
Software and Systems Modeling (2021) 20:1299–1332
https://doi.org/10.1007/s10270-020-00852-z

REGULAR PAPER

Virtual network embedding: ensuring correctness and optimality by
construction using model transformation and integer linear
programming techniques

Stefan Tomaszek1 · Roland Speith1 · Andy Schürr1

Received: 12 March 2020 / Revised: 26 October 2020 / Accepted: 8 December 2020 / Published online: 31 January 2021
© The Author(s), under exclusive licence to Springer-Verlag GmbH, DE part of Springer Nature 2021

Abstract
Virtualization technology allows service providers to operate data centers in a cost-effective and scalable manner. The data
center network (substrate network) and the applications executed in the data center (virtual networks) are often modeled as
graphs. The nodes of the graphs represent (physical or virtual) servers and switches, and the edges represent communication
links. Nodes and links are annotated with the provided and required resources (e.g., memory and bandwidth). The NP-hard
virtual network embedding (VNE) problem deals with the embedding of a set of virtual networks to the substrate network
such that (i) all (resource) constraints of the substrate network are fulfilled, and (ii) an objective is optimized (e.g., minimizing
the communication costs). The existing two-step highly customizable model-driven virtual network embedding (MdVNE)
approach combines model transformation (MT) and integer linear programming (ILP) techniques to solve the VNE problem
based on a declarative specification. MdVNE generates element mapping candidates from an MT specification and identifies
an optimal and correct embeddings using an ILP solver. In the past, developers created theMT and ILP specificationsmanually
and needed to ensure carefully that both are compatible and respect the problem description. In this article, we present a novel
construction methodology for synthesizing theMT and ILP specification from a given declarative model-based VNE problem
description. This problem description consists of a metamodel for substrate and virtual networks, additional OCL constraints,
and an objective function that assigns costs to a given model. This methodology ensures that the derived embeddings are
correct w.r.t. the metamodel and the OCL constraints, and optimal w.r.t. the optimization goal. The novel model-based VNE
specification is applicable to different network domains, environments, and constraints. Thus, the construction methodology
allows to automate most of the steps to realize a correct and optimal VNE algorithm compared to a hand-crafted VNE
implementation. Furthermore, the simulative evaluation confirms that using MT techniques reduces the time for solving the
VNE problem considerably in comparison with a purely ILP-based approach.

Keywords Data center · Virtual network embedding · Model-driven development · Integer linear programming · Model
transformation · Graph transformation · Triple-graph grammar · Object Constraint Language

1 Introduction

Today, online services such as social networking and e-
commerce are ubiquitous and place high demands on service

Communicated by Davide Di Ruscio.

B Stefan Tomaszek
stefan.tomaszek@es.tu-darmstadt.de

Andy Schürr
andy.schuerr@es.tu-darmstadt.de

1 Real-Time Systems Lab, TU Darmstadt, Merckstraße 25,
64283 Darmstadt, Germany

providers in terms of availability and scalability. The enor-
mous amount of data involved in the analysis, processing,
and storage tasks pushes traditional network topologies and
management techniques to their limits [9]. Cloud comput-
ing is a leading technology in this area and allows users to
meet the high demands on availability, scalability, and flexi-
bility. Data centers provide the required large number of data
and storage servers. While operating these complex envi-
ronments, hardware virtualization decouples the underlying
hardware infrastructure from the running applications. This
allows operators to provide new services automatically and
to migrate these services to other physical servers flexibly,
scalably, and economically. The achieved high utilization

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10270-020-00852-z&domain=pdf
https://orcid.org/0000-0002-5551-9374
https://orcid.org/0000-0001-8100-1109

1300 S. Tomaszek et al.

of the physical network and hardware resources leads to a
reduced energy consumption. The configuration of these vir-
tual networks and servers is standardized and, often,managed
centrally. This allows a service provider to operate a data cen-
ter in a hardware- and vendor-independent way.

The embedding of virtual networks in data centers is a
complex task. The virtual network embedding (VNE) prob-
lem describes a general optimization problem for embedding
a set of virtual networks into a substrate network (e.g., a data
center) [17]. Common optimization goals are the minimiza-
tion of communication or monetary costs, or used hardware
resources [57]. Besides, structural, functional, and non-func-
tional constraints must be fulfilled during the embedding.
Structural constraints affect the resources of the physical
servers and links, which must be respected (e.g., computing
capacity of servers and bandwidth of links). The functional
and non-functional constraints are defined as service-level
agreements, security policies, or hardware-specific function-
alities (e.g., firewalls). The abundance of possible combina-
tions of (non-)functional constraints with different network
topologies, application scenarios, and optimization goals
makes the development, adaptation, simulation, and com-
parison of VNE algorithms challenging.

Due to the increasing importance of cloud computing and
network virtualization, research to solve the VNE problem
in data centers has been intensified [9,17]. In addition to
embedding one virtual network after another, several vir-
tual networks can also be embedded simultaneously (e.g.,
to improve the utilization of the data center). In general,
VNE is an NP-hard optimization problemwith a large search
space [5]. Therefore, various algorithms have been proposed
to reduce the search space and, thus, the runtime to solve the
VNE problem. Surveys on VNE (e.g., [5,17]) focus on two
major types of approaches: approaches based on heuristics
(e.g., [8,20,60]) and approaches based on integer linear pro-
gramming (ILP) (e.g., [56,60]). Heuristics-based approaches
are tailored to particular infrastructures and application sce-
narios. These approaches tend to reduce the search space
drastically to achieve an approximation of the optimal solu-
tion of theVNEproblemwithin an acceptable amount of time
even for large data centers. For example, Guo et al. [20] intro-
duce a heuristics-based algorithm to map virtual networks
in the smallest possible subset of a tree-based data center
(with server as leaves and switches as inner nodes), only
taking bandwidth constraints into account. Zeng et al. [60]
additionally consider the traffic between virtual machines
and minimize the total communication costs between them
but without taking the bandwidth of the links into account.
However, both algorithms lack optimality guarantees regard-
ing the compliance with all basic constraints. Also, adapting
these algorithms to other usage scenarios andnetwork topolo-
gies is difficult. In contrast, ILP-based approaches support a
wide range of applications, ensuring compliance with con-

straints and requirements, and achieving optimal results.
Thus, not only (hard) constraints, like in heuristics-based
algorithms, can be integrated into the ILP program, but also
all kinds of constraints and requirements in addition to the
optimization goal. Due to the large search space, the appli-
cability is limited to small data centers [56].

To close the gap between hand-crafted highly adapted
heuristics-based and purely ILP-based solutions, we pro-
posed an iterative working model-driven virtual network
embedding (MdVNE) approach for tackling the VNE prob-
lem using a combination of model transformation (MT) and
ILP techniques [49]. Figure 1 shows a schematic view of
MdVNE. AnMdVNE configuration (in the middle of Fig. 1)
represents the problem specification for MdVNE and con-
sists of two parts:MT rules and an ILP formulation including
an objective function. The MT rules define possible ele-
ment mappings from virtual to substrate elements A and
are used to generate possible elementmapping candidates 1 .
An element mapping candidate corresponds to a potentially
possible element mapping between a virtual and substrate
element. From the set of element mapping candidates B ,
the candidate selection step 2 chooses a correct and optimal
element mapping C by solving the ILP problem. The MT-
based candidate generation reduces the number of potential
element mappings for the candidate selection step compared
to an ILP-only candidate selection. Importantly, the candi-
date generation step does not generate all combinations of
possible embeddings of a virtual network into a substrate
network. Instead, potentially allowed individual element
mappings of virtual nodes and links to substrate nodes and
links are generated. These element mappings are then com-
bined with additional constraints to reduce the number of
possible embeddings. After executing the MT rules, the set
of elementmapping candidates still contains an optimal solu-
tion that fulfills all specified constraints (i.e., is correct).Here,
an optimal solution achieves the global maximum (mini-
mum) of the objective function for the VNE problem. The
MdVNE approach allows developers to create novel VNE
algorithms in a declarative manner (thanks to the MT-based
specification) while considering optimization goals and con-
straints of the VNE problem description. This adaptability
and the ensured optimality of the resulting embeddings make
it possible to compare differentVNE algorithms (e.g., heuris-
tics) with their specific constraints and network topologies.
Deviations from an optimal solution can be assessed quan-
titatively and qualitatively. Therefore, MdVNE also fosters
the creation of benchmarks for VNE algorithms.

The top part of Fig. 1 sketches the major contribution of
the article: a novelmethodology for deriving anMdVNEcon-
figuration systematically based on a declarative model-based
specification of the VNE problem description. The model-
based VNE problem description consists of

123

Virtual network embedding: ensuring correctness and optimality by construction using model 1301

VNR1

1

ILPMT MdVNE configuration

Substrate
network

Virtual
network
requests

2

VNR1

VNR2

…

A

VNR1

VNR2

…

B

VNR2

…

C

Used server
Free server
Potential element mapping
Switch, Link
Element mapping candidate
Embedding
Unprocessed
Processing
Completed

New contribution

Construction

Model-based
specification

Metamodel

Basic MT
rules

OCL constraints

Graph
constraints

ILP
constraints

ILP
objective

Optimization goal

C
an

di
da

te
 g

en
er

at
io

n

C
an

di
da

te
 s

el
ec

ti
on

EOCL COCLI

II III

Fig. 1 Overview of MdVNE workflow from problem specification to embedding decision

– a metamodel, which specifies structural properties of
valid virtual networks, substrate networks, and embed-
dings of virtual to substrate networks,

– additional OCL constraints, which ensure that all
network-, resource-, and use-case-specific constraints are
fulfilled,

– an objective function, which specifies the optimization
goal for the VNE problem.

The construction step transforms this model-based specifi-
cation into an MdVNE configuration and ensures that each
candidate selected in step 2 is correct w.r.t. the metamodel
and the OCL constraints, and optimal w.r.t. the optimiza-
tion goal. This construction step ensures a strong optimality
(search for a global optimum) and further extends the
MdVNE approach presented in [49].

The following four major contributions of this article
extend our previous work [48] considerably:

(i) We define the VNE problem in data centers using
model-based techniques, such as class diagrams andOCL
constraints, which are complemented by a specification
of the optimization goal (see Sect. 2). This declarative
representation is formal and human-readable at the same
time.
(ii) We show how to derive an MdVNE configuration
systematically from a model-based specification using
results on the synthesis of model construction rules [26]
and the refinement ofMT rules based onOCL constraints

[24,41] (see Sect. 3). This allows for automating most of
the steps to realize a correct and optimal VNE algorithm.
(iii) We show that an MdVNE configuration resulting
from the construction step is correct w.r.t. the metamodel
including the OCL constraints and optimal w.r.t. the opti-
mization goal (see Sect. 4). Thereby, we prove that any
embedding algorithm developed using MdVNE return
optimal and correct embeddings.
(iv) We present and discuss results of a simulative evalu-
ation of MdVNE in comparison with a purely ILP-based
approach w.r.t. scalability, optimality, and correctness
(see Sect. 6). Thereby, we investigate the question if the
time for solving the VNE problem can be reduced by
using MT techniques.

In relation to our previous work [48], the set-theoretical
aspects of the search spaces introduced in [48] are used and
significantly extended to prove the correctness and optimality
of the new construction methodology. In the evaluation sec-
tion, the setup from [48] is reused and extended by a data set
that reflects the characteristics of real-world scenarios more
precisely. The research questions are considered and dis-
cussedmore intensively, so that RQ2 from [48] is represented
by RQ1 and 2, and RQ3 reappears within the discussion of
threats to validity. Tomaintain continuity between this article
and [48], the introduction and basic ILP-based VNE problem
description have only been adjusted slightly.

This article is structured as follows along the steps and
artifacts in Fig. 1. In Sect. 2, we present an established VNE

123

1302 S. Tomaszek et al.

problem description based on ILP and introduce our novel
model-based problem approach. In Sect. 3, we present the
novel construction methodology for generating the MT rules
and the ILP formulation from themodel-basedVNEproblem
description. After that, we prove correctness and optimality
for the novel construction methodology in Sect. 4. Then, we
present in Sect. 5 the tool support to simulate the derived
algorithms. In Sect. 6, we present evaluation results and a
discussion regarding the scalability, correctness, and opti-
mality of the MdVNE implementation. After a discussion of
related work in Sect. 7, we conclude this article in Sect. 8.

2 VNE problem description

In this section, we define the VNE problem for data centers
formally. The VNE problem description is divided into three
parts: (i) the substrate and virtual network models, (ii) the
constraints, and (iii) the objective of the optimization prob-
lem. The problem description considers the embedding of
one or more virtual networks into a substrate network and
is an NP-hard problem [5]. In general, a substrate network
can also be a virtual network. Therefore, the general VNE
problem considers nested networks and different abstraction
layers [17]. In the following, we focus on the VNE prob-
lem for data centers [9]. In this setting, a substrate network
represents a physical data center.

The presented problem description consists of a model-
based and an ILP-based part. The model-based specification
in Sect. 2.1 (Fig. 1) is a novel VNE problem description
and one major contribution of this article. It consists of a
metamodel (represented by a class diagram) as detailed in
Sect. 2.1.1, a set of OCL constraints in Sect. 2.1.2, and
an objective function in Sect. 2.1.3. The ILP formulation
in Sect. 2.2 is inspired by Sahhaf et al. [43]. It consists of
three parts: substrate and virtual networkmodel (Sect. 2.2.1),
decision variables (Sect. 2.2.2), linear equations and inequal-
ities (ILP constraints, Sect. 2.2.3), and an objective function
(Sect. 2.2.4).

2.1 Model-based problem description

The model-based specification (see also Fig. 1) for the VNE
problem description is divided into the following three parts:
(i) substrate and virtual network models, (ii) constraints,
and (iii) the optimization goal. In the following, we provide
details on each of these parts.

2.1.1 Metamodel

We employ metamodeling as a technique for specifying
the structural properties of valid virtual networks, substrate
networks, and embeddings of virtual networks to substrate

networks. A metamodel M M characterizes a set of valid
model instances L(M M) that conform to this metamodel.
It consists of classes, attributes, and associations with multi-
plicities. We use class diagrams [18] as concrete syntax for
metamodels. Figure 2 shows the joint metamodel for (i) vir-
tual networks on the left-hand side (VirtualNetwork),
(ii) substrate networks on the right-hand side (Substrate-
Network), and (iii) element mappings from virtual to
substrate network elements as annotated associations in the
center.

The Virtual and Substrate prefixes indicate to
which network each class belongs. A substrate network,
modeled as an undirected weighted graph, consists of nodes
(SubstrateNode), links (SubstrateLink), and paths
(SubstratePath). Additionally, a substrate node can
either be a server or a switch. The condition that each sub-
strate node is either a server or a switch is represented by
the two subtypes SubstrateServer and Substrate-
Switch of the abstract type SubstrateNode. Substrate
nodes and links provide resources. For example, we consider
the following resources in this article: A server has integer-
valued computing capacity (cpu), memory (memory), stor-
age (storage), a substrate link has an integer-valued
bandwidth (bandwidth), and a switch has no associated
resources. A path has a source and a target node, and is com-
posed of substrate links. The acyclicity of paths cannot be
expressed graphically in themetamodel.We ensure this prop-
erty by generating all substrate paths during the creation of
the substrate links. Whenever a substrate link is created, the
corresponding paths are also generated up to a fixed number
of hops (e.g., depending on the network topology). There-
fore, the generation of all paths is only done once during the
initialization of the substrate network. A substrate link has
source and target associations to specify the source and
target node.

The structure of the metamodel part for virtual networks,
also, modeled as an undirected weighted graph, is similar to
the one for substrate networks. In contrast to the substrate
network, virtual node and link resources are interpreted as
required instead of provided resources. Another major dif-
ference is that a virtual node implements exactly one service.
This means, a virtual node is either a virtual server or a vir-
tual switch and a substrate server can host a virtual server
or switch. Additionally, a virtual server has at most one fail-
over server. A fail-over server operates as backup or standby
server. If themaster server fails, its applications aremigrated
to the fail-over server. To represent the use-case-specific con-
straint that a virtual server may have at most one fail-over
server, themetamodel contains a self-associationof theVir-
tualNode class.

123

Virtual network embedding: ensuring correctness and optimality by construction using model 1303

0..*
outgoingLinks

source
1

0..*
incomingLinks

target
1

0..*
incomingLinks

target
1

source
1

0..*
outgoingLinks

VirtualNetwork

VirtualNode

VirtualSwitch

VirtualServer

− cpu: int
− memory: int
− storage: int

VirtualLink

− bandwidth: int
0..*
virtualLinks

substratePath
0..1

network
1

paths
0..*

SubstrateSwitch

SubstrateServer

− cpu: int
− memory: int
− storage: int

SubstrateNetwork

SubstratePath

− bandwidth: int
− hops: int

SubstrateNode

links 0..*

paths 0..*

SubstrateLink

− bandwidth: int

network
1 links

0..*

0..*
outgoingPaths

source
1

0..*
incomingPaths

target
1

network
1 nodes

0..*

network
1

nodes
0..*

network
1

links
0..*

0..*
virtual

substrate
0..1

0..*
virtualSwitches

substrateNode
0..1

0..*
virtualServers

substrateServer
0..1

NtN

LtP

StN

StS

master
0..1failover

0..1

Virtual elements Element mappings Substrate elements

Fig. 2 Metamodel for virtual networks, substrate networks, and element mappings

Example: Virtual and substrate networks,
Throughout this article, we use the networks from Fig. 3
as a running example. For simplification, the two networks
are represented as separate graphs and not as interconnected
graphs. The right-hand side represents the substrate network,
and the left-hand side the virtual network request, which will
be embedded into the substrate network. To simplify the pre-
sentation, we neglect the bandwidth of links, the storage,
and memory of servers in the following. The virtual network
consists of two servers (V 2 and V 3) with the required capac-
ities cpu = 2 and cpu = 3, both connected to a virtual
switch (V 1). The substrate network consists of three sub-
strate servers (S2, S3, S4) with cpu capacities 2, 5, and 0,
respectively. All substrate servers are connected to the same
substrate switch (S1), and the virtual server V 3 is the fail-
over server for V 2.

