecture, design, implemen-
tation, and testing. These phases result in engineering the
transformation generation. transML provides a complete
transformation development environment, including nota-
tion, methods, and tools. For each phase of this framework,
there is a meta-model which provides notations for the trans-
formation engineer to create models that conform to the
meta-model of that phase. transML constructs the transfor-
mation following the MDE approach in a semi-automatic
manner. To develop a transformation using transML, first the
transformation requirements are specified as a requirement
model. This model is then transformed into other models,

and finally, the implementation models of the transformation
are built. In the design phase of transML, the design models
can be expressed in two levels of abstractions: high level and
low level [3,21].

MeTAGeM is another transformation framework that
implements transformations based on the MDE princi-
ples [29]. MeTAGeM works on the levels defined in model-
driven architecture (MDA) [30]. That means, implementing
a transformation starts from platform-independent transfor-
mation (PIT), which describes relations between the source
and target meta-models. After that, the platform specifica-
tion transformation (PST) model is created from the PIT
automatically. The generated intermediate model contains
the definition of the transformation rules based on the high-
level specifications presented in the PIT model. The next
step is creating a platform-dependent transformation (PDT)
that facilitates migration between different abstract levels.
This model refactors the PST model based on the selected
transformation language. Finally, the transformation code is
generated from the PDT [6,22].

In this research, we used transML and MeTAGeM to
generate transformation design models (TDMs) in our case
studies.ATDM,which specifies a transformation, is themain
input of the MUPPIT process. A TDM can be a high-level
model, such as amappingmodel of transMLor aPITmodel in
MeTAGeM, or it can be a low-level designmodel of transML
or PST model in MeTAGeM. Generating the transformation
code from TDMs inMUPPIT is performed using transML or
MeTAGeM. Therefore, scheduling the transformation rules,
managing the execution schema, and maintaining the trans-
formation behavior are dependent on these frameworks and
are out of the scope of MUPPIT. transML uses a behav-
ioral design model, in addition to a TDM, to define traces
between the models and action language rules for generat-
ing a transformation code. MeTAGeM employs PDTmodels
for specifying the design model elements in the action lan-
guage. More information on the steps for converting these
models into transformation code and managing the execu-
tion of the transformations in these frameworks can be found
in [3,6,21,22].

3 Transformation patterns and anti-patterns

Similar to software development, the design of model trans-
formations can benefit from the concepts of patterns and
anti-patterns. Iacob et al. define a transformation pattern as
a reusable solution to a general model transformation prob-
lem [11].

This is similar to the concept of design patterns in software
development, which is defined as a reusable solution to a
commonly occurring design problem [14].
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Wedefine a transformation anti-pattern as a common form
of transformation that may lead to negative consequences.
This definition is inlinewith the definition ofBrownet al. [31]
when referring to an anti-pattern in software development,
as a pattern in an inappropriate context, which can result in
symptoms and consequences.

It should be noted that while the software engineering
community seems to agree on the definition of what a good
pattern is, the community seems to use different terminolo-
gies to describe a bad pattern or a repeatable code or design
that may result in bad consequences, such as an anti-pattern,
code clone, and code smell. For example, Tahir et al. [32] use
the terms anti-pattern and code smell interchangeably.

These concepts are, however, different. A code smell is
defined as “a surface indication that usually corresponds to
a deeper problem in the system” [33]. It is an indicator, a
gauge, a meter, or a measure. An anti-pattern, on the other
hand, is the reason behind the problem and also the possible
reason behind a bad smell. For example, a poor performance
that is measured through the transformation execution time
is an indicator of a deeper problem. If we can correlate this
with a set of repeatable code instructions or design constructs,
thenwe identified an anti-pattern (e.g., theReturn-First Com-
mand anti-pattern). A simple andknownexample in software
engineering is the Large Class bad smell [34] which refers
to a class trying to perform too much. A Large Class indi-
cates some maintainability difficulties which can be caused
by an adverse design or programming solutions, such as
Swiss Army Knife anti-pattern [33]. Swiss Army Knife hap-
pens when the developer specifies or implements an interface
class for every need of the software. This bad solution can
be indicated by A Large Class smell.

Identifying anti-patterns and using the appropriate pat-
terns in response can help in (i) restructuring complex trans-
formations into modular sub-transformations, (ii) simplify
individual mapping rules of a transformation, (iii) improve
the efficiency of a transformation by removing redundant and
duplicated evaluations, (iv) optimizing execution strategies,
and (v) simplifying complex model navigation [16].

In the next section, we identified four model transforma-
tion anti-patterns (those are linked tomatching rules), namely
the Spaghetti Transformation, Frequent Invocation, Return-
First Command, and Boat Anchor. For each anti-pattern, we
also suggest a pattern solution,whichwill increase the quality
of the transformation. Each anti-pattern might be resolved by
several solutions. In this paper, we propose one pattern solu-
tion to each anti-pattern, except for one of the case studies
where we propose two pattern solutions. We intend to extend
MUPPIT to the detection of more anti-patterns and the rec-
ommendations of pattern solutions in the future.We show the
effectiveness ofMUPPIT in identifying these anti-patterns in
the case study section.

We selected these four anti-patterns because they are com-
monly found inmodel transformations as shownbyCuadrado
et al. [12] and Lano et al. [13]. The MUPPIT process can
be applied to other transformation scenarios in a similar
way. In addition, we selected these anti-patterns because they
are based on mapping-based transformation languages, and
hence they can be used with transML and MeTAGeM, the
transformation engineering frameworks currently supported
by MUPPIT. In the following, we present the four anti-
patterns and their corresponding pattern solutions that are
covered in this paper.

3.1 Spaghetti Transformation and Phased
Construction

– Anti-pattern The Spaghetti Transformation anti-pattern
occurs when the developer performs several transfor-
mation steps all in one phase. This usually happens in
complex transformation rules. There are several signs in
the transformation code that tells you if a developer is
falling into this anti-pattern. Example of these signs: (i)
if a transformation rule contains an alternation of quan-
tifiers (∀∃∀), or uses a long alternation sequence, (ii) if
the transformation rule is creating more than one target
instance at once (in particular, if the rule is referring to
target elements at more than one hierarchical level). This
anti-pattern reduces the comprehension of the transfor-
mation rule, which makes it difficult to maintain, verify,
or reuse the rule.

– Pattern solution Phased Construction [13] is a pattern
which decomposes one complicated transformation to
separate rules. Each rule relates one source model ele-
ment (or a group of source model elements) to one target
model element. In fact, each rule works on one level of
the target meta-model and does not navigate more than
one step in the entity composition hierarchy [13]. There
are two variations in the Phased Construction solution
in constructing the target elements using transformation
rules: bottom-up and top-down approaches [13]. These
two approaches define the order of generating target ele-
ments or executing transformation rules. In this paper,
we used the top-down approach for thePhased Construc-
tion pattern solution, meaning that we first generate the
top elements in the target meta-model hierarchy and then
construct their dependent elements (i.e., lower elements).

3.2 Frequent Invocation and Object Indexing

– Anti-patternTheFrequent Invocation anti-pattern occurs
when a transformation expression frequently accesses
objects or set of objects using aunique identifier. Example
of such expression: C .all I nstances() → select(id =
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Fig. 1 Object Indexing pattern [13]

v) → any(). This anti-pattern can negatively affect
the transformation execution performance with a worst-
case time complexity proportional to the number of the
invoked instances.

– Pattern solution The Object Indexing pattern [13] pro-
vides a solution for the Frequent Invocation anti-pattern.
It presents an index map data structure to be used instead
of the selection command for accessing objects. This
makes it possible to look up the objects using the map
structure and the entity primary key. The structure of the
Object Indexing pattern is shown in Fig. 1, in which each
entity of C is stored in the index map data structure of
cmap in a form like IndType → C where IndType is the
type of the entitys primary key. Then, access to a C object
with a key value of v is obtained by applying cmapto v
like in cmap.get(v). Hence, a map lookup is substituted
for the select expression. This pattern decreases the com-
plexity of the transformation syntax and execution time
of the lookup [13].

3.3 Return-First Command and Usage of Iterators

– Anti-pattern In functional style-based transformation
languages, such as the object constraint language
(OCL) [35], the access to objects can be implemented
using different iterators (e.g., any, exists, forAll). Using
the wrong iterator or the wrong order of operations
can significantly impact the performance of the trans-
formation. The Return-First Command anti-pattern is
a common inefficient transformation anti-pattern that
occurs when the developer tries to access one element of
a collection that satisfies a condition by using the wrong
command. Particularly, by using the select command fol-
lowed by the command first in OCL. In this anti-pattern,
select is not the appropriate command to be used since
select does not terminate as soon as the condition is sat-
isfied; instead, it returns all the elements that satisfy the
condition. For instance, using the select command in
collection → select(e|e.condition) → f irst(), when
all the elements after the middle of the collection satisfy
the condition, returns n/2 elements, while the caller of
the expression needs just one element.

– Pattern solution Cuadrado et al. [12] propose Usage
of Iterators pattern as part of the recommendations for

performance patterns that can be used to optimize OCL-
based model transformations. This pattern suggests that
appropriate iterators, which terminate the calculation, by
finding the first element, should be employed when there
is no need to visit all the elements of a set. Cuadrado et
al. [12] suggested using any() in the ATL language as a
solution in case of requesting an object with the unique
identifier attribute out of all instances.We also used any()
in both ATL and ETL languages for the Return-First
Command anti-pattern.1.

3.4 Boat Anchor and Filtering

– anti-pattern The size of the input transformation model
has an impact on the performance and cost of a transfor-
mation. Boat Anchor2 anti-pattern occurs when a large
input model is transformed into a target model while
manyof the elements in the inputmodel are not used in the
transformation. In fact transformation t transforms input
model ofM to target Z whileM consists {m1,m2, ,mn}
and Z consists {z1, z2, , zn}. Boat Anchor happens when
some of elements in the set {m1,m2, ,mn} are not trans-
formed (directly or indirectly) into the elements in the set
{z1, z2, , zn}. This case happens when the target (Z ) is
generated based on a subset of elements in M .

– Pattern solution Filtering pattern, retrieved from [13] is
an architectural transformation pattern solution,3 which
removes unused elements from the inputmodel of a trans-
formation. This solution checks the transformation rules
and exclude idle concepts in the input model, which are
not transformed to the target model. This pattern has also
the ripple effect of reducing the size of the input model.

4 MUPPIT: a method for using proper
patterns in transformations

In the previous section, we elaborated on the role of transfor-
mation patterns in improving the quality of a transformation.

