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Abstract
We present transitive-closure-based model checking (TCMC): a symbolic representation of the semantics of computational
tree logic with fairness constraints (CTLFC) for finite models in first-order logic with transitive closure (FOLTC). TCMC
is an expression of the complete model checking problem for CTLFC as a set of constraints in FOLTC without induction,
iteration, or invariants. We implement TCMC in the Alloy Analyzer, showing how a transition system can be expressed
declaratively and concisely in the Alloy language. Since the total state space is rarely representable due to the state-space
explosion problem, we present scoped TCMC where the property is checked for state spaces of a size smaller than the total
state space. We address the problem of spurious instances and carefully describe the meaning of results from scoped TCMC
with respect to the complete model checking problem. Using case studies, we demonstrate scoped TCMC and compare it
with bounded model checking, highlighting how TCMC can check infinite paths.

Keywords Symbolic model checking · Alloy · Declarative models

1 Introduction

The process of model-driven engineering [31] promises
many benefits from the use of models early in the develop-
ment process; in general, the earlier that quality models are
created, the fewer errors there will be to discover later in the
process. A modelling language used early in the design pro-
cess must be able to express abstract concepts because of the
lack of details available at this point in the project. However,
if we wish to provide analysis support for these models to
increase their quality and utility, we must be able to express
the models precisely. Languages such as Alloy [19], B [1],
Z [18], TLA+ [36], and ASMs [3] have many features to
express abstract concepts (e.g. sets, relations, and functions)
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without sacrificing precision. Abstract behavioural models
are usually declarative, meaning that they describe a tran-
sition system using constraints rather than assignments to
variables, in addition to providing more abstract datatypes.

We are interested in the problem of analysing temporal
properties of declarative models of transition systems. In this
article, we will use as a running example the game of musical
chairs. This game is conveniently and concisely modelled
as sequences of transitions that modify a function mapping
chairs to the player who occupies the chair. In a declarative
model of this game, we can specify that in a step we want all
the chairs to be occupied without detailing all the possible
combinations of players occupying chairs. An example of a
temporal property that we want to verify is that eventually
there is a single winner to the game.

There has been a variety of work on verifying temporal
properties of declarative behavioural models. In TLA+ [36]
(with the TLC model checker), a user creates and checks
behavioural models for a subset of LTL properties using
explicit-state model checking. ProB [23] is a tool for
analysing finite B machines, in particular, simulation and
model checking against linear temporal logic (LTL) specifi-
cations using explicit-state model checking. Iterative (mean-
ing it involves multiple runs of the solver) symbolic model
checking algorithms (such as IC3 [4]) for checking B
machines are implemented in [22]. None of these approaches

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10270-019-00763-8&domain=pdf


722 S. Farheen et al.

use non-iterative symbolic model checking algorithms. A
non-iterative symbolic model checking algorithm is one
where one formula is constructed and evaluated per model
checking query, rather than producing multiple SAT/SMT
problems per query.

Del Castillo andWinter provided model checking support
for a transition system specified as an abstract state machine
(ASM) [3] via the translation of a class of ASMs to SMV by
restricting the range of functions to finite sets [10]. Chang
and Jackson added finite relations and functions to a tradi-
tional state-based specification of a transition system (i.e.
the SMV language [25]) and developed a BDD-based model
checker that analysed these models for computational tree
logic (CTL) specifications [5]. Translation-based approaches
usually unfold user-level abstractions and make understand-
ing models and counterexamples difficult.

Within the popular Alloy Analyzer toolset, it is fairly
straightforward to specify a transition relation and do
bounded model checking (BMC) [2]: create a formula that
describes a path for multiple steps to check bounded duration
temporal properties [20]. Electrum [24] and DynAlloy [15]
are extensions of Alloy to model transition systems. Elec-
trun does BMC for LTL properties, and DynAlloy checks
dynamic properties. Neither of these approaches work with-
out extensions to Alloy or allow us to check a full set of
temporal properties for the complete (unbounded) model
checking problem.

We seek a non-iterative symbolic model checking method
for a full set of temporal properties on a declarative model
without translation. If the state-space explosion problem
makes it impossible to represent the entire state space for
analysis, we would like to avoid spurious instances and have
a clear description of what the results from a smaller scope
mean for the complete state space.

Describing the traditional representation of the seman-
tics of a temporal logic with respect to a single transition
system and state within first-order logic (FOL) is not pos-
sible because of the need for quantification over paths (a
second-order operator). Thus, using constraint-based first-
order solvers for complete model checking has remained
elusive. Immerman and Vardi [17] encoded the semantics
of CTL and CTL* in first-order logic with transitive clo-
sure (FOLTC). Their semantics has the important property
that the use of transitive closure replaces the need for quan-
tification over the paths. Our first contribution (Sect. 3) is
an encoding of CTL with fairness constraints (CTLFC) in
FOLTC that is linear in the size of the model, which we call
transitive-closure-based model checking (TCMC). Immer-
man and Vardi’s encoding required an exponential increase
in the size of the model with respect to the size of the tem-
poral logic formula. TCMC is an expression of the complete
(unbounded)model checking problem for a transition system
with a finite-state space for CTLFC as a set of constraints in

FOLTC without induction, iteration, or invariants. Since the
constraints of a declarative model can be satisfied by multi-
ple transition system instances, TCMC can check that either
all transition systems that satisfy the constraints satisfy the
property (universal model checking) or that some instance
satisfies the property (existential model checking). Novel to
TCMC is that a counterexample is an instance of a transi-
tion system with a bug rather than a single counterexample
path. Our second contribution (Sect. 4) is to show that TCMC
can be implemented in the Alloy Analyzer, making it pos-
sible to do complete model checking of declarative models
of transition systems described in Alloy without translation.
The model checking problem is turned into a non-iterative
constraint solving problem. These first two of our contribu-
tions were originally pre sented in [33,34]. Here, we give an
improved presentation of these results.

Novel to this article, we tackle some of the practical issues
in using the Alloy Analyzer for TCMC with results found in
the first author’s thesis [14]. First in Sect. 5, we discuss style
guidelines formodelling transition systems inAlloy showing
an illustrative example. These guidelines do not involve any
extensions to Alloy and are relevant for the use of any model
checking method in Alloy (not just TCMC). Second, since
the total state space is rarely representable due to the state-
space explosion problem, we present scoped TCMC where
the property is checked for transition systems of a certain
size that satisfy the constraints of the model (Sect. 6). Third,
we address the problem of spurious instances of transition
systems by introducing significance axioms (Sect. 6), which
require the instance of the model to be of a large enough
size to be interesting to the user. Our significance axioms
provide a measure independent of computing resource lim-
itations that a significant part of the state space has been
verified. Stating these axioms is possible in a model that fol-
lows our style guidelines. Since the significance axioms are
requirements of transition system instances (rather than path
lengths), they are of use in the TCMC methodology. Fourth
in Sect. 7, we present a methodology that carefully describes
the meaning of results from scoped TCMC with respect to
the complete model checking problem (meaning over the
entire state space), highlighting distinctions for properties
with respect to finite and infinite paths. Finally, we provide
a comparison between TCMC and BMC.

