
Software & Systems Modeling (2020) 19:531–554
https://doi.org/10.1007/s10270-019-00742-z

SPEC IAL SECT ION PAPER

From analytical purposes to data visualizations: a decision process
guided by a conceptual framework and eye tracking

Jens Gulden1 · Andrea Burattin2 · Amine A. Andaloussi2 · Barbara Weber2,3

Received: 30 October 2017 / Revised: 24 May 2019 / Accepted: 1 July 2019 / Published online: 10 July 2019
© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Abstract
Data visualizations are versatile tools for gaining cognitive access to large amounts of data and for making complex relation-
ships in data understandable. This paper proposes a method for assessing data visualizations according to the purposes they
fulfill in domain-specific data analysis settings. We introduce a framework that gets configured for a given analysis domain
and allows to choose data visualizations in a methodically justified way, based on analysis questions that address different
aspects of data to be analyzed. Based on the concepts addressed by the analysis questions, the framework provides systematic
guidance for determining which data visualizations are able to serve which conceptual analysis interests. In a second step of
the method, we propose to follow a data-driven approach and to experimentally compare alternative data visualizations for
a particular analytical purpose. More specifically, we propose to use eye tracking to support justified decisions about which
of the data visualizations selected with the help of the framework are most suitable for assessing the analysis domain in a
cognitively efficient way. We demonstrate our approach of how to come from analytical purposes to data visualizations using
the example domain of ProcessModeling Behavior Analysis. The analyses are performed on the background of representative
analysis questions from this domain.

Keywords Data visualization · Process execution data · Process Modeling Behavior Analysis · Eye tracking · Reading
patterns · Process mining

1 Introduction

Visual analysis tools allow to leverage capabilities of the
human cognitive apparatus which is capable of pattern-based
processing of perceived stimuli on multiple levels of granu-
larity in parallel [9,10,21,22]. These kinds of analyses allow
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to gain insights by projecting data into appropriate percep-
tual spaces and thus offer a complementary perspective on
existing statistical approaches [39,42].

In order to perform visual analyses of data, it is necessary
to be aware of the capabilities of data visualizations to fulfill
the information needs that arise in a specific analysis set-
ting. Information needs are depending on the domain from
which data are analyzed and on the purposes that underlie
the analysis.

Up to now, there is, however, little methodical guidance in
how to reasonably justify the choice of visualizations that are
used during an analysis. Visualizations are often chosen in
an ad hoc manner, possibly in trial-and-error iterations, until
a suitable one is available. It is an important research goal to
establish a systematic link between purposes and conceptual
analysis questions on the one hand, and the expressiveness
and appropriateness of visualizations for fulfilling these pur-
poses on the other hand [22]. This article contributes to this
goal.
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In the upcoming elaboration, we establish a theoretical
conceptualization of intended purposes for visualizations
used in analysis scenarios, which results in a multidi-
mensional framework in which aspects of visual analysis
scenarios can be mapped both onto questions that reflect
analysis purposes on the conceptual level and on visual-
izations that are capable of answering these questions. The
Visualization-Purposes (ViP) framework allows to match
information demands that are characterized by purposes
of an analysis setting with visualizations used for the
analysis.

Using the ViP framework, we identify candidates of visu-
alization types satisfying the information needs specific to
the analysis domain. We then propose to follow a system-
atic and data-driven approach and to experimentally compare
the identified candidates regarding their cognitive suitability
for our analytical purposes using eye tracking. Both phases
together, the application of the mapping framework followed
by performing a psychophysiological experimental analysis,
form a method for deriving appropriate analytical visualiza-
tions from analysis purposes in a justified and systematic
manner.

To demonstrate the usefulness of our approach, we use the
domain of Process Modeling Behavior Analysis as an exam-
ple [8,32], which is concerned with analyzing the behavior
of human modelers while creating process models. In order
to gain an analytical understanding from process modeling
behavior data, it is important to apply analysis techniques
which allow to navigate through the available data in an
exploratory manner, rather than to perform statistical anal-
yses that presuppose an underlying structure of the data. In
previous examinations [44], we deployed the Rhythm-Eye
visualization type [20] (cf. Sect. 2.2.3) to test its appli-
cability for answering three particular analysis questions.
This article extends that work and adds the Modeling Phase
Diagram (MPD) [8] (cf. Sect. 2.2.1) and PPM Chart [12]
(cf. Sect. 2.2.2) visualization types to the set of exam-
ined candidates, to provide a comprehensive coverage of
existing visualization types for Process Modeling Behavior
Analysis.

Section 2 introduces the backgrounds needed for the fur-
ther understanding of the paper including the relatedworkwe
build our approach upon. Themethodical approach including
the multidimensional ViP framework for matching analysis
purposes and visualization types is explained in Sect. 3. In
Sect. 4, the design of the eye tracking study to compare visu-
alization types in terms of effectiveness and reading patterns
is laid out. The data analysis and the results are presented in
Sect. 5, whereas Sect. 6 reports some reflections on the lim-
itations and the impact of the research. In Sect. 7, we draw
a conclusion and relate our findings to prospective future
work.

2 Backgrounds and related work

This section introduces backgrounds needed for the further
understanding of the paper including related work we build
our approach upon. We first discuss different frameworks for
categorizing purposes of visualizations (cf. Sect. 2.1) and
then introduce the Process Modeling Behavior Analysis as
the domain we chose to demonstrate our approach, including
existing visualization types from this domain (cf. Sect. 2.2).
Finally, we provide backgrounds and related work on apply-
ing eye tracking evaluations to visual analytics (cf. Sect. 2.3).

2.1 Frameworks for categorizing purposes of
visualizations

The demand for systematically describing visualizations that
are used in analysis scenarios has been recognized by a num-
ber of representatives in the existing body of literature. In
the domain of Enterprise Architecture Management (EAM),
the EAM Pattern Catalog [7,28] introduces, among others,
the notion of so-called methodology patterns and viewpoint
patterns for EAM. Methodology patterns describe analytical
tasks that occur in EAM, e.g., “identify organizational units
where a lot of changes take place” or “find organizational
unitswith an exceptionally high amount of (not) standardized
business applications” [28]. These tasks define the purpose of
the analysis. Viewpoint patterns describe visual representa-
tions that can be used to support these tasks. They reflect the
notion of visualization types in this article and cover a range
from classical data visualizations, e.g., diagrams, charts or
tables, up to domain-specific visualization types for EAM
such as cluster maps to visualize different logical and phys-
ical views on an enterprise architecture.

The EAM Pattern Catalog lists selected methodology
patterns and suggests corresponding viewpoint patterns as
best-practice recommendations to perform analysis tasks.
This way, a domain-specific mapping between analysis tasks
and correspondingvisualizations is established.However, the
EAM Pattern Catalog does not operate with generalizable
abstractions that would allow to transfer parts of the results
to other domains. All descriptions are in natural language,
and there is no formalization that allows to answer questions
about why some visualizations better serve the purpose of
answering specific domain analysis questions than others.
In contrast to this, the categorization framework developed
in this article provides a conceptual link between described
purposes and visual means of expression that are made avail-
able by different types of visualizations. It could in principle
serve as an overarching formalization approach for the EAM
Pattern Catalog, based on an in-depth analysis of the analysis
patterns and visualization types with which the framework
would have to be configured (cf. Sect. 3.2).
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Other approaches for relating intended analysis purposes
to visualizations come in the form of guidelines for ensuring
correct, nonmisleading visualizations in business scenarios.
As one example, the International Business Communication
Standards (IBCS) [23] offer a set of prescriptive hints that
support in creating presentation graphics such as charts, dia-
grams, and tables for the domain of business reports and
presentations. The set of rules is divided into three subsets,
which are conceptual rules, perceptual rules, and semantic
rules. Conceptual rules refer to the contents that are to be
visualized and give hints on what elements should be part
of the information that is to be conveyed, e.g., the rule that
there should be an unambiguous title for each element in
a presentation. Perceptual rules refer to best practices and
scientifically justified design guidelines for visual represen-
tations of information, e.g., the rule that distances should
be preferred over areas to express magnitudes in diagrams.
Semantics rules, as they are called in the IBCS approach,
describe design conventions that ensure a unified appearance
of multiple different visualizations. Although this collec-
tion provides a valuable source of best practices for using
visualizations in a defined domain, there is no theoretical
reflection about the characteristics of domain-specific anal-
ysis purposes in relation to the rules that are proposed.

A number of publications exclusively deal with visual
characteristics of diagrams, charts, and other forms of infor-
mation visualization. These works partially originate from
times where information visualization was not yet related
to computer-generated graphics, such as the initial works
of Bertin [5] and Tufte [43] on (manually drawn) diagrams.
Beginningwith the time that computers played a increasingly
important role in visually displaying information,works such
as investigations about information dashboard design [16,17]
and user interaction [3,15,38] provide insight into relevant
characteristics of graphical displays and their interactive
features. A wide variety of publications deal with design
principles for data visualization and information graphics
[6,9–11,29,41]. All these contributions, however, exclusively
argue about the expressiveness of visual characteristics and
general categories of meaning that can be assigned to them.
None of them incorporate a systematic mapping between
domain-specific analysis purposes and corresponding visual
representations. It is the very aim of thework proposed in this
article to provide a justified methodological link of this kind.
This is achieved by leveraging the ViP framework, which
on the one hand acts as a conceptual framework that struc-
tures analysis purposes expressed in words, and on the other
hand makes use of locations in space to express relation-
ships between purposes and visualizations in a nonverbal,
spatially embodied [18,26] way. This double-faced nature
of the framework is the key approach to bridging between
verbally expressed purposes and characteristics of visualiza-
tions. Together with empirical eye tracking analysis, the use

of the framework constitutes the methodical approach for
justified selection of visualizations for analytical purposes
introduced in this article.

