
Software and Systems Modeling (2020) 19:1057–1081
https://doi.org/10.1007/s10270-020-00777-7

SPEC IAL SECT ION PAPER

Integrated model-driven development of self-adaptive user interfaces

Enes Yigitbas1 · Ivan Jovanovikj1 · Kai Biermeier1 · Stefan Sauer1 · Gregor Engels1

Received: 8 February 2019 / Revised: 28 October 2019 / Accepted: 6 December 2019 / Published online: 27 January 2020
© The Author(s) 2020

Abstract
Modern user interfaces (UIs) are increasingly expected to be plastic, in the sense that they retain a constant level of usability,
even when subjected to context changes at runtime. Self-adaptive user interfaces (SAUIs) have been promoted as a solution for
context variability due to their ability to automatically adapt to the context-of-use at runtime. The development of SAUIs is a
challenging and complex task as additional aspects like context management and UI adaptation have to be covered. In classical
model-driven UI development approaches, these aspects are not fully integrated and hence introduce additional complexity
as they represent crosscutting concerns. In this paper, we present an integrated model-driven development approach where a
classical model-driven development of UIs is coupled with a model-driven development of context-of-use and UI adaptation
rules. We base our approach on the core UI modeling language IFML and introduce new modeling languages for context-
of-use (ContextML) and UI adaptation rules (AdaptML). The generated UI code, based on the IFML model, is coupled with
the context and adaptation services, generated from the ContextML and AdaptML model, respectively. The integration of the
generated artifacts, namely UI code, context, and adaptation services in an overall rule-based execution environment, enables
runtime UI adaptation. The benefit of our approach is demonstrated by two case studies, showing the development of SAUIs
for different application scenarios and a usability study which has been conducted to analyze end-user satisfaction of SAUIs.

Keywords Model-driven UI development · UI adaptation · Self-adaptive UIs · Context-aware applications

1 Introduction

The user interface (UI) is a key component of any interac-
tive software application and is crucial for the acceptance of
the application as a whole. However, a UI is not indepen-
dent from its context-of-use, which is defined in terms of the
user, platform, and environment [8]. Today’s user interfaces
of interactive systems become increasingly complex asmany
heterogeneous contexts-of-use have to be supported. Hence,
it is no longer sufficient to provide a single “one-size-fits-all”
user interface. Building multiple UIs for the same function-
ality due to context variability is also difficult as context
changes can lead to the combinatorial explosion of the num-
ber of possible adaptations, and there is a high cost incurred
by manually developing multiple versions of the UI [2].

Communicated by A. Pierantonio, A. Anjorin, S. Trujillo, and
H. Espinoza.

B Enes Yigitbas
enes@mail.upb.de

1 Paderborn University, Fürstenallee 11, 33102 Paderborn,
Germany

In the past, model-driven user interface development
(MDUID) approaches were proposed to support the effi-
cient development of UIs. Widely studied approaches like
UsiXML [22], MARIA [29], and IFML [6] support the
abstract modeling of user interfaces and their transforma-
tion to final user interfaces. However, in the aforementioned
classical MDUID approaches, the modeling of context man-
agement and UI adaptation aspects introduce additional
complexity as they characterize crosscutting concerns. This
results in a tightly interwoven model landscape that is hard
to understand and maintain. Therefore, an integrated model-
driven development approach is needed where a classical
model-driven development of UIs is coupled with a separate
model-driven development of context-of-use and UI adap-
tation rules. Hence, in order to support the development of
self-adaptive UIs in a systematic way, the following chal-
lenges have to be addressed to integrate context management
and adaptation aspects into MDUID:

Context Management Challenges:

– C1: Specification of contextual parameters: A modeling
language is required for specifying different contexts-of-

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10270-020-00777-7&domain=pdf

1058 E. Yigitbas et al.

use. Such a modeling language should enable modeling
of different contextual situations that can occur during
usage of the UI. With the help of this language, develop-
ers should be able to separately specify needed context
sensor services tomonitor various contextual parameters.

– C2: Generation of context services: A transformation
method for automatic generation of heterogeneous con-
text services is needed. Based on the specified context-of-
use model, code for the required context services needs
to be generated for monitoring context information and
triggering the adaptation at runtime.

– C3: Execution of context services and runtime monitor-
ing: An execution environment is required for executing
the generated context services. For supporting runtime
monitoring of dynamic context changes, the generated
context services should observe the context sensors and
provide context information data within the overall UI
execution environment.

UI Adaptation Challenges:

– C4: Specification of UI adaptation rules: A language
conform to the core UI modeling language IFML [24],
standardized by the Object Management Group (OMG),
is required for specifying UI adaptation rules in an
abstract manner. With the help of this language, UI
designers should be able to separately specify various
UI adaptation rules for different contexts-of-use which
can adapt the UI at runtime.

– C5: Generation of UI adaptation services: A transfor-
mation method for automatic generation of different
adaptation services is needed. Based on the specified
abstract UI adaptation rules, the code for the executable
adaptation services needs to be generated for supporting
UI adaptation capabilities at runtime.

– C6: Execution of UI adaptation at runtime: An integrated
execution environment is required for executing the gen-
erated context and adaptation services. For supporting
runtime UI adaptation enabling automatic reaction to
dynamic context-of-use changes, the generated adapta-
tion services need to be coupled with generated code for
the UI and context services as well as integrated in an
overall UI execution environment.

To address the above-described challenges, we present
an integrated model-driven development approach for self-
adaptiveUIs. Our approach covers themodeling, transforma-
tion, and execution of self-adaptive UIs with a special focus
on the concerns context management and adaptation. In par-
ticular, our integrated model-driven development approach
covers the following contributions: Firstly, we introduce two
domain-specific languages, called ContextML and AdaptML
which support the specification of context-of-use parame-

ters (e.g., brightness level, movement, or user’s mood) and
abstract UI adaptation rules that cover various adaptation
dimensions (e.g., layout, navigation, or task-feature set adap-
tation), respectively. Additionally, we describe our approach
which supports the generation of context and UI adapta-
tion services by transforming the context model and abstract
UI adaptation rules into an executable representation of the
target UI execution environment. Finally, we present the inte-
gration of a rule engine in our UI execution environment for
monitoring various context-of-use parameters and executing
the UI adaptations at runtime.

The remaining sections of this paper are organized as fol-
lows: Section 2 presents the conceptual solution of our work.
In Sect. 3, we present the integrated modeling approach for
self-adaptive UIs. Section 4 deals with the implementation
of our integrated transformation and execution environment.
Section 5 shows the benefit and usefulness of our approach
based on two case studies showing the development of self-
adaptive UIs and a usability evaluation analyzing end-user
satisfaction of SAUIs. Related work is presented in Sect. 6,
and finally, Sect. 7 concludes the paper and gives an outlook
on future work.

2 Conceptual solution

Model-driven user interface development (MDUID) is a
promising candidate for mastering the complex development
task of self-adaptive UIs in a systematic, precise, and appro-
priately formal way. Our model-driven solution architecture
for self-adaptiveUIs is depicted in Fig. 1 and consists of three
development paths.

The first development path (left side of Fig. 1) addresses
the model-driven development of UIs. It makes use of an
AbstractUIModel and aDomainModelwhich are then trans-
formed by a code generator (UI Generator) into a Final UI.
This development path has been subject of extensive research
[28], and we already presented the realization and applica-
tion of an MDUID approach for different target platforms,
e.g., smartphone, desktop, and self-service systems [37,38]
based on the OMG standard IFML. The first development
path supports efficient development of heterogeneous UIs
for different target platforms. However, on its own, it is not
enough to support UI adaptation capabilities.

Therefore, we extended our existing MDUID solution
architecture with parallel development paths which support
model-driven context management and development of UI
adaptations. In this way, the model-driven UI development
path is complemented by analog development paths responsi-
ble for the context management and UI adaptation concerns.
As these complementary paths are also basedon the paradigm
of model-driven development, the solution preserves various

123

Integrated model-driven development of self-adaptive user interfaces 1059

Fig. 1 Model-driven
architecture for self-adaptive
UIs

Fig. 2 Runtime perspective:
architectural overview for
self-adaptive UIs

advantages of model-driven software development like sep-
aration of concerns, extensibility, or maintainability.

The second development path (in the middle of Fig. 1)
is responsible for characterizing the dynamically changing
context-of-use parameters. A Context Model supports the
abstract specification of heterogeneous context-of-use sit-
uations. Based on the Context Model, the Context Service
Generator enables the generation of various Context Ser-
vices which monitor context information like accelerometer,
GPS, brightness, or noise level.

The model-driven UI adaptation development path is
depicted on the right side of Fig. 1. In general, it supports the
specification of anAdaptationModel in themeans of abstract
UI adaptation rules in alignment to the standardized abstract
UI modeling language IFML. The UI adaptation rules, speci-
fied in the Adaptation Model, reference theContext Model to
define the context constraints for triggering adaptation rules.
The UI adaptation rules of an Adaptation Model also have a

reference to the Abstract UI Model to define which UI ele-
ments are scope of an UI adaptation change. The specified
Adaptation Model serves then as an input for the Adaptation
Service Generator which transforms it to an Adaptation Ser-
vice. The Adaptation Service is responsible for monitoring
the context information provided by the Context Service and
adapting the generated Final UI at runtime.

For illustrating the interplay between the generated Final
UI, the Context Service, and the Adaptation Service, as well
as to present the effect of specified UI adaptation rules
on the final user interface, we elaborate on the aspect of
UI adaptation. Figure 2 shows a detailed overview of the
runtime perspective for UI adaptation containing the main
components for realizing self-adaptive UIs that are able to
automatically react to changes in their context-of-use. Our
solution architecture for realizing such self-adaptive UIs is
based on IBM’sMAPE-K [18] architecturewhich is common
in the field of self-adaptive software systems. In the follow-

123

1060 E. Yigitbas et al.

ing, the specific components of our solution architecture will
be described.

