
Software & Systems Modeling (2019) 18:2633–2653
https://doi.org/10.1007/s10270-018-0687-0

REGULAR PAPER

A4WSN: an architecture-driven modelling platform for analysing and
developingWSNs

Ivano Malavolta1 · Leonardo Mostarda2 · Henry Muccini3 · Enver Ever4 · Krishna Doddapaneni5 ·
Orhan Gemikonakli6

Received: 26 July 2016 / Accepted: 1 June 2018 / Published online: 17 July 2018
© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Abstract
This paper proposes A4WSN, an architecture-driven modelling platform for the development and the analysis of wireless
sensor networks (WSNs). AWSN consists of spatially distributed sensor nodes that cooperate in order to accomplish a specific
task. Sensor nodes are cheap, small, and battery-powered devices with limited processing capabilities and memory. WSNs
are mostly developed directly on the top of the operating system. They are tied to the hardware configuration of the sensor
nodes, and their design and implementation can require cooperation with a myriad of system stakeholders with different
backgrounds. The peculiarities of WSNs and current development practices bring a number of challenges, ranging from
hardware and software coupling, limited reuse, and the late assessment of WSN quality properties. As a way to overcome
a number of existing limitations, this study presents a multi-view modelling approach that supports the development and
analysis of WSNs. The framework uses different models to describe the software architecture, hardware configuration, and
physical deployment of a WSN. A4WSN allows engineers to perform analysis and code generation in earlier stages of the
WSN development life cycle. The A4WSN platform can be extended with third-party plug-ins providing additional analysis
or code generation engines. We provide evidence of the applicability of the proposed platform by developing PlaceLife, an
A4WSN plug-in for estimating the WSN lifetime by taking various physical obstacles in the deployment environment into
account. In turn, PlaceLife has been applied to a real-world case study in the health care domain as a running example.

Keywords MDE · Software engineering · Software architecture · WSNs · Energy

Communicated by Professor Gregor Engels.

B Leonardo Mostarda
leonardo.mostarda@unicam.it

Ivano Malavolta
i.malavolta@vu.nl

Henry Muccini
henry.muccini@univaq.it

Enver Ever
eever@metu.edu.tr

Krishna Doddapaneni
Krishna.c@altiux.com

Orhan Gemikonakli
o.gemikonakli@mdx.ac.uk

1 Vrije Universiteit Amsterdam, Amsterdam, The Netherlands

2 Computer Science Department, University of Camerino,
Camerino, Italy

1 Introduction

A recent study predicted that in 2020 there will be 50 billion
devices connected to the Internet [11]. These are devices
capable of performing various operations, such as sensing
data, actuating on the external environment. With this per-
spective, WSNs are becoming an important part of a wide
variety of applications and systems including environment

3 Department of Information Engineering, Computer Science,
and Mathematics - DISIM, University of L’Aquila, L’Aquila,
Italy

4 Computer Engineering, Middle East Technical University,
Northern Cyprus Campus, Güzelyurt, Mersin 10, Turkey

5 Wireless Innovation Networking Group, Altiux Innovations
Inc., San Jose, USA

6 Computer Design Engineering, Middlesex University,
London, UK

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10270-018-0687-0&domain=pdf

2634 I. Malavolta et al.

monitoring, energy metering, smart cities, health care and
intelligent houses [50].

Wireless sensor networks are composed of low-data-rate,
low-cost and battery-operated wireless components called
sensor nodes. A sensor node is a small digital device with
communication, sensing, and limited processing capabilities.
WSNs can be event-driven or continuous operation types.
Event-driven WSNs report data to the base station (BS) only
when certain events such as intrusion and fire detection occur.
Continuous WSNs report data to the BS at regular intervals.

1.1 WSN challenges

The unique characteristics of WSNs introduce new chal-
lenges in various fields such as programming, security, and
software engineering [7,36,47,57]. The text below points out
what we consider the main drivers for this work:

Abstracting implementation details into a design view: the
development of a WSN application requires skills across
all levels of the communication stack. A WSN application
developer has to be knowledgable about programming as
well as different layers of the ISO/OSI reference model.
Beside programming abstraction, abstracting an implemen-
tation view into an architectural design is a well-known need.
As stated in [47], “end users require high-level abstractions
that simplify the configuration of the WSN at large, possi-
bly allowing one to define its software architecture based
on pre-canned component”. Abstraction is fundamental for
futureWSNdevelopment, since sensors andWSNs ingeneral
are becoming important components in pervasive computing,
and mobile systems, with new types of stakeholders (e.g.
mobile systems engineers, developers) and reduced domain-
specific technical skills. Under this perspective, approaches
for abstracting the implementation details from the underly-
ing hardware and physical infrastructure are strongly advised
[7,36]. However, when current practices on WSNs are con-
sidered, the lack of engineering methods and techniques to
manage these challenges is evident. Some initial effort has
been made for architecting WSNs [21,27], and this paper
goes along that line providing more advanced solutions. A
thorough comparisonwith relatedwork is provided in Sect. 7.

Increase reuse: State-of-the-art approaches mostly mix
together software, hardware, and networking perspectives
during the coding or design phase. Hardware and software
components are locked and tied down to a specific type of
nodes, thus hampering the reuse of source code and software
components across different projects or organizations [36].

Early quality property assessment of WSNs: In traditional
implementation-specific approaches, engineers might afford
to take structural and behavioural decisions at deployment
time. However, in WSN development it is important to take

those sensible decisions as early as possible, enabling the
predictive analysis of both functional and extra functional
properties. This possibility becomes especially valuable in all
those cases where the sensor nodes cannot be easily accessed
once deployed (e.g. WSN nodes embedded into concrete
walls or WSNs deployed in hostile environments).

In addition to challenges while designing and implement-
ing a WSN, engineers and developers may face various
concerns such as application energy efficiency [16], depend-
ability,1 coverage [22], networking and communication, and
performance.

1.2 Our contribution

This article proposes A4WSN,2 a model-driven engineer-
ing platform for modelling and analysing WSNs. A4WSN
increases separation of concerns and abstraction, favouring
the possibility of reusing software and hardware compo-
nents across projects and organizations. It supports system
engineers in the design of WSNs without requiring special-
ized knowledge about WSN low-level details. It favours the
earlier, predictive, analysis of both functional and extra func-
tional properties.

This article contributes to the state of the art on WSN
engineering by:

– defining three modelling languages enabling the descrip-
tion of aWSN from different viewpoints. A4WSN, being
a multi-view approach including different models which
cover different concerns;

– providing a programming framework that enables the
implementation of analysis and code generation plug-
ins by third-party developers. TheA4WSNprogramming
framework supports extensibility and customization by
design;

– developing the PlaceLife plug-in that analyses A4WSN
models and automatically assesses the lifetime of the
network. Its implementation provides evidence for the
applicability of the proposed modelling approach and for
the extensibility of its programming framework.

The platform is available at the project website.3 It has
been used in our software and system architecture courses
for the past two years.

The rest of the paper is organized as follows. Section 2
provides the case study, while Sect. 3 overviews the A4WSN
platform. Section 4 describes the proposed modelling lan-
guages for WSNs. Section 5 presents the programming
framework. Section 6 focusses on the PlaceLife analysis

1 http://www.dependability.org/.
2 It stands for Architecting platform for (4)Wireless Sensor Networks.
3 http://a4wsn.di.univaq.it/.

123

http://www.dependability.org/
http://a4wsn.di.univaq.it/

A4WSN: an architecture-driven modelling platform for analysing and developing WSNs 2635

plug-in. Finally, Sect. 7 presents relatedwork,while the paper
concludes in Sect. 8.

2 The healthcare system case study

In this paper the healthcare system case study is used as run-
ning example in order to help the reader in understanding the
main concepts and design decisions considered when engi-
neering the A4WSN modelling languages. The case study is
used to show the effectiveness of the architectural approach
and the PlaceLife plug-in.

Recent technological advancements inWSNshaveopened
up new prospects for a variety of applications, including
healthcare systems [2,26]. WSN implementations on per-
vasive omputing-based healthcare systems avoid various
limitations and drawbacks associated with the wired sen-
sors providing a better quality of care, quicker diagnosis,
more intense collection of information and at the same time
keeping the cost and resource utilization to aminimum.Mon-
itoring facilities introduced by using WSNs are particularly
useful for early detection and diagnosis of emergency con-
ditions, as well as keeping track of the diseases. WSN-based
healthcare systems are also useful for providing a variety
of health-related services for people with various degrees of
cognitive and physical disabilities [2].

In the context described above, the case study (see Fig. 1)
represents the concept of an in-hospital WSN that allows
monitoring patients’ conditionswith the help of pulse oxime-
ters. The monitoring system consists of two types of nodes:
a monitoring station and seven oximeter nodes, forming a
star network. Each pulse oximeter monitors a patient contin-
uously, and a measurement is sent to the monitoring station
every 3 s. In case the oximeter reads a value below a thresh-
old, an alert message is sent to the monitoring system, and
the system goes into a warning mode in which sensor read-
ings are sent to the monitoring station more frequently (i.e.

Fig. 1 Hospital scenario considered: (i) the central component repre-
sents the monitoring station, (ii) a pulse oximeter is included in each
room around the central one

once every 200 ms), hence facilitating continuous monitor-
ing of patients and allowing real-time responses in case of
emergency conditions.

3 Overview of the platform

In this section we provide an overview of the A4WSN plat-
form. This research takes advantage of MDE techniques to
support an architecture-driven development and analysis of
wireless sensor networks. Figure 2 shows the main com-
ponents of the framework: the WSN modelling environment
for describing the architecture of a WSN, and the program-
ming framework. We emphasizes that we use the platform
to denote the programming framework plus the modelling
environment.

The WSN modelling environment exposes three mod-
elling languages for describing specific architectural views
of a wireless sensor network: the Software Architecture
Modelling Language for WSN (SAML), the Node modelling
Language (NODEML), and the Environment Modelling Lan-
guage (ENVML) (see Fig. 2).

– The SAML language focuses on the application layer
of the WSN. It is used to break down the application
into a set of software entities (e.g. components), to show
how they relate to each other, to better reason about their
distribution throughout the network, and to reason about
the business logic of the WSN.

– The NODEML language concerns the low-level aspects
underneath the application layer of the WSN. In this
context, stakeholders reason about routing protocols,
middleware, hardware configuration of the nodes, etc.

– TheENVML language is about the physical environment
where the WSN will be deployed. This viewpoint could
be specially useful for developers and system engineers
when they have to reason about the network topology, the
presence of possible physical obstacles (e.g. walls, trees)
within the network deployment area, and so on.

The three proposed modelling languages are linked together
via two auxiliary modelling languages. These languages
are called Mapping Modelling Language (MAPML) and
Deployment Modelling Language (DEPML), and they link
together SAML to NODEML and NODEML to ENVML,
respectively (see Fig. 2). More specifically, the MAPML
modelling language weaves together an SAML model and a
NODEML model. It allows designers to define a set of map-
ping links, each of themweaving together components in the
SAML model and node definitions in the NODEML model.
TheDEPMLmodelling languageweaves aNODEMLmodel
to an ENVML model. A DEPML model allow designers to
consider each node type defined in the NODEMLmodel and
to instantiate it in a specific area within the physical environ-

123

2636 I. Malavolta et al.

Fig. 2 Overview of the A4WSN platform

ment defined in an ENVMLmodel. Each node configuration
in NODEML can be instantiated n times within a specific
area in ENVML with a certain distribution strategy.