2.2 Process Modeling Behavior Analysis

Process Modeling Behavior Analysis (PMBA) refers to the
analysis of process traces with the aim of identifying patterns
of behavior. A process traces thereby describes the behavior
of an individual (e.g., a single modeler), a group (e.g., a soft-
ware development team), an organization (e.g., in the case of
business processes), or society (e.g., network analysis) as a
sequence of events. Process traces can originate, for example,
from the interactions of a user with a development platform
(e.g., creating a digital artifact like a process model or a piece
of source code). A process trace can also describe a user’s
fixations on the screen when interacting, for example, with a
digital artifact like a process model, a piece of software, or a
Web site. Other examples of a process trace could describe
how a user moves around in a smart home or how a business
process is executed.

These events can be aggregated into phases (e.g., by aggre-
gating events temporarily or spatially). For example, when
creating a process model, all user interactions that consti-
tute structural changes to a model could be aggregated into
modeling phases. In turn, when analyzing eye tracking data,
all fixations that belong to a specific area of interest on the
screen could be combined into a phase.

The ViP framework provides systematic guidance to iden-
tify visualization types for analyzing process traces aswell as
abstractions thereof with the goal to discover behavioral pat-
terns. To exemplify the framework, we decided to apply it to
one domain instance: the process of creating a processmodel,
also denoted as process of process modeling (PPM). This is
an iterative process during which a modeler communicates
with amodeling platform throughmodel interactions to grad-
ually evolve a process model. Model interactions include, for
example, the creation or deletion of activities, edges, or gate-
ways, and themovement of elements on themodeling canvas.
The sequence of model interactions that led to a particular
model is denoted as PPM instance. At a more abstract level,
the process of creating a process model involves different
phases [32], i.e., comprehension, modeling, and reconcilia-
tion, that can be combined in a flexible way (i.e., phases can
occur repeatably and phases can be skipped) [33]. During
comprehension phases, the modeler understands the prob-
lem at hand and builds an internal representation of it, i.e.,
a mental model. During modeling phases, the modeler inter-
acts with the modeling tool in order to externalize the mental
model and to create an actual representation. Finally, recon-
ciliation phases represent actions aiming at improving the
understandability of the model by changing the layout of
the modeling. In general, creation and deletion interactions
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(e.g., creating a new task on the modeling canvas, or deleting
an edge between two tasks) can be classified as modeling
phase. Interactions to rename modeling elements and move
elements usually characterize reconciliation phases. Com-
prehension phases, in turn, are phaseswithout any interaction
between the user and the modeling tool. Techniques for the
automatic identification of modeling phases are reported in
the literature [35].

As just described, the nature of the data generated from
the process of process modeling is clear: it is possible to
investigate it at the “event level” (i.e., interactions with the
modeling platform) or at the “phase level.” These data pro-
vide the empirical underpinning for PMBA. PMBA was
initially developed to deal with the analysis of data concern-
ing model creation and editing. It supports the exploration
of data with the goal to discover behavioral patterns which,
e.g., is relevant for the development of context-aware mod-
eling support that guides users during the creation of model
artifacts.

Gained insights allow to identify modeling styles [34] or
build personalized modeling environments or tailored meth-
ods [13]. In the literature, various visualization types for
Process Modeling Behavior Analysis applied to the pro-
cess of process modeling have been proposed, including
Modeling Phase Diagrams [35] (cf. Sect. 2.2.1), PPM Chart
visualizations [12] (cf. Sect. 2.2.2), and Rhythm-Eye visual-
izations [20] (cf. Sect. 2.2.3).

2.2.1 Modeling phase diagrams

The first visualization type for PMBA in process of process
modeling we introduce is called Modeling Phase Diagrams
(MPD) [35]. An example of such diagram is depicted in
Fig. 1a1, and it is a line chart where the x axis refers to the
modeling time and the y axis reports the number of activities
observed in the modeling canvas at each point in time. Addi-
tionally, the line is divided into different segments of varying
colors encoding the specific modeling phase that the given
time period refers to (i.e., modeling, reconciliation, compre-
hension) abstracting from the underlying interactions with
the modeling environment (i.e., modeling events) and group-
ing model interactions into phases (based by an algorithm
proposed in [35]). Moreover, Modeling Phase Diagrams pro-
vide a representation that makes it easy to see the pace at
which elementswere added or removed. TheModeling Phase
Diagram depicted in Fig. 1a shows an example of a process
instance with only short comprehension phases, numerous
modeling phases followed by reconciliation phases through-
out the entire process, and a very long reconciliation phase
at the end.

1 Larger versions of the figures are available at https://doi.org/10.5281/
zenodo.1419594.

2.2.2 PPM charts

PPM Charts [12] display individual events that represent
interactions a modeler has performed during modeling. The
set of interactions that are represented consists of create,
delete, and move operations applied to any elements of type
activity, gateway, event, edge, and edge-bendpoints.

The PPM Charts visualization type conveys information
about modeling instances using a two-dimensional place-
ment of symbols. Information about when an event occurred
is expressed by the placement of events along the x-axis,
which represents the flow of time from left to right. In con-
trast to this, the y-axis of a PPM Chart separates interactions
with different model elements from each other. All interac-
tions that relate to the same model element are placed on the
same horizontal line in the chart. The first events on each line
thus always represent creation interactions of the new model
element. Any later events displayed on the same line, i.e., to
the right of the creation event, are interactions performedwith
the same element. Bymaking use of the two-dimensional dia-
gram space in this way, PPM Charts manage to incorporate
both structural and dynamic information about a modeling
instance in one diagram.

Figure 1b1 shows an examplePPMChart diagram together
with a legend of the different event symbols that may occur in
the diagram. The PPMChart depicts an example of a process
instance where the creation of activities, gateways, and edges
is not interwoven. Instead, first activities and gateways are
created, and only afterward edges. This exemplifies a model-
ing behavior which is referred to as aspect-orientedmodeling
[13].

2.2.3 The Rhythm-Eye visualization

The Rhythm-Eye visualization [20] uses a circular represen-
tation to display the temporal progress of a process instance.
Events and phases are projected onto a ring structure, rather
than onto a linear timeline, according to their time of occur-
rence during process execution. Figure 1c1 shows an example
where events have been projected onto the ring, more specif-
ically “create activity” and “create edge” interactions. The
visualization depicts a process instance in which activities
and edges are created in an interwovenmanner. Figure 1d,1 in
turn shows a projection of the three modeling phases onto the
ring. The visualization illustrates a process instance where
comprehension phases are regularly followed by modeling
phases with only a brief reconciliation phase toward the end.
In order to differentiate between the starting point of a pro-
cess instance and its end, not the whole 360◦ is used, but a
gap between the start and the end is inserted to distinguish
both sides of the displayed process. With this circular pro-
jection, it can be expected that rhythmic patterns in process
data can be made visible at a glance [20]. This assumption is
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(a) Example of a Modeling Phase Diagram (b) Example of a PPM Chart

(c) Example of a Rhythm-Eye showing Events (d) Example of a Rhythm-Eye showing Phases

Fig. 1 Existing visualization types for Process Modeling Behavior Analysis

based on the consideration that a ring structure, other than a
linear projection, avoids the impression of lesser important
periphery areas at the very start and end of the projection
space. Hence, a more homogeneous perception of the dis-
tribution of events and phases over time would be achieved.
The ring projection can also use space on a display device in
a more compact and efficient way than a timeline projection.
In the same way as multiple lanes of a timeline projection
can be placed below each other, the Rhythm-Eye visualiza-
tion allows to nest multiple rings inside each other (which is
not used in our examples).

Our implementation of the Rhythm-Eye visualization is
embedded into a software environment which, among others,
allows to assign data from different sources to be projected
onto the rings, and configure their size and color parameters.
The software environment is shown in Fig. 2. The configu-
ration allows for a free choice of combinations of phase data
fromone process instance (single instance analysis) or differ-

ent ones (multi-instance analysis). Types of events andphases
can be filtered individually per ring.As a consequence, a vari-
ety of configurations becomes possible, in which multiple
ringsmay be used to differentiate between different instances
or events, and phases of the same instance are projected onto
multiple rings for comparison. Since the configuration of the
visualization is performed dynamically and the resulting ren-
dering is immediately shown, the visualization environment
also allows for a seamless navigation between these differ-
ent analytical perspectives. For example, an exploration can
begin with a multi-instance analysis that compares phases
of one particular kind with each other and then the ana-
lyst decides to drill down into the details of one specific
instance to compare the individual modeling phases of this
instance with each other and later widens the focus again by
re-incorporating other instances to investigate a particular
constellation discovered. This type of explorative navigation
shares similarities with “slicing & dicing” techniques from
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Fig. 2 Visualization environment for configuring and displaying
Rhythm-Eyes

OnlineAnalytical Processing (OLAP) approaches in the field
of data warehouse analyses [4,14].