In Sect. 2, we provide brief background material on
CTLFC model checking and the Alloy language. Sections 3
(TCMC), 6 (Significance Axioms), and 7 (TCMC Method-
ology) are relevant to any verification effort of CTLFC
properties (not just in Alloy). The discussion on significant
scopes matters for any method where it is not possible to
search the entire state space. Our technique has been imple-
mented in the Alloy language and its toolset, which is a
popular and well-used verification environment, and thus,
our work has wide applicability. Sections 4 (TCMC inAlloy)
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and5 (Modelling aTransitionSystem inAlloy) areAlloy spe-
cific. Section 8 discusses TCMC performance results in the
Alloy Analyzer, a comparison of our methodology to BMC,
and the use of fairness constraints in TCMC, through case
studies. We conclude with related work in Sect. 9.

2 Background

In this section, we provide a brief overview on temporal logic
model checking and Alloy.

2.1 Temporal logic model checking

Temporal logic model checking is a decision procedure for
checking whether a transition system satisfies a temporal
logic specification [7]. A transition system is a finite directed
graph with a labelling function that associates a set of propo-
sitional variables to each vertex. A vertex represents a state
of a system, and the propositional variables that it is labelled
with represent the values of the variables in that particular
state. An edge between two vertexes represents a transition
from one state to another.

Definition 1 Transition System: The transition system T S is
a five tuple, T S = (S, S0, σ, P, l), where S is a finite set of
states; S0, the set of initial states, is a non-empty subset of S;
σ , the transition relation, is a binary relation over S; P is a
finite set of atomic propositions; and l, the labelling function,
is a total function from S to the power set of P .

A computation path starting at s where s ∈ S is a sequence
of states, s0 → s1 → . . . such that s0 = s and ∀i ≥ 0 :
σ(si , si+1). If the transition relation is a total binary relation,
then there is at least one infinite computation path starting at
each state.

A specification is a set of temporal logic formulas. A
temporal logic, such as CTL or CTLFC [7], has logical con-
nectives for specifying properties over the computation paths
of a transition system. Equation 1 is the grammar for a com-
plete fragment of CTL:

ϕ ::= p | ¬ϕ | ϕ ∨ ϕ | EXϕ| EGϕ | ϕEUϕ , where p ∈ P

(1)

The satisfiability relation forCTL, |�, is used to givemeaning
to formulas. The notation T S, s |� ϕ denotes that the state
s of the transition system T S satisfies the property ϕ and
T S, s �|� ϕ is used when T S, s |� ϕ does not hold. The
relation |� is defined by structural induction on ϕ:

Definition 2 Semantics of CTL: For a transition system, T S,
with a total transition relation σ , the semantics of CTL for-
mulas is as follows.

T S, s |� p iff p ∈ l(s)
T S, s |� ¬ϕ iff T S, s �|� ϕ

T S, s |� ϕ ∨ ψ iff T S, s |� ϕ or
T S, s |� ψ

T S, s |� EXϕ iff ∃s′ ∈ S : σ(s, s′) ∧
T S, s′ |� ϕ

T S, s |� EGϕ iff there exists a path,
s0 → s1 → . . . ,
where s = s0, and
for all i’s
T S, si |� ϕ.

T S, s |� ϕEUψ iff there exist a j and a
path,
s0 → s1 → . . . ,
where s = s0,
T S, s j |� ψ and
for all i less than j
T S, si |� ϕ.

The transition system T S satisfies the CTL formula ϕ,
denoted by T S |� ϕ, if and only if for all s0 ∈ S0 we have
T S, s0 |� ϕ.

The syntax of a complete fragment of CTLFC is the
same as Eq. 1 with the addition of one connective, EcG.
In this connective, c is a fairness constraint formula, which
is used to define a fair computation path. The computa-
tion path s0 → s1 → . . . is fair with respect to c iff:
{i | T S, si |� c} is infinite.

The semantics of CTLFC is the same as Definition 2 along
with the semantics of EcG:

T S, s |� EcGϕ iff there exists a fair
computation
path with
respect to c,
s0 → s1 →
. . . , where
s = s0, and for
all i’s
T S, si |� ϕ.

Multiple fairness constraints can be converted to an equiv-
alent property with a single fairness constraint using the
method described in [33], which is based on Vardi and
Wolper’s work [35]. Therefore, we describe our method for
a single fairness constraint.

If X is a subset of S, then σX denotes the transition relation
σ when its domain is restricted to X :

σX (s, s′) iff σ(s, s′) ∧ s ∈ X

In this article, ˆ denotes the transitive-closure operator; for
example, ˆσX is the transitive closure of the relation σX .
The reflexive transitive-closure operator is ∗. The restriction
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operator has higher precedence than the transitive-closure
operators: i.e. ˆσX is ˆ(σX ).

2.2 Alloy

Alloy is a lightweight declarative relational modelling lan-
guage [19,20]. The logic that Alloy provides for modelling
is essentially first-order logic with the transitive-closure
(FOLTC) operator. An Alloy model consists of a set of dec-
larations, which specify the sets, relations, and functions in a
model, and a set of constraints, which are logical formulas. In
general, first-order logic is undecidable; as a result, automatic
consistency checking of Alloy models is not possible. The
Alloy Analyzer, the main analysis tool for Alloy models pro-
vides finite scope analysis: a user is required to choose a finite
size for the sets in themodel (called the scope), and then after
expanding the transitive-closure operator for the scope, the
Alloy Analyzer translates the model to a propositional CNF
formula, which is handed to a SAT solver for consistency
checking. By fixing the sizes of the sets in an Alloy model,
the Alloy Analyzer evaluates a model for consistency using
the run command and validity using the check command.

3 Transitive-closure-basedmodel checking
(TCMC)

Immerman and Vardi show how CTL and CTL* can be
encoded in FOLTC for finite models [17]. The transitive-
closure operator is definedonly for afinite set. Their encoding
of CTL* requires the introduction of Boolean variables into
the model for every sub-formula, and as a result, the number
of states of a transition system increases exponentially with
respect to the size of the formula. They do not provide any
implementation of their idea.

In this section, we present our translation of CTLFC to
FOLTC with a similar approach to that of Immerman and
Vardi. We chose CTLFC for three reasons: (1) unlike CTL*,
the encoding of CTLFC in FOLTC does not increase the size
of a transition system, (2) it is more expressive than CTL, and
(3) LTL model checking can be reduced to CTLFC model
checking1 [8]. We call our approach transitive-closure-based
model checking (TCMC).