The two auxiliary modelling languages are necessary for
achieving a number of goals. Firstly, weaving models allow
the engineers (i) to tame the complexity of architectingWSNs
by ensuring the adoption of a clear separation of concerns
and thus better concentrating their effort towards the concerns
of more interest to each of them (e.g. a software architect
can focus on the application layer in the SAML model,
while a system engineer may focus on the nodes config-
urations in the NODEML model). Secondly, the auxiliary
models allow engineers to (ii) make the SAML, NODEML,
and ENVML models reusable across projects and organiza-
tions; this will open the possibility to, e.g. (i) reuse (parts of)
the application layer defined in an SAML model across dif-
ferent systems deployed in different physical environments,
(ii) build a catalogue of NODEML models which can be
exploited for investigating howusing different hardware con-
figurations may impact the energy efficiency of the system as
a whole, etc. Thirdly, the auxiliary models allow engineers
to (iii) improve the accuracy of model-based analyses by
considering a view that combines software, nodes, and envi-
ronment of theWSN (such a combined view is automatically
produced by A4WSN). In Sect. 6 we discuss in details a con-
crete case in which the integrated specification of software,
hardware, and environment strongly benefits the accuracy
of a simulation-based analysis for energy consumption and
system-level lifetime estimation. Finally, the auxiliary mod-
els allow engineers to (iv) achieve more comprehensive code
generation. Indeed, many programming languages can be
used today for implementing WSNs, mostly depending on
the targeted hardware nodes [9]; having a formalized link
between the application layer and the low-level configura-

tion of the nodes allows engineers to consider the specificities
of the considered nodes when generating code from SAML
models (e.g. generating differently optimized versions of
C++ code when targeting an Arduino UNO or MEGA 2560
boards). The main concepts of each modelling language are
described in Sect. 4.

Feasibility is surely important. A4WSN allows the fea-
sibility checks about the mapping to be performed in quite
a straightforward manner (e.g. by taking into consideration
suitably annotated SAML models in an OCL constraint).

The programming framework (see Fig. 2) provides a
set of facilities for supporting the development and integra-
tion of code generation and/or analysis engines. In Fig. 2,
Ci and Ai represent code generation and analysis engines,
respectively. The proposed programming framework knows
at runtime which plug-ins are installed in the framework,
and automatically provides the user with the available target
implementation languages or the available analysis tech-
niques.

Code generation and analysis plug-ins are structurally
similar. An analysis plug-in manages the analysis of WSNs
(e.g. coverage, connectivity, energy consumption analysis),
instead of a code generation plug-in which is tailored to the
generation of implementation code conforming to a set of
specific target languages. More specifically, in A4WSN the
main difference between code generation and analysis plug-
ins resides in their returned output: the main output of a code
generation engine can either be a set of source files or binary
packages, whereas the main output of an analysis engine can
be a violated property, a counterexample, a set of numerical
values, and so on. The detailed description of the program-
ming framework is presented in Sect. 5.

The A4WSN platform is generic since it is independent
from the programming language, hardware, and network

123

A4WSN: an architecture-driven modelling platform for analysing and developing WSNs 2637

Fig. 3 Software architecture of the hospital scenario WSN

topology. Starting from a set of models (each one reflecting
a certain WSN viewpoint), the code generation and analysis
components can be plugged into the framework for generat-
ing executable code or analysing outcomes.

4 Themodelling environment

As shown in the previous section, the modelling environ-
ment is composed of threemain languages,which are SAML,
NODEML, and ENVML. Each language allows the user to
frame the problem of describing the architecture of a WSN
from a specific viewpoint [24]. It is important to point out that
the modelling environment has been realized by: (i) carefully
and extensively checking the state of the art in WSN devel-
opment and modelling (see Sect. 7) and (ii) discussing with
WSN and embedded systems engineers with many iterations
of changes. We formalize the structure and concepts of all
the modelling languages of A4WSN by defining their under-
lying metamodel (see Appendix A). In the next sections each
modelling language is discussed. For the sake of brevity, we
do not describe in details each element of the A4WSN mod-
elling languages, they are presented in a dedicated technical
report available online [29].

4.1 Software architecture modelling language
(SAML)

The SAML modelling language allows architects to define
the software architecture of the WSN application.

The software architecture of a WSN is defined as a
collection of software components and connections. Com-
ponents interact with other components through (input or
output) message ports; they specify the interaction points
between a component and its external environment. Com-
munication happens by message passing. The actual com-

munication method of a message (i.e. broadcast, multicast,
or unicast) is specified in the send message action described
later in this section. In this context, a connection represents
unidirectional communication channel between twomessage
ports of two different components. The data contained in a
message are accessible by specific actions and events defined
in the behaviour of the involved components.

Figure 3 shows the SAML model of the WSN of the hos-
pital scenario introduced in Sect. 2. It is important to note
that this figure is actually a screenshot of the real A4WSN
tool available at: http://a4wsn.di.univaq.it. From a structural
point of view, the wholeWSN is composed of twomain com-
ponents: the Oximeter component represents the software
running on each oximeter node, while the Monitor com-
ponent represents the software running on the monitoring
station.

The internal state of a component is represented by the
values of its application data and its current behavioural
mode. An application data can be seen as a local variable
declared in the scope of the component; application data are
manipulated by actions, events, and conditions defined in the
behaviour of the component. Application data can be either
primitive (e.g. integer, boolean) or structured (e.g. enumera-
tion, array,map). TheOximeter of the hospital scenario stores
the current percentage of oxygen in the patient’s blood as a
real number in the h application data, and the current state
of its status led in the led application data, which can be
either RED or GREEN. A mode represents a specific sta-
tus of the component at the application layer. At any given
time, one and only one mode can be active in a component.
The component reacts only to those events which are defined
within its currently active mode. Each mode can contain a
set of behavioural elements that represent actions, conditions,
and events which together make up the control flow within
the component from an abstract point of view. Actions and
events are connected via links representing the control flow

123

http://a4wsn.di.univaq.it

2638 I. Malavolta et al.

among them. Optionally, a condition can be specified in a
link, meaning that the behavioural flow goes through a link
only if its condition evaluates to true.

An action represents an atomic task that can be performed
by an SAML component. It is important to describe a new
kind of action introduced called scoped send message; basi-
cally, this action tells that the set of nodes receiving the
message is computed at run time, depending on the value of
a boolean expression; only the nodes whose application data
values satisfy the boolean expression will receive the specific
message, thus enabling dynamic scope-based interactions
within the WSN [35]. For example, a scoped send message
may be used in order to send amessage to all the nodeswhose
floorName application data is equal to “ground ′′ and whose
temperature application data is greater than 21 degrees.

An event is triggered in response to either an external
stimulus of the component (e.g. the message reception on
a input message port), or some internal mechanism of the
component (e.g. a timer fired). Examples of event include
entering a specific mode, receiving a message at a given port,
an activation of a timer, the receivingof a call froman external
service, the receiving of an interrupt from either a sensor or
an actuator.

By considering the Oximeter component of the hospi-
tal scenario, at start-up it turns the LED into green via the
turn(led.GREEN) actuate action and starts two cyclic timers
in parallel. Every time the monitorTimer is triggered (every
3000 ms), the component sends the current value of the h
application data to the Monitor component via the update
message port. When the readingTimer is triggered (i.e. every
200 ms), the component senses the current oxygen percent-
age in the patient’s blood via the senseH action: if the read
value is not below or above the norm (i.e. if it is not between
95 and 99%), then the component switches to the alarm
mode. In this specific mode, the component firstly sends the
current read value to the Monitor component via a dedicated
alarm message port, then it turns the LED to red, and starts
a new cyclic timer with a period of 200 ms. From this point
onwards this component senses the percentage of oxygen in
the blood of the patient and sends it toMonitor every 200ms.
If the read value comes back in the acceptable range, then the
component switches back to the normal mode. The Monitor
component is straightforward. It has a single operating mode
inwhich every time amessage from theOximeter component
is received, its data are shown on a display via the update-
Display actuate action. This component temporarily stores
the value received by the various oximeter nodes in data.

4.2 Nodemodelling language (NODEML)

NODEML is a language that allows the abstraction of low-
level details. More precisely, NODEML allows the definition
of specific nodes that can be used to define a WSN. Once

Fig. 4 Node configuration of the hospital scenario WSN

the nodes have been defined, they can be reused across
different applications. Our node abstraction is based on
the work that is described in [36]. More precisely, a node
configuration can specify information such as operating sys-
tem (e.g. TinyOS, Contiki, Mantis, LiteOS), middleware
(such as TeenyLIME, MiLAN, RUNES [37]), transport-
Protocol (such as UDP and TCP), macProtocol (such as
T-MAC, S-MAC, WiseMAC, SIFT [14]) and routingProto-
col (such as SPIN, LEACH, GEAR [1]). From a structural
perspective, in NODEML a WSN node contains one or
more energy sources (e.g. batteries), amicrocontroller (i.e.
the component mainly devoted to computation and memory
management), a set of sensors, a set of actuators, a set of
additional memories representing external storage memo-
ries of the node, a set of radio communication devices to
communicate with other nodes within the WSN, and a set of
power modes in which the node can be at any given time.

As shown in Fig. 4, the NODEML model developed for
our hospital scenario is composed of two node configurations
using TinyOS4 as the operating system, GEAR as the routing
protocol, and T-MAC as the MAC protocol. The specified
node configurations are detailed below:

– OximeterNode is equipped with an IRProbe sensor for
sensing the percentage of oxygen in the patient’s blood
and a LED actuator for showing the current status of
the node to the personnel of the hospital. This node is
powered by two AA batteries with up to 18,720 J and
uses a Texas Instruments ChipCon 2420 RF transceiver.

4 http://www.tinyos.net/.

123

http://www.tinyos.net/

A4WSN: an architecture-driven modelling platform for analysing and developing WSNs 2639

Fig. 5 Physical environment of the hospital scenario WSN

The microcontroller used is the low-power Atmel AVR
ATmega128 equipped with an ADC for converting the
analogue values read by the IRProbe sensor into their cor-
responding digital values. The oximeter node is always
active (see the active power mode).

– MonitorStation has a single actuator device for graphi-
cally showing the values received by various oximeter
nodes on a digital display. Similar to OximeterNode, it
uses a Texas Instruments ChipCon 2420 RF transceiver
and uses a low-powerAtmelAVRATmega128microcon-
troller. The monitoring station is always active (see the
active power mode) and is powered by a classical elec-
trical plug connected to the main electrical system of the
hospital. Finally, it is equipped with an additional storage
memory for storing a log of all the values received by the
oximeter nodes over time.

4.3 Environment modelling language (ENVML)

The ENVML modelling language allows the designers to
specify the physical environment in which the WSN nodes
are deployed.

The Environment represents the overall area in the 2D
space in which the WSN nodes are deployed. In ENVML
an image can be associated with the specified environment,
allowing environment designers to provide a more detailed
view of the environment bymeans of external CAD software;
in this case the proposed ENVML models can be seen a
projection of these models which focusses on obstacles and
inner areas only. Any kind of relevant obstacle can be placed
in the environment. Each obstacle is characterized by the
name of thematerial it ismade of (e.g. concretewall, wooden
door, glass), and its attenuation coefficient. The shape of the
obstacle is given by its shell: a sequence of coordinates
representing the perimeter of the obstacle in the 2D space.