An important component for UI adaptation at runtime is
the Context Service. The Context Service provides context
information to the Adaptation Service based on the Context
Sensors which are specified in the Context Model. The pro-
vided context information is monitored by the Adaptation
Service. Unlike the MAPE-K loop with its analyze and plan
phases, the Adaptation Service relies on the application of
predefined (by the abstract UI adaptation rules) conditions
and associated actions. Therefore, no planning of actions is
necessary. The two phases in the MAPE-K loop are replaced
by the Evaluate Conditions component. The rules that sat-
isfy the conditions are executed in the Final UI. The Final
UI consists of two subcomponents: The UI Views which are
responsible for representing the UI and Display Properties
which are affected by the adaptation rules and contain the
adaptable schema and type information of the UI. The exe-
cuted adaptation operations can modify the UI directly or
edit the Display Properties. In general, the UI is directly
modified, if the change only affects the current view (adapta-
tion of the current instance). If it is, for example, a property
change that would affect several pages, it is set in the Dis-
play Properties (adaptation of schemas). An example for a
property could be the layout of tables in the whole UI. The
properties are referenced from within the views and thereby
can adapt the layout and design. The Knowledge component
of the MAPE-K loop mainly serves to log and store context
information data and previously triggered UI adaptations.

3 Integratedmodeling environment

In this section, we present our integrated modeling envi-
ronment for self-adaptive UIs. For this purpose, first, we
introduce our integrated modeling environment itself in
Sect. 3.1. After that, we present details about the language
design and definition of our context modeling languageCon-
textML in Sect. 3.2 and UI adaptation modeling language
AdaptML in Sect. 3.3. Finally, in Sect. 3.4, we shortly present
the implemented tooling for our integratedmodeling environ-
ment.

3.1 Integratedmodeling environment

Modeling self-adaptive UIs is a challenging task which
should be supported in a systematic way, so that essen-
tial concerns like context management and UI adaptation
are appropriately treated. To address this issue and reduce
the complexity in development of self-adaptive UIs, we
developed ContextML and AdaptML to support the con-
text modeling and UI adaptation concerns through dedicated
domain-specific languages.

Special attention is required for context management due
to the complexity of capturing context information through
various sensors from heterogeneous sources and monitoring
dynamically changing context-of-use parameters. Therefore,
in our previous work [34], we introduced the context model-
ing language ContextML. It allows to define a set of context
properties and the needed context provider interfaces to cap-
ture the relevant context information. These interfaces are
later on referenced as Context Providers. For example, the
environmental light condition of a context-of-use can be cap-
tured by using a provided API for the ambient light. Also, the
data types of such context properties as well as their behavior
in terms of data updating have to be defined and are covered
by ContextML.

BesideContextML,wedeveloped another domain-specific
language, AdaptML, introduced in [39], which supports the
modeling of UI adaptations through UI adaptation rules.
AdaptML is designed as a complementarymodeling language
to OMG’s core UI modeling language IFML and allows
domain experts, for example, Web designers, to model adap-
tation concerns by specifying the conditions and actions for
UI adaptations. To support various adaptation techniques for
devising self-adaptive model-driven UIs, AdaptML enables
specification of different categories of UI adaptation rules.
Based on [26], the following main categories of UI adapta-
tion types are supported: task-feature-set, navigation, layout,
and modality adaptation. The task-feature-set adaptation
supports UI adaptation by flexibly showing and hiding UI
interaction elements like tables, buttons, text-fields, etc. Nav-
igation adaptation means that the navigation flow of the UI
can be flexibly adapted based on the contextual parameters
by adding, deleting, or redirecting links between user inter-
face flows. Layout adaptation deals with adaptation rules
that support layout optimization like changing font size,
colors, or positioning. Finally, modality adaptation charac-
terizes changes in the interaction mode where UI modality
is changed, for example, from graphical to vocal UI.

Figure 3 shows a simplified modeling example for self-
adaptive UIs, where UI, context, and adaptation concerns are
specified based on IFML [24], ContextML, and AdaptML in
an integratedmanner. On the top of this figure, small excerpts
of the domain model in the form of a UML [25] class dia-
gram and core UI models are depicted. There is an abstract
UI model for a simplified library application based on IFML
which shows the representation of three UI view containers
LoginView,BooksView, andBookDetailsViewwhich are con-
nected by the navigation edges submit and showDetails. To
enable the specification of data bindings in IFML, the cor-
responding classes from the domain model are referenced,
and in our case, it is the class Book. For specifying the dif-
ferent context-of-use parameters, in the bottom left corner of
Fig. 3, an exemplary context model based on ContextML is
depicted. The shown Context Model contains different con-

123

Integrated model-driven development of self-adaptive user interfaces 1061

Fig. 3 Example: Integrated modeling of self-adaptive UIs

text Entities to characterize various context properties like
UserContext, PlatformContext, or EnvironmentContext. A
specific context Entity is described in detail by its context
property (e.g., mood of a user or used device type) which
is defined though a context provider and update type. In the
example context model, for instance, the mood of the user
is specified as a relevant context property which is gathered
through the AffectivaAPI using the smartphone’s camera. To
support the separate specification of UI adaptation rules in
addition to the IFML and context model, AdaptML allows
to specify and bind different adaptation rules to the IFML

model. TheUI adaptationmodel, depicted on the bottom right
side of Fig. 3, contains exemplary UI adaptation rules. The
first adaptation rule specifies a TaskChangeOperation based
on the user role. In this case, it is checked whether the user
has the role admin. If this is the case, then an additionalmodel
element can be shown by using the AddIFMLElementOper-
ation. More details about the available adaptation operations
are provided in Sect. 3.3. The second adaptation rule is called
NavigationChangeOperation based onUserRole and defines
that the specific view BookDetailsView can be only reached,
if a specific user context is satisfied. For defining this adap-

123

1062 E. Yigitbas et al.

UserContext EnvironmentContextPlatformContext

ContextML

ContextProperty

name: EString
updateVelocity: UpdateVelocityKind

CustomContextPropertyDatatypeCustomDataTypeEnum PredefinedDataType

CustomContext

ContextProvider

name : EString

CustomContextPropertyUpdateVelocityKind

slow
fast
eventTriggered

[0..1] userContext [0..1] environmentContext

[0..1] platformContext

[0..*] customContext

[0..*] provider

[0..*] properties[0..*] properties [0..*] properties

[0..1] datatype

[0..*] customContextProperties

Fig. 4 ContextML: Context metamodel

tation behavior, AdaptML rules are referencing the context
model where relevant contextual parameters are described
and the IFML model to reference the specific UI model ele-
ments that has to be changed. In the case of our example, the
user role user has to be satisfied, so that the BookDetailsView
can be reached. In a similar way, various other UI adaptation
rules can be specified. Analogously, the third rule is defin-
ing a LayoutChangeOperation to increase the font size if the
user’s vision is under the specified threshold value. Finally,
the last adaptation rule specifies a ModalityChangeOpera-
tion which switches the UI modality from graphical to vocal
if a movement is detected.

3.2 Context modeling with ContextML

For addressing the challenge C1: Specification of contex-
tual parameters, we introduce and elaborate on the context
modeling language ContextML that is designed conform to
the context metamodel depicted in Fig. 4. The purpose of
the context modeling language ContextML is to provide sup-
port for specifying various context properties and the needed
context provider interfaces to capture the relevant context
information needed for UI adaptation.

The root element and central class of the metamodel is
the class ContextML that connects all parts of the meta-
model. The root class ContextML is further specialized by
specific context entities, such asUserContext, PlatformCon-
text, EnvironmentContext, and CustomContext. Each context
entity UserContext, PlatformContext, and EnvironmentCon-
text has aContextProperty (abstract class)which coversname
and updateVelocity of a contextual parameter. Moreover, the
reference to the desired ContextProvider is saved, which is

the source of context information and is provided through
a context sensor. The data type of a ContextProperty pro-
vided through a ContextProvider can be a standard type like
Integer, String, or Boolean, but also a user-defined type is
supported. The updateVelocity describes the way, how a sin-
gle data set shall be updated. This can be “slow,” “fast,” or
“eventTriggered,” which is whenever a context information
change occurs.

The ContextML metamodel is designed for a broad scope
of context modeling aspects and allows adding further con-
text entities via CustomContext. Each CustomContext can
have a CustomContextProperty inherited by ContextProp-
erty. Moreover, each CustomContextProperty has a Custom-
ContextPropertyDatatype which can be a CustomDataType-
Enum or a PredefinedDataType.

In order to support a broad spectrum of contextual param-
eters and ease the work of the developers in specifying
various context-of-use situations, ContextML comes up with
a fine-grained modeling support to cover the context triplet
UserContext, PlatformContext, and EnvironmentContext. In
the following, those context categories are described in more
detail.

Figure 5 depicts a refinement of UserContext as part of
the ContextML metamodel. It covers a several context infor-
mation related to the actual user, and each user has a unique
UserID. Typical context properties about the user are age,
gender, and language. The context property age can be spec-
ified as AgeUserDefined when it is gathered through a user
prompt or AgeCalculated when it is detected through a cam-
era and based on a recognition service such as AffectivaAPI.
Beside that, the Mood of the user (happy, angry, surprised,
etc.) and if she/he wears Glasses and has a Vision problem

123

Integrated model-driven development of self-adaptive user interfaces 1063

Fig. 5 ContextML metamodel
for UserContext

UserContext

ContextML

GenderKind

UNKNOWN
male
female
diverse

ExperienceKind

NONE
low
intermediate
high

MoodKind

neutral
anger
contempt
disgust
fear
happy
sad
surprised

UserRoleKind

user
admin

AgeUserDefined

value : EInt

AgeCalculated

value : EInt

Glasses

value : EBoolean

Gender

value : GenderKind

Vision

value : EDouble

Experience

value : ExperienceKind

Mood

value : MoodKind

UsageTime

value : EInt

UserID

value : EInt

Language

value : EString

UserRole

value :
UserRoleKind

[0..1] ageUserDefined

[0..1] ageCalculated

[0..1] glasses

[0..1] gender[0..1] vision

[0..1] experience

[0..1] mood

[0..1] usageTime

[0..1] userID

[0..1] language

[0..1] userContext

[0..1] userrole

can be also detected through a camera and face detection
API. Furthermore, when a user model is specified, we can
ask the users for context information about their Experience
level or UserRole for interacting with the system. Lastly, we
can specify and track the UsageTime of each user.