The elementmappings of virtual nodes and links are repre-
sented as associations between virtual and substrate elements
(e.g.,VirtualServer.substrateServer). Themul-
tiplicities (i.e., 0..1) at the association ends of the substrate
elements indicate that each virtual element has at most one
corresponding substrate element.

Example: Element mapping candidates specified by the
metamodel,
In Fig. 4, families of element mappings aret presented as
green dotted lines, representing the associations between
a virtual and a substrate network element (Virtual-
Switch and SubstrateNode or VirtualServer and
a SubstrateServer). This means that every dotted line
represents an element mapping candidate. Therefore, the ele-
ment mapping candidates are only subject to the restrictions
resulting from the start and target nodes of the associations
(e.g., whether a virtual node is of type VirtualSwitch or
VirtualServer), but not the multiplicities at these asso-
ciation ends. Compliance with the multiplicities is ensured
later on in the transformation and solution of the ILP problem
(Fig. 5).

2.1.2 OCL constraints

The metamodel in Fig. 2 does not encode all constraints that
a valid solution for the VNE problem must fulfill. To ensure
that all network-, resource-, and use-case-specific constraints
are fulfilled, we complement the metamodel with a set of

123

1304 S. Tomaszek et al.

V1 : VirtualSwitch

V2 : VirtualServer
cpu = 2

V3 : VirtualServer
cpu = 3

S2 : SubstrateServer
cpu = 2

S3 : SubstrateServer
cpu = 5

S1 : SubstrateSwitch

S4 : SubstrateServer
cpu = 0

master

failover

Fig. 3 Running example

V1 : VirtualSwitch

V2 : VirtualServer
cpu = 2

V3 : VirtualServer
cpu = 3

S2 : SubstrateServer
cpu = 2

S3 : SubstrateServer
cpu = 5

S1 : SubstrateSwitch

S4 : SubstrateServer
cpu = 0

master

failover

Fig. 4 Possible element mapping candidates based on the metamodel

constraints formulated in the Object Constraint Language
(OCL) [19]. Since the full scope of OCL is not required
to describe common constraints from the VNE domain, we
limit ourselves in this article to a subset of OCL invariants.
This subset consists of the Essential OCL (EOCL) [19,41],
the two-valued, first-order logic fragment of OCL, and the
iterate() operation [19], which is restricted to the summation
of the individual elements in the set to be iterated (analo-
gous to the sum() operation). Since the iterate() operation
is required for the summation of resources (CPU, memory,
storage, and bandwidth), we define auxiliary functions for
each resource type. As an example, the auxiliary function
for summing up the CPU resources over a set of elements
(e.g., virtual servers) is presented below. The other auxiliary
functions for memory, storage, and bandwidth are defined
analogously.

def : cpuSum(col:Collection(T)):Integer

= col.iterate(elem:T; sum:Integer

= 0| elem.cpu+sum)

(1)

Modeling Node Constraints The node constraints ensure
that (1) all virtual nodes are mapped to exactly one sub-
strate node, (2) a substrate server can host a virtual server

V1 : VirtualSwitch

V2 : VirtualServer
cpu = 2

V3 : VirtualServer
cpu = 3

S2 : SubstrateServer
cpu = 2

S3 : SubstrateServer
cpu = 5

S1 : SubstrateSwitch

S4 : SubstrateServer
cpu = 0

master

failover

Fig. 5 Possible valid embedding

or switch and a substrate switch only a virtual switch, and
(3) the resources of a substrate node are not overbooked by
the resource demands of the virtual nodes mapped to it. The
first constraint is ensured by the metamodel (Fig. 2) because
the multiplicities of the associations between Virtual-
Server and SubstrateServer as well as between
VirtualSwitch and SubstrateSwitch only permit
to connect a virtual element to exactly one substrate ele-
ment. The second constraint is also ensured by themetamodel
because a virtual server (switch, resp.) can only be mapped
to a substrate server (switch, resp.). The only node con-
straints that are not covered by the metamodel are the
resource constraints for the computing capacity, memory,
storage, and bandwidth. These constraints require that the
aggregated required resources of all virtual nodes that are
mapped to a substrate node do not exceed the available
resources of this substrate node. Therefore, we represent this
requirement using three additional OCL constraints. As an
example for these constraints, we present the constraint for
the CPU resource Ccpu. The other constraints can be found
in Appendix A.1.

context SubstrateServerinv cpuSum(self.virtualServers) ≤ self.cpu
(Ccpu)

Example: Adding the OCL node constraints,
After enriching the metamodel with the OCL node con-
straints, we obtain the element mapping candidates shown in
Fig. 6. The OCL node constraint Ccpu leads to the rejection
of the element mapping candidates V 2 → S4, V 3 → S2,
and V 3 → S4.

Modeling Link Constraints The link constraints ensure that
(1) a virtual link is mapped to exactly one substrate path, (2)
the source and target nodes of a virtual link are mapped to
the source and target nodes of the substrate path, and (3) the
resources of the links in a substrate path are not overbooked
by the virtual links mapped to this substrate path.

The first link constraint demands that a virtual link is
mapped to exactly one substrate path. This constraint is

123

Virtual network embedding: ensuring correctness and optimality by construction using model 1305

V1 : VirtualSwitch

V2 : VirtualServer
cpu = 2

V3 : VirtualServer
cpu = 3

S2 : SubstrateServer
cpu = 2

S3 : SubstrateServer
cpu = 5

S1 : SubstrateSwitch

S4 : SubstrateServer
cpu = 0

master

failover

Fig. 6 Possible element mapping candidates based on the metamodel
and OCL constraints

ensured by the multiplicity (i.e., 0 . . . 1) of the association
VirtualLink.substratePath. The second link con-
straint require that the source and target node of a virtual link
are mapped to the source and target nodes of the substrate
path. This is reflected by the following OCL constraint Csrc,
whereas Ctrg is presented in Appendix A.1.

context VirtualLinkinv if

self.source.oclIsTypeOf(VirtualServer)

then self.source.oclAsType(VirtualServer).substrateServer

= self.substratePath.source

else self.source.oclAsType(VirtualSwitch).substrateNode

= self.substratePath.source

endif
(Csrc)

The third link constraint ensures that the bandwidth of the
substrate path is not overbooked by the bandwidth of the
mapped virtual links and is similar to the node resource
constraints (e.g., Ccpu). In our running example, we use the
following OCL constraint Cbw.

context SubstrateLinkinv (Cbw)

bandwidthSum(self.paths.virtualLinks) ≤ self.bandwidth

ModelingUse-Case-SpecificConstraints Ause-case-specific
constraint is a functional or non-functional constraints that
depends on the use case and may be specified in service-
level agreements, business models, or security policies [12].
As an example of a use-case-specific constraint, we inte-
grate the fail-over constraint into the set of OCL constraints.
One condition of the fail-over constraint is that a virtual
server has at most one fail-over server. This condition is
ensured by the metamodel due to the 0..1-multiplicity of

the VirtualNode.failover association. The remain-
ing two conditions need to be encoded using OCL. First, a
virtual server shall not be its own fail-over server Cfo1. Sec-
ond, the substrate servers of a master and its fail-over server
shall be distinct Cfo2.

context VirtualServerinv (Cfo1)

self.failover <> self

context VirtualServerinv self.failover.substrateServer (Cfo2)

<> self.substrateServer

Example: Including the OCL link and use-case-specific

constraints,
The element mapping candidates after including the link and
use-case-specific constraints are equal to Fig. 6.

2.1.3 Objective function

The objective function of a VNE problem varies depend-
ing on the application scenario, service provider, or business
model (like infrastructure as a service [10]). A common opti-
mization goal is to minimize the aggregated communication
costs for the virtual servers in the substrate network as in [60].
We assume that the optimization function can be represented
as a linear combination of constant values multiplied by the
respective mapping variables. Furthermore, we assume that
this cost function is defined by the network operator. Possi-
ble reference points for a cost calculation in practice include
required resources of virtual links and provides resources
of the substrate network, as well as, operating cost, delay,
or the substrate network structure. For common data center
topologies, cost matrices and an optimization function can
be found in [33]. To calculate the communication costs, we
use the cost matrix costl

p, which is constant at runtime and
defines the communication costs for each possible element
mapping of a virtual link l to a substrate path p. In this article,
we use the cost function from [33] for a 2-tier network with
a VL2 topology, which is defined as follows:

def : costl
p(l : VirtualLink, p : SubstratePath) : Integer

=

⎧
⎪⎨

⎪⎩

0 if p.hops = 0,

l.bandwidth wenn p.hops = 1,

5 · l.bandwidth wenn p.hops > 1.

(2)

For the model-based specification we are using an exten-
sion of the OCL language proposed in [29] to specify the
optimization function. This extension allows us to integrate

123

1306 S. Tomaszek et al.

the objective function into the OCL expressions. The opti-
mization goal is to minimize the aggregated communication
costs of all virtual links. To calculate the total communi-
cation costs, the costs of all possible element mappings of
virtual links on substrate paths must be summarized. The
post conditions ensure that all virtual links aremapped to sub-
strate paths and virtual servers (switches) to substrate servers
(servers or switches). This results in the following objective
function:

context VirtualNetwork::embed() : void

post: self.links → exists(substratePath)

post: self.nodes → forAll(n |
if n.oclIsTypeOf(VirtualServer)

then n.substrateServer → notEmpty()

else n.substrateNode → notEmpty())

minimize: self.links → iterate(l; total : Integer = 0 |
l.substratePath → total + iterate(p; costs : Integer = 0 |
costs + costl

p))
(Cobj)

2.2 ILP-based problem description

In this subsection, we introduce the substrate and vir-
tual network model (Sect. 2.2.1), the decision variables
(Sect. 2.2.2), linear equations and inequalities (ILP con-
straints, Sect. 2.2.3), and an objective (Sect. 2.2.4) as ILP
for the VNE problem.

2.2.1 Network model
Substrate Network Model We model the substrate network
as an undirected weighted graph GS = (N S, L S) contain-
ing a set of typed substrate nodes N S and links luv ∈ L S .
A path puv ∈ P S in the substrate network consists of a
sequence of acyclic connected links that connect nodes u
and v (see ILPsPath).

P S = {puv|puv ⊆ L S, u, v ∈ N S

∧ links of puv contain no loops

∧ links in puv connect u and v}
(ILPsPath)

Every node provides the following resource types: com-
puting capacity (C S

u),memory (M S
u), storage (S

S
u), a substrate

link a bandwidth (BS
luv
), and a switch has no associated

resource type (see ILPsRes).

∀u ∈ N S : C S
u , M S

u , SS
u ∈ N

+

∀luv ∈ L S : BS
luv ∈ N

+, u, v ∈ N S
(ILPsRes)

A substrate node exposes a set of service types (Sr , Sw) to
define which services (server, switch) may run on this node
(see ILPsTyp). The service type Sr includes the service type
Sw because a substrate server can also host a virtual switch.

∀u ∈ N S :

⎧
⎪⎨

⎪⎩

uSr , uSw ∈ {0, 1}
uSr = 1 iff u can host a server and a switch

uSw = 1 iff u can host a switch

(ILPsTyp)

Table 1 summarizes the introduced notation for substrate
networks.

Virtual NetworkModel Similar to the substrate network, we
model a virtual network as an undirected weighted graph
GV = (N V , LV). The resources and services of the virtual
nodes N V and virtual links li j ∈ LV are defined similarly to
the substrate network as follows.

∀i ∈ N V :

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

i Sr , i Sw ∈ {0, 1}
i Sr + i Sw = 1

i Sr = 1 iff i implements a server

i Sw = 1 iff i implements a switch

(ILPvTyp)

Equation (ILPvFo) encodes the relationship between a fail-
over and a master server.

∀i ∈ N V ,∀ j ∈ N V :
⎧
⎪⎨

⎪⎩

fi, j ∈ {0, 1}
fi, j =0 iff i and j have no relationship ∨ i Sw =1 ∨ j Sw =1

fi, j =1 iff i is master for the fail-over server j∧i Sr=1∧ j Sr=1

(ILPvFo)

123

Virtual network embedding: ensuring correctness and optimality by construction using model 1307

Table 1 Notations of the
substrate network

Notation Domain Description

GS = (N S, L S) – Substrate network GS with nodes N S and links L S

luv {0, 1} Substrate link luv between the nodes u and v

puv {0, 1} Substrate path puv between the nodes u and v

C S
u , M S

u , SS
u N

+ Computing capacity, memory, and storage of the substrate server u

BS
luv

N
+ Bandwidth of substrate link between node u and node v

uSr , uSw {0, 1} Substrate node u may host a server Sr and/or a switch Sw

Table 2 Notation for virtual
networks

Notation Domain Description

GV = (N V , LV) – Virtual network GV with nodes N V and links LV

li j {0, 1} Virtual link li j between the nodes i and j

CV
i , MV

i , SV
i N

+ Computing capacity, memory, and storage of the virtual server i

BV
li j

N
+ Bandwidth of virtual link between the nodes i and j

i Sr , i Sw {0, 1} Virtual node u may host a server Sr or a switch Sw

fi, j {0, 1} Virtual node j is the fail-over server for node i

Table 3 Notations for mapping
variables

Notation Domain Description

xi
u {0, 1} Specifies whether virtual node i is mapped to substrate node u

yi j
uv {0, 1} Specifies whether virtual link li j is mapped to substrate path puv

Table 2 summarizes the notations for virtual networks.

2.2.2 Mappingmodel and decision variables

The mapping model summarized in Table 3 determines the
set of decision variables of the ILP problem and specifies the
mapping of virtual elements to substrate elements. A node-
mapping variable xi

u ∈ X indicates whether a virtual node i
is mapped to a substrate node u. If xi

u = 1, virtual node i is
mapped to substrate node u. For each pair of substrate and
virtual node, a node-mapping variable exists.

∀i ∈ N V : ∀u ∈ N S : xi
u ∈ {0, 1} (ILPnn)

Analogously, a link-mapping variable yi j
uv ∈ Y indicates

whether a virtual link li j is mapped to a substrate path puv .

If yi j
uv = 1, the virtual link li j is mapped to the substrate path

puv .

∀li j ∈ LV : ∀puv ∈ P S : yi j
uv ∈ {0, 1} (ILPlp)

V1 : VirtualSwitch

V2 : VirtualServer
cpu = 2

V3 : VirtualServer
cpu = 3

S2 : SubstrateServer
cpu = 2

S3 : SubstrateServer
cpu = 5

S1 : SubstrateSwitch

S4 : SubstrateServer
cpu = 0

master

failover

Fig. 7 All ILP decision variables

Example: ILP decision variables,
In Fig. 7, the ILP node-mapping variables xi

u are shown
as blue dashed lines, which are the pairwise connections
between the virtual and substrate elements. Every blue
dashed line represents, therefore, a decision variable xi

u
between a virtual node i and a substrate node u. For example,
the variable xV 1

S1 = 1 if the virtual switch V 1 is mapped to
the substrate switch S1 otherwise xV 1

S1 = 0.

2.2.3 ILP constraints

In the following, we specify all technical, functional, and
non-functional requirements for embedding a virtual net-

123

1308 S. Tomaszek et al.

work to a substrate network as ILP constraints. We divide
these requirements into node, link, and use-case-specific con-
straints. A valid embedding of a virtual network fulfills all
constraints.

Node Constraints The first constraint ILPnc states that every
virtual node is mapped to exactly one substrate node. There-
fore, if an element mapping for a virtual node i ∈ N V and
substrate node u ∈ N S is chosen (xi

u = 1), then all other
element mappings xi

v for a substrate node v 	= u ∈ N S must
be rejected (xi

v = 0). Given N S = {u1, . . . , un}, ∑u∈N S xi
u

denotes the sum over all variables xi
1, . . . , xi

n .

∀i ∈ N V :
∑

u∈N S

xi
u = 1 (ILPnc)

The second constraint ILPnTyp requires that a substrate
node u is capable of hosting the service types of all virtual
nodes i mapped to u. A substrate server can host a virtual
server or switch and a substrate switch only a virtual switch.
We use the≤-operator to encode this logical implication [23,
31]. For example, choosing an element mapping xi

u = 1 with
i Sr = 1 implies that uSr = 1, that is, i Sr xi

u ≤ uSr . Note that
i Sr and i Sw are constants and not decision variables to ensure
a linear inequality. The variables i Sr and i Sw are equal to 1 iff
the virtual node i hosts a server and switch, respectively. In
contrast, xi

u is the decision variable for the element mapping.

∀i ∈ N V : ∀u ∈ N S : i Sr xi
u ≤ uSr , i Swxi

u ≤ uSw + uSr

(ILPnTyp)

The last three similarly structured node constraints ILPcpu,
ILPmem, and ILPsto (ILPmem, and ILPsto can be found in
Appendix A.1) ensure that the resources of a substrate node
u are not overbooked by the resource demands of the virtual
nodes mapped to u. The required resources (e.g., computing
capacity Ci) are coefficients of the corresponding mapping
variable xi

u and contribute to the sum if the mapping variable
is set (i.e., xi

u = 1).

