
Software & Systems Modeling (2019) 18:837–863
https://doi.org/10.1007/s10270-018-0676-3

THEME SECT ION PAPER

Amethod for testing and validating executable statechart models

Tom Mens1 · Alexandre Decan1 · Nikolaos I. Spanoudakis2

Received: 29 August 2016 / Accepted: 11 April 2018 / Published online: 3 May 2018
© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Abstract
Statecharts constitute an executable language for modelling event-based reactive systems. The essential complexity of
statechart models solicits the need for advanced model testing and validation techniques. In this article, we propose a method
aimed at enhancing statechart design with a range of techniques that have proven their usefulness to increase the quality
and reliability of source code. The method is accompanied by a process that flexibly accommodates testing and validation
techniques such as test-driven development, behaviour-driven development, design by contract, and property statecharts that
check for violations of behavioural properties during statechart execution. The method is supported by the Sismic tool, an
open-source statechart interpreter library in Python, which supports all the aforementioned techniques. Based on this tool-
ing, we carry out a controlled user study to evaluate the feasibility, usefulness and adequacy of the proposed techniques for
statechart testing and validation.

Keywords Statechart · Executable modeling · Behaviour-driven development · Design by contract · Runtime verification

1 Introduction

Statecharts were introduced nearly three decades ago by
Harel [27,28] as a visual executable modelling language.
From a formal point of view, they can be considered as
an extension of hierarchical finite-state machines with char-
acteristics of both Mealy and Moore automata. Statecharts
(sometimes referred to as behavioural state machines) are
part of the UML standard [41] and constitute a popular mod-
elling notation for representing the executable behaviour
of complex reactive event-based systems. They are fre-
quently used in industry for the development of real-time
systems and embedded systems [13,44], relying on commer-

Communicated by Dr. M. Papadakis, S. Ali, and G. Perrouin.

B Tom Mens
tom.mens@umons.ac.be

Alexandre Decan
alexandre.decan@umons.ac.be

Nikolaos I. Spanoudakis
nispanoudakis@isc.tuc.gr

1 Software Engineering Lab, Faculty of Sciences, University of
Mons, 7000 Mons, Belgium

2 Applied Mathematics and Computers Laboratory, School of
Production Engineering and Management, Technical
University of Crete, 73100 Chania, Greece

cial tools such as IBM Rational’s StateMate and Rhapsody,
the Mathworks’ Stateflow, itemis’ Yakindu Statechart Tools
and IAR Systems’ visualSTATE. There are also multiple
open-source frameworks defining domain-specific languages
(DSLs) based on statecharts, such as theATOMPM[47]web-
based domain-specific modelling environment with support
for model transformation, and the AMOLA [46] language
targeting the multi-agent systems community. Most of these
tools support visualisation, modification and simulation of
statecharts, as well as code generation from statechart mod-
els. The more advanced tools also provide support for model
debugging and model verification.

At the level of source code development, a variety of test-
ing techniques have found widespread use. These include
test-driven development (TDD) [3], behaviour-driven devel-
opment (BDD) [39] and design by contract (DbC) [38].
Most of these techniques have not been taken up at design
level, however, for increasing the quality and reliability of
behavioural softwaremodels. In particular, it is poorly under-
stood how such techniques can be used for testing and
validating executable statechart models. Indeed, designing
statecharts and their interaction with the environment can be
quite complex and error-prone, partly because of the stat-
echart formalism itself, and partly because of the complex
behaviour that these statecharts are modelling [11].

To address this problem, we propose a method aimed
to enhance statechart design with such techniques. The

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10270-018-0676-3&domain=pdf
http://orcid.org/0000-0003-3636-5020
http://orcid.org/0000-0002-4957-9194

838 T. Mens et al.

method comes with dedicated tooling, in the form of Sismic
(a recursive acronym for “Sismic Interactive Statechart
Model Interpreter and Checker”), a modular Python library
composed of a statechart interpreter and associated libraries
for testing and validation of executable statecharts based on
the techniques of TDD, BDD, DbC, and property statecharts
that allow to monitor for violations of behavioural proper-
ties during statechart execution. The library is provided as an
open-source solution, in order to facilitate its extension by
other researchers. It comes with support for importing and
exporting statechart models to and from external statechart
visualisation and editing tools.

The remainder of this article is structured as follows. Sec-
tion 2 explains and motivates the techniques of TDD, BDD,
DbC and run-time monitoring. Section 3 presents the pro-
posed method and process for statechart design and testing.
Section 4 explains the tooling that we have developed to sup-
port all the techniques supported by the method. Sections 5
and 6 illustrate how to use themethod and its associated tools
by means of an example. Section 7 evaluates the method and
tools through a controlled user study. Section 8 compares our
work with other approaches, and Sect. 9 concludes.

2 Background

2.1 TDD and BDD

Test-driven development (TDD) [3] has become accepted for
source code development thanks to themany available frame-
works for automated unit testing. TDD is often accompanied
by so-called user stories, representing informal, natural lan-
guage descriptions of one or more features of the software
system, written from an end user perspective.

The technique of behaviour-driven development (BDD)
allows to bridge the gap between user stories and executable
functional tests. BDD extends TDD with acceptance test
or customer test-driven development practices as found in
extreme programming [39,50]. BDD allows users to spec-
ify representative scenarios and their expected outcomes
using Gherkin,1 a domain-specific natural language that has
been created specifically to support BDD. It enables users
to describe the intended software behaviour without need-
ing to detail how that behaviour is or will be implemented.
Scenarios and their outcomes are described as sequences
of steps expressed as domain-specific natural language sen-
tences using Gherkin-specific keywords such as Given,
When, Then, And and But. Developers can then define
mapping code for these steps, in order to enable the automatic
execution of each of these scenarios as executable functional
tests.As such, the technical gapbetweendevelopers andusers
is reduced.

1 See http://docs.behat.org/en/v2.5/guides/1.gherkin.html.

User stories and BDD would provide a very good basis
for coming up with relevant functional tests for executable
statecharts, assuming that developers are available to write
the necessary mapping code to execute the scenarios as func-
tional tests over the statechart.

2.2 DbC

Design by contract (DbC) was introduced more than two
decades ago by Bertrand Meyer and popularised through
the object-oriented programming language Eiffel [19,38].
It is often used to support the interaction and composition
of software components (e.g. methods, functions, classes or
packages) in complex systems based on the interface speci-
fications of these components. DbC prescribes that software
components should have formal, precise and verifiable inter-
face specifications, which extend the ordinary definition of
abstract data types with preconditions, postconditions and
invariants. The term contract stresses the obligation of the
programmer to respect the conditions of the code she is
using.

The use of DbC has been shown to increase the reliability
of executable code. It has been used with success to enable
automated debugging with AutoFix, a tool that uses con-
tracts to fix faults in general-purpose software [43]. Other
programming languages also provide support for DbC. For
Java programs for example, DbC is supported by JML, a
formal behavioural interface specification language [34].

OCL, the constraint language that is part of the UML
standard, offers the possibility to specify preconditions,
postconditions and invariants on UML models [40]. It
has been used to specify contracts on class diagrams
[6] supported by the USE tool [24] and has recently
been extended to support behavioural models such as pro-
tocol state machines [26] and sequence diagrams [23].
We are not aware, however, of any DbC tool that pro-
vides integrated support for specifying and checking struc-
tural properties during the run-time execution of state-
charts.

Just like contracts can be defined on source code com-
ponents at different levels of granularity, it is useful and
desirable to express contracts at different levels on an exe-
cutable statechart. Contracts could be defined on individual
states (either basic or composite states) to express how these
states are supposed to interact with other states. Contracts
could be expressed on concurrent regions of a state to spec-
ify how these regions are supposed to synchronise with
each other. Finally, contracts could be specified on tran-
sitions to verify that any action executed by a transition
satisfies some invariants. Once defined, contracts can be
monitored continuously while the statechart is being exe-
cuted.

123

http://docs.behat.org/en/v2.5/guides/1.gherkin.html

Amethod for testing and validating executable statechart models 839

2.3 Run-time verification

Any mechanism for monitoring observable behaviours or
properties over an executing system is considered run-time
verification [35]. It is also known under the names run-time
monitoring or dynamic analysis. The technique is considered
lightweight, avoiding the complexity of formal verification
techniques by working directly with the actual system (as
opposed to a more abstract formal representation of the sys-
tem) and analysing only a limited number of execution traces.
It can be regarded as a testing approach, since it only checks
for violations of properties at run-time, but cannot make any
guarantees that the propertieswill hold for all possible system
runs. Techniques and formalisms to monitor system proper-
ties during its execution include regular expressions, tempo-
ral logics, state machines and rule-based programming [21].

In the context of ourwork, the systembeingmonitoredwill
be an executable statechart. Drusinsky proposed TLCharts,
an extension of statecharts allowing to specify temporal logic
assertions and monitor violations of these assertions at run-
time [14,15]. While the usefulness of such logic formalisms
seems without doubt, their usability has been criticised, and
different attempts have beenmade to increase the usability by
non-logicians [4,9,16]. We will therefore explore an alterna-
tive approach, using the full expressive power of statecharts
to monitor properties over statecharts.

3 Process

The main contribution of this work is to provide a pro-
cess with associated tool support for the phases of statechart
design and statechart testing. Statechart testing enables to
validate the design before its integration during the actual
system implementation.

We define our process as a method fragment [10,31] to be
usedby the designer in her specific software or systemsdevel-
opment projects involving executable statechart modelling.
Method fragments act as reusable methodological parts that
can be flexibly used as puzzle pieces, allowing to accommo-
date the process to the specificities of any project, in function
of the current needs and available competencies. Since the
method fragment we propose will focus on theDesign Phase
only, we assume that a preceding Analysis Phase has already
been carried out and that the statechart design (and associated
testing) phase will be typically followed by an implementa-
tion and deployment phase.

Our method fragment is defined using the SPEM 2.0 lan-
guage for representing software methodologies [42] as a
series of phases containing tasks that output work products
that are required as input for tasks in later phases. Figure 1
provides a high-level view of the different involved phases.
Figure 2 shows the different work products created, used and
modified throughout these phases.

Fig. 1 SPEM 2.0 activity diagram describing the proposed process

The method fragment assumes that in the overall soft-
ware methodology there is an Analysis Phase that outputs a
component diagram defining the different components of the
system, and user stories expressing how the system should
behave. For systems that require user interaction, we also
assume that a UI mock-up is created during the Analysis
Phase.

Using these work products as input, the statechart Design
Phase will commence. The key work product created during
the Design Phase is the statechart, a pivotal work product
for any statechart-based system design. The Design Phase
is followed by a Testing Phase, providing different types of
test results as output. If any errors or failures are reported in
the test results, the process iterates over the Design Phase
to address these errors. If all errors have been fixed, a new
development iteration can start from the Analysis Phase to
implement more functionality, if needed. At this point, the
development team can decide to hook an implementation
or integration phase to continue to develop the product—
knowing that the designed statechart has been validated.

In the next subsections, we detail the statechart design
and Testing Phase in terms of their specific tasks and work
products.

3.1 Design Phase

Figure 3 shows all tasks of the statechartDesign Phase. Tasks
at the same horizontal level can take place concurrently. Fig-
ure 4 complements this view by providing for each task, its
input and output work products along with the role achieving
the task.