1 Cuadrado et al. [12] believe that any can be used instead of
select.first() command in ATL whenever we are looking an object up
with a unique attribute. For the ATL language, they implement a fixed
any version as well to improve the performance more. However, the
current paper employs the original version of any in ATL. We checked
the Epsilon language and identified that any is shortcut as soon as an
element validating condition is found. Therefore, it is a well-defined
iterator in contrast to the select command in Return-First Command.
More detail about any syntax in Epsilon can be found in [36].
2 Boat Anchor is a known anti-pattern in traditional software develop-
ment, which refers to a piece of software that serves no useful purpose
in the current project [31].
3 Architectural model transformation patterns address solutions to the
organizing of transformations systems in order to enhance the modu-
larity, verifiability and efficiency of these systems [13].
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Fig. 2 MUPPIT approach

Unfortunately, while a large number of patterns have been
developed, in the literature, to address several transformation
scenarios, many of these patterns are still not used in prac-
tice. The transformation development lacks awareness of the
current patterns, or scenarios where these patterns need to
be applied. In this section, we present an approach that aims
to integrate transformation patterns into model transforma-
tion frameworks to enable transformation engineers to assess
the developed transformations and use the correct transfor-
mation pattern when applicable. The proposed process is
called MUPPIT, which stands for “method for using proper
patterns in transformations.” Figure 2 illustrates the MUP-
PIT approach, which consists of four phases, namely (P1)
identifying the transformation anti-patterns, (P2) proposing
transformation pattern-solutions, (P3) applying the pattern-
solutions to the original TDM, and (P4) evaluating the new
TDM and providing feedback.

In a nutshell, MUPPIT takes a TDM as the main input and
uses a repository of anti-patterns to create a new TDM by
applying the four mentioned phases. The anti-pattern reposi-
tory comprises a set of anti-patterns and their corresponding
pattern solutions. In the following, these four phases are
described.

P1: In the first phase, MUPPIT checks the presence of
the selected anti-pattern in the transformation design model
to verify if applying a transformation pattern is necessary to
improve the quality of the input TDM. If an anti-pattern is
detected in the TDM (i.e., a common form of transforma-

tion flaw is detected), this warrants the need for applying the
corresponding transformation pattern solution.

P2: In the second phase, MUPPIT inspects the input TDM
to seewhether or not the pattern solution is used. If the pattern
solution is not used in the inputmodel,MUPPITwill propose
the pattern solution as an option to improve the input TDM.

P3: In the third phase, the proposed pattern is automati-
cally applied to the TDM after taking permission from the
transformation engineer.Accordingly, a newTDMis created.

P4: In the fourth phase, MUPPIT evaluates new generated
TDMbymeasuring several quantitative performancemetrics
to assess the effectiveness of the applied pattern. These per-
formance metrics are introduced in Sect. 6.4.1.

MUPPIT is a general process that is currently imple-
mented using transML and MeTAGeM frameworks. We
intend to explore the use of other frameworks as part of future
work. In this paper, we show how MUPPIT was integrated
with transML and MeTAGeM frameworks. Accordingly, all
models, anti-patterns, and pattern solutions are specified
according to the specifications of transML and MeTAGeM.
The detailed steps of the MUPPIT approach are shown in
Fig. 3. To better understand these steps, a motivation exam-
ple of a model transformation scenario will be presented;
then, the example will be used to explain each of the MUP-
PIT phases in detail.
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Fig. 3 MUPPIT process

4.1 Motivation scenario: transforming UML class
diagrams to relational database tables

A TDM is a model that specifies the rules to transform a
source model to a target model. Transforming a UML class
diagram into a relational database table is a simple yet com-
plete example, which has been commonly used as a case
study by many researchers [3,6,16,37] to clarify the novelty
of their new approaches. The same TDM, which is called
UML2DB, is employed in this paper as a motivation sce-
nario to explain how MUPPIT works. In the transformation
UML2DB, the classes of a givenUMLclass diagram are con-
verted into their corresponding tables in a relational database
schema. Each class attribute is transformed into a column in
the related table. Moreover, every table needs a specific col-
umn as a primary key. The UML class diagram meta-model
that represents the source meta-model and the relational
database meta-model that represents the target meta-model
are shown side by side in Fig. 4.

A schematic view of UML2DB TDM is presented in
Fig. 5. This model represents the conceptual structure of
UML2DB TDM. It describes the design model in an easy

way. This TDM specifies the relations between the ele-
ments of the source and target meta-models in the UML2DB
transformation. UML2DB includes twomappings. These are
Class-Map and Attribute-Map, which transform classes to
tables and attributes to columns, respectively. For every class,
the Class-Map generates a primary key in the related table.

As explained earlier,MUPPIT uses TDMs that are defined
according to transML or MeTAGeM specifications. In other
words, MUPPIT uses TDMs that conform to the transML
or MeTAGeM metamodels. For this, it uses the transML or
MeTAGeM frameworks to specify the input TDMs. Each of
these frameworks has two design abstraction levels: a high
abstraction level that is used to specify the mapping relation-
ships between the source and target model elements, and a
low abstraction level that is used to specify the detail imple-
mentation of the transformation. Figure 6 shows a TDM in
EMF [38] format that corresponds to the UML2DB transfor-
mation and is generated through themapping phase using the
transML framework. Figures 21, 22 and 23 in “Appendix”
show the meta-models of transML and MeTAGeM that are
used in MUPPIT. The TDM models (i.e., instance models)
that are specified according to the high-level meta-model
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Fig. 4 UML2DB transformation meta-models

Fig. 5 Structure of UML2DB design model

Fig. 6 Structure of UML2DB design model (EMF format)

is referred to as “platform-independent model” (PIM) in
MeTAGeM, and mapping diagram in transML, while a low-
level TDM is referred to as “platform specific model” (PSM)
in both frameworks.

In the next subsections, the phases of MUPPIT are
explained, and then every phase is elucidated using the
UML2DB example. We used the first two cases explained in
Sect. 3 as a sample set for transformation anti-patterns and
pattern solutions. Accordingly, we used MUPPIT to refine
the UML2DB transformation structure and generate a new
TDM.

4.2 Identifying transformation anti-patterns

The input requirements for MUPPIT to be able to identify
transformation anti-patterns are the TDM, the transforma-
tion design meta-model, transformation source and target
meta-models, and the anti-patterns catalogue. The first phase
of MUPPIT starts by the transformation engineer select-
ing an anti-pattern from the anti-pattern catalogue to check
its presence in the input TDM. After selecting an anti-
pattern, MUPPIT requires the TDM, the TDM meta-model,
the source model meta-model, and the target model meta-
model. However, some anti-patterns (e.g., the Boat Anchor
anti-pattern) require access to the source model as well. We
expect that a transformation engineering framework that sup-
ports the MUPPIT process would allow enough flexibility
for transformation engineers to specify these models, which
need to be specified only once. Transformation engineers can
applyMUPPITmultiple times on the TDMs that work on the
same models.

After providing the required inputs, MUPPIT triggers
the “Anti-pattern Detection” task shown in Fig. 2. This
task checks if the anti-pattern appears in the input TDM.
If there is no matching anti-pattern in the TDM, MUPPIT
prints the message “The anti-pattern” is not detected and
proceeds to the final state (i.e., select anti-pattern from the
repository). If a match is identified, MUPPIT prints the mes-
sage “The anti-pattern” is detected and proceeds to the next
phase (i.e., “proposing transformation pattern solutions”).
The “Anti-pattern Detection” task uses structural constraint-
based pattern matching, in which a matching anti-pattern is
defined as a set of constraints on the TDM meta-model.
Here we can distinguish between two types of matching
constraints: relational mapping at the high-level abstrac-
tion design model and operational at the low-level design
model. The rules for identifying the Spaghetti Transforma-
tion andBoat Anchor anti-patterns are examples of relational
mapping rules, while the rules for Frequent Invocation and
Return-First Command anti-patterns are examples of opera-
tional rules.
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In MUPPIT, the syntax to specify the pattern domain and
perform the matching in the “Anti-pattern-Detection” task is
based on the Epsilon pattern language (EPL) [25]. The syn-
tax of the EPL language contains three main parts including
match, onmatch, and nomatch blocks. Listing 1 shows the
EPL syntax for defining a pattern.

1 pattern patternName
2 Definition of roles {
3 match : PatternSpecification
4 }
5 onmatch{}
6 nomatch{}

Listing 1 The EPL syntax for defining a pattern

In the above listing, the patternName is the name that is
assigned to the pattern. Roles are those metamodel domains,
i.e., instance elements in execution time, involved in pattern
specification. Thematch block includes a formal definition of
the pattern in Epsilon language. This definition represents a
conditional constraint on the subject meta-model (e.g., TDM
meta-model), which will be satisfied if an instance model
(e.g., TDM) conforms to the pattern definition. The onmatch
and nomatch blocks represent the actions that will be exe-
cutedwhen the condition is satisfied or violated, respectively.

As MUPPIT uses TDMs generated using transML and
MeTAGeM frameworks, the anti-patterns need to be speci-
fied using the designmeta-models of transMLorMeTAGeM.
The initial anti-pattern repository provides EPL codes defin-
ing the anti-patterns explained in this paper according to
transML andMeTAGeM. These EPL codes perform the anti-
pattern matching on the target TDM. Table 1 shows the

definitions of the anti-patterns used in this paper as defined
in the anti-pattern catalogue.

Figure 7 shows the definition of Spaghetti Transformation
anti-pattern to detect the anti-pattern on TDMs that conforms
to transML meta-model. This figure presents a part of the
transML meta-model (the complete meta-model is shown in
“Appendix,” Fig. 21), as well as the pattern matching rule
(on the arrow). The Spaghetti Transformation anti-pattern
transformation is specified as a relational mapping constraint
rule at the high-level abstraction design model; hence, the
related metamodel (e.g., transML or MeTAGeM) is required
for the anti-pattern definition. The rule on the arrow checks if
the Spaghetti Transformation anti-pattern is presented in the
instance TDM, by checking if the TDM has a mapping rule
with more than one target MappingEnd. The target Map-
pingEnd elements are recognized by the Boolean attribute
“navigable,” which has a true value for target MappingEndT-
DMs. In other words, the mapping rule access more than one
level of the target meta-model or create more than one target
element at once in one mapping rule.

