Software and Systems Modeling (2021) 20:469-503
https://doi.org/10.1007/s10270-020-00815-4

REGULAR PAPER

®

Check for
updates

Claimed advantages and disadvantages of (dedicated) model
transformation languages: a systematic literature review

Stefan Gotz'(- Matthias Tichy? - Raffaela Groner?

Received: 20 November 2019 / Revised: 9 June 2020 / Accepted: 16 June 2020 / Published online: 14 July 2020

© The Author(s) 2020

Abstract

There exists a plethora of claims about the advantages and disadvantages of model transformation languages compared to
general-purpose programming languages. With this work, we aim to create an overview over these claims in the literature and
systematize evidence thereof. For this purpose, we conducted a systematic literature review by following a systematic process
for searching and selecting relevant publications and extracting data. We selected a total of 58 publications, categorized
claims about model transformation languages into 14 separate groups and conceived a representation to track claims and
evidence through the literature. From our results, we conclude that: (i) the current literature claims many advantages of model
transformation languages but also points towards certain deficits and (ii) there is insufficient evidence for claimed advantages
and disadvantages and (iii) there is a lack of research interest into the verification of claims.

Keywords Model transformation language - DSL - Model transformation - MDSE - Advantages - Disadvantages

1 Introduction

Ever since the dawn of model-driven engineering at the
beginning of the century, model transformations, supported
by dedicated transformation languages [31], have been an
integral part of model-driven development. Model transfor-
mation languages (MTLs), being domain-specific languages,
have ever since been associated with advantages in areas
like productivity, expressiveness and comprehensibility com-
pared to general-purpose programming languages (GPLs)
[50,55,60]. Such claims are reiterated time and time again
in the literature, often without any actual evidence. Nowa-
days, such an abundance of claims runs through the whole
literature body that one can be forgiven when losing track

Communicated by Alfonso Pierantonio.

B Stefan Gotz
stefan.goetz@uni-ulm.de

Matthias Tichy
matthias.tichy @uni-ulm.de

Raffaela Groner

raffaela.groner @uni-ulm.de

Ulm University, 89081 Ulm, Germany
2 Ulm University, 80901 Ulm, Germany

of which claims verifiably apply and which are still purely
visionary.

The goal of this study is to identify and categorize claims
about advantages and disadvantages of model transformation
languages made throughout the literature and to gather avail-
able evidence thereof. We do not intend to provide a complete
overview over the current state of the art in research. For this
purpose, we performed a systematic review of claims and
evidence in the literature.

The main contributions of our study are:

— a systematic review and overview over the advantages
and disadvantages of model transformation languages as
claimed in the literature;

— insights into the state of verification of aforementioned
advantages and disadvantages;

This study is intended for researchers to (i) raise awareness
for the current state of research and (ii) incentivise further
research in areas where we identified gaps. The study can also
be of interest to practitioners who wish to gain an overview
over what research claims about MTLs compared to a prac-
titioners view of the matter.

To systematize information from the literature, we per-
formed a systematic literature review [14,41] based on the
research questions we defined (see Sect. 3.1). As a first step,

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s10270-020-00815-4&domain=pdf
http://orcid.org/0000-0001-7028-131X

470

S.Gotzetal.

during the review we selected 58 publications from which
to extract claims and evidence for advantages and disad-
vantages of model transformation languages. Afterwards,
we categorized claims and systematized the evidence to
produce (i) a categorization of claimed advantages and disad-
vantages into 15 separate categories (namely analysability,
comprehensibility, conciseness, debugging, ease of writing
a transformation, expressiveness, extendability, just better,
learnability, performance, productivity, reuse and maintain-
ability, tool support, semantics and verification, versatility)
and (ii) a systematic representation of which claims are ver-
ified through what means. From our results, we conclude
that:

1. The current literature claims many advantages and disad-
vantages of model transformation languages.

2. A large portion of claims are very broad.

3. There is insufficient or no evidence for a large portion of
claims.

4. There is a number of claims that originate in claims about
DSLs without proper evidence why they hold for MTLs
too.

5. There is a lack of research interest in evaluation and
especially verification of claimed advantages and disad-
vantages.

We hope our results can provide an overview over what MTLs
are envisioned to achieve, what current research suggests
they do and where further research to validate the claimed
properties is necessary.

The remainder of this paper is structured as follows: Sect. 2
introduces the background of this research, model-driven
engineering and model transformation languages. In Sect. 3,
we will detail the methodology used for the conducted liter-
ature review. We present our findings in Sect. 4. Afterwards,
in Sect. 5, we discuss the results of our findings. This section
will also include propositions for much needed validation
of claims about model transformation languages synthesized
from the literature review. Section 6 contains information
about related work, and in Sect. 7 potential threats to the
validity of this research are discussed. Lastly, Sect. 8 draws
a conclusion for our research.

2 Background

In this section, we provide the necessary background for our
study and explain the context in which our study integrates.

2.1 Model-driven engineering

In 2001, the Object Management Group published the soft-
ware design approach called Model-Driven Architecture [52]

@ Springer

as a means to cope with the ever-growing complexity of
software systems. MDA placed models at the centre of
development rather than using them as mere documentation
artefacts. The approach envisions an automated, continuous
specialization from abstract models towards code. Starting
with the so-called Computation Independent Models (CIMs),
each specialization step should provide the models with more
specific information about the intended system, transforming
them from CIM into Platform Independent Models (PIMs)
and then into Platform Specific Models (PSMs) and finally
into production ready source code.

The different abstraction levels were designed to enable
practitioners to be as platform, system and language indepen-
dent as possible. The notion of using models as the central
artefact during development is what is commonly referred to
as Model-Driven (Software-) Engineering (MDE/MDSE) or
Model-Based (Software-) Engineering (MBE/MBSE) [20].

The structure of a model is defined by a so-called meta-
model whose structure is then also defined by meta-models
of their own.

2.2 Domain-specific languages

“A domain-specific language (DSL) provides a notation
tailored towards an application domain and is based on
relevant concepts and features of that domain” [61]. The id-
eabehind this design philosophy is to increase expressiveness
and ease of use through more specific syntax. As such, DSLs
provide an auspicious alternative for solving tasks associated
with a specific domain. Representative DSLs include HTML
for designing Web pages or SQL for database querying and
manipulation.

2.3 Model transformation languages

Models are transformed into different models of the same
or a different meta-model via the so-called model trans-
formations. Driven by the appeal of DSLs, a plethora of
dedicated MTLs have been introduced since the emergence
of MDE as a software development approach [3,7,38,43].
Unlike general-purpose programming languages, MTLs are
designed for the sole purpose of enabling developers to trans-
form models. As a result, model transformation languages
provide explicit language constructs for tasks performed dur-
ing model transformation such as model matching. Similar
to GPLs, model transformation languages can differ vastly
in several aspects, starting with features that can be found
in GPLs as well like language paradigm and typing all the
way to transformation-specific features such as directionality
[22]. There are numerous of features that can be used to dis-
tinguish model transformation languages from one another.
For a complete classification of these features, please refer

Claimed advantages and disadvantages of model transformation languages: a SLR 471

to Kahani et al. [39], Mens and Gorp [49] or Czarnecki and
Helsen [22].

Model transformation languages, being DSLs, promise
dedicated syntax tailored to enhance the development of
model transformations.

3 Methodology

Our review procedures are based on the descriptions of
literature and mapping reviews from Boot, Sutton and
Papaioannou [14]. First of all, a protocol for the review
was defined. The protocol, as defined in Boot, Sutton and
Papaioannou [14], describes (I) the research background (see
Sect. 2), (IT) the objective of the review and review questions
(see Sect. 3.1), (IIT) the search strategy (see Sect. 3.2), (IV)
selection criteria for the studies (see Sect. 3.3), (V) a qual-
ity assessment checklist and procedures (see Sect. 3.4), (VI)
the strategy for data extraction and (VII) a description of
the planned synthesis procedures (see Sect. 3.5). A complete
overview of all steps of our literature review can be found
in Sect. 1.

The remainder of this section will describe in detail each
of the introduced protocol elements, with the exemption of
the research background which we already covered in Sect. 2.

3.1 Objective and research questions

To formulate the objective as well as to derive the research
questions for our review, we first applied the Goal-Question-
Metric approach [11] which splits the overall goal into four
separate concerns, namely purpose, issue, object and view-
point.

Purpose Find and categorize

Issue claims of and evidence for advantages and
disadvantages

Object of model transformation languages

Viewpoint from the standpoint of researchers and prac-

titioners.

Based on the described goal, we then extracted the two
main research questions for our literature review:

RQI What advantages and disadvantages of model
transformation languages are claimed in the
literature?

RQO2 What advantages and disadvantages of model

transformation languages are validated throu-
gh empirical studies or by other means?

The aim of RQ/ is to provide an extensive overview over
what kinds of advantages or disadvantages are explicitly

attributed to using dedicated model transformation languages
compared to using general-purpose programming languages.
We consider such an overview to be necessary, because the
number of claims and their repetition in the literature to date
makes it difficult to keep track of which claims verifiably
apply and which are still purely visionary. Naturally to be
able to distinguish between substantiated and unsubstanti-
ated claims, it is also required to record which claims are
supported by evidence. With RQ2, we aim to do exactly that.
Combining the results of RQ/ and RQ2 then makes it pos-
sible to determine if, and how, a positive or negative claim
about MTLs is verified. Additionally, this also enables us to
identify those claims that have yet to be investigated.

3.2 Search strategy

Our search strategy consists of seven consecutive steps. A
visual overview of the complete search process is shown
in Fig. 3. The figure visualizes steps Database search to
Snowballing from Fig. 1 in more detail.

In the first step, we defined the search string to be used
for automatic database searches. For this, we identified major
terms concerning our research questions. Each new term was
made more specific than the previous one. The resulting terms
and justifications for including them were:

— Model-driven engineering The overall context we are
concerned with. This was included to ensure only papers
from the relevant context were found.

— Model transformation The more specific context we are
concerned with.

— Model transformation language Since our focus is on the
languages to express model transformations.

We used a thesaurus to identify relevant synonyms for each
term in order to enhance our search string. In addition, we
included one representative model transformation language
with graphical syntax, one imperative language, one declar-
ative language and one hybrid language as well as the term
domain-specific language and its synonyms. The selection of
the representative languages was made on the basis of their
widespread use, active development and in the case of QVT
because it is the standard for model transformations adopted
by the Object Management Group. All these additional terms
were included as synonyms for the model transformation lan-
guage term.

We dropped the terms advantage and disadvantage after
initial searches, because they resulted in a too narrow of a
result set which excluded key publications [29,33] manually
identified by the authors.

To combine all keywords, we followed the advice of
Kofod-Petersen [42] to use the Boolean (V) to group together
synonyms and the Boolean (A) to link our major term groups.

@ Springer

472

S. Gotz et al.

Planning

Conducting

Reporting

‘ Review needs
identification
Applied@—b

Protocol
definition

Database

Research
questions

Protocol

Relevant
publications 1

Set of
publications

search

| |

Reviewer 1

Selection Selection
Reviewer 2

Relevant
publications 2

Combined
selection

Protocol
evaluation

Quality Score

Relevant .
publicatio;l(—) Snowballing
\—>@(traction Data ltems

Quality Data Synthesisi—’
nent

Y

L

X

Threats
analysis

Report writing
Report
evaluation

Final
report

|

Activity flow Artifact flow

Fig.1 Protocol overview

(Model Driven Engineering V MDE V Model Based Engineering V
MBE V Model Driven Development V MDD Vv

Model Driven Software Engineering V MDSE Vv

Model Driven Software Development V

MDSE V Model-Driven Software Development V

Model-Driven Engineering V Model-Based Engineering Vv
Model-Driven Software Engineering)

N

(Model Transformation V Transformation V

Model Transformations V Transformations)

A

(Model Transformation Language V Transformation Language V
ATL V Henshin V QVT VvV TL V

Transformation Languages V DSL V domain specific language V

Model Transformation Languages)

Fig.2 Search string used for automatic database searches

This resulted in the search string shown in Fig. 2 which
was applied in full text searches.

We decided on the following four search engines to use
for automated literature search:

— ACM Digital Library

@ Springer

Springer Link
(n=1977)

IEEE Xplore
(n=139)

ACM Digital Library
(n =358)

Web of Science
(n =365)

I

Preliminary relevance
filtering
(n=500)

l

l

Duplicate removal
(n=935)

|

Application of
Selection Criteria
(n=99)

Snowballing
(n=107)

Full-text screening
(n=58)

Papers included
(n=58)

Fig.3 The search and selection process

Steps

IV +V

VI

VII

Claimed advantages and disadvantages of model transformation languages: a SLR 473

— IEEE Xplore
— Springer Link
— Web Of Science

Search engines were chosen based on their overall cover-
age, completeness, the availability of accessible publications
and usage in other literature reviews in this field such as
Loniewski, Insfran, and Abrahao [8,48]. The online library
Science Direct, which is often used in this domain, was
excluded from our list due to us only having limited access
to the publications in the database. We decided that the over-
head of requesting access to all publications for which our
proceedings would require a full text review (see step 4)
would take up too much time; thus, we excluded the database
from our automatic search process. Badampudi, Wohlin, and
Petersen [6] also show that combining the automatic database
searches with an additional snowballing process can make
up for a reduced list of searched databases. We also decided
against using Google Scholar as a search engine due to our
experience with it producing too many irrelevant results and
having a large overlap with ACM Digital Library and IEEE.

We conducted several preliminary searches on all four
databases during the construction of the search string, to val-
idate the resulting publications included key publications.

After the definition and validation of the search string,
the second step consisted of full text searches using the
search engines of ACM Digital Library, IEEE Xplore Digital
Library and Web of Science.

For the Springer Link database, we realized early on that a
full text search would result in too many hits and instead opted
to query only the titles for the keyword model transforma-
tion language and its synonyms and filtered these results by
applying a full text search based on the remaining keywords
and their synonyms. The remaining results still far exceeded
those of all other databases combined. We further realized
during preliminary sifting that neither title nor abstracts of
publications beyond the first 200 results suggested a rele-
vance to our study. For that reason, we decided to cap our
search at 500 publications, doubling the size of results from
the point where the relevance of publications started to slide.
This decision is supported by the fact that any publication
which ended up in our data extraction set was found within
the first 200 results.

All automated database searches were conducted between
June 17 and June 28, 2019.

In the third step, all duplicates that resulted from using
multiple search engines were filtered out based on the pub-
lication title and date. This also included the removal of
publications that had extended versions published in a jour-
nal. This resulted in a total of 935 publications.

During the fourth step, two researchers independently
used the selection criteria (see Sect. 3.3) on the titles
and abstracts to select a set of relevant publications. The

researchers categorized literature as either relevant or irrele-
vant. And in cases where they could not deduce the relevance
based on the title and abstract, the publication was marked
as undecidable.

Afterwards, in step 5 the results for each publication of
the independent selection processes were compared. In cases
where the two researchers agreed on relevant or irrelevant,
the paper was included or excluded from the final set of
publications. In cases of either a disparity between the cate-
gorizations or an agreement on undecidable, the full text of
the publications was consulted using adaptive reading tech-
niques to decide whether it should be included or excluded.
Adaptive reading in this context meant going from reading
the introduction to reading the conclusion and if a decision
was still not reached reading the paper from start to finish
until a decision could be reached. The step resulted in a total
of 99 publications to use as a start set for the sixth step.

In the sixth step, we applied exhaustive backward and for-
ward snowballing, meaning, as described in many previous
studies [5,59], until no new publication was selected. The
snowballing procedures followed the guidelines laid out by
Wohlin [67]. Our start set was comprised of all 99 publica-
tions from step 5. We then applied backward and forward
snowballing to the set. For backward snowballing, we used
the reference lists contained in the publications, and for for-
ward snowballing we used Google Scholar as suggested by
Wohlin [67] and because from our experience it provides the
most reliable source for the cited by statistic. To the cited
and citing publications, we then applied our inclusion and
exclusion criteria as described in step 4. All publications that
were deemed as relevant were then used as the starting set
for the next round of snowballing until no new publications
were selected as relevant. The result of this step was a set of
107 relevant publications.

Lastly, in step 7, we filtered out all publications that did
not explicitly mention advantages or disadvantages of model
transformation languages by reading the full text of all pub-
lications. This step was introduced to filter out the noise that
arose from a broader search string and less restrictive inclu-
sion criteria (see Sect. 3.3). The remaining 58 publications
form our final set on which data synthesis was performed on.
(A list of all included publications with an unique assigned
ID can be found in “Appendix B”.)

3.3 Selection criteria

We decided that a publication be marked as relevant, if it
satisfies at least one inclusion criteria and does not satisfy
any exclusion criteria. The inclusion criteria were chosen to
include as many papers that potentially contain advantages
or disadvantages as possible. A publication was included if:

@ Springer

S.Gotzetal.

474

ICI The publication introduces a model transfor-
mation language.

1C2 The publication analyses or evaluates proper-
ties of one or multiple model transformation
languages.

1C3 The publication describes the application of
one or multiple model transformation lan-
guages.

IC1 is an inclusion criteria, because the introduction of a
new language should include a motivation for the language
and possibly even a section on potential shortcomings of the
language. Such shortcomings can be attributed either to the
design of the language or to the concept of model transfor-
mation languages as a whole.

A publication that is covered by /C2 can help answer both
RQ1I and RQ?2 depending on the analysed/evaluated proper-
ties.

IC3 forms our third inclusion criteria since experience
reports can be a good source for both strengths and weak-
nesses of any applied technique or tool.

Our exclusion criteria were:

ECI Publications written in a language other than
English.

EC2 Publications that are tutorial papers, poster
papers or lecture slides.

EC3 Publications that are a Doctoral/Bachelor

/Master thesis.

EC1 ensures that the scientific community is able to verify
our extracted data from publications.

Because tutorial papers, poster papers and lecture slides
are less reliable and do not provide enough information to
work with, they are excluded with EC2.

Lastly, to reduce the required workload, we excluded all
thesis publications with EC3 as full text reviews would take
up too much time. We also argue that relevant thesis findings
are most likely also published in journal or conference papers.

3.4 Quality assessment checklist and procedures

Assessing the quality of publications found during the selec-
tion process is an essential part of a literature review [14].
For that reason, we adopted a list of six quality attributes
for studies. The quality attributes (seen in Table 1) are taken
from Shevtsov et al. [57] which adapted quality criteria from
Weyns et al. [64]. Each quality item has a set of three char-
acteristics for which a value between O and 2 is assigned.
The quality score of a publication is calculated by summing
up the values for each characteristic, making 12 the maxi-
mum quality score for a publication. The quality score did
not influence the decision to include or exclude a publication.