∀u ∈ N S :
∑

i∈N V

Ci xi
u ≤ Cu (ILPcpu)

V1 : VirtualSwitch

V2 : VirtualServer
cpu = 2

V3 : VirtualServer
cpu = 3

S2 : SubstrateServer
cpu = 2

S3 : SubstrateServer
cpu = 5

S1 : SubstrateSwitch

S4 : SubstrateServer
cpu = 0

master

failover

Fig. 8 ILP decision variables including the node constraints

Example: Including the ILP node constraints,
Fig. 8 shows the node-mapping variables for the ILP-based
problem description that do not violate the given node
constraints if set to 1. For a better visualization, the node-
mapping variables are further illustrated as a dashed line
without their names. For instance, xV 1

S1 is only represented by
a blue dashed line. In addition, decision variables that must
be set to 0 due to constraints are displayed as a red dotted
line, whereas the blue dashed lines can still have the value 1
or 0. The element mappings of V 2 → S1 and V 3 → S1 can
be discarded because a virtual server can only be mapped
to a substrate server (see ILPnTyp). The element mappings
V 2 → S4,V 3 → S2, andV 3 → S4 are rejected because the
required computing capacity of each involved virtual server
exceeds the available computing capacity of the respective
substrate servers (see ILPcpu). For the sake of clarity, the
implications and dependencies of these element mappings
are not shown in the figures (e.g., every virtual node must be
mapped to exactly one substrate node (see ILPnc)).
Link Constraints The link constraint ILPlc ensures that a
virtual link is mapped to exactly one substrate path.

∀li j ∈ LV :
∑

puv∈P S

yi j
uv = 1 (ILPlc)

The next similarly structured link constraint ILPsrc (ILPtrg
can be found in Appendix A.1) ensures that the source and
target nodes of a virtual link are mapped to the source and
target nodes of the substrate path, respectively. As before, we
encode the logical implication using the ≤-operator.

∀li j ∈ LV : ∀puv ∈ P S : yi j
uv ≤ xi

u (ILPsrc)

123

Virtual network embedding: ensuring correctness and optimality by construction using model 1309

The last constraint ILPbw ensures that the resources of the
links e in the substrate path puv are not overbooked by the vir-
tual links li j mapped to puv . The used bandwidth resources

are coefficients (Bli j) for the mapping variables yi j
uv and con-

tribute to the sum only if the respective mapping variable is
selected (i.e., yi j

uv = 1).

∀e ∈ L S :
∑

puv∈P S ,
e∈puv

∑

li j ∈LV

Bli j yi j
uv ≤ Be (ILPbw)

Use-Case-Specific Constraints ILPfo illustrates the idea of
use-case-specific constraints. It shows constraints that ensure
that amaster node and its fail-over nodemust be different and
not placed on the same substrate node. Also, every master
must have at most one fail-over node.

∀i ∈ N V : fi,i = 0

∀i ∈ N V :
∑

j∈N V

fi, j ≤ 1

∀i, j ∈ N V : ∀u ∈ N S : fi, j x i
u + fi, j x j

u ≤ 1

(ILPfo)

Example: Including the ILP link and use-case-specific
constraints,
The set of ILP decision variables, shown in Fig. 8, does not
change after including the link and use-case-specific con-
straints because the implications of the element mappings
are not illustrated in the figures. An example of an implica-
tion is ILPfo, which requires that a master and its fail-over
server is mapped to distinct substrate servers. Therefore, in
Fig. 8, the virtual servers V 2 and V 3 are not mapped simul-
taneously to the substrate server S3.

2.2.4 ILP objective function

The following objective function minimizes the aggregated
cost over all link mappings.

min:
∑

puv∈P S

∑

li j ∈LV

yi j
uvcost

li j
puv (ILPobj)

Example: Objective function,
All optimal node mappings respecting all constraints and
additionally the optimization goal defined in ILPobj are
shown in Fig. 9 as blue solid lines. Thus, each solid blue
line represents a decision variable set to 1 (e.g., x S1

V 1 = 1 in
Fig. 9) and each red dotted line represents a variable set to 0
(e.g., x S1

V 2 = 0).

V1 : VirtualSwitch

V2 : VirtualServer
cpu = 2

V3 : VirtualServer
cpu = 3

S2 : SubstrateServer
cpu = 2

S3 : SubstrateServer
cpu = 5

S1 : SubstrateSwitch

S4 : SubstrateServer
cpu = 0

master

failover

Variable set to 0

Variable set to 1

Fig. 9 Optimal embeddings

3 Model-driven virtual network embedding

In this section, we first present our approach for deriving
correct and optimality-preserving MdVNE configurations.
In Sect. 3.1, we describe the original MdVNE approach
[49], which automatically derives optimal embedding deci-
sions based on a givenMdVNE configuration, consisting of a
MT specification for candidate generation and an ILP spec-
ification for candidate selection. Previously, the developer
was responsible for deriving these two specifications and for
ensuring that both specifications were compatible (e.g., that
the MT specification does not neglect optimal candidates).
To overcome this manual step, we present a systematic con-
struction methodology in Sect. 3.2. Using the methodology,
we derive the MT and ILP specifications from a common
model-based problem specification in a correct and optimal-
ity-preservingmanner. This constructionmethodology is one
major contribution of this article.

3.1 TheMdVNE approach

The originalMdVNE approach is illustrated in the lower part
of Fig. 1. Before MdVNE can be applied, an MdVNE con-
figuration is created consisting of the two parts: (i) a set of
MT rules for candidate generation, and (ii) an ILP formu-
lation for candidate selection. This configuration encodes
domain knowledge (e.g., about allowed element mapping
relations and resource constraints), is independent of the
actual sequence of virtual network requests (VNRs), and the
actual substrate network instance.

At runtime, the user first creates one ormoreVNRs,which
represent the virtual networks that shall be embedded into the
substrate network (Fig. 1 A). In general, the substrate net-
work already contains embedded virtual networks (indicated
by gray rectangles) and possesses free resources (indicated
by white rectangles). A VNR that still needs to be processed
is decorated with a red +-symbol.

TheMdVNE approachworks iteratively. In each iteration,
one or more pending VNRs are selected (here: VNR1), and
all possible element mapping candidates for these requests
are generated using the MT rules of the MdVNE configura-

123

1310 S. Tomaszek et al.

tion (see 1 in Fig. 1). TheMT rules filter out candidates that
violate structural or resource constraints expressible by the
MT specification. Conversely, the MT rules in the MdVNE
configuration have to guarantee that the result set of the candi-
date generation step contains at least one correct and optimal
element mapping candidate if a solution exists.

In MdVNE, the user specifies the MT rules for candi-
date generation as a triple graph grammar. A triple graph
grammar (TGG) [45] describes possible element mappings
between two graphs (here, a virtual and a substrate network)
together with a third correspondence graph (here, the ele-
ment mapping between virtual and substrate networks) in a
declarative manner. The declarative TGG rules can be oper-
ationalized in multiple ways. In the context of MdVNE, the
two involved graphs (i.e., virtual and substrate network) are
given, and the correspondence graph is missing. This type
of operationalization is called consistency checking [31].
MdVNE builds on the MT tool eMoflon [30] for automat-
ing the candidate generation step.

The candidate generation step results in a set of possible
element mapping candidates, as shown in Fig. 1 B . This set
may still contain element mapping candidates that are: (i)
incorrect (i.e., violate the metamodel or an OCL constraint
not expressible by the MT rules) or (ii) fulfill all domain
constraints but are suboptimal w.r.t. the optimization goal.
Therefore, in the candidate filtering step 2 , correct and opti-
mal element mappings are composed of the set of optimal
element mapping candidates resulting from step 1 . This
selection step is performed based on the ILP constraints that
are part of theMdVNE configuration, and an ILP encoding of
the set of element mapping candidates. An ILP solver is then
used to determine an embedding for the VNR that is correct
w.r.t. the constraints and optimal w.r.t. the optimization goal.

Finally, the determined optimal embedding calculated by
the ILP solver is deployed to the substrate network, as shown
in Fig. 1 C . Afterward, the embedding of the virtual network
is finished (indicated by a green check mark �) and (if it
exists) the next VNR is processed.

The description of the MdVNE approach reveals that, on
the one hand, it is crucial that the candidate generation step
does not neglect correct element mappings and, therefore, at
least one optimal candidate exists. On the other hand, it is
desirable to reduce the size of the set of element mapping
candidates as much as possible.

3.2 Frommodel-based specification to MdVNE
configuration

In [48,49], the developer was responsible for ensuring that
the consistency specification (for the candidate generation
step 1) covers all valid element mappings and that the
additional ILP constraints and objective function (for the can-
didate selection step 2) ensure that the selected candidate

is correct w.r.t. all constraints and additionally optimal w.r.t.
the optimization goal. Thus, the task of deriving an MdVNE
configuration requires deep expertise in VNE, is error prone
and time-consuming, and entails a correctness proof for the
required properties.

One major contribution of this article is that we propose
a systematic correct-by-construction approach to derive the
MdVNE configuration consisting of MT rules and an ILP
formulation from a declarative model-based specification of
the domain (highlighted as dashed frame in the upper part
of Fig. 1). This approach also ensures that only incorrect
candidates are excluded by the MT rules and that at least one
optimal solution is found if exists.

3.2.1 Overview of construction methodology

Our approach starts with a model-based problem descrip-
tion (see also Sect. 2.1) consisting of three parts. First, the
metamodel characterizes the superset of all structurally valid
substrate and virtual networks. Second, declarativeOCLcon-
straints encode additional structural consistency properties
that cannot be expressed in themetamodel (e.g., regarding the
aggregated resources of nodes and links), and element map-
ping consistency properties that a valid embedding fulfills.
Third, an optimization goal, also specified in OCL, deter-
mines which objective function to apply (e.g., minimizing
communication costs or energy consumption).

Our approach transforms the declarative model-based
problem description into a correct and optimality-preserv-
ing MdVNE configuration. The MdVNE configuration is
correct w.r.t. the model-based specification if the candidate
selection step only returns element mapping candidates that
are allowed according to the metamodel and the OCL con-
straints. The MdVNE configuration is optimality-preserving
w.r.t. the model-based specification if it is correct and each
embedding returned by the candidate selection step fulfills
the optimization goal. Our correct-by-construction transfor-
mation approach operates in three major steps (I , II , and
III), as shown in Fig. 1. These steps split and transform
the metamodel, OCL constraints, and optimization goal into
MdVNE configuration artifacts for the candidate generation
step (green top-down arrows) and the candidate filtering step
(blue top-down arrows).

First, we derive a set of basic TGG rules to cover themeta-
model I . Following the approach by Kehrer et al. [26], we
ensure constructively that any possible pair of related virtual
and substrate network models that conforms to the meta-
model can be constructed by a sequence of applications of the
basicTGG rules. Section 3.2.2 contains a detailed description
of this construction step. Second, we split the OCL con-
straints intoEOCL [41], a first-order logic subset ofOCL, and
complementaryOCL (COCL), a second-order logic subset of

123

Virtual network embedding: ensuring correctness and optimality by construction using model 1311

OCL, constraints II . EOCLconstraints can be translated into
additional preconditions of the basic TGG rules that ensure
that any application of the modified TGG rules preserves
the original EOCL constraints. In other words, the candidate
generation step may only exclude element mapping candi-
dates that violate at least one EOCL constraint. For this step,
we rely on the constructive approach originally proposed by
Heckel and Wagner [24] and extended by Radke et al. for
accepting EOCL constraints as input [41]. Radke’s adop-
tion of the constructive approachworks by transforming each
EOCLconstraint first into a nested graph constraint [22]. This
graph constraint is then specialized into a weakest precon-
dition [16] of each TGG rule. This weakest precondition is
necessary and sufficient to ensure that the refined TGG rule
preserves the graph constraint. The resulting refined TGG
rules constitute the MT part of the derived MdVNE config-
uration. Section 3.2.3 contains a detailed description of this
construction step. Third, we translate the optimization goal
and the COCL constraints into the ILP part of the derived
MdVNE configuration III . Each COCL is translated into a
set of side constraints of the ILP problem. The transformation
of the optimization goal is straightforward because it is usu-
ally formulated in terms of the ILP variables. Section 3.2.4
contains a detailed description of this construction step. After
executing the three construction steps, the created MdVNE
configuration can be used as input of the MdVNE approach
(see also Sect. 3.1).

3.2.2 Construction of basic TGG rules

The first part of an MdVNE configuration is the specifica-
tion of element mapping candidates formulated as a TGG.
Therefore, in the following, we describe how to obtain a set
of basic TGG rules from a given metamodel such that any
model that conforms to the metamodel can be constructed by
a sequence of rule applications.

Fundamentals of TGGs We begin with a short introduction
to TGGs [45] based on the TGG rules shown in Fig. 10.
A TGG consists of a set of TGG rules and is defined in
the context of a left-hand side, right-hand side, and cor-
respondence metamodel. In this article, the left-hand side
metamodel is themetamodel consisting of all virtual network
classes (see classeswith prefixVirtual in Fig. 2), the right-
hand sidemetamodel is themetamodel for substrate networks
(see classes with prefix Substrate in Fig. 2), and the cor-
respondence metamodel is induced by all associations that
connect virtual and a substrate network metamodel elements
(see the four hexagons in the center of Fig. 2). A correspon-
dence class always has exactly two associations to a left-hand
side and a right-hand side class, respectively. The left-hand
side association corresponds to the virtual* association

end, and the right-hand side association corresponds to the
substrate* association end in the metamodel.

A TGG rule consists of object variables
(e.g., SubstrateNetwork in Fig. 10a), link variables
(e.g., fromSubstrateNetwork toSubstrateSwitch
in Fig. 10b), and relational attribute constraints. The object
and link variables are placeholders for objects and links in
one of the three metamodels of the TGG. A variable either
describes the required context that is necessary for the rule
to be applicable (shown in black), or a model element cre-
ated by the TGG rule (shown in green, and decorated with
a ++ symbol) by a TGG rule. For example, the TGG rule in
Fig. 10b is only applicable if a SubstrateNetwork exists
and creates a SubstrateSwitch and a connection to the
SubstrateSwitch. A relational attribute constraint con-
sists of a binary operator (e.g., < or =) and references to the
attribute values of two object variables.

A TGG is a grammar, which describes in our case the
language of all allowed substrate networks and embeddings
of virtual networks in substrate networks. From the multiple
possible operationalizations of a TGG, we are interested in
establishing consistency between existing left-hand side and
right-hand side models. This means that only the correspon-
dence model (i.e., the substrate-virtual associations
in Fig. 2) is missing [31]. In the context of consistency check-
ing, an application of aTGG rule is interpreted as follows. Let
us assume that we have existing substrate and virtual network
models. Then, each element in these models is unmarked
initially. The application of a TGG rule while checking con-
sistency consists of the following steps. First, we have to find
for each black variable of the TGG rule a suitable marked
model element, and for each green left-hand side or right-
hand side variable an unmarked model element. Throughout
this article, we assume that distinct variables are mapped
to distinct model elements (i.e., injective pattern matching
[24]). Second, for each green left-hand side or right-hand
side variable, we mark the respective model elements. Third,
for each green correspondence variable, we create a new cor-
respondence model element.

For example, all TGG rules in Fig. 10 have variables that
belong to the right-hand side metamodel. This means that
any application of these rules serves to mark elements in the
substrate network model. The only TGG rule that is applica-
ble initially is the rule shown in Fig. 10a because it requires
no context (also called axiom rule [6]). After applying the
aforementioned rule, we can mark a SubstrateSwitch
using the TGG rule in Fig. 10b. In contrast to the substrate
network rules (Fig. 10), the virtual network rules in Fig. 11
also contain correspondence variables. The rule in Fig. 11c
requires a marked SubstrateNetwork and an unmarked
VirtualNetwork and creates an new NtN correspon-
dence object (along with the necessary left-hand side and
right-hand side associations).

123

1312 S. Tomaszek et al.

Deriving Basic TGG Rules In [26], Kehrer et al. propose a
technique for deriving a set of edit operations that is capable
of creating all valid instances L(M M) of a given metamodel
M M . We use the same technique for deriving the set of
basic TGG rules (RM M). Due to the monotonic nature of the
VNEproblem,we only need to consider object-creating rules
and neglect object-deleting, -moving or -changing transfor-
mation rules. While the substrate network can be created
independently of the virtual networks and their embeddings,
we first construct a rule set for creating a complete substrate
network. Second, the virtual network and their element map-
ping candidates are created, whereas the substrate network
serves as context in the TGG rules.

In the following, we present the two sets of resulting basic
TGG rules. Figure 10 shows the six basic TGG rules that are
used to cover the substrate network in isolation (i.e., without
virtual networks or the correspondence model). In Fig. 10a,
a substrate network is created, which serves as context ele-
ment for all other rules. In Fig. 10b, c, a substrate switch and
server, respectively, are created and attached to the substrate
network. In Fig. 10d, a path of length zero with identical
source and target substrate node is created. In Fig. 10e, f,
paths with lengths of one and two hops are created, respec-
tively. Depending on the topology (e.g., tree-based) of the
substrate network, the developer specifies analogous rules
for creating paths of length three, four, and more hops. In
common data center networks, a path with three hops is suf-
ficient to solve the VNE problem [9].

The second set of basic TGG rules creates virtual ele-
ments along with their corresponding element mappings into
an existing substrate network (Fig. 11 on the left-hand side).
This joint mapping is necessary to ensure that the multiplic-
ity constraint of the substrate* association ends in Fig. 2
are fulfilled. The instantiation of a correspondence class cor-
responds to the creation of the respective virtual* or
substrate* associations (see hexagons in Fig. 2). Rule
MTnet (Fig. 11a) maps a virtual network to the existing
substrate network. The rules MTsw (Fig. 11b) and MTsr

(Fig. 11c) create a virtual switch and server, respectively,
and map them to an (abstract) substrate node and substrate
server, respectively. Rule MTlink (Fig. 11e) maps a virtual
link to a substrate path.