The general idea for TCMC is to use the (reflexive)
transitive-closure operator to specify the necessary and suffi-
cient conditions for the set of states that satisfy a property.The
closure operator is used to specify the reachability relation,
which is not expressible in FOL. Similar to traditional rep-
resentations of CTL model checking, we define an operator,
[·], that takes a formula as input and outputs a symbolic rep-
resentation of the set of states that satisfy the input formula.

1 This translation increases the size of a transition system.

In TCMC, this operator in defined using transitive closure.
The recursive definition for [·] is given in Definition 3. The
key difference from the work of Immerman and Vardi is that
each formula can be defined directly; support for all of CTL*
would require the introduction of a newBoolean variable into
the transition system for each sub-formula of the property.

Definition 3 TCMCLet T S = (S, S0, σ, P, l)be a transition
system and c be a fairness constraint. The operator [·] takes
a CTLFC formula and produces a subset of S:

1. [p] = {s ∈ S| p ∈ l(s)}
2. [¬ϕ] = {s ∈ S| s /∈ [ϕ]}
3. [ϕ ∨ ψ] = [ϕ] ∪ [ψ]
4. [EXϕ] = {s ∈ S| ∃t ∈ [ϕ] : σ(s, t)}
5. [ϕEUψ] = {s ∈ S| ∃t ∈ [ψ] : ∗(σ[ϕ])(s, t)}
6. [EGϕ] = {s ∈ S|∃t ∈ [ϕ]: ∗ (σ[ϕ])(s, t)∧ ˆ(σ[ϕ])(t, t)}
7. [EcGϕ] = {s ∈ S|∃t ∈ [ϕ]: ∗(σ[ϕ])(s, t)∧ˆ(σ[ϕ])(t, t)∧

t ∈ [c]}

[EXϕ] is the set of states that can be reached in one step
from states in [ϕ]. [ϕEUψ] is the set of states that can reach
a state in [ψ] via the transitive closure of σ restricted to states
in [ϕ]. [EGϕ] are states that can reach some state, t , via the
transitive closure of σ restricted to states in [ϕ] and t must
loop back to itself via a path of states in the set [ϕ]. The def-
inition of [EcGϕ] is based on the model checking algorithm
of EcG that finds the strongly connected components (SCCs)
in a transition system. The state t in the definition of [EcGϕ]
is a state that belongs to an SCC and satisfies the fairness
constraint, c. This state t must be in a loop (it returns to itself
in the transitive closure of σ ) of states in the set [ϕ] and is
reachable from s via a path of states in the set [ϕ].

Theorem 1 Let T S = (S, S0, σ, P, l) be a transition system,
ϕ a CTLFC formula, and [·] the operator defined in Defini-
tion 3. We have:

[ϕ] = {s ∈ S| T S, s |� ϕ}

Theorem 1 is proven by structural induction on ϕ. The
proof is straightforward for the first six cases. The details of
the proof of this theorem are in [33]. The following corollary
of Theorem 1 defines the use of TCMC for model checking
a transition system:

Corollary 1 Let T S = (S, S0, σ, P, l) be a transition system,
ϕ a CTLFC formula, and [·] the operator defined in Defini-
tion 3. We have:

T S |� ϕ iff S0 ⊆ [ϕ]
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Fig. 1 Multiple instances of a transition system for the constraint: every
state must reach a state that is reachable from itself

If the declarative model of a transition system is not fully
defined, there can be multiple instances that satisfy its con-
straints. For example, the declarative specification “every
state must reach a state that is reachable from itself” specifies
more than one transition system as shown in Fig. 1.

Corollary 1 can be used in two ways because there are
potentially multiple instances of σ . Universal TCMC is tra-
ditional model checking, which checks whether the property
is satisfied on all paths starting from all initial states in all T S
instances of the model and can be accomplished by verifying
S0 ⊆ [ϕ] for all instances of the model. Existential TCMC
checks if some T S instance of the model satisfies the prop-
erty from all initial states. In this case, we are checking if the
model definition is consistent with the property S0 ⊆ [ϕ].

4 TCMC in Alloy

In this section, we describe the implementation of TCMC in
the Alloy language. We create the module ctlfc (part of
which is shown in Fig. 2), which takes the transition system’s
set of states as a parameter (Line 1). The TS (Lines 3–7)
declares the sets and relations that are needed to describe a
transition system,whereS0 refers to the initial states,sigma
refers to the transition relation, and FC refers to the set of fair
states if a fairness constraint is present. These are accessed
using the functions on Lines 9–11.

TCMC (Definition 3) is implemented as Alloy functions
as shown in Fig. 2 Lines 18–29. It uses two helper func-
tions, domainRes and id, implemented and explained in
Lines 13–16. domainRes[R,X] is the subset of Rwith its
domain restricted to X; id[X] is the identity relation over
X. In defining the temporal operators, we take advantage of
the Alloy join function, “.”. For example, the .S on Line
24 extracts the domain from the relation produced in the
rest of the expression. In our complete ctlfc module, we
also include the universal path quantifiers, AX, AG, AU,
ACG, defined in terms of the existential temporal operators.
Our ctlfc module is available online.2

An example template for developing a model to use with
TCMC is shown in Fig. 3. We import the CTLFC module
(Line 1). In the modelDefinition, on Line 6, we equate
the initialState function from the module with the ini-
tial state constraints of our model. Similarly, we set up the

2 https://cs.uwaterloo.ca/~nday/artifacts/.

nextState relation and the fairness constraint (fc), if any.
Then we use ctlfc_mc (Lines 10–13) to perform model
checking tasks. Our template shows the use of the ag and
ef temporal logic properties, but others can be used. The
scope chosen can be for the sets that are components of the
state or the State set itself.

To implement universal TCMC, we use ctlfc_mc with
check, as shown in Fig. 3, Line 11. If the property is
satisfied, then the Alloy Analyzer will not be able to find
a counterexample. If the property is violated, we get a
counterexample—an inspectable transition system that is an
instance of our model containing a path that violates the
checked property. Unlike other model checking methods,
TCMC in Alloy returns an instance of a transition system
with a bug rather than a single counterexample path.

For existential TCMC, we use ctlfc_mc with run, as
shown in Fig. 3, Line 13. If the model constraints are consis-
tent with the temporal logic property, the Analyzer shows a
transition system that is a valid instance of our model. Oth-
erwise, no instance is found.

5 Modelling a transition system in Alloy

There are many ways that a transition system (TS) can be
modelled in FOL. To some extent, the style of modelling
chosen is based on user preference; however, we have devel-
oped some guidelines for Alloy that we find give structure
to the model, which we present via an example in this sec-
tion. These guidelines do not involve any extensions toAlloy.
In most uses of symbolic model checking, the user defines
a unique transition relation, so our guidelines are focused
on defining a declarative model with a single transition sys-
tem instance. Our example in this section also illustrates the
modelling convenience afforded by the abstraction of FOL as
compared to writing the same model in the SMV language.