Frequent Invocation and Return-First Command anti-
patterns both address issues regarding the usage of appropri-
ate operations (e.g., select, any) in a TDM. These operations
are part of the syntax of the transformation-code. Conse-
quently, the constraint rules for these anti-patterns are defined
at the operational low-level design metamodel. Figure 8 is
part of the low-level design metamodel of MeTAGeM (the
complete meta-model is shown in “Appendix”, Fig. 23). The
figure shows the part related to defining the operations in a
TDM developed in MeTAGeM. As shown in the figure, each

Table 1 Anti-pattern catalogue

Anti-pattern Anti-pattern detection Level of application/framework

Spaghetti Transformation mapping :
Mapping.ends.select(mapend :
MappingEnd|mapend.navigable =
true).si ze() > 1

Relational/mapping meta-model of transML

Frequent Invocation “select”.isSubstringO f (op :
Operation.body)

Operational/low-level design model of MeTAGeM

Return-First Command “select(). f irst()”.isSubstringO f (op :
Operation.body)

Operational/low-level design model of MeTAGeM

Boat Anchor i f (not(I nputMetamodel.all I nstances().
equal(Model Root .Relations.source))

Relational/high-level design model of MeTAGeM

Fig. 7 A partial definition of the
Spaghetti Transformation
anti-pattern in EPL
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Fig. 8 A part of MeTAGeM metamodel representing operation parts

element of a TDM has an operation concept. An example of
an operation concept is the “select” and “select().first()” oper-
ation. The anti-pattern catalogue provides the EPL codes for
Frequent Invocation and Return-First Command to explore
source code of a TDM and, respectively, identify any inap-
propriate usage of the select() and select().first() commands.

Boat Anchor is an anti-patternwhich refines the high-level
TDM. Table 1 shows how this anti-pattern can be defined
for the high-level design metamodel of MeTAGeM. This
anti-pattern searches the weaving model, high-level TDM
designed by MeTAGeM, to find elements in the transfor-
mation input model which are not used in TDM. Figure 22
in “Appendix” presents the high-level design metamodel
of MeTAGeM related to specifying weaving relations or
mappings. As the figure shows, each high-level TDM in
MeTAGeM has a Model Root element, which consists of
some relations. Each relations defines a mapping which
weaves the source elements to target elements. Thus, each
relation can have various kinds of source and target elements.
The EPL code checks the transformation input model against
the source elements in the TDM. Boat Anchor is detected
when the transformation input model comprises of elements
not employed in specifying the weaving relations. Input-
Metamodel.allInstances() returns a set including all instances
of the input metamodel contained in the transformation input
model. Boat Anchor is found when this returned set is not
equivalent to the set of source elements in weaving relations
of the TDM.

In our motivation scenario (i.e., UML2DB), to assess
the input TDM against the Spaghetti Transformation anti-

pattern, the transformation engineer starts by selecting the
Spaghetti Transformation anti-pattern. Accordingly, MUP-
PIT prompts the transformation engineer for inputs. In this
scenario, the TDM of UML2DB specified using transML,
shown in Fig. 5, and the transML design meta-model, which
is shown in “Appendix” Fig. 21, along with transformation
source and target meta-models are taken by MUPPIT.

The “Anti-pattern-Detection” task will validate the exis-
tence of the anti-pattern by executing the EPL code in Fig. 7.
In the case of UML2DB, the Spaghetti Transformation anti-
pattern is detected in theTDM.This is because theClass-Map
in the TDM accesses the table and column levels in the hier-
archy of the relational database meta-model. This match the
anti-pattern definition. Accordingly, MUPPIT will show the
message “The anti-pattern” is detected, then proceed to the
second phase (i.e., “proposing transformation pattern solu-
tions”).

4.3 Proposing transformation pattern solutions

In the second phase, “proposing transformation pattern solu-
tions”, MUPPIT starts by searching the TDM for possible
transformation pattern solutions that correspond to the iden-
tified anti-pattern in the first phase. If a pattern solution is
detected, the process terminates, elseMUPPIT suggests a list
of possible pattern solutions that can be applied to improve
the TDM, then waits for a confirmation. If the transformation
engineer selects one of the proposed patterns, MUPPIT pro-
ceeds to the third phase (i.e., “applying pattern solutions”).
The transformation engineer has the option at any point to
provide a custom solution or terminate the process.

As explained earlier, while each anti-pattern may have
one or a list of corresponding pattern solutions, the presence
of an anti-pattern in a TDM does not mean that the TDM
designer did not consider the pattern solution. Separating
the process of detecting an anti-pattern from detecting the
presence of the solution has several advantages. It improves
the approach modularity and usability by enabling the TDM
engineers to provide different levels of matching rules when
available and as needed. More importantly, it enables incre-
mental and continuous improvement in the TDM through
feedback loops with guaranteed termination.

Similar to the anti-pattern detection process, in our work
the pattern solution detection uses structural constraint-based
pattern matching that is specified according to the syntax
of the Epsilon pattern language (EPL). Also, the solutions
pattern matching rules can be at the relational and oper-
ational levels. Table 2 shows the catalogue of the pattern
solutions used in this paper. In some cases such as Phased
Construction, the pattern solution is specified by constraints
reversing the anti-pattern specification. The Phased Con-
struction pattern is specified in a similar way as the Spaghetti
Transformation anti-pattern with negation constraint in EPL.
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The EPL match block of the solution includes a condition
to ensure that each mapping contributes to generating ‘one’
level of the target model (i.e., each Mapping instance in
the TDM has one MappingEnd instance), while the detec-
tor condition of the Spaghetti Transformation anti-pattern
looks for mappings with ‘more than one’ mappingEnds. In
more complex scenarios, such as the Frequent Invocation
scenario and Object Indexing, the matching constraints used
in detecting the pattern solution are more than reversing or
complementing the constraint matching specifications of the
related anti-pattern detector. Table 2 shows the pattern solu-
tion catalogue of Object Indexing as a case, which needs
searching TDM against the mapping structure for accessing
the elements.

Back to the UML2DB scenario, MUPPIT detected the
Spaghetti Transformation anti-pattern in the previous phase.
Next, in “proposing transformation pattern solutions,”MUP-
PIT looks for the corresponding solution, (i.e., Phased
Construction solution pattern) to see if it already exists in
the TDM. In this case, the Phased Construction pattern has
not been identified in the TDM. Thus, the Phased Construc-
tion pattern is proposed to the transformation engineer, and
MUPPIT proceeds to the third phase (i.e., “applying pattern
solutions”).

4.4 Applying pattern solutions

Applying the pattern solution to the input TDM is a complex
process. It includes model comparison, merging, validation,
and model-to-model transformation. The input to this phase
is the selected pattern solution from the second phase. MUP-
PIT uses the solution pattern tomodify the original TDM and
generates a new TDM that conforms to the pattern solution.
For relational anti-patterns/solutions introduced in Table 1,
applying a pattern is a model to model transformation while
the source and target models are a relational TDM, such as
mapping design model in transML. This transformation, i.e.,
applying the pattern solution, is performed on hybrid TDMs
for operational scenarios.Hybridmodels are rule-based spec-
ifications for model-to-model transformations, using OCL to
encode the transformation logic, such as the low-level design
models of MeTAGeM.

For each solution pattern, a transformation is devel-
oped that takes the initial TDM as input and transforms it
into a target TDM based on the pattern solution specifica-
tion. This transformation has been implemented in Epsilon
and mainly Epsilon transformation language (ETL) [25] in
MUPPIT. The transformation that converts the TDM into
the desired one is the main operator of this step. How-
ever, this transformation might be integrated into some
pre/post-configurations. Usually, we need to provide some
pre-configurations such as comparing the TDMwith the pat-
tern solution and desired target. A configuration might also

be required as post-condition to refine the generated TDM
after applying the pattern solution.

For example, if the Phased Construction pattern was
selected to be applied as a solution, a transformation code
is needed to split those rules accessing more than one level
of the target metamodel and generate one to one mapping
instead. Listing 2 shows an ETL code snippet of applying the
Phased Construction pattern solution. Particularly, it shows
the process of retrieving then rebuilding the mappings in a
TDM based on the suggested solution. Line 3 retrieves all
mappings (i.e., transformation rules) in the original TDM.
Then refine those mappings that require restructuring based
on the suggested pattern solution (i.e., Phased Construc-
tion pattern). The “patternSet” in line 5 includes only those
mappings that require applying the pattern solution (those
with several transformation steps all in one phase). Based on
the Phased Construction pattern, each transformation rule
should generate only one target element. To do that, in lines
7 and 8 the target elements generated by each mapping are
collected then counted. Accordingly, one mapping is created
for each collected target elements. Lines 10–22 show the
process of splitting a mapping based on the number of target
elements in that mapping, starting from creating a mapping
rule for each target in lines 12 and 13, then append the source
element in lines 14–19, and finally, append the target element
in line 20.

1 post
2 {
3 for (elem in mapping!Mapping.allinstances())
4 {
5 if(not elem.instanceOf
6 (patternSet!phasedconstruction))
7 {
8 var mapEnds:=elem.ends.
9 select(mapend|mapend.navigable=true);

10 var count:= mapEnd.size();
11 //count of mappingEnd
12 var i:=1;
13 while(i<=count-1)
14 {
15 var map:= mapping.createInstance
16 (elem.type().name);
17 map.name:= elem.name;
18 var navigableFalse:= elem.ends.select
19 (mapend|mapend.navigable=false);
20 for(e in navigableFalse)
21 {
22 var t:= emfTool.getECoreUtil().
23 copy(e);
24 map.ends.add(t);
25 }
26 map.ends.add(mapEnds.at(i));
27 mapping!Package.all.first().
28 mappings.add(map);
29 i:= i+1;

Listing2 ETLcode snippet of applying thePhasedConstructionpattern
solution
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Table 2 Pattern solution
catalogue

Solution pattern Solution pattern detection

Phased Construction select all mapping: Mapping

for each mapping do

if mapping.ends.one(mapend|mapend.navigable=true)

this transformation rule satisfies the Phased Construction solution

else

return violation of Phased Construction solution

end for

return presence of Phased Construction solution

Object Indexing select all operation: Operation

for each operation do

if operation.body.includes(Map-Structure)&&

operation.body.includes(get function on Map-Structure)

then boolean ObjectIndexingsolution=1

else

if operation.instanceOf(patternSet!FrequentCall)

return violation of Object Indexing solution

end for

if ObjectIndexingsolution=1

return presence of Object Indexing solution

Usage of Iterators select all operation: Operation

for each operation do

if “any”.isSubstringOf(operation.body)

return presence of Usage of Iterators solution

Filtering select all InputMetamodel.allInstances()

for each element do

if ModelRoot.Relations.source.asSet().includes(element)

return “presence of Filtering solution”

Applying this transformation on the initial TDMwill auto-
matically identify the mappings that expose the anti-pattern
and then restructure them based on the suggested pattern
solution.

In the case of the UML2DB transformation, MUPPIT
applies the selected pattern solution (i.e., the Phased Con-
struction pattern) by executing the transformation in listing 2.
The generated output TDM is shown in Fig. 9. The TDM is
shown in EMF format and conforms to the transML design
model. As the figure shows, the newTDMhas onemore extra
mapping compared to the original TDM. This extra map-
ping is called Class-MapII. The Class-MapII is the result of
dividing the Class-Map into two mappings: Class-Map and
Class-MapII. This new mapping restructured the Spaghetti
Transformation anti-pattern in the UML2DB TDM so that it
conforms to the Phased Construction pattern solution.