Example: Basic TGG rules,
After executing the basic TGG rules the virtual and substrate
network including the element mapping candidates as shown
in Fig. 4 are created.

3.2.3 Construction of MT specification

The basic TGG rules (Figs. 10 and 11 on the left-hand side)
constructed in the previous section can be used to cover all
substrate and virtual networkmodels and all possible element

mappings according to the metamodel in Fig. 2. Still, the
resulting models may violate the specified OCL constraints
(Sect. 2.1.2). For example, the TGG rule MTsr (Fig. 11c,
left-hand side) may map a virtual server to a substrate server
whose computing capacity is insufficient (i.e., Virtual-
Server.cpu > SubstrateServer.cpu, which vio-
lates Ccpu).

Therefore, the basic TGG rules are further refined to
reduce the number of element mapping candidates by ensur-
ing as many OCL constraints as possible from the set of
all OCL constraints. For this purpose, we use an existing
static analysis technique that transforms OCL constraints
into application conditions of graph transformation rules
[14,24,41]. These application conditions prevent the appli-
cation of the refined TGG rule in contexts where the rule
applicationwould violate the OCL constraints. The approach
in [41] only supports the transformation of EOCL, a sub-
set of the complete OCL [19]. Generally speaking, EOCL
comprises all elements of the OCL that correspond to arith-
metic first-order logic (e.g., set expression, existential and
all-quantification, relational operators, arithmetic expres-
sions of variables, and Boolean equations). A comprehensive
overview of EOCL can be found in [41]. During the refine-
ment of the TGG rules, we only consider EOCL constraints
and defer the handling of COCL constraints to transforma-
tion step III in Fig. 1.

Thus, we distinguish between the languages OCL, EOCL,
and COCL, where EOCL and COCL are both disjunc-
tive subsets of OCL. Similarly, L(OC L), L(E OC L), and
L(C OC L) represent sets of constraints that can be expressed
in OCL, EOCL, or COCL, as follows:

L(OC L) = L(E OC L) ∪ L(C OC L) (3)

Constraint sets are represented by CSuffix, a subset of
L(OC L) (CSuffix ⊆ L(OC L)). Thus, we define the follow-
ing constraint sets:

COCL ⊆ L(OC L)

CEOCL = COCL ∩ L(E OC L)

CCOCL = COCL ∩ L(C OC L) = L(OC L) \ L(E OC L)

(4)

In this context, L(COCL), L(CEOCL), and L(CCOCL) are the
sets of models that respect the constraint sets COCL, CEOCL,
and CCOCL, respectively. The following applies:

L(COCL) = L(CEOCL) ∩ L(CCOCL) (5)

Relaxation of OCL Constraints From the set of OCL con-
straints specified in Sect. 2.1.2, the constraints Csrc, Ctrg,
Cfo1, and Cfo2 are EOCL constraints. The remaining four

123

Virtual network embedding: ensuring correctness and optimality by construction using model 1313

:SubstrateNetwork
++

(a) Create substrate network

:SubstrateNetwork

:SubstrateSwitch
++

++ network

nodes

(b) Create substrate switch

++

:SubstrateNetwork

:SubstrateServer
++

network

nodes

(c) Create substrate server

source

nodes

target

++

:SubstrateNetwork
network

incomingPaths
++

:SubstratePath
outgoingPaths

++
++

network
paths

:SubstrateNode

(d) Create zero-hop substrate path

:SubstrateNode

nodes
source

:SubstrateNodetarget

++

:SubstrateNetworknetwork

incomingPaths
++

:SubstratePath
outgoingPaths ++

++

network

paths

:SubstrateLink

network

source target

outgoingLinks incomingLinks

++

links
++

links

paths

(e) Create one-hop substrate path

:Substrate
Node

source

:Substrate
Node

target

++

:SubstrateNetwork
network

incomingPaths
++

:SubstratePath
outgoingPat

hs
++++

paths

:Substrate
Node

network

source target

:Substrate
Link

:Substrate
Link

nodes

targetoutgoing
Links

outgoing
Links

incoming
Links

incoming
Links

paths

links

paths

links

source

(f) Create two-hop substrate path

Fig. 10 Basic TGG rules to create the substrate network

OCL constraints Ccpu, Cmem, Csto, and Cbw, which all relate
to server and link resources, are COCL constraints. For these
constraints,wepropose to derive relaxedEOCL(ROCL) con-
straints, which form the set CROCL.

An OCL constraint CB relaxes an OCL constraint CA if
each model that fulfills CA also fulfills CB. Conversely, any
model that violatesCA also violatesCB.Thismeans that if the
candidate generation step uses relaxed variants of the COCL
constraints to filter out mapping candidates, no feasible can-
didate is removed. Based on this definition, we distinguish
between three cases for handling an OCL constraint CA in
the model-based specification:

(i) If CA is an EOCL constraint, we refine the TGG rules
for the candidate generation 1 based on CA and may
neglect CA during the candidate selection 2 .
(ii) If CA is a COCL constraint and we find a non-trivial
relaxation CB of CA that is an EOCL constraint, we use
CB for the candidate generation 1 and the original con-
straint CA for the candidate filtering in step 2 .
(iii) If CA is a COCL constraint for which we cannot
derive an EOCL relaxation, we only consider CA during
candidate filtering in step 2 .

In our scenario, we relax the four COCL constraints Ccpu,
Cmem, Csto, and Cbw to the following constraints CcpuR,
CmemR, CstoR, and CbwR, respectively. Since all constraints

123

1314 S. Tomaszek et al.

:VirtualNetwork NtN
++++

:Substrate
Network

(a) Virtual network to substrate network (MTnet)

:SubstrateNetwork
network

:VirtualNetwork
network

nodesnodes

:SubstrateNode
++

:VirtualSwitch

++

NtN

StN
++

(b) Virtual switch to substrate node (MTsw)

network

nodes

:Substrate
Network:VirtualNetwork

network

nodes
ss:Substrate

Server

++

vs:VirtualServer

++

NtN

StS
++

vs.cpu ≤ ss.cpu
vs.memory ≤ ss.memory
vs.storage ≤ ss.storage

:VirtualNetwork
network

nodes ++

vs:VirtualServer

++

NtN

StS
++

network

nodes

:Substrate
Network

ss:Substrate
Server

(c) Virtual server to substrate server (MTsr)

nodes

network

++

vs.cpu ≤ ss.cpu
vs.memory ≤ ss.memory
vs.storage ≤ ss.storage

network

:Substrate
Network:VirtualNetwork

nodes
ss:Substrate

Servervs:VirtualServer

:VirtualServer
nodes

network

failover

master

NtN

StS

++

network

:VirtualNetwork

nodes

vs:VirtualServer

:VirtualServer
nodes

network

failover

master

NtN

StS

nodes

network

:Substrate
Network

ss:Substrate
Server

(d) Virtual fail-over server to substrate server (MTfoSr)

vl.bandwidth ≤ sp.bandwidth

:Substrate
Network

network

:VirtualNetwork
network

pathslinks

++

nodes

:VirtualNodenodes

target

:VirtualNode
source

sp:Substrate
Path

++
vl:VirtualLink

incoming
Links

outgoing
Links

++

++

network NtN

LtP

++

:Substrate
Network

network

paths

sp:Substrate
Path

:Var2

:Var4 nodes

incoming
Paths

outgoing
Paths

target

source

NtN

Var5

Var6

LtP

++

vl.bandwidth <= sp.bandwidth

NtN

Var5

Var6

LtP

++

:VirtualNetwork
network

links

++

nodes

:Var3nodes

target

:Var1
source

++
vl:VirtualLink

incoming
Links

outgoing
Links

++

++

network

:VirtualNetwork
network

links

++

nodes

:Var3nodes

target

:Var1
source

++
vl:VirtualLink

incoming
Links

outgoing
Links

++

++

network

networknodes

network

:Substrate
Network

network

paths

sp:Substrate
Path

:Var2
target

incoming
Paths

outgoing
Paths

source

networknodes

(e) Virtual link to substrate path (MTlink)

Fig. 11 TGG rules and their refinements (MT part of MdVNE configuration)

123

Virtual network embedding: ensuring correctness and optimality by construction using model 1315

are structured similarly, we present Ccpu in the following and
list the other constraints in Appendix A.2.

context SubstrateServer inv self.virtualServers

→ forAll(vs | vs.cpu ≤ self.cpu) (CcpuR)

The corresponding ILP formulations are similar to ILPcpu,
ILPmem, ILPsto, and ILPbw, respectively. We explain the
underlying idea of this relaxation based on the OCL con-
straint CcpuR. For a given substrate server and several virtual
servers that are mapped to this substrate server, the sum of
the required computing capacity (cpu) of all virtual servers
can only be smaller than the available computing capacity
of the substrate server. This can only be valid if the comput-
ing capacity of each individual virtual server is smaller than
the available computing capacity. Table 4 summarizes the
original OCL constraints and their relaxations (if necessary).

Transformation into Preconditions In the following, we
describe how the set of EOCL constraints can be translated
into a set of application conditions for the basic TGG rules
using the constructive approach [24,41].

Our goal is to derive a set of TGG rules that preserve
consistency w.r.t. all eight EOCL constraints (see second
column in Table 4). This means that we exclude all COCL
constraints from the following construction step. A TGG
rule is consistency preserving if a model that fulfills the
specified constraints is transformed into a model that still
preserves these constraints. Focusing on consistency preser-
vation allows us to analyze in how far an individual TGG rule
application can lead to inconsistencies. Consistency preser-
vation is only applicable if the initial network model is
consistent. This is the case in our scenario because the ini-
tial network model contains no element mappings (i.e., Ccpu,
Csto, Cmem, Cbw, Csrc, Ctrg, Cfo2 do not apply) and we can
assume that each VNR is well formed (i.e., Cfo1 is fulfilled).

We first translate the EOCL constraints into nested graph
constraints [22] following the approach by Radke et al.
[41]. For the running example of this article, nested graph
constraints with a nesting depth of one are sufficient. We
represent this subtype of nested graph constraints using
premise–conclusion constraints [24], as defined in the fol-
lowing. Figure 21 illustrates the following definitions. A
graph constraint consists of one premise pattern and a (pos-
sibly empty) set of conclusion patterns. A pattern consists
of a pattern graph, with object and link variables as nodes
and edges, and relational attribute constraints. A match of a
pattern in a model maps the variables represented by the pat-
tern graph into the model such that all attribute constraints
are fulfilled. Each conclusion pattern of a graph constraint
extends the premise pattern. A pattern pA extends a pattern
pB if the pattern graph of pA is a subgraph of the pattern

GCcpuR

Premise
vs:

VirtualServer
self:

SubstrateServer
substrateServer

virtualServers

Conclusion

vs.cpu ≤ self.cpu

vs:
VirtualServer

self:
SubstrateServer

substrateServer
virtualServers

Fig. 12 Graph constraint of CcpuR

graph of pB and if the attribute constraints of pA imply the
attribute constraints of pB. A positive graph constraint has at
least one conclusion pattern, and a negative graph constraint
has zero conclusion patterns. For example, the graph con-
straint GCcpuR in Fig. 12 is a positive graph constraint and
has one premise and one conclusion pattern. The premise
pattern represents a virtual server (vs) that is mapped to a
substrate server (self). The conclusion pattern extends the
premise pattern by an additional attribute constraint to ensure
that the required computing capacity of the virtual server vs
is not larger than the available computing capacity of the
substrate server self.

A model fulfills a graph constraint if each match of the
premise pattern of the graph constraint can be extended to
a match of at least one conclusion pattern. For example, a
model fulfills GCcpuR if and only if each virtual server that is
mapped to a substrate server does not exceed the computing
capacity of the substrate server.

In [41], Radke et al. present rules for transforming an
arbitrary EOCL constraint into a nested graph constraint. In
our scenario, we consider graph constraints that represent the
eight EOCL constraints in Table 4.

These EOCL constraints correspond to the ten graph con-
straints discussed in the following. Where possible, we reuse
the OCL variable names in the graph constraints to estab-
lish traceability between OCL and graph constraints. For
instance, the object variable that corresponds to the context of
the OCL constraint is always called self. The graph con-
straint GCcpuR shown in Fig. 12 correspond to the relaxed
EOCL constraints CcpuR. The other three graph constraints
GCmemR, GCstoR, and GCbwR (shown in Appendix A.2) are
similar toGCcpuR and correspond toCmemR,CstoR, andCbwR.
Each constraint has one premise pattern and one conclusion,
which are identical except for the additional attribute con-
straint in the conclusion pattern.

The two graph constraints in Fig. 13 correspond to the
EOCL constraint Csrc, which require that the virtual source
and target node of a virtual link are compatible with the
substrate source and target nodes of the substrate path that
corresponds to the virtual link. The reason for the increased

123

1316 S. Tomaszek et al.

Table 4 Transformation of
OCL constraints into EOCL and
ILP constraints (if necessary)

Original constraint EOCL constraint for II ILP constraint for III

Ccpu CcpuR ILPcpu
Cmem CmemR ILPmem

Csto CstoR ILPsto
Cbw CbwR ILPbw
Csrc Csrc –

Ctrg Ctrg –

Cfo1 Cfo1 –

Cfo2 Cfo2 –

number of graph constraints is that the EOCL constraints
contain a condition based on the concrete type of the vir-
tual source and target node of the virtual link (self). The
graph constraints GCsrc1 and GCtrg1 cover the situation that
the source and target virtual node (vs) are virtual switches,
respectively. Conversely, the graph constraints GCsrc2 and
GCtrg2 cover the analogous situation for virtual servers as
source and target nodes.

Since the other constraints forCtrg are very similar toCsrc,
we present them in Appendix A.2.

Finally, the two graph constraints GCfo1 and GCfo2 in
Fig. 14 correspond to the EOCL constraints Cfo1 and Cfo2,
respectively. These graph constraints are the only negative
graph constraints in our case study. The constraint GCfo1

requires that no virtual server has a looping master-failover
association. The constraint GCfo2 requires that there is no
virtual server (self) whose fail-over server (vs) is mapped
to the same substrate server as self.

The graph constraints that we obtain from the EOCL con-
straints can be used to evaluate whether a givenmodel fulfills
the graph constraints. The second step in the constructive
approach is to refine each TGG rule based on each graph
constraint resulting in the rule set RE OC L+ROC L . A single
refinement iteration is independent of other refinement iter-
ations. Therefore, given the five TGG rules and ten graph
constraints, we need to conduct 50 refinement iterations of
the constructive approach. Table 5 provides an overview of
the results of the constructive approach that we discuss in
the following. The table shows that 10 of the 50 refine-
ment operations lead tomodifications of TGG rules indicated
by the + markers. The iterations for GCsrc2 and GCsrc1 as
well as GCtrg2 and GCtrg1 are combined in the columns for
Csrc and Ctrg, respectively. Therefore, Table 5 contains only
5 × 8 = 40 entries.

The fundamental idea of the constructive approach is to
identify, for a given rule–constraint pair, all situations in
which the unmodified rule violates the constraint. Each situ-
ation is transformed into a weakest precondition [16] of the
rule, which ensures that the rule is applicable if and only if
the rule application does not violate the currently considered

Table 5 Refinement of basic TGG rules (left-hand side of Fig. 11)
based on EOCL constraints + = modifications of a basic TGG rule,
− = no modification

CcpuR CmemR CstoR Csrc Ctrg CbwR Cfo1 Cfo2

MTnet − − − − − − − −
MTsr + + + − − − − −
MTsw − − − − − − − −
MTfoSr + + + − − − − +

MTlink − − − + + + − −

constraint if the model fulfilled the constraint before. The set
of all generated preconditions is necessary and sufficient to
ensure that the refined TGG rules preserve the EOCL con-
straints.We refrain frompresenting details of the constructive
approach here and refer to [24,41] instead.

Figure 11 shows how three of the five basic TGG rules are
refined using the constructive approach. The basic TGG rules
are shown to the left of the block arrows, and the resulting
refinedTGGrules are shownon the right-hand side. TheTGG
rules MTnet and MTsw are missing from the figure because
they are not modified during the rule refinement. Figure 11c
shows the basic and refined variants of the TGG rule MTsr

for mapping a virtual server to a substrate server. During
the rule refinement, MTsr is modified three times by adding
attribute constraints for ensuring that the virtual server does
not exceed either the computing capacity (GCcpuR, CcpuR),
memory (GCmemR,CmemR), or storage (GCstoR,CstoR) of the
substrate server.