The following tasks are part of the Design Phase:

– Define Statechart is undertaken by a Software Engineer.
He reads the user stories (defining the behaviour of the
system) and the component diagram and produces the
statechart that captures this behaviour. This task is pivotal
in the Design Phase as it unlocks many other tasks.

– In Enrich Statechart with Contracts, the Software Engi-
neer follows a DbC approach to augment the statechart
with contracts composed of preconditions, postcondi-
tions and invariants over states and transitions.

– Define Scenarios is carried out by aTester. He is in charge
of converting the free text user stories into BDD scenar-
ios.

123

840 T. Mens et al.

Fig. 2 SPEM 2.0 work product
dependencies diagram

Fig. 3 SPEM activity diagram
describing the statechart Design
Phase. Black rectangles indicate
fork or join nodes. Figure
created using the Eclipse
Process Framework (EPF)
Composer, a tool for producing
customizable software processes

– In Implement Scenario Steps, a Programmer needs to
write the mapping code from the steps used in scenar-
ios to statechart test primitives. This code will be used
during the Testing Phase to check the scenarios over the
statechart.

– Define Properties is concerned with defining behavioural
properties over the system. It can be desirable to express
functional properties of the intendedbehaviour, for exam-
ple in terms of the events that are consumed and sent

by a particular component. Such properties can be veri-
fied dynamically during the execution of the component.
The Software Engineer relies on the component diagram
along with the requirements and her domain knowledge
to define these properties.

– DefineUnit Tests involveswriting unit tests for testing the
statechart in a later phase. It is carried out by a Program-
mer, since it requires knowledge of the programming
language used by the unit testing framework.

123

Amethod for testing and validating executable statechart models 841

Fig. 4 SPEM 2.0 activity detail diagram for the Design Phase. Every task is connected to input and output work products along with the role of
the person executing the task

3.2 Testing Phase

The statechart Testing Phase relies on the output work prod-
ucts of theDesign Phase to test and validate statecharts using
a range of different techniques: dynamic monitoring of con-
tracts and properties, running unit tests and scenarios over
the statechart. Figure 5 presents the tasks of this phase and
the details of each task in terms of roles and work products:

– The task Integrate External Components to Statechart
allows the Programmer to realise interfaces to external
components that need to participate in the testing pro-
cess. If there are no external systems or user interfaces
available, this task is not needed. Hence, this task can
be used for testing just the validity of the statechart in
isolation (by simulating the external system events), or
during a later implementation phase with all external sys-
tems connected.

123

842 T. Mens et al.

Fig. 5 SPEM activity diagrams
for the statechart Testing Phase

– Manually test through UI can be done by a Tester to
manually explore and validate the functionality of the
statechart by means of an external user interface that has
been created for this purpose, and connected to the stat-
echart.

– Run Scenarios can be done by theTester, by executing the
scenarios (bymeans of the provided steps mapping code)
with a BDD tool and analysing the scenarios test results.
In more complex cases, this task may involve selecting
which scenarios to execute.

– RunUnit Tests can be done by theTester, by providing the
already created unit tests to the test runner of a unit testing
framework and analysing the unit test results. In more
complex cases, this taskmay involve selectingwhich tests
to execute.

It is important to stress that, during the three tasks carried
out by the Tester, all statechart contracts and properties that
were specified as part of the Design Phase will be dynam-
ically monitored for violations. Hence, the test results will
also include reports of any such violations.

4 Tooling

The process presented in Sect. 3 needs to be supported by
automated tools in order to be of any practical use. Such
tooling is required, because designing and testing statecharts
can be quite hard due to their complexity and because there
are many subtleties of the statechart formalism. Hence, it is
difficult to formally guarantee conformance of a statechart
to its intended requirements. Our method proposes different

123

Amethod for testing and validating executable statechart models 843

Fig. 6 Architectural overview
of the Sismic tool framework

ways to test and validate statecharts, by using the techniques
of unit testing, BDD, and dynamic monitoring of contracts
and properties expressed over statecharts.

To automate and support the proposed method, we devel-
oped the Sismic tool. Sismic is a Python library for inter-
preting and testing statecharts. Version 1.0.0 has been used
for this article. It is distributed through the Python Pack-
age Index (pypi.python.org/pypi/sismic). Its documentation
can be found on sismic.readthedocs.io. Its source code is
available on github.com/AlexandreDecan/sismic under the
open-source licence LGPLv3, adhering to the principles of
open science and open research. It allows other researchers to
use and extend the tool, and it facilitates integrating received
feedback into newer versions of the tool.

The high-level architecture of Sismic is summarised in
Fig. 6. The different code components and work products
of this architecture will be presented in the following sub-
sections. All parts of the architecture included in the shaded
grey box labelled sismic have been developed specifically for
the purpose of statechart simulation, testing and validation.
For some of these activities, Sismic makes use of third-party
libraries (e.g. behave for BDD) or external tools (e.g. Plan-
tUML and ASEME for model visualisation and editing).
Input and output files used by Sismic are shown in yellow
note boxes.

4.1 Importing and exporting statechart models

Internally, Sismic encodes statechart models as objects.
Experienced Python developers may choose to directly cre-
ate and manipulate statecharts in this way through the model
API that has been provided for this purpose. In practice, how-
ever, it is much more comfortable to create statechart models
using either a text-based markup editor or an external visual

editor and import these models through the I/O API provided
for this purpose.Upon import of a statechart file, the syntactic
correctness of the statechart is checked automatically.

Currently, Sismic allows importing and exporting state-
chart expressed using the human-readable YAML markup
language and has experimental support for importing and
exporting statechart diagrams expressed in the AMOLA lan-
guage [46] through the ASEME IDE2 statechart editor [48].
Sismic also provides export support to PlantUML3 in order
to visualise statecharts, benefiting from its automatic layout
features. This is howwe generated Fig. 14 for example. Other
exchange formats can be easily accommodated.

4.2 Statechart interpreter

The core of Sismic is composed of its statechart interpreter.
In order to execute a statechart model, a statechart inter-
pretermust be instantiated.This interpreter relies on anaction
code evaluator to execute any action code contained in the
statechart specification. By default, action code and guards
(conditions) are expressed using regular Python code. Other
action languages can be supported if a language interpreter
is provided for them.

The statechart interpreter offers a discrete, step-by-step
and fully observable simulation engine, supporting the
UML 2 statechart concepts and semantics. By default, the
statechart interpreter uses an inner-first/source-state and run-
to-completion semantics (a.k.a. macrostep, super-step or big
step semantics [18,29,30]). Since theUML specification [41]
deliberately leaves the order in which transitions are to be
executed undefined, we needed to make some implementa-

2 aseme.tuc.gr.
3 plantuml.com.

123

http://pypi.python.org/pypi/sismic
http://sismic.readthedocs.io
http://github.com/AlexandreDecan/sismic
http://aseme.tuc.gr
http://plantuml.com

844 T. Mens et al.

Fig. 7 Code fragment of a
statechart simulation with
Sismic

1 from s i sm i c . i o import import from yaml
2 from s i sm i c . i n t e r p r e t e r import I n t e r p r e t e r
3
4 s t a t e cha r t = import from yaml (f i l e p a t h=’microwave . yaml ’)
5 i n t e r p r e t e r = In t e r p r e t e r (s t a t e cha r t)
6
7 i n t e r p r e t e r . execute once ()
8 i n t e r p r e t e r . queue (’ door opened ’)
9 i n t e r p r e t e r . execute once ()

10 i n t e r p r e t e r . time += 2
11 i n t e r p r e t e r . execute ()
12
13 print (’ Active s t a t e s : ’ , i n t e r p r e t e r . c on f i gu r a t i on)
14 print (’ Timer value : ’ , i n t e r p r e t e r . context [’ t imer ’])
15 print (’Power value : ’ , i n t e r p r e t e r . context [’ power ’])

tion choices. The interpreter processes eventless transitions
before transitions containing events and consumes internal
events before external ones. However, Sismic also provides
modular support for providing other semantics.

Parametrized events are supported as well. Event param-
eters can be accessed by the statechart through the attributes
of the event variable. For example, if an event heating_set
has a parameter power, its value can be accessed using
event.power in action code, guard and contracts of any
transition triggered by heating_set.

When simulating statecharts, simulated time (logical time)
and wall-clock time are supported. By default, the statechart
interpreter uses simulated time. Several time-related predi-
cates (e.g. after, idle) can be used in guards, actions and
contracts of statecharts.

4.3 Using the API to execute statecharts

Sismic’s statechart interpreter can be used to control stat-
echarts programmatically. The code fragment of Fig. 7
provides an example of how to do this, on the basis of a
microwave controller statechart that will be used as running
example in Sects. 5 and 6 (see Fig. 14).

After instantiating a statechart interpreter with the stat-
echart specification loaded from a YAML file (line 4),
the statechart is put in its initial configuration by calling
the execute_once() method (line 7). The queue(…)
method stores a new door_opened event in the interpreter’s
event queue (line 8). Invoking the execute_once()
method again (line 9) processes the event and returns a
MacroStep instance. As illustrated in Fig. 8, if a macrostep
processes a triggered transition, it includes every consecutive
stabilisation step (including all steps needed to enter nested
states, or to enter the configuration of a history state). Line 10
increases the simulated time by modifying the interpreter’s
time variable. Line 11 executes the statechart as long as a
MacroStep is returned by the interpreter. Line 13 displays
the currently active states of the statechart, and lines 14 and

15 display the values of the statechart’s local variables timer
and power.

4.4 Run-timemonitoring of statecharts

A key feature of Sismic’s statechart interpreter is its built-in
support for monitoring for violation of contracts and unde-
sirable run-time properties. To this extent, the traditional
macro- and micro-step semantics of statechart execution is
augmented with some additional steps. This is illustrated in
Fig. 8, which depicts (a deliberately simplified version of) the
semantics of the statechart interpreter. For ease of readabil-
ity, we use the statechart notation to illustrate all steps that
are followed by the interpreter when a statechart receives an
event that triggers a transition. The “normal” semantics of
statechart execution is shown by the yellow states.

The red states (with white font) in Fig. 8 augment the
statechart semantics with run-time support for contract mon-
itoring. They indicate where and when the contract checking
(of states and transitions) intervenes to support DbC. This
depends on whether it concerns pre- and postconditions or
invariants. State preconditions are checked before the state is
entered (i.e. before executing its entry actions, if present),
state postconditions are checked after the state is exited
(i.e. after executing its exit actions, if present), and state
invariants of each active state are checked at the end of
each executed macrostep (corresponding to a stable running
configuration of the statechart). Transition preconditions are
checked before processing the transition (and before execut-
ing its optional transition action), transition postconditions
are checked after processing the transition (and after execut-
ing the optional transition action), and transition invariants
are checked twice: before and after processing the transition.
Hence, transition invariants can be considered as syntactic
sugar for conditions that are both preconditions and postcon-
ditions.

The statechart interpreter also provides support for mon-
itoring properties at run-time. To avoid a statechart designer
needing to learn a different (formal) language for express-

123

Amethod for testing and validating executable statechart models 845

Fig. 8 Sismic’s macrostep
semantics, adding support
required for dynamic monitoring
of contracts and properties

ing such properties, these properties can be expressed using
the full expressive power of the statechart notation itself.
Such properties are therefore referred to as property state-
charts. Examples of such property statecharts are provided
in Sect. 5.2.