Applying some of the pattern solutions is a more com-
plex task. For example, applying Object Indexing needs
pre-configuration. We need to define a map structure for
the detected commands in the transformation rules, which
include frequently accessing instances of an element. Then,

this map structure is substituted for the commands in the
TDM according to the Object Indexing specification.

Listing 3 shows a code snippet of applying Object
Indexing solution pattern to low-level TDMs generated by
MeTAGeM. Applying Object Indexing is triggered by the
transformation engineer confirmation if TDM contains the
frequent calls. As Fig. 23 in “Appendix” shows, the low-
level TDM of MeTAGeM expresses the commands in the
body operations within rules. If a low-level TDM gener-
ated in MeTAGeM contains commands looking up objects
by value in their operation body, MUPPIT is proceeded to
the second phase. The second phase, consisting proposing
transformation pattern solution, checks the TDM against the
presence of a map structure. Checking the operations body
in TDM is performed by an implemented Java plug-in. As
mentioned before, we integrated Java and Epsilon in MUP-
PIT implementation. Adding Object Indexing to MUPPIT is
one of these cases that needs to use Java with Epsilon. To this
end, we extended EPL classes when implementingMUPPIT.
The Java plug-in uses a regular expression library to find a
map structure pattern in the operations body string.
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Fig. 9 Structure of UML2DB design model after applying the Phased
Construction pattern (EMF format)

ApplyingObject Indexing after the confirmation made by
the transformation engineer is performed by an ETL code,
which calls a Java plug-in. The input of this phase is a
patternSet, including operations in the TDM by a ‘select’
command for access to an object by values. The patternSet is
the output of “identifying transformation anti-pattern” phase,
as explained in Listing 2. Then according to Listing 3, for
each operation in the pattern set, amap structure is built. First,
in line 7, the context of the invoked element, the element of
TDM that owns the operation, is extracted. Line 9 puts all
instances of that context in the setOfContexts. Then, the gen-
erated Java plug-in, ObjectIndexingJavaTool, is invoked by

generating an instance named sample in line 11. This is how
we connected Epsilon to Java in our implementation. This
plug-in has a function that obtains an operation body as string
and checks it to find the looked up property in the select com-
mand. Listing 4 shows in more detail how the plug-in works.
Lines 15–18 build a map structure for setOfContexts and the
looked up properties for this context. Finally, another Java
plug-in is called to replace the map structure with the select
command. The result is shown in Sect. 4.5 when discussing
the evaluation of the TDM. This substitution is performed by
considering the body of operation and select command as a
string type and managing that using regular expressions in
Java.

1 --foreach operation inside of the patternSet
2 pre
3 {
4 var map:=new Map;
5 }
6 --Return the context of the invoked element
7 var context:= operation.context.name_element;
8 --Extract all instances of invoked element
9 var setOfContexts:=

10 Transformation_source_meta-model.
11 getAllOfKind(context)
12 --Extract the invoked property using a java
13 plug-in
14 var sample = new Native(’objectIndexingJavaTool.
15 ObjectIndexingJavaToolClass’);
16 -- property is set of looked up properties
17 in the select command
18 var Property:=sample.func(op.body);
19 --constructing the map structure
20 for (p in Property)
21 {

Fig. 10 UML2DB before (a)
and after (b) applying the Object
Indexing
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22 map:=setOfContexts.mapBy(m|
23 Transformation_source_meta-model.
24 propertyGetter.invoke(m,Property.at(count)));
25 count:=count+1;
26 }--end of for
27 //call a java plug-in for substituting
28 the map instead of select command

Listing 3 Epsilon code snippet of applying the Object Indexing pattern
solution

1 public List<String> Func(String body) {
2 List<String> set = new ArrayList<String>();
3 Pattern p = Pattern.compile("select\\([a-zA-Z0-9]+\\|
4 [a-zA-Z0-9]+\\.(.*?)[<>|=|>|>=|<|<=]");
5 Matcher m = p.matcher(body);
6 while (m.find()) {
7 set.add(m.group(1)) ;
8 }
9 return set;

10 }

Listing 4 Java partial code for parsing operations’ body in TDMs

We have considered the presence of several sequential
selects in an operation body of a TDMor invoking for several
features of a context. However, theMUPPIT implementation
has some limitations in the current version. For instance, the
current implementation cannot resolve nested ‘select’ com-
mands as frequent calling of an object.

4.5 Evaluating the TDM and feedback

The TDM evaluation and feedback phase is an independent
phase in MUPPIT that can be accessed directly by the trans-
formation engineer to assess an existing TDM (i.e., before
the first phase), or after generating a new TDM in the third
phase. This phase uses a set of key performance indicators,
such as the syntactical complexity, modularity, and exaction
time as a base to evaluate the quality of a TDM and suggests
some of the possible root causes (anti-patterns) that a TDM
may exhibit. Then, based on the key performance indicators
and the available possible pattern solutions, the TDM can
go into a number of consecutive refinements until no further
improvement is possible. The key performance indicators are
explained in detail in Sects. 6.4.1 and 6.4.2. The evaluation
of these metrics is done at the source code level of the TDM.
transML and MeTAGeM are used to generate the transfor-
mation source code.

In the case of the UML2DB transformation, the new
TDM generated in the third phase was evaluated against the
aforementioned key performance indicators; the results (see
Table 5 in the evaluation section) show that the syntactical
complexity of the UML2DB TDM is high based on a pre-
defined threshold. Comparing the metrics with predefined
threshold by the transformation engineer, helps he/she to
select next anti-pattern to be checked. The Frequent Invoca-
tion could be as a possible root–cause, and hence, theObject
Indexing could be used as a solution to reduce the syntactical
complexity [13]. By selecting the Frequent Invocation anti-
pattern in MUPPIT, MUPPIT directs the process to the first

Fig. 11 Overview of MUPPIT connection to the transformation engi-
neering frameworks

phase to detect the presence of the anti-pattern in the TDM
and the engineer can check if this anti-pattern is the root cause
behind the high syntactical complexity. In this case the anti-
pattern was detected, and the pattern solution (i.e., Object
Indexing) is not used. Hence, MUPPIT automatically applies
the Object Indexing pattern on UML2DB TDM. Figure 10
shows the UML2DB TDM before and after applying the
Object Indexing pattern, where the select command is sub-
stituted by the map structure. This improves the UML2DB
TDM syntactical complexity [39], analyzed in Sect. 6.4.1.

This section presented the MUPPIT process and showed
through a simple scenario, how MUPPIT works. In the next
section we explain the MUPPIT implementation and tool
support.

5 MUPPIT implementation

MUPPIT defines the steps required for identifying anti-
patterns, detecting and applying pattern solutions, and eval-
uating pattern application in a transformation. MUPPIT
has been realized as a framework that facilitates TDM
evaluation and restructuring based on best practices. The
MUPPIT framework extends some of the existing transfor-
mation frameworks, integrates several plug-ins, and provides
a repository of transformation anti-patterns and their corre-
sponding pattern solutions. Figure 11 shows the high-level
architecture of the MUPPIT framework integrated to the
transformation engineering frameworks.

The backbone of MUPPIT consists of two main compo-
nents (plug-ins) and a pattern repository. The first component
is the MUPPIT core component, which was implemented
as an extension of Epsilon [25]. Epsilon is a family of
languages and tools, which offers comprehensive facilities
in the realm of model-driven engineering. Among Epsilon
languages, Epsilon transformation language (ETL), Epsilon
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Fig. 12 List of required
plug-ins for interaction between
Epsilon and Java

object language (EOL), and Epsilon pattern language (EPL)
are used in instantiation of MUPPIT.

The second component is the evaluation plug-in that has
been implemented as Java plug-in to make it reusable for
other research purposes. This plug-in measures performance
metrics and analysis them to propose proper patterns for
transformation refinement. The current pattern repository
is preloaded with the definitions of three anti-patterns and
their corresponding pattern solutions, those referred to in
this paper. The anti-pattern definitions were specified in the
EPL language. EPL facilitates pattern matching in mod-
els that conform to specific a meta-model. As MUPPIT
uses TDM generated in transML and MeTAGeM frame-
works, the anti-pattern scenarios are specified based on the
transML andMeTAGeMdesignmeta-models. Applying Pat-
tern Solutions is performed by executing transformation
codes implemented in ETL. These transformations take the
input TDM and change it to a new one, which embedded pat-
tern solution in its structure. Depending on the complexity
of the pattern, a combination of ETL code along with EOL
and EPL may be needed.

In addition to the main components, MUPPIT integrates
several plug-ins, provides high-level abstraction of some of
the Epsilon formal code in order to increase usability, imple-
ments a parser and analyzer for the EPL commands in Java,
and alleviates some of tedious plumbing work that the trans-
formation engineers need to do, such as using some Epsilon
operations, calling other Epsilon code as well as importing
and using some of the prerequisite Java plug-ins. Figure 12
shows a list of the plug-ins in MUPPIT manifest.

In the next section,we explain howweevaluatedMUPPIT.

6 Evaluation

The goal of this section is to evaluate the effectiveness of
MUPPIT through its ability to generate the desiredTDMsand
the quality (e.g., maintainability, comprehension, reusability,
and performance) of the generated TDM output. To illustrate
MUPPITs ability to generate the desiredTDMsand verify the
flow and logic of the MUPPIT steps, a walkthrough example
is used to illustrate howMUPPIT can be applied to automati-
cally detect common transformation problems that affect the
quality of a TDMand then utilize best practices to restructure
the TDM to produce a new TDM.

To assess the quality of the generated results, we compare
the quality of the original TDM and the one generated after
applying MUPPIT on the TDM. The quality of the TDMs is
compared based on the set of key performance indicators
(metrics) in Sect. 6.4. These metrics provide quantitative
measures regarding the transformation rules, such as the
syntactical complexity, the number of “create” actions per
rule, the MSC, modularity, and the execution time of run-
ning the transformation. These quantitative measures will be
used then to reason about some of the qualitative measures
of the TDM generated through MUPPIT, such as the trans-
formation code maintainability, comprehension, reusability,
and performance.

In order to test the behavior of a generated TDMbyMUP-
PIT, i.e., TDM after applying the pattern solution, we have
compared the transformation targetmodel generated from the
TDM before and after using MUPPIT. Comparing the result
after the changes with the original source is recognized as
one approach for evaluating behavior preservation in refac-
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Fig. 13 Comparing a transformation target model before and after using MUPPIT in EMF Compare

toring [40] and was used in model transformation refactoring
by Wimmer et al. [41]. We use EMF Compare4 to compare
the two TDMs. EMFCompare is a component for comparing
models in EMF format. The differences between two given
models are highlighted in this tool. Figure 13 shows a snap-
shot of EMF Compare when comparing two transformation
target EMF models, generated from a TDM before and after
using MUPPIT. As we can see in the figure, the two models
are the same which means that the transformation behavior
is preserved by MUPPIT.