Figure 11d shows the basic and refined variants ofMTfoSr,
which maps a fail-over server of an already embedded vir-
tual master server to a substrate node. In total, this TGG
rule is modified four times during the refinement. During the
refinement, the three graph constraintsGCcpuR,GCmemR, and
GCstoR cause three new attribute constraints to be added to
MTfoSr. Furthermore, the second fail-over constraint GCfo2

causes the insertion of a negative application condition indi-
cated by the crossed-out hexagon. A negative application
condition restricts the applicability of a TGG rule. In this

123

Virtual network embedding: ensuring correctness and optimality by construction using model 1317

Fig. 13 Graph constraints for
EOCL constraints Csrc

outgoingPaths sourcesource
outgoing

virtualSwitches

substrateNode

Premise

GCsrc1

self:
VirtualLink

sp:
SubstratePath

substratePath

virtualLinks

vs:
VirtualSwitch

sn:
SubstrateNode

outgoing
source outgoingPaths source

Conclusion
self:

VirtualLink
substratePath

virtualLinks

vs:
VirtualSwitch

sp:
SubstratePath

sn:
SubstrateNode

(a) Graph constraint of the then-branch of Csrc

virtualServers
substrateServer

substratePath

substratePath

Premise

GCsrc2

virtualLinks
outgoingPaths source

Conclusion
self:

VirtualLink
sp:

SubstratePathvirtualLinks

vs:
VirtualServer

sn:
SubstrateServer

outgoingPaths source

source outgoing

self:
VirtualLink

vs:
VirtualServer

source outgoing

sp:
SubstratePath

sn:
SubstrateNode

(b) Graph constraint of the else-branch of Csrc

Fig. 14 Graph constraints of
Cfo1 and Cfo2

GCfo1

Premise

self:VirtualServer master

failover

(a) Graph constraint of Cfo1

GCfo2

Premise

self:VirtualServer

ss:SubstrateServer

vs:VirtualServer

master

failover

substrateServer

virtualServers

substrateServervirtualServers

(b) Graph constraint of Cfo2

case, the fail-over virtual server may only be mapped to a
substrate node if its master server has not been mapped to
the same substrate server before. In contrast to GCfo2, this
rule already preserves GCfo1 because we apply injective pat-
tern matching, which maps the two distinct virtual server
variables to distinct virtual servers in the network.

Figure 11e shows the basic and refined variant of the TGG
ruleMTlink, which maps a virtual link to a substrate path. We
represent the eight additional application conditions as eight
refined TGG rule variants, as shown in Table 6. We obtain
eight variants for the following reasons. The reason is that the
involved source and target virtual nodes can each be either
a virtual switch or a virtual server. Considering only this
distinction results in four variants (see unique combinations
of Var1, Var2, and Var3 in Table 6). Still, we also have to
consider the distinction between substrate paths of length
zero, whose source and target nodes are identical, and paths
having a length of at least one, whose source and target nodes
are distinct (due to injective pattern matching). The former
case is shown in the bottom-right corner and the latter case
is shown in the top right corner of Fig. 11e. The types of the
correspondence variables Var5 and Var6 can be derived from
the types of Var1 and Var2. If Var1 (Var6, resp.) is of type
VirtualSwitch, Var5 (Var6, resp.) is of type StN and,
otherwise, of typeStS. Finally, each variant is further refined
based on GCbwR. This refinement results in the additional
attribute constraint that ensures that the required bandwidth

of the virtual link does not exceed the available bandwidth on
the substrate path. A special case is the TGG rule for paths of
length zero, which begin and end at the same substrate server.
Their bandwidth is usually set to a large, but finite value to
indicate that the communication between virtual servers that
are mapped to the same substrate server is usually very fast.

Example: TGG rules with application conditions,
Themodel instance after executing the TGG rules with appli-
cation conditions are equal to Fig. 6. The implications to
ensure correctness not only for the EOCL constraints, but
also for the COCL constraints are not illustrated in the fig-
ure.

3.2.4 Construction of ILP specification

The candidates generated based on the MT specification of
theMdVNEconfiguration thatwederived inSect. 3.2.3 fulfill
all EOCL constraints. This means that the ILP specification
of the MdVNE configuration must (only) ensure that both
the MT specification and the COCL constraints are fullfilled
and only optimal element mapping candidates are preserved.
Therefore, the generation of ILP formulations (at runtime)
is divided into two steps: (i) based on the MT specification
and (ii) based on the COCL constraints. Further information
about this generation process can be found in [49].

123

1318 S. Tomaszek et al.

Table 6 MT rule variants for the element mapping of a virtual link to a substrate path (Fig. 11e)

MTlinkX Object variables

Var1 Var2 Var3 Var4

1 VirtualSwitch VirtualSwitch SubstrateNode SubstrateNode

2 VirtualSwitch VirtualSwitch SubstrateNode –

3 VirtualSwitch VirtualServer SubstrateNode SubstrateServer

4 VirtualSwitch VirtualServer SubstrateNode –

5 VirtualServer VirtualSwitch SubstrateServer SubstrateNode

6 VirtualServer VirtualSwitch SubstrateServer –

7 VirtualServer VirtualServer SubstrateServer SubstrateServer

8 VirtualServer VirtualServer SubstrateServer –

V1 : VirtualSwitch

V2 : VirtualServer
cpu = 2

V3 : VirtualServer
cpu = 3

Master
Failover

S2 : SubstrateServer
cpu = 2

S3 : SubstrateServer
cpu = 5

S1 : SubstrateSwitch

(a) Mapping the virtual switch

V1 : VirtualSwitch

V2 : VirtualServer
cpu = 2

V3 : VirtualServer
cpu = 3

Master
Failover

S2 : SubstrateServer
cpu = 2

S3 : SubstrateServer
cpu = 5

S1 : SubstrateSwitch

(b) Mapping the virtual servers and the switch

Fig. 15 ILP node-mapping variables based on Fig. 7

ILP generation based on the MT specification Based on
the MT specification, ILP formulations must be created to
ensure the grammatical properties of TGGs. To ensure this,
we use a general approach for consistency checking using
TGGs [31], which is integrated in the tool eMoflon [30]. The
main idea is that for each set of element mapping candidate
(St N , St S, and Lt P) created by MT, unique ILP variables
and necessary ILP constraints are generated at runtime and
added to comply with the TGG specification. The different
mapping options (mapping a virtual switch, server, or link)
are explained in more detail below. Table 7 summarizes the
created ILP constraints.

Mapping a Virtual Switch The TGG rule in Fig. 11 gener-
ates an element mapping candidate stn(i,u) for each element
mapping of a virtual switch i ∈ N V (i Sw = 1) to a substrate
node u ∈ N S . For every element mapping candidate, we
generate an ILP node-mapping variable xi

u , so that exactly
one unique ILP variable xi

u exists for each element mapping
candidate stn(i,u) (St N → X). To ensure that for each vir-
tual switch i , exactly one element mapping candidate from
the set of all possible candidates stn(i,v), v ∈ N V exists, the
following inequalities are required.

∀i ∈ N V , i Sw = 1|
N S
∑

u=1

xi
u ≤ 1 (6)

Example: Mapping a virtual switch,
Using the TGG rule from Fig. 11b, an element mapping can-
didate stn(i,u) is created for each elementmappingof a virtual
switch i to a substrate node u. After that, ILP node-mapping
variables xi

u for all element mapping candidates stn(i,u) are
generated. Therefore, in Fig. 15a, for each possible element
mapping V 1 → S1, V 1 → S2, and V 1 → S3 the can-
didates stn(V 1,S1), stn(V 1,S2), and stn(V 1,S3) are created by
using MT. For these candidates the ILP variables xV 1

S1 , xV 1
S2 ,

and xV 1
S3 are then generated. To ensure that only one of these

possible element mappings is selected, only one of the map-
ping variables (stn(V1,S1), stn(V 1,S2), and stn(V 1,S3)) and
thus also one of the ILP variables (xV 1

S1 , xV 1
S2 , and xV 1

S3) must
be selected. This is ensured by the following ILP constraint.

xV 1
S1 + xV 1

S2 + xV 1
S3 ≤ 1

Mapping a Virtual Server The creation of the ILP variables
xi

u and the ILP constraints for the virtual servers using the
TGGrule inFig. 11c is done analogously to the creation of the
ILP variables for the virtual switches. Thus, for each possible
element mapping of a virtual server i ∈ N V (i Sr = 1) to a
substrate server u ∈ N S(uSr = 1) an element mapping can-
didate sts(i,u) exists, created by MT (St S → X). Afterward,
the ILP variables xi

u are generated based on these element
mapping candidates and, again, it must be ensured that only
one element mapping candidate sts(i,v) can be selected from

123

Virtual network embedding: ensuring correctness and optimality by construction using model 1319

Table 7 ILP formulations for the constraints derived from Fig. 11

TGG rules ILP formulations derived from the TGG rules

Figure 11b ∀i ∈ N V , i Sw = 1| ∑N S

u=1 xi
u ≤ 1

Figure 11c ∀i ∈ N V , i Sr = 1| ∑N S ,uSr =1
u=1 xi

u ≤ 1

Figure 11e ∀i, j ∈ N V | ∑P S

puv=1 ltp(li j ,puv) ≤ 1

the set of all possible candidates for a virtual server i .

∀i ∈ N V , i Sr = 1|
N S ,uSr =1∑

u=1

xi
u ≤ 1 (7)

Example: Mapping a virtual server,
Generating the ILP node-mapping variables xi

u for mapping
a virtual server i to a substrate server u is done analogously to
mapping a virtual switch. Thus, for every element mapping
candidate sts(i,u), an ILP variable xi

u is generated resulting
in the ILP variables xV 2

S2 , xV 2
S3 , xV 3

S2 , and xV 3
S3 (presented in

Fig. 15b). After that, ILP constraints are created to ensure
that every virtual server is mapped exactly once. This results
in the following ILP constraints.

xV 2
S2 + xV 2

S3 ≤ 1

xV 3
S2 + xV 3

S3 ≤ 1

Mapping a Virtual Link The generation of the link-mapping
ILP variables yi j

uv for mapping a virtual link li j to a sub-
strate path puv is also done analogously to the generation of
the node-mapping ILP variables xi

u . However, link-mapping

ILP variables yi j
uv are generated for all element mapping can-

didates ltp(li j ,puv), which are generated by using MT for
each virtual link li j ∈ LV to each substrate path puv ∈ P S

(Lt P → Y). Again, it must be ensured that each virtual link
is mapped exactly once to a substrate path.

∀i, j ∈ N V |
P S
∑

puv=1

ltp(li j ,puv) ≤ 1 (8)

ILP generation based on the COCL constraints After
creating the ILP node- and link-mapping variables xi

u and yi j
uv

from the element mapping candidates and the necessary ILP
constraints to complywith theTGGspecifications, theCOCL
constraints must now be integrated into the ILP problem.
These COCL constraints have the following structure:

inv self.col.iterate(elem : T; sum : Integer = 0 |
elem.a + sum) ≤ self.a

with col : Collection(T), a an attribute of elem (Aelem,

e.g.,Celem or Melem)

(9)

These constraints can be translated into ILP constraints in a
semantics-preserving way of the following form:

∑

e∈c

Aexe
s ≤ As, e =̂ elem, c =̂ col, s =̂ self (10)

This concerns the constraints Ccpu, Cmem, Csto, and Cbw,
so that the substrate resources CPU, memory, storage, and
bandwidth capacity are not overbooked. For this purpose, the
ILP constraints ILPcpu, ILPmem, ILPsto, and ILPbw from the
problem description are generated at runtime and integrated
into the ILP formulation.

Example: ILP formulations based on the COCL con-
straints,
Thus, the following ILP constraints are generated for the
COCL constraint Ccpu for Fig. 15b.

2xV 2
S2 + 3xV 3

S2 ≤ 2

2xV 2
S3 + 3xV 3

S3 ≤ 5

ILP Objective Function The objective function for the ILP
problem is synthesized according toCobj defined inOCL.We
iterate over every virtual link l (self.links) in the respective
virtual network (self) and sum up all costs according to the
cost matrix costl

p for every substrate path p in the set of
the element mapping candidates ltp(l,p) (l.substratePath) for
this virtual link l. Since all ILP link-mapping variables yl

p
were created in advance for each element mapping candidate
ltp(l,p), we iterate over all virtual links (sel f .links = LV)
in this virtual network (sel f) and all substrate paths (P S) and
multiply the link-mapping variables yl

p with the cost matrix
costl

p. This results in the following ILP formulation:

min:
∑

l∈LV

∑

p∈P S

yl
pcostl

p (11)

The post-conditions from Cobj for the links are already syn-
thesized by Eq. (8), for the virtual servers by Eq. (7), and for
the virtual switches by Eq. (6).

4 Correctness results

In this section, we show that applying the proposed con-
structionmethodology results in aMdVNEconfiguration that

123

1320 S. Tomaszek et al.

Fig. 16 Sketch for the correctness and optimality results in Theorem 1

produces correct and optimal solutionsw.r.t. themodel-based
specification. The related concepts introduced in Sects. 2.1
and 3 are further formalized in this section. For this purpose,
we present in Definition 1 the sets ofmodels characterized by
the metamodel, the language and the set of OCL constraints
in Definition 2, the sets and the language of the construction
methodology forMdVNE inDefinition 3, and the sets related
to the optimization function in Definition 4. After that, we
prove in Theorem 1 that the set of optimal and correct embed-
dings of the model-based specification is equal to the result
set of the MdVNE approach using the provided construction
methodology (after step 2).

Figure 16 sketches the idea of the proof of Theorem 1
providing the sets of optimal and correct solutions from the
model-based specification O on the left-hand side and the
solutions of the MdVNE approach using the proposed con-
struction methodology O′ on the right-hand side. We prove
that, starting from the model-based specification, we can
derive aMT rule set for creating all necessary networkmodel
instances described be the metamodel. After that, we inte-
grate application conditions derived from EOCL and ROCL
constraints into this rule set. Using this rule set and the
remaining COCL constraints in combination with the opti-
mization function, we get the same set of optimal and correct
embeddings compared to solving the VNE problem for the
model-based specification directly.

To have a correctly workingMdVNE implementation, the
following conditions must be fulfilled:

– The derivation of the ILP formulations from the COCL
constraints (CCOCL) must be performed in a semantics-
preserving manner.

– The ILP solver used must work correctly. It must cal-
culate the correct results and it must be granted enough
resources (e.g., computing time) to find an optimal solu-
tion if one exists.

– The MT tool used must work correctly. That means
it must find all element mapping candidates that ful-
fill the considered ECOL (CEOCL) and ROCL (CROCL)
constraints. Furthermore, it must be granted sufficient
resources (e.g., memory and computing time) to find
these candidates.

Definition 1 (Language of ametamodel) Given ametamodel
M M , the language L(M M) is the set of all valid models that
conform to M M .

Definition 2 (Languages of constraint-fulfilling models) In
this definition, we characterize subsets of L(M M) based on
whether the models in these subsets fulfill certain types of
OCL constraints. The language L(COCL) is the set of all
models in L(M M) respecting the given set COCL of OCL
constraints defined in the model-based specification; more
formally: L(COCL) := {m ∈ L(M M) | m |
 COCL}, where
m |
 COCL represents a semantic consequence, such that
COCL is fulfilled in m. The set L(COCL) = L(CEOCL ∪
CCOCL) = {m ∈ L(M M) | m |
 CEOCL ∧ m |
 CCOCL} =
L(CEOCL) ∩ L(CCOCL) with CEOCL = COCL ∩ L(E OC L),
CCOCL = COCL ∩ L(C OC L), and COCL ⊆ L(OC L)
contains all models that satisfy both the EOCL and the
COCL constraints. The languages L(OC L), L(E OC L),
and L(C OC L) represent sets of constraints that can be
expressed in OCL, EOCL, or COCL, as follows:L(OC L) =
L(E OC L) ∪ L(C OC L). The set CROCL ⊆ L(E OC L)
is a set of relaxed constraints for the set of constraints
CCOCL ⊆ L(C OC L). The set of constraints CROCL relaxes
the set of constraints CCOCL if the following condition is ful-
filled: {∀m ∈ L(M M) | m |
 CCOCL ⇒ m |
 CROCL}.
Therefore, L(CROCL), a superset of L(CCOCL), contains all
models respecting the relaxed COCL constraints.

Definition 3 (Languages ofMdVNE-generated rule sets)We
define the language L(RM M) as the language of the rule
set RM M for all models in L(M M). RM M is a set of rules
constructed using the methodology introduced in [26] such
that L(RM M) = L(M M). That is, the language generated
by the constructed set of rules RM M generates all model
instances that conform to the metamodel M M .
RE OC L is a set of rules derived from the combination of
RM M with a given set CEOCL of EOCL constraints (see
Sect. 3.2.3). The derivation process enriches the given set
of rules RM M with application conditions using the method-
ology introduced in [24,41] such that L(RE OC L) = {m ∈
L(RM M) | m |
 CEOCL} [26]= {m ∈ L(M M) | m |

CEOCL} = L(CEOCL). Analogously,we add the set of relaxed
constraints CROCL to the set of CEOCL constraints to derive
a set of rules RE OC L+ROC L such that L(RE OC L+ROC L) =
L(CEOCL ∪ CROCL) (see Proposition 1).

Definition 4 (Objective function) The set opt(CCOCL, fg)
contains the optimal solutions of the objective function
fg for a given set of models that respect the set of con-
straints CCOCL. Therefore, the set O′ := opt(CCOCL, fg) for
L(RE OC L+ROC L) contains the optimal solutions created by
MdVNE.The set of the optimal solutions for themodel-based
specification is O := opt(COCL, fg) for L(M M).

123

Virtual network embedding: ensuring correctness and optimality by construction using model 1321

Proposition 1

L(RE OC L+ROC L)

[24,41]= {m ∈ L(RM M) | m |
 CEOCL ∧ m |
 CROCL}
Def. 2= {m ∈ L(RM M) | m |
 CEOCL}

∩ {m ∈ L(RM M) | m |
 CROCL}
[26]= {m ∈ L(M M) | m |
 CEOCL} ∩ {m ∈ L(M M) | m |
 CROCL}
Def. 2= L(CEOCL) ∩ L(CROCL)

Def. 2= L(CEOCL ∪ CROCL)

(12)

In the subsequent Theorem 1, we prove that the MdVNE
approach calculates optimal and correct solutions after
step 2 in Fig. 1 when the proposed construction method-
ology is used to translate a model-based specification into an
MdVNE configuration.