Since these properties need to monitor a running state-
chart, their behaviour has to be expressed in terms of the
events that are consumed or sent, or in terms of the states that
are entered or exited by the statechart being monitored. To
this extent, the statechart interpreter will raise specific meta-
events about the execution of the statechart. The blue states in
Fig. 8 (e.g.notify event consumed) showwhichmeta-events
are created during statechart execution. Some meta-events
exhibit additional parameters: for example, when a state is
entered, meta-event state entered has a parameter state
whose value is the name of the state being entered. Simi-
larly, meta-event event consumed has a parameter event
that corresponds to the event being consumed.

Meta-events are automatically sent during statechart exe-
cution to all bound property statecharts. To bind a property
statechart, it suffices to provide this property statechart
to the bind_property_statechart method of an
interpreter. These property statecharts monitor for property
violations based on thosemeta-events, following a “fail-fast”
approach: a failure will be reported as soon as the monitored

behaviour leads to a final state in one of the bound property
statecharts.

Due to the meta-events being considered and the “fail-
fast” approach adopted by the statechart interpreter for
their verification, property statecharts are mainly intended to
check for the presence of undesirable behaviour (safety prop-
erties), i.e. properties that can be checked on a (finite) prefix
of a (possibly infinite) execution trace.While it is technically
possible to use property statecharts to express liveness prop-
erties (something desirable eventually happens), this would
require additional code for their verification since liveness
properties are not supported “as is” by Sismic.

4.5 Support for unit testing and BDD scenarios

As for any other library, unit tests can be written for Sismic
using its API to manipulate the statechart, and hence, the
unit tests themselves have to be expressed in the language
supported by that framework (in our case, Python).

To evaluate BDD scenarios, Sismic provides a command-
line interface (CLI) called sismic-bdd, which takes as
input feature files containing scenarios expressed in the
Gherkin language.

123

846 T. Mens et al.

Fig. 9 Component diagram for
a microwave oven. Each
component lists the events it is
able to send to a connected
component. Some events are
parameterised (e.g.
display_set(s:string) and
beep(d:integer)). The arrows on
the component connectors
indicate in which direction
events are sent. Internal
variables used only by the
Controller component are
preceded by a - sign

<<component>>
User Input

<<component>>
Door

 door_opened()
 door_closed()

<<component>>
Control ler

-power : integer
-timer : integer

<<component>>
Lamp

 lamp_on()
 lamp_off()

<<component>>
Power

 power_inc()
 power_dec()
 power_reset()

<<component>>
Heating

 heating_on()
 heating_off()
 set(power : integer)

<<component>>
Turntable

 turntable_start()
 turntable_stop()

<<component>>
Timer

 timer_inc()
 timer_dec()
 timer_reset()

<<component>>
Display

 display_clear()
 display_set(s : string)

<<component>>
Cooking

 cooking_start()
 cooking_stop()

<<component>>
WeightSensor

 item_removed()
 item_placed()

<<component>>
Beeper

 beep(d : integer)

<<component>>
Clock

 tick()

5 Running example: statechart Design Phase

To illustrate how Sismic supports the Design Phase of the
method proposed in Sect. 3.1, we use a microwave oven
controller as running example. The example is inspired by
Gomaa [25]. Section 5.1 presents the work products (result-
ing from theAnalysis Phase) that will be used as input for the
Design Phase. Each of the remaining subsections correspond
to one of the tasks of the Design Phase.

5.1 Analysis Phase work products

5.1.1 Component diagram

Weassume that amicrowave oven contains different interact-
ing components controlled by a main Controller component
through event-based communication (Fig. 9). The Controller
receives events from the Door to signal when it is opened
or closed, and from a WeightSensor to detect whether a
food item is placed in or removed from the oven. The User
Input component represents the user interface. It contains
three subcomponents: a Cooking component providing but-
tons that trigger events to start or stop cooking, and a Power
and Timer component allowing to increment, decrement or
reset the heating power and cooking time, respectively. The
Controller uses two integer variables power and timer to
keep track of the desired heating power and remaining cook-
ing time. It uses a Display component to inform the user, by
displaying a character string on the screen. A Clock compo-
nent sends a tick event to the Controller every second. The
Controller is able to switch on or off an indicator light con-
trolled by the Lamp component. It also controls a Heating
component (the magnetron device emitting the microwaves)
by setting its power and turning it on or off. It instructs
the Turntable component to start or stop turning. A Beeper
component can be used to make sound signals by sending it
a beep event.

Fig. 10 Simple user interface mock-up for a microwave oven simula-
tion

5.1.2 UI mock-up

Figure 10 presents the design of a very simple user interface
mock-up, illustrating how the user is supposed to manually
control the microwave oven’s components. The panel at the
right represents icons and buttons for the Display, Beeper
and User Input components, as well as a button to simulate
the opening of the Door. The left panel shows the status of
the Lamp, Turntable,WeightSensor and Door components.
It also contains a button to close the Door.

5.1.3 User stories

Any device that is supposed to interact with a user should
have a set of functional requirements representing the
intended functionality from the user point of view. This func-
tionality can be expressed informally in terms of user stories
expressing the intended outcome of typical interaction of the
user with the device. These semi-structured textual user sto-
ries are provided by a domain expertwhodoes not necessarily
have experience with software modelling. A partial example

123

Amethod for testing and validating executable statechart models 847

Fig. 11 Example of a user story
for a microwave oven “As a user, I want to be able to open and close the oven door to place

my food in the oven. I want to be able to adjust the cooking time and
heating power by pressing buttons. I want to use buttons to start and
stop the cooking in order to control when the cooking takes place. I
want the oven lamp to be on while the door is open so that I can see
where to put my food. I also want the lamp to be on during cooking
so that I can monitor the heating proces. Because I do not want to be
exposed to dangerous microwaves, I don’t want any microwaves to be
emitted while the door is open.”

Fig. 12 Two property
statecharts expressing the safety
criterion that microwaves should
not be emitted while the oven
door is open. They monitor the
Controller component for
violations during its execution

of such a user story for the microwave oven is presented in
Fig. 11.

5.2 Define properties

Considering the user story of Fig. 11, it is the task of a Soft-
ware Engineer to express and enforce the safety criterion
that microwaves should not be emitted while the oven door is
open. It is theHeating component that is in charge of emitting
microwaves. The Controller component implicitly assumes
that, whenever a heating_on event is sent, the microwaves
start emitting, and whenever a heating_off event is sent, the
microwaves stop emitting.

The Software Engineer can express property statecharts
that monitor the execution of the Controller component for
violations of the safety criterion. The twoproperty statecharts
of Fig. 12 encode this expected behaviour. Their visual repre-
sentation is automatically generated by the tooling presented
in Sect. 4.1. The first property statechart monitors if the oven
stops emitting microwaves while the door is opened. This is
ensured by checking that the heating_off event is sent by
the Controller sufficiently rapidly (i.e. before the next tick
is consumed). Monitoring that heating_off event is sent by
the controller can be done by checking that a meta-event
event sent is received by the property statechart and that
its parameter event has an attribute name equal to “heat-

ing_off” (encoded by the guard [event.event.name
== 'heating_off']). If a tick has been consumed before
heating_off is sent by the Controller, the property statechart
will go to its final state, indicating a violation of the property.

The second property statechart of Fig. 12 verifies that heat-
ing (i.e. emission of microwaves) does not happen, while the
door is still open. If the door is open and a heating_on event
is sent before the door is closed again, the property statechart
will go to its final state.

Figure 13 illustrates another property statechart that is
unrelated to the microwave’s safety criterion. Instead, it
serves to check whether heating is properly controlled by
the microwave controller, by verifying that the events heat-
ing_on and heating_off are strictly alternating.

5.3 Define Statechart

It is the task of a Software Engineer to model executable
statecharts whose event-based behaviour respects the func-
tionality specified by the requirements, compatible with the
events defined in the component diagram and the behaviour
defined by the user stories.

Figure 14 specifies the design of the Controller compo-
nent as an executable statechart. The visual representation
used in the figure is automatically generated by the tooling
presented in Sect. 4. The used action language is Python. The

123

848 T. Mens et al.

Fig. 13 Property statechart
verifying the alternating
behaviour of heating

statechart assumes the presence of three variables that rep-
resent the set of possible power values (expressed in Watt)
and the default and maximum power of the microwave oven.
They are initialised as follows:

1 POWER_VALUES = [3 00 , 600 , 900 , 1200 , 1500]
2 POWER_DEFAULT = 2 # 900 Wa t t s
3 MAXPOWER = 3 # 1200 Wa t t s

The statechart’s behaviour depends on whether the door
is opened or closed, as well as on whether an item has been
placed in the oven for heating. When the door is closed with
an item inside the oven, the user can set two internal vari-
ables of the statechart: the cooking timer (through the Timer
component interface) and the requested heating power (in
the program mode state, by using the Power component
interface). The user will be informed of the timer and power
values through the Display component. As soon as a value
for the timer has been set, the Controller can start cooking
in the cooking mode state (when event cooking_start gets
triggered). Every second (i.e. every time a tick is received
from the Clock component), the remaining time will be
decreased until cooking is finished. Cooking can be cancelled
by pushing the stop button through the Cooking compo-
nent (triggering the cooking_stop event), which will reset
the timer. This is achieved by the internal transition defined
on the top-level controller state. Cooking can be paused
by opening the door during cooking (door_opened event).
After closing the door (door_closed event), cooking can be
resumed by pushing the start button again (cooking_start
event).

5.4 Enrich Statechart with Contracts

As motivated in Sect. 2, it is desirable to apply DbC to exe-
cutable statecharts, by expressing and checking contracts on
states and transitions. Figure 14 provides some examples of
useful contracts enriching the Controller statechart. They are
defined on the controller state, the ready state and the cook-
ing mode state, respectively.

Keywords pre:, post: and inv: are used to represent
preconditions, postconditions and invariants, respectively.
The notation __old__ is used to refer to the old value of
a variable (e.g. __old__.power). Contracts can rely on a
range of useful predicates. For example, active(state)

is used to check whether state is in the active configu-
ration of the statechart, sent(event) verifies whether a
particular event has been sent during the current step, and
received(event) verifies whether a particular event
has been received during the current step.

The contract on the root state controller imposes several
invariants. The invariant not sent('heating_on') or
active('cooking mode') asserts that heating
_on events can only be sent while residing in the cooking
mode state. This provides an alternative way of partly mon-
itoring the microwave safety criterion. The other invariants
verify the accepted range of values for the statechart’s local
variables timer (that should not have negative values) and
power (whose integer value should range between 0 and
some fixed constant MAXPOWER).

The contract on the ready state expresses an invariant
timer > 0. The contract on the cooking mode state has one
precondition that cooking time should be strictly positive. It
also has two invariants: cooking time cannot go below zero,
and power value should not be changed while being in cook-
ing mode. Finally, it has one postcondition that cooking can
only be interrupted by opening the door or by reaching 0
seconds of remaining cooking time.

These contract specifications can be used to reveal con-
ceptual errors in the statechart specification by monitoring
the statechart’s execution for contract violations.