In the next subsections, we present two different case
studies including transforming FIXML models to Object
models (FIXML2Obj) and Ecore to relational schema
(Ecore2Schema). Then, we show the results of using MUP-
PIT instance on one of the case studies, FIXML2Obj, by
walking through the MUPPIT process. The second phase
of our evaluation consists of an assessment on the quality
of the TDMs generated by MUPPIT compared to the origi-
nal TDMs. This assessment is performed for the introduced
motivation example, as well as two case studies by checking
different anti-patterns.

4 https://www.eclipse.org/emf/compare/.

6.1 Case study: FIXML to object model

The goal of the FIXML2Obj transformation is to transform
FIXML models to the object models. FIX is the Financial
Information eXchange protocol for transmitting pre-trade
and trade communication messages between brokers and
asset managers in the global equity market [42]. FIXML
models are XMLmodels for specifying the financial transac-
tion messages and financial information exchange data. On
the other hand, an object model is a logical interface that is
modeled through the use of object-oriented techniques. An
object model is normally specified as class definition in an
object-oriented programming language, such as Java, C#, or
C++.

The FIXML2Obj transformation is an industrial project
that was proposed in the transformation tool contest (TTC)
in 2014.5 It is an industrial use case of the application model-
driven development (MDD) in the financial field. The aim of
the project is to enable the rapid upgrade of the user software
when FIXML definitions are upgraded or modified [43].

Several transformations have been proposed to address the
2014‘s TTC. Among them, the winner transformation [44]
was the onedevelopedbySIGMA[45]. SIGMAFIXML2Obj
transformation consists of three distinct stages; namely, text-

5 http://www.transformation-tool-contest.eu/2014/solutions_fixml.
html.
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Fig. 14 Partial low-level TDM
of FIXML2Obj

to-model (T2M),model-to-model (M2M), andmodel-to-text
(M2T). First, the FIXML messages are parsed and trans-
formed into an XML model that conforms to the XML
meta-model. Second, the generated XML model is trans-
formed into an object model. Third, the object model is
transformed into the corresponding object-oriented language
source code. (i.e., Java, C#, or C++) [42].

Our case study uses the TDM used in the second stage
of SIGMAs solution. However, since the current implemen-
tation of MUPPIT extends the MeTAGeM and transML
frameworks, the TDM was first migrated to these frame-
works.

6.2 Case study: Ecoremodels to relational schema
(Ecore2Schema)

Transforming Ecore models to relational schema is a well-
known transformation case.We have employed a simple case
of this mapping as a motivation example in the current study.
In this section, we validate MUPPIT using a more intricate
version of thismapping, Ecore2Schema,which covers a large
part of Ecore metamodel.6 Ecore2Schema is defined using
both Ecore metamodel and relational schema meta mod-
els [46].

The solution for transforming Ecore2Schema is derived
from the QVT solutions presented by Westfechtel [46] for
Ecore models with a single package and inheritance. In
Ecore2Schema, a package in Ecore model is mapped to a
schema which contains tables. Classes and attributes are
transformed into tables and columns similar to UML2DB,

6 https://git.eclipse.org/c/emf/org.eclipse.emf.git/tree/plugins/org.
eclipse.emf.ecore/model/Ecore.ecore.

while in Ecore2Schema, references, dependencies, con-
tainments, and relations between classes are managed by
transforming them to columns and foreign keys in the corre-
sponding tables. Moreover, cross-reference classes generate
tables. Ecore2Schema covers transformation of inherited
classes and sub-classes by mapping them to the foreign keys
in root and sub-tables. The relational schema has Property
and Event concepts for specifying the dynamic behavior of
tables and columns. Properties define features on columns
and events define conditions and actions for the foreign
keys. The Ecore metamodel contains behavioral properties
of classes and specifies them by EOperational classes. How-
ever, all concepts of the Ecore metamodel cannot be mapped
to the target schema, for example, interface classes or EOp-
erational classes.

In this paper, we generated a TDM for Ecore2Schema,
which conforms to the solution presented byWestfechtel [46]
in MeTAGeM. We also applied the MUPPIT process to this
TDM to validate the process.

6.3 Walkthrough example: applyingMUPPIT to the
FIXML2Obj TDM

In this walkthrough example, we use the FIXML2Obj TDM
to demonstrate the ability of MUPPIT in detecting transfor-
mations anti-patterns in a TDM, then restructuring the TDM
to generate a new one that applies the pattern solution.

As explained earlier, to apply MUPPIT, the transforma-
tion engineer starts by selecting an anti-pattern from the
anti-pattern repository. This can be done arbitrarily in an
iterative way or based on evaluating the quality of the TDM.
Let us assume that the selected anti-pattern is the Return-
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Fig. 15 MUPPIT windows
during the ”identifying
transformation anti-pattern”
phase for FIXML2Obj

First Command anti-pattern. MUPPIT will prompt the user
for the required inputs to detect the anti-pattern in the TDM.
Since this anti-pattern requires checking if the TDM uses the
appropriate operations, i.e., it is an operational anti-pattern,
the FIXML2Obj low-level TDM is required. FIXL2Obj
TDM, low-level design meta-model along with transfor-
mation source and target meta-models are inputs taken by
MUPPIT. Figure 23 shows the meta-model of the low-level
design phase, while Fig. 14 shows part of the FIXML2Obj
low-level TDM generated using the MeTAGeM framework.
Figure 14 consists of two parts: the top part shows the low-
level TDM (i.e., the design of the FIXML2Obj). The bottom
part displays the properties of the highlighted element (i.e.,
the NodeToObject operation).

Once the required inputs are uploaded, MUPPIT proceeds
to the anti-pattern detection step. HereMUPPIT explores the
TDM for Return-First Command anti-pattern. FIXML2Obj
contains a select iterator in the NodeToObject operation, fol-
lowed by first (as shown in the first row of the properties table
in Fig. 14); hence, MUPPIT detects the Return-First Com-
mand anti-pattern and prints the result in a message box.
Figure 15 shows the screenshots of different steps of the first
phase of MUPPIT from selecting an anti-pattern to select-
ing the required inputs and finally printing the message that
shows the identification of the anti-pattern in the TDM.

Once the message is confirmed, MUPPIT proceeds to the
next second phase. Based on the pattern catalogue, the corre-
sponding solution to the Return-First Command anti-pattern
is the Usage of Iterators pattern. Accordingly, MUPPIT

searches the FIXML TDM for Usage of Iterators pattern
solution. In this case, the FIXML2Obj TDM exhibits the
anti-pattern; however, the solution pattern was not detected.
Accordingly, the pattern solution “Usage of Iterators” is pro-
posed to the transformation engineer and proceeds to the
third phase. Figure 16 shows the list of proposed patterns
for FIXM2Obj TDM. As it is shown, MUPPIT also pro-
poses alternative patterns with the same concern. In fact
MUPPIT has been designed to propose additional solutions
if available, but the current implementation support it only
for Return-First Command, in which the ‘select’ command
can be restructured based on two different solutions ofUsage
of Iterators and Object Indexing.

In this case, the user selects the pattern solution and apply
it to the TDM. Figure 17 shows the result of applying the
Usage of Iterators pattern solution. The first message shows
the path of the new generated TDM, while the second mes-
sage shows the result of evaluating the quality attributes of
the new TDM.

Figure 18 shows newly generated TDM. In new TDM, the
select().first commandwas replaced with the any expression.
Using any instead of the select reduces the execution time
for running the transformation; hence improves the transfor-
mation performance.

As illustrated through this walkthrough example, the new
FIXML2Obj was automatically generated and evaluated.
After evaluating the new TDM, MUPPIT will proceed to
the first phase if it has any new suggested solution. The pro-
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Fig. 16 A MUPPIT screenshot during the “proposing transformation
pattern solution” pattern-solution

cess will continue iteratively until no more refinements are
possible.

6.4 Quantitative evaluation of theMUPPIT

In this section, the effectiveness of MUPPIT in terms of the
quality of generated TDMs is quantitatively assessed. First,
several quality metrics are introduced. Then, the metrics are
used to compare the quality of the original TDM in compar-
ison to the one generated after applying MUPPIT.

6.4.1 Metrics definition

The following are the metrics used in the evaluation plug-in
to assess the quality of a TDM. These metrics are widely
used in the literature to assess the quality of a transformation
model.

Syntactic complexity (SC) [13,16,39] Thismetrics is cal-
culated by summing the number of entity type references,
feature references, and operator occurrences in a transfor-
mation rule. Thismetric is adopted fromKolahdouz-Rahimis
work [39]. The less the SC of a transformation rule, the sim-
pler it is, which leads to better comprehension and hence
maintainability.

Maximum subexpression complexity (MSC) This met-
ric measures the SC of the most complex read subexpression
in the transformation rules. It is known in the literature as
themaximally complex read subexpressionmeasure [13,16].
Similar to SC, this metric can be used as an indication of the
complexity of a transformation. A transformation with lower
MSC is less complex and more comprehensible.

Number of create actions per rule (CAPR) This met-
ric measures the number of distinct element creation actions
within a transformation rule. It is known in the literature
as the multiple creation measure [13,16]. A transformation
rule describes how a fragment of the source model can be
transformed into a fragment of the target model. The rule
of thumb is that each transformation rule creates one spe-
cific target element. However, in complex transformations, a
transformation engineer may write a rule with several cre-
ation actions in the same rule. CAPR keeps track of the

Fig. 17 a Result of applying Usage of Iterators on the FIXML2Obj- b
Measured metrics for newly generated FIXML transformation

number of creation actions. A good TDM is the one where
most rules have a CAPR value of one.

Modularity Modularity refers to the degree to which a
system’s components (i.e., transformation rules in a TDM)
may be decomposed or recombined. Modularity is one of the
widely used metrics in measuring the quality of a TDM [13,
16,39,42] as is directly related to flexibility, ease of change
and reusability. Modularity is measured using the following
equation as defined by Lano et al. [43] or Hoyos et al. [42]:
m = 1−(d/r), where “m” is theModularity of a TDM; “d” is
the number of dependencies between the transformation rules
(a.k.a.,mappings).Adependency canbe anyof the following:
implicit or explicit call, ordering dependency, inheritance or
any kind of access control, and data dependency; and “r” is
the number of rules in a TDM.

Execution time The average execution time for running
a transformation code a number of times. In this paper, each
transformation has been executed ten times.

Resource usage The amount of resource which a trans-
formation needs to be executed. In this paper, we have
considered the size of TDMas an indicator ofmemory usage.