We use the game of musical chairs to illustrate an Alloy
model of a transition system. Our model was inspired by
Nissanke’s model of musical chairs [27]. As illustrated in
Fig. 4, each round of the game moves through the modes
Start, Walking, Sitting, and End. The number of rounds will
depend on the number of players; we wish to write a flexible
model description that can be used for any number of players,
and choose the number of players by setting a finite scope
only when we start analysing the model.

Our behavioural model for musical chairs in Alloy con-
sists of three parts: (1) the declaration of the state space, (2)
the initial state constraints, and (3) constraints describing the
transitions. We combine the constraints describing the tran-
sitions to create the transition relation in a standard way.

The state-space definition, as shown in Fig. 5, consists of
the primitive sets Chair and Player, and the four pos-
sible modes. The State set encapsulates the current set
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Fig. 2 Part of CTLFC module
in alloy

Fig. 3 Template for use of
TCMC in alloy

of players, chairs, mode, and chair occupancy by players,
occupied, which is a relation from players to chairs. The
use of uninterpreted sets, such as Chair and Player,
and the use of the relation occupied are examples of
the abstractions possible in declarative models, which make
models concise, but precise.

The encapsulation provided by the State set is conve-
nient, but in Alloy such encapsulation is not a record, rather
State is a distinct set, and the fields are mappings from
a State element to a set of players, etc. Two State ele-
mentswith the sameattribute values are treated as twodistinct
elements by default. To match our intuition that states with
the same attributes are equivalent, we introduce an equality
predicate, shown in Lines 11–17 in Fig. 5, to force State
elements with the same attributes to be the same element.

In Alloy, every element is modelled as a set. Therefore,
even though every chair can be associated with at most
one player, Alloy treats occupied as a relation. If we use
the Alloy keyword lone (constraining every Chair to be
associated with at most one Player) in the declaration of

Fig. 4 Musical chairs overview

occupied, we are inserting a constraint that may or may
not be maintained by the transitions of the transition system.
There is the potential to create an inconsistency. We recom-
mend using sets/relations for all attributes of the state space
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Fig. 5 Musical chairs state
space

Fig. 6 Initial state constraints

Fig. 7 DisjMethod for eliminate
loser operation and musical
chairs model definition

and making the constraint that occupied is functional an
invariant that is checked by model checking.

The initial state constraints for Musical Chairs, shown in
Fig. 6, set up the initial mode and constrain the number of
players in the game.

The Musical Chairs model has five operations as shown
in Fig. 4: music_starts, music_stops, eliminate
_loser, declare_winner, and end_loop. Any pair
of states that satisfies at least one of the operations is a tran-
sition in the model. Figure 7 shows the predicates that define
the eliminate_loser operation in Alloy. For the sake of
modularity in the model description, we separate the oper-
ation description into separate predicates for the pre- and
post-conditions. The precondition is a constraint on a single
state, and the post-condition is a constraint on the previous
and the next states. Line 7 removes from the game the player
who is not in the range of the occupied relation. Line 8
eliminates a chair declaratively, that is, any chair could be

the one eliminated. The statement of the operation itself on
Lines 10–13 combines the pre- and post-conditionswith con-
junction.

Lines 15–24 of Fig. 7 show the model definition fact,
which matches the template of Fig. 3 and begins to make
use of the ctlfc module. It equates the initialState
and nextState functions from the ctlfc module to the
model-specific constraints. A state can be an initial state if
and only if it satisfies the constraints listed in the init
fact, and a pair of states can be in the nextState rela-
tion if and only if it satisfies the constraints in one of the
operations. Each operation is the conjunction of its pre- and
post-conditions, and the nextState relation is a disjunc-
tion of the definitions of each operation. We call this form
of model the disjunctive modelling method (DisjMethod) for
transition relations. Themodel definitionfact also enforces
the equality predicate described previously for all ele-
ments of State. Because of the equality predicate, where
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Fig. 8 ConjMethod method for
defining nextState relation

Fig. 9 Overlap in preconditions. Shows only transitions starting from
S1. Solid lines:DisjMethod transitions.Dashed lines:ConjMethod tran-
sitions

Fig. 10 Incomplete preconditions. Shows all transitions between S5
and S6. Solid lines: DisjMethod transitions. Dashed lines: ConjMethod
transitions

states with the same attributes must be equal, a model written
in this manner defines a unique transition system. There are
likely multiple TS transitions between states that satisfy the
constraints of a single operation.

An alternative, common method for modelling the tran-
sition relation is to define each operation as an implication
(precondition implies post-condition) and conjunct the def-
initions of all the operations (similar to Dijkstra’s guarded
commands [11]). We call this the conjunctive modelling
method (ConjMethod).Anexample of thismodellingmethod
for musical chairs is shown in Fig. 8.

For Musical Chairs, these two modelling methods yield
equivalent transition relations, but this is not the case for
all models. The two methods produce equivalent transi-
tion relations when the preconditions are mutually exclusive
and complete (some precondition is satisfied in every state).
Otherwise, the transition relations resulting from these two
methods can differ, as illustrated in Figs. 9 and 10, where
the transition relation is defined as: σ(s, s′) ⇔ (pre1(s) ∧

post1(s, s′))∨(pre2(s)∧ post2(s, s′))) for the DisjMethod,
and as: σ(s, s′) ⇔ (pre1(s) ⇒ post1(s, s′)) ∧ (pre2(s) ⇒
post2(s, s′))) for the ConjMethod.

If a state satisfies multiple user-defined operations’ pre-
conditions, that is, the preconditions are not mutually exclu-
sive, then the transition relation from the DisjMethod can
includemore transitions than theConjMethod. Figure 9 illus-
trates this case; the figure only shows transitions that start
from S1. For the ConjMethod, all operations from a state
that satisfies their preconditions (S1) must have their post-
conditions satisfied in the next state (S4). This requires the
next state to satisfy the post-conditions ofmultiple operations
at the same time, and thus, there are fewer transitions. But
for the DisjMethod, only one of the possible post-conditions
from a state that satisfies their preconditions (S1) needs to
hold in the next state (S2, S3, S4). So there is a higher num-
ber of transitions included in the transition relation for the
DisjMethod.

The opposite happens when the preconditions of the oper-
ations are incomplete, that is, they do not cover all states.
Figure 10 illustrates this case; the figure shows all transi-
tions occurring between the two states. From a state that
does not satisfy any precondition (S6), transitions to all
other states (S5, S6) are included in the transition relation for
the ConjMethod, because the antecedent of the implications
in all the operations is false. So there are more transitions
included in the transition relation for the ConjMethod than
the DisjMethod in this scenario, although none of these extra
transitions are likely ones the user is expecting. While the
modelling style is a matter of user preference, we prefer the
DisjMethod because it ismoremodular and additive in nature
than the ConjMethod, and we believe it is more likely to pro-
duce a transition relation that the modeller is expecting.