In our analysis, we use two configurations of the Rhythm-
Eye visualization, one that shows modeling events, and one
that shows modeling phases. Dynamic configurations of
Rhythm-Eyes over time are not used.

2.3 Eye tracking evaluation of visual analytics

While eye tracking has been widely used to measure the
distribution of visual dimensions, e.g., in marketing or psy-
chology, it only recently gained popularity in visualization
research [31].

The analysis of the spatiotemporal eye tracking data can
be performed following a visual analysis or a statistical
approach [31]. The visual analysis of eye tracking data is
usually based on visualizations like attention maps (i.e., heat
maps) and gaze plots illustrating the user’s eyepath [24].
The statistical analysis of eye tracking data typically starts
from the raw gaze data obtained from an eye tracker. The
gaze data are then typically preprocessed to detect fixations
and saccades. A fixation is the maintaining of the gaze on a
single location, while saccades are the movements between
fixations. Typically, fixations are further mapped to areas of
interest (AOIs), i.e., specific regions on the stimulus that are
of special interest and which allow for a spatial segmentation
of the collected data.

According to [36], existing eye tracking metrics can be
subdivided into:

– Fixation-derived metrics including metrics like fixa-
tion duration or fixation count calculated for an area of
interest. They can be used to analyze the distribution of
attention over different areas of interest.

– Saccade-derived metrics including saccade amplitude
can be used to analyze the quality of visual clues in a stim-
ulus and the extent of visual searching [31]. Movement
direction measures of saccades like saccadic direction,
in turn, can be used to analyze in which direction the
saccade takes the eye [24].

– Scanpath-derived metrics A scanpath refers to the
entire sequence of fixations and saccades and can be used
to analyze reading strategies [31]. Transitionmatrices are
commonly used to analyze transition patterns between
areas of interest [24]. According to a recently conducted
study by Kurzhals et al. [31], existing studies in the visu-
alization communitymainly focused on the spatial aspect
of the recorded gaze data. Temporal aspects of the data,
such as AOI sequences, were often completely miss-
ing or only partially covered through transition matrices.
The analyses conducted as part of this paper clearly go
beyond the existing state- of the art and propose a novel
way of using process mining technology to analyze AOI
sequences.

The first part of this article will continue by introducing
a framework for matching visualization types with analysis
purposes.The focus in the secondpartwill be on the statistical
analysis of eye tracking data using fixation-derived metrics
and the visual analysis using saccade-derived measures, as
well as scanpath-derived metrics.

3 A framework for matching visualization
types with analysis purposes

As a first part of the methodical examination, in this section
the Visualization Purposes (ViP) framework is developed for
categorizing data visualizations according to the purposes
they fulfill in domain-specific data analysis settings. Once
the framework is configured for a given analysis domain, data
visualizations can be chosen based on analysis questions that
address different aspects of data to be analyzed.

Based on the concepts addressed by the analysis questions,
the framework provides systematic guidance for determin-
ing which data visualizations are able to serve conceptual
analysis interests. This allows to identify candidates of visu-
alization types that satisfy the information needs specific to
the analysis domain.

3.1 Amethod for configuring theViP framework

The procedure for setting up the ViP framework for a given
analysis domain consists of five essential configuration steps.
These steps serve to configure a multidimensional catego-
rization framework, which subsequently allows to map from
analysis questions to visualization candidates. In the follow-
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ing, the general configuration procedure is described. It will
be applied to the domain of ProcessModelingBehaviorAnal-
ysis (cf. Sect. 2.2) in the upcoming subsections.

1. Collect domain-relevant questions by performing a
domain analysis
As with every domain-specific setting, a systematic
analysis of the concepts, actors, goals, and procedures
that underlie the domain needs to be initially per-
formed. For the purpose of settingup theViP framework,
this analysis has to focus on questions that are to be
answered in the domain’s analysis scenarios. As a result,
the questions should be articulated together with the
identification of stakeholders who have an interest in
answering the question, and they should unambiguously
refer to specific objects of interest, i. e., characteristics
of relevant domain concepts, which are addressed by
each question. In general, the questions can bewritten in
natural language. However, depending on the complex-
ity of the domain, it may make sense to further refine
this step by prescribing a specific format in which the
questions should be stated, in order to better point out
the involved stakeholders and objects of interest. For
our purposes, since we operate with a manageable set
of eight questions, we refrain from prescribing a fixed
format and instead adhere to natural language which
points out all relevant aspects of analysis questions. Sec-
tion 3.2.1 contains the questions we collected for the
Process Modeling Behavior Analysis domain.

2. Identify independent dimensions that are addressed by
the questions
Once a set of multiple questions is available, the total
set of involved stakeholders, as well as characteristics of
objects of interest in the domain addressed by all ques-
tions, can be extracted. This allows to identify common
aspects addressed by the questions, alongwhich they can
be grouped, as well as varying aspects, which poten-
tially can serve as categories that distinguish between
the questions. E.g., it may turn out that questions can be
grouped according to the same domain elements they
address, but different characteristics of these elements
are put in focus by different questions. In this case,
dimensions describing the domain element’s character-
istics would qualify as a candidate for categorizing the
analysis questions of the domain. On the contrary, other
sets of analysis questions may rather address diverse
kinds of domain elements, but each one dealing with
identical characteristics of these elements. In this case,
the distinction between different domain element types
could serve as a categorization dimension for the ques-
tions.
As a result of this step, a number of aspects addressed
by analysis questions are identified, which can serve as

category dimensions along which the different analysis
questions of the domain can be either grouped together
or be differentiated. These dimensions can then be used
as axes of a categorization space that is spanned by
the ViP framework, by naming them appropriately, and
label the axis intercepts with the category values that
are part of this dimension. In case of a large number
of identified dimensions, it may make sense to refine
this configuration step with a phase of systematically
assessing the relevance of each identified dimension, so
it can be decided whether they are to be included in
the framework or not. For the Process Modeling Behav-
ior Analysis domain, we identified three dimensions in
Sect. 3.2.2 which were used for the framework config-
uration.

3. Locate analysis questions in the framework
Subsequently, the questions identified in step 1 are
placed inside the categorization space created in step 2.
A question is understood as being present at a location
in the framework, when it addresses those aspects that
are represented by the axis intercepts of a categorization
dimension. This means that the analysis questions get
associated with symbolic, nonnumerical, coordinates,
such as (cat1=“A,” cat2=“B,” cat3=“C”). Assuming a
number of dimensions not larger than three, and a given
ordering of the axis intercepts values of each dimen-
sion, coordinates of this kind can be projected into a
human-perceivable Euclidean space, as it is exempli-
fied in Fig. 3.
The result of this step does not necessarily have to be
presented visually as shown in the figure, but could be
manifested, e.g., as a table which lists all coordinates
and associated questions. Such a representation of the
locations of question is applicable to spaces with any
number of dimensions and is in principle not limited
to a maximum number of questions and aspects along
which they are categorized. It would also easily allow
for questions to be associated with multiple coordinates
at the same time, in cases where some of the identi-
fied analysis questions match multiple category aspects
simultaneously.
We locate the analysis questions of the Process Model-
ing Behavior Analysis domain in Sect. 3.2.3.

4. Locate visualization types in the framework
In analogy to the previous step in which questions have
been located in the categorization space, also visualiza-
tion types can be associated with places in the space. In
order to achieve this, each visualization type is exam-
ined whether it is capable of visualizing information
that matches each of the different category character-
istics represented by the coordinates of the space. Like
with the positioning of questions, visualization types can
be located at more than one single point in the space.
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They may cover lines, planes, or hyperplanes in the cat-
egorization space, which is the case when visualization
types are capable of visualizing any of the category char-
acteristics that belong to one category dimension of the
space.
To go into more details, general visualization types can
be distinguished with regard to their configurations, i.e.,
the same visualization type may be configured to map
different kinds of information onto its visual elements.
For example, a bar chart can be configured to display
diverse sets of figures fromdifferent categories. The step
of locating visualization types in the category spacemay
distinguish between configurations of this kind, if the
visualization types can be configured in multiple ways
to address the analysis questions from the configured
domain.
The localization of visualization types according to the
Process Modeling Behavior Analysis domain is done in
Sect. 3.2.4.

5. Apply the framework by finding matching visualizations
at the respective spatial position of a question
The configured framework allows for finding matches
between analysis questions and visualization types in
the category space, by looking at the colocations where
both individually have been placed. Beginning with an
analysis question to find visualization types for, all coor-
dinates in the space at which the question is located
are listed, and subsequently all visualization types that
are located at these coordinates can be derived. The
result is the set of those visualization types which may
be applicable for creating insightful visualizations that
answer the analysis question. For the Process Modeling
Behavior Analysis domain, the framework is applied in
Sect. 3.2.5.

3.2 Configuring theViP framework for the process
modeling behavior analysis domain

In the following, the general procedure for configuring the
ViP framework (cf. Sect. 3.1) will be applied to the Process
Modeling Behavior Analysis domain. For each of the five
described steps, the concrete application to the domain is
explained in one separate section.