In a similar way, PlatformContext (see Fig. 6) entity cov-
ers aspects according to the execution platform that should
be considered when maintaining usability of the UI. As with
UserContext, eachPlatformContext has a uniquePlatformID
so that the platformmodel is mapped to the correct execution
platform. Common context properties regarding execution
platform are OSName and OSVersion denoting the name of
the running operating system and its version number, respec-

tively. In addition to that, the context property DeviceType
characterizes the device type of the execution platform, such
as desktop, mobile, or tablet. Also, the specific DeviceName
and TimeZone can be specified and observed as an additional
context information.Apair of context properties that is essen-
tial for the UI is the screen dimension. In our metamodel, it is
represented by ScreenHeight and ScreenWidth for the respec-
tive dimension height andwidth. These context properties are
often used to scale the UI to the respective device. The most
important scalingproperty is that for font, becauseUIsmostly
contain text elements. As text elements play a major role
for UIs, a FontScale is introduced. It carries the default font
scale for the respective device to take into considerationwhen

123

1064 E. Yigitbas et al.

Fig. 6 ContextML metamodel
for PlatformContext

PlatformContext

ContextML

ConnectionTypeKind

NONE
wifi
cellular

ConnectionSpeedKind

NONE
mobile_2G
mobile_3G
mobile_4G

DeviceTypeKind

UNKNOWN
desktop
mobile
tablet

BatteryState

value :
BatteryStateKind

ConnectionType

value :
ConnectionTypeKind

ConnectionSpeed

value :
ConnectionSpeedKind

DeviceName

value : EString

FontScale

value : EDouble

OSName

value : EString

OSVersion

value : EString

Timezone

value : EString

DeviceType

value : DeviceTypeKind

ScreenWidth

value : EInt

ScreenHeight

value : EInt

PlatformID

value : EInt

BatteryStateKind

low
medium
high
charging

[0..1] deviceName

[0..1] fontscale

[0..1] os_name

[0..1] os_version

[0..1] timezone

[0..1] platformType

[0..1] screenWidth

[0..1] screenHeight[0..1] platformid

[0..1] connectionType

[0..1] connectionSpeed

[0..1] platformContext

[0..1] batteryState

modifying its value. Furthermore, dynamic platform context
properties such as ConnectionType (Wi-Fi, cellular, etc.) and
ConnectionSpeed (mobile_2G, mobile_3G, etc.) can be used
to track the quality and speed of the internet connection.
Finally, the dynamic platform context property BatteryState
is an important context information that can influence func-
tionality and usability of the UI.

The EnvironmentContext part of the ContextML meta-
model, depicted in Fig. 7, is especially important when
considering the mobile scenario. In the mobile scenario, the
context parameters regarding the interaction environment can
dynamically change. Several dynamic context changes and
various combinations of environmental context properties are
conceivable. In ContextML, the most relevant environmen-

tal properties are considered as Date, Time, AmbientLight,
NoiseLevel,Weather, andActivity.WhileDate and Time con-
stitute the temporal dimensions, Light, NoiseLevel,Weather,
and Activity constitute the space dimension. As part of the
space-related context properties, Activity is defined by an
enumeration over different states ofmovement such as stand-
still, on_foot, and on_bicycle. Similarly, context information
about the Weather is defined through an enumeration over
different states (clear, sunny, rainy, etc.).

An excerpt of an example context model based on this
metamodel is depicted in Fig. 8. It shows a set of possible
context entities. For illustrating the context modeling lan-
guage, exemplary entities which contain some exemplary
context properties are shown. This model snippet is also used

123

Integrated model-driven development of self-adaptive user interfaces 1065

Fig. 7 ContextML metamodel
for EnvironmentContext

EnvironmentContext

ContextMLActivityKind

UNKNOWN
standstill
on_foot
on_bicycle
in_vehicle

WeatherKind

UNKNOWN
clear
sunny
rainy
thunderstorm
storm
cloudy

AmbientLight

value : EDouble

Time

value : EInt

Activity

value :
ActivityKind

Date

value : EString

Weather

value :
WeatherKind

NoiseLevel

value : EDouble

EnvironmentID

value : EInt [0..1] light

[0..1] time

[0..1] date

[0..1] weather

[0..1] noiseLevel

[0..1] enviromentID

[0..1] environmentContext

[0..1] activity

to demonstrate the generation process in the next section.
Based on the metamodel, we also created a concrete syntax
for ContextML using Xtext.1 Based on Xtext, we created an
Eclipse plugin for context modeling which allows an easy
modeling of the context, due to error highlighting and code
completion. This way, the required programming knowledge
and error potential is reduced. An example is displayed on
the right side of Fig. 8.

3.3 Adaptationmodeling with AdaptML

In order to support the UI adaptation modeling and address
challenge C4: Specification of UI adaptation rules, we intro-
duce AdaptML. The main purpose of AdaptML is to provide
a dedicated modeling perspective which allows the sepa-
rate specification of UI adaptation rules complementary to
the UI and context model. AdaptML aims to support the
specification of various UI adaptations by covering different

1 https://eclipse.org/Xtext/.

adaptation techniques and reduce complexity in designing
and maintaining adaptation rules.

An overview of the general structure of the AdaptML
language is shown in Fig. 9. The root element of the meta-
model is the AdaptML class. For the purpose of integration,
the AdaptML class has a reference to the ContextML class
to evaluate the context conditions and a reference to the
IFMLModel class to defineUI adaptations for specificUI ele-
ments. AdaptML consists of AdaptationRule elements which
have a rule name and a priority level as attributes. The priority
level is used as an indicator for priority to decide in which
order rules are executed if more than one satisfies all con-
ditions. A rule with higher priority level is executed before
rules with lower level. Each AdaptationRule consists of one
or more Premise and AdaptationOperation elements. The
Premise class characterizes the condition part of a UI adap-
tation and consists of an abstract class Condition which is
the base for describing simple and complex conditions. Sim-
ple conditions can be specified based on the PrimeCondition
class which defines a concrete simple constraint on one Con-
textProperty. Therefore, PrimeCondition has the attributes

123

https://eclipse.org/Xtext/

1066 E. Yigitbas et al.

Fig. 8 Excerpt of a context model in ContextML, graphical (left) and textual (right) concrete syntax

Fig. 9 AdaptML: Adaptation
metamodel overview AdaptML

Premise

Condition PrimeConditionCombinedCondition

AndCombinedConditionOrCombinedCondition

AdaptationOperationAdaptationRule

name : EString
level : Int

ContextML

ContextProperty

IFMLModel

[1..*] adaptationRule

[1..*] conditions

[0..*] subConditions

[1..*] adaptationOperation

[1..*] premise

[0..1] conditionAttribute

operator and valuewhich are needed to define a condition of
a UI AdaptationRule expressed as a logical expression. More
complex conditions can be specified through the abstract
class CombinedCondition which allows a combination of
conditional expressions concatenated by OR-operators and
AND-operators. For this purpose, the subclasses OrCom-

binedCondition and AndCombinedCondition are defined in
the AdaptML metamodel.

Beside the above-described conditional expressions, an
AdaptationRule enables to specify different UI adaptation
techniques that are executed if the associated conditions
are satisfied at runtime. For this purpose, each Adaptation-

123

Integrated model-driven development of self-adaptive user interfaces 1067

AddIFMLElementOperation

DeleteIFMLElementOperation

AddNavLinkOperation

path : EString
langKey : EString

DeleteNavLinkOperation

path : EString

RedirectNavLinkOperation

path : EString

ClearNavOperation

AdaptCssClassOperation

class : EString
attributKey : EString
attributeValue : EString

ModalityChangeOperation

AdaptationOperation

SetDisplayProperty

TaskChangeOperation

targetPath : EString

NavigationChangeOperation

LayoutChangeOperation

targetUID : EString

SwitchUIModality

targetModality : ModalityKind

ModalityKind

graphical
vocal

DisplayProperty

key : EString
value : EString

ServiceOperation

SetLanguageOperation

langKey : EString

ChangeLayoutType

layoutType : EString

ChangeSize

width : EInt
height : EInt

ChangeMargin

top : EInt
right : EInt
bottom : EInt
left : EInt

ChangePadding

top : EInt
right : EInt
bottom : EInt
left : EInt

SetBorder

size : EInt
solidity : EString
color : EString

SetFloating

type : EString

SetTextColor

color : EString

SetBackground

color : EString

SetFont

style : EString
variant : EString
weight : EString
fontSize : EInt
lineHeight : EInt
fontFamily : EString

SetFontSize

size : EDouble
unit : EString

SetTextDecoration

type : EString

SetPosition

type : EString
top : EInt
bottom : EInt
left : EInt
right : EInt

InteractionFlowElement

InteractionFlow

NavigationFlow

[0..1] displayproperty

[0..1] target

[0..1] target

[0..1] target

[0..1] target

[0..1] target

Fig. 10 AdaptML: Adaptation operation overview

Rule consists of one ormanyAdaptationOperation elements.
As shown in Fig. 10, AdaptML supports different types
of adaptation techniques: TaskChangeOperation, Naviga-
tionChangeOperation, LayoutChangeOperation, Modality-
ChangeOperation, and ServiceOperation.

Also, a combination of multiple adaptation techniques is
possible. This is implicitly modeled by the composition rela-
tion between AdaptationRule and AdaptationOperation in
AdaptML.