Figure 5 shows the ENVMLmodel representing the phys-
ical environment of our hospital scenario. It is a rectangle

with 16 and 13 metres of width and height, respectively, and
it contains three kinds of obstacles that are concrete walls
dividing the whole environment into rooms and corridors,
a main wooden door on the left, and a glass door for each
patients room.Eachobstacle is represented by auniquename,
its attenuation coefficient, and the coordinates of all the points
of its perimeter.

In ENVML an area identifies a portion of physical envi-
ronment in which nodes of the same type can be distributed
according to a distribution policy (defined in the DEPML
modelling language, see Sect. 4.4). Similar to obstacles, the
perimeter of the area is defined by means of its shell.

The physical environment of the hospital scenario con-
tains two main deployment areas:

– BSArea is a square area at the centre of the environment
and will contain the central monitoring station.

– OximetersArea its perimeter is the same as the whole
physical environment and will contain all the oximeter
nodes, one for each patients’ room.

It is important to note that the above mentioned solution
is one of the possible deployment configurations; another
solution could also consist of the creation of a single area for
each oximeter, where each oximeter could be placed in the
centre of the area. The aforementioned solutions share the
same network topology

4.4 The two auxiliary modelling languages: MAPML
and DEPML

The two auxiliary modelling languages are MAPML (the
Mapping Modelling Language that assigns software compo-
nents to the corresponding hardware node configuration they
will be executed on) and DEPML (the Deployment Mod-
elling Language used to virtually deploy WSN nodes into
the physical environment).

A MAPML model semantically represents the classical
notion of deployment of software components onto hardware
resources [59].

A MAPML model is made of a set of node mappings,
each of them linking a node definition from the NODEML
model and a component from the SAMLmodel. The seman-
tics of a node mapping is that the linked component in the
SAMLmodel will be physically deployed on the linked node
in the NODEML model.

For what concerns our hospital scenario, the MAPML
model (which links the SAML and NODEML model of
Figs. 3, 4) has the following form:

– NodeMapping_oximeter links the Oximeter component
to the OximeterNode node;

123

2640 I. Malavolta et al.

– ModeMapping_active links both the normal and
alarmmodes of theOximeter component to the active
power mode of the OximeterNode node. It is impor-
tant to note that operating modes defined in SAML
are pure logical modes, whereas NODEML power
modes depend on the hardware configuration of the
node itself.

– SensorMapping_irProbe links both the SenseH(h)
and SenseH2(h) SAML sense actions to the hardware
IRProbe sensor in the NODEML model.

– ActuatorMapping_led,which is similar toSensorMap-
ping_irProbe, links both the turn(led.GREEN) and
turn(led.RED) SAML actions to the hardware led
actuator in the NODEML model.

– CommunicationDeviceMapping_2420 links the
update and alarm SAML message ports to the Chip-
Con2420 RF transceiver defined in the NODEML
model.

– NodeMapping_monitor links the Monitor component to
the MonitorStation node;

– ModeMapping_active links the normal mode of the
Monitor component to the active power mode of the
MonitorStation node.

– ActuatorMapping_display links the SAML actuate
action called updateDisplay(data) to the hardware
display actuator in the NODEML model.

– CommunicationDeviceMapping_2420 links the
update and alarm SAML message ports of the Mon-
itor component to the ChipCon2420 RF transceiver
defined in the NODEML model.

DEPML is our language for virtually deploying WSN
nodes into the physical environment. DEPML allows design-
ers to consider each NODEML node configuration and to
instantiate it in a specific area within the physical envi-
ronment defined in a ENVML model. A DEPML model
contains a single type of link called deployment link, which
links together a node configuration in NODEML and an area
in ENVML. The semantics of the deployment link is that
the linked node configuration is instantiated and virtually
deployed in the linked areamultiple times. This allowdesign-
ers to focus on generic components and node types in SAML
and NODEML, while in DEPML they can reason on the
final deployment of the WSN. The number of nodes that are
instantiated in the area is specified in the numberOfNodes
attribute. Within a certain area each node configuration can
be distributed in three different ways: random, grid, and cus-
tom.

For what concerns our hospital scenario, the DEPML
model contains the following elements:

– DeploymentLink_oximeter links the OximeterNode node
in the NODEML model to the OximetersArea ENVML
area. Since we want to specify that exactly one oximeter
node must be deployed in each patient’s room, we define
a custom node distribution. Thus, we manually define
the exact position of the deployed nodes by means of
ten deployed node elements, each of them containing the
coordinates of its position in the environment.

– DeploymentLink_monitorStation links the MonitorSta-
tion NODEML node to the BSArea ENVML area. In this
case we specify that the number of deployed nodes is
only one, with a random distribution within the area (we
can do this because the area is a square with a side of
0.5 metres, which is exactly the size of the monitoring
station node).

4.5 Model correctness and feasibility

All the proposed languages have been designed to provide a
good trade-off between genericity, expressivity, and accuracy
in capturing the various facets of the WSN domain. In this
respect, it is fundamental to allow designers to checkwhether
their models are correct with respect to the semantics of the
proposed languages. A4WSN provides two different mecha-
nisms for checking the correctness of the developed models,
namely: (i) model conformance and (ii) a set of OCL con-
straints.

A4WSN allows designers to check whether a model
adheres to the structural semantics of its corresponding
language (e.g. SAML). A4WSN supports this feature by
leveraging thewell-known notion of conformance inmodel-
driven engineering; in other words, in A4WSN a model
m adheres to the structural semantics of its corresponding
language (e.g. SAML) if and only if m actually conforms
to its metamodel (e.g. the SAML metamodel introduced in
Sect. 4.1).

In order to ensure a more precise semantics of the
languages described in Sect. 4, we complemented the meta-
model of each language with a set of OCL5 constraints. OCL
is based on first-order predicate logic, and it is a language to
describe expressions and constraints predicating on models
in an object-oriented fashion. In A4WSN we use OCL con-
straints for enforcing the correctness and feasibility of the
designed models. For example, the OCL constraint shown
in Listing 1 is defined in the context of an SAML con-
nection between components (line 1) and ensures that in
SAML models each instance of Connection links together
ports belonging to different components (line 3); when the
constraint is violated, the architect is informed about it via a
dedicated error message (line 4).

5 Object Constraint Language (OCL) specification: http://www.omg.
org/spec/OCL/2.3.1.

123

http://www.omg.org/spec/OCL/2.3.1
http://www.omg.org/spec/OCL/2.3.1

A4WSN: an architecture-driven modelling platform for analysing and developing WSNs 2641

1 context Connection{
2 constraint sameComponentConnection {
3 check: (self . source . eContainer () = self . target .

eContainer ())
4 message: ’Source and target ports of the ’ + self . source

.name + ’−’ + self . target .name + ’ connection cannot
belong to the same component’

5 }
6 }

Listing 1 Example of OCL constraint checking if an SAML connection
links ports belonging to the same component

The A4WSN platform contains fourteen OCL constraints
on the various modelling languages of the platform. For
example, another constraint in DEPML ensures that the coor-
dinates of each manually positioned node must be within the
boundaries of the area it is deployed in, and so on. For the
sake of readability, the description of such constraints is not
discussed extensively in this article.

It is important to stress that our set of OCL constraints
are defined in the context of all the A4WSN modelling
languages. When considering the auxiliary A4WSN lan-
guages (i.e. MAPML and DEPML), our OCL constraints
help architects and designers in actually evaluating the
functional feasibility of either the software and hardware
mapping (when considering MAPML models) or the vir-
tual deployment of the nodes in the environment (when
considering ENVML models). These OCL constraints are
especially important since their checks cross-cut multiple
models conforming to different modelling languages; this is
a non-trivial situation, where a manual analysis to identify
and fix their violations could be very challenging for archi-
tects and designers. Listing 2 shows two OCL constraints
performing two of those cross-model checks.

1 context Sense{
2 constraint senseActionNotMapped {
3 check {
4 / / mapModel is a reference to a MAPML model
5 for (m in mapModel.mappings. select (e | e . eClass () .name=’

SensorMapping’) {
6 /∗ resolveLinkEnd() is a custom operation for

obtaining a
7 model element from a link end referring to i t ∗/
8 i f (m. senseAction . resolveLinkEnd() = self) {
9 return true ;

10 }
11 }
12 return false ;
13 }
14 message: ’The ’ + self .name + ’ SAML sense action is not

mapped to any NODEML sensor ’
15 }
16 }
17

18 context SensorMapping{
19 constraint sameComponentDifferentNode {
20 check{
21 var component = self .getComponent() ;
22 var node = self .getNode()

23 return not SensorMapping. allInstances . exists (p | (p.
getComponent() = self .getComponent()) and (p.getNode()
<> self .getNode()))

24 }
25 message: ’Two SAML sense actions belonging to the ’ +

self .getComponent() + ’ component are mapped to two
different NODEML nodes’

26 }
27 }
28

29 / / returns the SAML component containing the mapped sense
action

30 operation SensorMapping getComponent() : Component {
31 return self . senseAction . resolveLinkEnd() . eContainer () .

eContainer () ;
32 }
33

34 / / returns the NODEML node containing the mapped sensor
35 operation SensorMapping getNode() : Node {
36 return self . sensor . resolveLinkEnd() . eContainer () ;
37 }

Listing 2 Examples of OCL contraints checking inter-model conditions
between SAML and NODEML models

The senseActionNotMapped constraint is defined in the
context of SAML sense actions (line 2) and checks among
all MAPML sensor mappings (line 5) if there is one involv-
ing the current sense action (lines 8–12); an error message
is shown to the architect if the current SAML sense action is
not mapped to any NODEML sensor (line 14). Another non-
trivial constraint is shown in lines 18–27 of Listing 2. This
constraint is defined in the context of MAPML sensor map-
pings (line 18) and checks if there are SAML sense actions
belonging to the same components, but at the same time they
are mapped to more than one NODEML node (lines 21–24);
this situation is erroneous in A4WSN because we assume
that every SAML component is an atomic unit of deploy-
ment, i.e. an SAML component cannot be deployed to more
than one NODEML node at the same time. As shown in lines
29–37, the OCL engine we use in the current implementa-
tion of A4WSN allows us to abstract complex operations
on the models as auxiliary operations (see Appendix A for
more detail). For example, the getComponent() operation
is defined in the context of a MAPML sensor mapping;
it identifies the linked SAML sense action (via another
resolveLinkEnd() operation) and returns the SAML compo-
nent containing the sense action by navigating upwards twice
in the containment hierarchy of the SAMLmodel. The getN-
ode() operation performs a similar logic by identifying the
NODEML node containing a NODEML sensor mapped by
a specific MAPML sensor mapping.

If the need for more strict semantics of the proposed
languages arises (for instance, in order to define WSN
applications with specific styles or special configurations),
additional OCL constraints can be added to every element
of all languages by extending the A4WSN platform with a
suitable analysis plug-in. Extensibility in terms of additional

123

2642 I. Malavolta et al.

checks on the models is one of the main drivers that lead
us to adopt a plug-in-based architecture in A4WSN. Indeed,
in principle it is very difficult (if even possible) to antici-
pate what are all (possibly project- and application-specific)
constraints that all users of A4WSN may need to enforce;
in this context, our solution is to (i) provide default OCL
constraints in A4WSN for covering the general cases (e.g.
checking if all links within an SAML model are connect-
ing compatible ports) and (ii) to allow plug-in developers to
define and enforce their own additional constraints when the
base ones are not enough for satisfying specific needs. Please
refer to Sect. 5 for more details on this feature of the A4WSN
platform.