@ Springer

3.5 Data extraction strategy

Based on our research questions, and general documentation
concerns, we devised a total of eight data items to extract
from each selected publication. Table 2 lists all extracted
data items.

Data items D/-D3 are recorded for documentation pur-
poses.

To gather explicitly, claimed advantages and disadvan-
tages of model transformation languages D4 and D5 are
necessary items to include.

Another goal of our literature review is to find out which
advantages or disadvantages are empirically verified. It is
therefore necessary to extract information about whether
empirical evidence exists and which advantage or disadvan-
tage it is concerned with (D6). Similarly, citations used to
back up claimed advantages or disadvantages are also docu-
mented (D7). Our goal is it to either track down references
that provide evidence and find sources of common claims
about advantages and disadvantages of model transforma-
tion languages.

Lastly, in order to evaluate the quality of publications the
quality score D8 for each publication is recorded.

All data items were extracted during full text reviews of
all selected publications.

3.6 Synthesis procedures

The synthesis of the collected data was split into multiple
parts with multiple results for each research question.

3.6.1 RQ1: What advantages and disadvantages of model
transformation languages are claimed in the
literature?

The first part of the synthesis for RQ7 was a simple collection
of all claimed advantages and disadvantages. This was done
in order to create a basic overview.

Next, an analysis of all collected items was performed
in order to devise categories for the advantages and dis-
advantages. To develop categories, we used initial coding
and focused coding as described by Charmaz [19]. First,
all claims were analysed claim by claim to extract common
phrases or similar topics. These were then used to group
together claims and develop descriptive terms when then
served as the name for the category formed by the grouped
claims. The categories themselves were split into a positive
section and a negative section to contrast negative and posi-
tive mentions with each other.

Using the devised categorization allows for quick identi-
fication of contradictory claims. Such claims then have to be
further analysed in terms of origin, context and supporting
evidence.

475

Claimed advantages and disadvantages of model transformation languages: a SLR

suonewlI| oY) Jo uondLosap ou ST a1y],
swo[qoId Jo/pue SUOnEIIWI] IJN0ge SPIoM [eIdUaS dwos ap1aoid sioyine ayJ,

suone)w| Jo/pue swopqod 1s1y Aprordxa sroyine ayJ,

SIYSISUI PIALIDP A} JO uondLIdSAp OU ST Y],
PoUIB[SUOSSI[/SIYSISUI INOGE SPIOM [BIdUS Jwos ap1aoid sioyine ayJ,

PouIed[Suossa/siyisur Is1p Aprordxa sioyine Y],

S)[NSI YoIeasal Ay} Jo uondiIosap ou st a1y,
SI[NSAI 9Y) INOGE SPIOM [BIdUS dwos ap1aoid sioyine Ay,

S)[Nsa1/suonNqLIuOd Ay IsI] APIoIdxa sioyne ay [,

poziue3io/pauueld sem YoI1easaI oY) Moy Jo uondLIosap ou ST Iy,
PazZIue3IO sem [OoIeasal Ay} Aem oY) Jo ue[d yoIeasar oY) Jnoqe SpIom [eIdua3 awos apraoid sioyine ayJ,

PozZIue3IOo sem [OIeasal AU} Aem 9U) 10 ‘YdIeasaI oY) waoyrad 0) pasn ey Aoy (-390 ‘Surwn) ‘sdays juaragyip) uerd oy oquiosep Aprordxe sioyine ayJ,

1x91u00 W[qoid oy} Jo uondrIosap ou St AIAY],
soouaI19ja1 Aq payroddns st uondiosop worqoid sy ‘uonduosep wajqod [e1ouas e ST 1Y) I

sooua1djar Aq paytoddns st uonduosep waqoad siy) ‘yoreasar ay) 1oy uondrrosap warqoid Jrorpdxe ue st a19y) J|

uondrosap wojqoid ou st 219y],
uonduosaop worqoid [e1ouad e opraoid sioyine ayJ,

uonduosap worqoid yorjdxe ue opraoid sioyine oy,

I

(4

suoypIUIT :90

0

I

4

sySisuf 6O

0

I

4

SUONNGLIUOY) ‘10

0

I

4

QM.;@% beamwm% M@
0

I

4

JxXoju0d S&&Q&Q ..N@
0

I

4

:Q‘E.NEU\W% §m~&0\n~ ..N@

[#9] exyuo Juowssasse Afen) | d|qel

pringer

As

476 S.Gotz et al.
Table 2 Data items D Data Purpose
D1 Author(s) Documentation
D2 Publication year Documentation
D3 Title Documentation
D4 Named advantage(s) of MTL(s) RQI1
D5 Named disadvantage(s) MTL(s) RQI1
D6 Empirical evidence of advantage(s) or disadvantage(s) RQ2
D7 Cited evidence RQ2
D8 Quality score Documentation

3.6.2 RQ2: What advantages and disadvantages of model
transformation languages are validated through
empirical studies or by other means?

To analyse evidence of claimed advantages and disadvan-
tage, we started by assessing the quality of each respective
publication using the quality score system from Sect. 3.4.

Afterwards, we devised a visual representation for claims
and evidence thereof in publications. The representation
allows a straightforward identification of substantiated and
unsubstantiated claims and tracking of citations back to the
origin of cited claims. This in turn enabled us to easily
identify whether citations back up stated claims or serve as
nothing more than a reference to a publication which claims
the same thing.

4 Findings

In this section, we provide a summary of the synthesized
data as well as an analysis of the demographics and qual-
ity of publications. The summary will be in narrative form,
supported by plots and graphs as suggested by Boot, Sutton
and Papaioannou [14]. Before describing our findings with
regard to the research questions from Sect. 3.1, we first offer
statistics and information about the demographic data of the
collected literature as well as an overview over their quality
which we assessed using the quality criteria from Sect. 3.4.

4.1 Demographics

Figure 4 provides an overview over the quantity of included
publications per year. An interesting thing to note is that
it took only two years from the introduction of the Model-
Driven Architecture in 2001 to the first mentions of advan-
tages of model transformation languages. One of the most
cited papers about model transformations in our literature
review was published that year too (P63). Its title shapes
introductions of publications in the community even today:

@ Springer

10

publications

I

1988 1992

1996 2000 2004 2008 2012 2016
year

Fig.4 Number of publications that mention or evaluate advantages or
disadvantages of MTLs per year

Model transformation: The heart and soul of model-driven
software development.

Scrutinizing claims about MTLs, however, just recently
started to be a focus of research, with the first study (P59)
dedicated to evaluating advantages of MTLs being published
in 2018. To us, this suggests that research might be slowly
catching on to the fact that evaluation of specific properties of
MTLs is necessary instead of relying on broad claims. Simply
relying on the fact that model transformation languages are
DSLs and that DSLs in general fare better compared to non-
domain-specific languages [12,28,40] is not enough.

Industrial case studies about the adoption of MDSE have
been performed much earlier than 2018, but such studies
mainly focus on the complete MDSE workbench and do not
analyse the impact of the used MTLs in great detail. The case
study P670 for example, while stating that “The technology
used in the company should provide advanced features for
developing and executing model transformations”, does not
go into detail about neither current shortcomings nor any

Claimed advantages and disadvantages of model transformation languages: a SLR 477

Table 3 Number of publications that mention specific MTLs

Model transformation language # of mentions

ATL 16
EMT 1
ETL 3
GreAT 1
Henshin 1
Iquery 1
JTL 1
MOFLON 1
MT 1
NTL 2
QVT-O 4
QVT-R 2
SDM 1
SIGMA 1
SiTra 1
Tefkat 1
TGG 1
TN 1
VMTL 1

other specifics of model transformation languages used dur-
ing the development process.

Overall, there are 32 publications that mention advantages
and 36 publications that mention disadvantages. More-
over, four publications provide empirical evidence for either
advantages or disadvantages, while /2 publications use cita-
tions to support their claims and /4 publications use other
means such as examples and experience (more on this in
Sect. 4.4).

Lastly, Table 3 shows which transformation languages
were directly involved in publications used in our data extrac-
tion. We counted a transformation language as being involved
if it was used, analysed or introduced in the publication. Sim-
ply being mentioned during enumerations of example MTLs
was not sufficient.

The table paints an interesting picture. ATL far exceeds
all other model transformation languages in involvement, and
most languages are only discussed in a single publication.

4.2 Quality of publications

The results from the quality assessment, summarized in
Fig. 5, shows that both the problem context and definition as
well as the overall contributions are well defined in a majority
of publications. Insights drawn from the work described in
these publications, while less comprehensive in many cases,
are also described most often. However, thorough descrip-
tions of the research design, the used methods or steps taken

50
O 0 points
O 1 point
@ 2 points
40 +
%]
5
= 304 []
©
Qo
Kl
=3
o |
* 204
10 -
0 . L L
c ‘>'<' c (2] j2} (2]
9 [} k=) S = S
= 2 7] Ee) <) i<l
S S o 5 D ©
@ o a 2 £ =
=
= g 2 15 3
€ Qo ®© Q
o 2o o} (@]
s § k
& 1

Fig.5 Quality score distribution

are less common, a trend which is even more prominent for
the presentation and discussion of limitations that act upon
the studies. Similar observations have already been made by
other literature reviews in different domains [26,57].

4.3 RQ1: Advantages and disadvantages of model
transformation languages

We used data items D4 and D5 to answer our first research
question, namely which advantages or disadvantages of ded-
icated model transformation languages are claimed in the
literature. The resulting statements were sorted into 15 dif-
ferent categories (seen in Fig. 6) which arose naturally from
the collected statements. An overview over all claims sorted
into the different categories is given in Table 4. The table
ascribes each claim with a unique ID (Cxx) for reference
throughout this work. The table also contains evidence used
to support a claim (if existent) to which we will come
back later in Sect. 4.4. For almost all categories, there exist
papers that describe model transformation languages as being
advantageous as well as publications that describe them as
disadvantageous in the category. In the following, we discuss
the statements made in publications for each category.

4.3.1 Analysability

Throughout our gathered literature, there is only one pub-
lication, P45, that mentions analysability. According to
them, a declarative transformation language comes with the
added advantage of being automatically analysable which

@ Springer

S.Gotzetal.

478
20
O positive
B negative
15 -
(7]
c
kel
=
®
2
S 10
=]
Qo
H*
57 i i
ol O il-lg I
22 3 25 328 2822756862
= = 0 5 5 0 = = = < =2 = = =
o o [N o o o Z & 2§ B
m‘agmggmnmgsmggg
N ¢ o 2 > T +— € S c ==
> 53828 5%3¢:c8565638c2¢E¢8
©T < o 2 3 o 3 8 o £ = o >
S QO o ¢ S o T £ £ 9
g © 9 2 o X J o a £ 08 =2
< 5 O S o uw o T B
£ 5 X% = =
5] o W ° o
o =] 8
= @ I
E 2 £
5 c 3
)
7]
©
41}

Fig.6 Number of publications that claim an advantage or disadvantage
of MTLs in a category

enables optimizations and specialized tool support (C1).
While a detailed discussion of this claim within the publi-
cation remains owed, the authors provide examples of how
static analysis allows the engine to implicitly construct an
execution order. While our literature review found only a
single publication that explicitly mentions analysability as
an advantage of model transformation languages, there do
exist multiple publications [2,3,63] that contain analysis pro-
cedures for model transformations.

4.3.2 Comprehensibility

Comprehensibility is a much disputed and multifaceted issue
for model transformation languages. A total of eleven publi-
cations touch on several different aspects of how the use of
MTLs influences the understandability of written transfor-
mations.

The first aspect is the use of graphical syntax compared
to a textual one which is typically used in general-purpose
programming languages. In P63, the authors talk about
“perceived cognitive gains” of graphical representations of
models when compared to textual ones (C6). A pronounce-
ment that is echoed in P43 states that graphical syntax for
transformations is more intuitive and beneficial when reading
transformation programs (C2).

While all these claims about graphical notation increasing
the comprehensibility of transformations stand undisputed
in our gathered literature, there are other facets in which
graphical notation is said to be disadvantageous. We will
come back to them later on in Sect. 4.3.5.

@ Springer

Declarative textual syntax is another commonly used syn-
tax for defining model transformations. The authors of P45
contend that a declarative syntax makes it easy to under-
stand transformation rules in isolation and combination (C3).
However, declarative transformation languages are typically
based on graph transformation approaches which can become
complex and hard to read according to P70 (C/3). They
additionally assert that the use of abstract syntax hampers
the comprehensibility of transformation rules (C12). Fur-
thermore, P22 insist that the use of graph patterns results in
only parts of a meta-model being revealed in the transforma-
tion rules and that current transformation languages exhibit
a general lack of facilities for understanding transformations
(C8). P22 also reports that understanding transformations in
current model transformation languages is hampered, spe-
cially by the fact that many of the involved artefacts such as
meta-models, models and transformation rules are scattered
across multiple views (C9). P29 brings forward the concern
that large models are also a factor that hampers comprehen-
sibility since there exist no language concepts to master this
complexity (C11). Adding to this point, P27 describes that for
non-experts (e.g. stakeholders) transformations written in a
traditional model transformation language are “very complex
to understand” because they lack the necessary skills (C70).
The authors of P95 on the other hand claim that the usage of
dedicated MTLs, which incorporate high-level abstractions,
produces transformations that are more concise and more
understandable (C7). This sentiment is shared in P44 which
explains the belief that using GPLs for defining synchroniza-
tions brings disadvantages in comprehensibility compared to
model transformation languages (C3).

Understanding a transformation requires, among other
things, understanding which elements are affected by it and
in which context a transformation is placed. Using a model
transformation language is beneficial for this as shown in the
study described in P59 (C5).

4.3.3 Conciseness

Interestingly, there seems to be a consensus on the concise-
ness of model transformation languages compared to GPLs.

In general, dedicated model transformation languages are
seen as more concise (P63 C17, P95 C21) which, apart from
textual languages, is also stated for graphical languages in
P75 (C18).

The fact that MTLs are more abstract making them more
concise and thus better is claimed multiple times in P80
(C19), P52 (C15), P3 (Ci14) and P95 (C20), while P673
claims that the abstraction in MTLs helps to reduce their
overall complexity (C22).

The SLOC metric has also been drawn from as a way to
compare MTLs with other MTLs and even GPLs. According
to an experiment described in P59, using a rule-based model

Claimed advantages and disadvantages of model transformation languages: a SLR 479

transformation reduces the transformation code by up to 48%
(C16). Whether or not this is any indication of superiority is
a disputed subject [9].

4.3.4 Debugging

Debugging support is much less disputed than comprehen-
sibility. Of the five publications that talk about debugging
in model transformation languages, none praise the current
state of debugging support.

P22 (C24, C25) and P90 (C27) both describe that cur-
rently no sufficient debugging support exist for MTLs. And
while in P95 it is stated that debugging of transformations in
a dedicated languages is likely better than when the transfor-
mation is written in a general-purpose language (C23) they
fail to bring forth a single example for their assertion.

Lastly, P45 lauded declarative syntax for its benefit in
comprehension but also note that imperative syntax is easier
to debug in general (C26).

4.3.5 Ease of writing a transformation

The main purpose of model transformation languages is to
improve the ease with which developers are able to define
transformations. Hence, this should also be a main benefit
when compared to general-purpose languages. However, the
authors of the study described in P59 found: “no sufficient
(statistically significant evidence) of general advantage of
the specialized model transformation language QVTO over
the modern GPL Xtend” (C39). This is not to say that there
are none as the authors admit the conclusions were “made
under narrow conditions” but is still a concerning finding.
Much more so because claims about such benefits of using
MTLs persist through the literature. Claims such as those
described in P29 (C29), P672 (C32) and P50 (C30) state that
their simpler syntax makes it easier to handle and transform
models. These claims draw from statements about the expres-
siveness, to which we will come to in the next section, and
reason that better expressiveness must lead to an easier time
in writing transformations. A potential reason that hampers
model transformation languages from evidentially being bet-
ter for writing transformations is cited in P27 (C34) and P28
(C35). They both state that using a model transformation lan-
guage requires skill, experience and a deep knowledge of the
meta-models involved (P56 C38). In our opinion, however,
this holds true regardless of the language used to transform
models.

Moreover, many model transformation languages use
declarative syntax which can be unfamiliar for many pro-
grammers, according to P45 (C37) and P63 (C40), which
are much more familiar with the status quo, i.e. impera-
tive languages. The authors of P22, on the other hand, state
that imperative MTLs often require additional code since

many issues have to be accomplished explicitly compared to
implicitly in declarative languages (C33).

Lastly, graphical syntax is said to make writing model
transformations easier as the syntax is purported to be more
intuitive for this task compared to a textual one in P3. In
P43 (C36) and P672 (C41), however, the authors claim that
graphical syntax can be complicated to use and that textual
syntax is more compact and does not force users to spend
time to beautify the layout of diagrams.

4.3.6 Expressiveness

As described in Sect. 2.2, the idea behind domain-specific
languages is to design languages around a specific domain,
thus making it more expressive for tasks within the domain
[50]. Since model transformation languages are DSLs, it
should not be a surprise that their expressiveness in the
domain of model transformations is mentioned almost exclu-
sively positive by a total of 19 different publications found
in our literature review.

A large portion (P95, P80, P94, P63, P15, P40, P52, P70)
of publications refer to expressiveness state that the higher
level of abstraction that results from specific language con-
structs for model manipulation increases the conciseness and
expressiveness of MTLs. P80 additionally asserts that model
transformation languages are just easier to use (C61).

Another portion (P2, P15, P45,P677, P27, P63, P95, P27)
explains that the expressiveness is increased by the fact that
model transformation engines can hide complexity from the
developer. One such complex task is pattern matching and the
source model traversal as mentioned in P2 (C42), P15 (C43)
and P45 (C53), respectively. According to them, not having
to write the matching algorithms increases the expressiveness
and ease of writing transformations in MTLs. Implicit rule
ordering and rule triggering is another aspect that P15 (C46),
P45 (C51) and P677 (C65) claim increases the expressive-
ness of a transformation language. Related to rule ordering
is the internal management and resolution of trace informa-
tion which is stated by P15 (C44), P45 (C50), P677 (C65)
and P95 (C64) to be a major advantage of model transforma-
tion languages. Furthermore, P45 asserts that implicit target
creation is another expressiveness advantage that MTLs can
have over general-purpose languages (C52). Lastly, the study
described in P59 observed that copying complex structures
can be done more effectively in MTLs (C56).