To demonstrate the value of the declarative nature of
describing behavioural models in Alloy, we compare to a
description in NuSMV [6] of Musical Chairs. In NuSMV, a
transition can be described as a constraint, but it lacks abstract
data structures. Figure 11 shows the eliminate_loser
operation described in NuSMV. Lines 1–7 declares some of
the elements of the state (players, chairs, andoccupied). Since
NuSMVdoes not have sets and relations as native constructs,
an array of Booleans is used to represent sets; occupied
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Fig. 11 Eliminate loser
operation in NuSMV

is an array of integers, where the indices represent the chairs
and the array values represent the players. A 0 player value
is used to designate that a chair is empty. To describe the
elimination of a player, there is a case for each player (Lines
15–20), and thus, the model is for a fixed scope. Additional
lines (22–23) are needed to keep track of previously elim-
inated chairs, which also need to be extended if the scope
of chairs is increased. Modules in NuSMV might make this
description less verbose, but it is clear that the abstractions
provided by Alloy are substantially better for writing declar-
ative models that do not depend on a fixed scope.

Our style guidelines are useful for describing a transition
system in Alloy in a structured manner, which may be anal-
ysed via TCMC or BMC.

6 Scope, spurious instances, and significance
axioms

To use Alloy’s finite model finding capabilities for analysis,
we must decide on scopes for all sets. If we set the scope for
the basic sets (Players and Chairs for Musical Chairs),
the size of all other sets can be determined, generating a
total state space. If we fix the scope of the State set to the
size of the total state space and run the model, assuming the
initial state set is not empty, we would get as an instance the
complete transition system. However, the total state space is
usually too large to be represented in Alloy, especially when
the model includes relations. In the Musical Chairs example,
occupied is a relation between Chairs and Players.
If we have 4 chairs and 5 players, the number of all possible
occupied relations is 24∗5, and this is for only one element
of the state.

One solution is to limit the number of states to the num-
ber of reachable states, using a generator axiom that uses the
transitive-closure operator; however, this is also usually too
big. Following Jackson’s small scope hypothesis [20], we
try smaller scopes for the State set rather than the entire
state space with the goal of finding bugs. We call this method
scoped TCMC. For a state set of scope n in scoped TCMC, if
our model describes a unique transition relation, we inspect
all full subgraphs3 of size n in the complete transition
system.

This set of full subgraphs consists of all subsets of size n
of the state space of the complete transition system, which
introduces the spurious instance problem. Spurious instances
are instances that satisfy the model but contain disconnected
states. Additionally, we also consider an instance that does
not include enough of the user-defined operations to be spuri-
ous because it is not interesting for the user. Seeing spurious
instances does not help us inspect the correctness of the
model. Figure 12 illustrates some spurious instances of a
hypothetical model. Instances A and B are instances of the
model with the scope of exactly 3 states. They are each spu-
rious because some of the states included are not reachable
from an initial state or they are disconnected from each other,
or both.

For example, in theMusical Chairs model, if we ask Alloy
for a transition system satisfying the constraints for scopes
where the Player set has 3 elements, the Chair set has
2 elements, and the State set has 3 elements, it can return
an instance such as that shown in Fig. 13. This instance is
a full subgraph satisfying all constraints of the model, but it
has an empty transition relation because none of the pairs of

3 A full subgraph of a graph is a subset of the nodes with all edges
between these nodes that are found in the original graph.
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Fig. 12 Complete transition
system and examples of its full
subgraphs, with and without
significance axioms. In the
figure, the states labelled with In
are initial states and the
user-defined operations are
Op1, Op2, Op3, and Op4

states satisfy any operation. The Alloy Analyzer treats the
transition relation as a set of pairs of states and any relation
that satisfies the constraints is an instance. It is not useful for
a verification run to consider this instance of the model.

We propose a set of axioms, which we call significance
axioms, that helps us find a small, yet big enough to be
interesting, scope that excludes spurious instances from the
model. These axioms work whether the transition relation
is uniquely defined or not and are relevant to any kind of
model checking that cannot inspect the entire reachable state
space. These axioms limit the satisfying instances by exclud-
ing non-interesting parts. Our significance axioms are:

1. Reachability Axiom All states produced must be reach-
able from an initial state. This axiom also ensures that an
initial state is included, and all transitions in the instance
are reachable. Equation 2 represents this axiom, where
s and si are states, σ is the transition relation, and S0
is the set of initial states (recall that ∗ is the reflexive
transitive-closure operator):

∀s · ∃si · ∗σ(si , s) ∧ si ∈ S0 (2)

2. Operations Axiom At least one transition that satisfies
each operation must be included. Equation 3 represents
this axiom, where s and s′ are states, op is an opera-
tion, and op(s, s′) is a predicate where (s, s′) satisfies
the operation op.

∀op · ∃s, s′ · op(s, s′) (3)

Separately from a model checking run, we can find the
minimum scope that satisfies the significance axioms by
iteratively increasing the size of the state space until a TS
instance is returned. We call this scope the significant scope.
Note that the reachability axiom does not require the inclu-
sion of the entire reachable state space, just that the states
included in the instance are all reachable. The uniqueness
of the transition relation remains unchanged after adding
the axioms. For the abstract example of Fig. 12, a scope
of 4 states (Instance C) is needed to satisfy both of these
significance axioms. Every state in Instance C is reachable,
and the instance contains a transition for each user-defined
operations. We call an instance that satisfies the signifi-
cance axioms a significant instance. The significance axioms
for Musical Chairs are shown in Fig. 14. In the Musical
Chairs example, the significance axioms ensure we have
an instance in which some player wins, but the transition
system is not required to include paths for every player to
win. One can view our significance axioms as an example
of Jackson’s generator axioms that are specific for transition
systems [20].

7 TCMCmethodology

Model checking at a small scope evaluates if properties hold
for transition systems of that size, but moreover, we can draw
some conclusions about whether the properties hold for the
complete transition system. In this section, we propose a
scoped TCMC methodology. We assume that the complete
transition system is uniquely defined.
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Fig. 13 A spurious instance
returned by alloy for the musical
chairs example

Fig. 14 Musical chairs:
significance axioms. The
initialStateAxiom and
the totalityAxiom are not
specific to the musical chair
example

7.1 Types of properties

Before introducing our proposed TCMC methodology, we
establish some categories for classifying properties. These
categories are shown in Fig. 15 and based on the negation
normal form of the property (negations are only applied to
atomic propositions). In our property examples, p and q are
atomic propositions. The shaded leaves of the diagram cover
all possible CTLFC properties.

The first distinction made is between universal and exis-
tential properties. Universal properties areCTLFCproperties
with only universal quantifiers, As, and no existential quanti-
fier, E , in them. These properties are also referred to asACTL
properties [16]. If the property does not hold, a counterexam-
ple, which is a path where the property is not satisfied, can
be produced. AGp, AFp, and AFAGp are all examples of
universal properties. Existential properties are CTLFC prop-
erties that contain one or more existential quantifier, E . If
the property does not hold, no counterexample path can be
produced. EGp and EFp are examples of such properties.