3.2.1 Collect domain-specific analysis questions

In order to select suitable visualization types for the analysis
domain of ProcessModelingBehaviorAnalysis (PMBA) (cf.
Sect. 2.2), we associate analysis questions of the domainwith
a selection of visualization types that are suitable to answer
these questions. Objects of interests in the PMBA domain in
general are characterized by the nature of time-related data
that are collected during process modeling activities. As dis-

cussed in Sect. 2.2, in the first place these consist of a stream
of raw action events that are recorded as representations of
the actions modelers perform when creating or modifying
process models, e.g., when new activity nodes are added to
a process model, or when edges that connect activities are
modified or deleted from a process model. These individual
events can be aggregated to phase data. Both aggregation lev-
els of data characterize themain objects of interests examined
in PMBA, and analyses in general revolve around questions
about how different event and phase types are interrelated,
or how they are distributed over time.

As typical representatives from the PMBA domain that
address these epistemological interests, we selected eight
analysis questions which are listed in the following:

– Are activities and edges created in an intertwined way, or
does the user first create activities and then add edges?

– Are comprehension phases regularly followed by mod-
eling phases?

– Is there a long reconciliation phase at the end?
– Are there a lot ofmoveoperations at the endof amodeling
process?

– Which participant creates and immediately deletes ele-
ments more frequently?

– Which participant alternates most often between model-
ing and reconciliation phases?

– Which participant does most reconciliation phases con-
tinuously throughout the session?

– Which participant performs most delete operations?

By later locating the analysis questions inside the mul-
tidimensional categorization framework in Sect. 3.2.3, it
becomes possible to systematically differentiate between
purposes that are addressed by each question.

3.2.2 Identify categorization dimensions in the Process
Modeling Behavior Analysis domain

Resulting from themethodological considerations in the pre-
vious section, a concrete instantiation of a ViP framework for
analysis questions in the PMBA domain can now be expli-
cated. This is done in the form of a three-dimensional cube
which allows to locate each concrete domain-specific ques-
tion of the PMBA domain inside the ViP framework. To form
the cube, three independent dimensions that are addressed
by the identified questions (cf. Sect. 3.2.1) are selected
from the total set of questions. They are discussed in the
following.

Action dimension (What?) Depending on the focus of an
analysis, individual events that occur during the modeling
process, or entire phases of modeling activities, can be in
focus. It is also possible to address both together by an
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analysis question. A question that addresses both aspects is,
e.g., “Can a calm versus a hectic modeling style be distin-
guished?”. Looking exclusively at event information alone is
done, e.g., by asking “Does the participant often create and
immediately afterward delete elements again?”.

Timing dimension (When?) Analysis questions can addi-
tionally be distinguishedwith respect towhether they address
characteristics of entire PPM instances, or whether they
rather focus locally on the patterns of interplay among mod-
eling activities. A question that relates to an entire PPM
instance is, e.g., “Does the participant spend more time with
modeling in the second half of the experiment time than in
the first?”. In contrast, the interplay of phases is addressed by
the question “Are comprehension phases regularly followed
by modeling phases?”.

Instance dimension (How many?) Some of the analysis
questions focus exclusively on data referring to a single PPM
instance. These are, e.g., questions starting with “Did the
participant...”. Other questions ask for comparing behavior
of multiple instances with each other, e.g., “Can differ-
ent modeling styles of participants be recognized?”. It is
thus one fundamental criterion to distinguish between anal-
ysis scenarios that operate on collected data from single
sessions, and scenarios that work on data from multiple
sessions.

Based on the identified dimensions, a three-dimensional
space is spanned, inside which both analysis questions and
available visualization types will be located in the following
steps. By doing so, the framework becomes a conceptual
glue between questions that represent analysis purposes, and
visualizations.

3.2.3 Locate analysis questions inside the categorization
framework

To exemplify the use of the ViP framework, we list one
example question for each combination of dimension char-
acteristics and localize it in the three-dimensional space that
is spanned by the previously configured ViP framework.

We keep this rather informal by first describing the loca-
tions of questions verbally and then deriving the visual
representation as shown in Fig. 3 from this. The ques-
tions identified in Sect. 3.2.1 are numbered Q1 to Q8,
and their location inside the framework is indicated by the
labels shown inside the cube at the approximate locations
which resemble the Instance, Axis, and Timing characteris-
tics addressed by each question.

In the following, the example questions identified in
Sect. 3.2.1 are listed with reference to their locations in the
ViP framework, written in italics as a list of three dimension
characteristics that are addressed by each question:

Fig. 3 Multidimensional categorization framework for analysis ques-
tions regarding Process Modeling Behavior Analysis

Q1Are activities and edges created in an intertwinedway,
or does the user first create activities and then add edges?
(Single instance, Event actions, Relative timing)
Q2 Are comprehension phases regularly followed by
modeling phases? (Single instance, Phase actions, Rela-
tive timing)
Q3 Is there a long reconciliation phase at the end? (Single
instance, Phase actions, Absolute timing)
Q4Are there a lot ofmove operations at the end of amod-
eling process? (Single instance, Event actions, Absolute
timing)
Q5 Which participant creates and immediately deletes
elements more frequently? (Multiple instances, Event
actions, Relative timing)
Q6 Which participant alternates most often between
modeling and reconciliation phases? (Multiple instances,
Phase actions, Relative timing)
Q7 Which participant does most reconciliation phases
continuously throughout the session? (Multiple instances,
Phase actions, Absolute timing)
Q8 Which participant performs most delete operations?
(Multiple instances, Event actions, Absolute timing)

3.2.4 Locate visualization types inside the categorization
framework

The categorization dimensions identified in Sect. 3.2.2 allow
to make justified statements about the capabilities of differ-
ent visualization types to be supportive in answering analysis
questions associatedwith the PMBAdomain. Specifics of the
analysis purposes addressed by the questions can now be rep-
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resented conceptually by means of dimension characteristics
of the ViP framework.

At the same time, the visual expressiveness of different
available visualization types can be systematically expressed
with respect to the question whether a visualization type is
capable of answering analysis questions from the domain.
This means the ViP framework allows to map from con-
ceptually expressed purposes to visualizations. In order to
achieve this mapping, visualization types can be described
in terms of subspaces of the framework cube. A visualization
type may or may not be able to visually express some of the
dimension characteristics of the framework. Those areas of
the cube space which represent combinations of dimension
characteristics that a visualization type is able to express,
can be considered as the subspace of the cube which con-
tains all those analysis questions that can be addressed by
the respective visualization type.

In addition to previous examinations on the Rhythm-Eye
visualization type [20,44] (cf. Sect. 2.2.3), we now add the
Modeling Phase Diagram (MPD) [8] (cf. Sect. 2.2.1) and
PPM Chart [12] (cf. Sect. 2.2.2) to the set of available
visualization types, to provide a comprehensive coverage
of existing visualization types for PMBA. We then exam-
ine which dimension characteristics of the ViP framework
can be represented visually by each of these visualization
types.

The results of matching visualization types to dimension
characteristics are summarized in Table 1. All dimension
characteristics are flattened onto the vertical axis of the table.
The Rhythm-Eye visualization covers all dimension charac-
teristics and consequently can be used to answer all analysis
questions, i.e., Q1–Q8. This is possible because the Rhythm-
Eye visualization type offers a wide range of configuration
options by which it can be more flexibly configured than the
other two. MPDs support all timing characteristics, but are
only suitable to analyze single instances and questions con-
cerning phases (i.e.,Q2 andQ3). PPMCharts cover all timing

Table 1 Results of matching visualization types to dimension charac-
teristics

Characteristic MPD PPM C. Rhythm-E.

Instance

Single � � �
Multi �

Action

Events � �
Phases � �

Timing

Relative � � �
Absolute � � �

characteristics and are suitable to analyze single instances
in respect to questions concerning events (i.e., Q1, Q4). In
summary, the mapping reveals that for Q5–Q8 only one visu-
alization type, i.e., the Rhythm-Eye, exists, while Q1–Q4 can
be answered by two alternatives each.

3.2.5 Apply the ViP framework

The described approach makes it possible to reflect about
the purposes of visualizations on a conceptual level purely in
words. The analysis questions are describing specific anal-
ysis purposes, and overlaps between visualization types and
questions located in the framework provide a formalmapping
between described purposes and visualization capabilities.
Methodologically, this avoids the need to talk about indi-
vidual graphical properties of visualizations in combination
with conceptually high-level analysis purposes, which could
become utterly complex and would not provide an appropri-
ate level of explanatory abstraction.

To apply the configured ViP framework to any of the Pro-
cess Modeling Behavior Analysis questions, the location of
the respective question is to be determined as the dimension
characteristics of the question’s conceptual coordinates in the
framework space. Any visualization types which have been
placed at the same position in step 4 (cf. Sect. 3.2.4) are pos-
sible candidates for using them as analytical tools to answer
the question.

The corresponding visualization types from the PMBA
domain that are candidates to answer each of the analysis
questions are listed in the following.

– Q1: PPM Chart, Rhythm-Eye
– Q2: Modeling Phase Diagram, Rhythm-Eye
– Q3: Modeling Phase Diagram, Rhythm-Eye
– Q4: PPM Chart, Rhythm-Eye
– Q5–Q8: Rhythm-Eye

4 Eye tracking for evaluating the suitability
of alternative visualization types

This section outlines our method for testing alternative visu-
alization types (cf. Sect. 4.1) and explains how we applied
the proposed procedure in the context of Process Modeling
Behavior Analysis (cf. Sect. 4.2).