4.6 Discussion

This section has presented a 3+2 modelling framework that
by using three main modelling languages and two auxiliary
ones, supports the specification and analysis ofWSNs.While
a comparisonwith relatedwork is provided in Sect. 7, the aim
of this section is to briefly discuss why a new set of domain-
specific modelling languages (DSMLs) is presented, instead
of extending existing ones.

According to [34]“domain-specific languages (DSLs) are
languages tailored to a specific application domain. They
offer substantial gains in expressiveness and ease of use com-
pared with general-purpose programming languages in their
domain of application”. While DSL and DSML are not syn-
onyms of the same concept [8,44], a number of advantages
pointed in [34] still apply to DSML:

– domain-specific constructs defined for the domain of
interest (WSNs, in our specific case) are far more
fine-grained and specific than user-definable operators
of existing modelling languages. More specifically, we
could have expressed the SAML by profiling UML State
Machines. However, this would have implied forcing
SAML to strictly follow the semantics of UML state
machines and to introduce a number of other concepts
by specializing UML constructs. Furthermore, the def-
inition of the ENVML model would have required an
under-specification of the 2D space.

– The use of DSMLs offers possibilities for analysis, ver-
ification, and transformation that are far beyond what is
supported by general-purpose languages. In our specific
case, through the definition of (and with an option to
extend) the A4WSN modelling languages, we can run
a multitude of domain-specific predictive analysis tech-
niques (such as the PlaceLife plug-in we developed to
estimate the WSN lifetime—see Sect. 6).

– overall, DSMLs offer gains in reuse and maintenance.
Accordingly, the A4WSN SAML, NODEML, and

MAPML models are reusable in different applications
and applications domains.

When designing the modelling languages of A4WSN, we
aimed to represent the domain of WSNs in order to cover
its most representative concepts and entities. We identified
the set of concepts of the A4WSN modelling languages
by working closely with industry partners and continuously
performing informal interviews with engineers, developers,
researchers, and other involved stakeholders within WSN-
based projects. So, it is important to stress the fact that
with the proposed modelling languages we do not aim to
address all the possible concerns in all possible situations
about WSNs (e.g. dependability, sensing coverage, network-
ing and communication, performance), especially because
of the intrinsic multidisciplinary nature of the WSN prob-
lem space. Also, as already discussed in the literature about
architecture description languages [15,32,33], having a com-
prehensive modelling language containing all the possible
concepts related to a given domain may be unfeasible, or at
least may lead to large and complex languages, whichmay be
cognitively difficult to manage and maintain. The A4WSN
platform targets the following concerns in the domain of
WSN engineering: (i) separation of concerns, addressed via
themulti-viewmodelling paradigm adopted in themodelling
framework, (ii) reuse, addressed via the (independent) shar-
ing of architecture, nodes, and environment models across
projects and organizations, and (iii) model-based analysis,
addressed via the A4WSN plug-ins system and its program-
ming framework.

It is also important to note that the A4WSN modelling
languages can be easily extended by means of generic and
language-independent composition engines proposed in the
literature. For example, in [15] we proposed a language com-
position engine that extends architectural languages with
domain-specific concerns, with new architectural views,with
analysis constructs or with methodology and process con-
cepts, depending on the system’s stakeholder concerns. In
this case, the needed additional concepts may live in dedi-
cated plug-ins of the A4WSN platform and can be used by
the WSN engineers when needed.

5 The A4WSN programming framework

As introduced in the beginning of Sect. 3, the A4WSN plat-
form is composed of two main parts that are (i) a modelling
environment to allow architects to model WSN applications
and (ii) a programming framework devoted to code genera-
tion and analysis ofWSNapplicationmodels. Themotivation
for performing code generation and analysis of WSN appli-
cation models are well understood both in academia and in
practice [26,47]. Basically, code generation helps in reducing

123

A4WSN: an architecture-driven modelling platform for analysing and developing WSNs 2643

the cost of developing a WSN application since the devel-
opers can automatically obtain an executable application
from the model by applying some specific transformations.
Also, performing analysis is fundamental while developing
a WSN application due to the intrinsic complexity of the
WSN domain. For example, if we consider typical aspects in
WSNdevelopment such as node connectivity, real-time com-
munication, energy consumption, performance, security, it is
extremely difficult and demands a lot of effort to ensure that
a developed WSN is correct with respect to those aspects.
Moreover, analysis engines can also be used to reason about
the WSN configuration in order to find reasonable trade-offs
in terms of network topology, employed protocols, etc., for
a specific task.

In this section we present the generic and extensible pro-
gramming framework of A4WSN. It is tailored to support the
development of code generation and analysis engines against
WSN application models conforming to the modelling lan-
guages described in Sect. 4.

Our programming framework offers a generic workbench
and a set of extension points to support the development
and integration of third-party code generation and analy-
sis engines. More specifically, through its components, it
enables the storage of WSN models, supports the merg-
ing of linked models, validates A4WSN models, provides
error/warning/information messages to the user, defines a UI
manager to make plug-ins interact, and provides facilities for
managing code generation and analysis engines.

Third-party engines are realized as plug-ins extending the
generic A4WSN workbench. It detects at run time which
plug-ins are available and automatically provides to the user
the available target implementation languages and analysis
techniques.

Figure 6 shows an overview of the A4WSN program-
ming framework. All the boxes within the programming
framework represent the various components of the generic
programming workbench, whereas the C1..Cn and A1..An

boxes represent third-party code generation and analysis
plug-ins, respectively. Third-party plug-ins extend the Code
Generation Manager and Analysis Manager components
which provide the needed extension points, and they com-
municate with all the other components of the programming
framework. (For the sake of clarity, we do not show those
connectors in the figure.) In the following we introduce the
facilities and duties of the various components.

Models It is a repository storing all the WSN models
developed by architects and designers. Stored models can
conform to any A4WSN modelling language, which are
SAML, NODEML, ENVML, MAPML, and DEPML. The
model repository can be implemented in different ways. For
instance, it may directly rely on the file systemof themachine
running the A4WSN platform (this is the solution imple-

Fig. 6 The A4WSN programming framework

mented in the current version of the A4WSN tool), it may
point to resources stored in the cloud or it may refer to some
in-memory model representation. If on the one hand this
feature of the model repository is very flexible in terms of
resources consumption and localization, on the other hand it
opens for possible problems of interoperability between all
the other components of the A4WSN programming frame-
work. This is exactly why the Model Adapter component
exists.

Model Adapter It is a component which abstracts the nature
of the model repository to the other components of the
A4WSN programming framework. The model adapter is
composed of a set of connectors (each of them tailored to a
specific model storage type) that expose a common interface
to all the other components to access various elements of the
models in a homogeneous way. The Model Adapter compo-
nent has a built-in model transformation, called Merger, that
takes as input an instance of each A4WSN modelling lan-
guage and produces a single model conforming to a unique
metamodel. The reason behind the existence of the Merger
transformation is that currently many approaches and tools
for code generation and analysis assume to have a single
model as an input, rather than a set of models conforming to
different languages. In order to alleviate this issue with cur-
rent approaches and tools (which could have hampered the
usefulness of the whole A4WSN platform), we decided to
implement theMerger as an internal transformation to merge

123

2644 I. Malavolta et al.

separate models into a single one. Merger can be executed at
any time by plug-in developers by calling a dedicated Java
method.

Validation The Validation component executes all the oper-
ations to validate A4WSN models, namely:

– it checks whether one of the A4WSN models conforms
to its corresponding metamodel;

– it executes all the OCL constraints defined in each meta-
model within the A4WSN platform and checks whether
they are satisfied or not;

– if defined, it executes the additional OCL constraints that
are defined in some code generation or analysis plug-ins
and checks whether they are satisfied or not.

The Validation component communicates with Model
Adapter in order to access various elements of the models
to be validated. Also, it communicates with the Messages
Manager and the UI Manager components to (i) show infor-
mative messages to the user and to (ii) highlight the model
elements violating the constraints, respectively.

MessageManagerTheMessageManager component serves
to show informative messages to the user. A4WSN supports
three kind of informativemessages which are error, warning,
and information. Plug-in developers can decide the type of
each message to be shown, depending on its severity.

UI Manager The UI Manager component is responsible for
the main facilities interacting with the user interface of the
A4WSN platform.6 The UI Manager component provides
all the graphical facilities to interact with the plug-ins and
elements of the A4WSN platform, such as a dedicated view
showing a list of all the available code generation and anal-
ysis plug-ins, contextual menus implemented by plug-ins,
validation triggers (i.e. contextual menus and buttons) for
validating the currently edited model, and a dedicated view
in which users can provide additional parameter to be passed
to the code generation or analysis engine being triggered.

Parameter Provider It manages the additional parameters
that a code generation or analysis plug-in may require for
carrying on its activities. As previously mentioned, addi-
tional parameters are defined by using a specific extension
point of the A4WSN programming framework. Additional
parameters can be plain strings, numbers, Booleans, files,
or resources in the cloud which can be accessed by a stan-
dard HTTP GET request to a given URL. Once the user has
provided the values of the additional parameter of a code gen-
eration or analysis engine, theParameter Provider component

6 Also the Messages Manager interacts with the UI of the A4WSN
platform; however, its impact to the UI is much more limited than that
of UI Manager.

makes them available to the plug-in realizing the engine so
that it can access them before actually executing the activity
which is being triggered by the user.

Code GenerationManager The Code Generation Manager
provides a set of facilities for managing code generation
engines and the extension point that is used by code gen-
eration plug-in developers. For instance, it checks which
plug-ins are currently extending its extension point and
makes their facilities available to the end user. It includes
all the registered code generation plug-ins into their spe-
cific view in the UI Manager. It loads plug-ins into the
contextual menus of the A4WSN modelling environment.
It automatically triggers the validation operations defined
by the plug-ins before executing the actual code generation
operation. Also, the Code Generation Manager component
exposes a common Java API to plug-in developers, so that
they can easily interact with all the other components of the
A4WSN programming framework. For example, it allows
developers to access elements of the models in the Model
Repository, or to push messages to the end user via the Mes-
sage Manager.

Analysis Manager The internal logic of the Analysis Man-
ager component is analogous to that of Code Generation
Manager. The only difference is that it is designed for anal-
ysis plug-ins, rather than for code generation plug-ins.

Extension Points The concept of extension point is nicely
described in the EclipseWiki,7 it says that the extension point
declares a contract, typically a combination of XML markup
and Java interfaces that extensions must conform to. Plug-ins
that want to connect to that extension point must implement
that contract in their extension. The key attribute is that the
plug-in being extended knows nothing about the plug-in that
is connecting to it beyond the scope of that extension oint
contract. This allows plug-ins built by different individuals or
companies to interact seamlessly, even without their know-
ing much about one another. The last part of the Eclipse
definition of extension point says exactly what we are sug-
gesting to the WSN research community, i.e. not to rebuild
the wheel by focussing on modelling languages, graphical
editors, but rather to focus on code generation and analysis
of WSN applications by developing A4WSN plug-ins.