However, we also uncovered some shortcomings in cur-
rent syntaxes. P10 argues that the lack of expressions for
transforming a single element into fragments of multiple tar-
gets is a detriment to the expressiveness of transformation
languages, going as far as to allege that without such con-
structs model transformation languages are not expressive
enough (C68). P32 implies that MTLs are unable to trans-
form OCL constraints on source model elements to target

@ Springer

480

S.Gotzetal.

model elements (C69). And lastly P33 critiques that model
transformation languages lack mechanisms for describing
and storing information about the properties of transforma-
tions (C70).

4.3.7 Extendability

Being able to extend the capabilities of a model transforma-
tion language seems to be less of a concern to the community.
This can be seen by the fact that only P50 touches this issue.
They explain that external MTLs can only be extended (“if at
all”) with a specific general-purpose language (C71). Inter-
nal model transformation languages of course do not suffer
from this problem since they can be extended using the host
language [21,32,46].

4.3.8 Just better

Apart from specific aspects in which the literature ascribes
advantages or disadvantages to model transformation lan-
guages, there are also several instances where a much broader
claim is made.

P86 for example states that there exists a consensus that
MTLs are most suitable for defining model transformations
(C78). This claim is also reiterated in several other pub-
lications using statements such as “the only sensible way”
or “most potential due to being tailored to the purpose” (P9,
P23, P63, P64, P66). However, one publication claims that
both GPLs and MTLs are not well suited for model migra-
tions and that instead dedicated migration languages are
required (P34 C80).

4.3.9 Learnability

The learnability issues of tools have been shown to positively
correlate with usability defects [1] and thus their general
acceptance.

However, the learnability of model transformation lan-
guages israrely discussed in detail. P30 (C81), PS8 (C83) and
P81 (C84) all express concerns about the steep learning curve
of model transformation languages, and P52 explain that
transformation developers are often required to learn mul-
tiple languages, which requires both time and effort (C82).

4.3.10 Performance

The execution performance of transformations is an impor-
tant aspect of model transformations. Often times, the goal
is to trigger a chain of multiple transformations with each
change to a model. Hence, good transformation performance
is paramount to the success of model transformation lan-
guages.

@ Springer

Opinion on performance in the literature is divided. On
the one hand, there are publications such as P52 (C88) and
P80 (C89) which describe that the performance of dedicated
MTLs is worse than that of compiled general-purpose pro-
gramming languages, while on the other hand there is P95
which states that some introduced transformation languages
are more performant (C85), citing articles from the Trans-
formation Tool Contest (TTC), and P675 which shows a
performance comparison of transformations written in Java
and GrGen where GrGen performs better than Java (C86).
There are also more nuanced views on the subject. P45
describes that practitioners sometimes perceive the perfor-
mance as worse and that there exist factors that hamper the
performance (C87). The listed factors are the fact that the
transformation languages are often interpreted, a mismatch
with hardware and less control over the algorithms that are
used. However, they also describe that specialized optimiza-
tions can bridge the performance gap.

4.3.11 Productivity

Increased productivity through the use of DSLs is a much
cited advantage [50] (C6D). Unsurprisingly, it resurfaces in
various forms in the context of model transformation lan-
guages as well. For instance, in P45 it is described that the
use of declarative MTLs improves the productivity of devel-
opers (C91). P29 goes even further, claiming that the use of
any model transformation language results in higher produc-
tivity (C90).

This is contrasted by the hypothesis that productivity in
general-purpose programming languages might be higher
due to the fact that it is easier to hire expert users, which
was put forward in P59 (C93). Lastly, P32 raises the concern
that some of the interviewed subjects perceive model trans-
formation languages as not effective, i.e. not helpful for the
productivity of developers (C92).

4.3.12 Reuse and maintainability

In our gathered literature, maintainability is used as a moti-
vation for modularization and reuse concepts. P29,P60 and
P95 all claim that reuse mechanisms are necessary to keep
model transformations maintainable. Combined with a total
of eight (P4, P10, P29, P33, P41, P60, P95, P78) publica-
tions that state that reuse is hardly, if at all, established in
current model transformation languages, this paints a bleak
picture for both maintainability and reuse. The need for reuse
mechanisms has already been recognized in the research
community as stated by P77 in which the authors explain that
aplethora of mechanisms have been introduced (C95) but are
hindered by several barriers such as insufficient abstraction
from meta-models and platform or missing repositories of
reusable artefacts (C103).

Claimed advantages and disadvantages of model transformation languages: a SLR 481

There exists only a single claim that directly addresses
maintainability. P44 states that bidirectional model trans-
formation languages have an advantage when it comes to
maintenance (C94).

Apart from the maintainability of written code, there is
also the maintainability of languages and their ecosystems.
Surprisingly, this is hardly discussed in the literature at all.
Only P52 explains that evolving and maintaining a model
transformation language is difficult and time-consuming
(C101).

4.3.13 Semantics and verification

Three publications (P39, P23, P58) all suggest that most
model transformation languages do not have well-defined
semantics which in turn makes verification and verification
support difficult (P22 C109). P44, however, explains that
bidirectional transformations are advantageous with regards
to verification (C107).

4.3.14 Tool support

Tools are another important aspect in the MDE life cycle
according to Hailpern and Tarr [28]. They are essential
for efficient transformation development. Regrettably, MTLs
lack good tool support according to P23, P45, P52 and P80
and if tools exist, they are not close to as mature as those of
general-purpose languages as stated in P74 (C119). Addi-
tionally, the authors of P94 explain that developers of MTLs
need to put extra effort into the creation of tool support for
the language (CI21). This might, however, be worthwhile,
because P44 presumes that dedicated tools for model trans-
formation languages have the potential to be more powerful
than tools for GPLs in the context of transformations (C114).
And due to the high analysability of MTLs, P45 explains that
tool support could potentially thrive (C715). Internal MTLs,
on the other hand, are able to inherit tool support from their
host languages as reported by P23 (C113). This helps to mit-
igate the overall lack of tool support, at least for internal
MTLs.

An interesting discussion to be held is how important tool
support for the acceptance of MTLs actually is. Whittle et al.
[65] describe that organizational effects are far more impact-
ful on the adoption of MDE, while the results of Cabot and
Gérard [16] contradict this observation citing interviewees
from commercial tool vendors that stopped the development
of tools due to lack of customer interest.

4.3.15 Versatility
It should be self-evident that languages that are designed for

a special purpose do not possess the same level of versatil-
ity and area of applicability than general-purpose languages.

Hence, it is not surprising that all mentions of versatility
of model transformation languages in our gathered literature
paint MTLs as less versatile compared to GPLs (P52 (C124),
P80 (C125), P94 (C127)).

4.4 RQ2: Supporting evidence for advantages and
disadvantages of MTLs

We found a number of different ways used by authors of our
gathered literature to support their assertions. The largest por-
tion of “supporting evidence” is made up of cited literature,
i.e. a claim is followed by a citation that supposedly supports
the claim.

The second way claims are supported is by example, i.e.
authors implemented transformations in MTLs and/or GPLs
and reported on their findings. Another aspect of this is rely-
ing on experience, i.e. authors state that from experience it
is clear that some pronouncement is true or that it is a well-
established fact within the community that a claim is true.

Third, there is empirical evidence, i.e. studies designed to
measure specific effects of model transformation languages
or case studies designed to gather the state of MTL usage in
industry.

Last, there are those assertions that are not supported by
any means. Authors simply suggest that an advantage or dis-
advantage exists. We assume that some claims made in this
way implicitly rely on experience but do not state so. Never-
theless, since there is no way of testing this assumption we
have to record such claims exactly the way they are made,
without any evidence.

In the following sections, we will talk in detail about how
each group of evidence is used in the literature to support
claims about advantages or disadvantages of model transfor-
mation languages. As mentioned previously, Table 4 contains
a complete overview over each claim and through what evi-
dence the claim is supported.

4.4.1 Citation as evidence

Using citations to support statements is a core principle in
research. It should therefore come as no surprise that cita-
tions are used to support claims about model transformation
languages. An interesting aspect to explore for us was to trace
how the cited literature supports the claim. For that, as stated
in Sect. 3, we created a graphical representation to trace cita-
tions used as evidence through literature. The graph is shown
in Fig. 7. It is inspired by UML syntax for object diagrams.
The head of an “object” contains a publication id, while the
body contains the categories for which advantages (+) or dis-
advantages (—) are claimed in the publication. Each category
within the body is accompanied by an ID which can be used to
find the corresponding claim within Table 4. We use different
borders around publications to denote the type of evidence

@ Springer

482

S.Gotzetal.

provided by the publication and arrows from one category
within a publication to a different publication stand for the
use of a citation to support a claim. Lastly, if the content of
a publication does not concern itself with model transforma-
tion languages but instead with DSLs, the publication id is
followed by “(DSL)”.

Our graph allows to easily gauge information about the
following things:

— What publication claims an advantage or disadvantage of
MTLs in which category?

— What type of evidence (if any) is used to support claims
in a publication?

— Which exact claims are supported through the citation of
what publication?

In the following, we discuss observations about citations
as evidence that can be made with help from the citation
graphs.

First, only a total of 25 citations, split among 12 out of the
58 gathered publications, are used to support claims. This
constitutes less than ten percent of all assertions found dur-
ing our literature review. Seven of the 25 citations cite a
publication that itself only states claims without any evi-
dence thereof (P63, P94, P673, P674, P800). A further 11
end in a publication that uses examples or experience (see
also Sect. 4.4.3) (P664, P665, P667, P671, P672, P676, P77,
P64, P804, P801). Next, there are 3 citations that cite pub-
lications which in turn cite further publications to support
their claims (P677, P675), leaving only 4 citations that cite
empirical studies (P669, P670, P803) (see also Sect. 4.4.2).
To us, this is worrying because the practice of citing litera-
ture that only restates an assertion corrodes the confidence
readers can have in citations as supporting evidence.

From the graph, it is clearly evident that there exists no
single cited source for claims about model transformation
languages. This is clearly indicated by the fact that only five
publications (P63, P77, P673, P675, P803) are cited more
than once; twice to be exact. And no publication is cited
more than two times. Moreover, of those five publications
P675 and P803 are each cited by a single publication, respec-
tively. P675 is cited twice by P80 and P803 by P675. Related
thereto, nearly each claim, even within the same category, is
being supported through different citations.

Furthermore, only claims about conciseness, expressive-
ness, reuse & maintainability, tool support, performance and
statements that MTLs are just better are supported using
citations. Itis interesting to note that claims within these cate-
gories which are supported by citations are either all positive
or all negative. This is not to say that there are no contrasting
claims, see for example C//3 and C716 in P23, only that,
if citations are used for a category the supported claims are
either all positive or all negative.

@ Springer

Another thing to note is that in some instances claims
about model transformation languages are being supported
by citing publications on domain-specific languages in gen-
eral. This can be seen in P80. The claims C60 and C61 are
both supported by a citation of P675 which is a publication
that concerns itself with DSLs. Interestingly, P675 itself then
cites both publications about DSLs (P800, P801, 803) and a
publication about model transformation languages (P804) to
support claims stated within the publication.

Coming back to citations of empirical studies, we have to
report that while there exist 4 citations of empirical studies
only a single claim about model transformation languages
(C116 in P23) is actually supported thereby. This is due to
P803 being an empirical study about DSLs and P669 and
P670 both being cited as evidence for C116.

Lastly, apart from those publications that only make a
single claim, no publication supports all their claims using
citations. Extreme cases of this can be seen in P45 and P52
which make a total of 16 claims, only supporting three of
them with citations while leaving the other 13 unsubstanti-
ated.

4.4.2 Empirical evidence

To our disappointment, we have to report a lack of overall
empirical evidence for properties of model transformation
languages. Only four publications (P32, P59, P669, P670) in
our gathered literature assess characteristics of model trans-
formations using empirical means (see Fig. 7 and Table 4).
Of those four, only P59 focuses on MTLs as its central
research object, while the other three are case studies about
MDA that happen to contain results about transformation
languages. P803 too is an empirical study, but as mentioned
in Sect. 4.4.1 focuses on domain-specific languages in gen-
eral not on MTLs. In order to provide the necessary context
for scrutinizing the claims extracted from the publications,
we provide a short overview over the central aspects of P32,
P59, P669, P670 in the following.

The study described in P59 was comprised of a large-
scale controlled experiment with over 78 subjects from two
universities as well as a preliminary study with a single indi-
vidual. Subjects had to solve 231 tasks using three different
languages (ATL, QVT-O and Xtend). The tasks focused on
one of three aspects in transformation development, namely
comprehending an existing transformation, changing a trans-
formation and creating a transformation from scratch. After
analysing the results, the authors come to the disillusioning
conclusion that there is “no statistically significant benefit
of using a dedicated transformation language over a modern
general-purpose language”.

The authors of P32 report on an empirical study on the
efficiency and effectiveness of MDA. A total of 38 subjects,
selected from a model-driven engineering course, were asked

Claimed advantages and disadvantages of model transformation languages: a SLR 483

P664 i
1 (+) just better (C79) 1
"""""""""" 95
P9 P665 ! (+) comprehensibility (C7)
P9 F------ et i _
(+) just better (C72) IS ! ! (+) debugging (C23)
(+) expressiveness (C63-64)
—)'l_ P667 {' (+) performance (C85) ol P676 !
1 1 (-) reuse & maintainability (C105) @
p27 (+) conciseness (C20-21)
(-) comprehensibility (C10) e —————————
1
(-) ease of writing transfor. (C34) [Bemt _____] P4
(+) expressiveness (C48) > :_ e e e _' (-) reuse & maintainability (C96) @
P672 ! P66 P64 !
Pao Fommmommomeama s 1 _ bommmmm e i
(+) expressiveness (C49) P 1 (+) ease of writing a transfor. (C32)1 (+) just better (C77) o 1 (+) just better (C76) '
P45 P677 4,—: P63
lysability (C1 i C65, L
(+) analysability (C1) (+) expressiveness (|) (+) comprehensibility (C6)
h ibili 4
(+) comprehensibility (C4) (+) conciseness (C17)
-) debi i C26,
() debugging () (+) ease of writing a transfor. (C31)
- f writing a transfor. (C37 P23
() ease of writing a transfor. (C37) (-) ease of writing a transfor. (C40)
" C50-53 (+) just better (C73) .
(+) expressiveness () (+) expressiveness (C57)
() performance (C87) (-) semantics & verification (C110)
(+) productivity (C91) (+) tool support (C113)
(+) tool support (C115) (-) tool support (C116) L P670
(-) tool support (C117) (-) tool support (C123)
P669
P52 > P674
(-) tool support (C122)
(-) reuse & maintainability (C101) @ (-) reuse & maintainability (C106)
(+) expressiveness (C54-55)
(-) performance (C88) > P673
(+) conciseness (C15) (+) conciseness (C22)
(-) learnability (C82) ,;_ P804 i
(-) tool support (C118) > P675 (DSL) 1 (+) expressiveness (C66) 1
(-) versatility (C124) (+) expressiveness (C1D) L
(+) just better (C[2-3]D) o > P803 (DSL!
P80 (+) productivity (C6D) o— (+) just better (C4D)
(+) conciseness (C19) (+) reuse & maintainability (C9D) ® (+) productivity (C8D)
(+) expressiveness (C60-61) (-) versatility (C10D) > ;861'[5511' TTTT]
() performance (C88) 1 (+) productivity (C7D) :
- > P94 1
(-) versatility (C125-126) . 1 (+) performance (C5D) :
(+) expressiveness (C59) (+) expressiveness (C62) e mm s m s mmm ==
() ool support (C120) (-) tool support (C121) > P800 (DSL)
(-) versatility (C127)
Legend
Px ! Px ' Px Px
Fommmmmom oo !
(+/-) category (CID) 1 (+/-) category (CID) 1 (+/-) category (CID) o> (+/-) category (CID)
Px is report of
Px claims Px claims category Px supports claim empiriczl study;
advantage/disadvantage from experience or of category via advantage/disadvantage
in category through examples citation in category is
part of the findings of study

Fig.7 Graph tracking citations of claims of various categories through literature

@ Springer

484

S.Gotzetal.

to implement the book-purchasing functionality of an e-book
store system. Afterwards, the subjects evaluated the per-
ceived efficiency and effectiveness of the used methodology.
This also included questions about the used QVT language
which was perceived as only marginally efficient.

Both P669 and 670 are reports of industrial case studies.
The objective of the study in P669 was to investigate the state
of practice of applying MDSE in industry. To achieve this,
they collected data from tool evaluations, interviews and a
survey. Four different companies were consulted to collect
the data. Again while some reported results concerned them-
selves with transformations, model transformation languages
were not explicitly discussed. Similarly, P670 reports on an
industrial case study involving two companies aiming to col-
lect factors that influence the decision to adopt MDE. For that
purpose, multiple preselected individuals at both companies
were interviewed. Just as P669, the study did not directly
focus on transformations or transformation languages.

As evident from Fig. 7, the results from P32 and P59 have
yet to be used in the literature for supporting claims about
MTLs. Since both of them have only been published recently,
we are, however, optimistic about this prospect.

4.4.3 Evidence by example/experience

Using examples to demonstrate shortcomings of any kind
has a long-standing tradition not only in informatics. Using
examples to demonstrate an advantage, however, can result
in less robust claims (especially toy or textbook examples
Shaw [56]). As such, it is important to differentiate whether
a claim is made by demonstrating a shortcoming or benefit.
In our gathered literature, ten publications use examples
to support a claim. Interestingly, examples are mainly used to
support broad claims about model transformation languages.
This can be observed by the fact that P34 and P64 use exam-
ples to try and demonstrate that GPLs are not well suited
for transforming models, while P664, P665, P667, P672,
P804 and P676 try to demonstrate the general superiority
of MTLs by showing examples of transformations written
in MTLs. Other claims that are supported through examples
are a demonstration of the reduction in code size when using
rule-based MTLs in P59 and statements about the extensive
amount of reuse mechanisms for MTLs through listing gath-
ered publications about the proposed mechanisms in P77.
Long-time practitioners of model transformation lan-
guages or programming languages in general often rely on
their experience to make assertions about aspects of the lan-
guage. And while the experience of long-term users can
create valuable insights, it is still subjective and can there-
fore vary in accuracy. In our case, six publications directly
state that their assertions come from experience. P3 report
on their experiences using different languages to implement
transformations, coming to the conclusion that graphical rule

@ Springer

definition is more intuitive, an experience shared by P40.
P43 name user feedback as grounds for claiming that visual
syntax has advantages in comprehension but makes writing
transformations more difficult. And P672 share that they are
under the impression that graph transformations are the supe-
rior method for defining refactorings.

Since experience is subjective, contradicting experiences
are bound to occur sometime. While the authors of P10
believe from experience that current MTLs are not abstract
enough for expressing transformations, P671 feel that the
difficulty of writing transformations in a MTL does stem
from the chosen MDD method rather than the syntax of the
language.