Following traditional definitions, universal properties are
categorized into safety and liveness properties. Safety proper-
ties are properties that have finite paths as counterexamples.
Liveness properties are those that have infinite paths as coun-
terexamples.

Liveness properties are further categorized based on
whether they can be satisfied by a finite path or not. Finite
liveness properties are those that can be satisfied by finite
paths. A property of the form AFp is a finite liveness prop-
erty. Both finite and infinite paths can satisfy these properties.
Infinite liveness properties are those that cannot be satisfied

by finite paths. An example of such a property is one of the
form AFAGp. Any universal property with a fairness con-
straint is categorized as an infinite liveness property. Only
infinite paths can satisfy these properties.

The rest of this section describes TCMC model checking
methodologies and how to interpret results for the complete
transition system for these different types of properties. In
our figures, we use the word real to signify if a pass or fail
holds for the complete transition system of the model.

7.2 Safety properties

The process outlined in Fig. 164 is used to perform TCMC
of safety properties. We run universal TCMC as described in
Sect. 4. If the check fails, we get a TS instance with a finite
path with a bug; this is a real bug in the complete transition
system of the model.

If it passes, we can conclude that it passes in all transition
systems of the specified scope; however, for the complete
transition system, it is unknown whether the pass holds or
whether a violating state would be encountered at a larger
scope. At this stage, we recommend testing the model up to
the significant scope, which is the minimum scope required
to satisfy our significance axioms, as described in Sect. 6.
We iteratively increment the scope of our check and rerun
universal TCMC until this significant scope is reached or a
failure occurs. We increment iteratively instead of directly
checking at the significant scope so that we take advantage
of better model checking performance at lower scopes. The

4 Infinite liveness, also described in this figure, is explained in a later
subsection.
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Fig. 15 CTLFC property
categories

Fig. 16 TCMC methodology
for safety and infinite liveness
properties

process of iteratively increasing the scope is standard in ver-
ification practice; however, with our identification of what
constitutes a significant scope,we can reach a point in the pro-
cess of having confidence in our pass results because we have
checked some significant instances without just exhausting
computational resources.

Figure 17 shows an example of checking a safety property
in our Musical Chairs model. Here we consider a game start-
ing with 3 players and 2 chairs. We check that the number of
players is always one more than the number of chairs, using
the ag function from the ctlfcmodule. We start the model
checking process at a low State scope of 2 to detect initial
bugs since a lower scope yields better performance. When
we get a pass result, we iteratively increment the State
scope until we reach 8, which is the significant scope for the
Musical Chairs model of 3 players and 2 chairs. A pass at
this scope gives us considerable confidence that the property
is satisfied in the complete transition system.

7.3 Finite liveness properties

Although transition systems are often thought of as having
only infinite paths generated from a total transition relation,
when we perform scoped TCMC in Alloy, the transition sys-
tems checked contain a limited number of states and thus

may contain finite paths (i.e. states that have no successor).
Finite liveness properties are those that are violated only by
infinite paths, but can be satisfied by finite paths. These prop-
erties can be checked using scoped TCMC in Alloy using the
methodology illustrated in Fig. 18.

Whencheckingfinite liveness properties, universalTCMC
inherently only considers and checks infinite paths.5 There-
fore, if the check fails (while considering only infinite paths),
the culprit path in the counterexample instance is an infinite
path, guaranteeing that a real bug has been uncovered in the
complete transition system of the model.

If the check passes, it is ambiguous whether the property
holds for the complete transition system or not, since paths
that are finite at the specified scope have not been checked.
However, since finite liveness properties can be satisfied by
finite paths, it is useful to consider finite paths also. At the
given scope, if all paths, finite and infinite, satisfy a finite live-
ness property, then the property is satisfied for the complete
transition system.We checkwhether the given property holds
on the finite paths of the transition system by adding dead-
loop transitions, i.e. a loop at every dead-end state, which is a
reachable statewith no successor. The template for dead-loop

5 The use of id[X] in EG (from which AF and AU are derived) in
the TCMC implementation in Fig. 2 requires there to be a looping path
from a state back to itself to make an infinite path.
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Fig. 17 Checking a safety
property of musical chairs

Fig. 18 TCMC methodology
for finite liveness properties

transitions between two states, s and s′, is:

(¬(∃s′′ · ops(s, s′′)) ∧ (s = s′))

where ops is a predicate satisfied by any pair of states that
are an operation. Adding the dead-loop transitions forces all
finite paths in an instance to be infinite by adding a transition
from any reachable state without a successor back to itself,
which enables TCMC to check finite paths when checking
for finite liveness properties. These added transitions make
all paths infinite and allow TCMC to distinguish between a
real pass and an ambiguous pass. A pass result after adding
dead-loop transitionsmeans that all paths originating fromall
initial states reach satisfying states within the limited scope
and we can deduce that the property passes in the complete
transition systemaswell, andwecan stopourmodel checking
process.

If the check fails, it means that there is a violating finite
path in the given scope. However, it is unknown whether the
path represents a real bug in the complete transition system
or whether the finite path can eventually lead to a satisfying
state, which makes the fail result ambiguous. To add some
assurance to this result, as with safety properties, we model

check up to the significant scope. A failure at the signifi-
cant scope results in higher confidence that the finite liveness
property is not satisfied in the complete transition system.

Figure 19 shows an example of checking a finite liveness
property in our Musical Chairs model. Here, we check that
the game always reaches a State with a sitting mode,
ensuring the game’s progress, using the af function from the
ctlfc module. When we start model checking at a scope
of 2 States, the check passes although vacuously since no
infinite paths exist for a scope of 2 for this model. Then, we
add dead-loop transitions to consider finite paths as well, but
the check still fails for scope size 2. We increase the scope to
increase confidence since 2 is less than the significant scope.
When we increase the State scope to 3 (which is not yet
the significant scope), we find that the property holds, which
is a real pass for the complete transition system.

7.4 Infinite liveness properties

An infinite liveness property can only be satisfied and vio-
lated by infinite paths, therefore, we only need to consider
infinite paths during scoped TCMC. Our proposed method
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Fig. 19 Checking a finite
liveness property of musical
chairs

for using TCMC to check infinite liveness properties is out-
lined in Fig. 16 (since it is similar to safety properties).

If TCMC for an infinite liveness property fails, the coun-
terexample produced represents a real bug in the complete
transition system. TCMC inherently only considers infinite
paths for these properties, meaning that only an instance with
a culprit infinite path, thus representing a real bug, can be
produced as a counterexample.