The extension points defined in theA4WSNprogramming
framework are used to group code generation and analysis
engines into two different groups, so that the end user knows
where those engines can be found. Also, they are used to pro-
vide a common, standard behaviour to various engines that
may be defined upon the A4WSN modelling environment.
Both the Code Generation Manager and Analysis Man-

7 http://wiki.eclipse.org/FAQ_What_are_extensions_and_extension_
points\%3F.

123

http://wiki.eclipse.org/FAQ_What_are_extensions_and_extension_points\%3F
http://wiki.eclipse.org/FAQ_What_are_extensions_and_extension_points\%3F

A4WSN: an architecture-driven modelling platform for analysing and developing WSNs 2645

ager provide a standard management of the workflow that
must be followed when executing those engines. For exam-
ple, they automatically call the set of preliminary actions
defined by using a specific extension point (the same holds
for post-actions). Managers also automatically manage the
success and error messages to be shown after the execution
of either a code generation or analysis operation. Additional
operations performed by managers include updating the UI
of the modelling framework depending on the available
plug-ins extending A4WSN, keeping intermediate resources
produced by plug-ins, provide themeans for specifying addi-
tional parameters needed by specific plug-ins. The complete
set of extension points that can be used by third-party plug-in
developers is described in details in [28].

6 PlaceLife: an A4WSN plug-in

In order to validate the expressivity of theA4WSNmodelling
languages and to exercise the provided extension points, we
developed an analysis plug-in called PlaceLife which takes
advantage of the three modelling views (namely SAML,
NODEML and ENVML) to estimate the WSN’s lifetime.
More precisely, all modelling views are analysed, combined
and translated into low-level simulation scripts that can be
executed to evaluate the WSN’s lifetime. This translation
has been useful to verify that our models have an appropriate
level of detail for simulation purposes. In order to simulate
the system realistically the following is desirable:

– Abstraction: The models abstract all the details needed
to generate scripts that can run in various well-accepted
simulators such as OPNET [10] and OMNeT++ [61];

– Fine-grain simulation:The details should be able to suf-
ficiently combine different information such as physical
environment, hardware and various layers of OSI.

The abstraction is verified by considering the informa-
tion required by well-established simulation tools for each
OSI layer. In most of the cases A4WSNmodels successfully
abstract the information but missing ones can also be easily
added using a specific plug-in. More precisely:

– Application layer: Includes the structure and behaviour
related information of the WSN such as the type of
components, number of instances and their interaction.
The modelling languages of A4WSN provide ways to
define the aforementioned application layer information.
The SAML view contains structure and behaviour of
theWSN application. This information is complemented
by the NODEML view that specifies, among the other
information, the type of operating system and themiddle-
ware used. Finally, ENVMLandDEPMLmodels provide

information about the number of nodes within the WSN
and their deployment position in the environment;

– Networking and data link layers: Information at network-
ing layer should specify the routing protocol. A4WSN
provides such information through its NODEML model
where either multi-hop routing protocols (e.g. AODV) or
some clustering approaches (e.g. LEACH) are specified.
Static routing can also be defined by explicitly specify-
ing the connection among nodes. The NODEML also
includes a wide range of possible MAC protocols such
as CSMA, T-MAC and S-MAC [60,63].

– Physical layer and hardware: Information should support
the definition of an energy consumption model for real-
istic estimate of the WSN lifetime. An advanced energy
consumption model should consider the path-loss [40],
modulation scheme, hardware, coding scheme, and so
on. The modulation scheme, the hardware, and the cod-
ing scheme are specified in the NODEMLmodel, and the
path-loss model is defined according to the environment
and its obstacles as explained in Sect. 6.1. NODEML,
ENVML, and path-loss definitions are used to generate
low-level settings and scripts that can provide an accurate
estimate of the energy required to transmit a bit over the
physical channel.

– Analytical model: The analytical framework for calcula-
tion of the lifetime of nodes is presented in Sect. 6.2.

Wekeep the coremodelling languagesSAML,NODEML,
ENVML as clean and minimal as possible, without polluting
them with analysis or code generation-specific constructs.
However, the users can add their own analysis-specific mod-
els and concepts via dedicated plug-ins in order to streamline
the analyses that they need to perform. For instance, in
the healthcare case study A4WSN models the application
behaviour (e.g. sampling rate and event notification policy)
while PlaceLife outputs Castalia simulations [46]. Castalia is
a widely used simulator that is built on the top of OMNeT++.
Castalia adds to OMNeT++ realistic wireless and radio
model channels for WSNs plus well-known WSN mac pro-
tocol simulations.

Fine-grain simulations are easily obtained thanks to the
reuse and the weaving of multiple models into a single one.
Models such as NODEMLor ENVML that contain low-level
information can be created once and reused multiple times
with different application models. Technical details such as
the effects of the path-loss and the hardware which require
theories of telecommunication are specified in pre-built
PlaceLife models. Furthermore, these details are comple-
mented with the application model (i.e. SAML) and the
physical environment (i.e. ENVML). Thesemodels are trans-
formed into various complex simulation scripts. In Sect. 6.3
we describe the PlaceLife implementation and the simulation

123

2646 I. Malavolta et al.

tool used as a target language for simulation script genera-
tion.

In Sect. 6.4 we compare the simulation results obtained
with a basic Castalia simulation with a PlaceLife simulation
based on pre-built hardware and path-loss models, applied
to the hospital application. Numerical results are presented
to show the effects of a realistic simulation scenario, where
environmental factors are taken into account. The former has
the default ideal free-space model for the path loss, while the
latter considers pre-built PlaceLife models that consider the
real environment that is made of physical objects.We see that
not considering the real environment may cause significant
overestimations of the lifetime which is particularly undesir-
able.

6.1 The path loss

The path loss is a reduction in transmitted signal strength
as a function of distance, which determines how far apart
two sensor devices can be and have reliable communication
between the devices [42]. In sensor networks, path loss can
play a crucial role since neglecting the path loss may cause
overestimation of WSN lifetime [40].

Outdoor propagation models are commonly used for
indoor propagation estimations as well. However, the indoor
environment differs widely due to the increased number of
obstacles, layout of rooms, presence of multiple walls and
floors, windows, and open spaces. These factors can have
significant impacts on path loss in an indoor environment.
Due to the irregularity in the position of obstacles and lay-
out of the rooms, the indoor propagation modelling becomes
quite challenging. The propagation and path-loss models are
usually based on empirical studies of the system considered.

Most of the simulation studiesmake use of themodels that
are developed based on empirical measurements over a given
distance in a given operational frequency range and a partic-
ular environment [48]. Some of the most common empirical
models include Okumura model, Hata model, Erceg model,
ITU indoor path-loss model, log-distance path-loss model
[48,55]. When considering an indoor propagation environ-
ment for path loss, the material used for walls and floors,
the layout of rooms, windows and open areas, location, etc.,
should be taken into account, as all of these factors can have a
substantial impact on the path loss. The complexity of indoor
signal propagation makes it difficult to obtain a single model
that illustrates path loss across a wide range of environments.
The following is a commonly used simplified model for path
loss as a function of distance [18].

Pr (d Bm) = Pt (d Bm) + K (d B) − 10γ log10

(
d

d0

)
(1)

Table 1 Partition-dependent losses for 2.4 GHz

Attenuating material Signal attenuation in dB

Wood 2

Metal frame, glass wall into building 6

Office wall 6

Metal door in office wall 6

Cinder wall 4

Metal door in brick wall 12.4

Brick wall next to metal door 3

where Pr is the received signal strength and Pt is the trans-
mitted signal strength; K is the path-loss factor (depends on
antenna characteristics and the average channel attenuation),
γ is the path-loss exponent, and d0 is the reference distance
for the antenna far field and is typically assumed to be 1–10m
for indoor scenarios and 10–100m for outdoor scenarios. The
path-loss factor K can be calculated as:

K (d B) = 20 log10
λ

4πd0
(2)

The value of λ depends on the propagation environment.
This path-loss model, together with the ENVML physical
environmental model, is used to define the path loss between
any two nodes. Please note that existing simulation packages
and modelling architectures do not consider the effects of
path loss to best of our knowledge. We fix the value of γ at
2 for free space and introduce the losses for each partition
(obstacle) that is encountered by a straight line connect-
ing the receiver and the transmitter. Please refer to Table 1
for the decibel loss values measured for different type of
partitions, at 2.4 GHz [42]. In order to add the effects of
obstacles between the transmitter and the receiver, we add the
fixed path losses per existing obstacles to the free-space path
loss.

The physical layer has a fundamental role when energy
consumption is considered, and choosing a model for energy
consumption can be complicated. Different studies and
simulation tools employ various models for this purpose
[6,20,61].

6.2 Analytical model

In this section an analytical framework for calculation of the
lifetime of nodes is presented to verify the simulation results.
The analytical framework considers the characteristics of the
transmission process which affects the lifetime of a node.
Without loss of generality, the lifetime L of a node n can be
expressed as:

123

A4WSN: an architecture-driven modelling platform for analysing and developing WSNs 2647

Table 2 Selected values

Link safety margin M = 10

Receiver noise figure Nf = 5

Ambient noise power spectral
density

N0 = −204 dBJ

Power amplifier efficiency γ = 0.35

Combined gain of the transmit and
receive antennas

G = 1

Required signal-to-noise ratio per
bit τ = transmission technique
� = fading characteristics and
B = target bit error rate

fτ,�(B) = 15 dB

circuitry Ect = Ecr = 1 µJ

Ln = Etot

Epr · Rr + Ept · Rt
(3)

where Ln is the lifetime of the nodes, Etot is the total energy in
Joules available for the node considered (e.g. initial energy
for two AA battery is 18720 joules), Epr and Ept are the
energy spent to receive and transmit a single packet, and Rr

and Rt are the average number of packets received and sent
per second, respectively.

For the analytical framework introduced in this paper, the
energy consumptionmodel described in [6] is combinedwith
the effective number of transmissions including the retrans-
missions caused by obstacles. The energy consumption of
a node n is affected by Ect, Ecr, and Et which repre-
sent the transmitter circuit energy, receiver circuit energy,
and the transmission energy, respectively. The calculation
of the transmission energy Et is based on the following
expression:

Et = L · M · Nf · N0

γ · G
· fτ,�(B) (4)

where L is the path loss (see [43] for details), M is the link
safety margin, Nf is the receiver noise figure, N0 is the ambi-
ent noise power spectral density, γ is the power amplifier
efficiency, G is the combined gain of the transmit and receive
antennas, fτ,�(B) is the required signal-to-noise ratio per bit
corresponding to transmission technique τ , fading character-
istics �, and target bit error rate B (Table 2).

The energy spent for receiving a packet of size s is:

Epr = Ecr · s (5)

6.3 PlaceLife implementation

PlaceLife generates Castalia and OMNeT++ simulation
scripts. Castalia is aWSN simulator based on theOMNeT++,
where OMNeT++ platform is an extensible, modular,

component-based C++ simulation library and framework,
primarily for building network simulators. Castalia provides
OMNeT++ simulation ofWSN radio channel plus MAC and
network protocols.