Theorem 1 (Correctness and optimality for the construc-
tion methodology) The set O′ representing the solutions
of MdVNE (after step 2 in Fig. 1) is equal to O, the set of
optimal and correct solutions for the model-based specifica-
tion. To show that O = O′, we have to prove the following
equality (see Definition 2 and 3).

opt({m ∈ L(M M) | m |
 COCL})
= opt({m ∈ L(RE OC L+ROC L) | m |
 CCOCL}) (13)

Proof We prove Theorem 1 by reformulating the characteri-
zation of the set O′.

O′ = opt({m ∈ L(RE OC L+ROC L) | m |
 CCOCL})
Eq. 12= opt({m ∈ L(M M) | m |
 CEOCL

∧ m |
 CROCL ∧ m |
 CCOCL})
Def. 2= opt({m ∈ L(M M) | m |
 CEOCL ∧ m |
 CCOCL})
Def. 2= opt({m ∈ L(M M) | m |
 COCL})
= O

This means that the set of optimal solutions based on the
model-based specification is equal to the solution set created
by MdVNE using the presented construction methodology.

��
The ILP formulation used in 2 fromFig. 1 is derived from

L(RE OC L+ROC L) and theCOCLconstraints (CCOCL). Since
only iterative operations with summations of the individual
elements beside EOCL are allowed in the problem definition
(seeSect. 2.1.2),we can transformevery iterative operation in
CCOCL into an ILP formulation. Thus,CCOCL can be realized
as sums of constant values with or without ILP variables. The

ILP formulation from L(RE OC L+ROC L) is created with a
generic methodology for consistency checking using TGGs
[31].

In this section, we proved that the MdVNE approach,
using the proposed construction methodology, only can gen-
erate optimal and correct solutions for the VNE problem.We
have shown, that the result set after executing the MdVNE
approach is equal to the result set of an ILP-based approach.
Therefore, MdVNE always guarantees optimal and correct
solutions.

5 Tool support

In this section, we present an overview of the tool support to
deriveMdVNE configurations and simulate these algorithms
using MT and ILP technologies. Using MT technology, we
can derive executable code from a declarative MT config-
uration (e.g., a TGG rule set) and pass an ILP formulation
to an ILP solver via interfaces for solving the optimization
problem.

In Fig. 17, an overview of the transformation of themodel-
based specification into executable code is presented in order
to use MdVNE to solve real-world VNE problems. The first
step is to create a model-based specification, which consists
of a UML class diagram, OCL constraints, and an opti-
mization goal, also encoded in OCL. This specification can
now be transformed into an MdVNE configuration using
the presented construction methodology. This step is cur-
rently performed manually. The resulting MT rule set can
be directly and automatically transformed into executable
source code by an MT tool (e.g., eMoflon [30] or Viatra
[50]).

At runtime, these MT rules are executed and, with the
help of anMT–ILP converter, ILP variables and ILP inequal-
ities are automatically derived from the found or modified
matches. For MdVNE, an existing and generic MT–ILP
converter as part of eMoflon can be used (see [31]). Now
that the necessary ILP variables and inequalities have been
derived from the (MT) matches, the additional ILP variables,
inequalities, and the target functionmust be created using the
mathematical formulation. In the first step, an ILP converter
is used to adapt the (existing) ILP variables, inequalities and
the target function based on the changes in the model. The
configuration of this ILP converter based on themathematical
formulation has to be carried out manually for the realization
of a new VNE algorithm. Promising approaches for a (par-
tial) automation are available in the literature and will also
be discussed in the outlook [35,36,52,53].

The ILP converter can now derive the final ILP vari-
ables and inequalities to solve the VNE problem. As soon
as the final ILP variables are known, the ILP converter can
also generate the ILP target function. Together with the ILP

123

1322 S. Tomaszek et al.

MT-ILP
converter

MT rules ILP

MdVNE
configuration

Construction methodology (Sec. 3)

Virtual networks
requests

Substrate network

Simulation environement

UML class diagram OCL constraints (OCL-)optimization goal

Model-based
specification

MT tool

eMoflon

Element mappings
ILP API

Gurobi

Cplex

ILP variables

ILP converter

ILP variables
ILP constraints
ILP objective

ILP constraints

Viatra

Embeddings

Fig. 17 Overview of the tool support for MdVNE

inequalities from theMT–ILP converter, these data are trans-
ferred to a generic ILP API (e.g., Cardygan ILP–API [44]).
This generic ILP–API now realizes the connection to differ-
ent ILP solvers (e.g., Gurobi [21] or Cplex [13]), whereby
the ILP problem can be solved and the result can be trans-
lated into a concrete embedding. Together with the virtual
networks and the substrate network, a concrete VNE prob-
lem can be solved in a simulation environment, the identified
embeddings can be applied into the model and thus an eval-
uation of this VNE algorithm can be performed.

6 Evaluation

This section evaluates the MdVNE approach against an
ILP-only baseline approach. The evaluation focuses on scal-
ability, as correctness and optimality of the approach are
already addressed in Sect. 4 and are also considered again
in Sect. 6.5. The setup is similar to the setup described in
[48]. In contrast to [48], the virtual networks are created
on the basis of real data (instead of uniform random dis-
tributions) and comprise use-case-specific requirements in
the form of fail-over server constraints. To investigate scala-
bility, we focus on the size of the substrate network and the

batch size. The batch size is the number of simultaneously
embedded VNRs. The generation of the VNRs remains the
same across all experiments. The complete runtime that is
required to solve the VNE problem and the ILP solving time
serve as performance metrics. Furthermore, we investigate
the influence of the batch size on the complete runtime of the
results. We discuss the following research questions:

RQ: 1 How does varying the substrate network size influ-
ence the complete runtime and ILP solving time?

RQ: 2 How does varying the batch size influence the com-
plete runtime and ILP solving time?

6.1 Setup

The evaluation setup consists of a small and a large
2-tier substrate network. Each network has 2 core switches,
which are connected to the rack switches via a bandwidth of
10 Gbit/s. Each rack contains 10 servers each with
32 CPU cores, 512 GB of memory, and 1 TB of storage.
The bandwidth between the servers and the rack switch is set
to 1 Gbit/s. The smaller 2-tier network has 4 racks (i.e., in
total 40 servers), and the larger 2-tier network has 12 racks
(i.e., in total 120 servers).

123

Virtual network embedding: ensuring correctness and optimality by construction using model 1323

Each VNR is a star topology with 2 to 10 evenly dis-
tributed virtual servers (similar to [55]). The resources of the
servers and links are calculated using the realistic values from
the Bitbrains data set [46]. For each virtual server, the num-
ber of CPU cores is between 1 and 32 and for the memory
between 1 and 511 GB. The required bandwidth ranges from
0.1 to 1 GB/s . The Bitbrains data set lacks information about
requested storage for the virtual machines. Therefore, we use
equally distributed values in the range from 50 to 300GB. For
the exact probability distributions of the CPU, memory, and
bandwidth,we refer the reader to the paper byShen et al. [46].
To evaluate the use-case-specific constraints, we randomly
define between 0 and 2 virtual fail-over servers, equally dis-
tributed, and their corresponding masters. The total number
of VNRs is 30 in the small setup and 100 in the large setup
to ensure that every VNR can be embedded.

To calculate the objective for the 2-tier substrate network,
we use the cost functions for the VL2 topology from [33].
Therefore, the cost function is defined as follows (puv: sub-
strate path, li j : virtual link):

cost
li j
puv =

⎧
⎪⎪⎨

⎪⎪⎩

0 if puv has length 0,

BV
li j

if puv has length 1,

5 · BV
li j

if puv has length 2 or more.

To investigate the scalability and the research questions
RQ 1 and RQ 2, we use the same setup and experiments.
These experiments have two degrees of freedom: (i) the sub-
strate network size and (ii) the batch size. The size of the
substrate network is determined by the two setups (small
and large). The batch size represents the number of VNRs
embedded simultaneously.An embedding of a batch can only
be done if a solution for all VNRs in this batch including all
constraints is found. The batch sizes here are 1 and 5. The
time for the ILP solver to find the solution is limited to 2 h
(7200 s). All experiments were executed on a machine with
an Intel Xeon E5-2630 v3 CPU having 2.4 GHz. The oper-
ating system was Windows Server 2016. We used a Java SE
Development Kit 8 and the ILP solver Gurobi 7.52 [21]. In
the following, each data point is the median of three repeated
experiments.

6.2 RQ 1: Efficiency versus substrate network size

Figure 18 shows the complete runtime for solving the VNE
problem (including all pre- and postprocessing steps, as well
as the ILP solving time) for the small (Fig. 18a) and large
setup (Fig. 18b). The x-axis shows the total number of vir-
tual networks embedded in the substrate network. The y-axis
(logarithmic scale) shows the complete runtime in seconds.
The solid lines represent the MdVNE and the dashed lines
the ILP-only approach. The timeout of the ILP solver is visu-

alized in Fig. 18b as a horizontal solid gray line. Tables 8a
and b provides details on the mean values, the inter-quartile
range (IQR, difference of 25-percentile and 75-percentile),
the range (difference of minimum and maximum), and the
number of timeouts of the ILP solver for the two diagrams
(Fig. 18a, b).

In addition, Fig. 19 shows the percentage of the ILP solv-
ing time compared to the complete runtime for the small
(Fig. 19a) and the large setup (Fig. 19b). The x-axis also
shows the number of virtual networks embedded in the sub-
strate network and the y-axis shows the percentage for the
MdVNE configuration with a batch size of 1 and 5.

6.2.1 Results

For the small setup in Fig. 18a, we see that the fluctuations of
embedding a VNR for MdVNE are lower than for the ILP-
only approach. This is also apparent in the IQR and the range
values in Table 8a. The IQR for a batch size of 1 is approx.
3 times smaller for MdVNE (1.4 s for MdVNE and 4.0 for
ILP-only) and for a batch size of 5 it is even approx. 20 times
smaller (6.7 s for MdVNE and 153.2 s for ILP-only). But
also for the range, the considerable range of 28.0 s for ILP-
only for batch size 1 (452.3 s for batch size 5) in contrast to
4.9 s for MdVNE (11.7 s for batch size 5) are evident. The
average complete runtime for the MdVNE approach is up to
18 times smaller for a batch size of 5 (301.6 s for ILP-only
and 11.7 s for MdVNE). Even with a batch size of 1, the
average complete runtime for solving the VNE problem is
approx. 25% smaller.

In the large setup and with a batch size of 5, the ILP-
only approach experiences a timeout in 19 of 20 iterations
(95%). This is reflected both by the small IQR and by the
average mean value of 6900 s, which is very close to the
timeout of 7200 s. Although the ILP-only approach ran into
the timeout, the results for the embeddings were still optimal.
WithMdVNE, a timeout occurred in 4 of 20 iterations (20%).
To investigate how long the ILP solver runs to solve the VNE
problem, we re-ran the large setupwith the first 15 VNRs and
an increased timeout of 10 h. The ILP-only approach required
approx. 2.5 h for the embedding of the VNRs 6 to 10 and
reached the timeout of 10 h for embedding the VNRs 11 to
15. The MdVNE approach solved the problem for the VNRs
11 to 15 in about 4.5 h. With a batch size of 1, as in the small
setup, a smaller range for MdVNE can also be seen from the
IQR (141.5 s for ILP-only and 132.8 s for MdVNE). The
range for MdVNE is larger by a factor of 2 than the range of
the ILP-only approach (1422.1 s MdVNE and 623.3 s ILP-
only). The average complete runtime for solving the VNE
problem is approx. 3 times larger for MdVNE for batch size
1 and 2 times smaller for batch size 5 compared to the ILP-
only approach.

123

1324 S. Tomaszek et al.

Table 8 Metrics for the
measurements from Fig. 18 with
ILP-only (I), MdVNE (M) and
number of timeouts (TOs)

(a) Small setup in Fig. 18a (b) Large setup in Fig. 18b
Metrics Batch size 1 Batch size 5 Metrics Batch size 1 Batch size 5
in [s] I M I M in [s] I M I M

Mean 4.2 3.1 301.6 16.6 Mean 94.3 261.5 6942.7 3179.4

IQR 4.0 1.4 153.2 6.7 IQR 141.5 132.8 0.9 4160.0

Range 28.0 4.9 452.3 11.7 Range 623.3 1422.1 5299.1 7412.9

TOs 0 0 0 0 TOs 0 0 19 4

0 5 10 15 20 25 30
Number of embedded virtual networks

100

101

102

C
om

pl
et

e
ru

nt
im

e
[s

]

ILP-only – batch size 1

MdVNE – batch size 1

ILP-only – batch size 5

MdVNE – batch size 5

(a) Small evaluation setup

0 20 40 60 80 100
Number of embedded virtual networks

100

101

102

103

104

C
om

pl
et

e
ru

nt
im

e
[s

]

ILP timelimit

ILP-only – batch size 1

MdVNE – batch size 1

ILP-only – batch size 5

MdVNE – batch size 5

(b) Large evaluation setup

Fig. 18 Complete runtime evaluation for the small and large setup

0 5 10 15 20 25 30

Number of embedded virtual networks

0

10

20

30

40

50

60

70

Pe
rc

en
ta

ge
of

IL
P

so
lv

in
g

tim
e

[%
]

MdVNE – batch size 1 MdVNE – batch size 5

(a) Small evaluation setup

0 20 40 60 80 100

Number of embedded virtual networks

0

20

40

60

80

Pe
rc

en
ta

ge
of

IL
P

so
lv

in
g

tim
e

[%
]

MdVNE – batch size 1 MdVNE – batch size 5

(b) Large evaluation setup

Fig. 19 Percentage of the ILP solving time compared to the complete runtime

When comparing the complete runtime values for varying
substrate network sizes and a fixed batch size, the ILP-only
approach grows by a factor of about 23 regardless of the
batch size. For MdVNE, the complete runtime for batch size
1 increases by a factor of 84 and for batch size 5 by a factor
of 191. For a fixed setup, the complete runtime for the ILP-
only approach and a batch size of 5 is approx. 70 to 75 larger
compared to a batch size of 1. The corresponding increase
for MdVNE is 5 to 12.

6.2.2 Discussion

For a fixed setup and varying batch sizes, the ILP-only
approach shows that the complete runtime increases by a
factor of 70 to 75. For MdVNE, the construction of the sub-
strate network has a large impact on the complete runtime.
The complete runtime increase is 5 for the small setup and
12 for the large setup. The different factors can be explained
by considerably more pattern matches (especially those that
involve path objects) that are found in the larger substrate
network. In the case of enlarging the substrate network with

123

Virtual network embedding: ensuring correctness and optimality by construction using model 1325

a constant batch size, the data shows that ILP-only scales bet-
ter here (factor for ILP-only: approx. 23, factor for MdVNE:
84 to 191). This can be explained by the fact that, inMdVNE,
the complete substrate network is also constructed using
TGG rules, with considerably more (path) elements being
present in the large setup. In addition, the number of pattern
matches also increases. Nevertheless, the complete runtime
of MdVNE is at least 2 times smaller than the ILP-only
approach for the large setup and a batch size of 5 with less
timeouts. If a timeout occurs, no guarantee on the optimality
of the returned result can be given. Therefore, MdVNE per-
forms considerably more robustly compared to the ILP-only
baseline (MdVNE: 20% timeouts, ILP-only: I95% timeouts).

A comparison of the percentages of the ILP solving time
to the complete runtime in Fig. 19a, b reveals that, for batch
size 1, the percentages vary between approx. 2% and 80%.
With the batch size of 5, the fractions varies between approx.
42 to 68% in the small scenario, whereas in the large scenario
the ILP percentages varies between 22 and 94%. The mean
value for a batch size of 1 is approximately the same for both
the small and the large scenario with approx. 24%. With a
batch size of 5, the ILP fraction is 57% on average for the
small scenario and 70% for the large scenario.

Answer to RQ1: Howdoes varying the substrate network size
influence the complete runtime and ILP solving time? The
measurements show that, by enlarging the substrate network,
the complete runtime increases by a factor of approx. 23
(batch size 1 and 5) for the ILP-only approach and by 84 to
191 (batch size 1 and 5) for the MdVNE approach. However,
MdVNE is 18 times faster in the small setup and 2 times
faster in the large setup in solving the VNE problem than
the ILP-only approach for a batch size of 5. Also, MdVNE
returned optimal results considerably more reliably than the
baseline approach (in terms of timeouts). The ILP solving
time contributes on average 24% to the complete runtime for
a batch size of 1 and 57–70% for a batch size of 5.

6.3 RQ 2: Batch size

Figure 20 shows runtime measurements for the small setup
and varying batch sizes. The plots shows three data series for
the complete runtime for MdVNE and the ILP-only baseline
aswell as the ILP solving time forMdVNE.The x-axis shows
the batch size and the y-axis (logarithmic scale) the runtime
in seconds. The MdVNE measurements are again displayed
as solid lines and the ILP-only approach as dashed lines.

Results All runtime values increase monotonously with the
batch size. For MdVNE, the ratio of complete runtime and
ILP solving time remains stable for batch sizes above 5. The

1 3 5 7 10 15
Batch size [VNRs]

100

101

102

103

R
un

tim
e

[s
]

MdVNE – complete runtime

ILP-only – complete runtime

MdVNE – ILP solving runtime

Fig. 20 Varying the batch size in the small setup for MdVNE and ILP-
only

average ILP solving time ratio for MdVNE is approx. 24%
for a batch size of 1 and stabilizes in the range of 60–70% for
batch sizes of 5 or larger. The plots show that the MdVNE
approach solves the ILP problem more than one order of
magnitude faster than the ILP-only approach.

Discussion The preceding results show that the ILP solving
time ratio forMdVNE increaseswhile the ratio of the runtime
for generating the candidate (Fig. 1 1) decreases in the same
way for larger batch sizes. MdVNE reduces the complete
runtime by more than one order of magnitude for large batch
sizes compared to the ILP-only baseline.