TaskChangeOperation enables the specification of UI
adaptations which allow to decrease and increase the task-
feature-set to provide a more minimalistic or detailed UI
view upon the current context-of-use. For hiding and show-
ing specific UI elements, TaskChangeOperation supports the
AddIFMLElementOperation and DeleteIFMLElementOper-
ation through a targetPath which enables to apply these
operations on specific UI elements of the specified IFML
model. For this purpose, TaskChangeOperation has a target
reference to the IFML class InteractionFlowElement.

Similarly, NavigationChangeOperation enables to spec-
ify UI adaptations where the navigation flow of a UI can be
changed based on the context-of-use. For this purpose, Nav-

igationChangeOperation has the subclasses AddNavLink-
Operation, DeleteNavLinkOperation, RedirectNavLinkOp-
eration, and ClearNavOperation. The first three classes or
navigation change operations support the addition, deletion,
and redirection of a specific navigation edge, denoted as
NavigationFlow in the IFML model, which is referenced
through a targetPath. Lastly, the navigation change opera-
tion ClearNavOperation can be used to remove all links that
are currently stored in the navigation component.

As a further UI adaptation technique, AdaptML supports
the specification of layout changes which is characterized
through the LayoutChangeOperation class. Although IFML
in general is an abstract UI modeling language which is
not directly focusing on platform-specific details like lay-
out, we decided to incorporate layout change operations in
AdaptML as we see a higher potential and flexibility for UI
adaptations through this possibility. The LayoutChangeOp-
eration(s) are mainly inspired by commonly used Cascading
Style Sheet (CSS)2 properties. The main idea is to ease the
developers work in specifying layout change operations by

2 https://www.w3.org/Style/CSS/Overview.en.html.

123

https://www.w3.org/Style/CSS/Overview.en.html

1068 E. Yigitbas et al.

reusing a common standard and integrating it into our mod-
eling approach as it is also the case with IFML. Similar
to the targetPath attribute of the TaskChangeOperation(s),
the LayoutChangeOperation class contains the targetUID
attribute identifying a UI element uniquely. This way, differ-
ent LayoutChangeOperation(s) can be applied to specific UI
elements which are contained in the IFML class Interaction-
FlowElement. Typical layout change operations commonly
known from CSS are, for example, SetFontSize, SetPosition,
or SetTextColor. Furthermore, we added the ChangeLayout-
Type operation to support a switch between different layout
types like grid or linear layout. Finally, we also added a
generic AdaptCSSClassOperation. With this operation, it is
possible to set fine granular style properties for a specific
class of UI elements. The class attribute in AdaptCSSClas-
sOperation is equal to a CSS class, while the attributeKey
is intended to be a CSS property and the attributeValue a
valid value to that key. The AdaptCSSClassOperation is not
intended to be used in general, but represents an alternative
solution in cases where the specific LayoutChangeOperation
is not implemented in AdaptML.

In addition to LayoutChangeOperation, AdaptML also
supports the specification of basic modality changes for
the interaction with the UI. For this purpose, the Modality-
ChangeOperation class is provided which enables to switch
the interaction modality type via the SwitchUIModality class
between graphical and vocal user interface.

As a last type of adaptation technique, AdaptML supports
a ServiceOperation in the target language of the UI. In our
approach, reusable predefined Angular3 services were pro-
vided to support UI adaptations for the Web platform. The
definition of these services enables to use them later on in the
rule specification. A ServiceOperation is defined by its name
and relative location to the Services folder of the Angular
implementation. A ServiceOperation can contain interfaces
to functions. ServiceOperation(s) are helpful to specify UI
changes that affect bigger parts or a group of UI elements.
For this purpose, ServiceOperation has a subclass SetDis-
playProperty which takes a DisplayProperty object as input
and enables a group of changes in the UI. As an example,
AdaptML comes up with a predefined SetLanguageOpera-
tion which supports internationalization of the UI language.
Therefore, each text on the UI is represented by a language
key which is automatically set to the detected language on
the used device.

A set of exemplary UI adaptation rules based on AdaptML
are shown in Fig. 11.

The first UI adaptation rule specifies a TaskChangeOper-
ation based on user’s mood. If a “sad” mood is detected
through the face detection API, a “helpEvent” is added
through the AddIFMLElementOperation to provide, for

3 https://angular.io.

Fig. 11 Exemplary UI adaptation rules based on AdaptML

instance, a textual help for the user. In the second adaptation
rule, a LayoutChangeOperation based on the environmental
light condition is specified.When the light condition is under
a certain threshold value, the contrast of the UI is increased
through the adaptCSSClass operation. Similarly, the third
adaptation rule specifies a LayoutChangeOperation based
on user’s experience, while the fourth rule encodes aModal-
ityChangeOperation to trigger a switch into the vocal UI if
a movement is detected. Finally, a language adaptation is
shown in the last adaptation rule where the UI language is
switched based on the user’s currently used language using
the ServiceOperation.

In summary, AdaptML supports integrated modeling and
maintenance of UI adaptation rules complementary to the
core UI and context model. For this purpose, it enables the
specification of different adaptation techniques which can be
combined to reach complex means of UI adaptations.

3.4 Integratedmodeling workbench

For supporting themodeling taskof self-adaptiveUIs through
an adequate tooling, we have developed an integrated mod-
eling environment in terms of an Eclipse plugin. Figure 12
shows a screenshot from our modeling workbench which
provides three separated modeling views for the essential
concerns UI modeling, context modeling, and adaptation
modeling. The UI modeling view (left side of Fig. 12) is
based on the open source IFML editor Eclipse plugin4 which
is integrated into our modeling workbench to support the

4 https://ifml.github.io.

123

https://angular.io
https://ifml.github.io

Integrated model-driven development of self-adaptive user interfaces 1069

Fig. 12 Integrated modeling workbench for self-adaptive UIs

specification of core UI aspects as described in the previous
Sect. 3.1. The context modeling view based onContextML is
depicted in the middle of the screenshot and allows the spec-
ification of various context-of-use situations as presented in
Sect. 3.2. Finally, the adaptation modeling view based on
AdaptML is shown in the right side of the screenshot and
supports the specification of UI adaptation rules as described
in Sect. 3.3.

4 Integrated transformation and execution
environment

In order to support the utilization of our modeling and devel-
opment approach for devising self-adaptive UIs for different
target platforms like mobile or desktop, we implemented a
code generator for self-adaptive UIs (SAUI-Generator). Fig-
ure 13 shows the overall architecture of the SAUI-Generator.

It consists of a main generator,Generator Core, and three
subgeneratorsUIGenerator,Context ServiceGenerator, and
Adaptation Service Generator. The Generator Core gets as
input the IFML and Domain Model as well as the Con-
text and Adaptation Model which were specified based on
the presented integrated modeling workbench. The mod-
els are then delegated to the corresponding subgenerators.
Based on the IFML and Domain Model, the subgenerator

Fig. 13 Architecture of the self-adaptive user interface generator

UI Generator automatically creates the Final UI as Angu-
lar Components and UI Views. Furthermore, based on the
specified Context and Adaptation Model, the Context and

123

1070 E. Yigitbas et al.

<<component>>
ContextServiceGenerator

<<component>>
ContextControllerGenerator

<<component>>
ContextProvidersGenerator

<<component>>
ContextProfileGenerator

<<component>>
ContextProviderGenerator

<<component>>
ContextTypesGenerator

<<component>>
ContextTypeGenerator

<<component>>
ContextEntityGenerator

Controller DefTypes

DefType

Providers

Provider

Profile

Entity

Fig. 14 Component diagram of Context Service Generator

Adaptation Services are generated, respectively. The gener-
ated services are injected into the Component element of
the Final UI by using the Angular Injector5 technique. The
main idea of the generation process relies on the idea of
model-to-text (M2T) transformations. As the generation of
the Final UIs is a common task in existing model-driven UI
development approaches (see, for example, [37]), in the fol-
lowing, we focus on and describe the implementation of the
generation process responsible for automatically creating the
Context andAdaptation Services. The interplay of those gen-
erated services within the execution environment is essential
to support UI adaptation at runtime.

4.1 Context service generation and context
monitoring at runtime

To address the challenges C2 and C3 from the Introduction
section, we describe the process of generating Context Ser-
vices represented as Angular code in the form of Typescript.
The Context ServiceGenerator gets as input the previously
mentioned Context Model which is based on ContextML.
The structure of the Context Service Generator is shown in
Fig. 14. It has a main generator that splits the generation into
four kinds of files that will be generated: ContextController-
Generator, ContextProvidersGenerator, ContextTypesGen-
erator, and ContextProfileGenerator. Our Context Service
Generator is a template-based code generator that is imple-
mented with Xtend.6

First, the ContextServiceGenerator invokes the Con-
textControllerGenerator which generates the main Angular
service that connects and controls all the other parts. The gen-
erated Context Controller contains subscriptions to context
properties,which push changeddata automatically to the sub-
scriber based on the RxJS observer pattern.7 Furthermore, it

5 https://angular.io/api/core/Injector.
6 http://www.eclipse.org/xtend/.
7 https://github.com/Reactive-Extensions/RxJS.

contains timers for the properties which are not updated in
an event-based manner.

The ContextProvidersGenerator invokes the
ContextProviderGenerator for each provider that is listed
in the Context Model. This creates a folder with all provider
files. Each file contains standard imports and usedDefTypes.
The business logic code for controlling andmanaging of sen-
sor sources like APIs or libraries has to be inserted manually.
This is due to the very individual structure of numerous inter-
faces. Those can be fairly easy to use, like standard HTML5
APIs,8 but can be individual and more complex as well, like
the Affectiva SDK for emotion recognition.

The ContextTypesGenerator invokes similar to the Con-
textProvidersGenerator the ContextTypeGenerator for each
user-definedDefType. This creates a folderwith typefiles that
are imported by the providers. Each file contains the Enums
defined in the Context Model.

The last generator component is theContextProfileGener-
ator that creates a central context data profile file and invokes
the ContextEntityGenerator for each declared entity in the
Context Model. This creates a file for each entity which con-
tains all the defined properties and the corresponding getter
and setter methods. The generated context service files are
injected into the Angular UI framework as modular compo-
nents.