4.1 Procedure for testing competing visualization
types

The application of the ViP framework outlined in Sect. 3.2
is able to identify alternative visualization types for different
spatial positions in the framework. If only one visualization
at a certain spatial position exists, then this visualization can
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be selected for further analysis. For example, the recommen-
dation would be to use the Rhythm-Eye visualization for
questions related to multi-instances.

If more than one visualization is available, we suggest a
systematic and data-driven way to support the selection of
visualization types as well as their improvement. Similar to
a setting where A/B testing is conducted to compare variants,
our setting aims to find the variant that is most effective for a
specific analysis purpose. For example, in the context of Pro-
cess Modeling Behavior Analysis, the question is whether
to use Rhythm-Eye for Events or PPM Charts for ques-
tions related to events and Rhythm-Eye Phases versus MPD
for questions related to phases. This can be more generally
translated into the following research question RQ1: Which
visualization type is most effective for a specific analysis
purpose? To answer this research question, we suggest to
conduct an experiment which allows for group comparisons
between alternatives covering all relevant dimension char-
acteristics identified in the framework. Such an approach is
rather data-driven than theory-driven and therefore refrains
from formulating hypotheses.

The literature about software experiments provides vari-
ous design guidelines for setting up an experiment [2,27,30,
40,45]. Our setting requires the experiment to be designed as
a two-factor experiment investigating the effects of two fac-
tors (i.e., visualization type and analysis purpose) in terms of
their effectiveness (i.e., response variable) and operational-
ized, e.g., as answering correctness, answering time, total
fixation time on graph, total fixation count. Such an experi-
ment design allowsus to conduct group comparisons between
variations of a factor called factor levels for different analysis
purposes (e.g., Rhythm-Eye for Events vs. PPMChart for the
action dimension event characteristics; Rhythm-Eye Phases
vs.MPD for the action dimension phase characteristics). The
experiment is then rolled out to different participants, who
are asked to conduct different comprehension tasks (answer-
ing questions for different experimental objects, i.e., concrete
visualizations) using the different visualization types for dif-
ferent analysis purposes. Furthermore, we suggest to design
the experiment as a balanced experiment with repeated mea-
surement. This design is particularly suitable for comparing
design artifacts [30] (i.e., in our case different visualiza-
tion types) for different purposes. An experiment design is
denoted as balanced if all factor levels are used by all partici-
pants of the experiment. This enables repeatedmeasurements
and thus the collection of more precise data, since every
subject generates data for every treated factor level. More-
over, this choice of design has the advantage of being better
able to deal with heterogeneous backgrounds of participants.
Choosing a design with repeated measurements involves the
risk for learning effects. Randomizing the ordering in which
the comprehension tasks are presented can mitigate the risk
of learning effects and systematic biases favoring a partic-

ular factor level. As another measure to minimize learning
effects, we suggest to base the comprehension tasks referring
to the same question, but different factor levels on different
data (e.g., different modeling sessions in our context). This
ensures that participants cannot answer question by mem-
ory, but have to engage in the comprehension task to answer
correctly.

To identify the most suitable visualization types, group
comparisons are conducted comparing competing visualiza-
tion types for each of the analysis purposes in terms of their
effectiveness (e.g., Rhythm-Eye for events vs. PPMChart for
the action dimension event characteristics; Rhythm-Eye for
events vs. PPM Chart for the action dimension phase char-
acteristics).

If the group comparison between different competing
visualizations does not reveal significant differences, then
the user can choose either visualization types. To minimize
the number of used visualization types, one might choose
the visualization type with the highest number of analysis
purposes supported.

If the framework is used by a visualization provider, then
an analysis of reading patterns can be additionally conducted
to better understand why a particular visualization type is
better than another or why a certain visualization type is
not effective. Here, we expect to be able to identify reading
strategies distinct to each visualization type. By comparing
reading patterns, the quantitative results of the group compar-
isons can be complemented with explanations which provide
important input for improving a particular visualization type.
This results in research question RQ2:What reading strate-
gies can be identified for a given visualization type?

4.2 Testing competing visualization types for
process modeling behavior analysis

To analyze the suitability of the three visualization types in
the context of Process Modeling Behavior Analysis, we con-
duced an eye tracking session where we asked 15 novice
participants (i.e., students from the Technical University of
Denmark as well as academics) to answer the analysis ques-
tions introduced in Sect. 3.2.1, after being introduced to
Process Modeling Behavior Analysis.

The matching of visualization types to dimension char-
acteristics (cf. Table 1) revealed that for both the action
dimension and the timing dimension alternative visualiza-
tion types could be identified. For visualizing data related
to multi-instances, in turn, only a single visualization, i.e.,
the Rhythm-Eye, exists. In the empirical study, we therefore
focused on single-instance characteristics only.

Design We designed the experiment as a balanced two-
factor experimentwith repeatedmeasurements (cf. Sect. 4.1).

123



542 J. Gulden et al.

For each of the dimension characteristics of the framework
where more than one alternative visualization type exists, we
presented participants with the corresponding analysis ques-
tions, i.e., Q1–Q4 (cf. Sect. 3.2.1). To make the experiment
balanced, participants had to perform several sense-making
tasks for each analysis question (one for each visualization
type).

By designing the experiment as balanced experiment with
repeated measurement where each participant is exposed to
each factor level (Rhythm-Eye for events and PPM Chart),
we could reach an N high enough for conducting a quan-
titative analysis (i.e., it is usually well accepted to conduct
a quantitative group comparison with an N ≥ 25 for each
group).

The stimulus presented to the participants included the
question text on the top of the screen, the graph depicting the
visualization itself, and the legend.2 At the end of the session,
we asked the participants for feedback and their perception
regarding the different visualization types.

Operationalization For answering research question RQ1,
we operationalized the effectiveness of a visualization using
traditional performance measures like answer correctness
and answering time along with commonly used fixation-
derived eye tracking metrics like fixation duration and
fixation count [36]. Using fixation-derivedmetrics, the atten-
tion needed for answering analysis questions using different
visualization types can be compared. In the light of existing
literature, we expect that visualizations that are cognitively
more effective yield a lower fixation count [19] and a lower
overall fixation duration [37]. For answering research ques-
tion RQ2, we will use a combination of saccade-derived
measures and scanpath-derived measures as basis.

Instrumentation To collect the data for answering the two
above-mentioned research questions (i.e., RQ1 and RQ2), the
participants’ eye movements were tracked while answering
the analysis questions using a Tobii Pro TX300 eye tracker
(cf. Fig. 4). For designing the eye tracking session, for prepro-
cessing the eye tracking data and defining areas of interest,
Tobii Pro Studio 3.4 was used.

5 Results

5.1 Comparison of visualization types

This section aims to answer the research question RQ1 (i.e.,
which visualization type is more effective for answering
the posed analytical question). Please note that the match-
ing of visualization types to dimension characteristics (cf.

2 All presented stimuli are available at https://doi.org/10.5281/zenodo.
1419598.

Fig. 4 Eye tracking machine during the analysis of the results

Table 1) revealed that for the multi-instance characteristic
of the instance dimension, only a single visualization, i.e.,
the Rhythm-Eye, exists. Thus, our analysis will focus on the
action dimension and the timing dimensions where several
alternative visualizations exist.

5.1.1 Analysis procedure

To answer RQ1, we conducted group comparisons using the
nonparametricMann–WhitneyU test using SPSSversion 19.

For analyzing the action dimension, we need to make
the distinction between events and phases. The analysis
of event characteristics is based on questions Q1 and Q3
which both posed questions concerning the event dimension
and compares Rhythm-Eye and PPM Chart. The analysis
of phases characteristics, in turn, is based on questions Q2
and Q4, which posed questions concerning the phase dimen-
sion. The analysis compares Rhythm-Eye andMPD.With 15
participants3 this gives us 30 data points for each of the visu-
alizations and action characteristic (i.e., 30 data points for
Rhythm-Eye for events and PPM Chart as well as Rhythm-
Eye for phases andMPD). For analyzing the time dimension,
however, we further needed to split the data between relative
and absolute time. More specifically, we compared Rhythm-
Eye and PPM Chart based on the data of Q1 (relative) and
Q3 (absolute) and Rhythm-Eye and MPD for Q2 (relative)
and Q4 (absolute). After such split, we ended up with 15 data
points per configuration, as commented in Sect. 5.1.3.

As outlined in Sect. 4, we considered answer cor-
rectness, answering time, fixation duration, and fixation
count as dependent measures. We operationalized answer
correctness3 as a Boolean variable that could either be true
(i.e., correct) or false (i.e., incorrect). Answering time was
measured as the time needed to answer a question. To calcu-

3 All data about participants’ background, expected tasks’ answers,
and answers accuracy are available at https://doi.org/10.5281/zenodo.
1419598.
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late fixation duration and fixation count, we defined an area
of interest including the graph (excluding the question text
and the legend) and used Tobii Studio 3.4 to obtain these
metrics.

5.1.2 Results for the Action dimension

Tables 2 and 3 show the descriptive statistics for the phase
characteristics and the event characteristics, respectively.
Tables 4 and 5, in turn, show the results of theMann–Whitney
U tests for event characteristics and phases characteristics,
respectively.