4.4.4 No evidence

Figure 7 and especially Table 4 make it clear that a large
portion of both positive and negative claims about model
transformations are never substantiated. In fact, of the 127
claims ~69% are unsubstantiated. Adding those that are sup-
ported by a citation that in the end turns out to be unsupported
as well brings the number up to ~77%. Particularly, the
categories concerning the usability of MTLs such as compre-
hensibility, ease of writing a transformation and productivity
lack meaningful evidence. All three of them being corner-
stones of language engineers arguments for the superiority
of model transformation languages make this especially wor-
risome.

We believe that a realization in the community about this
fact is necessary. The necessity or superiority of model trans-
formations has to be properly motivated. This means that it
is not sufficient to claim advantages or disadvantages with-
out providing at least some form of explanation on why this
claim is valid (more on this in Sect. 5.3).

5 Discussion

In this section, we reflect on the previously presented find-
ings. Our focus for this is fourfold. First, we feel it is
necessary to draw parallels between our categorization and
attributes of product quality. Next, we want to briefly discuss
how claims are made in regards to transformation language
features. Afterwards, a discussion about lack of empirical
studies about properties of model transformation languages
is warranted. And last we feel a discussion about the research
direction for the community is also necessary.

5.1 Claims about model transformation languages
in context of software quality

There are undeniable parallels between the categories we
developed for claims and characteristics of software quality

Claimed advantages and disadvantages of model transformation languages: a SLR 485

as defined by ISO/IEC 25010:2011 [35]. This can be seen by
the fact that many of our categories can be directly placed
within the characteristics of the software product quality
model (namely functional suitability, performance efficiency,
compatibility, usability, reliability, security, maintainability,
portability).

Both expressiveness and semantics and verification are
part of functional suitability. Performance and productivity
can be classified under performance efficiency. Furthermore
are comprehensibility, conciseness, debugging, ease of writ-
ing a transformation, learnability and tool support part of
Usability. Maintainability covers analysability and reuse &
maintainability. And lastly, extendability and versatility can
be classified under portability. This leaves only our generic
category just better without a corresponding characteristic
which is to be expected.

However, there are also compatibility, reliability and
security which have no corresponding categories from our
categorization. This does not necessarily mean that the cur-
rent research is not focused on aspects related to these quality
criteria. It instead suggests a lack of concrete statements
regarding them. And while security is justifiably less of a
concern for model transformation languages, both the com-
patibility of different approaches and their reliability should
definitely be focused on (see also Sect. 5.4).

Lastly, even though most claims we collected during our
review could be categorized within the software product qual-
ity model we opted to develop a classification based on the
claims alone since we believe the resulting categories to be
more specialized and allow for a more nuanced view on
the subject matter than the generic characteristics defined
by ISO/IEC 25010:2011 [35].

5.2 Claims about model transformation languages
in context of language features

An effort by us to categorize the extracted claims along an
existing taxonomy of model transformation language fea-
tures such as the one by Czarnecki and Helsen [22] failed
because a large portion of claims (~70%) are made broadly
without reference to specific features of MTLs that aid the
advantage or disadvantage.

We suggest that claims on benefits and disadvantages of
model transformation languages be made more specific and
include mentions of the features that aid or hamper the ben-
efits. For example, incrementality aids the performance of
model transformations since only parts of a transformation
have to be re-executed and bidirectional transformation lan-
guages provide special support for incremental execution
giving them an edge in performance.

5.3 Lack of evidence for MTL advantages and
disadvantages

The current literature exhibits a deficit in evidence (empirical
or otherwise) for asserted properties of model transformation
languages. We believe there to be several factors which can
explain this lack of evidence.

First, designing and conducting rigorous studies to exam-
ine model transformation languages requires a substantial
amount of time and effort. Studies are further complicated
by the lack of easily available study subjects due to the
community being relatively small compared to the body
of general-purpose programming language users. The study
described in P59, for example, had to be conducted over
the timespan of three semesters and at two universities just
to attain 78 subjects. And even when a pertinent number of
study subjects is found, ensuring comparable levels of expe-
rience within the subjects is another challenge, even more so
when collaborating with industrial partners [58].

Relying on the fact that transformation languages are
DSLs and hence bear all the benefits that are proclaimed
for those might also be a factor. Describing the advantages of
DSLs in the introduction of a paper about transformation lan-
guages is far from uncommon in the literature. And while we
too believe that there are benefits when using DSLs, we would
caution against broad usage of the fact that model transfor-
mation languages are DSLs to claim them advantageous over
general-purpose languages (as is done in publications such
as P29, P63 or P804), especially because the manpower that
goes into the development of the ecosystems of GPLs far
exceeds that of MTLs.

Another problem is that statements can become “estab-
lished” facts by virtue of being cited by a paper which is in
turn cited. Suppose one author claims that model transfor-
mation languages are more expressive than GPLs. A second
author claims the same thing and references the first author
to provide context. Next, a third author, assuming that the
second author verifies their claim via the citation, cites the
second author to support a similar claim. Over time, this can
lead to the statement being treated as a fact rather than an
assumption made multiple times. This can be seen on multi-
ple occasions in Fig. 7. P63 makes an unsubstantiated claim
(C57) that the expressiveness of MTLs is superior to that of
GPLs. This claim is then reiterated by P677 (C65) citing P67.
Lastly, P677 is cited by P45 to support their assertion about
the expressiveness of model transformation languages (C50-
53). Such a chain is not even the worst case in our results. The
chain P80 — P675 — P801-804 is even more worrisome,
in that some of the claims stated in P80 (C75) actually orig-
inate in claims about domain-specific languages from 675
(CID). P80 claims two advantages of MTLs using P675 as
reference. P675 again uses citations to support their claims.
However, the papers cited by P675 do not make statements

@ Springer

486

S.Gotzetal.

about model transformation languages but DSLs in general.
This shows how such chains can create a blurred factual pic-
ture. Moreover, in the presented cases it is still possible to
find the origin of claims and realize how the claims were
changed throughout the citation chains. If authors deemed
it unnecessary to support claims that are “established” facts,
this is no longer possible. Quite likely this is the case for a
non-negligible number of publications (see Table 4) where
no citations or any other substantiation for claimed properties
of MTLs is given.

As previously described, it is not uncommon for authors to
ascribe properties to model transformation languages due to
them being DSLs. However, a language does not necessarily
have to be more expressive, easier to use or easier to main-
tain simply by being domain specific. In fact we believe that
everything about a DSL stands and falls with the domain itself
as well as the design of the language. As a result, all advan-
tages and disadvantages for DSLs, described in the literature,
only define potential properties. Thus, it is necessary to eval-
uate advantages and disadvantages anew for each domain,
especially in complex domains such as model transforma-
tions.

5.4 Research direction

In our opinion, the research community has to acknowl-
edge that the current way of language development is not
expedient. There needs to be a shift away from constant
development of new features and transformation languages
with, at best, prototypical evaluation. Tomaz Kosar, Bohra
and Mernik [44] share this sentiment after a mapping study
on the development of DSLs in general (see Sect. 6).

Instead, it is necessary to extensively evaluate cur-
rent transformation languages, first to identify their actual
strengths and weaknesses and then to compare these results
with the expected (and desired) results to determine which
aspects of MTLs still need improving.

We believe the categories from Sect. 4 to be a good refer-
ence for possible areas to evaluate.

It is not necessary to evaluate each category empiri-
cally: For some categories, empirical evaluation might not
be sensible at all. Such categories include analysability, and
semantics and verification for example, since there exist no
universally accepted measures to base evaluation on. Addi-
tional literature reviews are also conceivable. Analogous to
how P77 gathered different reuse mechanisms, a compre-
hensive review of verification and analysis approaches can
be useful to assess the analysability and verifiability of model
transformation languages.

Designing and executing appropriate studies also entails
significant effort which is why it becomes necessary to
carefully weigh up which properties should be evaluated.

@ Springer

Additionally, some categories should also be examined more
urgently than others.

The ease of writing a transformation and comprehensi-
bility are two such categories for which evaluation is most
pressing. Also given that in the domain of programming
languages (especially object-oriented programming), many
studies exploring the comprehensibility and ease of use, such
as Burkhardt et al. [15], Rein et al. [54], and Kurniawan
and Xue [47], already exist. Study designs similar to the one
described in P59 are in our opinion most suitable for this
purpose. This is supported by the fact that many studies for
comparing programming languages follow a similar struc-
ture in that a common problem or task is solved in multiple
languages and the resulting code is analysed [4,30,53]. It
may also be useful to design the cases in such a way that the
complete capabilities of the used transformation languages
have to be used. In the study described in P59, for example
advanced features such as QVTs late resolve were not part of
the evaluation. Such a design can help to better understand
if the most “advanced” features of transformation languages
have practical value and how complex a GPL for these fea-
tures is.

Comprehensibility can also be tested in isolation by
requiring subjects to describe functionality of given trans-
formations written in both a dedicated model transformation
language and a GPL.

According to Mohagheghi et al. [51], one of the main
motivations for adopting MDE in industry is to improve
productivity; hence, we believe that evaluation of the pro-
ductivity when using model transformation languages should
be a focus too. Admittedly measuring productivity is a chal-
lenging task, a fact that has been observed as early as 1978
[37]. But since then, numerous ways have been proposed
and tested out in practice [10,13] which should allow for
productivity studies on MTLs to be carried out. A potential
study into the productivity could require subjects to develop
transformations in either a model transformation language
or a general-purpose language within a certain time frame
followed by measuring and comparing how productive the
subjects were in both cases. Researchers can also draw from
the large corpus of productivity studies on different aspects of
programming, such as Wiger and Ab [66], Frakes and Succi
[25] and Dieste et al. [23].

The performance of model transformations can have huge
impact on development, especially when multiple transfor-
mations have to be executed in succession. Many language
engineers already pay tribute to that fact by providing perfor-
mance comparisons between their languages and other MTLs
or general-purpose languages such as Java [32,46]. And
the Transformation Tool Contest (TTC) provides a venue
for comparing MTLs. However, we believe extensive com-
parisons between the performance of model transformation
languages and general-purpose programming languages to

Claimed advantages and disadvantages of model transformation languages: a SLR 487

be necessary to abolish the prejudice that dedicated trans-
formation languages cannot outperform current compilers.
Comparison of performance between different programming
languages that are used for the same purpose is a well-
established practice demonstrated by comparisons between
Java and C++ for robotics programming done by Gherardi,
Brugali and Comotti [27] or C++ and F90 for scientific pro-
gramming by Cary et al. [18]. Performance comparisons are
also common practice in other domains such as GPU pro-
gramming where specialized DSLs are used and performance
is of high importance (Karimi et al. [24]). It is conceiv-
able to compare the performance of transformations written
in dedicated MTLs and GPLs by either manually solving
the same tasks as described previously or by using existing
mechanisms (for example Calvar et al. [17]) for transforming
transformation scripts written in a MTL into GPL code.

We also believe that special focus needs to be given to
the question of what model transformation languages are
expected to achieve (such as easy synchronization of mul-
tiple artefacts or fast transformations through incremental
transformations): first, because this can allow to direct more
resources on evaluating relevant aspects of MTLs; and sec-
ond, because model transformation languages will appear
more streamlined and mature when the focus of development
lies in improving their core features instead of overloading
them with “experimental” features. An opinion TomaZz Kosar
et al. [44] share is that this can enable practitioners to truly
understand the effectiveness and efficiencies of DSLs.

6 Related work

To the best of our knowledge, there exists no other literature
review that explores advantages and disadvantages of model
transformation languages. There does, however, exist some
literature that can be related to our work.

A closely related survey and open discussion about the
future of model transformation languages was held by Cabot
and Gérard [16]. They report on the results of an online
survey and subsequent open discussion during the 12th
edition of the International Conference on Model Transfor-
mations (ICMT’2019). The survey was designed to gather
information about why developers used MTLs or why they
hesitate to do so and what their predictions about the future of
these languages were. An open discussion was held after the
results of the online survey were presented to the audience
at ICMT’2019. The results of the study point towards MTLs
becoming less popular not only because of technical issues
but also due to tooling and social issues as well as the fact
that some GPLs have assimilated ideas from MTLs and thus
making them less bad alternatives to writing transformations
in dedicated languages.

Hutchinson et al. [34] conducted an empirical study into
MDSE in industry. The authors used questionnaires and inter-
views to explore different factors that influence the success
of MDSE in organizations and attempt to provide empirical
evidence for hailed benefits of MDSE. They report on a total
of over 250 questionnaire responses as well as interviews
with 22 practitioners from 17 different companies. While the
main focus of the study was on MDSE adoption in general,
the authors do report on some findings regarding model trans-
formations, such as negative influences of writing and testing
transformations on the productivity and influences of trans-
formations on the portability. However, no results regarding
used transformation languages are included.

Mens and Gorp [49] propose a taxonomy for model
transformation languages. They define groups of transforma-
tion languages based on answers to a set of questions. The
answers are split into multiple subgroups themselves. The
authors describe in great detail different possible character-
istics within the groups. In part, this also includes listings
of properties for transformation languages that fall into spe-
cific groups. The authors, however, have not provided any
evidence or more precise explanations. Similarly, Czarnecki
and Helsen [22] propose a classification framework for model
transformation approaches based on several approaches such
as VIATRA, ATL and QVT. The framework is given as a fea-
ture diagram to allow to explicitly highlight different design
choices for transformations. At the top level, the feature
model contains features such as rule organization, incre-
mentality, directionality and tracing. Each feature and its
sub-components are extensively discussed and demonstrated
with examples of transformation tools that boast different
aspects of the features. In contrast to the two described clas-
sifications, our study categorizes claims about MTLs on a
qualitative dimension rather than on language features.

Kahani et al. [39] describe a classification and comparison
of a total of 60 model transformation tools. Their classifica-
tion differentiates tools based on two levels. The first level
describes whether the tool is a model-to-model (M2M) or
model-to-text (M2T) tool. The second level differentiates
M2M tools based on their transformation approach meaning
whether the approach is relational, operational or graph-
based and M2T tools based on the underlying implementation
approach meaning visitor-based, template-based or hybrid.
Unlike our study, the described comparison focuses on com-
paring different model transformation tools on a technical
basis based on six categories (general, model level, transfor-
mation, user experience, collaboration support and runtime
requirements), while we focus on qualitative aspects of
claims made throughout literature about any kind of dedi-
cated model transformation language.

Van Deursen et al. [62] gathered an annotated bibliog-
raphy on the premise of domain-specific languages versus
generic programming languages. The bibliography con-

@ Springer

488

S.Gotzetal.

tains 73 different DSLs differentiated by their application
domains: Software Engineering, Systems Software, Multi-
Media, Telecommunication and Miscellaneous. Additionally,
they provide a discussion of terminology as well as risks and
benefits of DSLs. And while parts of the listed risks and
benefits such as enhanced productivity or cost of education
can be found in the listed advantages and disadvantages of
our literature review, their bibliography does not contain any
model transformation languages.

Tomaz Kosar et al. [44] report on the results of a system-
atic mapping study they conducted to understand the DSL
research field, to identify research trends and to detect open
issues. Their data comprised a total of 1153 candidates which
they condensed into 390 publications for classification. The
results from the study corroborate observations made dur-
ing our literature review. The research community is mainly
concerned with the development of new techniques, while
research into the effectiveness of languages and empirical
evaluations is lacking.

Tomaz Kosar et al. [45] describe an empirical study com-
paring a domain-specific language with a general-purpose
language with a focus on learning, perceiving and evolving
programs. The two languages considered were XAML as a
DSL representative and the GPL C#. The experiment is com-
prised of 36 programmers which were asked to construct a
graphical interface using both XAML and C# Forms. After-
wards, the subjects had to answer a questionnaire. In contrast
to the results of P59, their results show a statistically signif-
icant advantage of DSLs for learning, comprehending and
evolving programs.

Jakumeit et al. [36] provide an extensive overview over
and comparison of 13 state-of-the-art transformation tools
used in the TTC 2011. The authors give detailed descrip-
tions of the tools based on a “Hello World” case posed at
the contest. They also describe for what use cases the indi-
vidual tools are best suited and provide a novel taxonomy
based on which the tools are compared. The introduced tax-
onomy features many of the same categories we synthesized
from the claims in our literature review, such as expressive-
ness, extendability, learnability, reuse and verification, but
also other categories such as maturity and license.

7 Threats to validity

To ensure reproducibility and a high quality of the results, we
followed a systematic approach as detailed in Sect. 3. How-
ever, possible threats to validity still remain. In this section
we discuss these threats.

7.1 Internal validity

Internal validity describes the extent to which a casual con-
clusion based on the study is warranted. This validity is

@ Springer

threatened by possible differences in the interpretation of
our selection criteria. To alleviate the potential threat, two
researchers independently applied the selection criteria and
in cases of different decisions about the inclusion of a publi-
cation, full text cross-reading was applied.

A threat to the internal validity we could not meet with
prevention measures was the fact that our categorization is
based on certain defining expressions like “expressive” and
“versatile”. Tt is possible that different authors ascribe dif-
ferent meanings to these phrases. While we believe that for
most cases this is less of a problem, it is still a problem that
we could not fully solve since not every publication defines
their understanding of used phrases.

7.2 External validity

External validity describes the extent to which the findings of
a study can be generalized. For structured literature reviews,
a threat to this validity arises from the existence of relevant
but undetected or excluded publications [20]. To mitigate
this threat as much as possible, we used both automatic
searches and exhaustive backward and forward snowballing.
The automatic search was also conducted on multiple lit-
erature databases to broaden the field of searched literature.
Furthermore, we employed a “when uncertain include” strat-
egy for including publications, as well as less strict inclusion
criteria which helped prevent relevant publications from
being overlooked.

7.3 Construct validity

Construct validity describes the extent to which the right
measures were obtained and whether the right scope was
defined in relation to our research questions. The construct
validity of our research is not under threat since the research
questions define easily producible results. Cited advantages
or disadvantages of model transformation languages can be
directly extracted, and the same also holds for used evidence
for claims.

7.4 Conclusion validity

Conclusion validity describes the extent to which conclusions
based on data are reproducible.

Prior to the execution of our literature review, we defined a
review protocol for all phases of the review. We followed the
protocol rigorously to ensure reproducibility of the study. The
protocol did not only include descriptions of how the review
had to be conducted but also detailed how data should be
extracted from the selected literature (see Sect. 3). It is of
course possible that, with the passage of time, a repetition of
the literature review can draw different conclusions due to
the added body of literature between then and now.