The application behaviour is needed to derive application-
level simulation parameters. The environment and the path-
loss models allow the calculation of the path loss. In fact,
while Castalia assumes that the user provides path-loss
related parameters in a complex path-loss matrix, PlaceLife
presents an abstract view of the environment where the path
loss is derived from the characteristics of the environment
specified in the ENVMLmodel. OMNeT++ is used for addi-
tional simulation components such as the sensing devices and
the middleware library.

6.4 PlaceLife applied to the wireless health
monitoring system: numerical results and
discussions

In order to show the effectiveness of the architectural
approach and the PlaceLife plug-in, in this section (i) we
consider the health monitoring case study that is presented
in Fig. 1, and (ii) we present numerical results of its simula-
tion. The numerical results also show the effects of realistic
simulation scenarios, where environmental factors are taken
into account.

The system considered monitors vital signals in a hos-
pital environment. Wireless networked sensors enable dense
spatio-temporal sampling in spaces, ranging frompersonal to
physical environment [2]. We consider the feasibility of con-
tinuouslymonitoring the heart rate and saturation of patients’
haemoglobin.

The lifetime of the nodes considered is presented as a
function of the number of packets per minute in Fig. 7 for
obstacles with exponent two, and six. Please note that expo-
nent two can be used for wood and six is mainly for metal
obstacles. The obstacles considered aremainly thewalls used
for indoor segmentation in Fig. 1. Numerical results are also
presented for a scenario where the path loss caused by the
obstacles is avoided (exponent is zero). The results clearly
show that avoiding path loss would cause overestimation of
the WSN lifetime. More precisely, for node six the lifetime
is 281.90 h when the obstacle is metal, 307 h when the obsta-
cle is wood and 350.06 when the path loss is avoided. In
other words the resources can be overestimated up to 19.5%
if the path-loss factor is avoided. PlaceLife’s ENVMLmodel
allows the users to incorporate various path-loss models (in
this study we used the one in [42]) for the estimation of the
WSN’s lifetime.

It is clear that the energy consumption of all the nodes
is significantly higher when the partition is metal. When the
partition is wood, the lifetime of the node is approximately
5–10% more than that of the nodes with metal as the parti-

123

2648 I. Malavolta et al.

Fig. 7 Lifetime of the nodes

tion. The lifetime of a node can decrease from 320 h, down to
270 h, when the exponent of the obstacle increases. In other
words, as the exponent of the obstacles increases, the effects
of path loss also increase since the amount of retransmissions
leads to higher energy consumptions. Numerical results pre-
sented in Fig. 7 show the effects of potential overestimation
of resources in case the obstacles of a specific scenario are
avoided. Our PlaceLife plug-in allows engineers to consider

the nature of the obstacles of the environment in details, thus
providing a more realistic performance measurement.

The simulation tool employed allows us to consider other
measurements in addition to the lifetime of the WSN nodes
aswell. Various performancemeasures such as response time
(latency) and the number of dropped packets can be analysed
in detail.

7 Related work

In order to simplify the design and configuration of theWSN
at large, and abstract from technical low-level details, a num-
ber of MDE approaches or of modelling notations for WSN
engineering have been proposed. Those approaches are used
to specify a WSN at different levels of abstraction (hard-
ware, application, communication protocols, etc.) with the
recurrent goals of code generation, communication overhead
analysis, and energy consumption.

The rest of this section is structured so as to cover three
related research areas: i) frameworks for the engineering
of WSNs (or related domains), ii) domain-specific mod-
elling languages for WSN, iii) other modelling and analysis
approaches for engineeringWSNs, and iv) surveys related to
the modelling and analysis of WSNs.

Frameworks for Engineering WSNs (or related domains):
Engineering frameworks strongly related to A4WSN have
been presented in [5,45,56].

In Reference [5] the authors propose DiaSuite, a tool
suite proposed for the design, analysis, and deployment of
Sense/Compute/Control applications. The DiaSuite domain-
specific design language supports the modelling of a taxon-
omy layer and an application design layer. Those models are
successively used to generate a dedicated Java programming
framework (to guide and support programmers to imple-
ment the various parts of the software system), for simulation
purposes, and for deploying the application on a specific exe-
cution platform.When comparedwithA4WSN,DiaSuite has
similar goals (modelling for analysis and code generation),
but covers a different domain. As a result, the modelling
languages are extremely different, and are manipulated (for
analysis and code generation) in different ways.

In [56] a set of modelling languages is the starting point
for code generation and performance (with energy consump-
tion) analysis. Those languages are based on concepts such
as sampling task, aggregation task, network communication
tasks and they are the starting point of amodel-driven process
to enable a low-cost prototyping and optimization of WSN
applications. In [39], a framework for modelling, simulation,
and code generation of WSNs is presented. The framework
is based on Simulink, Stateflow and Embedded Coder and
allows engineers to simulate and automatically generate code
with energy as one of the main issues.

123

A4WSN: an architecture-driven modelling platform for analysing and developing WSNs 2649

In Reference [45] a multi-stage model-driven approach
for IoT application development has been proposed. Such
an approach takes into explicit consideration the existence
of five different types of IoT stakeholders, and according
to their needs, proposes five different modelling languages.
Those models are successively used for code generation and
task mapping techniques. Similarly to DiaSuite [5], while
sharing the same goals of A4WSN, the framework in [45]
covers a different (still, related) domain.

Domain-specific modelling languages for WSN: many
approaches propose to use DSMLs for representing WSNs
from different viewpoints. For example, in [62] the proposed
modelling language contains concepts such as node group,
region, resource, wireless link; whereas, in [16] authors pro-
pose a set of languages spanning from application-level
actions (e.g. sense, send message, store data) to hard-
ware specifications (e.g. processor, sensing devices, radio
transceivers), and so on. In [4] the authors propose Verisen-
sor, a DSML based on concepts such as system, node class,
application with the possibility to automatically translate
models towards a formal language for checking the lifetime
of the WSN and its correct behaviour.

In [13], the authors propose the LWiSSy domain-specific
language for wireless sensor and actuator network systems.
The LWiSSy metamodel comprises three views: struc-
tural behavioural, and optimization. Those three views are
described in details, and successively evaluated through a
controlled experiment.

Other approaches, such as those proposed in [17,38], are
based on generic modelling languages. They mainly use
extensions of UML and Simulink for representing a WSN.

In order to better understand how MDE has been used
for designing and analysing wireless sensor networks, [30]
surveys and classifies state-of-the-art MDE approaches for
engineering WSNs.

Other modelling and analysis approaches for engineer-
ing WSNs: describing a network from a structural point
of view is very straightforward and easy to reason about
(just think about the component-based representation in
OMNeT++,8 one of the most popular network simulators).
Also, an approach based on DDS (i.e. the data centric mid-
dleware standard introduced byOMG) is presented in [3]; the
authors proposed four types of modelling languages (namely
for data types, data space, node structure, and node config-
uration) and use them as input for a set of optimization and
transformation steps, eventually delivering deployable appli-
cation code as output.

Also, in some cases (e.g. when capabilities such as fault
tolerance and security analysis are needed) the structure of
WSNsmay not be enough, and thus describing the behaviour
of the WSN is fundamental. In [19], the authors address

8 http://www.omnetpp.org/.

energy-aware system design of wireless sensor networks
(WSNs). Energy mode signalling and energy scheduling of
nodes within a WSN are represented as SDL models, and
then analysed.

Rodrigues et al. in [49] proposes an MDA process where
application domain experts model the Platform-Independent
Model (PIM) of a WSN application. Such a PIM is succes-
sively transformed into a platform-specificmodel (PSM) and
refined by a network expert. Class and Activity diagrams are
used to specify the WSN application at the PIM level, while
Component and Finite State diagrams are used at the PSM
level.

An approach for formal modelling and analysis of WSN
in Real-Time Maude is presented in [41]. In [54] Samper et
al. propose the GLONEMO formal model for the analysis of
ad-hoc sensor networks.

Forwhat concerns the physical environment of aWSN, the
majority of approaches in the literature does not allowdesign-
ers to specify the physical deployment of the WSN nodes.
Among those that support (in some form) this feature, there
is great variability. There are some approaches which sup-
port an explicit definition of the physical environment (e.g.
in [16] the tool allows engineers to model real-world dimen-
sions, obstacles with attenuation coefficients, etc.); others
allow designers to define physical quantities (e.g. in [4] engi-
neers can define models of the evolution of each physical
quantity in a given scenario), and so on. However, all these
approaches do not provide any intuitive and abstract means
to easily define the deployment environment of the WSN. A
recent study [31] has investigated how WSN engineers cur-
rently specify the physical environment and how they would
like to do it.

Surveys related to the modelling and analysis of WSNs:
A survey on system models in WSNs has been conducted in
[58]: there the authors identify several dimensions to be used
to classify model (types) used to specify networked comput-
ing systems (from models of signal propagation, to models
of the application). Existing models are then organized into
a taxonomy. In [25] the authors survey 9 WSN modelling
techniques. Through this study, they show how each tech-
nique models different parts of the system. The models here
analysed are extensions to existing notations, such as SDL,
Promela, UML, and others.

Final Remarks: A4WSN shares with some of the related
approaches above the wish to provide a clear separation
of concerns between different modelling views, to enhance
reuse, to abstract from low-level details, and to support early
analysis of WSN applications. What distinguishes A4WSN
from other related work are (i) the modelling languages
that have been selected for modelling WSN applications,
including an explicit graphical modelling of the application
physical environment, (ii) the definition of models dedicated
to the weaving of the three main modelling languages, (iii)

123

http://www.omnetpp.org/

2650 I. Malavolta et al.

the existence of an extensible programming framework that
enables third-party researchers and developers to reuse the
A4WSN modelling environment and programming frame-
work when developing new analysis and code generation
engines. In this context, third-party researchers can focus
exclusively on solving their peculiar issues, while spend-
ing minimal effort and implementation time on realizing the
facilities already provided byA4WSNout of the box. (iv) The
maturity of A4WSN with respect to other approaches that,
while sharing some of our desires, seem to still implement
only a subset of them.

8 Conclusion and future work

This paper presents a modelling platform supported by a
dedicated programming framework for the model-driven
engineering of wireless sensor networks. The modelling
viewpoints and conceptual elements have been carefully
designed in collaboration with colleagues from various
domains, such as software engineering, wireless sensor net-
works, and telecommunications. The programming frame-
work functioning has been tested by realizing a plug-in
devoted to energy-related simulation of WSNs.

The modelling and programming framework presented in
this paper represents the (starting but mandatory) foundation
for a series of goals we are willing to achieve in the midterm.

Firstly, we plan to have the framework used by practition-
ers involved in the development ofWSNs.We wish to record
and analyse their usage patterns and collect their feedback
for further improving our platform. At the time of writing,
the framework is being used by master students to model and
analyse course projects, and it is currently used in situational
awareness projects handled by one of the co-authors.

Secondly,we are aware that itmight be necessary to extend
the modelling languages to provide additional concepts for
supporting new analysis or code generation engines. For
example,we areworking onproviding newSAMLdata struc-
tures (either primitive or structured), new attributes for better
specifying nodes in the NODEML modelling language, and
on the extension of the purposefully simple ENVML mod-
elling language (e.g. by addingmulti-floor support for indoor
deployments, by supporting the specification of properties
specific to outdoor set-ups). In this context, introducing
changes at the metamodel level might have a strong impact
on the already developed plug-ins (model editors, model
transformations, etc.). This problem is called metamodel co-
evolution management, and it is well-known in the MDE
researchfield [12,51]. Ifwe look at this problem fromadiffer-
ent perspective, similarly to what we proposed in a previous
work on architectural language interoperability [53], a pos-
sible solution could be to provide a systematically defined
extension process for our modelling languages. According

to this extension process, languages extensions are organized
into a hierarchy obtained by systematically extending a root
modelling language. Under this perspective, we plan to build
on (and adapt, if needed)metamodel co-evolution techniques
[23,52] in order to tackle this problem.