An example for the generation of a Context Provider
is depicted in Fig. 23 (see “Appendix”). The code excerpt
depicted in Fig. 23 represents on the left side the Xtend tem-
plate for generating a specific context provider for capturing
the ambient light level through a sensor library. On the right
side of Fig. 23, the generated code for the AmbientLight
provider is illustrated. The code of the generated context
provider is responsible for monitoring the environmental
lighting condition at runtime by using the AmbientLightAPI.

At runtime, the generatedContext Serviceworks as a back-
ground service that can be used by anyWeb application based

8 https://www.w3.org/2009/dap/.

123

https://angular.io/api/core/Injector
http://www.eclipse.org/xtend/
https://github.com/Reactive-Extensions/RxJS
https://www.w3.org/2009/dap/

Integrated model-driven development of self-adaptive user interfaces 1071

SDK

Fig. 15 Overview on Context Service at runtime

on the Angular framework. A runtime system overview is
depicted in Fig. 15.

Dependingon the definedupdate types of the context prop-
erties, the Context Providers either access the information
event-based or triggered by the timer of the Context Con-
troller. Through the subjects of the observer pattern, newdata
are directly pushed to the subscriptions of the controller. At
the same time, the corresponding property is updated in the
Context Profile. Based on the provided context information
data through the Context Service, an Adaptation Service is
able to dynamically monitor context information and adapt
the Final UI.

4.2 Adaptation service generation and runtime UI
adaptation

For addressing the challenges C5 and C6 from the Intro-
duction section, we describe the generation process of an
Adaptation Service and how it is utilized at runtime to
support UI adaptation. The goal of the Adaptation Service
Generator is the automated creation of an Angular service
that allows UI adaptation at runtime. The adaptations to
the UI are expressed, as previously introduced, in a rule-
based form using AdaptML. Based on this input file, the
Adaptation Service Generator generates an Angular service
containing the JavaScript rule engine Nools.9 Nools is an
efficient RETE-based rule engine written in JavaScript and
provides an API for specifying facts and rules. The Adap-
tation Service Generator, which is synonymously called as
NoolsServiceGenerator in this work due to the name of the
used rule engine, is implemented with Xtend and receives
the UI adaptation rules as input. Structurally, as shown in
Fig. 16, it consists of the components NoolsServiceGener-
ator, NoolsRuleGenerator, NoolsConditionGenerator, and
NoolsActionGenerator. These components are responsible
for creating an injectable Angular service for monitoring the
context model and executing adaptation operations.

The base structure of the Angular service, generated by
theNoolsServiceGenerator, consists of the required Angular
imports, the class declaration of the service and the imple-

9 http://noolsjs.com/.

Fig. 16 Structure of the adaptation service generator

mentation of the Nools flow. The flow is composed of all
the rules defined in the abstract UI adaptation rules based
on AdaptML. For each rule, it is defined under which con-
ditions the rule actions are executed. The generation of the
individual rules is delegated to the NoolsRuleGenerator. For
each adaptation rule, the name of the Adaptation Service is
the name of the abstract UI adaptation rule. The salience of
the rule is the priority level of the rule and corresponds to the
level defined in the AdaptML rule specification. The gener-
ation of the conditions and adaptation operations of the rule
is delegated to the NoolsConditionGenerator and the Nool-
sActionGenerator, respectively.

The NoolsConditionGenerator is responsible for creat-
ing the rule conditions. All child elements of the conditions
element are combinedwith the OR-operator. If there is a con-
ditionGroup element (see Fig. 10), all child elements of the
conditionGroup are combined with the AND-operator. The
result is a string of concatenated conditions with operators.
Likewise, to generate the actions that the rule should execute
when the conditions are satisfied, the NoolsActionGenerator
is called with the actions element as parameter. Addition-
ally, the NoolsActionGenerator gets as input parameter the
mapping of services and functions defined in the abstract UI
adaptation rule specification. However, there is a defined set
of actions. If the action element is unknown, no code is cre-
ated. This means, if there are new possible actions added to

123

http://noolsjs.com/

1072 E. Yigitbas et al.

the schema definition, they also need to be implemented in
the NoolsActionGenerator.

An example for the generation of a Nools Adaptation Ser-
vice is depicted in Fig. 24 (see “Appendix”). The code excerpt
depicted in Fig. 24 represents on the left side the Xtend tem-
plate for generating a Nools Adaptation Service. On the right
side of Fig. 24, the generated code for the Nools Adapta-
tion Service is illustrated, which is at runtime responsible for
executing the UI adaptations.

Considering the runtime perspective, we have the compo-
nentsAdaptation Service,Final UI, andContext Service. The
Final UI is generated by the subgenerator UI Generator. Its
Angular UI View consists of an HTML template, which is
used to render the UI in the browser and an Angular Compo-
nent, which is implemented in TypeScript and manages the
UI View. Likewise, the Adaptation Service is generated as
Angular service and is also implemented in TypeScript. As
described in the earlier section, the Adaptation Service uses
Nools, a JavaScript-based rule engine, for monitoring the
context information provided by the Context Service. Simi-
lar to the context service generation approach, theAdaptation
Service generation approach uses code injection to integrate
the generated Nools Adaptation Services into the Nools rule
engine. The Nools rule engine again was integrated into our
Angular UI framework architecture to realize UI adaptation
capabilities for the Final UI.

At runtime, the Adaptation Service monitors the context
information and executes the adaptation rules whose condi-
tions are satisfied. To adapt theUI View elements of the Final
UI on instance level, JQuery10 is used to directly manipulate
the DOM tree of the UI View. Changes only affect the cur-
rent UI View element and do not persist in other UI views.
When changing the schema for a group of UI View elements
in the Display Properties, the adaptation affects the proper-
ties of all UI View elements of this type. This also includes
instances of this UI View element type on subsequently vis-
ited UI Views. This is done by binding the layout class of the
UI View elements of this type, represented by CSS classes,
to the properties stored within the Display Properties.

5 Evaluation

In this section, we demonstrate potentials and limits of
our integrated model-driven engineering approach for self-
adaptive user interfaces on the basis of two case studies and
a usability evaluation study. The first case study, presented
in 5.1, deals with a cross-device library Web application for
which we devised self-adaptive UIs. The second case study
deals with an e-mail client application with UI adaptation
capabilities and is described in Sect. 5.2. Moreover, based on

10 https://jquery.com.

the last application scenario, we have conducted a usability
experiment to evaluate end-user satisfaction of UI adapta-
tion features. Main results of this usability evaluation are
presented in Sect. 5.3. Finally, a discussion of themain poten-
tials and limits of our engineering approach as well regarding
the usability evaluation is presented in 5.4.

5.1 Library application with self-adaptive UI

The case study setting is based on an example scenario which
is derived from the university library management domain
(see Fig. 17). The scenario setting is a libraryWeb application
for universities which is called “LibSoft.”

LibSoft provides core library management functional-
ity like searching, reserving, and lending books. LibSoft’s
UI can be accessed by heterogeneous users and user roles
(like student or staff member) through a broad range of
networked interaction devices (e.g., smartphones, tablets,
terminals, etc.) which are used in various environmental
contexts (e.g., brightness, loudness, while moving, etc.).
Depending on the situation, users are able to access their
library services where, when, and how it suits them best.
For example, if the user wants to pursue a self-determined
cross-channel book lending process, she/he can begin an
interaction using one channel (search and reserve a book
with her laptop at home), modify the book reservation on her
way using a mobile channel, and finalize the book lending
process at the university library via self-checkout terminal
or at the staff desk. In the above-described example sce-
nario, each channel has its own special context-of-use and
eventually, the contextual parameters regarding user, plat-
form, and environment can dynamically change. Figure 18
shows a concrete context-of-use (CoU) change fromCoU2 to
CoU4 (compare Fig. 17). The depicted context-of-use object
model excerpts in Fig. 18 illustrate how different contex-
tual parameters regarding user, platform, and environment
change. Already a small set of contextual parameters can
highly influence the usability of theUI as lots of context situa-
tions can occur if the context-of-use parameters dynamically
change. Therefore, it is important to continuously monitor
the context-of-use parameters and react to possible changes
by automatically adapting the UI for the new context-of-use
situation.

For utilizing our integrated model-driven development
approach in the case study setting, an IFMLModel, aDomain
Model, aContext Model, and an Adaptation Model with a set
of UI adaptation rules were created as described in Sect. 3.
Using our SAUI-Generator, the specified models were trans-
formed to final user interfaces including the generated code
for context and adaptation services.

Exemplary screenshots of the resulting self-adaptive UI
are depicted in Fig. 19. According to the monitored context
information for CoU2, the layout for the UI is optimized for

123

https://jquery.com

Integrated model-driven development of self-adaptive user interfaces 1073

Fig. 17 Example scenario: UIs in dynamically changing context-of-use situations

Fig. 18 Library application: context-of-use object model excerpts

Fig. 19 Library application: UI adaptations according to different contexts-of-use

123

1074 E. Yigitbas et al.

a mobile device used in a darker environment, because the
user John is editing his book reservation while travelling to
the library, and it is already quite dark outside (see left side
of Fig. 19). Also, the UI is adapted to the user properties by
enabling access to the functions and navigation available to
students. The UI language is set to English as it is preferred
by John. As John is recognized as an experienced user with
the application (based on his usage time), he gets extended
functionalities, like a more complex search and filter mecha-
nism for the list view of the books.When the context changes
from CoU2 to CoU4, the generated self-adaptive UI adapts
itself automatically to the new contextual parameters. In this
case, the staffmembers viewon a desktop devicewith awider
and brighter layout is shown, displaying the list of reserved
books, because in CoU4, a staff member, Ada Roe, uses her
desktop computer to issue the book to John. Additionally, to
the functionalities and functions available to staff members,
Ada is provided with a link to the administration interface,
because she is granted access to the administration interface.
The UI language is set to German, and the search and fil-
ter mechanisms of the list are simplified, because she just
started using LibSoft and is, therefore, not yet experienced
with the application. As the location is a well-lit library, the
default brightness level is shown on the screen of the desktop
computer.