In the next subsection, we show how these metrics have
been used to evaluate the quality of the output TDM.

6.4.2 Evaluation plug-in

To collect the metrics introduced in Sect. 6.4.1, we imple-
mented an evaluation eclipse plug-in, an enhanced version
of our previous work [17]. The plug-in can be used as a stan-
dalone component to evaluate any TDM source code (in ATL
and ETL) against the proposed metrics. In this work, we use
the plug-in two different ways: (i) to evaluate the TDM code
before and after applying MUPPIT and (ii) to guide the pro-
cess of prioritizing the search for anti-patterns in a TDM (i.e.,
which anti-pattern to evaluate first).

The evaluation Java plug-in measures SC, CAPR, and
MSC metrics by analyzing the transformation code, gener-
ated from a TDM. It takes the transformation code as a string
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Fig. 18 New low-level TDM of
FIXML2Obj

and checks it against Java regular expressions tofindmatches.
The regular expressions are defined as search patterns, which
find SC, CAPR, and MSC indicators based on their defini-
tion, and count them. For instance, the regular expression
for measuring SC is a search pattern which finds and counts
the number of references to the element types or features,
and invoking operations in the transformation code. Refer-
ring to the types or features can be found by a pattern such as
the one presented in line 1 in Listing 5. Operator occurrence
is defined as matching rules for each operator based on the
transformation language. In this paper, ETL and ATL syntax
have been checked and the list of their operations has been
extracted to be used in search pattern strings for finding the
called operation. Listing 5 shows a partial code on how the
occurring of each syntactic complexity indicator increases
the SC measure.

1 syncComplexity+=string.
2 split(".",-1).length-1
3 syncComplexity+=printer.
4 split("<>",-1).length-1;
5 syncComplexity+=printer.
6 split("=",-1).length-1;
7 syncComplexity+=printer.
8 split(".allInstancesFrom\\(",-1).length-1;
9 syncComplexity+=printer.

10 split(".toString\\(",-1).length-1;
11 syncComplexity+=printer.
12 split(".oclType\\(",-1).length-1;
13 .....

Listing 5 Search pattern expressions in counting SC

To evaluate the effectiveness of using MUPPIT, the first
step is to generate the transformation code from the input
(original) and output (after applyingMUPPIT) TDMs,which
is generated using MeTAGeM. Then, the transformation
codes of the input and output TDMs are evaluated using the
proposed metrics. Particularly, for any ATL or ETL transfor-
mation code, the plug-in automatically measures the values

for the SC, CAPR, MSC. Moreover, the ATL profiler is used
for measuring the execution time of the transformation.

In addition, we compare the metrics obtained from to
the new TDM (i.e., after applying the pattern solution) with
predefined thresholds that are provided by transformation
engineers. This extra step (though optional) helps transfor-
mation engineers assess the benefits of applying the pattern
solution proposed by MUPPIT. It may happen that the solu-
tion incurs overhead that a transformation engineer did not
anticipate in which case he or she can select another pat-
tern solution, if available. In other words, MUPPIT supports
some sort of a feedback loop, which can be useful if multiple
pattern solutions are considered.

Table 3 summarizes the possible impacts of applying each
pattern solution on the metric values when the corresponding
anti-pattern is identified in a TDM.

In this section, the effectiveness of MUPPIT in terms of
the quality of the generated TDM is assessed using three pre-
sented scenarios in this paper, UML2DB, FIXML2Obj, and
Ecore2Schema. Table 4 shows characteristics of the transfor-
mations and input models used for evaluation. The second
column presents the number of transformation rules in the
original case study. Average, minimum and maximum num-
ber of involved elements in each rule by considering elements
in the called methods are shown in the third column. “Not
Applicable” in the table means that our evaluation is inde-
pendent of the corresponding characteristic. Measuring the
number of executions is not applicable for Ecore2Schema
case study since indicators of the the tested scenario in this
case are not execution-based metrics.
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UML2DB

As explained earlier, the evaluation plug-in works on the
source code of the TDM. MeTAGeM was used to gener-
ate the ATL code from the input UML2DB TDM. Listing 6
show pseudo-code of the UML2DB transformations, before
and after using MUPPIT. Particularly, two pattern solutions
were applied to the source TDM; namely, the Phased Con-
struction and Object Indexing patterns. Listing 7, shows that
applying the Phased Construction pattern solution divided
theClass-Map into two rules.Moreover, the select command
was replaced by the map structure using the Object Indexing
pattern.

1 Class-Map:
2 for each c : Class Create t :
3 Table satisfying t.name = C.name
4 and Column!exists (k | k.name =
5 c.name + " Key" and k : t .column)
6 Attribute-Map:
7 for each c : Class; a : c.attribute;
8 t : Table.allInstances()!select
9 (table|table.name = c.name)

10 Create k : Column satisfying k.name =
11 a.name and k : t.column

Listing 6 Pseudo-code of the UML2DB TDM before using MUPPIT

1 Class-Map:
2 for each c : Class Create t :
3 Table satisfying t.name = c.name
4 Class-MapII :
5 for each c : Class Create k :
6 Column satisfying k.name = c.name + "Key" and
7 k : Table[c.name].column
8 Attribute-Map:
9 for each c : Class; a : c.attribute and

10 Create k : Column satisfying k.name =
11 a.name and k: Table[c.name].column

Listing 7 Pseudo-code of the UML2DB TDM after using MUPPIT

As shown in Listing 6, the Class-Map rule creates two
elements. Accordingly, the number of create actions for that
rule before applying MUPPIT (CAPR metric) is two. The
CAPR metric was reduced to one after applying the Phased
Construction pattern, as shown in Listing 7. However, while
the Phased Construction pattern solution reduces the CAPR
value, it does not improve the “SC” in total.After applying the
Phased Construction pattern MUPPIT suggested applying
the Object Indexing pattern to reduce the overall SC of the
Transformation. Table 5 shows a summary of the measured
performance metrics for the UML2DB case study before and
after the MUPPIT.

As it is shown in Table 5, the overall SC and read subex-
pression complexity (MSC) have been decreased after apply-
ing both of the proposed pattern solutions. Consequently, the
modularity and reusability are increased. Moreover, the exe-
cution time of the transformation was improved. Generally
speaking, we can conclude that applying MUPPIT improved
the quality of the UML2DB transformation. The execution
time was measured in an average of 10 times execution for a
UML source model containing 100 elements.

FIXML2Obj

In this section, we evaluate the quality of the FIXML2Obj
TDM, before and after applying MUPPIT. Recall that in this
case MUPPIT suggested and applied the Usage of Iterators
pattern solution to improve the quality of the TDM. Table 6
shows the measured metrics for the FIXML2Obj before and
after applying MUPPIT. The metrics show that applying the
Usage of Iterators solution on the TDM significantly reduces
the execution time of the transformation. In this case, the
improvement was more than three folds. On the other hand,
theUsage of Iterators has slight positive impact on SC and no
impact on other metrics. The execution timewasmeasured in
average of 10 times execution for FIXML2Obj sourcemodels
containing 10,000 and 15,000 elements.

Ecore2Schema

This section addresses the evaluation of MUPPIT for
Ecore2Schema case. The explored anti-pattern in
Ecore2Schema isBoat Anchor. Asmentioned in Sect. 6.2, the
Ecore metamodel, as the transformation source meta-model
of Ecore2Schema, has some classifiers such as EOperation
or some kinds of classes such as interface and abstract.
These elements are popular in a UML model generated
from Ecore meta-model, but they are not mapped to a cor-
responding element in the target schema model generated
by Ecore2Schema. This scenario reveals the presence of
Boat Anchor anti-pattern. In this case study, we use MUP-
PIT to search the Ecore2Schema TDM against the Boat
Anchor anti-pattern. Figure 19 shows the high-level TDM
of Ecore2Schema generated in MeTAGeM. This model
maps source elements of the source meta-model to target
ones, called weaving model as well. The transformation of
Ecore2Schema is established based on this TDM. Then, a
transformation sourcemodel generated from the Ecoremeta-
model is taken by Ecore2Schema and a target relational
schema model is generated. We have used a UML class
diagram in the domain of campus management as source
model of Ecore2Schema transformation. Figure 20, left side,
presents this source model. MUPPIT compares this TDM
of Ecore2Schema with the source model of this transforma-
tion, presented in Fig. 19, and finds if there is any unused
elements in the source model. In this case, operations in the
source are not employed in transformation mappings. There-
fore, MUPPIT identifies Boat Anchor and proposes Filtering
as a solution to the transformation engineer. By applying the
solution, the source model of Ecore2Schema is changed to
the filtered version. Figure 20, right side, shows the source
model of campus management after Filtering. In explor-
ing this anti-pattern, Boat Anchor, MUPPIT seeks source
model of a transformation beside of other MUPPIT inputs
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Table 5 Evaluation of
UML2DB before and after using
MUPPIT

Transformation SC MSC CAPR Modularity Execution time (ms)

Before applying patterns 41 10 2 0.5 237

After applying patterns in MUPPIT 31 7 1 0.7 157

Table 6 Evaluation of
FIXML2Obj before and after
using the MUPPIT

Transformation SC MSC CAPR Modularity Execution time (ms)

Before applying patterns 150 5 1 1 529

After applying patterns in MUPPIT 148 5 1 1 147

and applying the MUPPIT changes this model, as shown in
Fig. 20. In the practice,MUPPITdoes this change by generat-
ing a new transformation source model which do not contain
unused element in the transformation. Therefore, MUPPIT
performance in proposing and applying theFiltering solution
can be measured by measuring the metrics on source model
of the transformation before and after applying MUPPIT,
rather than evaluating TDMs. As Table 3 shows, Filtering
pattern is a solution for reducing the size of source models.
In this case, source model size was decreased almost 30%
over 7374 bytes as the size of the original source model of
Ecore2Schema.

Overall, this evaluation proves again the effectiveness of
MUPPIT in terms of its ability to generate new TDMs or
transformation environment with higher quality based on
applying best practices.

7 Threats to validity

In this section, we discuss the threats to the validity of the
MUPPIT approach.

7.1 Threats to external validity

MUPPIT relies on transML and MeTAGeM, which limits
the application of MUPPIT to exogenous transformations
using rule-based transformation and OCL-based languages
such as ATL and ETL. We need to support other transforma-
tion engineering frameworks to enable the generalizability
of MUPPIT. This said, Bollati et al. [6] compared various
transformation frameworks and concluded that transML and
MeTAGeM are the most mature in terms of their support
to the transformation development cycle. Another threat to
external validity lies in the fact that MUPPIT has been tested
on only four anti-patterns. We need to apply MUPPIT to
detect more anti-patterns in complex transformation scenar-
ios. Finally, for each anti-pattern, we should experiment with
multiple source models for some of the metrics that we pre-
sented such as the execution time metric.