Events The results of our statistical analysis show that
the Rhythm-Eye visualization outperformed the PPMCharts
for questions concerning the event dimension in terms of
answering correctness (U = 360, p = 0.01, < 0.05 two-
tailed), total fixation duration on the graph (U = 231,
p = 0.001, < 0.05 two-tailed), and fixation count on the
graph (U = 185.5, p = 0.000, < 0.05 two-tailed). Dif-
ferences in terms of answering time were not significant
(U = 320, p = 0.055, > 0.05 two-tailed).

Phases Moreover, our results show that the Rhythm-Eye
visualization outperformed the MPD visualization for ques-
tions concerning the phase dimension in terms of answering
correctness (U = 315, p = 0.001, < 0.05 two-tailed), total
fixation duration on the graph (U = 299, p = 0.026,< 0.05
two-tailed), and fixation count on the graph (U = 280,
p = 0.012, < 0.05 two-tailed). Differences in terms of

answering time were not significant (U = 409, p = 0.544,
> 0.05 two-tailed).

5.1.3 Results for the Timing dimension

As previously mentioned, for this investigation we could rely
only on 15 data points per configuration. With such number
of observations (below the usually accepted N ≥ 25), we
cannot draw absolute conclusions. We report this investiga-
tion nonetheless, in order to better illustrate the followed
methodology, which is the main contribution of the paper.

Relative timing Tables 6 and 7 show the results of the
Mann–WhitneyU tests of relative timing questions for event
characteristics and phases characteristics, respectively. The
corresponding descriptive statistics are available in Tables 10
and 11 in “Appendix.” Our results show that the Rhythm-
Eye visualization outperformed the PPM Charts for relative
timing questions in terms of answering time (U = 63,
p = 0.041, < 0.05 two-tailed), total fixation duration on
the graph (U = 55, p = 0.016, < 0.05 two-tailed), and
fixation count on the graph (U = 44, p = 0.004,< 0.05 two-
tailed). Differences in terms of answering correctness were
not significant (U = 82.5, p = 0.217, > 0.05 two-tailed).
Moreover, our results show that the Rhythm-Eye visualiza-
tion outperformed the MPD visualization for relative timing
questions in terms of answering correctness (U = 52.5,
p = 0.011, < 0.05 two-tailed), total fixation duration on
the graph (U = 48, p = 0.007, < 0.05 two-tailed), and
fixation count on the graph (U = 42, p = 0.003, < 0.05
two-tailed). Differences in terms of answering time were not
significant (U = 93, p = 0.436, > 0.05 two-tailed).

Table 2 Descriptive statistics for event characteristics

N Rhythm-Eye for events PPM chart

Min Max Median SD Min Max Median SD

Answer correctness 30 1.000 1.000 1.000 0.000 0.000 1.000 1.000 0.407

Answering time 30 6.580 87.630 20.705 17.894 7.880 105.190 27.015 27.309

Tot. fixation duration graph 30 1.160 27.910 6.455 6.623 3.850 55.360 13.055 15.232

Fixation count graph 30 5.000 108.000 30.000 23.891 20.000 266.000 59.500 66.165

Table 3 Descriptive statistics for phase characteristics

N Rhythm-Eye for phases Modeling phase diagram

Min Max Median SD Min Max Median SD

Answer correctness 30 1.000 1.000 1.000 0.000 0.000 1.000 1.000 0.466

Answering time 30 7.500 81.640 15.940 13.878 3.060 100.110 15.355 21.221

Tot. fixation duration graph 30 1.910 26.490 4.930 4.944 2.430 60.410 8.190 12.068

Fixation count graph 30 8.000 117.000 23.500 21.693 9.000 259.000 43.500 48.742
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Table 4 Mann–Whitney U test
for event characteristics

Rhythm-Eye for events versus PPM

Mann–Whitney U Asymp. sig. (2-tailed)

Answer correctness 360.000 0.010

Answering time 320.000 0.055

Tot. fixation duration graph 231.000 0.001

Fixation count graph 185.500 0.000

Bold values are below the significance threshold of 0.05. They support the assumption that the results from
two different experiments indeed originate from different statistical distributions

Table 5 Mann–Whitney U test
for phase characteristics

Rhythm-Eye for phases versus modeling phase diagram

Mann–Whitney U Asymp. sig. (2-tailed)

Answer correctness 315.000 0.001

Answering time 409.000 0.544

Tot. fixation duration graph 299.000 0.026

Fixation count graph 280.000 0.012

Bold values are below the significance threshold of 0.05. They support the assumption that the results from
two different experiments indeed originate from different statistical distributions

Table 6 Mann–Whitney U test
for event characteristics and
relative timing

Rhythm-Eye for events versus PPM chart

Mann–Whitney U Asymp. sig. (2-tailed)

Answer correctness 82.500 0.217

Answering time 63.000 0.041

Tot. fixation duration graph 55.000 0.016

Fixation count graph 44.000 0.004

Bold values are below the significance threshold of 0.05. They support the assumption that the results from
two different experiments indeed originate from different statistical distributions

Table 7 Mann–Whitney U test
for phase characteristics and
relative timing

Rhythm-Eye for phases versus modeling phase diagram

Mann–Whitney U Asymp. sig. (2-tailed)

Answer correctness 52.500 0.011

Answering time 93.000 0.436

Tot. fixation duration graph 48.000 0.007

Fixation count graph 42.000 0.003

Bold values are below the significance threshold of 0.05. They support the assumption that the results from
two different experiments indeed originate from different statistical distributions

Table 8 Mann–Whitney U test
for event characteristics and
absolute timing

Rhythm-Eye for events versus PPM chart

Mann–Whitney U Asymp. sig. (2-tailed)

Answer correctness 97.500 0.539

Answering time 86.000 0.285

Tot. fixation duration graph 49.000 0.008

Fixation count graph 40.500 0.002

Bold values are below the significance threshold of 0.05. They support the assumption that the results from
two different experiments indeed originate from different statistical distributions

123



From analytical purposes to data visualizations: a decision process guided by a conceptual… 545

Table 9 Mann–Whitney U test
for phase characteristics and
absolute timing

Rhythm-Eye for phases versus modeling phase diagram

Mann–Whitney U Asymp. sig. (2-tailed)

Answer correctness 105.000 0.775

Answering time 69.000 0.074

Tot. fixation duration graph 103.000 0.713

Fixation count graph 104.500 0.744

Absolute timing Tables 8 and 9 show the results of the
Mann–WhitneyU tests of absolute timing questions for event
characteristics and phases characteristics, respectively. The
corresponding descriptive statistics can be found in Tables 12
and 13 in “Appendix.” Our results show that the Rhythm-Eye
visualization outperformed the PPMCharts for absolute tim-
ing questions in terms of total fixation duration on the graph
(U = 49, p = 0.008, < 0.05 two-tailed), and fixation count
on the graph (U = 40.5, p = 0.002, < 0.05 two-tailed).
Differences in terms of answering correctness (U = 97.5,
p = 0.539,> 0.05 two-tailed) and answering time (U = 86,
p = 0.285, > 0.05 two-tailed) were not significant.

Our results show no significant differences between the
Rhythm-Eyevisualization and theMPDvisualization regard-
ing any of the dependent variables.

5.1.4 Discussion

Based on our results, it can be concluded that for questions
concerning both events and phases, the Rhythm-Eye visu-
alization outperforms its alternatives like PPM Charts and
Modeling Phase Diagrams. Though results concerning the
time are not completely reliable, the Rhythm-Eye visualiza-
tion also outperforms its alternatives for questions on relative
timing for at least some of the dependent variables; for ques-
tions concerning absolute timing and phase characteristics,
Modeling Phase Diagrams might constitute a viable option
to the Rhythm-Eye visualization.

5.2 Analysis of reading patterns

This section addresses RQ2, i.e., the identification of reading
patterns for the different visualization types.

5.2.1 Analysis procedure

In order to analyze the reading patterns, we started from a
scanpath of fixations and saccades (cf. Sect. 2.3). Addition-
ally, we identified relevant areas of interest on top of the
different visualizations (details regarding the defined AOIs
are explained in Sect. 5.2.2). Figure 5a depicts an example

(a)

(b)

(c)

Fig. 5 Example of AOIs, with a scanpath over them and the minded
model after filtering out AOI4. The Rose Plot of the scanpath is reported
as well

visualizationwith four areas of interest and a scanpath plotted
on top. Each filled circle represents a fixation. The number
contained in the circle refers to the temporal ordering of the
fixations. Edges refer to saccades connecting contiguous fix-
ations.

As described in Sect. 2.3, scanpath-derived measures can
be used to analyze reading strategies. In particular, transition
matrices are commonly used to analyze transition patterns
between areas of interest [24]. However, respective tech-
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niques focus on the spatial aspect of the recorded gaze data,
while temporal aspects can only be partially covered [31]. In
particular, transition matrices are not suitable to depict the
starting/ending points of the reading. Additionally, reading
such matrices can be difficult and it is not easy to elicit the
main reading patterns. Instead, we propose a novel process
mining-based technique [1] that is able to overcome these
limitations of transition matrices.

Similar to transition matrices, our focus is on transitions
between areas of interest. Therefore, in the first step, start-
ing from the sequence of fixations, we mapped each fixation
to the corresponding AOI. This results into the sequence of
AOIs where the subject focused.4 In the example of Fig. 5a,
such sequence is:

S = 〈AOI1,AOI1,AOI2,AOI4,AOI2,AOI3,AOI3〉.