The case study demonstrates the benefit of our approach
for supporting thedevelopment of self-adaptiveUIs.Byusing
our integrated modeling workbench and the corresponding
SAUI-Generator, we were able to model and generate self-
adaptive UIs. To sum up, our solution approach addresses the
introduced challenges C1–C6 as it provides a systematic and
integrated way for developing self-adaptive UIs.

5.2 E-mail application with self-adaptive UI

E-mail applications are one of the most recurrently used
applications on mobile devices. People read and write mails
while commuting to work, before going to sleep, walking
or watching TV, or doing different other activities. As vari-
ous dynamically changing context-of-use situations are faced
when using such an e-mail application,we decided to develop
an e-mail application with UI adaptation capabilities. There-
fore, we used again our integrated modeling environment
for specifying the UI, context, and adaptation concerns. The
specified input models were given as input to our SAUI-
Generator to generate the views, context, and adaptation
services for the self-adaptive UI of the e-mail application.

Figure 20 depicts an exemplary sequence of context
changes and how the UI of the e-mail application adapts to
the changed context in each case.

Each state is a pair of the self-adaptive UI, depicted as a
screenshot of the e-mail application, and the current context
as experienced by the user. For our simplified example, the

Fig. 20 E-mail application: UI adaptations according to different con-
text changes

context is reduced to three components: (i) if the user is on
the move, in a moving vehicle, or immobile (and probably
at home), (ii) if the brightness level (ambientLight) is high
(sunny), low (cloudy), or very low (nighttime), and finally,
(iii) if the user is a novice or experienced user, based on a
threshold value of usage time.

The first state (left upper corner in Fig. 20) represents a
novice user on the move and experiencing high brightness
levels (ambient light). The corresponding self-adaptive UI
recognizes the context properties movement and ambient-
Light and uses a grid layout to simplify haptic interaction.
Figure 21 shows exactly this changeCoU1 toCoU2 (compare
Fig. 20) using an object diagram. The depicted context-of-
use object model excerpt in Fig. 21 illustrates how different
contextual parameters regarding user, platform, and environ-
ment change.

In response to the context change (depicted in Fig. 20 as
labeled arrows—in this case with Label 1) leading to a state
where the user is now in amoving vehicle, the UI switches its
modality to audio-based interaction, offering to read new e-
mails aloud and enabling control of the application via audio
commands. When the user is immobile for some time (and
can be assumed to be seated in a building—see Label 2), the
UI responds by reverting to standard haptic-based modality
and additionally uses a list of icons instead of a grid for more
efficient screen space usage. The next two context changes

123

Integrated model-driven development of self-adaptive user interfaces 1075

Fig. 21 E-mail application: context-of-use object model excerpts

(Label 3 and 4) represent changes in brightness level to low
brightness and nighttime. The UI responds to low brightness
levels by dimming the screen and using sepia tones instead of
white/black and to nighttime by inverting the color scheme.
The final context change (Label 5) is triggered when the user
passes a certain usage-time threshold. The UI assumes that
the user must now be accustomed enough to the icons and
saves screen space by removing the explanatory labels for
each icon.

As the second case study illustrates, the integrated model-
ing environment and the implementedSAUI-Generator allow
the modeling and transformation of self-adaptive UIs. The
identified context changes and the UI adaptations in action
demonstrate that the generated self-adaptive UIs are able
to continuously monitor their context-of-use parameters and
automatically adapt the UI at runtime.

5.3 Usability evaluation

With regard to self-adaptive user interfaces, usability eval-
uation of specific UI adaptations is still a challenging task,
especially in the ubiquitous domain of mobile UI platforms,
where dynamically changing context-of-use situations are
usual. In the past, classical usability evaluation methods like
usability tests, interviews, or cognitive walk-throughs were
applied to evaluate the usability of self-adaptive UIs [33].
However, these methods are not sufficient for a proper eval-
uation of dynamically changing UI adaptation features at
runtime. The reason is that these methods mostly focus on a
posteriori analysis techniques. However, the acceptance of
each UI adaptation feature should be evaluated at the very
moment and in context-of-use when the adaptation is trig-
gered at runtime. To address this issue, in our previous work
[36], we introduced an on-the-fly (OTF) usability evalua-
tion approach that integrates UI adaptation features and a
user feedback mechanism into a mobile app. The developed
solution enables us to continuously track various context
information data and collect user feedback, e.g., whether

Fig. 22 Feedback prompts

the users like or dislike the triggered UI adaptations. Fig-
ure 22 illustrates how we integrated a feedback prompt into
the adaptive e-mail app from the last described application
scenario.

The left screenshot in Fig. 22 shows how the feedback
prompt was placed in the mail app. On the top of the screen,
the feedback prompt is shown whenever context changes
were detected that lead to UI adaptations. The triggered UI
adaptations are explained in the feedback prompt, and the
user is able to provide feedback by clicking the positive or
negative smiley indicatingwhether the user liked theUI adap-
tation or not. In some cases, for example, when the user is in
a sad mood and the app detects this via camera, a feedback
prompt in the form of a text field appears (see right screen-
shot in Fig. 22) that allows the users to provide more detailed
feedback.

During the usability experiment, the developed app was
used for one week by 23 participants. All users were made
aware of the fact that their interaction with the app would

123

1076 E. Yigitbas et al.

be closely monitored (e.g., using facial recognition). During
the usability experiment, various data about the users and
their usage context, while feedbackwas given, have been col-
lected to evaluate the usability of the UI adaptation features
in detail. In the following, we shortly describe some of the
collected data to show the potential of our usability evalua-
tion solution. During the conduction of the experiment, there
were 104404 detected context changes from all devices. Of
these, only 37465 triggered an adaptation by the rule engine.
However, users gave feedback on the adaptation rules in only
663 cases. Every time an adaptation rule received feedback,
the previous context additionally to the current context was
saved. In total, the users gave positive feedback in 616 cases
and negative feedback in 47 cases. With about 93% of the
feedback provided by users being positive, this means that
most of the user interface adaptations were liked by the users.
To gain a deeper insight into the usability experiment and a
fine-grained data-driven analysis of the usability evaluation,
the interested reader may refer to our work [35].

5.4 Potentials and limits

Considering the presented case studies above, we observed
that our introduced domain-specific languages ContextML
and AdaptML are a suitable complement to OMG’s UI mod-
eling language IFML to specify context management and UI
adaptation concerns. Particularly, the separation of different
modeling views for UI, context, and adaptation eases the
modeling of self-adaptive UIs and also supports the main-
tenance of evolving context and adaptation models. As the
presented case studies are showing, our integrated develop-
ment approach allows the generation of self-adaptive UIs
that can have quite complex UI adaptation features. In this
regard, we have to point out that our approach is not support-
ing the analysis and resolution of conflicting UI adaptation
rules. Although we have introduced priority levels to deter-
mine the execution order of UI adaptation rules, still it is a
complex and error-prone task to manually specify a sound
set of UI adaptations. Furthermore, our approach is focusing
on the generation of view, context, and adaptation aspects,
while the generation of application logic is out of scope.

Regarding the usability evaluation results, we can sum
up that most of the triggered UI adaptation features were
positively rated. Although this is a positive indicator for the
resulting self-adaptive UIs, it should be noticed that users
can ignore feedback questions in our usability experiment
setup and that the absence of explicit user feedback should
not be interpreted as a positive result for end-user satisfaction
in general. While collecting context information, also issues
regarding data privacy can arise and should be considered.On
the one hand, a fine-grained way of collecting explicit instant
user feedback can annoy the users and result in an intrusive
evaluation method [35]. On the other hand, the collection of

instant user feedback can be used to further optimizeUI adap-
tations through machine learning techniques. This way, log
data (context information, previous adaptations) and instant
user feedback can be combined and analyzed to learn the
most suitable adaptations for future context situations.

6 Related work

Recent research provides various approaches that support
the model-based andmodel-driven development of UIs, their
context management, and adaptations. In the following, rele-
vant approaches are described and compared to our integrated
model-driven engineering approach for self-adaptive UIs.

6.1 Model-driven UI development

Model-based and model-driven development approaches
have been discussed in the past for various individual aspects
of a software system and for different application domains.
This applies to the development of the data management
layer, the application layer, or the user interface layer. The
CAMELEON Reference Framework (CRF) [8] provides a
unified framework for model-based and model-driven devel-
opment of UIs. UIs are represented in CRF on the following
levels of abstraction: Tasks and Domain Models, Abstract
User Interface (AUI) Model, Concrete User Interface (CUI)
Model, and Final User Interface (FUI). UsiXML [22],
MARIA [29], and IFML [6] are widely studied approaches
for model-driven UI development which were applied in var-
ious domains. However, these approaches do not explicitly
cover the specification and integration of context manage-
ment as well as UI adaptation aspects in the development
process by providing a context and adaptation model which
enable the generation of context and adaptation services for
supporting runtime UI adaptation.

6.2 Context management

Various approaches in the area of context-aware computing
were presented in the past years to deal with the topic of
context management. An important architecture for building
context-aware applications was already presented by Dey
et al. [10]. They developed a context toolkit that enables
rapid prototyping of context-aware applications. The archi-
tecture of their context toolkit consists of sensors to collect
context information, widgets to encapsulate the contextual
information and provide methods to access the information,
as well as interpreters to transform the context information
into high-level formats that are easier to handle. Beside this
approach, various other frameworks like WildCAT [12] or
JCAF [4] were introduced to support the development of
context-aware applications. Both, WildCAT and JCAF are

123

Integrated model-driven development of self-adaptive user interfaces 1077

frameworks based on the programming language Java and
they support context management by allowing the definition
of a dynamic data model to represent the execution context
for several application domains. In addition, they offer a pro-
gramming interface to discover, interpret, and monitor the
events occurring in an execution context and record every
change occurring in the context model. A systematic and
methodological approach for developing context-aware sys-
tems is presented in [19]. In this paper, the authors present
a model-based approach that addresses the development of
context-aware applications from both the theoretical and
practical perspectives.