Answer to RQ2: How does varying the batch size influence
the complete runtime and ILP solving time? The measure-
ments show that by increasing the batch size MdVNE is
more than one order of magnitude faster than the ILP-only
approach and that generating the candidates in MdVNE is
reduced to approx. 30–40% on average starting from a batch
size of 5.

6.4 Summary of evaluation

In this evaluation, we investigated the scalability of the
MdVNE implementation based on two realistic data sets.
The ILP-only approach was used as baseline for the perfor-
mance measurements and for checking the correctness and
optimality of the results in our experiments. Compared to the
baseline, MdVNE solved the VNE problem up to 18 times
faster for the small setup and more than twice as fast for the
large setup (with a batch size of 5). In the large setup,MdVNE
experienced approx. 5 times less timeouts compared to the
baseline. We showed that the candidate selection (Fig. 1 step
2) of MdVNE solved the ILP problem up to 30 times faster
than the ILP-only baseline. In addition, the complete run-

123

1326 S. Tomaszek et al.

time of MdVNE is more homogeneous, which is apparent
in smaller IQR and range values. The ratio of the ILP part
compared to the complete runtime for MdVNE was on aver-
age 24 % for a batch size of 1 and between 57 and 70% for
a batch size of 5. The investigation of different batch sizes
showed that the fraction of the candidate generation (Fig. 1
step 1) of MdVNE (for a batch size of 5) is between 30 and
40% and that the ILP part dominates the behavior.

6.5 Threats to validity

In this section we examine the threats to validity for the
results of the evaluation for the MdVNE approach using the
categories from [54]: conclusion validity, internal validity,
construct validity, and external validity.

Conclusion validity The networks (substrate network and
virtual networks) and their resource distributions (CPU,
memory, storage, and bandwidth) are constructed based on
probability distributions from [46]. To reduce the influence of
the randomly selected values, all experiments were repeated
three times and the median was calculated from the result-
ing data. The number of repetitions was limited to three due
to the long runtime of individual experiments. All experi-
ments were performed on the same hardware with the same
operating system and software environment.

Internal validity In the evaluation,we consider a purely ILP-
based approach as a comparison algorithm in addition to the
MdVNE approach. To ensure that these two approaches act
very similarly and, thus, deliver largely comparable results,
we have made sure that (i) large parts of the code base are
identical between these two approaches, (ii) the same ILP
solver is used, (iii) consistency checks of the found results
are performed at runtime, and (iv) the same unit tests are
used.

For the consistency checks (iii) the embedding decisions
were executed and verified after each solution of the VNE
problem. This means that all available substrate resources
are reduced depending on the resource requirements of the
mapped servers and links. The MdVNE tool verifies auto-
matically that all constraints regarding element types are
met, available resources are not overbooked, and master and
fail-over servers are placed on different substrate servers.
These consistency checks provide additional assurance that
the identified solutions are correct w.r.t. the problem specifi-
cation.

Construct validity To avoid further sources of errors, we
used the same unit tests for MdVNE and the ILP-based

approach to check the correctness of the embedding of sam-
ple networks. These unit tests were created manually, using
one- and two-tier networks, as well as a Google Fattree net-
work [3]. Thus, different VNE scenarios were determined
systematically and solved manually afterward to obtain pairs
of input-output data for the unit tests. These unit tests were
then used for both the ILP-based and the MdVNE imple-
mentation. In total, we created 330 unit tests to check the
correctness and optimality of the embeddings. Additionally,
the values of the objective function for both approaches were
compared and common metrics (runtime to solve the prob-
lem) were used.

External validity To create the application scenario for this
evaluation, comparable evaluations from other publications
and real probability distributions of applications from data
centerswere examined and taken into account in the selection
process. Thus, we decided to use a 2-tier network as substrate
network, which is a widely used network for mostly smaller
data centers and a star topology for the virtual networks. To
make the resource requirements for the virtual elements as
realistic as possible, we oriented ourselves on the statistical
data set for applications in a data center,which provides prob-
ability functions of real measured values for the requested
and actually used resources like CPU cores, memory and
bandwidth [46].

Apart from ILP, other technologies can be employed to
describe and solve the VNE problem (e.g., SAT and SMT
solvers). However, the ILP formulation used here is estab-
lished [43] and is improved by an ongoing collaboration
with experts. Since the runtime for solving the ILP strongly
depends on the choice of the ILP solver and the respective
version, we have chosen Gurobi, an established, state-of-the-
art ILP solver used in the industry and in various publications
(e.g., [31,38,52,60]).

7 Related work

This section surveys related work regarding generatingmode
instances from a metamodel, VNE algorithms for data cen-
ters, developing network applications using model-driven
development, and combining MT and optimization tech-
niques.

7.1 Generatingmodel instances from ametamodel

The generation of model instances from a metamodel is the
basis for the simulation of concrete VNE problems, whereby
various methods and technologies are available in the liter-
ature. For example, Alanen et al. [4] present an algorithm
to derive a context-free grammar from a metamodel, which

123

Virtual network embedding: ensuring correctness and optimality by construction using model 1327

enables the generation of model instances. Since this algo-
rithm only represents tree-like metamodels and only a subset
of possible associations, these limitations make this method
difficult to apply to VNE problems. Also, formal methods
like Alloy [25] can be used to generate instances. For this
purpose, a class diagram is transformed to Alloy and, then,
the instance generation of Alloy is applied to generate the
respective model instances. Since SAT solvers are used to
generate all instances, the use of model transformations has
the advantage of using a grammar and a declarative visual
language. Also, the integration into the presented construc-
tion methodology can be simplified by using MT methods
and technologies.

7.2 VNE algorithms for data centers

The virtualization of data center networks and theVNEprob-
lem have been investigated extensively, and an overview of
these areas can be found in [9,17]. As a result, many algo-
rithms forVNE in data centers have been developed to reduce
the search space of this NP-hard problem [5]. For exam-
ple, Guo et al. [20] present SecondNet, a heuristics-based
approach for embedding a subset of virtualized data cen-
ters into a tree-based data center. The authors consider only
the bandwidth and number of virtual machines per physical
server to reduce the search space and, thus, the time needed to
solve the problem. Zeng et al. [60] additionally consider the
data traffic between the individual virtualmachines and spec-
ify the minimization of the resulting communication costs
as an optimization goal. The authors present an ILP-based
formulation for small data centers and a heuristics-based
algorithm for larger data centers. In [39], the relationships
between switches and links are also taken into account and
the optimization goal minimizes the communication costs
and server fragmentation by avoiding network bottlenecks.
Compared to the previously mentioned algorithms, MdVNE
enables developers to consider different network topologies,
resource constraints, requirements, and optimization goals
by modifying the metamodel and MT rules of MdVNE and
transforming the generated models into sets of ILP formulas
as needed. Depending on the scenario, developers can reduce
the search space and seamlessly adapt embedding decisions
to changing boundary conditionswhile all constraints aremet
by the design.

7.3 Model-driven development of network
applications

Model-driven software development is a promising method
for developing applications independently of a concrete plat-
form. The partly automatic verification of the specification
and code generation also play an important role in numerous
applications. For example, brake-by-wire in the automotive

industry requires allocating software components on net-
worked electronic control units. Pohlmann et al. [37] describe
a model-driven allocation approach specifying the problem
in an OCL-based language, transformed into an ILP for-
mulation and solved the optimization problem afterward.
In the area of Software-defined Networking, Lopes et al.
[32] describe a method for creating application, controller,
and network independent code for Software-defined Net-
working applications by modeling the physical network and
its functionalities. Kluge et al. [28] present an approach
for the development of topology control algorithms by
graph transformations taking into account global and local
consistency constraints (e.g., preservation of connectivity).
The aforementioned approaches indicate that model-driven
development is a promisingmethod for specifying algorithms
in various network domains. Still, the focus of these models
and approaches is not the simultaneous support for network
resources and limitations or specifying VNE algorithms for
data center environments.

7.4 Combining search-based techniques andMT

The combination of MT, optimization techniques, and other
search-based techniques is used in other areas. The paper
by Zschaler et al. [61] provides a good overview and clas-
sification of state-of-the-art approaches including research
challenges in this area. They also presents a prototype for a
model-based optimization technique.Denil et al. [15] present
an approach for integrating search-based optimizations into
the model-driven development process. Using an example
from the creation of electrical circuits, different optimiza-
tion techniques such as randomized search or hill climbing
are used to solve the problem. Strüber et al. [47] present
an approach and implementation for the optimization of a
model using a fitness function to create mutation operators
for generic algorithms efficiently. Themutation operators are
trained using a higher-ordermodel transformation to improve
performance and quality. Fleck et al. [11] describe how MT
technologies and search-based algorithms are used to search
for an optimal sequence of rule applications. By evaluating
fitness values after each (arbitrarily performed) rule appli-
cation, the approach reduces the search space on the fly but
might fail in finding a global optimum. Another approach
of optimization techniques in model-driven development is
learning model transformations by examples [27], where the
applicability to large models is the limiting aspect. In [1],
a multi-objective optimization problem is solved by using a
non-dominated sorting genetic algorithm. They find promis-
ing candidates based on a sequence of rule applications and
presented an automated tooling for this approach.

123

1328 S. Tomaszek et al.

7.5 Approaches for ensuring correctness

In the following, we survey approaches for ensuring the cor-
rectness of a system based on correctness by construction,
verification, and testing. A prominent correct-by-construc-
tion approach in systems engineering is Event-B [2], which
works by stepwise refinement. In [24], Heckel and Wagner
laid the foundation for correct-by-construction approaches in
the MT community based on generating weakest precondi-
tions [16]. They represent graph constraints as premise-con-
clusion structure and propose a constructive algorithm that
transforms a graph constraint into a weakest precondition
of a model transformation rule. This weakest precondition
is necessary and sufficient for preserving correctness w.r.t.
the graph constraint. Nested graph constraints are an exten-
sion of premise-conclusion constraints and as expressive as
first-order logic [22]. In this article, we formalize consis-
tency properties using OCL constraints and possible element
mapping operations using TGG rules. Then, we rely on
[41] for transforming EOCL constraints into nested graph
constraints. Using [22], we refine the TGG rules such that
the refined TGG rules are correct w.r.t. EOCL constraints.
Recently,withOCL2AC[35], tool support for automating the
entire refinement step has been proposed. OCL2AC builds
on the model transformation tool Henshin [7], whereas we
use the model transformation tool eMoflon for the candidate
generation step. In future work, we will explore how to trans-
form eMoflon TGG rules automatically to and from Henshin
rules to be able to employ OCL2AC. In [14], Deckwerth and
Varró propose how to handle complex attribute constraints of
premise-conclusion graph constraints during the constructive
approach. Support for handling complex attribute constraints
in nested graph constraints is still missing. In [40], Radke and
Habel propose H R∗ graph constraints that allow to encode
path expressions. They also show that H R∗ graph constraints
can be translated into weakest preconditions in the spirit of
the constructive approach. It is worthwhile to investigate in
how far their results can be used in our scenario.

Verification-based approaches evaluate the required con-
sistencyproperties a posteriori [42]. The constructive approach
[24] is also suitable for static verification. If the gener-
ated preconditions are implied by the original preconditions
of a rule, no modification is necessary because the rule
already preserves consistency. Similar to correct-by-con-
struction approaches, static verification allows for examining
correctness properties independent of the system size. Still,
a major reason for employing verification is that a system
has not been realized using techniques that support the inte-
gration of consistency properties during the development.
This necessitates dynamic verification using model check-
ers. A model checker constructs the state space of a system
up to a threshold (e.g., based on time budget or model size).
Afterward, it investigates the state space w.r.t. the desired

consistency properties. For example, in [58,59], Zave iden-
tifies critical flaws in the prominent network protocols SIP
and Chord using model checkers The major drawback of
dynamic verification is that the analyzed state space is finite
and, typically, small.

Test-based approaches exercise a given system based on
a set of input data and check whether the resulting behav-
ior (e.g., the output data or the performance) conforms to
the expectations [34]. Similar to dynamic verification, a test-
based approach cannot prove that a system is correct. Instead,
testing allows us to evaluate the behavior of the system in cer-
tain (corner) cases and to avoid regression by deriving test
cases from errors that have been fixed. For the evaluation of
this article, we employed unit testing to ensure that the code
generated from the TGG specification behaves as expected
in a number of representative scenarios.

8 Conclusion

In this article, we present a novel construction methodol-
ogy to produce a suitable configuration for the model-driven
virtual network embedding approach, which synthesizes
the model transformation and integer linear programming
specification from a given declarative model-based prob-
lem description. This provides correct and optimal solutions
for the virtual network embedding problem, an optimiza-
tion problem for embedding virtual networks in a substrate
network. This methodology uses a novel model-based prob-
lem description for the VNE problem. It supports various
types of resources, requirements, and constraints that are
describedby ametamodel,OCLconstraints, and anoptimiza-
tion goal. The methodology is used to generate MT rules and
ILP formulations that ensure all identified solutions respect
the constraints and are optimal w.r.t. the optimization goal.
Thus, our methodology enables developers to create a set
of VNE algorithms for scenarios on an declarative level, to
derive a prototypical implementation from a given specifica-
tion semiautomatically.

Our evaluation results indicate that MdVNE is consider-
ably faster than the ILP-only baseline in solving the VNE
problem in particular for larger batch sizes. We validated
the optimality by comparing the objective values of the out-
puts of the MdVNE and ILP-only approaches. Furthermore,
we assured the quality of our implementation by using a
redundant ILP-only implementation, consistency checks at
runtime, and unit tests. The runtime of theMdVNE approach
fluctuates less than the ILP-only baseline.

As a next step, we plan to support a larger subset of OCL
to generalize the derivation process of ILP formulations for
OCL. Furthermore, we will build a tool chain that covers the
complete construction process using the model-based speci-
fication as a starting point and integrates it with the MdVNE

123

Virtual network embedding: ensuring correctness and optimality by construction using model 1329

Fig. 21 Graph constraints of
CmemR, CstoR, and CbwR

GCmemR

Premise
vs:

VirtualServer
self:

SubstrateServer
substrateServer

virtualServers

Conclusion

vs.memory ≤ self.memory

vs:
VirtualServer

self:
SubstrateServer

substrateServer
virtualServers

(a) Graph constraint of CmemR

GCstoR

Premise
vs:

VirtualServer
self:

SubstrateServer
substrateServer

virtualServers

Conclusion

vs.storage ≤ self.storage

vs:
VirtualServer

self:
SubstrateServer

substrateServer
virtualServers

(b) Graph constraint of CstoR

GCbwR

Premise
vl:

VirtualLink
self:

SubstratePath
substratePath

virtualLinks

Conclusion

vl.bandwidth ≤ self.bandwidth

vl:
VirtualLink

self:
SubstratePath

substratePath
virtualLinks

(c) Graph constraint of CbwR

Fig. 22 Graph constraints for
EOCL constraint Ctrg

virtualSwitches
substrateNode

substratePath
virtualLinks

virtualLinks
substratePath

Premise

GCtrg1

self:
VirtualLink

sp:
SubstratePath

vs:
VirtualSwitch

sn:
SubstrateNode

Conclusion
self:

VirtualLink
sp:

SubstratePath

vs:
VirtualSwitch

sn:
SubstrateNode

incomingtarget

incomingtarget

incomingPaths target

incomingPaths target

(a) Graph constraint of the then-branch of Ctrg

substratePath
virtualLinks

substratePath
virtualLinks

Premise
GCtrg2

self:
VirtualLink

sp:
SubstratePath

vs:
VirtualServer

sn:
SubstrateNode

Conclusion
self:

VirtualLink
sp:

SubstratePath

vs:
VirtualServer

sn:
SubstrateServer

substrateServer
virtualServers

incomingtarget

incomingtarget

incomingPaths target

incomingPaths target

(b) Graph constraint of the else-branch of Ctrg

approach. In this tool chain, a systematic derivation of OCL
constraints in ILP formulations can take place using Clafer
as an intermediate language [52,53]. In addition, the deriva-
tion of OCL constraints can be done according to MT rule
application conditions via graph constraints [35,36]. To sup-
port dynamic VNE scenarios, changes in the networks (e.g.,
removing a virtual server) at runtime as well as migrations
and costs for migrations have to be taken into account. These
dynamic system changes will trigger migration and error
protection strategies to achieve the permanent fulfillment
of hardware and software constraints. In addition to updat-
ing the generated candidates, the ILP problem must also be
adapted based on the incremental changes. Incremental pat-
tern matching techniques [51] are a promising approach to
address these dynamic scenarios and reduce the runtime for
solving these problems. Finally, we will extend the MdVNE

simulation framework to investigate further network types,
VNE algorithms, and transition between different VNE algo-
rithms.

Acknowledgements This work was funded by the German Research
Foundation (DFG) as part of project A1 within the Collaborative
Research Center (CRC) 1053 – MAKI.

A Appendix

In the appendix we present the restrictions that are not neces-
sary for understanding thework. InAppendixA.1,wepresent
all further restrictions fromSect. 2.1.2.Afterward,wepresent
in Appendix A.2 the constraints and graph constraints from
Sect. 3.2.3 (Figs. 21, 22).