5.5 Define unit tests

Unit tests provide a straightforward way of testing the
intended statechart behaviour. Python developers can write
unit tests for statecharts by relying on Python’s built-in
unittest library (or any other library providing support for
unit testing), combined with Sismic’s API for executing
statecharts. After loading and initialising the Controller stat-
echart, and executing a sequence of events, one can check
whether the statechart behaves as expected using the usual
assertion methods offered by the unit testing framework
(e.g. assertEqual, assertNotEqual, assertNotIn). For exam-
ple, one can test whether the statechart resides in a particular
state, whether it has sent or received a particular event, and
whether its internal variables contain a specific value.

123

Amethod for testing and validating executable statechart models 849

Fig. 14 Statechart modelling the executable behaviour of the Controller component

123

850 T. Mens et al.

Fig. 15 Example of Python unit
tests for the Controller
statechart

1 import un i t t e s t
2 from s i sm i c . i o import import from yaml
3 from s i sm i c . i n t e r p r e t e r import I n t e r p r e t e r
4
5 class MicrowaveTests (un i t t e s t . TestCase) :
6 def setUp (s e l f) :
7 with open (’ microwave . yaml ’) as f :
8 sc = import from yaml (f)
9 s e l f . oven = In t e r p r e t e r (sc)

10 s e l f . oven . execute once ()
11
12 def t e s t n o h e a t i n g when doo r i s n o t c l o s e d (s e l f) :
13 s e l f . oven . queue (’ door opened ’ , ’ i t em placed ’ , ’ t ime r i n c ’)
14 s e l f . oven . execute ()
15 s e l f . oven . queue (’ c o ok i n g s t a r t ’)
16 for s tep in i t e r (s e l f . oven . execute once , None) :
17 for event in s tep . s en t ev en t s :
18 s e l f . assertNotEqual (event . name , ’ heat ing on ’)
19 s e l f . a s se r tNot In (’ cooking mode ’ , s e l f . oven . c o n f i gu r a t i on)
20
21 def t e s t i n c r e a s e t im e r (s e l f) :
22 s e l f . oven . queue (’ door opened ’ , i t em placed ’ , ’ doo r c l o s ed ’)
23 s e l f . oven . queue (10 ∗ [’ t ime r i n c ’])
24 s e l f . oven . execute ()
25 s e l f . a s s e r tEqua l (s e l f . oven . context [’ t imer ’] , 10)

Figure 15 illustrates two simple unit tests for the Con-
troller statechart. The first test of Fig. 15 (lines 12–19)
partially verifies the oven’s safety criterion of not emitting
microwaveswhile the door is open. The second test (lines 21–
25) verifies that the internal timer variable increases when
timer_inc is received.

Runningunit tests in an automatedway allowsdesigners to
verifywhether the statechart respects the intended behaviour,
as specified by the requirements. Such unit tests can use the
full power of a programming language to express complex
tests. However, it assumes statechart designers to be fluent
in the programming language that is used to express the unit
tests, and requires them to know Sismic’s API. This is not
necessarily the case, since domain experts may not have a
profound knowledge of the programming language details
of how to specify and run unit tests. Hence, the need to use
both a modelling language (for expressing statecharts) and a
programming language (for writing unit tests) introduces an
unnecessary technical gap. It goes against themain principles
of software modelling, which aims at hiding the accidental
complexity and technical details of the underlying program-
ming language.

5.6 Define Scenarios and Implement Scenario Steps

To avoid needing to code tests programmatically, the tech-
nique ofBDD allows to bridge the gap between informal user
stories (such as the one shown in Fig. 11) and executable sce-
narios expressed using the Gherkin language. This allows
the domain expert to express scenarios in a domain-specific
natural language and only requires the knowledge of a few

specific Gherkin keywords for their writing. Figure 16 pro-
vides a concrete but partial example of such scenarios.

In order to be able to execute scenarios, a Pythondeveloper
needs towrite code defining themapping from the actions and
assertions expressed as natural language sentences in the sce-
narios (using specific keywords such as given,when, and or
then) to Python code that manipulates the statechart. Sismic
already provides a set of predefined statechart-specific steps
that can be used in scenarios, such as “Given I send
event {name}” or “Then event {name} should
be fired”.

While these predefined steps shouldbe sufficient tomanip-
ulate the statechart, it is sometimes more intuitive to use
domain-specific steps to write scenarios. For instance, the
domain-specific step “Given I open the door” cor-
responds to the action of sending an event door_opened to
the statechart. The mapping from this domain-specific step
to the action of sending a door_opened event to the state-
chart could be defined using plain Python code that accesses
Sismic’s interpreter, as illustrated by the following code frag-
ment:
1 from behave import given
2
3 @given(’ I open the door’)
4 def open_the_door(context) :
5 return context . interpreter .queue(’door_opened’)

Alternatively, this domain-specific step can be imple-
mented more easily as an alias of predefined step “Given
I send event door_opened”. Todo so,Sismic’sAPI
provides two convenient helpers to map new steps to prede-
fined ones, namely map_action and map_assertion.
Using these helpers, one can easily implement the domain-

123

Amethod for testing and validating executable statechart models 851

Feature : Cooking

Scenar io : Star t and stop cooking
Given I open the door
And I p lace an item in the oven
And I c l o s e the door
And I p re s s i n c r e a s e t imer button 5 times
And I p re s s i n c r e a s e power button
When I p r e s s s t a r t button
Then heat ing turns on
When I p r e s s stop button
Then heat ing turns o f f

[. . .]

Feature : L ight ing

Scenar io : Lamp i s on when door i s open
When I open the door
Then lamp turns on
When I c l o s e the door
Then lamp turns o f f

Scenar io : Lamp i s on whi le cooking
Given I open the door
And I p lace an item in the oven
And I c l o s e the door
And I p re s s i n c r e a s e t imer button 5 times
When I p r e s s s t a r t button
Then lamp turns on

[. . .]

Feature : Sa fe ty Cr i t e r i on

Background : Put food and prepare f o r cooking
Given I open the door
And I p lace an item in the oven
And I c l o s e the door
And I p re s s i n c r e a s e t imer button 5 times

Scenar io : No heat ing when door i s not c l o s ed
Given I open the door
When I p r e s s s t a r t button
Then heat ing does not turn on

Scenar io : Opening door i n t e r r up t s heat ing
Given I p r e s s s t a r t button
And 3 seconds e lapsed
When I open the door
Then heat ing turns o f f

[. . .]

Fig. 16 Scenarios (expressed in Gherkin language) describing part of
the intended functionality of a microwave oven

specific steps of Fig. 16, as illustrated by the following code
fragment:

1 from sismic .bdd import map_action , map_assertion
2
3 map_action(’ I open the door’ ,
4 ’ I send event door_opened’)
5 map_action(’ I place an item in the oven’ ,
6 ’ I send event item_placed’)
7 . . .
8 map_assertion(’Heating turns on’ ,
9 ’Event heating_on is fired ’)

10 map_assertion(’Heating does not turn on’ ,
11 ’Event heating_on is not fired ’)

6 Running example: Statechart Testing
Phase

This section revisits our running example to explain how
the Statechart Testing Phase (presented in Sect. 3.2) can be
carried out in a semi-automated way based on the Sismic
tool presented in Sect. 4. Each of the following subsections
correspond to one of the tasks of theStatechart TestingPhase,
summarised in the use case diagram of Fig. 17.

As shown in Fig. 17, there are three complementary ways
of testing statecharts: through an external UI, by running
unit tests or by running scenarios. Independently of which
of these techniques is being used (preferably all of them),
the statechart interpreter will also continuously monitor for
violation of contracts and property statecharts.

6.1 Monitor contracts

Sismic’s statechart interpreter supports run-time monitoring
of contract violations. Unless if explicitly instructed to dis-
able contract checking, the interpreter monitors all contract
conditions during statechart execution. This implies that con-
tracts are monitored by default when running unit tests or
BDD scenarios. Contracts are specified directly as part of
the statechart description (as illustrated in Fig. 14). Con-

Fig. 17 Use case diagram
summarising the tasks of the
Statechart Testing Phase

123

852 T. Mens et al.

$ python −m un i t t e s t te s t s microwave . py

Ran 2 t e s t s in 0 .089 s
OK

Fig. 18 Result of running the unit tests on the Controller statechart

tracts can be specified using the action language supported
by the action code evaluator (Python by default) and can
use a range of useful predicates. If a contract is violated,
a PreconditionError, PostconditionError or
InvariantError is raised.

6.2 Monitor properties

Sismic’s statechart interpreter provides built-in support for
verifying property statecharts such as the ones of Figs. 12
and 13. Tomonitor property statecharts at run-time, it suffices
to bind them to the interpreter using itsbind_property_state-
chart method. Property statecharts are automatically moni-
tored by the sismic-bdd command-line interface if they are
provided using the --properties parameter.

During the execution of the statechart, the interpreter will
monitor for property violations by checking whether the
property statechart arrives in a final state. As soon as this
happens, the interpreter raises a PropertyStatechart-
Error. It is up to the statechart designer to decide how to
copewith this violation (e.g. by executing appropriate excep-
tion handling code).

6.3 Run Unit Tests

Running unit tests that make use of Sismic’s API, such as
those shown in Fig. 15, is straightforward. Developers can
use their favourite unit testing framework to run the unit tests.
For example, one could use Python’s built-in unittest library
in the usual way, as illustrated in Fig. 18.

6.4 Manually test through UI

An intuitive way of validating the behaviour of a statechart
design is by exploring its behaviour by means of a simply
GUI (such as the one of Fig. 19) that directly interacts with
its associated statechart. To achieve this, one needs to bind
the statechart interpreter to the event handler of the GUI, and
to instruct specific UI actions (such as pressing a button) to
send events to the statechart interpreter or vice versa. The
GUI shown in Fig. 19 has been implemented using Python’s
tkinter library. We refer the interested reader to Sismic’s
online documentation for more details on how to integrate
statecharts with external Python code.

Exploring the executable statechart behaviour through this
GUI will allow a Tester to manually discover conceptual

Fig. 19 GUI for interacting with the Controller statechart (imple-
mented in Python with tkinter)

errors. For example, trying to decrease the timer too much
(by means of the timer–button) will result in a violation
of the invariant timer >= 0 on state controller because the
action associated with event timer_dec in state closed with
item decreases the value of timer (that was initialised to 0
by the entry action of controller) to −1. As a consequence,
the interpreter raises an InvariantError, whose output
is presented in Fig. 20.

This contract violation corresponds to a typical out of
range error. It can be solved easily by adding a guard [timer
> 0] to the event-action pair timer_dec/timer = timer - 1
defined on state closed with item in Fig. 14. The guard will
prevent timer from being decreased if its value is already
0. In a similar way, guards should be added to the events
power_inc and power_dec defined on state programmode
to avoid violations of invariant 0 <= power <= MAX-
POWER.

6.5 Run Scenarios

Assume that the scenarios of Fig. 16 are stored in .fea-
ture files and that a mapping file steps.py has been defined
containing the code required to map the natural language
sentences of these scenarios to Python code that manipulates
the statechart. The sismic-bdd command-line interface
can then consecutively run each scenario contained in each
feature file on the statechart (stored in filemicrowave.yaml).
The result of the execution will be a summary of all executed
scenarios and encountered errors (if any), as shown in Fig. 21.