In the second step, we need to merge contiguous elements
which are referring to the same AOI to remove fixations
within the same area of interest. Starting from S, we obtain:

S′ = 〈AOI1,AOI2,AOI4,AOI2,AOI3〉.

This sequence can be interpreted as an event log [1,25],
where each element refers to the “activity” performed by the
user while focusing on the given area of interest. Using state-
of-the art process mining [1] techniques, the typical flow
of the activities can be mined, which in our context can be
interpreted as the typicalwayof reading a given visualization.
Several control-flow discovery algorithms are available in
the literature, and several implementations (both academic,
open source, or commercial tools) can be used. Due to the
exploratory nature of our investigation, we decided to use
the tool Disco5 which allows quick filtering and parameters
tuning operations.

Using process mining tools like Disco, it is possible to
filter activities, i.e., to only depict the transitions between a
subset of the AOIs, e.g., AOI1–AOI3while ignoring AOI4. In
our context, for example, the area of interest containing the
question text should be filtered, since the question text has
to be read independently of the visualization and including
this area of interest would just lead to unnecessarily complex
models. To achieve that, we need to filter S′ to discard events
referring to areas of interest we are not interest in, i.e., AOI4.
The new sequence of events is:

S′′ = 〈AOI1,AOI2,AOI2,AOI3〉

We have now two contiguous events referring to the same
AOI (i.e., AOI2). In this case, however, we do not want to

4 The complete source code for converting eye tracking data into event
logs is available at https://github.com/DTU-SE/tsv2xes.
5 See http://www.fluxicon.com/disco/.

merge them, otherwise we would alter the meaning of the
transitions. If we enter this sequence of events in Disco we
obtain the model reported in Fig. 5b. It is possible to see the
starting point (depicted as light green circle), the end point
(as light red circle) and the 3 AOIs. Additionally, we can see
the transitions from AOI1 to AOI2 and then to AOI3. We can
identify a self-loop in AOI2. In this context, the interpretation
of a self-loop is different from the standard interpretation in
process mining: in this case it indicates that the focus on the
given area of interest was interrupted by fixations on some
AOI, not represented in the model (AOI4 in our example).

We complement this process mining-based approach to
analyze transitions between areas of interest with saccade-
derived measures, more specifically, the saccadic direction,
which allows to analyze in which direction a saccade takes
the eye. Directions for all the saccades in selected AOIs are
then depicted as angular histograms also denoted asRosePlot
[24]. In contrast to the process models obtained from Disco,
the Rose Plots not only depict saccades that are transitions
between different AOIs, but also transitions within the same
AOI. Figure 5c shows a Rose Plot of the saccadic directions
for the example depicted in Fig. 5a considering four cardi-
nal directions (north, south, east, west). Note that saccades
involving the filtered out AOI4 are not shown. It can be seen
from the Rose Plot that 0 saccades point to the “north” (45◦–
135◦), 2 saccades point to the “east” (315◦–45◦), 1 saccade
points to the “south” (225◦–315◦), and 1 saccade points to
the “west” (135◦–225◦).

5.2.2 Definition of areas of interest

The process mining-based technique described previously
relies on the definition of areas of interest. As suggested by
[24], we defined the AOIs prior to the analysis considering
our exploratory hypotheses, the composition of the stimulus,
the quality of the data, and the method of analysis.

The AOIs of the Rhythm-Eye visualization are reported
in Fig. 6a. Based on the initial findings reported in [44], we
expect subjects to start reading the visualization in AOI1 and
read the visualization in a clockwise direction, potentially
with several iterations. Therefore,we defined three areas suit-
able to capture the time dimension of the capture data, i.e., the
three AOIs correspond to the beginning, the middle, and the
end of the temporal distribution of events/phases. The ratio-
nale behind using three AOIs is to keep the number of AOIs
rather small, since we are interested in identifying reading
patterns abstracting from details.

The AOIs for Modeling Phase Diagrams are depicted in
Fig. 6b. Based on our experience in using MPDs, we expect
subjects to start reading in the center (AOI2) followed by
sequential reading of the visualization along the temporal
dimension (i.e., AOI1 => AOI2 => AOI3). Therefore, we
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AOI1

AOI2AOI3

(a) The three AOIs for Rhythm-Eye

AOI1

AOI2

AOI3

(b) The three AOIs for the MPD
AOI1

AOI4

AOI3

AOI2 AOI1

AOI2

AOI3
AOI4

(c) The four AOIs for the 2 PPM Charts we used for Q1 and Q4 respectively

Fig. 6 AOIs for the different visualizations used in this paper

identified three AOIs, which capture the temporal evolution
of the modeling process.

In the case of PPM Charts, the definition of AOIs is less
obvious, since such visualization can be read horizontally
in a temporal manner, vertically element by element, or in
a combined manner. Moreover, the modeling elements are
spread apart and difficult to group in homogeneous areas.
To capture both the time dimension and the distribution of
elements, we identified four AOIs, disposed in a sort of “flex-
ible 2 × 2 grid” (cf. Fig. 6c). Moreover, the AOIs have been
designed to roughly contain the same number of interactions.

In addition to the AOIs just mentioned, all models were
decorated with two additional AOIs referring to clearly iden-
tifiable semantical components of the presented stimulus: one
referring to the text with the analytical question and another
one with the legend of the given visualization. We always
filtered out fixations on the question text, since fixations on
the text are independent of the actual visualization type. The

legend has been included into all analyseswhere it wasmean-
ingful, as described in the result section.

5.2.3 Observed reading patterns

Figures 7, 8, and 9 report the reading patterns identified by
mining the event log and performing control-flow discovery.
To extract these process models, we loaded the event logs (cf.
Sect. 5.2.1) into the processmining tool Disco and performed
the mining procedure.

Rhythm-Eye The maps reported in Fig. 7 refer to the most
frequent behavior observed of the participating subjects
while answering Q1-Q4 using the Rhythm-Eye visualiza-
tion. From these charts, we can observe that area AOI1 was
typically the first the subjects looked at. This is reasonable,
since AOI1 coincides with the temporal beginning of the

123



548 J. Gulden et al.

8568

31

12

15

6

6

6

9

legend
103

AOI1
127

AOI2
44

AOI3
29

(a) Reading pattern of Rhythm-Eye answering Q1.

57 18

17

59

15

9

17

20

11

7

AOI1
109

legend
95

AOI2
30

AOI3
52

(b) Reading pattern of Rhythm-Eye answering Q2.

5

12

27

25

32

18 10

17

20

9

3

7

AOI1
72

AOI3
64

legend
46

AOI2
21

(c) Reading pattern of Rhythm-Eye answering Q3.

4

37

22

36

324

20

33

12

9

AOI1
72

AOI3
81

legend
58

AOI2
8

(d) Reading pattern of Rhythm-Eye answering Q4.

Fig. 7 Observed reading patterns for the Rhythm-Eye visualization

plotted data. In all cases, we see a notable amount of inter-
actions between “AOI1” and “legend” which suggests that
the training and learning take place at the very beginning
of the analysis. As far as reading patterns are concerned,
a distinction between relative timing (i.e., Q1 and Q2) and
absolute timing (i.e., Q3 and Q4) can be observed. In case
of absolute timing, the areas are typically visited in a clock-
wise direction, i.e., the flow goes from AOI1 to AOI2 and
then AOI3. Transition frequencies associated with AOI1 are
substantially higher than for AOI2 and AOI3 due to the inter-
actions with the legend. In case of absolute questions, in turn,
subjects typically started in AOI1 (which still represents the
entry point) and then they quickly went to the area which
is relevant for answering the question (cf. Fig. 7c, d). Both
questions Q3 and Q4 asked about the ending of the process,
i.e., the relevant area is AOI3. In both these cases, the patterns
identified suggest that subjects who entered in AOI1 imme-
diately moved to AOI3. Additionally, in both these cases,

negligible number of fixations were onAOI2 (which does not
provide information relevant for answering the questions).
This suggests that the Rhythm-Eye visualization supports
users in directing their attention to those parts of the visual-
ization that is relevant for answering the respective questions.

Modeling phase diagram The maps reported in Fig. 8 refer
to the reading patterns followed by subjects when answer-
ing Q2 and Q3 using Modeling Phase Diagrams. In general,
most of the subjects started their reading inAOI2,which coin-
cides with the center of the graph and not with its temporal
beginning.When compared to theRhythm-Eyevisualization,
the participants seem to be less guided in finding the starting
point. Likewith theRhythm-Eye visualization, differences in
the reading patterns can be identified depending on the tim-
ing dimension of the question. Question Q2 (cf. Fig. 8a) is a
question with relative timing that requires to scan the entire
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Fig. 8 Observed reading patterns for MPDs

chart. Here, the users started from the center (i.e., AOI2) and
then they went to AOI1, i.e., the temporal beginning of the
graph. Here, subjects “learnt” how to read the chart by fix-
ating the legend, and then they continued to AOI2 and then
to AOI3, i.e., they followed the line from beginning to end.
Some of the subjects repeated thewhole proceduremore than
once (cf. the loop connecting AOI3 to AOI1). Question Q3
(cf. Fig. 8b), in turn, is a question with absolute timing that
asked to observe a certain phenomenon at the end of themod-
eling process. Again the majority of the subjects started their
reading in AOI2; however, five subjects started their reading
process immediately in AOI3, which is the area containing
the information relevant for answering the question. Addi-
tionally, several interactions between AOI3 and the legend
can be observed, suggesting that the learning took place in
this area of interest.