7.2 Threats to internal validity

To decide when to apply a pattern solution, a transformation
engineer needs to provide thresholds to which we compare
the collected metrics. These thresholds may vary depending
on the experience of the transformation engineers,whichmay
lead to different results. We mitigate this threat by adding an
extra step in which the transformation engineer checks the
resulting transformation before deciding to apply it. Another
threat to internal validity lies in our extension of the Epsilon
compiler to implement the Object Indexing pattern. Imple-
mentation errors may have occurred. To mitigate this threat,
we tested our code many times to reduce the chances of pro-
gramming errors.

Possible effects achieved by the suggested pattern solu-
tions might be affected by different factors, such as size of
the transformation source model. Usage of iterator is a pat-
tern solution for big models. In fact, this solution performs
well in decreasing the execution time, when it is applied
on big source models. Although we have not considered
small models in our evaluation for the Usage of Iterator sce-
nario, two model sizes with different ranges of impacts were
considered. Both model sizes with 10,000 and 15,000 ele-
ments were selected according to Cuadrado et al. [12] study.
Cuadrado et al. concluded that models in these size ranges
show, respectively, low and appreciable change in reduced
execution time by applying Usage of Iterator. Therefore, we
tried to make our experiment reliable by measuring the exe-
cution time changes in two different bands ofmodel size with
different impact and reporting the result on average.

Moreover, the order of applying the pattern solutions can
threaten the result of the pattern process. In fact, change in
the order of applying the pattern solutions can result in dif-
ferent final transformations. In the current work, the order
of execution is determined by the developer, who selects one
anti-pattern at a time. However, we are planning to tackle this
issue as part of our future research.
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Fig. 19 Platform-independent TDM, low-level TDM, of Ecore2Schema generated in MeTAGeM

Fig. 20 Transformation source model of Ecore2Schema before and after using MUPPIT

8 Related work

There have been several efforts in the model-driven engi-
neering community to identify and formalize transformation
patterns. In this section, we address the works that are close
to our work and try to compare them with ours.

Ergin et al. [47] presented a template for transformation
pattern description similar to what is known for software
patterns.Lanoet al. [48,49] reviewed themost common trans-
formation patterns, their benefits, trends, applications, and
languages. They created a catalogue of pattern solutions and
provided guidelines on how to detect them manually.
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Inspired by the Gang of Four (GoF) design patterns [14]
for object-oriented programming, Bezivin et al. [9] put
together a collection of MDE patterns related to the design
of meta-models, transformations, compositions, and other
model-based operations. In their initial work, they recom-
mend two patterns to implement high-quality transforma-
tions using the ATL7 transformation language. The first
pattern explains the casewhere some auxiliary information is
needed (i.e., additional input meta-model that contains auxil-
iary variables of a transformation),while the second pattern is
used in the implementation of transformations and represents
the case of multiple matching problem, a problem that has
been already solved in the later versions of ATL. In order to
presentmore functional patterns, Cuadrado et al. [12] present
some patterns for using the object constraint language (OCL)
properly. They document five patterns to optimize the per-
formance of model transformations. While the benefits of
these patterns are evaluated with several benchmarks, these
are introduced in the context of the ATL language. Simi-
larly, Iacob et al. [11] proposed six model transformation
design patterns. These patterns are related to some recurring
problems in the QVT8 transformation language. In the con-
text of graph transformation languages, Agrawal et al. [10]
presented a simple graph transformation language, called
GREAT, to solve graph transformation problems the same
way that software problems are solved by using design pat-
terns. Two patterns were created to access the graph objects.
These patterns are specific to the problems that arise in the
context of graph transformation models.

All the aforementioned studies are limited to identifying
and defining transformation patterns for a specific scenario
in a specific transformation language. While these studies
represent a great body of knowledge in transformation pat-
terns that is necessary when creating transformation pattern
catalogues, these studies do not address the concern of how
to integrate these patterns as part of the development process,
which includes how to select or use these transformation pat-
terns properly and how to automatically generate high quality
transformations based on these patterns. While there have
been several efforts in the software engineering community
to utilize transformation patterns as part of the transforma-
tion development process [50,51], the sheer volume of the
research focused on a specific activity of the pattern-process
and tried to optimize it. MUPPIT, on the other hand, is trying
to fill this gap by providing a complete pattern-process that
covers anti-pattern identification, pattern proposition, pat-
tern application (generating a TDM based on the pattern),
and TDM evaluation.

Perhaps the most related work to MUPPIT is the work
by Ergin et al. [7,18,20], Mokaddem et al. [8], Lano et

7 ATLAS Transformation Language.
8 Query/View/Transformation.

al. [13,16,19,52], Gabriele et al. [53], and Tichy et al. [54].
Table 7 summarizes the main contributions of MUPPIT in
comparison to these related research projects. These projects
address a way of more than introducing anti-patterns and
solutions, i.e., they provide using these concepts. The com-
parison criteria are defined based on the activities defined
in the MUPPIT process. In Table 7, the works appeared in
order of publication date. The letter M in the table means
manual, and letter A declares an automatic or semi-automatic
method. The label “Inc” means that the idea is not supported
completely in our study, and “Dep” identifies cases, which
are dependent on other tools to proceed. In the following, we
will introduce each work in detail.

One of the most rigorous research in this field is con-
ducted by Lano and Rahimi [13]. They presented several
patterns, collected and classified into classes, formodel trans-
formations [55], then documented them in a pattern catalogue
containing 29 patterns. In pattern application, they improved
their UML-RSDS framework [56] by integrating that with
the transformation patterns [23,55,57], which finally resulted
in a tool support to use patterns in a proper way [52]. The
UML-RSDS framework is considered as one of the most
comprehensive works in this domain. In UML-RSDS, devel-
opers define a transformation based on patterns that are
specified using a formal-mathematical language. As shown
in Table 7, UML-RSDS project has been developed through
several iterations.While in the early versions ofUML-RSDS,
choosing the proper pattern that corresponds to a specific
problem was the responsibility of the developer and auto-
matic model generation was not supported, later, Lano and
Rahimi [13] defined metrics to measure the model trans-
formation complexity to guide the process of selecting and
applying design patterns [16]. Then, they defined a meta-
model-based language [13] for pattern specification based
on the UML meta-models and formal methods which pro-
vides a heuristic pattern selection approach based on their
previous research [16]. Moreover, they added pattern veri-
fication and a synthesis process to UML-RSDS as well, to
generate design and implementation model of a transforma-
tion from its specification, automatically [19]. Using formal
specification for specifying patterns makes it difficult for the
average developer to use the tool.

Ergin et al. [7,18,20] presented Delta, a domain-specific
and agnostic specification language for transformation pat-
terns. The first version of Delta [18] supports five transfor-
mation languages and four transformation patterns, in which
patterns are limited to graph transformations and need to
be selected by the developer and be applied manually dur-
ing the design phase. In the second version of Delta, Ergin
et al. [7,20] have improved their semi-formal language and
made it extensible to support adding other patterns. They
added support for 15 patterns, 14 extracted from literature
and one introduced by themselves, and provided a tool to
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help developers to generate model transformation excerpts
automatically. Using Delta, a developer selects a pattern and
then customizes it according to the problem. Next, according
to the selected transformation language, a model transforma-
tion excerpt, which describes the pattern, is generated. The
work done by Ergin et al. [7,20] is comprehensive; however,
it does not cover aspects such as anti-pattern detection and
pattern proposition.

Mokaddemet al. [8] proposed apattern detection approach
based on the patterns introduced by Ergin [7]. Their approach
detects the partial and complete Delta patterns [7] in declara-
tive model transformations. In addition to detecting patterns,
the accuracy level of the detection process is measured and
presented to the transformation developer. The detection pro-
cess consists of four phases. First, the Delta patterns are
encoded as rules to be applied to the transformations. Second,
a transformation is specified at the abstraction level as a set
of components. These two phases are implemented using the
Delta language [7]. In the third phase, the approach explores
which rule of a transformation or component can participate
in the pattern rules. Finally, the execution flow of the partici-
pant ruleswill be checked if it satisfies the scheduling scheme
in the pattern structure or not. Accordingly, the scheduling
scheme will be generated. While Mokaddems research can
be extended to cover more languages and patterns, the cur-
rent implementation is limited to detect the control structure
of patterns. Moreover, the approach does not cover activi-
ties such as anti-pattern detection, pattern application, and
transformation evaluation.

In the domain of bad smells and anti-patterns, we must
introduce the work of Tichy et al. [54]. They have studied
several scenarios in the Henshin engine [58], each containing
a problem in the Henshin rules and a corresponding detector,
which represents the solution in the Henshin meta-model.
Using their approach, a transformation engineer can gener-
ate Henshin rules from the Henshinmeta-model such that the
transformation rules do not contain the introduced problems.
This work is dependent on the graph-based Henshin transfor-
mation rules. In addition to introducing the possible problems
in Henshin transformations, the authors provide automatic
conformance to pattern solutions. The authors used the terms
bad smell and anti-pattern interchangeably. They defined bad
smells as scenarios which “can negatively affect the perfor-
mance of the application of model transformations.” Hence,
the introduced bad smells are close to the definition of anti-
patterns in our paper. Their work differs from ours in the
sense they do not identify anti-patterns by analyzing TDMs.
Instead, they directly embed the pattern solutions into the
Henshin engine.

Gabriele et al. [53] defined smells as quality improve-
ment indicators that may take the form of metrics or patterns.
They introduce the concept of quality smells as the basis for
improving the quality of rule-basedmodel-to-model endoge-

nous graph transformations. They defined many quality
metrics such as conciseness, compatibility, and changeabil-
ity, that they refer to as metric-based smells. Then, they
introduced six scenario that affect these metrics as pattern-
based smells.Apattern-based smell scenariomainly specifies
a problem, affectedmetrics, and the solution. These scenarios
are similar to the concept of anti-pattern/pattern solution in
ourwork.According to the qualitymetrics that are considered
in this work, the pattern-based smells were defined to explain
problems related to the size and redundancy of transforma-
tions. In contrast to Tichy et al [54], Gabriele et al. [53] have
described scenarios in a formal way. Their formal descrip-
tion contains detection and a refactoring scenario which are
similar to identifying the transformation anti-patterns and
applying the pattern-solutions in MUPPIT. The refactoring
step in Gabriele et al. study considers semantic preservation
of transformation rules as well. To integrate these refactoring
scenarios to the Henshin engine, Gabriele et al. have defined
some rules on top of the Henshin rules in the transformation
model using EMF Refactor.9 Therefore, applying the solu-
tion, or refactoring, is performed in an automatic way. This
study provides the detection of pattern-based smells, or anti-
patterns, manually by a detection description in scenarios.