The “Start and stop cooking” scenario (see Fig. 16) causes
a violation of a contract during the execution of the step
“When I press stop button”. Indeed, the cooking_stop event
that is sent to the statechart when this step is executed triggers
the internal transition of the root state controller. The exe-
cution of the action power = POWER_DEFAULT of the
transition results in a modification of the value of the inter-
nal variable power and thus in a violation of the invariant

123

Amethod for testing and validating executable statechart models 853

Fig. 20 Example output
produced upon violation of a
statechart contract

s i sm i c . except i on s . Invar i antEr ro r : Invar i antEr ro r
Object : CompoundState (’ c on t r o l l e r ’)
Asse r t i on : t imer >= 0
Conf igurat ion : [’ c o n t r o l l e r ’ , ’ door c losed ’ , ’ c l o s ed with item ’ ,

’ program mode ’ , ’ not ready ’]
Step : Step@0 (

Event (’ t imer dec ’) ,
[Trans i t i on (’ c on t r o l l e r ’ , None , event=’ t imer dec ’)] , > [] , < [])

Context :
− POWERVALUES = [300 , 600 , 900 , 1200 , 1500]
− POWERDEFAULT = 2
− MAXPOWER = 3
− power = 2
− t imer = −1

Fig. 21 Result of running the
BDD scenarios on the
Controller statechart

$ s i smic−bdd microwave . yaml
f e a t u r e s cooking . f e a tu r e l i g h t i n g . f e a tu r e s a t e f y . f e a tu r e
s t ep s s t ep s . py

Feature : Cooking

Scenar io : Star t and stop cooking
Given I open the door
. . .
When I p r e s s stop button

Asse r t i on Fa i l ed : Invar i antErro r
Object : Bas i cState (’ cooking mode ’)
Asse r t i on : power == o l d . power
. . .

. . .

Fa i l i n g s c ena r i o s :
cooking . f e a tu r e : 3 Star t and stop cooking

2 f e a t u r e s passed , 1 f a i l e d , 0 skipped
5 s c ena r i o s passed , 1 f a i l e d , 0 skipped
28 s t ep s passed , 1 f a i l e d , 1 skipped , 0 undef ined
Took 0m0.130 s

power == __old__.power specified for the cooking
mode state.

It is up to the Software Engineer to decide to either forbid
resetting the power variable, or to weaken the state invari-
ant of cookingmode to allow changing the power variable
when a cooking_stop event is received, e.g. power ==
__old__.power or received(‘cooking
_stop’).

7 Evaluation

To evaluate the proposed method and the usefulness and
usability of the proposed techniques for validating and test-
ing statecharts, we conducted a controlled user study using
the Sismic tool presented in Sect. 4.

7.1 Experimental set-up

The aim of the study was to evaluate:

– The usefulness of three of the proposed techniques for
testing and validating statecharts, namely BDD, DbC
and dynamic monitoring for violations of property stat-
echarts. We did not evaluate the unit testing technique,
because we do not consider it as a new contribution and
we did not expect all participants to have sufficient pro-
gramming experience in Python unit test frameworks.

– The usability of the proposed implementation of the tech-
niques in the Sismic tool.

Thirteen persons between 22 and 34 years old were
selected to take part in the study based on convenience
sampling.All participantswere already familiarwith the stat-
echart formalism, and all had a higher education degree (3
master students, 6 PhD students and 4 postdoc researchers).

Each participant was handed out a questionnaire contain-
ing the instructions for the experiment. For reproducibility
purposes, the full questionnaire and set of answers of each
participant can be found on https://github.com/ecos-umons/
sismic-validation.

123

https://github.com/ecos-umons/sismic-validation
https://github.com/ecos-umons/sismic-validation

854 T. Mens et al.

Fig. 22 Statechart of a
simplified microwave oven
controller

controller
entry: timer = 0

door opened

door closed
timer_inc / timer = timer + 1
timer_dec / timer = timer - 1
timer_reset / timer = 0

cooking mode

entry / send('heating_on')
timer_tick / timer = timer - 1

program mode

[timer == 0] /
send('heating_off');

send('beep', number=3)

cooking_start
[timer > 0]

door_opened door_closed

After responding to a set of preliminary questions, par-
ticipants were required to install Sismic on their machines.
No particular installation problems were encountered. The
actual experiment started from a simplified version of the
microwave oven, for which the participants were first asked
to understand and test its behaviour. Next they were asked
to extend this functionality in a test-driven way, using the
method, techniques and tools presented in this paper. To help
in this activity, participants were provided with the following
information at the outset of the experiment:

– A simplified version of the GUI of Fig. 19 to simulate the
oven’s behaviour.

– A textual description (YAML file) and visual rendering
(similar to Fig. 22) of the statechart of the oven controller.

– An explanation of how the GUI interaction (e.g. button
presses) has been mapped to statechart events.

– ExecutableBDDscenarios (expressed inGherkin) for the
oven’s behaviour.

– Steps files (in Python) expressing the mapping of the
scenarios to instructions for the statechart interpreter.

– An example of a property statechart.

The experimentwas composed of 9 successive tasks (T1 to
T9).As illustrated in the rightmost boxplot of Fig. 23, the total
experiment took between 58 and 338 minutes (median value
of 162), depending on the participant.With a few exceptions,
the tasks increased in complexity, reflected by an increasing
time required to carry them out.

Tasks T1 to T4 were devised to get acquainted with the
provided example and files. During these tasks, the partici-
pants were expected to play the role of a Tester who has not
been involved in the statechart design but is required to test
and validate the statechart. The tasks were the following:

T1 T2 T3 T4 T5 T6 T7 T8 T9
0

50

100

D
ur

at
io

n
(in

 m
in

ut
es

)

Total
0

100

200

300

Fig. 23 Boxplots showing the duration of each task (blue) and in total
(green)

T1 corresponds to taskManually test through UI of the Test-
ing Phase of the proposed process. Participants were
asked to get familiar with the provided GUI and to use it
to discover possible problems in the oven behaviour.

T2 is a preparatory task to make the participants familiar
with the Gherkin language and the provided scenarios.

T3 corresponds to taskRun Scenarios of theTestingPhase of
the proposed process. Participants were expected to play
the role of a Tester who is unfamiliar with the statechart
design but is required to test the statechart behaviour on
the basis of the provided scenarios.

T4 is a preparatory task tomake the participants familiarwith
the textual and visual notation of the provided statechart.

Tasks T5 to T9 were designed to give the participants
hands-on experience with the proposed techniques. This
time, the participants play the role of a Software Engineer.
The tasks were the following:

T5 aims at applying a full iteration over the statechart design
and Testing Phase, focusing on the DbC technique.
The participant finds herself at the position where new
requirements need to be added to an existing (and pre-
viously tested) statechart. She starts by carrying out the
task Enrich Statechart with Contracts to ensure that the

123

Amethod for testing and validating executable statechart models 855

Fig. 24 Participant familiarity
with BDD before the experiment
(left) and likelihood of using
BDD during modification of
existing statecharts after the
experiment (right)

I don’t know what this is
I know it but never used it

I use it occasionally
I use it regularly

0

3

6

9

12

Not at all
Slightly

Moderately
Very

Extremely
0

3

6

9

12

timer value should never be negative and never exceed
one hour. Next, the participant applies theManually test
through UI task to detect errors in the statechart design.
Based on these errors, she carries out the taskDefine Stat-
echart to make the statechart behaviour compatible with
the added contract. The participant iterates until she is
confident that the statechart is correctly defined.

T6 aims at applying another iteration over the statechart
design and Testing Phase, focusing this time on the BDD
technique. The participant is asked to add lamp function-
ality to the oven behaviour. To do so, she first carries out
tasksDefine Scenarios and Run Scenarios over the state-
chart.Basedon the scenario test results, she carries out the
task Define statechart to make the statechart behaviour
compatible with the new scenarios. The participant iter-
ates until she is confident that the statechart is correctly
defined.

T7 provides more scenarios regarding lamp functionality to
the participant. The participant needs to follow a similar
process as in the previous task until she is confident that
the statechart is correctly defined.

T8 aims at applying a full iteration over the statechart design
and Testing Phase, focusing on the technique of property
statecharts. First, participants are given the first property
statechart depicted in Fig. 12 and iterate over the tasks
Define Statechart,Manually test throughUI andMonitor
properties until they are confident that the statechart does
not violate this property. Next, they are expected to carry
out task Define properties to define the second property
statechart of Fig. 12 and to iterate until they are confident
that the statechart under test does not violate this property.

T9 aims at adding weight sensor functionality to the
microwave oven, using all provided testing techniques.
The participants have to define and run new scenarios
for this functionality and ensure that all existing con-
tracts and properties remain satisfied while adding this
new functionality. To do so, they use the Manually test
throughUI andRun Scenarios tasks, with both implicitly
rely onMonitor properties and Monitor contracts.

At the end of each task, participants were asked to respond
to a series of questions, some following a Likert rating scale,

and others being open-ended in order to allow us to receive
more detailed feedback. The questions aimed at assessing
the usefulness and usability of the three proposed statechart
testing and validation techniques. We present the analysis
results of each technique separately below. We summarise
the responses to each Likert-scale question in figures (e.g.
Fig. 24) that combine a bar chart with a boxplot showing the
minimum, first quartile, median, third quartile andmaximum
values. In addition, a red vertical dashed line shows the mean
value.

7.2 Evaluation of BDD

At the outset of the experiment, most participants indicated
that they were either unaware of BDD or that they were
knowledgeable about the technique but never used it before
(Fig. 24). During the experiment, the participants were asked
to run existing BDD scenarios, as well as to provide and
test more scenarios while extending the statechart with more
functionality. At the end of the experiment, at least 9 out
of 13 participants responded that they were either very or
extremely likely to use theBDD technique for the purpose of
supporting statechart creation (9 Participants), verification
(9 Participants) and modification (11 Participants), respec-
tively.

Figure 25 shows that, after having read BDD scenarios
for the provided example, most participants found them to
be very or extremely easy to understand, and easy or very
easy to specify themselves. Figure 26 (left) shows that par-
ticipants were very or extremely confident that the oven
controller satisfied the provided scenarios. After executing
the scenarioswithsismic-bdd, their confidence increased
even more, on average (Fig. 26 right).

Overall, participants were very positive about the BDD
approach. For example, one participant found them “useful
for defining high-level tests, even non-programmers (eg. the
client) can write them.” Another participant answered that
“it is really user-friendly as there is no need to learn some
specific language and we can just read the scenarios like
user stories.” Related to the expressiveness, one participant
believed the natural specification language to be “suitable
enough to describe most of the possible scenarios.” Finally,

123

856 T. Mens et al.

Fig. 25 Understandability (left)
and ease of specification (right)
of BDD scenarios

Not at all
Slightly

Moderately
Very

Extremely
0

3

6

9

12

Very difficult
Difficult

Easy
Very easy

0

3

6

9

12

Fig. 26 Confidence in the
specified BDD scenarios before
their execution (left) and
increase in confidence after their
execution (right)

Not at all
Slightly

Moderately
Very

Extremely
0

3

6

9

12

Much lower
Lower

About the same
Higher

Much higher
0

3

6

9

12

Fig. 27 Participant familiarity
with DbC before the experiment
(left) and likelihood of using
DbC during modification of
existing statecharts after the
experiment (right)

I don’t know what this is
I know it but never used it

I use it occasionally
I use it regularly

0

3

6

9

12

Not at all
Slightly

Moderately
Very

Extremely
0

3

6

9

12

one participant responded that “even for ‘easy’ changes in
the statecharts, related scenarios helped me to validate the
correctness of my work.”