Claimed advantages and disadvantages of model transformation languages: a SLR

489

8 Conclusion

In this study, we have reported on a systematic literature
review intended to extract and categorize claims about model
transformation languages as well as the current state of
evaluation thereof. The goal of the study was to compile
a comprehensive list and the categorization of positive and
negative claims about model transformation languages. We
further wanted to investigate the current state of evaluation
of claims as well as identify gaps in the area of evaluation of
MTLs.

We combed over 4000 publications for that purpose, 58
of which we selected for the study. To this end, we fol-
lowed arigorous process by using a combination of automatic
searches on literature databases, exhaustive backward and
forward snowballing and multiple researchers during the
selection phase. The selected publications were combed for
mentions of advantages and disadvantages of MTLs and evi-
dence of the stated claims. Lastly, we analysed and discussed
the extracted claims and evidence to: (i) provide an overview
over claimed advantages and disadvantages and their origin,
(i1) the current state of evidence thereof and (iii) identify
areas where further research is necessary.

We conclude that: (i) the current literature claims many
advantages of MTLs but also points towards deficits owed
to the mostly experimental nature of the languages and its
limited domain, (ii) there is insufficient evidence for and (iii)
research about properties of model transformation languages.

The results of our study suggest that there is much to
be done in terms of evaluation of model transformation lan-
guages and that effort that is currently being invested into the
development of new features might be better spent evaluating
the state of the art in hopes of ascertaining both what current
MTLs are lacking most and where their strengths really lie.

Acknowledgements Open Access funding provided by Projekt DEAL.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, you will need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

A Overview over all extracted claims

See Table 4.

Table4 Overview over claims per category

Evidence

Publication

Claim

CID

Valuation

Category

P45

Declarative MTLs lend themselves to automatic

C1

Positive

Analysability

analysis

Experience

Based on user feedback, it was identified that visual P43

Cc2

Positive

Comprehensibility

syntax is beneficial when reading a transformation

program

P44

Bidirectional transformation languages have an

C3

advantage in comprehensibility

Rules written in a declarative MTL are more easily P45

c4

understood in isolation and in combination

Empirical study

An observation made from the empirical data is that P59

C5

context selection and identification are easier for
subjects working with MTLs than with GPLs

@ Springer

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

S.Gotzetal.

490

Apms Areurwurjoid

€L9d SO

sojdwexyg

SLd
€9d

65d

cd

€d

0Ld

0Ld

6cd

Lud

wd

wd

S6d

€9d

ASIOU0D ST STTLIA Ul uonejou [eorydeln
9s10U09 210w d3en3ue] ayew sayoeoldde aanereoog

sjuerieA eae[3urpuodsariod
uey) IO[[eWS 9,84 03 dn a1om STLIN Poseq-o[nI
Sursn Apnys-axd oy ur pajuswd[dwir suoneULIOJSULI],

sonrxa[dwod

[BIUSPIOOE 0] OSII QAIS AW STTJD) UI UOIORIISqR JO

sso[oy} pue sydoouos uonendruewr [opow ssaidxo
A[ULTUAAUO0D 0 s19dOJOASD MO][E 10U Op STJD

Pauyap aIe SUONBULIOJSURI) MOY JO
asneoaq Ayordwis yoe[sogen3ue| osodind-[erouan

pear 0 prey pue xo[dwod awoseq
ued sofen3ue] uonewiojsuen paseq-yderd Aoing

XeJuLks Joensqe o) Souyop Jey) [OPOW-LIou HIm
JeI[IWe] 99 0] Sey JASN) ISNEIq PEAI 0) PIey
oI Xejuks Joensqe uo pauyep suoneuliojsuer ydern
Kyrxordwod 19)sewr 03 s3deouod oFen3ue|
SuIssIw 01 anp 9p0Od UOBULIOJSURI) J[qEpUBISIdPUN
A1100d 0} pEI] S[OPOW SNOAUAT0I)AY puL d3Ie |
s1op[oyeyels Auew
10J PUBISIOPUN 0] PIBY| AT J[NSAI B SB PUB S[[IS
ogroads axmbar soFen3ue] uonewIOSULT) [OPOJA

o130[uonEWLIOJSULT 9Y) SUIpuEISISpUN
10 SONI[I0B] JUSTUSAUOD NOr[STLIA ISOIN

[opour-ejowt oy} jo sired [eaAd1 AJuo sayoeoidde

uoneuojsuer) ydeid ‘opdwrexs 10, ‘wojqoid

UONBULIOJSURI) B U0 MAIA pajiwl] & AJuo apiaoid

sogen3ue[UOTJEULIOJSURT) JUALIND sk parodurey
ST 0130 UoneWLIOJsURN Jo AJ[Iqisuayardwo))

STTdD uey) S[qepue)sIopun
QIOW WIAY) SYBW Jey) SUOTORIISqE [9AJ[-YSIY
9re1odioour saen3ue] UOTIBWLIOJSURT) [POA

s[opou jo uonejuasaidar

reorydessd s jo reedde o ojdwrexe

10J Aq umoys suoneuIojsuen) jo suonejuasardar

[emxa} A[nJ 03 paredwod suonejuasardar
reorydess jo sure3 oanmugoo paareorad are aray,

81D
LID

91D

SID

i41e

1]

[419)

1D

01D

6D

8D

LD

9

ANISOg

QATIETON

SSQUASIdUOD)

ouUdpIAg

uoneonqng

wrery

amn

uonenep

pringer

K103918D)

Qs

penunuod {o|qel

491

Claimed advantages and disadvantages of model transformation languages: a SLR

Qouonadxyg

€L9 SAD

€9d

0sd

6cd

€d

06d

Svd

d

d

Sod

€L9d
S6d

S6d

08d

uoneIaN
pue ‘uona9[as ‘@ouanbas ‘st jey) ‘widipered rerjruey
® 19Jj0 soyorordde uonewrojsuen aaneraduy
S[OpPOW)M JIOM
0] ASB2 J1 OyeWl $93BNTULR] UOTIBULIOJSURI) [9POJA
surewop Suijjopow
JUQISHIP UQ9M)Aq SIUQWIAe [opowt dew pue
woiy A1onb 03 xejuks jouroons Sunvgjo £q su10x
juowdo[oAap ased soSenSue] UONBULIOJSULI) [OPOJA
uonIuYop paseq-Xejuks ueyy
QATIIMUI QJOW Jej uoniuyap o[nI fesryders punoj op
Y3y
s1 3500 uonejuawedw aours 11oddns Sur33nqop
1odouid yoe[saSen3ue] uoneuLIOjSURI) [OPOJN

SQuo dAneIdWI UT URY) JNOYFIP 2I0W ST JUISINGap
sogenSue] uoNEWLIOJSURIT) [9POUL ATIRIR[OOP U]

uonTuyep 95en3ue| Ay} JO [9AJ] AY) UO JoU
SOUISUS UONINDAXD AY) JO [AAJ] JOMO] Y} UO PAIIWI]
s1 3ur33nqgop sny, 9je1odo SQUITUD UOTINIAXD Jeym
uo 0} paredwod uondENsSqe Jo [9A] YIIY B U0
pauyap sI 2ouapuodsar1od Y-LAQ Pue SOO L “ILV Ul
o130]
UoneWLIOJSUERI)) Jo Sulpue)siapun pue ur3snqap
Suntoddns 10J SONII[IOR] JUSTUSAUOD YOr] AT
9s1x0 soSen3ue| UONEWLIOJSURT) snownu YSnoyiy

1odojoaap
Q) J0j [nJIuruBAW I8 STJD) JO s1933nqap
£q paonpouid syoes [[ed o) JoyIaym d[qeuonsanb
SI 1 Q0UIS suonewIojsuen) 3urdngap I10J STdD
10J 950y} ey} Joy3oq A[oyI] are ST 10} S1983nqaq
Kyrxordwoo aonpar 0 djoy LAD
se yons soSen3ue[uonewIojsuen [opow pue FAN
9SIOU0D 2IOWI AI8 $9FeNTUL] UOTIRUWLIOJSURI) [OPOA
STTdD uey) ASIOU0d
QI0UI WAL} OBl Jel]) SUONORISQR [9A[-YSIY
Jrerodioour sagen3ue] UOT)BULIOJSURT) [OPOJA
sanTXo[dwod [BIUIPIOIL 0) ISLI JAIT UBD
uonoensqe Jo ssof ay) pue sydeouods uonendruew
[opou ssa1dxa A[JUQTULAUOD J0U OP STJD

1€D

0€0

6¢O

87O

LTO

9D

SO

¥ZO

€

[449)
1O

02O

61D

BN R

QATIBION

ANISOq

UOTEWIOJSuET) B SUNLIM Jo aseq

3ur3sngeq

QouapIAYg

uonealqng

wrery

ar

uonenyep

K103918D)

penunuod {o|qel

pringer

As

S.Gotzetal.

492

Apmys Teordwyg

Qouandxyg

douonadxyg

SId

(41

°L9d

€9d

65d

9sd

Svd

€vd

8¢d

Lad

d

°L9d

xejuks opdwrs puryeq ursioaen
AYI[S[TRISP 9pIYy ued soSenSue| UOTIBULIOJSURT) [9POTA
a3en3uey osodind-[erouad
© Ul UONBWLIOJSUR) YOrd J0J Suryojewt
uraped jo uoneyusweduwr [enuewr € 0 paredwod
Quoi1d-10119 $S9[9q 0) WS sayoroidde paseq-ony

swelgeIp 23ny Jo jnoAe[ay) Suikynneaq
sinoy puads 0) SI9SN ST 9010 10U S0P PUE ‘SYSE)
juswoSeurwW UONELINSYUOD PUB UOISIdA JO SPULY
[re sagrduwrs 9oedwod a1ouw SI UOTBIOU [BN)X3)
V ‘uonejou [enixa) e 0} paredwod sofejueape
jueoyIUSIS SLY UONBIOU [BNSIA € JO agesn
A} JeY} PAOUIAUOD JOU AIE SN JO QWS ‘[[B JO ISIL]
sagen3ue] [eanpasoxd ur
suryoge (uoneuiojsuen) pajedrdwos Supoous
YIIm 9[qeIIoJuod d1ow A[[eI1oudd are s1odojeadq

(pudIX) TdD UIpOUW B IIA0
(O-LAO “ILV) seSen3ue[UOHIRULIOJSURI) [9POW
paziferoads Jo 93ejuBApE [RIQUIT B JO 90UIPIAD
(JueoyruSts A[[eOTISIIR)S) JUSIOYINS OU ST IS,
[epow-ejow Ay} JO Jurpuejsiopun
doap axmbai [0A9] [opow-BIoOW UO SUOTIBULIOJSURT)
QUYap Jey) sedenJue] UOTIRWLIOJSURT) [OPOIA
s1odofoaap Auewr
JOJ JeI[Iurejun st STLIN QATRIR[OIP JO XBIUAS AU,
pareoridwod 2q ued
xejuks reoryderd e ym weidord uoneuriojsuen
® Sunum JeY) paUNUIPI M YOrqpadJ Jasn uo paseq
112dx9 uonewIojsuLRn
©9q 0] SBY QUO ‘SUOTJBULIOJSURT) 9JLIM 0) d[qe 9q O,
SUOTJRULIOJSURI) 9JLIM O} 9[qe 9q O} S[[IS
oyroads axmbar saSen3ue uonewLIOjSULI) [BUONIPRI],

mop [01u0d Jo uoneayroads *3-o
‘Aprorfdxe paysidwosor aq 01 9ABY SONSST Auetr
9sNBO2q PO PLAYIAA0 oNpUI ST IA 2aneraduy

S3ULI0JOBJAI pUE SAUI[OPING JUI[[dpow

Jo uonejuowe[dwr pue uonesyoads ay) J0J

11oddns 101199 AjueOyIUSIS JI9JJO SUOHIBULIOJSURT)
ydei3 ‘ferouad ur ‘yeyy uorssardwir Ino s1 |

370

wo

O

0o

6¢D

8¢D

LED

9¢0

SedD

1299

€0

[4%0)

EINNE

QANE3ON

SsoudAIssaIdxyg

Q0uapIAyg

uonedlqng

wrery

armn

uonenye

pringer

K103918D)

Qs

penunuod {o|qel

493

Claimed advantages and disadvantages of model transformation languages: a SLR

STdD uey

SL9d SND 08d 9SN 0) JOISED Ie saFenSue| UOHRULIOJSURT) [OPOIA 19D
STdD I19A0 SSOUAAISSAIdXD
ur sures o) Speay Yorym uornoensqe jo

SL9d SN 08d [9A9] 19Y31Y & 9ABY SoFen3ue| UOTJBULIOJSURT) [OPOIA 09D
s1onNsu0d a3enIue|

- 08d oy1oads 10w 9AeY seSenSue] UOEWIOJSUERT) [SPOJA 65D
1amod aatssaxdxe ySiy oy

- oLd 0} onp repndod A[eroadse are sTLIN paseq-ydein 86D
suonewojsuen 3urkjroads 1oy

- €od suonoensqe 9[qeims yoe[saSenSue] asodnd-Terousn LSD ANISOq SsouaAIssaIdxyg

STILIN UI 9ATIO9))

Apms Teoundwyg 6Sd 10w st sarmonys x9[dwoos Furkdod jey) punoj o 96D
s3doouoo uonendruew [apowr ssa1dx

- 7sd A[IUSTUAAUO0D 03 $10dO[oAdD MO[[E 10U Op STdD [4<e)
ogroads

- ¢sd QI0W ST XBJUAS soFen3ue| UOIIBWLIOJSURT) [OPOJA! ¥SD
[es1oARI)

LL9d 5D Shd [opour 221mos JIa1[dwr 10§ MO[e STLIN QATRIR[O(] [3%)
uoneaId

LLIYd D Shd 109[qo 1031y y1o1[dwW Op ULd STLIN FANRIL[OA((438}
1odoreaap
uo peoy a3 Suruasse] Surrepio onr jrorduwr 103

LL9d SND Shd MO[[e saSenue| UONRULIOJSURI) [JPOW JAIRIB[OI(] 1SD
JuowoeUBW

LLId SD Shd Ayiqeasen onewoine Mof[e STLIN QATIRIR[O(] 0sO
s3urrojoejor
pue saurepms Jurjopour jo uonejuawduwr
pue uoneoyroads ayy 107 11oddns 10)39q

7L9d S ord Apueoyru3is e 19pjo A[[eIouasd suoneuiojsuer ydein 6vD
J19sn wolj uaping pue Arxordwos

1L9d S9IMD L7d uoneuIojsues} ApIY soSenSue] UOIIBWLIOJSULI) [OPOIAL 8¥D
xejuks oidwrs € puryeq SWy)LIOF[e UOTJRULIOJSULT)

- SId xo[duwos op1y ueod sagenue| UONBULIOJSURT) [OPOJA YD
xejuAs o[dwis puryeq SurLopIo

- SId 9[NI 9pIY UBD so3enJue] UOTIRULIOJSURT) [POIA 9D
xejuks opdwrs puryoq Sure33in

- SId 9[n1 apIy ued saSen3ue] UONBULIOJSURT) [SPOIA [S70)
xejuAs opdwirs puryeq

- SId S90BI) 9pIY UBD sofenJue] UOIBWLIOJSURT) [OPOJAL %40

QoUdpIAY uonedrqng wre) damn uonenyes K103918D)

penunuod {o|qel

pringer

As

S.Gotzetal.

494

€9d SO

999d-+99d SO

Apmsg eoudwg

Qouaradxyg

Qouorradxyg

€9d SO

P08d D

€0d

6d

0sd

€€d

ed

0Id

01d

P08d

LL9d

SL9d

S6d

Sod

v6d

SUOIBULIOJSURI) [opoWl SUIUYAP J0J 9[qeIIns

jou are sagenJue] Surwwrerdord asodind-ferouan
SUOT)BWLIOJSUBT)
x9[dwoo 3urkjroads 105 onbruyoa) (nyromod

are (uonjeunrojsuer) yderd pue rewrwrels ydeid) 1o
NOYIIp

SI sogen3ue| UONBWLIOJSURT) [opOW FUIPU)XH
UONBULIOJSUBT)
® Jo sonoedoid oy Jnoge uoreWLIOJUT

3ur10s Jo/pue SUIQLIOSIP JOJ WSIUBYOIW OU ST I],

STLLJA UI POULIOJSUEI) 3q JOUUED SJUTRNSUOD DO

suoid-10110
PUE QATINIULIIUNOD ST YOIyM A[[eonewrurersord
Quop 9q 03 sey sJuAWR[2 o[dn[nuw jo syuowdey
0) Juowafe 9[3urs e Jurddew ey poynuapt
QAR 9M ‘UOIRULIOJSURI) [BIOADS USNILIM SUIARH
wm yoes payuawdrdwiar oq
0 oAy Jey) sureyed SULLINOAI [BISAS 9JEN)SUOUWIIP
Aoy} 9snedaq STS(U9aMIaq SUOTBULIOJSURT)
Surssaxdxe A[3ouroons 10j uoroeIsqe
JO [OAQ] B MO[00} I STLJA JULIND 1Y) PayNuapI
QABY OM ‘UOIIBULIOJSURI) [BIOADS USNLIM SUTABH

a3en3ue[SurwweIsord [euonIsULT © UT PAISJJO

A[reord£y jeyy ueyy ssoudarssaidxe ur Joy3ry yonur St

jey) oSengue[& Jursn IouUULW ASIOUOD B UT 9A1302[qO
1oy ssaxdxe ued rowwrersord e “TLIN/TSA ® UMM

SuONEUWLIOJSURI

Surkyroads 105 suonoensqe [qelns Joe[sSTdD
KAyperouad

10 UTRWOP PAIWI] B UI SSOUAAISSaIdxa apen s

s1doouos uonewIojsuen
juardyns yoe[sedengue| asodind-[erouan

STdD UeY) SUOTRULIOJSURI) [9POW JOJ PI)INS

Io19q STLIA SunsIxe ayew Jey) saInjeaj Iolew

Q) JO QU0 ST QUISUS UONJBULIOJSURT) AQ SQ0BI) JO
uonnjosal/3ur[puey dSnewoine ‘oandadsiod 1o wory

oy10ads 210Ul 218 $1ONISUOD
uorewIojsuer) sagenue] UOTJRULIOJSURT) [OPOIA

€LD

<L

LD

0LD

690

890

L9D

990

§90

arn

90

€90

290

AANISO]