If TCMC passes for such a property, then it is ambigu-
ous whether the result represents a real pass in the complete
transition system or a false positive. Longer paths may exist
that have not been checked that violate the property. How-
ever, as before, model checking up to the significant scope
gives us greater confidence in our pass result. There is no
point in adding dead-loop transitions to check finite paths in
this case, because, unlike finite liveness properties, infinite
liveness properties cannot be satisfied by finite paths.

Figure 20 shows an example of checking an infinite live-
ness property in our Musical Chairs model. We use the af
and ag functions from the ctlfc module to check that we
always eventually reach a point where the number of players
is one and always remains at one at all further states on that
path. We start the model checking at a State scope of 4.
We find that the check passes (although, from our knowledge
about the model, we know that this pass occurs vacuously
since no paths at this scope are infinite). We repeat the check
until we reach a scope of 8, which is the significant scope.
At this point, we are relatively confident of our pass result.

7.5 Existential properties

To check existential properties (including existential prop-
erties with fairness constraints) such as EFp or EGp, in
TCMC, we use existential TCMC. Checking an existential
property using universal TCMC would check whether there
is some path in all TS instances of the model that satisfies
the property. This check is too strong since to satisfy an exis-
tential property, there only needs to be some path in some

TS instance of the model that satisfies the property, which is
what we accomplish with existential model checking.6

Our methodology for checking existential properties is
shown in Fig. 21. If an existential TCMC run returns a sat-
isfying TS instance, then the property passes for the complete
transition system of the model because a path (finite or infi-
nite) exists in some TS instance that satisfies the property. If
the run does not return an instance, it is unknown whether
the property fails for the complete transition system, or there
exist paths outside the specified scope where the property is
satisfied. However, as before, model checking up to the sig-
nificant scope gives us greater confidence in our pass result.

Figure 22 shows an example of checking an existential
property in our Musical Chairs model. In this example, we
assert that there is a player namedAlice in the game, and there
exists an instance where she eventually wins the game.When
we start ourmodel checking process at a lowState scope of
2, our property fails (since anend state has not been reached).
We increment the scope but get failures until we reach a scope
of 8. At this point, we find the property is satisfied, which
means it is satisfied for the complete transition system.

8 Case studies

We developed three case studies in addition to our Musical
Chairs example to evaluate TCMC:

– Feature Interaction in a Telephone System [33]
– Traffic Light Controller [25]
– Elevator System [24,28]

All thesemodels satisfy the properties we checked. The com-
plete Alloy models are available online.7 For TCMC of our

6 Existential TCMC requires the satisfying TS instance to have some
path from all initial states of the TS instance; however, unless the model
requires there to be multiple initial states, usually there is a TS instance
with only one initial state meaning there is some path from some initial
state.
7 https://cs.uwaterloo.ca/~nday/artifacts/.
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Fig. 20 Checking an infinite
liveness property of musical
chairs

Fig. 21 TCMC methodology
for existential properties

Fig. 22 Checking an existential
property of musical chairs

models, we used the Alloy Analyzer 4.2 with the MiniSat
SAT solver [13]. The experiments were run on an Intel(R)
Xeon(R) CPU E3-1240 v5 @ 3.50GHz x 8 machine running
Linux version 4.4.0-92-generic with up to 64GB of user-
space memory.

The rest of this section discusses the utility of TCMC
by examining the feasibility and performance of TCMC at
standardAlloymodel sizes, a comparison of TCMC toBMC,
and the use of fairness constraints in TCMC.

8.1 Scalability

Table 1 shows performance results for four case studies
across a range of the types of properties. The scope size (SS)
denotes the sum of scopes of all sets. If the execution did not
complete within 1 hour, the run was terminated.

With respect to scalability, we found that temporal speci-
fications can be analysed up to the scopes that non-temporal
specifications are often analysed in Alloy. Thus, our method
is immediately valuable to those currently using Alloy for
modelling and analysis relying on Jackson’s small scope
hypothesis. The models checked in Alloy are not as large
as those that can be checked using a model checker such as
NuSMV [6]; however, the declarative and relational aspects
of Alloy have significant advantages for creating concise,
abstract behaviouralmodels.Wehave added toAlloy the abil-
ity to check complex temporal logic specifications directly

on small scopes of these models, and a methodology to make
useful conclusions about larger scopes as well.

8.2 Comparison to BMC

Bounded model checking (BMC) [2] uses symbolic model
checking to verify temporal (generally LTL) properties along
paths up to a certain length. It is different from scoped TCMC
in that BMC limits the path length, whereas scoped TCMC
limits the number of states in the transition system. In scoped
universal TCMC of scope n, we check all TS instances of
size n of all transition systems that satisfies the model’s con-
straints. In BMC, all paths of a certain length of all transition
systems that satisfies the model’s constraints are checked.

Using the example transition system shown in Fig. 23,
where S0 is the initial state, we can compare the two
approaches. For a bound of 3, BMC looks at the following
paths:

– S0 → S1 → S2 → S3
– S0 → S4 → S5 → S6
– S0 → S8 → S9 → S10

For a state scope of 4 (which is comparable to a BMC bound
of 3 since one more state than the path length may be used in
BMC), scoped TCMC considers transition system instances
(and paths) such as the following:
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Table 1 Performance results of
case studies

SS Safety Existential Finite liveness Infinite liveness

Musical chairs. NS: 8, NR: 4

8 0.041 s 0.011 s 0.015 s 0.132 s

10 1.037 s 0.076 s 0.025 s 0.379 s

13 8.547 s 0.377 s 0.050 s 4.726 s

15 11 m 51 s 0.488 s 0.096 s 6 m 29 s

18 >1 hour 4.386 s 0.134 s >1 hour

SS Safety Finite liveness Infinite liveness

Elevator system. NS: 3, NR: 4

12 0.626 s 1.815 s 2.197 s

13 1.934 s 16.111 s 18.676 s

14 22.621 s 1 m 24 s 4 m 4 s

15 3 m 11 s 9 m 38 s >1 hour

SS Safety SS Safety

Feature interaction. NS:5, NR:6 Traffic light controller. NS:18, NR:5

9 2.54 s 16 0.711 s

10 18.40 s 17 3.815 s

11 9 m 25 s 18 11 m 55 s

12 > 1 hour 19 > 1 hour

NS number of signatures, NR number of relations, SS scope size, m minutes, s seconds

– Instance 1: S0, S1, S2, S3

– S0 → S1 → S2 → S3 → S3 → ... (infinite path)

– Instance 2: S0, S4, S5, S6

– S0 → S4 → S5 → S6

– Instance 3: S0, S8, S9, S10

– S0 → S8 → S9 → S10 → S8 → S9 → S10 → ...

(infinite path)

– Instance 4: S0, S1, S2, S4

– S0 → S1 → S2
– S0 → S4

– etc. All instances with 4 states.

In TCMC, paths are not limited to the scope size and can
be infinite. In BMC, all paths are finite and of the length
specified.