From the negative side, some participants complained
about the verbosity, lack of scalability and lack of exhaus-
tiveness. For example, one participant found it “hard to be
exhaustive while specifying tests.” Another one asked “Does
it scale up to complexity with more complex use cases?” A
third one answered that “Using human-readable functional
scenarios is too verbose. The real behaviour of the scenario
is hidden behind the peculiarities of the ‘human readable’
language used.”

7.3 Evaluation of DbC for statechart monitoring

At the outset of the experiment, most participants were
knowledgeable about DbC, but only 3 participants had actu-
ally used it (Fig. 27 left). During the experiment, participants
were asked to add new contracts to an existing statechart, to
monitor the statechart behaviour with these contracts, and
to modify the contracts while extending the statechart with
new functionality. At the end of the experiment, at least 9
out of 13 participants responded that they were either very
or extremely likely to use DbC for the purpose of creating

(10 Participants), verifying (10 Participants) ormodifying (9
Participants) statecharts, respectively.

Figure 28 shows that most participants were very or
extremely convinced about the usefulness of contract spec-
ification and monitoring during statechart design, and they
found the implementation as provided by Sismic to be con-
venient or very convenient.

7.4 Evaluation of property statecharts

We did not ask participants about previous familiarity with
the technique of property statecharts, as this technique was
newly proposed for Sismic. During the experiment, the par-
ticipants were asked to check the statechart for property
violations on the basis of a property statechart that was pro-
vided to them. They were also asked to add and monitor
another property statechart representing a different property.

Figure 29 shows that most participants (10) found prop-
erty statecharts to be easy or very easy to understand. On
average, participants found it less easy to write property stat-
echarts themselves. Five out of 13 participants even found
this difficult or very difficult. At the end of the experiment,
most participants found property statecharts to be very use-
ful or better (Fig. 30, left). Despite their perceived difficulty,

123

Amethod for testing and validating executable statechart models 857

Fig. 28 Usefulness of statechart
contracts (left) and convenience
of their implementation in
Sismic (right)

Not at all
Slightly

Moderately
Very

Extremely
0

3

6

9

12

Very inconvenient
Inconvenient

Convenient
Very convenient

0

3

6

9

12

Fig. 29 Understandability (left)
and ease of designing property
statecharts (right)

Very difficult
Difficult

Easy
Very easy

0

3

6

9

12

Very difficult
Difficult

Easy
Very easy

0

3

6

9

12

Fig. 30 Usefulness of property
statecharts (left) and likelihood
of using property statecharts
during modification of existing
statecharts (right)

Not at all
Slightly

Moderately
Very

Extremely
0

3

6

9

12

Not at all
Slightly

Moderately
Very

Extremely
0

3

6

9

12

8 out of 13 participants responded that they were very likely
to use it in the future for modifying existing statecharts.

7.5 Discussion

The controlled user study ended with an appreciation of the
usefulness of each evaluated technique for testing and vali-
dating statecharts, and the ease of use of its implementation
in Sismic. The received responses provide initial evidence
that BDD scenarios and run-time monitoring of contracts
and property statecharts are all beneficial during statechart
design. Most participants indicated that they were (very)
likely to use each of these techniques in the future for the
purpose of creating new statecharts, or for verifying or mod-
ifying existing ones.

It is worthwhile to note that the large majority of the par-
ticipants had never used BDD or DbC before participating in
the study. Most of them also did not have a formal methods
background. Despite this, they did not have a big problem in
applying the proposed approaches for the purpose of state-
chart testing.

The complementarity of the statechart testing and valida-
tion techniques was highlighted by the participants in their
responses. On the one hand, the ability of run-time moni-

toring of contracts and property statecharts were appreciated
by one participant “because it can capture several paths”:
the properties and assertions that are expressed by property
statecharts and contracts are verified at run-time, regardless
of the followed execution path. Nevertheless, as indicated
by another participant, it “requires a large number of tests
to be useful”. On the other hand, a participant found BDD
scenarios to be “suitable enough to describe most of the pos-
sible scenarios”, but agreed that it is “hard to be exhaustive
while specifying tests”. Indeed, BDD scenarios only test one
execution path at a time, and being exhaustive would require
a very large, even infinite number of scenarios. A similar
remark could be made about the expressiveness of statechart
contracts. Because they are defined on individual states, it is
not possible to use them to express behavioural properties or
invariants that involve visiting multiple states. Another limi-
tation in expressiveness is caused by the absence of somekind
of “memory”, preventing contracts to express the temporality
or causality required for some properties. Contracts should
therefore be considered as a complementary technique to the
mechanism of property statecharts. This discussion reveals
the need of providing and combining a range of different and
complementary techniques for testing and validating state-
charts, as proposed by our method and associated tooling.

123

858 T. Mens et al.

Fig. 31 Readability of a visual
(left) or textual (right) statechart
representation

Not at all
Slightly

Moderately
Very

Extremely
0

3

6

9

12

Not at all
Slightly

Moderately
Very

Extremely
0

3

6

9

12

Fig. 32 Ease of designing a
statechart using a visual (left) or
textual (right) representation

Very difficult
Difficult

Easy
Very easy

0

3

6

9

12

Very difficult
Difficult

Easy
Very easy

0

3

6

9

12

The implementation of Sismic that was used for the
experiment did not yet provide anymeans for visualising stat-
echarts. Being aware of this possible limitation, we assessed
its effect on the ease of reading, designing and modifying
statecharts. Figures 31 and 32 reveal a slight tendency of
participants preferring a visual over a textual representation.
One of the participants commented that “generally speaking
the choice would depend on the person using it” and we “see
benefit in providing both (or rather, not removing the textual
option given the availability of a visual editor)”. We have
taken into account this valuable remark and provided sup-
port for visualising statecharts using PlantUML and editing
statecharts graphically using the ASEME IDE.

7.6 Threats

The controlled study suffers from several threats to validity.
Therefore, the findings should merely be used as anecdo-
tal evidence of the usefulness of the proposed process and
techniques.

As a first threat to validity, the number of participants was
fairly low, making it difficult to generalise the findings. Sec-
ondly, the selection of the participants based on convenience
sampling introduced an inevitable bias: all participants were
either students or researchers. The educational background
of the participants may have played a role in the evaluation,
and practitioners or company employees involved in state-
chart design might have another opinion.

In order to use the proposed method and Sismic tooling, a
certain amount of programming experience is desirable, due
to the fact that Sismic is a library as opposed to a full-fledged
visual modelling environment. All selected participants had
some amount of programming practice in Python (ranging

between less than 1 year and more than 5 years), and their
self-assessed proficiency with Python ranged from poor to
good.

Another threat relates to the complexity of the tasks that
the participants were asked to carry out. Given the limited
amount of available time, the examples and tasks provided
to them were relatively simple. Hence, we cannot generalise
the findings to more realistic designs that are likely to be
more complex.

Because of the fairly lownumber of participants, our study
did not include a control group. As a consequence, we cannot
make any claims on how the proposed techniques compare
to other techniques (or using none at al) for statechart testing
and validation. In follow-up work, we plan to evaluate the
actual impact of using the proposed techniques and tools on
the quality of statechart designs, aswell as on the productivity
of the designers and testers.

8 Related work

8.1 Related tools

Many tools exist for specifying executable statecharts and
generating code from them (e.g. StateMate,Rhapsody, State-
flow, Yakindu, visualSTATE, and many more). Most of these
tools are commercial and offer a complete modelling envi-
ronment. Sismic differs from this in two ways. First of all, it
is provided as a library to facilitate its use as part of other
applications. Secondly, it is provided as a fully documented
and modular open-source research prototype, so that it can
be used freely as a platform for carrying out research exper-
iments. While many tools (or plug-ins for them) provide

123

Amethod for testing and validating executable statechart models 859

support for test-driven design, we are not aware of any tool
providing the combination of testing techniques provided by
Sismic. Within the open-source realm, two tools are never-
theless worthwhile mentioning. Papyrus (www.eclipse.org/
papyrus/), combined with Moka, is an integrated modelling
environment in Eclipse supporting simulation and execu-
tion of UML models. It does not provide built-in support
for statechart testing as in Sismic, but plug-ins could be
developed to achieve this. AutoFOCUS 3 (af3.fortiss.org)
is an integrated open-source modelling tool that supports
requirements analysis, simulation and testing of models, for-
mal model checking and verification, architectural design
and optimisation of software and hardware components, and
design space exploration [1]. While being very complete,
it is different from Sismic in that the behavioural models
are expressed as finite-state automata rather than full-fledged
hierarchical statecharts.

8.2 Unit testing of statechart models

Dietrich et al. [12] applied unit testing to UML statecharts
and implemented it in amodel simulation tool called Syntony.
Test cases were defined using UML sequence diagrams, pro-
viding scenarios that are verified over the statechart under
test. The Yakindu statechart tool for Java (www.statechart.
org) also provides support for unit testing using SCUnit, a
framework that supports writing tests over statecharts, and
running these tests with the JUnit testing framework.

8.3 BDD for statechart modelling

We found very little related work on the use of BDD at a
modelling level. Lazar et al. [33] proposed bUML, a tool to
combine BDD with model-driven development based on a
specific UML profile, and compliant with the fUML action
language. While the authors propose a visual UML syntax
for expressing BDD scenarios, they only apply it to planning
and monitoring of project progress, rather than using it for
testing behavioural models like UML statecharts, as is the
case in Sismic.

8.4 DbC for statechart modelling

At the level of UML models, DbC has mainly be used for
class diagrams. Cabot [6] used the UMLtoCSP tool to trans-
form such contracts into a constraint satisfaction problem
that is fed to a constraint solver. Gogolla implemented sup-
port for validating such contracts through the USE tool [24].
This tool has been extended with contract support for proto-
col state machines [26] and sequence diagrams [23]. Cariou
et al. [7] applied contracts at the meta-model level to ver-
ify at run-time whether the statechart execution semantics
is respected. Cimatti et al. [8] used component contracts to

specify the behaviour of interacting components and com-
bined this with a temporal logic framework to formally verify
the contracts using the OCRA tool and the NuSMV symbolic
model checker. It has a plug-in for the AutoFOCUS3 and the
CHESS modelling tool.

8.5 Smart Contracts

Recently, the technique of smart contracts has emerged as
a way to specify programs that enforce the application of
rules to govern transactions [11], to safeguard contractual
clauses [32] and to define quality of service (QoS) char-
acteristics (e.g. performance, availability, security) [5]. For
example, smart contracts have been proposed for support-
ing cryptocurrency protocols [11,32], as well as executable
Service Level Agreements (SLAs) for the smart grid [5].
The proposed mechanism of property statecharts can be used
as a way to realise smart contracts. As an example, assume
that there is an agent A that signs a Service Level Agree-
ment (SLA) with agent B. The SLA dictates that whenever A
receives a request from B, then A must reply within 1 hour.
The statecharts in Fig. 33 depict the behaviour of agent A
and the property statechart monitoring the agent’s SLA. The
agent receives requests, and if they are made by affiliates,
it processes them and subsequently responds. The property
statechart monitoring the agent’s SLA with agent B starts in
the waiting state. If a request from agent B is received by
agent A and more than one hour passes before a response has
been issued to B, then the contract is terminated (fails).