Thirdly, we would like to realize an analysis plug-in that,
while getting in input a series of environmental configura-
tions options, can tell us which configuration can increase the
network lifetime (so far, PlaceLife can evaluate the expected
lifetime of a given configuration, but is quite impractical to
analyse alternative solutions). We plan to use genetic algo-
rithms and search based approaches to achieve such a goal.

Finally, we are working on a WSN performance analy-
sis plug-in that allows engineers to run a trade-off analysis
between energy consumption and performance indices like
sensor node throughput, reliability, and network latency.

Acknowledgements Fundingwas provided byRIDITT (GrantNo. Ital-
ian government).

References

1. Al-karaki, J.N.,Kamal,A.E.: Routing techniques inwireless sensor
networks: a survey. IEEE Wirel. Commun. 11, 6–28 (2004)

2. Alemdar, H., Ersoy, C.: Wireless sensor networks for healthcare: a
survey. Comput. Netw. 54(15), 2688–2710 (2010)

3. Beckmann, K., Thoss, M.: A model-driven software development
approach using OMG DDS for wireless sensor networks. In: Pro-
ceedings of the 8th IFIP WG 10.2 International Conference on
Software Technologies for Embedded and Ubiquitous Systems,
SEUS’10, pp. 95–106 (2010)

4. Ben Maïssa, Y., Kordon, F., Mouline, S., Thierry-Mieg, Y.: Mod-
eling and analyzing wireless sensor networks with VeriSensor. In:
Petri Net and Software Engineering (PNSE), vol. 851, pp. 60–76.
CEUR, Hamburg, Germany (2012)

5. Bertran, B., Bruneau, J., Cassou, D., Loriant, N., Balland, E., Con-
sel, C.: DiaSuite: A tool suite to develop sense/compute/control
applications. Sci. Comput. Program. 79, 39–51 (2014). Experi-
mental Software and Toolkits (EST 4): A special issue of the
Workshop on Academic Software Development Tools and Tech-
niques (WASDeTT-3 2010)

6. Bjornemo, E., Johansson,M., Ahlen, A.: Two hops is one toomany
in an energylimited wireless sensor network. In: Proceedings of
IEEE International Conference on Acoustics, Speech, and Signal
Processing, pp. 181–184 (2007)

7. Blumenthal, J., Handy, M., Golatowski, F., Haase, M., Timmer-
mann, D.: Wireless sensor networks—new challenges in software
engineering. In: Emerging Technologies and Factory Automation,
2003. Proceedings. ETFA ’03. IEEE Conference, vol. 1, pp. 551–
556 (2003)

8. Bryant, B.R., Gray, J., Mernik, M., Clarke, P.J., France, R.B., Kar-
sai, G.: Challenges and directions in formalizing the semantics of
modeling languages. Comput. Sci. Inf. Syst. 8(2), 225–253 (2011)

9. Chandra, T.B., Dwivedi, A.K.: Programming languages for wire-
less sensor networks: a comparative study. In: Computing for
Sustainable Global Development (INDIACom), 2015 2nd Inter-
national Conference on, pp. 1702–1708. IEEE (2015)

10. Chang, X.: Network simulations with OPNET. In: Proceedings of
the 31st Conference on Winter Simulation: Simulation—a Bridge
to the Future—Volume 1, WSC ’99 (1999)

123

A4WSN: an architecture-driven modelling platform for analysing and developing WSNs 2651

11. Cheng, C., Lu, R., Petzoldt, A., Takagi, T.: Securing the internet of
things in a quantum world. Commun. Mag. 55(2), 116–120 (2017)

12. Cicchetti, A., Di Ruscio, D., Eramo, R., Pierantonio, A.: Automat-
ing co-evolution in model-driven engineering. In: 12th Interna-
tional IEEE Enterprise Distributed Object Computing Conference,
ECOC 2008, 15–19 September 2008, Munich, Germany, pp. 222–
231. IEEE Computer Society (2008)

13. Dantas, P., Rodrigues, T., Batista, T., Delicato, F., Pires, P., Li, W.,
Zomaya, A.: Lwissy: a domain specific language to model wireless
sensor and actuators network systems. In: 2013 4th International
Workshop on Software Engineering for Sensor Network Applica-
tions (SESENA), pp. 7–12 (2013)

14. Demirkol, I., Ersoy, C., Alagoz, F.: MAC protocols for wireless
sensor networks: a survey. IEEE Commun. Mag. 44(4), 115–121
(2006). https://doi.org/10.1109/mcom.2006.1632658

15. Di Ruscio, D., Malavolta, I., Muccini, H., Pelliccione, P., Pieranto-
nio, A.: Developing next generation ADLs through MDE tech-
niques. In: 2010 ACM/IEEE 32nd International Conference on
Software Engineering, vol. 1, pp. 85–94. IEEE (2010)

16. Doddapaneni, K., Ever, E., Gemikonakli, O., Malavolta, I.,
Mostarda, L., Muccini, H.: A model-driven engineering frame-
work for architecting and analysing wireless sensor networks. In:
SESENA, pp. 1–7 (2012)

17. Fuchs, G., German, R.: UML2 activity diagram based program-
mingofwireless sensor networks. In: Proceedings of the 2010 ICSE
Workshop on Software Engineering for Sensor Network Applica-
tions, SESENA ’10, pp. 8–13 (2010)

18. Goldsmith, A.: Wireless Communications. Cambridge University
Press, New York (2005)

19. Gotzhein, R., Krämer, M., Litz, L., Chamaken, A.: Energy-aware
system design with SDL. In: Proceedings of the 14th International
SDL Conference on Design for Motes and Mobiles, SDL’09, pp.
19–33. Springer, Berlin (2009)

20. Heinzelman, W.R., Chandrakasan, A., Balakrishnan, H.: Energy-
efficient communication protocol for wireless microsensor net-
works. In: Proceedings of the 33rd Annual Hawaii International
Conference on System Sciences (HICSS), Washington, DC, USA
(2000)

21. Hill, J.L.: System architecture for wireless sensor networks. Ph.D.
thesis, University of California, Berkeley (2003). AAI3105239

22. Huang, C.F., Tseng, Y.C.: The coverage problem in a wireless
sensor network. In: Proceedings of the 2ndACMInternationalCon-
ference on Wireless Sensor Networks and Applications, WSNA
’03, pp. 115–121 (2003)

23. Iovino, L., Pierantonio, A., Malavolta, I.: On the impact signifi-
cance of metamodel evolution in mde. J. Object Technol. 11(3),
1–33 (2012)

24. ISO/IEC/IEEE: ISO/IEC/IEEE 42010:2011 Systems and software
engineering – Architecture description (2011)

25. Khalil, J., Liscano, J.R., Bradbury, J.: A survey of modeling tech-
niques for wireless sensor networks. In: SENSORCOMM 2011,
The Fifth International Conference on Sensor Technologies and
Applications, pp. 103–109 (2011)

26. Lorincz, K., Malan, D., Fulford-Jones, T., Nawoj, A., Clavel, A.,
Shnayder, V., Mainland, G., Welsh, M., Moulton, S.: Sensor net-
works for emergency response: challenges and opportunities. IEEE
Pervasive Comput. 3(4), 16–23 (2004). https://doi.org/10.1109/
MPRV.2004.18

27. Losilla, F.,Vicente-Chicote, C.,Álvarez,B., Iborra,A., Sánchez, P.:
Wireless sensor network application development an architecture-
centric MDE approach. In: Oquendo, F. (ed.) ECSA, LNCS, vol.
4758, pp. 179–194. Springer, Berlin (2007)

28. Malavolta, I.: A4WSN—Programming Framework and
Implementation details (2018). http://a4wsn.di.univaq.it/files/
a4wsnLanguages.pdf. Accessed 4 April 2018

29. Malavolta, I., Mostarda, L., Muccini, H., Doddapaneni, K.: The
A4WSN Modelling languages (2018). http://a4wsn.di.univaq.it/
files/a4wsnLanguages.pdf. Accessed 4 April 2018

30. Malavolta, I., Muccini, H.: A Study on MDE approaches for
engineering wireless sensor networks. In: Proceedings of the
40th Euromicro Conference series on Software Engineering and
Advanced Applications (SEAA), August 2014 (2014)

31. Malavolta, I., Muccini, H.: A Survey on the specification of the
physical environment of wireless sensor networks. In: Proceedings
of the 40th Euromicro Conference series on Software Engineering
and Advanced Applications (SEAA), August 2014 (2014)

32. Malavolta, I., Muccini, H., Pelliccione, P., Tamburri, D.: Providing
architectural languages and tools interoperability through model
transformation technologies. IEEE Trans. Softw. Eng. 36(1), 119–
140 (2010)

33. Medvidovic, N., Dashofy, E.M., Taylor, R.N.: Moving architec-
tural description from under the technology lamppost. Inf. Softw.
Technol. 49(1), 12–31 (2007)

34. Mernik, M., Heering, J., Sloane, A.M.: When and how to develop
domain-specific languages. ACM Comput. Surv. 37(4), 316–344
(2005)

35. Mottola, L., Pathak, A., Bakshi, A., Prasanna, V., Picco, G.:
Enabling scope-based interactions in sensor network macropro-
gramming. In: IEEE Internatonal Conference on Mobile Adhoc
and Sensor Systems, 2007. MASS 2007. pp. 1–9 (2007)

36. Mottola, L., Picco, G.P.: Programming wireless sensor networks:
Fundamental concepts and state of the art. ACMComput. Surv. 43,
19:1–19:51 (2011)

37. Mottola, L., Picco, G.P.: Middleware for wireless sensor networks:
an outlook. J. Internet Serv. Appl. 3(1), 31–39 (2012)

38. Mozumdar, M., Gregoretti, F., Lavagno, L., Vanzago, L., Olivieri,
S.: A framework for modeling, simulation and automatic code
generation of sensor network application. In: 5th Annual IEEE
Communications Society Conference on Sensor,Mesh andAdHoc
Communications and Networks, 2008. SECON ’08, pp. 515–522
(2008)

39. Mozumdar, M.M.R., Gregoretti, F., Lavagno, L., Vanzago, L.,
Olivieri, S.: A framework for modeling, simulation and automatic
code generation of sensor network application. In: SECON, pp.
515–522 (2008)

40. Newport, C., Kotz, D., Yuan, Y., Gray, R.S., Liu, J., Elliott, C.:
Experimental evaluation of wireless simulation assumptions. Sim-
ulation 83(9), 643–661 (2007)

41. Olveczky, P., Thorvaldsen, S.: Formal modeling and analysis
of wireless sensor network algorithms in real-time Maude. In:
20th International Parallel and Distributed Processing Symposium,
2006. IPDPS 2006, p. 8 (2006). https://doi.org/10.1109/IPDPS.
2006.1639414

42. Pahlavan,K., Krishnamurthy, P.: Networking Fundamentals:Wide,
Local and Personal Area Communications. Wiley, New York
(2009)