While the before mentioned approaches consider con-
text management for a broad spectrum of applications areas,
there are also specific approaches that deal with context
management and context modeling specifically for support-
ing the adaptation of user interfaces of interactive systems.
One holistic approach in this direction is the conceptual
framework named TriPlet [23]. TriPlet contains a context-
aware metamodel (CAM) that defines concepts required to
implement and run a context-aware user interface. Context
modeling and context awareness-related approaches were
also applied in the mobile context. In [15], for example,
the authors present a sensor-driven software framework for
rapid prototyping of mobile applications. Closely related
to our work is also the approach [30], where the authors
deal with the topic of context-aware self-adaptation. They
present a model-driven engineering approach to generate
context-aware self-adaptation mechanisms. Our approach
relies on and extends existing model-driven context man-
agement approaches by supporting the automatic generation
of context services to monitor and detect context information
changes.

6.3 User interface adaptation

In recent research, adaptive or self-adaptive UIs have been
promoted as a solution for context variability due to their abil-
ity to automatically adapt to the context-of-use at runtime [2].
A key goal behind self-adaptive UIs is plasticity denoting
a UI’s ability to preserve its usability despite dynami-
cally changing context-of-use parameters [9]. In practice,
especially in the context of Web design, the paradigm of
Responsive Web Design (RWB) is widely used to adapt the
layout of a Web page in response to the characteristics of the
used device. While RWB adaptation rules are mainly focus-
ing on the contextual parameterPlatform, considering device
characteristics like screen size or resolution, our approach
also focuses on the contextual parametersUser and Environ-
ment allowing the specification of advanced adaptation rules
and automatic adaptation to complex context-of-use situa-
tions.

In [32], the authors present a hierarchy of adaptability
properties for software systems, referred to as self-* prop-
erties. Based on this work, the authors present in [2] how
some of these properties are applicable to the domain of self-
adaptive UIs. Similar to the idea that self-* properties of
self-adaptive software systems canbe applied to self-adaptive
UIs, it is possible that general reference architectures for self-
adaptive systems can be also applied to self-adaptive UIs.
The MAPE-K loop, which was used in our approach, was
created by IBM as a reference model for autonomic com-
puting [18]. MAPE-K considers software systems as a set
of managed resources that is adapted by an adaptation man-
ager which consists of the components Monitor, Analyze,
Plan, Execute, and Knowledge. Similar reference architec-
tures for self-adaptive systems are Rainbow [14] and the
Three-Layer Architecture [20]. Beside these general archi-
tectures for self-adaptive systems, there are also specific
reference architectures for adaptive UIs like CAMELEON-
RT [5], CEDAR [1], or FAME [11]. Furthermore, different
approaches like Supple [16], MASP [13], MyUI [27], or
RBUIS [3] present methods, techniques, and tools for sup-
porting the development of adaptive UIs. However, these
approaches do not focus on the generation of context and
UI adaptation services in an integrated manner.

On the intersection of MDUID and UI adaptation, sev-
eral transformation-based approaches like [21] or [31] were
proposed that make use of adaptation rules based on a con-
text model to adapt UIs. There are also other approaches
using different techniques to adapt UIs, like [17] which
uses machine learning or [7] where a genetic algorithm is
used to calculate a well-suited UI adaptation. Compared to
these approaches, our integrated model-driven development
approach for self-adaptive UIs provides dedicated modeling
languages for context and adaptation modeling and supports
the generation of context and adaptation services enabling
runtime UI adaptation.

7 Conclusion and outlook

In this paper, we present an integrated model-driven devel-
opment approach for self-adaptive UIs based on a classical
model-driven development of UIs which is enhanced and
coupled with a complementary model-driven development
of context-of-use and UI adaptation rules. Based on OMG’s
core UI modeling language IFML, we propose new model-
ing languages for context management and UI adaptation,
the languages ContextML and AdaptML, respectively. We
present how generated UI code is coupled with context and
adaptation services generated fromContextML andAdaptML
models and integrated in an overall UI execution environ-
ment. This allows runtime UI adaptation realized by an
automatic reaction to dynamically changing context-of-use

123

1078 E. Yigitbas et al.

parameters like user profile, platform, and usage environ-
ment. We demonstrate the benefit of our approach by two
case studies, showing the development of self-adaptive UIs
for a university library and an e-mail application. Further-
more, we report on a usability evaluation study which has
been conducted to analyze the end-user satisfaction of self-
adaptive UIs. Main results of the usability evaluation show
that the generated self-adaptive UIs based on our integrated
model-driven development approach are mostly accepted by
the end-users.

In ongoing research, we investigate the application of
quality assurance techniques to our presented model-driven
UI adaptation approach, which enable the provisioning
of hard guarantees concerning self-adaptive characteristics
such as adaptation rule set stability and deadlock freedom.
Furthermore, we plan to enhance our proposed UI self-
adaptation loop through the implementation of a knowledge
component. In this context, it is conceivable to apply learning
algorithms based on the user’s assessment of executed adap-

tation operations to further improve UI adaptations. Further
research will cover the development and application of self-
adaptive UIs for various other domains.

Acknowledgements OpenAccess funding provided by Projekt DEAL.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, youwill need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

Code examples

See Figs. 23 and 24.

Fig. 23 Xtend template excerpt for ContextProviderGenerator and its generated code

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

Integrated model-driven development of self-adaptive user interfaces 1079

Fig. 24 Xtend template excerpt for NoolsServiceGenerator and its generated code

References

1. Akiki, P.A., Bandara, A.K., Yu, U.: Using interpreted runtimemod-
els for devising adaptive user interfaces of enterprise applications.
In: ICEIS 2012—Proceedings of the 14th International Confer-
ence on Enterprise Information Systems, vol. 3, Wroclaw, Poland,
28 June–1 July, 2012, pp. 72–77 (2012)

2. Akiki, P.A., Bandara, A.K., Yu, Y.: Adaptive model-driven user
interface development systems. ACM Comput. Surv. 47(1), 9:1–
9:33 (2014)

3. Akiki, P.A., Bandara, A.K., Yijun, Y.: Engineering adaptivemodel-
driven user interfaces. IEEE Trans. Softw. Eng. 42(12), 1118–1147
(2016)

4. Bardram, J.E.: The java context awareness framework (JCAF)—a
service infrastructure and programming framework for context-
aware applications. In: Proceedings of the Third International
Conference on Pervasive Computing, PERVASIVE’05, pp. 98–
115. Springer, Berlin (2005)

5. Balme, L., Demeure, A., Barralon, N., Coutaz, J., Calvary, G.:
CAMELEON-RT: a software architecture reference model for
distributed, migratable, and plastic user interfaces. In: Ambient
Intelligence: Second European Symposium, EUSAI 2004, Eind-
hoven, The Netherlands, November 8–11, 2004. Proceedings, pp.
291–302 (2004)

6. Brambilla, M., Fraternali, P.: Interaction Flow Modeling
Language—Model-Driven UI Engineering of Web and Mobile
Apps with IFML. The MK/OMG Press (2014)

7. Blouin, A.,Morin, B., Beaudoux, O., Nain, G., Albers, P., Jézéquel,
J.M.: Combining aspect-oriented modeling with property-based

reasoning to improve user interface adaptation. In: Proceedings
of the 3rd ACM SIGCHI Symposium on Engineering Interactive
Computing System, EICS 2011, Pisa, Italy, June 13–16, 2011, pp.
85–94 (2011)

8. Calvary, G., Coutaz, J., Thevenin, D., Limbourg, Q., Bouillon, L.,
Vanderdonckt, J.: A unifying reference framework for multi-target
user interfaces. Interact. Comput. 15(3), 289–308 (2003)

9. Coutaz, J.: User interface plasticity: model driven engineering to
the limit! In: Proceedings of the 2nd ACM SIGCHI Symposium
on Engineering Interactive Computing System, EICS 2010, Berlin,
Germany, June 19–23, 2010, pp. 1–8 (2010)

10. Dey,A.K., Abowd,G.D., Salber, D.: A conceptual framework and a
toolkit for supporting the rapid prototyping of context-aware appli-
cations. Hum. Comput. Interact. 16(2), 97–166 (2001)

11. Duarte, C., Carriço, L.: A conceptual framework for develop-
ing adaptive multimodal applications. In: Proceedings of the 11th
International Conference on Intelligent User Interfaces, IUI 2006,
Sydney, Australia, January 29–February 1, 2006, pp. 132–139
(2006)

12. David, P.C., Ledoux, T.: WildCAT: a generic framework for
context-aware applications. In: The 3rd International Workshop
on Middleware for Pervasive and Ad-Hoc Computing, pp. 1–7.
Pub.acm, Grenoble (2005)

13. Feuerstack, S., Blumendorf, M., Albayrak, S.: Bridging the gap
between model and design of user interfaces. In: Informatik 2006–
Informatik für Menschen, Band 2, Beiträge der 36. Jahrestagung
der Gesellschaft für Informatik e.V. (GI), 2.-6. Oktober 2006 in
Dresden, pp. 131–137 (2006)

123

1080 E. Yigitbas et al.

14. Garlan, D., Cheng, S.-W., Huang, A.-C., Schmerl, B.R., Steenkiste,
P.: Rainbow: architecture-based self-adaptation with reusable
infrastructure. IEEE Comput. 37(10), 46–54 (2004)

15. Gamecho, B., Gardeazabal, L., Abascal, J.: A sensor-driven
framework for rapid prototyping of mobile applications using a
context-aware approach. In: Ubiquitous Computing and Ambi-
ent Intelligence—10th International Conference, UCAmI 2016,
San Bartolomé de Tirajana, Gran Canaria, Spain, November 29–
December 2, 2016, Proceedings, Part I, pp. 469–480 (2016)