Another research close to our work is the study by Wim-
mer et al. [41]. The authors provided a catalogue in a format
suggested by Fowler [33] including 27 refactoring scenarios
formodel-to-model transformations.Each scenario describes
a problem and a corresponding refactoring solution. The
catalogue was extracted based on the available ATL trans-
formations, but many of the problems can occur in other
transformation languages as well. Wimmer et al.’s research
is similar to MUPPIT in the sense that they also consider
the detection of anti-patterns, as well as the use of pattern
solutions to improve the transformation quality. Moreover,
the evaluation has been performed similar to a part of MUP-
PIT transformation and by measuring metrics, including bad
smell metrics. However, implementing this refectory cata-
logue is suggested as in-place transformation and shown in
ATL language. This study cannot do automatic anti-pattern
identification, pattern proposition, and solution application.
To preserve the transformation behavior, authors have used
the same approach thatwe used and compare transformations
target models before and after refactoring by tools such as
EMF Compare.

In a nutshell, the work presented in this paper (MUPPIT)
is in continuation of our previous study [17] and is influenced
by the works by Lano et al. [19] and Ergin et al. [7,20].MUP-
PIT enables the transformation engineers to use high-level
abstraction models based on transML or MeTAGeM specifi-
cations as opposed to formal methods. It provides a complete
round trip for model transformation development from iden-

9 https://www.eclipse.org/emf-refactor/.
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tifying transformation anti-patterns to pattern application,
TDMgeneration, and evaluation. MUPPIT has improved our
previous work [17], in terms of the process, automation, and
implementation to provide a process and a semi-automated
pattern-based integration development tool for model trans-
formations. In our previouswork, the toolwas able to propose
the Phased Construction and Auxiliary Model patterns by
checking the TDM structure against the pattern specifica-
tions. The current paper has improved our previous work by
adapting the concept of anti-patterns, as possible weaknesses
in the designed TDMs, and proposing a different iterative
process which automates all the steps from identifying the
anti-pattern to applying the solution pattern. The evaluation
in the previous work was performed by fewer performance
metrics and applied only to a simple case study. In the current
paper, we have instantiated the introduced process with four
scenarios and evaluated it using three different case studies.

9 Conclusions and future work

In this paper, we presentedMUPPIT, a systematic process for
identifying anti-patterns inmodel transformations and apply-
ing pattern solutions with the overall goal of being the quality
of the transformations. MUPPIT is an Eclipse plug-in that
extends the Epsilon language. It relies on two transformation
engineering frameworks, transML and MeTAGeM, which
support rule-based transformations. Moreover, the quality
of the TDMs that are generated using MUPPIT was eval-
uated by comparing the TDMs before and after applying
MUPPIT using various metrics including syntactical com-
plexity, the number of create actions per rule, the maximum
sub-expression complexity, modularity, and execution time.
When applied to three cases studies involving four anti-
patterns and their corresponding solutions, the results show
that the TDMs generated by applyingMUPPIT aremore effi-
cient, modular, and less complex than the original one.

One future direction is to extend MUPPIT to other trans-
formation engineering framework to support other types
of transformation. Regarding MUPPIT usability, MUPPIT
requires to be fully integrated to the transformation engineer-
ing frameworks. The idea helps in automatically transmitting
inputs and outputs between MUPPIT and frameworks. To
this end, MUPPIT needs to be released as an executable
plug-in inside of frameworks. In result, TDM and related
meta-models, i.e., MUPPIT inputs, can be taken by MUP-
PIT instead of asking the developer. On the other hand, the
generated TDM will be also automatically replaced with the
original one in frameworks. We also need to experiment with
more scenarios (anti-patterns and their corresponding pat-
terns) to extend included anti-pattern and pattern scenarios
as an large open-source catalogues. In addition, we need to
define more indicators (i.e., bad smells) that we can use to

reveal the presence of anti-patterns in a more efficient way.
Moreover, we the current version of MUPPIT detects the
exact match of an anti-pattern. To support multiple variants
of the same anti-pattern, we need to implement a matching
mechanism that relies on similarity measures. Furthermore,
we intend to work with transformation engineers to evaluate
the usefulness of MUPPIT in practice. Finally, we need to
investigate the use of other techniques for automatic detec-
tion of anti-patterns such as the use of tracing [59,60] and
software debugging based on log analysis [61,62]. These
dynamic analysis approaches are based on the analysis of
the flow of execution (or simulation) of transformations and
therefore have the potential to detect anti-patterns that are
hard to profile through mere use of performance metrics.

Appendix

A Supplementary images

See Figs. 21, 22 and 23.

B Scheduling anti-pattern and pattern solu-
tions

The anti-pattern identification and pattern application in this
paper were implemented using Epsilon language. Therefore,
the execution schema for each one follows Epsilon execution
semantics, which can be found for both EPL10 and ETL11

on the Epsilon website. In the following we elaborate on the
scheduling rules of anti-patterns and pattern solutions that are
used in this paper. Each scheduling rule is a task performed
by Epsilon statements in form of pre, post, transformation
rule, do-blocks, and/or a function call. Our implementation is
based on the iterative mode of Epsilon execution semantics,
in which the anti-pattern identification is repeated until no
more matches have been found in the TDM elements.

The Spaghetti Transformation anti-pattern starts with
defining a global variable to keep the status of mapping ele-
ments in the TDM. Then, a rule iteratively checks all the
mapping elements of a TDM against the high-level design
meta-models. Each mapping that does not satisfy the con-
straints shown in Table 1 is added to a set, called patternSet
which keeps mappings with Spaghetti Transformation sce-
nario. Also, the global value is changed to show the presence
of Spaghetti Transformation scenario in the TDM, i.e, it is
changed from false to true. Finally, after matching all the
mappings, the result is printed for the developer. In Epsilon,
the result of an EPL code, i.e., anti-pattern identification, can

10 https://www.eclipse.org/epsilon/doc/epl/.
11 https://www.eclipse.org/epsilon/doc/etl/.
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Fig. 21 Transformation design
meta-model of transML, from
[3]

Fig. 22 Transformation high-level design meta-model of MeTAGeM [6]
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Fig. 23 Transformation low-level design meta-model of MeTAGeM [6]

be stored and transformed between the other languages of
the Epsilon family using a set, patternSet.

Phased Construction An ETL code is executed to apply
Phased Construction solution to the original input TDM.
First, the patternSet, provided by identifying spaghetti,
including themappingswith Spaghetti scenario is taken as an
input. Tokeep the originalTDM, anewTDMis generated and
Phased Construction solution is applied to a new one. An ini-
tial rule generates independent elements onmapping concept
in the TDM.Then,A rule recreates thosemappingswhich are
not a member of the patternSet as a copy of these elements
in the original TDM. Moreover, features and dependencies
of these mappings are set same as the original TDM. Then,
each mapping in the patternSet, i.e., a mapping which needs
to be restructured, is processed. A rule creates a newmapping

element for each mapping in the patternSet while the created
element has the same features as the original mapping, but it
only accesses one level of the target meta-model. In fact, for
each mapping in the patternSet, the number of involved tar-
get elements are counted using the conditional statement in
Table 2, and for each one, a new mapping is generated. The
rest of the features and dependencies of the created map-
ping element are populated using the original mapping. It is
noticeable that this paper employs the top-down approach for
restructuring spaghettimappings.However,mappings in pat-
ternSet are processed in order that they have been defined by
the developer in the TDM. In both transML and MeTAGeM,
considering themappings order in TDM is a developer’s task.

Frequent Invocation Regarding the TDM meta-model,
each low-level TDM defines the transformation rule body
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inside of the Operation elements. Identifying the Frequent
Invocation is performed by a rule which for each transfor-
mation rule, in the order that they have been defined in the
TDM, checks whether its Operation body contains the select
command. If so, it puts the Operation element in a set, pat-
ternSet. If the patternSet contains any Operation, then the
developer is informed of the presence of Frequent Invoca-
tion.

Object Indexing Scheduling schema of applying Object
Indexing on TDMs starts with a rule which regenerates ele-
ments of the original TDM, except the Operation elements.
Operation elements are generated if those are not a mem-
ber of the patternSet. Otherwise, identified Operations with
Frequent Invocation scenario, are differently scheduled. For
eachOperation in the patternSet, a rule of the schema extracts
the context of the select command, instances of the invoked
context, and invoked property by the select command. Then,
a map structure is generated by the invoked property value as
the index associatedwith the invoked instances of the context
type. This map is stored and to be used instead of the select
command. Then, the schema rule restructures the TDM by
changing the Operation body and substitutes the select com-
mandby the generatedmap structure. The changedOperation
is added to the related element of the TDM and dependencies
are set same as the original TDM. Finally, schema is repeated
to check the next Operation in the patternSet.

Return-First Command The scheduling schema for
identifying the Return-First Command is same as the
scheduling for Frequent Invocation. However, in this sce-
nario, the scheduling rule checks the body of all Operations
against the select().first() command. Then, if Operations con-
tain the checked command, the scheduling rule puts them in
the patternSet.

Usage of IteratorsApplying theUsage of Iterators is sim-
ilar to the Object Indexing. A scheduling rule regenerates all
the elements of the original TDM. However, Operation ele-
ments or transformation rule bodies are regenerated if they
are not included in the patternSet. Otherwise, a rule is sched-
uled to find the conditional statement of the select command
in the Operation body. Then, inside the Operation element,
the present select(condition).first() command is substituted
with theany(condition) statement. Finally, the changedOper-
ation is added to the related transformation rule in the new
TDM and dependencies are set same as the original TDM.
The schema is repeated for all Operation elements in the
patternSet.

BoatAnchorArule collects all element types of the trans-
formation source model and puts them in a set called Source.
Then, a secondary rule iteratively checks eachmember of the
Source set against the TDM elements. If the Source member
is not a member of the TDM elements, it will be added to the
ExcludedSet. Finally, another rule checks the ExcludedSet

and informs the developer of the existing Boat Anchor if the
set is not empty.

Filtering solution The ExcludedSet in identifying Boat
Anchor is transmitted to the applying Filtering solution in
patternSet. In this scenario, the transformation source model
is restructured. A premier rule regenerates transformation
source model elements except element types included in the
patternSet, i.e., elements that need to be excluded from the
transformation source model. Each element in patternSet,
i.e., excluding element, is ignored by the premier rule if it
does not have anydependent element.Otherwise, a secondary
rule is called to remove the excluding element dependency
in the model hierarchy. In fact, the secondary rule regener-
ates the excluding elements and its dependent element in
a flat view and adds them to the generated model. Next,
the execution schema is returned to the premier rule and
it removes the excluding element. Then, the premier rule
continues by checking and regenerating the rest of the trans-
formation source model elements.
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