QATIBTON

QATIRTON

I9139q Isnf

Anpiqepuarxg

Q0uapIAyg

uonealqng

wrers

amn

uonenyeA

K103918D)

penunuod {o|qel

pringer

Qs

495

Claimed advantages and disadvantages of model transformation languages: a SLR

- 108d doueunoprad 191199 ARy STSA aso wo
BAR[UBY) SUORULIOJSURT) g
sordweg 9,94 Jo doueurioyrad 19139q € SMOUS USD)ID) 98D m_
juewriojrod
9.9d SN S6d a10w a1e sagen3ue] UONBRWLIOJSULT) [SPOIA G8D ANISO] QOUBULIOJIS]
STLIN WA S[opoul WIOJSues)
- 18d 0) 93en3ue] mau A[9)o[dwod B UILY[0 SBY AUQ 8D
QAIND UTUIRI[
- 8sd do9)s © aary seSenSue| uonewLIOjSULI) [OPOJA! €8D
e[0] awn
d[qeIopIsuod saxnbar yorym ‘sogenSue] JuoIsIsuod
- 7sd sKem[e Jou Inq “Te[rwirs a[dnnur wIea| 0) 9ARY SIS 78D
s19sn J19dx9-uou 10§ 9AIND Jurured] dod)s e 9JeaId
pue 9[qeyoroidde ssof wAY) JuryeW JO JO3JJ9 A}
- ocd aAaey ued STLIN osodmd-[erouad jo Ajerouas oy, 18D QATIESON Aniqeurea|
are soFen3ue] UOTIRITIW PAJEIIPIP
JNQ PEOYIOAO [RUOT)IPPE ST AIY) QOUIS UOeISTW
sordwrexyg ped [OpOowW 10J PIJINS [[9M Jou Ik SN osodind-[erouan 08D BINGREING
Apmg Teotndurg €08d opeu aIe SIOLId SSI[‘SIS SuIsn uayp ard
€08d 1D S.9d asn Jo asea Ay asearour sefensue] oyroads-urewoq asd
s1odofoaap jo dnoi3
€08d SN SL9d 1931e] ® 0) urewop uonedrdde oyy dn uado sTSqQ azo
SINSJ 0UI S]A[d WI0JSues) 0} pasn aq ued
(uonewrojsuern; ydess pue rewrwesd ydeid) 100
sordwexyg 994 jey) umoys aaey am ‘ojdwexe ue jo djoy oyl Y 6LD
suoneULIOJSuL)
[opow urAjroads 10 9[qeIINS JSOW I SJONIISUOD
dAneIadwl pue 9ANBIB[OAP JO QIMIXIW B)IM
- 98d sogengue] paziferoads Jey) ST SNSUASUOD JUALIND YT, 8.0
paxmbar are soyoeoidde pajesrpep jeyy Ajdwr yorym
$9d S 994 swa[qod Jo Joquinu € Juasald SUOIRULIOJSURI) [OPOJA LLD
93en3ue[Surwwes3old prepue)s e ur
UANLIM A[QISUSS 9 J0UUEBD SUONBULIOJSURI) [9pOU
jeyy uondwnsse dy) 0) SPeo[SIY [, ‘POULIOJSULI)
U99q ApeaI[E 9ABY SIUSWS[Q YIIYM JO YorI)
dooy 03 *3-9 ‘A1ouryorw JO sjunowre JuISeaIoul ppe
sordwrexyg 9d 0) Sey QU0 “JdD) B UI S[9POU ULIOJSULI) 0} JOPIO U] 9D
asodind oy 10§ parofre) oq ued
sogen3ue] oy} 9snedeq yoreoidde uoneurrojsuer
- £€9d [enuajod 1sow dy) 1350 STLIN PAILAPaJ SLD
sodurexyg ped uoneISIW [9powW I0J PAIINS [[oM JOU Ik STJD ¥LD
Q0UPIAY uoneorqng wre) damn uonenyeA K103918D)

penunuod {o|qel

S.Gotzetal.

496

PLId SND cd Mogye saxmbar LA Sulutejurewl pue SUIA[OAT 101D
JMoYIIp
S[opOW-EJoU JOYJO JOJ SN J1oy) Suryew sny)
‘K31A1)0E O1UO-3dA) B A[[eWIOU ST SUOIIBULIOJSUR)
- Ivd [opou Jo uoniuyap oy} ‘A[areuntioyun 001D
SWSTUBYOIW NI
- ced pajeonsiydos yoe| soSen3ue| uoneULIOJSURT) [SPOJA 66D
Q0BJI)UI S[NpOW Je sAroudpuadop 9pod pue [opour
QIe[oop A[JOLIS pue FUIPIY UOT)BULIOJUT [OT)UOD O}
srowrwrerdoxd smope eyl soSenSue] uonewIOSuLY)
- 6cd [epou 10§ 3dedu0d S[NPOW OU SISTXd I, 86D
QuIn AI9AQ [oJeIds wolj pajuawadur
9q 01 aAry sureyed SULLINOAT JeY) PAYNUIPT
douonadxg 01d OABY 9M ‘UOIRULIOJSURI) [RIOAS UONLIM SUIARH 16D
Apysis
IOJJIP S[OPOWI-BIOUWI 9SNEIAQ AW} AIOAD [OJBIOS
LLd S9MD pd WOIJ USYLIM oI SUOTeWIoJsue) ‘sreds ST osnay 96D aaneSoN
$1500
008d SI1D S.9d doueuLIUTEW Y} 9onpal seSenSue] oyroads-urewroq asd
STLIN
MOTAI QINJRINIT LLd 10 SWSTUBYOAW Isnal Jo eioya[d e $IsIxo a1oy], $6D
Ay[iqeurejurewt ur 9fejueApR
- bhd UE 9ABY SUONBULIOJSULI) [9POW [BUOTIOIIPIE 6D AANISOq KIqeurelurejy pue asnay
QI1Y 0] JAISBA ATk ST JOJ sIasn }1adxa ours
- 6sd Toys1y oq JyStur yuswdoarap D Jo Aranonpoid €60
peq st sagen3ue]
Apmg reotndwyg 7ed UOIBULIOJSURI) [OPOU JO SSAUIAIIOIL paAradrad oy, 76D AneSoN
Apm§ reorndwryg €08d Kyanonpoid sasearour TS Surs asd
sordurexyg 108d Kyanonpoad sasearour TS Surs daLd
€08d ‘T08d SID SL9d Aanonpord esearour TS aso
- Std Kyanonpoid rowrwrer3ord asearour SN QANRIR[O9(16D
Kyanonpoiad ayy oroxduur
- 6cd $7IS{ Sureq sagen3ue] UONBULIOJSURT) [OPOJA 06D QAISO] K)1Anonpoig
- 08d douewriogrod asIom AABY STLIN 68D
PIIWI] [99] SIASN YBW ABW Jey) SUIWOSLIOYS B ST
- 7sd so3en3ue| uonewIO)SUR) [opow Jo dduruLIojrad oy, 88D
- Shd swo[qoad oourwiojrad aAey SN QANRIR[OJ 18D AAneIIN
QOUAPIAT uonedrqng wre) amn uonenyeA K103918D)

penunuod {o|qel

pringer

Qs

497

Claimed advantages and disadvantages of model transformation languages: a SLR

LLd SO

MOTAQI 2INJBINI]

8Sd

6€d

€0d

d

Tdd

vrd

vL9d

S6d

8Ld

LLd

09d

pauyop A[[eurioj jou st sagengue|
UOTJEULIOJSUR) [9POUI AUBW JO SOIJUBLUAS Q]

Inoraeyaq pajoadxa

Q) UO suoneoy10ads po[IeIap ppe 0) SONULBWAS
[ewI0) ou dAry seSenSue| uoneULIOSULI) ISOJA

SOD, St yons

uone3edoid o3ueyo pue Areuonoanpiq 1oddns

jey) swisijeurioj pue agendue| urwweisord
[eo1d£) © u9om)aq 9OUSIIJIP ONUBWIAS B ST I,

SuISSIW SI SUOHBULIOJSURI)
[epowu jo 11oddns uoneoyrroa aarsuayardwo))

SONURWIAS [BULIOJ 9Y) 0} WIOJU0D A[[ear

suonejuowa[dwr renonred sjurensuOd Yorym

Jopun 1e9[d A[[ear jou A[fensn s1 1 ‘soyoeoidde
UOIBULIOJSURI) [9POW [BUOTIR[AI SUNSIXD 10

UONEOYLIOA Ul 93ejuRApE
ue oAeY Sa3en3ue] UOT)BULIOJSURT) [BUOT)IAIIPIG
s1o[idwod jo
uonesrundo pue uononnsuod [dwexs 10J sopnjoul
[OIYM 1I0JJQ SNOULIOU UE ST AJLINJeul JO 99139p
juaroyyns e 0) segen3ue] mou asay) Surdojoasg

sonoerd ur
PaYsI[qelse A[pIey ST SUOT)BWLIOJSUBT) [OPOW JO ISNY

uodn

pauyop a1e Aoy s[opow-elow Ay} 03 pojdnos Apysn

a1e A9y} Q0UIS $JXIUOD JUSIJJIP UI SUOIBULIOJSURT)
[opow Sursnaz 10§ 1oddns oI ST I,

asnar
1odurey jey) S[OPOUI-BIOUI WOIJ SWSTURYIIW ISNI
JO UOnOEISqR JUILOYJNSUL SE YONS SISLIIRq I8 1YL,

1SIXQ S[opOW-B)ou
JTe[rwis J0J suoneuLIojsuer) ojqeredwod 1
UQAQ ‘9snal ou yim A[[enuewt pautiojad A[ensn si
[opouw-ejowl Mau € 10j uonewIojsue} e urdojoaap
‘OLIBUQDS ST U] "S[OPOW-BIOW JO uonerdjjoid

© pasned sey STS 3ursn uo gIA Jo siseydwo oy,

[4110)

[aRte]

(VRS

601D

801D

LOTD

901D

SOID

Y01D

€010

01D

EINiRRING

AANISOg

UOT)EOYLISA PUE SOTJUBWIOS

QouapIAg

uoneqng

wrery

amn

uonenyeA

K103918D)

penunuod {o|qel

pringer

As

S.Gotzetal.

498

sogen3ue[Surwwessord

- SL9d 9sodind-feroudd uey) erouad ssof are sTS aoid
J[nesIoA
- p6d SSO[I $)oNISuU0d soSenJue] UOTBWLIOJSUBT) [OPOIA LT1D
$30NI)suU0d oFen3ue|
- 08d J[IEsIoA SS9 dARY saSenSue] UOTJEULIOJSUL) [OPOJA 921D
STIdD uey)
- 08d S[IIesIoA $SI[AIe soSen3ue] UOTBUWLIOJSUBT) [OPOIA STID
d[nesIoA
- 7sd $s9[ST saSenSue| UOHLUIIOJSULI) [OPOW JO XBJUAS oY, $2ID aaneSoN KImesIop
Apmys Teorrrdwyg 0L9d 8213 j0U ST SuoTjeULIO)jSULT) [opou 10 11oddns Joo], €210
1] p[noM s3o9(qns se aInjewr
Apms Teondwyg 699d SE Jou SI suojewIojsues) [apow Joj Jroddns [oo], 721D
110JJ9 BIIXQ S[IRIUD YIIYM
- b6d padofeaap 2q 03 sey STLIA [euIeIxs 103 11oddns joof, 121D
jroddns
p6d SND 08d 1001 9s10Mm 9ARY SoSen3ue] UONBUWLIOJSUBT) [OPOIA] 0zID
S1dD 10j se Ajunjew Jo
- bLd [OAS] oures) 10U dARY STLJA 107 s[00} Sunioddng 611D
- 7Sd y10ddns 1003 yoe[saSen3ue] UOT)BULIOJSURT) [OPOIA 811D
- Shd 110ddns [00} pue soLIRIqI] YOor[STLIN QANRIR[0d(LT1D
0L9d°699d S1D czd y10ddns 1003 yoe[saSen3ue] UOT)BULIOJSURT) [OPOIA 911D ATIBSON
j10ddns [00) paziferoads
- Sshd 10§ sentunjioddo apraoid sTLIN 2AneIR[O2Q SI1D
71SA 2Y) 03 PAIO[IE] 9q UBD)1 asned2q TdD
10 TLIN Teurdur 1oj uey) [njromod arouwr A[renuajod
- vrd s1 sagen3ue[uorjeWLIOJSUERI) [RUIIX J0J 11oddns [oo], Y110
a3en3ue| 150y osodind-[erouad
- czd Jo 310ddns [00) JLIOUUT UBD ST [RUIIUT €110 AAISO] j10ddng joo],
0UIPIAY uonedrqng wre[) amn uonenjeA K103918D)

penunuod {o|qel

pringer

Qs

Claimed advantages and disadvantages of model transformation languages: a SLR

499

B SLR results

P2

P3

P4

P9

P10

P15

P21

P22

P23

P27

Patzina, Sven and Lars Patzina (2012). “A Case
Study Based Comparison of ATL and SDM”. In:
Proceedings of the 4th International Conference on
Applications of Graph Transformations with Indus-
trial Relevance. AGTIVE 2011. DOLI: https://doi.org/
10.1007/978-3-642-34176-2_18.

Stephan, Matthew and Andrew Stevenson (2009). A
Comparative Look at Model Transformation Lan-
guages. Tech. rep. Software Technology Labora-
tory at Queens University. http://citeseerx.ist.psu.edu/
viewdoc/summary?doi=10.1.1.712.2983.

Cuadrado, J. S., E. Guerra, and J. de Lara (2014).
“A Component Model for Model Transformations”.
In: IEEE Transactions on Software Engineering. DOL:
https://doi.org/10.1109/TSE.2014.2339852.
Agrawal, Aditya, Gabor Karsai, and Feng Shi (2003).
“A UML-based graph transformation approach for

s

implementing domain-specific model transformations”.

In: International Journal on Software and Systems
Modeling. URL: http://citeseerx.ist.psu.edu/viewdoc/
summary ?doi=10.1.1.152.1226.

Johannes, Jendrik et al. (2009). “Abstracting Com-
plex Languages through Transformation and Com-
position”. In: Model Driven Engineering Languages
and Systems. MODELS 2009. DOI: https://doi.org/
10.1007/978-3-642-04425-0_41.

Jouault, Frédéric et al. (2008). “ATL: A model trans-
formation tool”. In: Science of Computer Program-
ming. DOI: https://doi.org/10.1016/j.scico.2007.08.
002.

Giese, Holger, Stephan Hildebrandt, and Leen Lam-
bers (2014). “Bridging the gap between formal seman-
tics and implementation of triple graph grammars”. In:
Software & Systems Modeling. DOI: https://doi.org/
10.1007/s10270-012-0247-y.

Schoenboeck, Johannes et al. (2010). “Catch Me If
You Can - Debugging Support for Model Trans-
formations”. In: Models in Software Engineering.
MODELS 2009. DOI: https://doi.org/10.1007/978-3-
642-12261-3_2.

Hinkel, Georg and Erik Burger (2019). “Change
propagation and bidirectionality in internal transfor-
mation DSLs”. In: Software & Systems Modeling.
DOTI: https://doi.org/10.1007/s10270-017-0617-6.
Sottet, J. and A. Vagner (2014). “Defining Domain
Specific Transformations in Human-Computer inter-
faces development”. In: 2014 2nd International Con-
ference on Model-Driven Engineering and Software
Development. MODELSWARD ’14. URL: https://
ieeexplore.ieee.org/abstract/document/7018471.

P28

P29

P30

P32

P33

P34

P39

P40

P41

P43

P44

Acretoaie, Vlad (2013). Delivering the Next Gen-
eration of Model Transformation Languages and
Tools. http://citeseerx.ist.psu.edu/viewdoc/summary?
doi=10.1.1.708.6612.

Rentschler, Andreas et al. (2014). “Designing Infor-
mation Hiding Modularity for Model Transformation
Languages”. In: Proceedings of the 13th Interna-
tional Conference on Modularity. MODULARITY
’14. DOI: https://doi.org/10.1145/2577080.2577094.
Steel, Jim and Robin Drogemuller (2011). “Domain-
Specific Model Transformation in Building Quantity
Take-Off”. In: Model Driven Engineering Languages
and Systems. MODELS 2011. DOI: https://doi.org/
10.1007/978-3-642-24485-8_15.

Shin, Shin-Shing (2019). “Empirical study on the
effectiveness and efficiency of model-driven architec-
ture techniques”. In: Software & Systems Modeling.
DOTI: https://doi.org/10.1007/s10270-018-00711-y.
Criado, Javier et al. (2015). “Enabling the Reuse
of Stored Model Transformations Through Annota-
tions”. In: Theory and Practice of Model Transforma-
tions. ICMT 2015. DOLI: https://doi.org/10.1007/978-
3-319-21155-8_4.

Rose, Louis M. et al. (2014). “Epsilon Flock: a model
migration language”. In: Software & Systems Model-
ing. DOLI: https://doi.org/10.1007/s10270-012-0296-
2.

Berramla, K., E. A. Deba, and M. Senouci (2015).
“Formal validation of model transformation with Coq
proof assistant”. In: 2015 First International Con-

ference on New Technologies of Information and

Communication. NTIC 2015. DOI: https://doi.org/10.
1109/NTIC.2015.7368755.

Legros, Elodie et al. (2009). “Generic and reflective
graph transformations for checking and enforcement
of modeling guidelines”. In: Journal of Visual Lan-
guages & Computing 4. DOL: https://doi.org/10.1016/
J-jv1c.2009.04.005.

Sanchez Cuadrado, Jesus, Esther Guerra, and Juan de
Lara (2011). “Generic Model Transformations: Write
Once, Reuse Everywhere”. In: Theory and Practice
of Model Transformations. ICMT 2011. DOI: https://
doi.org/10.1007/978-3-642-21732-6_5.

Striiber, Daniel et al. (2017). “Henshin: A Usability-
Focused Framework for EMF Model Transforma-
tion Development”. In: Graph Transformation. ICGT
2017.DOI: https://doi.org/10.1007/978-3-319-61470-
0_12.

Wider, Arif (2014). “Implementing a Bidirectional
Model Transformation Language as an Internal DSL
in Scala”. In: EDBT/ICDT Workshops. URL: http://
citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.428.
9439.