123

1330 S. Tomaszek et al.

A.1 VNE problem description

In this section, we present all node and link constraints relat-
ing to Sects. 2.1.2 and 2.2.3

context SubstrateServer inv cpuSum(self.virtualServers)

≤ self.cpu (Ccpu)

context SubstrateServer inv memorySum(self.virtualServers)

≤ self.memory (Cmem)

context SubstrateServer inv storageSum(self.virtualServers)

≤ self.storage (Csto)

context VirtualLink inv if self.source.oclIsTypeOf(VirtualServer)

then self.source.oclAsType(VirtualServer).substrateServer

= self.substratePath.source

else self.source.oclAsType(VirtualSwitch).substrateNode

= self.substratePath.source

endif (Csrc)

context VirtualLink inv if self.target.oclIsTypeOf(VirtualServer)

then self.target.oclAsType(VirtualServer).substrateServer

= self.substratePath.target

else self.target.oclAsType(VirtualSwitch).substrateNode

= self.substratePath.target

endif (Ctrg)

Further ILP node constraints

∀u ∈ N S :
∑

i∈N V

Mi xi
u ≤ Mu (ILPmem)

∀u ∈ N S :
∑

i∈N V

Si xi
u ≤ Su (ILPsto)

Further ILP link constraints

∀li j ∈ LV : ∀puv ∈ P S : yi j
uv ≤ x j

v (ILPtrg)

A.2 Construction of MT specification

In this section, we present the additional relaxed and graph
constraints related to Sect. 3.2.3.

context SubstrateServer inv self.virtualServers

→ forAll(vs | vs.cpu ≤ self.cpu) (CcpuR)

context SubstrateServer inv self.virtualServers

→ forAll(vs | vs.memory ≤ self.memory) (CmemR)

context SubstrateServer inv self.virtualServers

→ forAll(vs | vs.storage ≤ self.storage) (CstoR)

context SubstratePath inv self.virtualLinks

→ forAll(vl | vl.bandwidth ≤ self.bandwidth) (CbwR)

References

1. Abdeen, H., Varró, D., Sahraoui, H.A., Nagy, A.S., Debreceni,
C., Hegedüs, Á., Horváth, Á.: Multi-objective optimization in
rule-based design space exploration. In: Crnkovic, I., Chechik,
M., Grünbacher, P. (eds.) International Conference on Automated
Software Engineering (ASE). ACM, pp. 289–300 (2014)

2. Abrial, J.R., Hallerstede, S.: Refinement, decomposition, and
instantiation of discrete models: application to Event-B. Fundam.
Inform. 77(1–2), 1–28 (2007)

3. Al-Fares, M., Loukissas, A., Vahdat, A.: A scalable, commodity
data center network architecture. In: ACMSIGCOMMConference
on Applications, Technologies, Architectures, and Protocols for
Computer Communications, pp. 63–74 (2008)

4. Alanen, M., Porres, I., Centre, T., Science, C.: A relation between
context-free grammars and meta object facility metamodels. Tech-
nical report (2003)

5. Amaldi, E., Coniglio, S., Koster, A.M.C.A., Tieves, M.: On the
computational complexity of the virtual network embedding prob-
lem. Electron. Notes Discrete Math. 52, 213–220 (2016)

6. Anjorin, A., Leblebici, E., Kluge, R., Schürr, A., Stevens, P.: A
systematic approach and guidelines to developing a triple graph
grammar. In: International Workshop on Bidirectional Transfor-
mations, CEUR vol. 1396, pp. 81–95 (2015)

7. Arendt, T., Biermann, E., Jurack, S., Krause, C., Taentzer, G.:
Henshin: advanced concepts and tools for in-place EMF model
transformations. In: International Conference on Model Driven
Engineering Languages and Systems (MODELS), vol. 6394.
Springer, pp. 121–135 (2010)

8. Ballani, H., Costa, P., Karagiannis, T., Rowstron, A.I.T.: Towards
predictable datacenter networks. In: Conference on Applications,
pp. 242–253 (2011)

9. Bari, M.F., Boutaba, R., Esteves, R.P., Granville, L.Z., Podlesny,
M., Rabbani, M.G., Zhang, Q., Zhani, M.F.: Data center network
virtualization: a survey. Commun. Surv. Tutor. 15(2), 909–928
(2013)

123

Virtual network embedding: ensuring correctness and optimality by construction using model 1331

10. Bhardwaj, S., Jain, L., Jain, S.: Cloud computing: a study of infras-
tructure as a service (IaaS). Int. J. Eng. Inf. Technol. 2(1), 60–63
(2010)

11. Bill, R., Fleck, M., Troya, J., Mayerhofer, T., Wimmer, M.: A local
and global tour on momot. Softw. Syst. Model. 18(2), 1017–1046
(2019)

12. Böhm,M., Leimeister, S., Riedl, C.,Krcmar,H.: Cloud computing–
outsourcing 2.0 or a new business model for it provisioning? In:
Application Management. Springer, pp. 31–56 (2011)

13. Cplex, I.I.: 12.2 user’s manual. Book 12.2 User’s Manual, Series
12.2 User’s Manual (2010)

14. Deckwerth, F., Varró, G.: Attribute handling for generating pre-
conditions from graph constraints. In: International Conference on
Graph Transformation (ICGT), pp. 81–96 (2014)

15. Denil, J., Jukss, M., Verbrugge, C., Vangheluwe, H.: Search-based
model optimization usingmodel transformations. In: SystemAnal-
ysis and Modeling: Models and Reusabilit (SAM), pp. 80–95
(2014)

16. Dijkstra, E.W.: ADiscipline of Programming, vol. 1. Prentice Hall,
Upper Saddle River (1976)

17. Fischer, A., Botero, J.F., Beck, M.T., de Meer, H., Hesselbach, X.:
Virtual network embedding: a survey. Commun. Surv. Tutor. 15(4),
1888–1906 (2013)

18. Fowler, M.: UML Distilled: A Brief Guide to the Standard Object
Modeling Language. Addison-Wesley Professional, Boston (2004)

19. Group, O.M.: Object constraint language 2.0. OMG (2003)
20. Guo, C., Lu, G., Wang, H.J., Yang, S., Kong, C., Sun, P., Wu, W.,

Zhang, Y.: Secondnet: a data center network virtualization archi-
tecture with bandwidth guarantees. In: Conference on emerging
Networking EXperiments and Technologies (CoNEXT), pp. 15:1–
15:12 (2010)

21. Gurobi Optimization, I.: Gurobi optimizer reference manual.
https://www.gurobi.com/ (2016). Accessed 17 Jan 2018

22. Habel, A., Pennemann, K.: Correctness of high-level transforma-
tion systems relative to nested conditions. Math. Struct. Comput.
Sci. 19(2), 245–296 (2009)

23. Hadjiconstantinou, E.: Transformation of propositional calculus
statements into integer and mixed integer programs: an approach
towards automatic reformulation. Brunel University, Technical
report (1990)

24. Heckel, R., Wagner, A.: Ensuring consistency of conditional graph
grammars—a constructive approach. ENTCS 2, 118–126 (1995)

25. Jackson, D.: Alloy: a lightweight object modelling notation. ACM
Trans. Softw. Eng. Methodol. 11(2), 256–290 (2002)

26. Kehrer, T., Taentzer, G., Rindt, M., Kelter, U.: Automatically
deriving the specification of model editing operations from meta-
models. In: International Conference on Model Transformation
(ICMT), pp. 173–188 (2016)

27. Kessentini, M., Sahraoui, H., Boukadoum, M.: Model transforma-
tion as an optimization problem. In: International Conference on
Model Driven Engineering Languages and Systems (MODELS).
Springer, Berlin, pp. 159–173 (2008)

28. Kluge, R., Stein, M., Varró, G., Schürr, A., Hollick, M.,
Mühlhäuser, M.: A systematic approach to constructing incremen-
tal topology control algorithms using graph transformation. JVLC
38, 47–83 (2017)

29. Krieger, M.P., Brucker, A.D.: Extending OCL operation contracts
with objective functions. ECEASST 4. https://journal.ub.tu-berlin.
de/eceasst/article/view/662, (2011)

30. Leblebici, E., Anjorin, A., Schürr, A.: Developing eMoflon with
eMoflon. ICMT 8568, 138–145 (2014)

31. Leblebici, E., Anjorin, A., Schürr, A.: Inter-model consistency
checking using triple graph grammars and linear optimization
techniques. In: Fundamental Approaches to Software Engineering
(FASE), pp. 191–207 (2017)

32. Lopes, F.A., Lima, L., Santos,M., Fidalgo, R., Fernandes, S.: High-
level modeling and application validation for SDN. In: Network
Operations and Management Symposium, pp. 197–205 (2016)

33. Meng, X., Pappas, V., Zhang, L.: Improving the scalability of
data center networks with traffic-aware virtual machine placement.
In: IEEE International Conference on Computer Communications
(INFOCOM), pp. 1154–1162 (2010)

34. Myers, G.J., Sandler, C., Badgett, T.: The Art of Software Testing.
Wiley, Hoboken (2011)

35. Nassar,N.,Kosiol, J., Arendt, T., Taentzer,G.:OCL2AC: automatic
translation of OCL constraints to graph constraints and application
conditions for transformation rules. In: International Conference
on Graph Transformation (ICGT), pp. 171–177 (2018)

36. Nassar, N., Kosiol, J., Arendt, T., Taentzer, G.: Constructing
optimized validity-preserving application conditions for graph
transformation rules. In: International Conference on Graph Trans-
formation (ICGT), pp. 177–194 (2019)

37. Pohlmann, U., Hüwe, M.: Model-driven allocation engineering (t).
In: International Conference on Automated Software Engineering
(ASE), pp. 374–384 (2015)

38. Pohlmann, U., Hüwe, M.: Model-driven allocation engineering:
specifying and solving constraints based on the example of auto-
motive systems. Autom. Softw. Eng. 26(2), 315–378 (2019)

39. Rabbani, M.G., Esteves, R.P., Podlesny, M., Simon, G., Granville,
L.Z., Boutaba, R.: On tackling virtual data center embedding
problem. In: IFIP/IEEE International Symposium on Integrated
Network Management, pp. 177–184 (2013)

40. Radke, H.: Weakest liberal preconditions relative to HR* graph
conditions. In: International Workshop on Graph Computation
Models (GCM), pp. 165–178 (2010)

41. Radke, H., Arendt, T., Becker, J.S., Habel, A., Taentzer, G.: Trans-
lating essential OCL invariants to nested graph constraints for
generating instances of meta-models. Sci. Comput. Program. 152,
38–62 (2018)

42. Rensink, A., Schmidt, A., Varró, D.: Model checking graph trans-
formations: a comparison of two approaches. In: International
Conference on Graph Transformation (ICGT), vol. 3256. Springer,
pp. 226–241 (2004)

43. Sahhaf, S., Tavernier, W., Rost, M., Schmid, S., Colle, D., Pick-
avet, M., Demeester, P.: Network service chaining with optimized
network function embedding supporting service decompositions.
Comput. Netw. 93, 492–505 (2015)

44. Schnabel, T., Weckesser, M., Kluge, R., Lochau, M., Schürr, A.:
Cardygan: tool support for cardinality-based feature models. In:
International Workshop on Variability Modelling of Software-
Intensive Systems. ACM, pp. 33–40 (2016)

45. Schürr, A.: Specification of graph translators with triple graph
grammars. In: Graph–Theoretic Concepts in Computer Science,
pp. 151–163 (1994)

46. Shen, S., van Beek, V., Iosup, A.: Statistical characterization
of business-critical workloads hosted in cloud datacenters. In:
International Symposium on Cluster, Cloud and Grid Computing
(CCGrid), pp. 465–474 (2015)

47. Strüber, D.: Generating efficient mutation operators for search-
based model-driven engineering. In: International Conference on
Model Transformation (ICMT), pp. 121–137 (2017)

48. Tomaszek, S., Leblebici, E., Wang, L., Schürr, A.: Virtual network
embedding: reducing the search space by model transformation
techniques. In: International Conference onModel Transformation
(ICMT), pp. 59–75 (2018)

49. Tomaszek, S., Leblebici, E., Wang, L., Schürr, A.: Model-driven
development of virtual network embedding algorithms with model
transformation and linear optimization techniques. Modellierung
2018, 39–54 (2018)

50. Varró, D., Bergmann, G., Hegedüs, Á., Horváth, Á., Ráth, I., Ujhe-
lyi, Z.: Road to a reactive and incremental model transformation

123

https://www.gurobi.com/
https://journal.ub.tu-berlin.de/eceasst/article/view/662
https://journal.ub.tu-berlin.de/eceasst/article/view/662

1332 S. Tomaszek et al.

platform: three generations of the VIATRA framework. Softw.
Syst. Model. 15(3), 609–629 (2016)

51. Varró, G., Varró, D., Schürr, A.: Incremental graph pattern match-
ing: Data structures and initial experiments. ECEASST 4. https://
doi.org/10.14279/tuj.eceasst.4.12 (2006)

52. Weckesser, M.: Automatisierte analyse integrierter software-
produktlinien-spezifikationen. Ph.D. thesis, Darmstadt University
of Technology, Germany (2019)

53. Weckesser, M., Lochau, M., Ries, M., Schürr, A.: Towards com-
plete consistency checks of clafer models. In: International Work-
shop on Feature-Oriented Software Development (SIGPLAN), pp.
11–20 (2017)

54. Wohlin, C., Runeson, P., Höst, M., Ohlsson, M.C., Regnell, B.:
Experimentation in Software Engineering. Springer, Berlin (2012)

55. Yang, Y., Chang, X., Liu, J., Li, L.: Towards robust green virtual
cloud data center provisioning. IEEE Trans. Cloud Comput. 5(2),
168–181 (2017)

56. Yang, Z., Guo, Y.: An exact virtual network embedding algorithm
based on integer linear programming for virtual network request
with location constraint. China Commun. 13(8), 177–183 (2016)

57. Yu, M., Yi, Y., Rexford, J., Chiang, M.: Rethinking virtual network
embedding: substrate support for path splitting andmigration. SIG-
COMM Comput. Commun. Rev. 38(2), 17–29 (2008)

58. Zave, P.: Understanding SIP through Model-Checking. In: Prin-
ciples, Systems and Applications of IP Telecommunications.
Services and Security for Next Generation Networks, vol. 5310.
Springer, pp. 256–279 (2008)

59. Zave, P.: Using lightweight modeling to understand chord. SIG-
COMM Comput. Commun. Rev. 42(2), 49–57 (2012)

60. Zeng, D., Guo, S., Huang, H., Yu, S., Leung, V.C.: Optimal VM
placement in data centers with architectural and resource con-
straints. Int. J. Autonom. Adapt. Commun. Syst. 8(4), 392–406
(2015)

61. Zschaler, S., Mandow, L.: Towards model-based optimisation:
using domain knowledge explicitly. In: Software Technologies:
Applications and Foundations (STAF), CollocatedWorkshops, pp.
317–329 (2016)

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

Stefan Tomaszek is a doctoral
researcher at the Real-Time Sys-
tems Lab at TU Darmstadt. His
main research interests are in the
field of model-based software engi-
neering and virtual network embed-
ding. His research is part of the
DFG project MAKI.

Roland Speith (né Kluge) earned
his M.Sc. an Ph.D degrees in Com-
puter Science at TU Darmstadt,
Germany. In his research, he
focused on advancing correct-by-
construction model-based devel-
opment techniques with a focus
on self-adaptive communication
systems. Since 2019, he is a soft-
ware engineer for inter-vehicle
communication of Automatic
Guided Vehicles (AGVs) for intra-
logistics at Safelog GmbH.

Andy Schürr received his Mas-
ter degree in Computer Science
in 1986 from TU München and
his Ph.D. degree in Computer Sci-
ence in 1991 from RWTH Aachen.
From 1998 to 2002 he was an
Associate Professor at the Insti-
tute of Software Technology of
the German Armed Forces Uni-
versity, Munich. Since July 2002,
Prof. Schc̈rr holds the Real-Time
System chair of the Electrical
Engineering and Information
Technology Department of the TU
Darmstadt. Andy Schürr’s main

research interests are related to model-based development (MBD) of
embedded systems. His research group develops the metamodeling
tool eMoflon, which offers integrated support for Eclipse-based visual
metamodeling and graph-transformation-based model transformation
techniques. MBD-related research interests include (1) bidirectional
model transformation languages, (2) integration of commercial-of-the-
shelf engineering tools, (3) model-based testing of software product
lines, and (4) self-adaptive distributed communication systems.

123

https://doi.org/10.14279/tuj.eceasst.4.12
https://doi.org/10.14279/tuj.eceasst.4.12

	Virtual network embedding: ensuring correctness and optimality by construction using model transformation and integer linear programming techniques
	Abstract
	1 Introduction
	2 VNE problem description
	2.1 Model-based problem description
	2.1.1 Metamodel
	2.1.2 OCL constraints
	2.1.3 Objective function

	2.2 ILP-based problem description
	2.2.1 Network model
	2.2.2 Mapping model and decision variables
	2.2.3 ILP constraints
	2.2.4 ILP objective function

	3 Model-driven virtual network embedding
	3.1 The MdVNE approach
	3.2 From model-based specification to MdVNE configuration
	3.2.1 Overview of construction methodology
	3.2.2 Construction of basic TGG rules
	3.2.3 Construction of MT specification
	3.2.4 Construction of ILP specification

	4 Correctness results
	5 Tool support
	6 Evaluation
	6.1 Setup
	6.2 RQ 1: Efficiency versus substrate network size
	6.2.1 Results
	6.2.2 Discussion

	6.3 RQ 2: Batch size
	6.4 Summary of evaluation
	6.5 Threats to validity

	7 Related work
	7.1 Generating model instances from a metamodel
	7.2 VNE algorithms for data centers
	7.3 Model-driven development of network applications
	7.4 Combining search-based techniques and MT
	7.5 Approaches for ensuring correctness

	8 Conclusion
	Acknowledgements
	A Appendix
	A.1 VNE problem description
	A.2 Construction of MT specification

	References