PPM chart The last set of maps is depicted in Fig. 9. These
maps refer to questions Q1 and Q4 answered using the PPM
Charts. In both cases, users started reading the chart from
the top (i.e., AOI1 and AOI2) which does not represent the
logical beginning of the data, but just a subset of the ele-
ments represented. These results suggest that the PPM Chart
visualization provides the least amount of guidance onwhere
to start reading it. Moreover, it seems that PPM Charts to a
lesser extent support users in focusing on the parts relevant
for answering a particular question. For example, for Q4 the
relevant information is contained in AOI2 andAOI4, and still
numerous visits ofAOI1 andAOI3 can be observed. Irrespec-
tive of the timing dimension, we note horizontal movements
on the top part of the chart (i.e., betweenAOI1 andAOI2) and

vertical movements between top and bottom. Interestingly,
horizontalmovements are concentrated ontoAOI1 andAOI2,
while no horizontal movements between AOI3 andAOI4 can
be observed. This might suggest that it takes subjects a while
to understand how to best read a PPM Chart and that they
transition from a horizontal reading pattern toward a more
vertical reading pattern.

Since the area of interest definition for PPMChartswas not
obvious, we decided to conduct further analysis to ensure that
the results and their interpretations are not biased by the way
theAOIswere defined. In particular, wewanted to ensure that
the AOI definition was not too coarse-grained, potentially
missing small vertical movements resulting from a line-by-
line reading of the PPMCharts. We therefore decided to take
a more fine-grained perspective and analyzed the saccadic
direction (cf. Sect. 2.3) and visualized all saccades belong-
ing to AOI1-4 using Rose Plots (cf. Fig. 10a, b). Note that
these plots include both between and within AOI transitions
and therefore providemore fine-grained insights into the pre-
dominant readingdirection than the readingpatterns obtained
from Disco that only consider transitions between different
AOIs. The Rose Plots are in line with the results obtained
from Disco and confirm the predominantly horizontal read-
ing pattern.

6 Discussion

In this section, authors propose some reflections concern-
ing the presented technique and the results. Additionally,
we point out possible limitations and describe the potential
impact of the research.
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Fig. 9 Observed reading patterns for PPM charts
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Fig. 10 Rose Plots of saccadic directions for the PPM charts

6.1 Limitations

The findings reported in this paper are subject to several lim-
itations: up to now we demonstrated the feasibility of the
proposed approach considering one domain of ProcessMod-
eling Behavior Analysis. The application of our approach to
other domains is needed to demonstrate its general nature. In
order to achieve this, the use of purely categorical dimensions
in the ViP framework will have to be revisited, and it should
be considered how noncategorical dimensions, which allow

to express continuaor nonlinear hierarchies, canbe integrated
into the ViP framework approach.

There are also limitations concerning the evaluation of the
different visualization types. The evaluation study is based
on only 15 participants. This was mitigated by performing
repeated measurements. It should be further pointed out that
the core contribution of this paper, however, is not to demon-
strate that a certain visualization type is better than another
one (such result is only a collateral result). The core contri-
bution of the paper, instead, is the methodological procedure
suggesting how to come from analysis purposes to a selec-
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tion of suitable visualization types. In the light of this, the
limitations concerning sample size are less critical.

Another limitation concerns the limited number of ques-
tions presented to the participants. While such questions are
certainly relevant and representative for Process Modeling
Behavior Analysis, they only constitute a subset of relevant
questions. Moreover, as with every eye tracking study, areas
of interest need to be defined with care. Although we fol-
lowed the guidelines proposed by [24] and defined areas of
interest beforehand based on hypotheses, there is still an ele-
ment of subjectivity involved.

6.2 Impact

The framework presented in this paper has important impli-
cations for practice. Specifically, we devised a formal and
systematic procedure to come from analysis purposes to a
selection of visualization types. The framework itself as well
as the procedure to assess alternative visualization types is
domain independent.

It is important to point out that the described framework
is not limited to the analysis of data coming from the pro-
cess of process modeling. Instead, several other projects and
studies can benefit from it. In particular, in case of investi-
gations concerning Process Modeling Behavior Analysis, it
is possible to reuse the framework as it is, just by chang-
ing the research questions. This is due to the fact that data
coming from this domain are intrinsically characterized by
events and phases and, therefore, the dimensions as well as
the categorization presented in Sects. 3.2.2 and 3.2.3 can be
directly applied. However, this framework can be used also
in other domains, where data is less similar to the PMBA
case. In such scenarios, however, it is necessary to recon-
figure it by following the five steps presented in Sect. 3.2
(e.g., identify the domain-relevant questions, corresponding
dimensions addressed).

An example of a domain that can benefit from the frame-
work (going beyond Process Modeling Behavior Analysis)
is interfaces that are used by operators to provide timely and
accurate answers according to different stimuli. An example
of such system is the software to support control tower opera-
tors in an airport. In this case, the questions to answer are very
specific and easy to qualify for domain experts (i.e., step 1
in Sect. 3.2; e.g., Is it possible to grant landing permission
to a flight that requires it?). At the same time, the identifica-
tion of the dimensions can be achieved easily (i.e., step 2 in
Sect. 3.2; e.g., the priority of the request, if the request refers
to air space or runways). With this information, it is possible
to locate each question and each visualization available as

specific configurations in the dimensions (i.e., step 3 and 4 in
Sect. 3.2) and therefore proceed with the analysis (i.e., step 5
in Sect. 3.2). This example, only roughly sketched, gives a
glimpse of the capabilities of the ViP framework in domains
completely different from the one investigated in the paper.

7 Conclusion and future work

In this paper, we proposed a novel methodological approach
for matching visualization types and analytical purposes.
Using the case of Process Modeling Behavior Analysis as
running example, we developed the ViP framework that
gets instantiated for our domain with three fundamental
dimensions: timing, actions, and instance handling. We
then applied the framework to selected visualization types
for Process Modeling Behavior Analysis and conducted
experiments using eye tracking to compare them whenever
more than one alternative per analytical purpose could be
identified. The analysis of the collected eye tracking data
included a statistical analysis using fixation-derived mea-
sures and the analysis of reading patterns using a novel
process mining-based technique that is able to overcome
known limitations of existing scanpath analysis tools (e.g.,
transition matrices). The process mining-based technique
was complemented with saccade-derived measures where
appropriate.

It is important to notice that the whole framework can be
used in any other domain. Of course some applications might
require additional configurations, but the flexibility of the
procedure is described with one example, from a completely
different domain, in Sect. 6.2. Futureworkwill generalize our
approach to further domains, e.g., the EAM Pattern Catalog
[28] (cf. Sect. 2.1) could be used as large application example
in the Enterprise Architecture Management domain.

Another avenue of future work will explore the poten-
tial of process mining for the analysis of eye tracking data
in further detail. In this paper, we focused on a frequency-
based analysis. Future work could explore the suitability of
performance-based analyses as well.
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Appendix: Detailed descriptive statistics for
timing dimension

See Tables 10, 11, 12, and 13.
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Table 10 Descriptive statistics for event characteristics and relative timing

N Rhythm-Eye for events PPM chart

Min Max Median SD Min Max Median SD

Answer correctness 15 1.000 1.000 1.000 0.000 0.000 1.000 1.000 0.458

Answering time 15 11.010 87.630 34.940 20.680 19.450 105.190 49.400 27.057

Tot. fixation duration graph 15 2.250 27.910 8.330 8.178 4.080 55.360 22.360 16.967

Fixation count graph 15 10.000 108.000 34.000 29.613 20.000 266.000 82.000 73.647

Table 11 Descriptive statistics for phase characteristics and relative timing

N Rhythm-Eye for phases Modeling phase diagram

Min Max Median SD Min Max Median SD

Answer correctness 15 1.000 1.000 1.000 0.000 0.000 1.000 0.000 0.516

Answering time 15 9.830 81.640 18.170 17.893 3.060 100.110 21.270 26.534

Tot. fixation duration graph 15 1.910 26.490 6.490 6.204 2.430 60.410 15.190 14.643

Fixation count graph 15 8.000 117.000 24.000 28.102 9.000 259.000 66.000 58.807

Table 12 Descriptive statistics for event characteristics and absolute timing

N Rhythm-Eye for events PPM chart

Min Max Median SD Min Max Median SD

Answer correctness 15 1.000 1.000 1.000 0.000 0.000 1.000 1.000 0.352

Total duration 15 6.580 32.510 15.230 6.753 7.880 81.230 18.990 18.368

Tot. fixation duration graph 15 1.160 10.700 4.530 2.895 3.850 43.330 8.690 10.600

Fixation count graph 15 5.000 50.000 21.000 12.927 22.000 208.000 40.000 50.336

Table 13 Descriptive statistics for phase characteristics and absolute timing

N Rhythm-Eye for phases Modeling phase diagram

Min Max Median SD Min Max Median SD

Answer correctness 15 1.000 1.000 1.000 0.000 0.000 1.000 1.000 0.258

Total duration 15 7.500 27.970 13.610 6.143 5.450 33.400 8.700 7.343

Tot. fixation duration graph 15 2.020 12.630 4.710 3.227 2.950 21.240 5.960 5.099

Fixation count graph 15 11.000 52.000 23.000 12.755 13.000 88.000 25.000 23.405
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