16. Gajos,K.Z.,Weld,D.S.,Wobbrock, J.O.:Automatically generating
personalized user interfaces with supple. Artif. Intell. 174(12–13),
910–950 (2010)

17. Hariri, A., Tabary, D., Lepreux, S., Kolski, C.: Context aware busi-
ness adaptation toward userinterface adaptation. Commun. SIWN
3, 46–52 (2008)

18. IBM.: An architectural blueprint for autonomic computing. Tech-
nical report. IBM (2005)

19. Jaouadi, I., Djemaa, R.B., Ben-Abdallah, H.: A model-driven
development approach for context-aware systems. Softw. Syst.
Model. 17(4), 1169–1195 (2018)

20. Kramer, J.,Magee, J.: Self-managed systems: an architectural chal-
lenge. In: International Conference on Software Engineering, ISCE
2007, Workshop on the Future of Software Engineering, FOSE
2007, May 23–25, 2007, Minneapolis, MN, USA, pp. 259–268
(2007)

21. López-Jaquero, V., Montero, F., González, P.: T:XML: a tool sup-
porting user interface model transformation. In: Hussmann, H.,
Meixner, G., Zuehlke, D. (eds.) Model–Driven Development of
Advanced User Interfaces. Studies in Computational Intelligence,
vol. 340. Springer, Berlin, Heidelberg (2011)

22. Limbourg,Q.,Vanderdonckt, J.:USIXML: a user interface descrip-
tion language supporting multiple levels of independence. In:
Engineering Advanced Web Applications: Proceedings of Work-
shops in connection with the 4th International Conference on Web
Engineering (ICWE 2004), Munich, Germany, 28–30 July, 2004,
pp. 325–338 (2004)

23. Motti, V.G., Vanderdonckt, J.: A computational framework for
context-aware adaptation of user interfaces. In: IEEE 7th Interna-
tional Conference on Research Challenges in Information Science,
RCIS 2013, Paris, France, May 29–31, 2013, pp. 1–12 (2013)

24. Object Management Group (OMG).: Interaction Flow Modeling
Language (IFML) Specification, Version 1.0. OMG Document
Number formal/2015-02-05. https://www.omg.org/spec/IFML/1.
0/PDF (2015)

25. Object Management Group (OMG).: Unified Modeling Lan-
guage (UML) Specification, Version 2.5.1. OMG Document
Number formal/2017-12-05. https://www.omg.org/spec/UML/2.
5.1/PDF (2017)

26. Paternò, F.: User interface design adaptation. In: Soegaard, M.,
Dam, R.F. (eds.) The Encyclopedia of Human–Computer Interac-
tion, vol. 39, 2nd edn. Aarhus, Denmark (2013)

27. Peissner, M., Häbe, D., Janssen, D., Sellner, T.: Myui: generat-
ing accessible user interfaces from multimodal design patterns. In:
ACM SIGCHI Symposium on Engineering Interactive Computing
Systems, EICS’12, Copenhagen, Denmark, June 25–28, 2012, pp.
81–90 (2012)

28. Paternò, F., Santoro, C.: A logical framework for multi-device user
interfaces. In: ACM SIGCHI Symposium on Engineering Interac-
tive Computing Systems, EICS’12, Copenhagen, Denmark, June
25–28, 2012, pp. 45–50 (2012)

29. Paternò, F., Santoro, C., Spano, L.D.:MARIA: a universal, declara-
tive, multiple abstraction-level language for service-oriented appli-
cations in ubiquitous environments. ACM Trans. Comput. Hum.
Interact. 16(4), 19:1–19:30 (2009)

30. Ruiz-López, T., Rodríguez-Domínguez, C., Rodríguez-Fórtiz,
M.J., Ochoa, S.F., Garrido, J.L.: Context-aware self-adaptations:
from requirements specification to code generation. In: Ubiqui-
tous Computing and Ambient Intelligence. Context-Awareness
and Context-Driven Interaction—7th International Conference,
UCAmI 2013, Carrillo, Costa Rica, December 2–6, 2013, Proceed-
ings, pp. 46–53 (2013)

31. Sottet, J.S., Ganneau, V., Calvary, G., Coutaz, J., Demeure, A.,
Favre, J.M., Demumieux, R.: Model-driven adaptation for plas-
tic user interfaces. In:Human–Computer Interaction—INTERACT
2007, 11th IFIP TC 13 International Conference, Rio de Janeiro,
Brazil, September 10–14, 2007, Proceedings, Part I, pp. 397–410
(2007)

32. Salehie, M., Tahvildari, L.: Self-adaptive software: landscape and
research challenges. TAAS 4(2), 14:1–14:42 (2009)

33. vanVelsen, L et al.: User-centered evaluation of adaptive and adapt-
able systems: a literature review (2008)

34. Yigitbas, E., Grün, S., Sauer, S., Engels, G.: Model-driven context
management for self-adaptive user interfaces. In: Ubiquitous Com-
puting and Ambient Intelligence—11th International Conference,
UCAmI 2017, Philadelphia, PA, USA, November 7–10, 2017, Pro-
ceedings, pp. 624–635 (2017)

35. Yigitbas, E., Hottung, A., Rojas, S.M., Anjorin, A., Sauer, S.,
Engels, G.: Context- and data-driven satisfaction analysis of user
interface adaptations based on instant user feedback. PACMHCI 3,
19:1–19:20 (2019)

36. Yigitbas, E., Jovanovikj, I., Josifovska, K., Sauer, S., Engels,
G.: On-the-fly usability evaluation of mobile adaptive uis
through instant user feedback. In: Human–Computer Interaction—
INTERACT 2019—17th IFIP TC 13 International Conference,
Paphos, Cyprus, September 2–6, 2019, Proceedings, Part IV, pp.
563–567 (2019)

37. Yigitbas, E., Kern, T., Urban, P., Sauer, S.: Multi-device UI
development for task-continuous cross-channel web applications.
In: Current Trends in Web Engineering—ICWE 2016 Interna-
tional Workshops, DUI, TELERISE, SoWeMine, and Liquid Web,
Lugano, Switzerland, June 6–9, 2016, Revised Selected Papers, pp.
114–127 (2016)

38. Yigitbas, E., Sauer, S.: Engineering context-adaptive UIs for task-
continuous cross-channel applications. In: Human-Centered and
Error-Resilient Systems Development—IFIP WG 13.2/13.5 Joint
Working Conference 6th International Conference on Human-
Centered Software Engineering, HCSE 2016, and 8th International
Conference on Human Error, Safety, and System Development,
HESSD 2016 Stockholm, Sweden, August 29–31, 2016, Proceed-
ings, pp. 281–300 (2016)

39. Yigitbas, E., Stahl, H., Sauer, S., Engels, G.: Self-adaptive UIs:
integrated model-driven development of UIs and their adaptations.
In:Modelling Foundations andApplications—13thEuropeanCon-
ference, ECMFA 2017, Held as Part of STAF 2017, Marburg,
Germany, July 19–20, 2017, Proceedings, pp. 126–141 (2017)

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123

https://www.omg.org/spec/IFML/1.0/PDF
https://www.omg.org/spec/IFML/1.0/PDF
https://www.omg.org/spec/UML/2.5.1/PDF
https://www.omg.org/spec/UML/2.5.1/PDF

Integrated model-driven development of self-adaptive user interfaces 1081

Enes Yigitbas received his BSc
and MSc degrees in computer sci-
ence from the Paderborn Univer-
sity, in 2009 and 2012, respec-
tively. Currently, he is a researcher
in the Database and Information
Systems group at Paderborn Uni-
versity. His research interest cov-
ers model-driven engineering,
human-computer interaction, and
self-adaptive software systems.

Ivan Jovanovikj received his BSc
degree in computer science in
Skopje, North Macedonia, in
2011, and his MSc in computer
science from the Paderborn Uni-
versity in 2015. Currently, he is
a researcher in the Database and
Information Systems group at
Paderborn University. His research
interest covers model-driven engi-
neering, software testing, software
reengineering, and software
migration.

Kai Biermeier received his BSc
degree in computer science from
the Paderborn University in 2019.
Currently, he is pursuing his MSc
degree in computer science at the
Paderborn University and work-
ing as a student assistant in the
Database and Information
Systems group.

Stefan Sauer is Senior Researcher
in the Database and Information
Systems Group of the Computer
Science Department at Paderborn
University and Managing Director
of the Software Innovation Lab at
SICP-Software Innovation Cam-
pus Paderborn, a joint research,
knowledge, and technology trans-
fer center for software- and data-
driven innovation. He is also the
Manager of the Center of Com-
petence for Software Engineering
in SICP. His main research areas
are human-centered software

engineering, model-based and model-driven software development,
managed software evolution, and situational method engineering.

Gregor Engels holds the chair
of Database and Information Sys-
tems at Paderborn University since
1997. His research areas include
software engineering, focussing
on model-based software develop-
ment, human-centric computing,
architectural styles, domain-
specific modeling languages, and
situational method engineering.
Recently, his research work
became more inter- and transdis-
ciplinary, covering human aspects
in the usage of cyber-physical sys-
tems. He is also head of the Soft-

ware Innovation Campus Paderborn (SICP), a technology and knowl-
edge transfer institute at Paderborn University.

123

	Integrated model-driven development of self-adaptive user interfaces
	Abstract
	1 Introduction
	2 Conceptual solution
	3 Integrated modeling environment
	3.1 Integrated modeling environment
	3.2 Context modeling with ContextML
	3.3 Adaptation modeling with AdaptML
	3.4 Integrated modeling workbench

	4 Integrated transformation and execution environment
	4.1 Context service generation and context monitoring at runtime
	4.2 Adaptation service generation and runtime UI adaptation

	5 Evaluation
	5.1 Library application with self-adaptive UI
	5.2 E-mail application with self-adaptive UI
	5.3 Usability evaluation
	5.4 Potentials and limits

	6 Related work
	6.1 Model-driven UI development
	6.2 Context management
	6.3 User interface adaptation

	7 Conclusion and outlook
	Acknowledgements
	Code examples
	References