@ Springer

https://doi.org/10.1007/978-3-642-34176-2_18
https://doi.org/10.1007/978-3-642-34176-2_18
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.712.2983
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.712.2983
https://doi.org/10.1109/TSE.2014.2339852
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.152.1226
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.152.1226
https://doi.org/10.1007/978-3-642-04425-0_41
https://doi.org/10.1007/978-3-642-04425-0_41
https://doi.org/10.1016/j.scico.2007.08.002
https://doi.org/10.1016/j.scico.2007.08.002
https://doi.org/10.1007/s10270-012-0247-y
https://doi.org/10.1007/s10270-012-0247-y
https://doi.org/10.1007/978-3-642-12261-3_2
https://doi.org/10.1007/978-3-642-12261-3_2
https://doi.org/10.1007/s10270-017-0617-6
https://ieeexplore.ieee.org/abstract/document/7018471
https://ieeexplore.ieee.org/abstract/document/7018471
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.708.6612
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.708.6612
https://doi.org/10.1145/2577080.2577094
https://doi.org/10.1007/978-3-642-24485-8_15
https://doi.org/10.1007/978-3-642-24485-8_15
https://doi.org/10.1007/s10270-018-00711-y
https://doi.org/10.1007/978-3-319-21155-8_4
https://doi.org/10.1007/978-3-319-21155-8_4
https://doi.org/10.1007/s10270-012-0296-2
https://doi.org/10.1007/s10270-012-0296-2
https://doi.org/10.1109/NTIC.2015.7368755
https://doi.org/10.1109/NTIC.2015.7368755
https://doi.org/10.1016/j.jvlc.2009.04.005
https://doi.org/10.1016/j.jvlc.2009.04.005
https://doi.org/10.1007/978-3-642-21732-6_5
https://doi.org/10.1007/978-3-642-21732-6_5
https://doi.org/10.1007/978-3-319-61470-0_12
https://doi.org/10.1007/978-3-319-61470-0_12
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.428.9439
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.428.9439
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.428.9439

500

S.Gotzetal.

P45

P50

P52

P56

P58

P59

P60

P63

P64

P66

P70

P74

Lawley, Michael and Kerry Raymond (2007). “Imple-
menting a Practical Declarative Logic-based Model
Transformation Engine”. In: Proceedings of the 2007
ACM Symposium on Applied Computing. SAC *07.
DOI: https://doi.org/10.1145/1244002.1244216.
Liepins, Renars (2012). “Library for Model Query-
ing: IQuery”. In: Proceedings of the 12th Workshop on
OCL and Textual Modelling. OCL *12. DOI: https://
doi.org/10.1145/2428516.2428522.

Krikava, Filip, Philippe Collet, and Robert France
(2014). “Manipulating Models Using Internal Domain-
Specific Languages”. In: Symposium On Applied
Computing. SAC ’14. DOLI: https://doi.org/10.1145/
2554850.2555127.

Sun, Yu, Jules White, and Jeff Gray (2009). “Model
Transformation by Demonstration”. In: Model Driven
Engineering Languages and Systems. MODELS 2009.
DOI: https://doi.org/10.1007/978-3-642-04425-0_58.
Irazabal, Jer6nimo and Claudia Pons (2010). “Model
Transformation Languages Relying on Models as
ADTs”. In: Software Language Engineering. SLE
2009. DOIL: https://doi.org/10.1007/978-3-642-12107-
4_10.

Hebig, Regina et al. (2018). “Model Transformation
Languages Under a Magnifying Glass: A Controlled
Experiment with Xtend, ATL, and QVT”. In: Pro-
ceedings of the 2018 26th ACM Joint Meeting on
European Software Engineering Conference and Sym-
posium on the Foundations of Software Engineer-
ing. ESEC/FSE 2018. DOI: https://doi.org/10.1145/
3236024.3236046.

Lara, Juan de et al. (2018). “Model Transforma-
tion Product Lines”. In: Proceedings of the 21th
ACM/IEEE International Conference on Model Driven
Engineering Languages and Systems. MODELS ’18.
DOI: https://doi.org/10.1145/3239372.3239377.
Sendall, S. and W. Kozaczynski (2003). “Model trans-
formation: the heart and soul of model-driven software
development”. In: IEEE Software. DOI: https://doi.
org/10.1109/MS.2003.1231150.

Tratt, Laurence (2005). “Model transformations and
tool integration”. In: Software & Systems Modeling.
DOI: https://doi.org/10.1007/s10270-004-0070-1.

— (2007). “Model transformations in MT”. In: Sci-
ence of Computer Programming. DOI: https://doi.org/
10.1016/j.scic0.2007.05.003.

Baar, Thomas and Jon Whittle (2007). “On the
Usage of Concrete Syntax in Model Transforma-
tion Rules”. In: Perspectives of Systems Informatics.
PSI 2006. DOLI: https://doi.org/10.1007/978-3-540-
70881-0_10.

Sanchez Cuadrado, J., E. Guerra, and J. de Lara
(2015). “Quick fixing ATL model transformations”.

@ Springer

P75

P77

P78

P80

P81

P86

P90

P94

P95

P664

In: 2015 ACM/IEEE [8th International Conference
on Model Driven Engineering Languages and Sys-
tems. MODELS ’15. DOI: https://doi.org/10.1109/
MODELS.2015.7338245.

Li, Dan, Xiaoshan Li, and Volker Stolz (2011).
“QVT-based Model Transformation Using XSLT”. In:
SIGSOFT Softw. Eng. Notes. DOI: https://doi.org/10.
1145/1921532.1921563.

Kusel, A. et al. (2015). “Reuse in model-to-model
transformation languages: are we there yet?” In: Soft-
ware & Systems Modeling. DOI: https://doi.org/10.
1007/s10270-013-0343-7.

Wimmer, Manuel etal. (2011). “Reusing Model Trans-
formations across Heterogeneous Metamodels”. In:
ECEASST. DOLI: https://doi.org/10.14279/tuj.eceasst.
50.722.

Kfikava, Filip, Philippe Collet, and Robert B. France
(2014). “SIGMA: Scala Internal Domain-Specific
Languages for Model Manipulations”. In: Model-
Driven Engineering Languages and Systems. MOD-
ELS 2014. DOI: https://doi.org/10.1007/978-3-319-
11653-2_35.

Akehurst, D. H. etal. (2006). “SiTra: Simple Transfor-
mations in Java”. In: Model Driven Engineering Lan-
guages and Systems. MODELS 2006. DOI: https://
doi.org/10.1007/11880240_25.

Kolovos, Dimitrios S., Richard F. Paige, and Fiona A.
C. Polack (2008). “The Epsilon Transformation Lan-
guage”. In: Theory and Practice of Model Transfor-
mations. ICMT 2008. DOI: https://doi.org/10.1007/
978-3-540-69927-9_4.

Sanchez Cuadrado, Jesus, Esther Guerra, and Juan
de Lara (2014). “Towards the Systematic Construc-
tion of Domain-Specific Transformation Languages”.
In: Modelling Foundations and Applications. ECMFA
2014.DOI: https://doi.org/10.1007/978-3-319-09195-
2_13.

George, Lars, Arif Wider, and Markus Scheidgen
(2012). “Type-Safe Model Transformation Languages
as Internal DSLs in Scala”. In: Theory and Practice
of Model Transformations. ICMT 2012. DOI: https://
doi.org/10.1007/978-3-642-30476-7_11.

Hinkel, Georg, Thomas Goldschmidt, et al. (2019).
“Using internal domain-specific languages to inherit
tool support and modularity for model transforma-
tions”. In: Software & Systems Modeling. DOL: https://
doi.org/10.1007/s10270-017-0578-9.

Agrawal, Aditya, Tihamer Levendovszky, et al. (2002).
“Generative programming via graph transformations
in the model-driven architecture”. In: In OOPSLA
2002 Workshop in Generative Techniques in the con-
text of Model Driven Architecture. OOPSLA ’02.

https://doi.org/10.1145/1244002.1244216
https://doi.org/10.1145/2428516.2428522
https://doi.org/10.1145/2428516.2428522
https://doi.org/10.1145/2554850.2555127
https://doi.org/10.1145/2554850.2555127
https://doi.org/10.1007/978-3-642-04425-0_58
https://doi.org/10.1007/978-3-642-12107-4_10
https://doi.org/10.1007/978-3-642-12107-4_10
https://doi.org/10.1145/3236024.3236046
https://doi.org/10.1145/3236024.3236046
https://doi.org/10.1145/3239372.3239377
https://doi.org/10.1109/MS.2003.1231150
https://doi.org/10.1109/MS.2003.1231150
https://doi.org/10.1007/s10270-004-0070-1
https://doi.org/10.1016/j.scico.2007.05.003
https://doi.org/10.1016/j.scico.2007.05.003
https://doi.org/10.1007/978-3-540-70881-0_10
https://doi.org/10.1007/978-3-540-70881-0_10
https://doi.org/10.1109/MODELS.2015.7338245
https://doi.org/10.1109/MODELS.2015.7338245
https://doi.org/10.1145/1921532.1921563
https://doi.org/10.1145/1921532.1921563
https://doi.org/10.1007/s10270-013-0343-7
https://doi.org/10.1007/s10270-013-0343-7
https://doi.org/10.14279/tuj.eceasst.50.722
https://doi.org/10.14279/tuj.eceasst.50.722
https://doi.org/10.1007/978-3-319-11653-2_35
https://doi.org/10.1007/978-3-319-11653-2_35
https://doi.org/10.1007/11880240_25
https://doi.org/10.1007/11880240_25
https://doi.org/10.1007/978-3-540-69927-9_4
https://doi.org/10.1007/978-3-540-69927-9_4
https://doi.org/10.1007/978-3-319-09195-2_13
https://doi.org/10.1007/978-3-319-09195-2_13
https://doi.org/10.1007/978-3-642-30476-7_11
https://doi.org/10.1007/978-3-642-30476-7_11
https://doi.org/10.1007/s10270-017-0578-9
https://doi.org/10.1007/s10270-017-0578-9

Claimed advantages and disadvantages of model transformation languages: a SLR

501

P665

P667

P669

P670

P671

P672

P673

P674

P675

P676

P677

P800

URL: http://citeseerx.ist.psu.edu/viewdoc/summary?
doi=10.1.1.70.4824.

Afimann, Uwe (1996). “How to uniformly specify pro-
gram analysis and transformation with graph rewrite
systems”. In: Compiler Construction. CC 1996. DOI:
https://doi.org/10.1007/3-540-61053-7_57.
Radermacher, Ansgar (2000). “Support for Design
Patterns through Graph Transformation Tools”. In:
Applications of Graph Transformations with Indus-
trial Relevance. AGTIVE 1999. DOI: https://doi.org/
10.1007/3-540-45104-8_9.

Mohagheghi, Parastoo et al. (2013). “An empirical
study of the state of the practice and acceptance of
model-driven engineering in four industrial cases”.
In: Empirical Software Engineering. DOI: https://doi.
org/10.1007/510664-012-9196-x.

Staron, Miroslaw (2006). “Adopting Model Driven
Software Development in Industry — A Case Study at
Two Companies”. In: Model Driven Engineering Lan-
guages and Systems. MODELS 2006. DOI: https://
doi.org/10.1007/11880240_5.

Panach, José Ignacio, Oscar Pastor, and Nathalie
Aquino (2011). “A Model for Dealing with Usabil-
ity in a Holistic MDD Method”. In: User Interface
Description Language, Lisbon, Portugal. UIDL *11.
Amelunxen, Carsten et al. (2008). “Checking and
Enforcement of Modeling Guidelines with Graph
Transformations”. In: Applications of Graph Trans-
formations with Industrial Relevance. AGTIVE 2007.

DOI: https://doi.org/10.1007/978-3-540-89020-1_22.

Schmidt, Douglas (2006). “Guest Editor’s Introduc-
tion: Model-Driven Engineering”. In: COMPUTER-
IEEE COMPUTER SOCIETY. DOI: https://doi.org/
10.1109/MC.2006.58.

Chafi, Hassan et al. (2010). “Language Virtualization
for Heterogeneous Parallel Computing”. In: ACM Sig-
plan Notices. DOI: https://doi.org/10.1145/1932682.
1869527.

Mernik, Marjan, Jan Heering, and Anthony M. Sloane
(2005). “When and How to Develop Domain-specific
Languages”. In: ACM computing surveys (CSUR).
DOI: https://doi.org/10.1145/1118890.1118892.
Gorp, Pieter Van and Louis M. Rose (2013). The Petri-
Nets to Statecharts Transformation Case. DOI: https://
doi.org/10.4204/EPTCS.135.3.

Mens, Tom and Pieter Van Gorp (2006). “A Taxonomy
of Model Transformation”. In: Electronic Notes in
Theoretical Computer Science (GraMoT 2005). DOI:
https://doi.org/10.1016/j.entcs.2005.10.021.
Herndon, R. M. and V. A. Berzins (1988). “The real-
izable benefits of a language prototyping language”.
In: IEEE Transactions on Software Engineering. DOLI:
https://doi.org/10.1109/32.6159.

P801 Batory, Don, Jeff Thomas, and Marty Sirkin (1994).

“Reengineering a Complex Application Using a Scal-
able Data Structure Compiler”. In: Proceedings of the
2Nd ACM SIGSOFT Symposium on Foundations of
Software Engineering. SIGSOFT ’94. DOL: https://
doi.org/10.1145/193173.195299.

P803 Kieburtz, Richard B. et al. (1996). “A Software

Engineering Experiment in Software Component Gen-
eration”. In: Proceedings of the 18th International
Conference on Software Engineering. ICSE’96. DOI:
https://doi.org/10.1109/ICSE.1996.493448.

P804 Gray, J. and G. Karsai (2003). “An examination

of DSLs for concisely representing model traver-
sals and transformations”. In: 36th Annual Hawaii
International Conference on System Sciences, 2003.
Proceedings of the. HICSS *03. DOLI: https://doi.org/
10.1109/HICSS.2003.1174892.

References

. Alves, R., Nunes, N.J.: Ceiling and threshold of paas tools: the

role of learnability in tool adoption. In: International Conference
on Human-Centred Software Engineering. HESSD 2016. (2016).
https://doi.org/10.1007/978-3-319-44902-9_21

. van Amstel, M.E., van den Brand, M.G.J.: Model transformation

analysis: staying ahead of the maintenance nightmare. In: Theory
and practice of model transformations. ICMT 2011. (2011). https://
doi.org/10.1007/978-3-642-21732-6_8

. Arendt, T. et al.: Henshin: advanced concepts and tools for in-

place EMF model transformations. In: Model Driven Engineering
Languages and Systems. MODELS 2010. (2010). https://doi.org/
10.1007/978-3-642-16145-2_9

. Aruoba, S.B., Fernandez-Villaverde, J.: A comparison of program-

ming languages in economics. Technical report National Bureau
of Economic Research, Inc. (2014). https://EconPapers.repec.org/
RePEc:nbr:nberwo:20263

. Auer, F., Felderer, M.: Current state of research on continu-

ous experimentation: a systematic mapping study. In: 2018 44th
Euromicro Conference on Software Engineering and Advanced
Applications (SEAA). (2018). https://doi.org/10.1109/SEAA.
2018.00062

. Badampudi, D., Wohlin, C., Petersen, K.: Experiences from using

snowballing and database searches in systematic literature studies.
In: Proceedings of the 19th International Conference on Evalua-
tion and Assessment in Software Engineering. EASE *15. (2015).
https://doi.org/10.1145/2745802.2745818

. Balogh, A., Varro, D.: Advanced model transformation language

constructs in the VIATRA2 framework. In: Proceedings of the
2006 ACM Symposium on Applied Computing. SAC °06. (2006).
https://doi.org/10.1145/1141277.1141575

. Barat, S. et al.: A model-based approach to systematic review of

research literature. In: Proceedings of the 10th Innovations in Soft-
ware Engineering Conference. ISEC *17. (2017). https://doi.org/
10.1145/3021460.3021462

. Barb, A.S., et al.: A statistical study of the relevance of lines

of code measures in software projects. In: Innovations in Sys-
tems and Software Engineering. (2014). https://doi.org/10.1007/
s11334-014-0231-5

@ Springer

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.70.4824
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.70.4824
https://doi.org/10.1007/3-540-61053-7_57
https://doi.org/10.1007/3-540-45104-8_9
https://doi.org/10.1007/3-540-45104-8_9
https://doi.org/10.1007/s10664-012-9196-x
https://doi.org/10.1007/s10664-012-9196-x
https://doi.org/10.1007/11880240_5
https://doi.org/10.1007/11880240_5
https://doi.org/10.1007/978-3-540-89020-1_22
https://doi.org/10.1109/MC.2006.58
https://doi.org/10.1109/MC.2006.58
https://doi.org/10.1145/1932682.1869527
https://doi.org/10.1145/1932682.1869527
https://doi.org/10.1145/1118890.1118892
https://doi.org/10.4204/EPTCS.135.3
https://doi.org/10.4204/EPTCS.135.3
https://doi.org/10.1016/j.entcs.2005.10.021
https://doi.org/10.1109/32.6159
https://doi.org/10.1145/193173.195299
https://doi.org/10.1145/193173.195299
https://doi.org/10.1109/ICSE.1996.493448
https://doi.org/10.1109/HICSS.2003.1174892
https://doi.org/10.1109/HICSS.2003.1174892
https://doi.org/10.1007/978-3-319-44902-9_21
https://doi.org/10.1007/978-3-642-21732-6_8
https://doi.org/10.1007/978-3-642-21732-6_8
https://doi.org/10.1007/978-3-642-16145-2_9
https://doi.org/10.1007/978-3-642-16145-2_9
https://EconPapers.repec.org/RePEc:nbr:nberwo:20263
https://EconPapers.repec.org/RePEc:nbr:nberwo:20263
https://doi.org/10.1109/SEAA.2018.00062
https://doi.org/10.1109/SEAA.2018.00062
https://doi.org/10.1145/2745802.2745818
https://doi.org/10.1145/1141277.1141575
https://doi.org/10.1145/3021460.3021462
https://doi.org/10.1145/3021460.3021462
https://doi.org/10.1007/s11334-014-0231-5
https://doi.org/10.1007/s11334-014-0231-5

502

S.Gotzetal.

10.

11.

12.

13.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

217.

28.

29.