In Alloy, we can perform BMC by utilizing Jackson’s
ordering module [20]. The ordering module does not
allow repeated states in a path; therefore, it is impossible to
represent infinite paths. To compare TCMC in Alloy with
BMC in Alloy, we implemented our Musical Chairs model
using the ordering module, and model checked a safety
property and a finite liveness property using BMC. BMC
is much faster than TCMC because TCMC checks more

Fig. 23 Example transition system

instances (and paths) thanBMC.However, aside fromperfor-
mance, TCMC has several advantages over BMC in Alloy:

– The counterexamples produced by TCMC for liveness
are real bugs in the complete transition system. In BMC,
it is not possible to limit the search to infinite paths, and
therefore, spurious counterexamples, i.e. instances with
violating finite paths that would satisfy the liveness prop-
erty if extended, are possible. It is possible to represent
infinite paths for BMC in Alloy using the method pro-
posed in [9] (requires extra constraints to represent loops
in paths and to consider only infinite paths), which would
prevent spurious counterexamples.

– BMC can only check LTL properties, which quantify
over paths, which means that it cannot check CTLFC’s
existential properties. TCMC checks CTLFC and quan-

123



Transitive-closure-based model checking (TCMC) in alloy 737

tifies over transition system instances. Existential TCMC
allows us to check existential properties in Alloy.

– Checking up to the significant scope in TCMC provides a
measure of confidence in the result independent of com-
puting resources. The significant scope is a measure of
transition system size, rather than path length.

– When a property does not hold, universal TCMC returns
an instance that is a transition system. A transition sys-
tem instance provides more inspectable information than
a path; a violating (likely small) instance may include
multiple paths that violate the property uncovering mul-
tiple bugs.

Table 2 is a summary of the comparison between scoped
TCMC and BMC with the ordering module with respect to
what we can conclude regarding the entire reachable state
space.

8.3 Fairness constraints

Our traffic light controller case study shows an example of
the use of fairness constraints in TCMC. It also shows an
application of the method described in [33] to convert mul-
tiple fairness constraints to one.

Our model has three fairness constraints that ensure all
directions at the three-way traffic light intersection (north,
south and east) receive adequate green light time. The fair
states satisfying each of these three constraints are described
by the functions implemented in Lines 3–5 in Fig. 24. The
fact fairness { ... } in Lines 7–14 dictates the
update of a counter attribute in State whenever a new type
of fair state is encountered, and the counter is reset when all
three types of fair states have occurred. The predicate fair
(Lines 15–17) is true whenever a member from each of the
three fair state sets has been encountered. We equate the set
of accepted fair states in the ctlfc module, fc, to those
satisfyingfair (Line 21). Therefore, whenmodel checking,
the ctlfc module ensures that the fair predicate holds
infinitely often in checked instances, thus satisfying all three
fairness constraints of the model.

9 Related work

The ordering module of Alloy can be used for simple
bounded model checking (BMC) [2]. Cunha [9] uses the
ordering module for bounded model checking of LTL
properties. Our approach supports more sophisticated tem-
poral properties and provides some advantages over BMC as
discussed in Sect. 8.2.

A declarative relational modelling language for transition
systems has been proposed by Chang and Jackson [5]. They

augment the traditional languages of model checkers with
sets, relations and declarative constructs to specify a transi-
tion system.Their technique is not capable ofmodel checking
a declarative model with multiple instances of a transition
system and suffers from the state-space explosion problem.

B [1] is a modelling language that has many similarities to
Alloy. Models developed in B are called Bmachines, and the
variables used to define the state space can be sets and rela-
tions. ProB [23] is a tool for analysing finite B machines, in
particular, model checking and automatic refinement check-
ing of B machines. ProB provides LTL model checking
support. LTL properties are checked by explicit-state search.
Since each single state in a B machine represents some sets
and relations, computing the set of the next states of a single
state is computationally very costly. Several implementations
of symbolic model checking algorithms (BMC, k-induction,
IC3) for B machines are provided in [22]; however, they
cannot check all CTLFC properties, are iterative (meaning
involve multiple runs of the solver), and suffer from solver
performance constraints (as does TCMC).

The abstract state machine (ASM) method [3] is for high-
level system design and analysis. The ASM method is used
to specify an infinite transition system. Analysis techniques
for the ASM method include theorem proving [12,30], and
model checking [10], which consists of translating an ASM
to SMV by fixing the size of the scopes in the ASM.

TLA+ [36] (with the TLC model checker) checks
behavioural models for temporal properties. TLC supports
unboundedmodel checkingof a subset ofLTL formulas using
explicit-statemodel checking. TCMC is a symbolic approach
to model checking.

Electrum [24] is an extension of Alloy that incorporates
features from both Alloy and TLA+. It supports finite-state
model checking of LTL properties. Electrum’s model check-
ing mechanism requires modelling over a time dimension,
which adds complexity to the model checking problem.
DynAlloy [15], along with the DynAlloy Analyzer [29], is
a set of extensions to Alloy for describing and analysing
dynamic properties of systems using actions. DynAlloy does
not support model checking of temporal properties, such as
CTLFC.

10 Conclusion

We have presented transitive-closure-based model checking
(TCMC): a method for encoding every CTLFC formula in
first-order logic plus transitive closure. Compared to Immer-
man andVardi [17], our encoding does not increase the size of
themodel, and the translation algorithm is linear with respect
to the size of the CTLFC formula. We have used TCMC to
model check transition systems in Alloy by using the con-
straint solver of the Alloy Analyzer up to similar scopes as
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Table 2 Deducing complete
model checking results: scoped
TCMC versus BMC

Property Scoped TCMC BMC using ordering
Pass Fail Pass Fail

Safety Ambiguous Real Bug Ambiguous Real Bug

Finite liveness

w/o dead-loop Ambiguous Real Bug Real Pass Ambiguous

w/ dead-loop Real Pass Ambiguous

Infinite liveness Ambiguous Real Bug Cannot Express

Existential Real Pass Ambiguous Cannot Express

Fig. 24 Traffic lights control
fairness constraints

are used to check non-temporal properties. We introduced
style guidelines for modelling transition systems natively in
Alloy (i.e. without any extensions to Alloy). We tackled the
problem of spurious instances of transition systems through
significance axioms, which give us a measure of whether we
are checking instances that are large enough to be interest-
ing. We describe a methodology for scoped TCMC, which
uses the significance axioms and describes what the scoped
results mean for the complete transition system.

We are working on ways to add common modelling
abstractions, such as state hierarchy, to declarative models
of transition systems [32]. In the future, we plan to explore
the use of TCMC for declarative models that define more
than one transition system. We are also exploring methods
to extract paths or other useful information from the (usu-
ally small) TS instances returned by TCMC [21]. We also
want to compare our approach to model checking using
Alloy* [26] (which has second-order quantification) and
investigate methods for improving the scalability of TCMC.
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