8.6 Automatic generation of tests and contracts

Ernst et al. [17] proposed to automate the generation of con-
tracts over programs and to detect possible inconsistencies or
incompleteness in the specified contracts. To this extent, he
developed the Daikon tool that automatically detects likely
invariants from dynamic program executions. In a similar
vein, Meyer [37] proposed to deduce automated tests from
contract specifications. This reduces the burden of needing
to write many tests manually and facilitates checking cor-
rectness of a system. It would be beneficial to apply the same
idea to generate statechart tests both from the contracts and
the behavioural properties defined over the statechart and its
components, especially in combination with the use ofmuta-
tion testing to increase the quality of an existing test suite
[20,49], and concolic testing (a combination of concrete and
symbolic execution) to generate new test cases to achieve
higher coverage [45].

8.7 Formal verification and run-time verification

Approaches based on formal verification andmodel checking
allow to verify properties (e.g. related to reachability, live-

123

www.eclipse.org/papyrus/
www.eclipse.org/papyrus/
http://af3.fortiss.org
www.statechart.org
www.statechart.org

860 T. Mens et al.

Fig. 33 Example of statecharts
for smart contracts between two
communicating agents A and B.
a Statechart representing the
behaviour of agent A. b
Property statechart monitoring
the SLA with another agent B

Agent A Behaviour

receive request process request

respond

message_received [event.sender.isAffiliated()]

message_sent

SLA with Agent B

waiting

received message [after(3600)]

event consumed
[event.event.name == 'message_received'

and event.event.sender.name == 'B']

event consumed
[event.event.name == 'message_sent'

and 'B' in event.event.recipients
and not after(3600)]

(a)

(b)

ness, fairness and safety) over the system under study (in our
case, a statechart model) [2]. Such techniques often rely on a
model checker tool and need to copewith problems related to
space explosion. Formalisms based on temporal logics allow
to specify properties qualified in terms of time and rely on a
model checker to verify such properties. For example, Gnesi
et al. [22] presented JACK, a model checker that verifies
correctness properties over UML statecharts. These prop-
erties are expressed in a variant of branching time temporal
logic, and a labelled transition system (derived from the state-
chart) is checked against these requirements. Another family
of verification approaches is the one based on some vari-
ant of finite automata (a.k.a. finite-state machines or FSMs).
This includes labelled transition systems, timed automata,
hybrid automata and counter automata. They have the advan-
tage of being more similar to the statechart language (since
they are also based on states and transitions), hence reduc-
ing the mental gap to express properties in these formalisms.
Among many others, the LTSA tool, based on labelled tran-
sition systems, has been proposed to analyse the behaviour of
concurrent systems [36]. While their usefulness seems with-
out doubt, their usability has been criticised, and different
attempts have been made to increase the usability by non-
logicians [4,9,16].

Run-time verification is based on similar techniques
(including regular expressions, temporal logics, state
machines and rule-based programming [21]), but aims at
monitoring observable behaviours or properties over an exe-
cuting system. Run-time verification checks for violation
of properties at run-time, at the expense of providing less
coverage than formal verification approaches [35]. While

numerous approaches have used state machines or related
mechanisms tomonitor the execution of programs,much less
research has focused on monitoring of executable statechart
models. Drusinsky [14,15] proposed to monitor violations
of temporal logic assertions aver statecharts at run-time.
The notion of property statecharts explored in this article
is different, in that it offers the full expressive power of
statecharts to monitor properties over statecharts. Because
arbitrary Python code can be used (e.g. in transition actions),
property statecharts are Turing complete. Nevertheless, due
to the “fail-fast” approach adopted by Sismic’s interpreter for
their verification, property statecharts are mainly intended to
check for the presence of undesirable behaviour (safety prop-
erties), i.e. properties that can be checked on a (finite) prefix
of a (possibly infinite) execution trace.While it is technically
possible to use property statecharts to express liveliness prop-
erties (something desirable eventually happens), this would
require additional support for their verification.

9 Conclusion

This article presented a newmethod for testing and validating
executable statecharts. The method is supported by Sismic,
an open- source research prototype tool that we developed
specifically for this purpose. The Sismic method enhances
traditional statechart design with a range of techniques that
have already proven their usefulness for source code devel-
opment. All of these techniques can be combined easily to
test and validate statechart designs.

123

Amethod for testing and validating executable statechart models 861

A straightforwardway of testing statecharts relies onwrit-
ing unit tests, but this introduces anunnecessary technical gap
of needing to write these tests in an underlying programming
language. The technique of behaviour-driven development
(BDD) overcomes this limitation by allowing to specify sce-
narios of desired functional behaviour in a semi-formal nat-
ural language and to use these scenarios as executable func-
tional tests over the statechart. This approach has the advan-
tage of only needing a minimum amount of mapping code.

We also provided two techniques for run-time verification
of statecharts. The first one consists of applying the princi-
ple of design by contract (DbC) at the level of statecharts,
allowing to specify preconditions, postconditions and invari-
ants on states and transitions, andmonitoring violations these
contracts during statechart execution. The second technique
consists of specifying behavioural properties as statecharts
themselves, allowing the statechart under test to bemonitored
at run-time for violations of these properties.

We evaluated the proposed method, and more in particu-
lar the usefulness and usability of the proposed techniques
through a controlled user study conducted with thirteen par-
ticipants. All techniques were considered to be useful and
complementary. Participants reported that they were likely
to use each of the proposed techniques for creating new
statecharts, or for verifying or modifying existing ones.
Participants also indicated that the implementation of the
techniques in Sismic was easy to use.

Acknowledgements We express our gratitude to Jordi Cabot, Simon
Van Mierlo, Gauvain Devillez and Mathieu Goeminne, and several
anonymous reviewers for providing comments on earlier versions of
this article.

References

1. Aravantinos, V., Voss, S., Teufl, S., Hölzl, F., Schätz, B.: AutoFO-
CUS 3: tooling concepts for seamless, model-based development
of embedded systems. In: InternationalWorkshop onModel-Based
Architecting of Cyber-Physical and Embedded Systems and Inter-
national Workshop on UML Consistency Rules, Volume 1508 of
CEUR Workshop Proceedings, pp. 19–26. CEUR-WS.org (2015)

2. Baier, C., Katoen, J.-P.: Principles of Model Checking. MIT Press,
Cambridge (2008)

3. Beck, K.: Test-DrivenDevelopment by Example. Addison-Wesley,
Reading (2002)

4. Beer, I., Ben-David, S., Eisner, C., Fisman, D., Gringauze, A.,
Rodeh, Y.: The temporal logic sugar. In: International Conference
Computer AidedVerification (CAV), pp. 363–367. Springer (2001)

5. Bunse, C., Klingert, S., Schulze, T.: Greenslas: supporting energy-
efficiency through contracts. In: InternationalWorkshop on Energy
Efficient Data Centers, pp. 54–68. Springer (2012)

6. Cabot, J., Clarisó, R., Riera, D.: On the verification of UML/OCL
class diagrams using constraint programming. J. Syst. Softw. 93,
1–23 (2014)

7. Cariou, E., Ballagny, C., Feugas, A., Barbier, F.: Contracts for
model execution verification. In: European Conference Modelling
Foundations andApplications (ECMFA), Volume 6698 of Lecturer
Notes in Computer Science, pp. 3–18. Springer (2011)

8. Cimatti, A., Tonetta, S.: Contracts-refinement proof system for
component-based embedded systems. Sci. Comput. Program. 97,
333–348 (2015)

9. Corbett, J.C., Dwyer, M.B., Hatcliff, J., Robby.: A language frame-
work for expressing checkable properties of dynamic software.
In: International SPIN Model Checking and Software Verification
Workshop, Volume 1885 of Lecturer Notes in Computer Science,
pp. 205–223. Springer (2000)

10. Cossentino, M., Gaglio, S., Garro, A., Seidita, V.: Method frag-
ments for agent design methodologies: from standardisation to
research. Int. J. Agent Oriented Softw. Eng. 1(1), 91–121 (2007)

11. Delmolino, K., Arnett, M., Kosba, A., Miller, A., Shi, E.: Step by
step towards creating a safe smart contract: lessons and insights
from a cryptocurrency lab. In: International Conference on Finan-
cial Cryptography and Data Security, pp. 79–94. Springer (2016)

12. Dietrich, I., Dressler, F., Dulz, W., German, R.: Validating UML
simulation models with model-level unit tests. In: International
Conference Simulation Tools and Techniques (SIMUTools) (2010)

13. Douglas, B.P.: Doing Hard Time: Developing Real-Time Systems
with UML, Objects, Frameworks, and Patterns. Addison-Wesley,
Reading (1999)

14. Drusinsky, D.: Semantics and runtime monitoring of TLCharts:
statechart automata with temporal logic conditioned transitions. In:
Proceedings of the Fourth Workshop on Runtime Verification (RV
2004), Electronic Notes in Theoretical Computer Science, Volume
113, pp. 3–21 (2005)

15. Drusinsky, D.: Modeling and Verification Using UML Statecharts.
Elsevier Science, Amsterdam (2006)

16. Dwyer, M.B., Avrunin, G.S., Corbett, J.C.: Patterns in property
specifications for finite-state verification. In: International Confer-
ence on Software Engineering, pp. 411–420. ACM (1999)

17. Ernst, M.D., Perkins, J.H., Guo, P.J., McCamant, S., Pacheco, C.,
Tschantz,M.S.,Xiao,C.: TheDaikon system for dynamic detection
of likely invariants. Sci. Comput. Program. 69(1–3), 35–45 (2007)

18. Esmaeilsabzali, S., Day, N.A., Atlee, J.M., Niu, J.: Deconstructing
the semantics of big-step modelling languages. Requir. Eng. 15(2),
235–265 (2010)

19. Estler, H., Furia, C.A., Nordio, M., Piccioni, M., Meyer, B.: Con-
tracts in practice. In: International Symposium on Formal Methods
(FM), Volume 8442 of Lecturer Notes in Computer Science, pp.
230–246. Springer (2014)

20. Fabbri, S.C.P.F., Maldonado, J.C., Sugeta, T., Masiero, P.C.: Muta-
tion testing applied to validate specifications based on statecharts.
In: International Symposium on Software Reliability Engineering
(ISSRE), pp. 210–219. IEEE Computer Society (1999)

21. Falcone, Y., Havelund, K., Reger, G.: A tutorial on runtime verifi-
cation. Eng. Dependable Softw. Syst. 34, 141–175 (2013)

22. Gnesi, S., Latella, D., Massink M.: Model checking UML stat-
echart diagrams using JACK. In: International Symposium on
High-Assurance Systems Engineering (HASE), pp. 46–55. IEEE
Computer Society (1999)