Basili, V., Reiter, R.: An investigation of human factors in software
development. In: Computer. (1979). https://doi.org/10.1109/MC.
1979.1658573

Basili, V.R., Caldiera, G., Dieter R.H.: The goal question metric
approach. In: Encyclopedia of Software Engineering (1994)
Batory, D., Johnson, C., et al.: Achieving extensibility through
product-lines and domain-specific languages: a case study. In:
ACM Transactions on Software Engineering and Methodology
(2002). https://doi.org/10.1145/505145.505147

Boehm, B., et al.: Cost models for future software life cycle pro-
cesses: COCOMO 2.0. In: Annals of Software Engineering (1995).
https://doi.org/10.1007/BF02249046

Boot, A., Sutton, A., Papaioannou, D.: Systematic Approaches to
a Successful Literature Review. Sage, Thousand Oaks (2016)

. Burkhardt, J.-M., Detiénne, F., Wiedenbeck, S.: Object-oriented

program comprehension: effect of expertise, task and phase. In:
Empirical Software Engineering (2002). https://doi.org/10.1023/
A:1015297914742

Cabot, L., Burgueifio, J., Gérard, S.: The future of model transfor-
mation languages: an open community discussion. In: Journal of
Object Technology (2019). https://doi.org/10.5381/jot.2019.18.3.
a7

Calvar, T., et al.: Efficient ATL incremental transformations. In:
Journal of Object Technology (2019). https://doi.org/10.5381/jot.
2019.18.3.a2

Cary, J.R., Shasharina, S.G., Cummings, J.C., Reynders, J.V.,
Hinker, PJ., et al.: Comparison of C++ and Fortran 90 for object-
oriented scientific programming. Comput. Phys. Commun. 105(1),
20-36 (1997)

Charmaz, K.: Constructing Grounded Theory. Sage, Thousand
Oaks (2014)

Ciccozzi, F., Malavolta, 1., Selic, B.: Execution of UML models: a
systematic review of research and practice. In: Software & Systems
Modeling (2019). https://doi.org/10.1007/s10270-018-0675-4
Cuadrado, J., Molina, J.G., Tortosa, M.M.: RubyTL: a prac-
tical, extensible transformation language. In: Model Driven
Architecture—Foundations and Applications. ECMDA-FA 2006
(2006). https://doi.org/10.1007/11787044_13

Czarnecki, K., Helsen, S.: Feature-based survey of model transfor-
mation approaches. In: IBM Systems Journal (2006). https://doi.
org/10.1147/sj.453.0621

Dieste, O., et al.: Empirical evaluation of the effects of experi-
ence on code quality and programmer productivity: an exploratory
study. In: Empirical Software Engineering (2017). https://doi.org/
10.1007/s10664-016-9471-3

Fang, J., Varbanescu, A.L., Sips, H.: A comprehensive performance
comparison of CUDA and OpenCL. In: 2011 International Confer-
ence on Parallel Processing. ICPP 2011 (2011). https://doi.org/10.
1109/ICPP.2011.45

Frakes, W.B., Succi, G.: An industrial study of reuse, quality, and
productivity. In: Journal of Systems and Software (2001). https://
doi.org/10.1016/S0164-1212(00)00121-7

Galster, M., et al.: Variability in software systems—a systematic
literature review. In: IEEE Transactions on Software Engineering
(2014). https://doi.org/10.1109/TSE.2013.56

Gherardi, L., Brugali, D., Comotti D.: A Java vs. C++ performance
evaluation: a 3D modeling benchmark. In: International Confer-
ence on Simulation, Modeling, and Programming for Autonomous
Robots. SIMPAR 2012 (2012). https://doi.org/10.1007/978-3-
642-34327-8_17

Hailpern, B., Tarr, P.: Model-driven development: the good, the
bad, and the ugly. In: IBM Systems Journal (2006). https://doi.org/
10.1147/sj.453.0451

Hebig, R., et al.: Model transformation languages under a magni-
fying glass: a controlled experiment with Xtend, ATL, and QVT.
In: Proceedings of the 2018 26th ACM Joint Meeting on European

@ Springer

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

Software Engineering Conference and Symposium on the Foun-
dations of Software Engineering. ESEC/FSE 2018 (2018). https:/
doi.org/10.1145/3236024.3236046

Henderson, R., Zorn, B.: A comparison of object-oriented pro-
gramming in four modern languages. In: Software: Practice and
Experience (1994). https://doi.org/10.1002/spe.4380241106
Hinkel, G.: An approach to maintainable model transformations
with an internal DSL. PhD thesis. National Research Center (2013)
Hinkel, G., Burger, E.: Change propagation and bidirectionality in
internal transformation DSLs. In: Software & Systems Modeling
(2019). https://doi.org/10.1007/s10270-017-0617-6

Hinkel, G., Goldschmidt, T., et al.: Using internal domain-specific
languages to inherit tool support and modularity for model trans-
formations. In: Software & Systems Modeling (2019). https://doi.
org/10.1007/s10270-017-0578-9

Hutchinson, John, et al.: Empirical assessment of MDE in industry.
In: Proceedings of the 33rd International Conference on Software
Engineering. ICSE *11 (2011). https://doi.org/10.1145/1985793.
1985858

ISO/IEC 25010:2011 (2011). ISO/IEC. URL: https://www.iso.org/
standard/22749.html

Jakumeit, E., et al.: A survey and comparison of transformation
tools based on the transformation tool contest. In: Science of Com-
puter Programming (2014). https://doi.org/10.1016/j.scico.2013.
10.009

Jones, T.C.: Measuring programming quality and productivity. In:
IBM Systems Journal (1978). https://doi.org/10.1147/sj.171.0039
Jouault, F, et al.: ATL: A QVT-like transformation language. In:
Companion to the 21st ACM SIGPLAN Symposium on Object-
oriented Programming Systems, Languages, and Applications.
OOPSLA 06 (2006). https://doi.org/10.1145/1176617.1176691
Kahani, N., et al.:. Survey and classification of model transforma-
tion tools. In: Software & Systems Modeling (2019). https://doi.
org/10.1007/s10270-018-0665-6

Kieburtz, R.B., et al.: A software engineering experiment in
software component generation. In: Proceedings of the 18th Inter-
national Conference on Software Engineering. ICSE’96 (1996).
https://doi.org/10.1109/ICSE.1996.493448

Kitchenham, B., Charters, S.: Guidelines for performing System-
atic Literature Reviews in Software Engineering (2007). https://
www.researchgate.net/publication/302924724_Guidelines_for_
performing_Systematic_Literature_Reviews_in_Software_Engin
eering

Kofod-Petersen, A.: How to do a Structured Literature Review in
computer science (2015). https://www.researchgate.net/publica
tion/265158913_How_to_do_a_Structured_Literature_Review_
in_computer_science

Kolovos, D.S., Paige, R.F., Polack, F.A.C.: The Epsilon transforma-
tion language. In: Theory and Practice of Model Transformations,
ICMT 2008 (2008). https://doi.org/10.1007/978-3-540-69927-
9.4

Kosar, T., Bohra, S., Mernik, M.: Domain-specific languages: a sys-
tematic mapping study. In: Information and Software Technology
(2016). https://doi.org/10.1016/j.infsof.2015.11.001

Kosar, T., et al.: Comparing general-purpose and domain-specific
languages: an empirical study. In: ComSIS—Computer Science
an Information Systems Journal (2010). https://doi.org/10.2298/
CSIS1002247K

Kfikava, F., Collet, P., France, R.B.: SIGMA: Scala internal
domain-specific languages for model manipulations. In: Model-
Driven Engineering Languages and Systems. MODELS 2014
(2014). https://doi.org/10.1007/978-3-319-11653-2_35
Kurniawan, B., Xue, J.: A comparative study of web application
design models using the java technologies. In: Asia-Pacific Web
Conference. APWeb 2004 (2004). https://doi.org/10.1007/978-3-
540-24655-8_77

https://doi.org/10.1109/MC.1979.1658573
https://doi.org/10.1109/MC.1979.1658573
https://doi.org/10.1145/505145.505147
https://doi.org/10.1007/BF02249046
https://doi.org/10.1023/A:1015297914742
https://doi.org/10.1023/A:1015297914742
https://doi.org/10.5381/jot.2019.18.3.a7
https://doi.org/10.5381/jot.2019.18.3.a7
https://doi.org/10.5381/jot.2019.18.3.a2
https://doi.org/10.5381/jot.2019.18.3.a2
https://doi.org/10.1007/s10270-018-0675-4
https://doi.org/10.1007/11787044_13
https://doi.org/10.1147/sj.453.0621
https://doi.org/10.1147/sj.453.0621
https://doi.org/10.1007/s10664-016-9471-3
https://doi.org/10.1007/s10664-016-9471-3
https://doi.org/10.1109/ICPP.2011.45
https://doi.org/10.1109/ICPP.2011.45
https://doi.org/10.1016/S0164-1212(00)00121-7
https://doi.org/10.1016/S0164-1212(00)00121-7
https://doi.org/10.1109/TSE.2013.56
https://doi.org/10.1007/978-3-642-34327-8_17
https://doi.org/10.1007/978-3-642-34327-8_17
https://doi.org/10.1147/sj.453.0451
https://doi.org/10.1147/sj.453.0451
https://doi.org/10.1145/3236024.3236046
https://doi.org/10.1145/3236024.3236046
https://doi.org/10.1002/spe.4380241106
https://doi.org/10.1007/s10270-017-0617-6
https://doi.org/10.1007/s10270-017-0578-9
https://doi.org/10.1007/s10270-017-0578-9
https://doi.org/10.1145/1985793.1985858
https://doi.org/10.1145/1985793.1985858
https://www.iso.org/standard/22749.html
https://www.iso.org/standard/22749.html
https://doi.org/10.1016/j.scico.2013.10.009
https://doi.org/10.1016/j.scico.2013.10.009
https://doi.org/10.1147/sj.171.0039
https://doi.org/10.1145/1176617.1176691
https://doi.org/10.1007/s10270-018-0665-6
https://doi.org/10.1007/s10270-018-0665-6
https://doi.org/10.1109/ICSE.1996.493448
https://www.researchgate.net/publication/302924724_Guidelines_for_performing_Systematic_Literature_Reviews_in_Software_Engineering
https://www.researchgate.net/publication/302924724_Guidelines_for_performing_Systematic_Literature_Reviews_in_Software_Engineering
https://www.researchgate.net/publication/302924724_Guidelines_for_performing_Systematic_Literature_Reviews_in_Software_Engineering
https://www.researchgate.net/publication/302924724_Guidelines_for_performing_Systematic_Literature_Reviews_in_Software_Engineering
https://www.researchgate.net/publication/265158913_How_to_do_a_Structured_Literature_Review_in_computer_science
https://www.researchgate.net/publication/265158913_How_to_do_a_Structured_Literature_Review_in_computer_science
https://www.researchgate.net/publication/265158913_How_to_do_a_Structured_Literature_Review_in_computer_science
https://doi.org/10.1007/978-3-540-69927-9_4
https://doi.org/10.1007/978-3-540-69927-9_4
https://doi.org/10.1016/j.infsof.2015.11.001
https://doi.org/10.2298/CSIS1002247K
https://doi.org/10.2298/CSIS1002247K
https://doi.org/10.1007/978-3-319-11653-2_35
https://doi.org/10.1007/978-3-540-24655-8_77
https://doi.org/10.1007/978-3-540-24655-8_77

Claimed advantages and disadvantages of model transformation languages: a SLR 503

48. Loniewski, G., Insfran, E., Abrahdo, S.: A systematic review of Publisher’s Note Springer Nature remains neutral with regard to juris-
the use of requirements engineering techniques in model-driven dictional claims in published maps and institutional affiliations.

49.

50.

development. In: Model Driven Engineering Languages and Sys-
tems (2010). https://doi.org/10.1007/978-3-642-16129-2_16
Mens, T., Van Gorp, P.: A taxonomy of model transformation. In:
Electronic Notes in Theoretical Computer Science (GraMoT 2005)
(2006). https://doi.org/10.1016/j.entcs.2005.10.021

Mernik, M., Heering, J., Sloane, A.M.: When and how to develop
domain-specific languages. In: ACM Computing Surveys (CSUR)
(2005). https://doi.org/10.1145/1118890.1118892

Stefan GOtz is a PhD student at
the Ulm University. His research
is focused on topics surrounding
the development and evaluation of
model transformation languages.
Prior to his work as a PhD stu-

51. Mohagheghi, P,, et al.: An empirical study of the state of the prac- dent, he was a student of software
tice and acceptance of model-driven engineering in four industrial engineering at the Ulm University
cases. In: Empirical Software Engineering (2013). https://doi.org/ where he received his M.Sc. in.
10.1007/s10664-012-9196-x

52. OMG (2001). Model Driven Architecture (MDA), ormsc/2001-07-

01

53. Prechelt, L.: An empirical comparison of seven programming lan-
guages. In: Computer (2000). https://doi.org/10.1109/2.876288

54. Rein, P.,, Taeumel, M., Hirschfeld, R.: Towards empirical evidence
on the comprehensibility of natural language versus programming
language. In: Design Thinking Research (2019). https://doi.org/10.
1007/978-3-030-28960-7_7 Proof. Dr Mathias Tichy is full pro-

55. Sendall, S., Kozaczynski, W.: Model transformation: the heart and fessor for software engineering at
soul of model-driven software development. In: IEEE Software the Ulm University and director of
(2003). https://doi.org/10.1109/MS.2003.1231150 Institute of Software Engineering

56. Shaw, M.: Writing good software engineering research papers. In: and Programming Languages. His
25th International Conference on Software Engineering, 2003. Pro- main research focus is on model-
ceedings (2003). https://doi.org/10.1109/ICSE.2003.1201262 driven software engineering, par-

57. Shevtsov, S., et al.: Control-theoretical software adaptation: a ticularly for cyber-physical sys-
systematic literature review. In: IEEE Transactions on Software tems. He works on requirements
Engineering (2018). https://doi.org/10.1109/TSE.2017.2704579 engineering, dependability, and

58. Sjoberg, D.ILK., et al.: Conducting realistic experiments in software validation and verification com-
engineering. In: Proceedings International Symposium on Empir- plemented by empirical research
ical Software Engineering. ISESE ’02 (2002). https://doi.org/10. techniques. He is a regular mem-
1109/ISESE.2002.1166921 ber of programme committees for

59. Somasundaram, R., Karlsbjerg, J.: Research philosophies in the conferences and workshops in the
10S adoption field. In: ECIS 2003 Proceedings, pp. 53 (2003) area of software engineering and model-driven development. He is a

60. Tratt, L.: Model transformations and tool integration. In: Software co-author of over 110 peer-reviewed publications.

& Systems Modeling (2005). https://doi.org/10.1007/s10270-004-
0070-1

61. Van Deursen, A., Klint, P.. Domain-specific language design
requires feature descriptions. In: Journal of Computing and Infor- Raffaela Groner is a PhD stu-
mation Technology (2002). https://doi.org/10.2498/¢it.2002.01.01 dent at the Ulm University. Her

62. Van Deursen, A., Klint, P., Visser, J.: Domain-specific languages: research is focused on the perfor-
an annotated bibliography. In: ACM Sigplan Notices (2000). mance of model transformations.
https://doi.org/10.1145/352029.352035 Prior, she studied computer sci-

63. Varro, D., et al.: Termination analysis of model transformations by ence at the Ulm University.

Petri Nets. In: Graph Transformations. ICGT 2006 (2006). https://
doi.org/10.1007/11841883_19

64. Weyns, D., et al.: Claims and supporting evidence for self-adaptive
systems: a literature study. In: Proceedings of the 7th Interna-
tional Symposium on Software Engineering for Adaptive and
Self-Managing Systems. SEAMS *12 (2012). https://doi.org/10.
1109/SEAMS.2012.6224395

65. Whittle, J., et al.: Industrial adoption of model-driven engineering:
are the tools really the problem?. In: Model-Driven Engineering
Languages and Systems. MODELS 2013 (2013). https://doi.org/
10.1007/978-3-642-41533-3_1

66. Wiger, U., Telecom Ab, E.: Four-fold Increase in Productivity and
Quality -Industrial-Strength Functional Programming in Telecom-

Class Products (2001)
67. Wohlin, C.: Guidelines for snowballing in systematic literature

studies and a replication in software engineering. In: Proceedings
of the 18th International Conference on Evaluation and Assessment
in Software Engineering. EASE ’14. Association for Computing
Machinery (2014). https://doi.org/10.1145/2601248.2601268

@ Springer

https://doi.org/10.1007/978-3-642-16129-2_16
https://doi.org/10.1016/j.entcs.2005.10.021
https://doi.org/10.1145/1118890.1118892
https://doi.org/10.1007/s10664-012-9196-x
https://doi.org/10.1007/s10664-012-9196-x
https://doi.org/10.1109/2.876288
https://doi.org/10.1007/978-3-030-28960-7_7
https://doi.org/10.1007/978-3-030-28960-7_7
https://doi.org/10.1109/MS.2003.1231150
https://doi.org/10.1109/ICSE.2003.1201262
https://doi.org/10.1109/TSE.2017.2704579
https://doi.org/10.1109/ISESE.2002.1166921
https://doi.org/10.1109/ISESE.2002.1166921
https://doi.org/10.1007/s10270-004-0070-1
https://doi.org/10.1007/s10270-004-0070-1
https://doi.org/10.2498/cit.2002.01.01
https://doi.org/10.1145/352029.352035
https://doi.org/10.1007/11841883_19
https://doi.org/10.1007/11841883_19
https://doi.org/10.1109/SEAMS.2012.6224395
https://doi.org/10.1109/SEAMS.2012.6224395
https://doi.org/10.1007/978-3-642-41533-3_1
https://doi.org/10.1007/978-3-642-41533-3_1
https://doi.org/10.1145/2601248.2601268

	Claimed advantages and disadvantages of (dedicated) model transformation languages: a systematic literature review
	Abstract
	1 Introduction
	2 Background
	2.1 Model-driven engineering
	2.2 Domain-specific languages
	2.3 Model transformation languages

	3 Methodology
	3.1 Objective and research questions
	3.2 Search strategy
	3.3 Selection criteria
	3.4 Quality assessment checklist and procedures
	3.5 Data extraction strategy
	3.6 Synthesis procedures
	3.6.1 RQ1: What advantages and disadvantages of model transformation languages are claimed in the literature?
	3.6.2 RQ2: What advantages and disadvantages of model transformation languages are validated through empirical studies or by other means?

	4 Findings
	4.1 Demographics
	4.2 Quality of publications
	4.3 RQ1: Advantages and disadvantages of model transformation languages
	4.3.1 Analysability
	4.3.2 Comprehensibility
	4.3.3 Conciseness
	4.3.4 Debugging
	4.3.5 Ease of writing a transformation
	4.3.6 Expressiveness
	4.3.7 Extendability
	4.3.8 Just better
	4.3.9 Learnability
	4.3.10 Performance
	4.3.11 Productivity
	4.3.12 Reuse and maintainability
	4.3.13 Semantics and verification
	4.3.14 Tool support
	4.3.15 Versatility

	4.4 RQ2: Supporting evidence for advantages and disadvantages of MTLs
	4.4.1 Citation as evidence
	4.4.2 Empirical evidence
	4.4.3 Evidence by example/experience
	4.4.4 No evidence

	5 Discussion
	5.1 Claims about model transformation languages in context of software quality
	5.2 Claims about model transformation languages in context of language features
	5.3 Lack of evidence for MTL advantages and disadvantages
	5.4 Research direction

	6 Related work
	7 Threats to validity
	7.1 Internal validity
	7.2 External validity
	7.3 Construct validity
	7.4 Conclusion validity

	8 Conclusion
	Acknowledgements
	A Overview over all extracted claims
	B SLR results
	References