43. Pahlavan, K., Krishnamurthy, P.: Networking Fundamentals.
Wiley, Chichester (2009)

44. Paige, R.F., Kolovos, D.S., Polack, F.A.: A tutorial on metamod-
elling for grammar researchers. Sci. Comput. Program. 96, Part 4,
396–416 (2014)

45. Patel, P., Pathak, A., Cassou, D., Issarny, V.: Enabling high-level
application development in the internet of things. In: Zuniga, M.,
Dini, G. (eds.), Sensor Systems and Software, Lecture Notes of the
Institute for Computer Sciences, Social Informatics and Telecom-
munications Engineering, vol. 122, pp. 111–126 (2013)

46. Pediaditakis, D., Tselishchev, Y., Boulis, A.: Performance and scal-
ability evaluation of the castalia wireless sensor network simulator.
In: Proceedings of the 3rd International ICSTConference on Simu-
lation Tools and Techniques, SIMUTools ’10, pp. 53:1–53:6 (2010)

123

https://doi.org/10.1109/mcom.2006.1632658
https://doi.org/10.1109/MPRV.2004.18
https://doi.org/10.1109/MPRV.2004.18
http://a4wsn.di.univaq.it/files/a4wsnLanguages.pdf
http://a4wsn.di.univaq.it/files/a4wsnLanguages.pdf
http://a4wsn.di.univaq.it/files/a4wsnLanguages.pdf
http://a4wsn.di.univaq.it/files/a4wsnLanguages.pdf
https://doi.org/10.1109/IPDPS.2006.1639414
https://doi.org/10.1109/IPDPS.2006.1639414

2652 I. Malavolta et al.

47. Picco, G.P.: Software engineering and wireless sensor networks:
happy marriage or consensual divorce? In: Proceedings of the
FSE/SDPWorkshop on Future of Software Engineering Research.
FoSER. NY, USA (2010)

48. Rappaport, T.: Wireless communications: principles and practice.
PrenticeHall communications engineering and emerging technolo-
gies series. Prentice Hall PTR (1996)

49. Rodrigues, T., Batista, T., Delicato, F., Pires, P., Zomaya, A.:
Model-driven approach for building efficient wireless sensor and
actuator network applications. In: 2013 4th International Work-
shop on Software Engineering for Sensor Network Applications
(SESENA), pp. 43–48 (2013)

50. Romer, K., Mattern, F.: The design space of wireless sensor net-
works. IEEE Wirel. Commun. 11(6), 54–61 (2004)

51. Rose, L., Etien, A., Méndez, D., Kolovos, D., Paige, R., Polack,
F.: Comparing model-metamodel and transformation-metamodel
coevolution. In: InternationalWorkshop onModels and Evolutions
(2010)

52. Ruscio, D.D., Iovino, L., Pierantonio, A.: Coupled evolution in
model-driven engineering. IEEE Softw. 29(6), 78–84 (2012)

53. Ruscio, D.D., Malavolta, I., Muccini, H., Pelliccione, P., Pieran-
tonio, A.: Model-driven techniques to enhance architectural lan-
guages interoperability. In: FASE, pp. 26–42 (2012)

54. Samper, L., Maraninchi, F., Mounier, L., Mandel, L.: Glonemo:
Global and accurate formalmodels for the analysis of ad-hoc sensor
networks. In: Proceedings of the First International Conference on
Integrated Internet Ad Hoc and Sensor Networks, InterSense ’06.
New York, NY, USA (2006)

55. Seybold, J.S.: Introduction to RF Propagation. Wiley, Newark
(2005)

56. Shimizu, R., Tei, K., Fukazawa, Y., Honiden, S.: Model driven
development for rapid prototyping and optimization of wireless
sensor network applications. In: Proceedings of SESENA ’11, pp.
31–36. ACM, New York, NY, USA (2011)

57. Stankovic, J.A.: Research challenges for wireless sensor networks.
SIGBED Rev. 1, 9–12 (2004)

58. Stanley-Marbell, P., Basten, T., Rousselot, J., Oliver, R.S., Karl, H.,
Geilen, M., Hoes, R., Fohler, G., Decotignie, J.D.: System mod-
els in wireless sensor networks. Technical Report ESR-2008-06,
Eindhoven University of Technology (2008)

59. Szyperski, C.: Component Software. Beyond Object Oriented Pro-
gramming. Addison Wesley, Boston (1998)

60. van Dam, T., Langendoen, K.: An adaptive energy-efficient mac
protocol for wireless sensor networks. In: Proceedings of the 1st
International Conference on Embedded Networked Sensor Sys-
tems, SenSys ’03, pp. 171–180. New York, NY, USA (2003)

61. Varga, A., Hornig, R.: An overview of the OMNeT++ simu-
lation environment. In: Simutools ’08: Proceedings of the 1st
International Conference on Simulation Tools and Techniques for
Communications, Networks and Systems & Workshops, pp. 1–10
(2008)

62. Vicente-Chicote, C., Losilla, F., Álvarez, B., Iborra, A., Sánchez,
P.: Applying MDE to the development of flexible and reusable
wireless sensor networks. Int. J. Coop. Inf. Syst. 16(3/4), 393–412
(2007)

63. Ye, W., Heidemann, J., Estrin, D.: Medium access control
with coordinated adaptive sleeping for wireless sensor networks.
IEEE/ACM Trans. Netw. 12(3), 493–506 (2004)

Ivano Malavolta is Assistant Pro-
fessor at the Vrije Universiteit
Amsterdam, The Netherlands. His
research focuses on empirical
software engineering, software
architecture, model-driven
engineering (MDE), and mobile-
enabled systems. He is programme
committee member and reviewer
of international conferences and
journals in his fields of interest.
He authored more than 80 scien-
tific articles in international jour-
nals and peer-reviewed interna-
tional conferences proceedings.

He received a Ph.D. in computer science from the University of
L’Aquila in 2012. He is a member of ACM and IEEE. More informa-
tion is available at http://www.ivanomalavolta.com.

Leonardo Mostarda is an Asso-
ciate Professor at Camerino Uni-
versity, Department of Computer
Science, Italy. He got his Ph.D.
in 2006 at the Computer Science
Department of University of
L’Aquila. Afterwards, he coop-
erated with the European Space
Agency (ESA) on the CUSPIS
FP6 project to design and imple-
ment novel security protocols and
secure geo-tags for works of art
authentication. In 2007 he was
Research Associate at the Com-
puting Department, Distributed

System and Policy Group, Imperial College, London. There he was
working on the UBIVAL EPRC project in cooperation with Cam-
bridge, Oxford, Birmingham, and UCL for building a novel middle-
ware to support the programming of body sensor networks. In 2010 he
was Senior Lecturer at Middlesex University in the Distributed Sys-
tems and Networking Department. There he funded the Senso LAB
an innovative research laboratory for building energy efficient wireless
sensor networks.

Henry Muccini is an Associate
Professor in Computer Science
from the University of L’Aquila,
Italy. He received is Ph.D. degree
from the University of Rome—La
Sapienza in 2002, and he has been
visiting professor at the Univer-
sity of California, Irvine. His
research interests are on software
architecture, model-driven
engineering, and mobile comput-
ing. I am an associate editor in
chief for IEEE software, a mem-
ber of the IFIP WG 2.10 on Soft-
ware Architecture, and the Direc-

tor of the Living Lab and of the CINI laboratory on Smart Cities and
Communities at the University of L’Aquila. More detailed information
may be found at http://www.HenryMuccini.com.

123

http://www.ivanomalavolta.com
http://www.HenryMuccini.com

A4WSN: an architecture-driven modelling platform for analysing and developing WSNs 2653

Enver Ever obtained his B.Sc.
Degree from the Department of
Computer Engineering, Eastern
Mediterranean University, Cyprus,
in 2002. He then continued his
studies at Middlesex University
where he obtained his M.Sc. in
Computer Networks and Ph.D. in
Performance Evaluation of Com-
puter Networks and Communica-
tion Systems in 2004 and 2008,
respectively. He worked at Brad-
ford University as a postdoctoral
Research Associate for a year. Fol-
lowing that he worked as a Lec-

turer/Senior Lecturer in Computer and Communications Engineering
Department Middlesex University. Currently, he is an Associate Pro-
fessor in Middle East Technical University, Northern Cyprus Campus.
His current research interests include computer networks, wireless
communication systems, Internet of Things, wireless sensor networks,
parallel computing paradigms, integrated circuits, and performance/re-
liability modelling. He serves on various Programme Committees and
received exemplary reviewer award for his contributions as reviewer.

Krishna Doddapaneni is cur-
rently a Solution Architect and
Researcher at Altiux Innovations
Inc, USA, where he emphasizes
on architecting best fit solutions
by providing technology direction,
ensure project implementation
compliance, and utilize technol-
ogy research to innovate, integrate,
and manage technology solutions.
Additional to his current role, he
is also a co-founder of Hotaru
Labs, Technical advisor to Key-
Point Technologies and 3LoQ
Labs. Before joining his current

position, he was a postdoc at University of Minnesota, USA, focusing
on enabling reliable autonomous localization of transient RF sources
using UAVs, for search and rescue missions in the absence of GPS
and enabling reliable and delay efficient communication in UAVs (sin-
gle and multi-hop communication). He graduated in Electronics and
Communications Engineering from JNTU, India, in 2008, M.Sc. in
Computer Networks and Ph.D. in Computer Communications from
Middlesex University in 2010 and 2014, respectively. He visited Uni-
versity of Camerino and University of L’Aquila as an Academic
Researcher. His doctoral research focused on cross-layer approaches
for wireless sensor network’s energy efficiency, with an emphasis on
the interaction between the physical, medium access and application
layers. His main research interests include robotic sensor networks,
wireless sensor networks, IoT, and M2M communications. He fre-
quently collaborates with some of the best talent in the industry and
scholars from academia to create and implement innovative high-
quality solutions and participate in sales and various pursuits focused
on business needs.

Orhan Gemikonakli is an Hon-
orary Professor in telecommuni-
cations at University of Middle-
sex, UK. He received is Ph.D.
degree from the King’s college
London, UK, and he has been vis-
iting professor at the University
of Camerino, Italy. His current
research interests include computer
networks, wireless communication
systems, Internet of Things, wire-
less sensor networks, parallel com-
puting paradigms, integrated cir-
cuits, and performance/reliability
modelling. He serves in various

Programme Committees, and he is reviewer for various journals. He
is a member of ACM and IEEE.

123

	A4WSN: an architecture-driven modelling platform for analysing and developing WSNs
	Abstract
	1 Introduction
	1.1 WSN challenges
	1.2 Our contribution

	2 The healthcare system case study
	3 Overview of the platform
	4 The modelling environment
	4.1 Software architecture modelling language (SAML)
	4.2 Node modelling language (NODEML)
	4.3 Environment modelling language (ENVML)
	4.4 The two auxiliary modelling languages: MAPML and DEPML
	4.5 Model correctness and feasibility
	4.6 Discussion

	5 The A4WSN programming framework
	6 PlaceLife: an A4WSN plug-in
	6.1 The path loss
	6.2 Analytical model
	6.3 PlaceLife implementation
	6.4 PlaceLife applied to the wireless health monitoring system: numerical results and discussions

	7 Related work
	8 Conclusion and future work
	Acknowledgements
	References