23. Gogolla, M., Hamann, L., Hilken, F., Sedlmeier, M.: Modeling
behavior with interaction diagrams in a UML and OCL tool.
In: Behavior Modeling—Foundations and Applications, BM-FA
2009–2014, Revised Selected Papers, Volume 6368 of Lecturer
Notes in Computer Science, pp. 31–58. Springer (2015)

24. Gogolla, M., Büttner, F., Richters, M.: USE: a UML-based speci-
fication environment for validating UML and OCL. Sci. Comput.
Program. 69(1–3), 27–34 (2007)

25. Gomaa, H.: Designing Software Product Lines with UML: From
Use Cases to Pattern-Based Software Architectures. AddisonWes-
ley, Reading (2004)

26. Hamann, L., Hofrichter, O., Gogolla, M.: On integrating structure
and behavior modeling with OCL. In: International Conference on
Model Driven Engineering Languages and Systems, Volume 7590

123

862 T. Mens et al.

of Lecturer Notes in Computer Science, pp. 235–251. Springer
(2012)

27. Harel, D.: On visual formalisms. Commun. ACM 31(5), 514–530
(1988)

28. Harel, D., Gery, E.: Executable object modeling with statecharts.
IEEE Comput. 30(7), 31–42 (1997)

29. Harel, D., Kugler, H.: The Rhapsody Semantics of Statecharts
(or, on the Executable Core of the UML), Volume LNCS 3147.
Springer, Berlin (2004)

30. Harel, D., Naamad, A.: The STATEMATE semantics of statecharts.
ACM Trans. Softw. Eng. Methodol. 5(4), 293–333 (1996)

31. Henderson-Sellers, B., Ralyté, J.: Situational method engineering:
state-of-the-art review. J. Univers. Comput. Sci. 16(3), 424–478
(2010)

32. Idelberger, F., Governatori, G., Riveret, R., Sartor, G.: Evaluation
of logic-based smart contracts for blockchain systems. In: Interna-
tional Symposium on Rules and Rule Markup Languages for the
Semantic Web, pp. 167–183. Springer (2016)

33. Lazar, I., Motogna, S., Parv, B.: Behaviour-driven development of
foundational UML components. Electron. Notes Theor. Comput.
Sci. 264(1), 91–105 (2010). (Int’l Workshop on Formal Engi-
neering approaches to Software Components and Architectures
(FESCA))

34. Leavens, G.T., Cheon, Y.: Design by Contract with JML. Technical
report, Iowa State University (2006)

35. Leucker,M., Schallhart, C.: A brief account of runtime verification.
J. Logic Algebr. Program. 78(5), 293–303 (2009). (The 1st Work-
shop on Formal Languages and Analysis of Contract-Oriented
Software (FLACOS’07))

36. Magee, J.: Behavioral analysis of software architectures using
LTSA. In: International Conference on Software Engineering, pp.
634–637. ACM (1999)

37. Meyer, B.: Contract-driven development. In: International Con-
ference on Fundamental Approaches to Software Engineering
(FASE), Volume 4422 of Lecturer Notes in Computer Science,
p. 11. Springer (2007)

38. Meyer, B.: Applying "design by contract". IEEE Comput. 25(10),
40–51 (1992)

39. North, D.: Behavior modification: the evolution of behavior-driven
development. Better Software (2006)

40. Object Management Group. Object Constraint Language, Version
2.4. OMG Document Number: formal/2014-02-03. URL: http://
www.omg.org/spec/OCL/2.4 (2014)

41. Object Management Group. OMG Unified Modeling Lan-
guage (OMG UML), Version 2.5. OMG Document Num-
ber: formal/2015-03-01. URL:http://www.omg.org/spec/UML/2.
5 (2015)

42. OMG. Software and Systems Process Engineering Meta-Model
Specification. Version 2.0. Technical Report OMG Document
Number: Formal/2008-04-01. Object Management Group (2008)

43. Pei, Y., Furia, C.A., Nordio, M., Wei, Y., Meyer, B., Zeller, A.:
Automated fixing of programs with contracts. IEEE Trans. Soft.
Eng. 40(5), 427–449 (2014)

44. Samek, M.: Practical UML Statecharts in C/C++: Event-Driven
Programming for Embedded Systems, 2nd edn. CRC Press, Boca
Raton (2008)

45. Sen, K.: Concolic testing. In: International Conference on Auto-
mated Software Engineering, pp. 571–572. ACM (2007)

46. Spanoudakis, N., Moraitis, P.: The agent modeling language
(AMOLA). In:Dochev,D., Pistore,M., Traverso, P. (eds.)Artificial
Intelligence: Methodology, Systems, and Applications, Volume
5253 of Lecture Notes in Computer Science, pp. 32–44. Springer,
Berlin (2008)

47. Syriani, E., Vangheluwe, H., Mannadiar, R., Hansen, C.,
Van Mierlo, S., Ergin, H.: AToMPM: a web-based model-
ing environment. In: Joint Proceedings of MODELS’13 Invited

Talks, Demonstration Session, Poster Session, and ACM Student
Research Competition, Volume 1115, CEUR Workshop Proceed-
ings (2013)

48. Topalidou-Kyniazopoulou, A., Spanoudakis, N.I., Lagoudakis,
M.G.: A CASE tool for robot behavior development. In: Chen,
X., Stone, P., Sucar, L.E., Zant, T. (eds.) RoboCup 2012: Robot
Soccer World Cup XVI. Lecture Notes in Computer Science, vol.
7500, pp. 225–236. Springer, Berlin (2013)

49. Trakhtenbrot, M.: New mutations for evaluation of specification
and implementation levels of adequacy in testing of statecharts
models. In: Testing: Academic and Industrial Conference Practice
and Research Techniques (MUTATION), pp. 151–160 (2007)

50. Wynne, M., Hellesoy, A.: The Cucumber Book: Behaviour-
Driven Development for Testers and Developers. Pragmatic Book-
shelf. ISBN: 978-1-93435-680-7. https://pragprog.com/book/
hwcuc/the-cucumber-book (2012)

Tom Mens obtained a Ph.D. in
Science in 1999 at the Vrije Uni-
versiteit Brussel with a thesis enti-
tled “A Formal Foundation for
Object-Oriented Software Evolu-
tion". After a postdoctoral fellow-
ship of the Fund for Scientific
Research—Flanders, he became a
lecturer at the University of Mons
(UMONS) in October 2003. He
is full professor at the Depart-
ment of Computer Science, direc-
tor of the Software Engineering
Lab, and vice-president of the
INFORTECH Research Institute

of UMONS. His main research interests are software modeling, soft-
ware evolution and open-source software ecosystems. He co-edited
two Springer books “Software Evolution” and “Evolving Software
Systems”. He published numerous scientific articles in peer-reviewed
international conferences and journals (of which five appeared in Soft-
ware and Systems Modeling). He was keynote speaker for ICSME
2016 and program chair of ICSM 2013, CSMR 2012 and CSMR 2011.
He has been involved in several interuniversity research projects and
networks, including the ERCIM Working Group on Software Evolu-
tion, the ESF Research Network RELEASE, the FNRS-FRQ Québec-
Wallonie collaborative research project “Socio-Technical Methodol-
ogy and Analysis of Software Ecosystem Health” and the joint Belgian
FNRS-FWO Excellence of Science project “Automated Assistance for
Developing Software in Ecosystems of the Future”. He is a senior
member of the IEEE, and member of the ACM. For more information,
visit http://staff.umons.ac.be/tom.mens.

Alexandre Decan conducted his
doctoral studies at the University
of Mons on the subject of data
quality in relational databases. He
obtained a Ph.D. degree in 2013
for the thesis entitled “Certain
Query Answering in First-Order
Languages". He is postdoctoral
researcher at the Software Engi-
neering Lab of the University of
Mons (Belgium), where he has
co-authored many publications
related to the maintenance and
evolution of software ecosystems.
He has been actively involved in

123

http://www.omg.org/spec/OCL/2.4
http://www.omg.org/spec/OCL/2.4
http://www.omg.org/spec/UML/2.5
http://www.omg.org/spec/UML/2.5
https://pragprog.com/book/hwcuc/the-cucumber-book
https://pragprog.com/book/hwcuc/the-cucumber-book
http://staff.umons.ac.be/tom.mens

Amethod for testing and validating executable statechart models 863

several research projects such as the Action de Recherche Concertée
“Ecological Studies of Open Source Software Ecosystems”, the Wal-
loon IDEES project portfolio of the European Regional Develop-
ment Fund, and the joint FNRS-FRQ Québec-Wallonie collaborative
research project “Socio-Technical Methodology and Analysis of Soft-
ware Ecosystem Health”. For more information, visit https://decan.
lexpage.net.

Nikolaos I. Spanoudakis holds a
laboratory teaching assistant posi-
tion in the Applied Mathematics
and Computers Laboratory of the
School of Production Engineering
and Management of the Technical
University of Crete. He obtained a
Ph.D. in Computer Science from
Paris Descartes University (Paris-
V) in 2009 with a thesis enti-
tled “The Agent Systems Engi-
neering Methodology (ASEME)”.
His main research interests are
agent-oriented software engineer-
ing, multi-agent systems, intelli-

gent systems, software modeling, and applications of artificial intel-
ligence and argumentation, in the areas of ambient intelligence, e-
commerce, financial and infomobility services. He is a senior member
of the IEEE, and member of the ACM, the Hellenic Artificial Intelli-
gence Society (EETN), and the Technical Chamber of Greece (TEE-
TCG). He has experience as information systems architect, designer
and developer, technical manager, project manager and consultant
in information technology and services. For more information, visit
http://users.isc.tuc.gr/~nispanoudakis.

123

https://decan.lexpage.net
https://decan.lexpage.net
http://users.isc.tuc.gr/~nispanoudakis

	A method for testing and validating executable statechart models
	Abstract
	1 Introduction
	2 Background
	2.1 TDD and BDD
	2.2 DbC
	2.3 Run-time verification

	3 Process
	3.1 Design Phase
	3.2 Testing Phase

	4 Tooling
	4.1 Importing and exporting statechart models
	4.2 Statechart interpreter
	4.3 Using the API to execute statecharts
	4.4 Run-time monitoring of statecharts
	4.5 Support for unit testing and BDD scenarios

	5 Running example: statechart Design Phase
	5.1 Analysis Phase work products
	5.1.1 Component diagram
	5.1.2 UI mock-up
	5.1.3 User stories

	5.2 Define properties
	5.3 Define Statechart
	5.4 Enrich Statechart with Contracts
	5.5 Define unit tests
	5.6 Define Scenarios and Implement Scenario Steps

	6 Running example: Statechart Testing Phase
	6.1 Monitor contracts
	6.2 Monitor properties
	6.3 Run Unit Tests
	6.4 Manually test through UI
	6.5 Run Scenarios

	7 Evaluation
	7.1 Experimental set-up
	7.2 Evaluation of BDD
	7.3 Evaluation of DbC for statechart monitoring
	7.4 Evaluation of property statecharts
	7.5 Discussion
	7.6 Threats

	8 Related work
	8.1 Related tools
	8.2 Unit testing of statechart models
	8.3 BDD for statechart modelling
	8.4 DbC for statechart modelling
	8.5 Smart Contracts
	8.6 Automatic generation of tests and contracts
	8.7 Formal verification and run-time verification

	9 Conclusion
	Acknowledgements
	References

