
Software & Systems Modeling (2019) 18:1699–1735
https://doi.org/10.1007/s10270-018-0668-3

SPEC IAL SECT ION PAPER

Metamodel specialization for graphical language support

Audris Kalnins1 · Janis Barzdins1

Received: 14 March 2017 / Revised: 19 January 2018 / Accepted: 13 February 2018 / Published online: 2 March 2018
© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Abstract
Most of current modeling languages are based on graphical diagrams. The concrete graphical syntax of these languages
typically is defined informally—by text and diagram examples. Only recently, starting from UML 2.5, a formalism is offered
for defining the graphical syntax of UML. This formalism is based on Diagram Definition standard by OMG, where the
main emphasis is on enabling diagram interchange between different tools implementing the given language. While this is
crucial for standardized languages such as UML, this aspect is not so important for domain-specific languages. In this paper,
an approach is offered for a simple direct definition of concrete graphical syntax by means of metamodels. Metamodels are
typically used for a language definition, but mainly the MOF-inspired approach via meta-metamodel instantiation is used.
We offer an alternative approach based on core metamodel specialization which leads to a more direct and understandable
definition staying at the same meta-layer. In addition, our approach permits a natural extension—facility for a graphical editor
definition for the given language, which is vital in the world of DSLs. In contrast to most DSL development platforms, which
are based on the abstract syntax metamodel of the language and a mapping to graphics, our facility is based directly on the
graphical syntax. But we show that in those cases where the relation to the DSL abstract syntax is really required, a mapping
from the graphical syntax to abstract syntax can be relatively easily defined by the specialization approach.

Keywords Metamodeling · Metamodel specialization · Graphical syntax definition · Graphical DSL · Graphical editors

1 Introduction

Metamodels are the most used formalism for defining
graphical modeling languages. The four-layer metamodel-
ing approach defined by OMG MOF [1] is used for the
definition of nearly all graphical modeling languages main-
tained by OMG. Certainly, the most notable such language
is UML [2], but there are many other languages. The
layer M3—MOF itself, is used to define M2 artifacts—
metamodels for concrete languages, e.g., UML. This is
done by instantiation—metamodels in M2 are defined as
instances of MOF as a meta-metamodel. Metamodels in M2
are meant to define an abstract syntax of a language. The
UML metamodel specifies the abstract syntax of UML—

Communicated by Dr Jörg Kienzle and Alexander Pretschner.

B Audris Kalnins
audris.kalnins@lumii.lv

Janis Barzdins
Janis.barzdins@lumii.lv

1 Institute of Mathematics and Computer Science, University of
Latvia, Raina bulvaris 29, Riga, Latvia

the modeling concepts, their attributes and relationships, as
well as rules for combining them. The abstract syntax of any
valid UML model must be an instance of this metamodel.
However, the concrete graphical syntax of UML diagrams
is defined completely informally, frequently on the basis of
examples.

Starting from UML 2.5 [2], some formalization is offered
also for defining the graphical syntax of diagrams. It is based
on the new OMG standard for Diagram Definition (DD) [3].
However, the main goal of this formalization is to enable
a diagram interchange (DI) between modeling tools, rather
than a simple and precise diagram syntax specification for
tool developers. Therefore, the first component of the DD
approach is the DI metamodel which permits to define the
structure of a diagram in a very abstractway,with the goal just
to specify which diagram elements should be interchanged
between tools. The second component of DD is the DG (Dia-
gram Graphics) metamodel which is oriented toward a low
level specification of graphical element rendering in a tool.
The elements of DI must be mapped to elements of DG.
The OMG DD approach is discussed in greater detail in
Sect. 4.

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10270-018-0668-3&domain=pdf


1700 A. Kalnins, J. Barzdins

Thus, the problem of simple but at the same time precise
definition of the graphical syntax for a graphical model-
ing language is still open. This problem is very significant
now when, besides standardized modeling languages, so
many domain-specific modeling languages are defined and
used.

In fact, two paradigms for concrete graphical syntax def-
inition by means of metamodels are available. One—the
most used so far—is the metamodel instantiation which
was already mentioned in the context of MOF. This paper
proposes another possibility—the specialization of a base
metamodel to describe the syntax of a concrete language.
Here the resulting metamodel just contains subclasses of
the base metamodel. This approach does not require another
meta-layer for the resulting metamodel. The specialization
is based on standard UML features—creating subclasses of
the base metamodel, redefining (or subsetting) class proper-
ties and adding newOCL constraints. Section 6 describes the
basic principles of the proposed specialization approach. The
main goal of the paper is to show the usage ofmetamodel spe-
cialization for the graphical language syntax definition and
related tasks (language editor definition) and to analyze the
advantages of this approachwhen compared to the traditional
instantiation. In particular, these advantages are based on an
appropriate choice of the basemetamodel to be specialized—
the Universal Metamodel (UMM) for the given task.

A task closely related to the diagram syntax definition
is the creation of platforms for building graphical editors for
such languages. The approach used inmost of these platforms
is a sort of mapping the abstract syntax (or domain model)
of the language (defined via MOF facilities) to a graphical
notation. First and foremost, these platforms are based on
Eclipse GMF [4], where the abstract syntax is defined via an
EMF [5] metamodel, the graphical concrete syntax is defined
via GMF graphics metamodel, and the relation between the
two metamodels is defined via the mapping metamodel. A
detailed analysis of the Eclipse GMF approach is provided
in Sect. 2. Many other platforms use a similar approach
based on the domain model of the language—see more in
Sect. 5.

Only a few approaches for defining diagram editors
directly on the basis of their graphical syntax exist. The plat-
form devoted most directly to graphical DSL tool (graphical
modeling language editor) definition is the platform devel-
oped by IMCS UL—TDA (Transformation-Driven Archi-
tecture) [6,7]. There a fixed Tool definition metamodel is
proposed, where the concrete syntax of a DSL and an editor
for it is defined as an instance of this metamodel (thus, the
traditional instantiation approach is used there). A detailed
analysis of the TDA approach is given in Sect. 3.

This paper shows that not only a rich class of graphical
languages, but also quite advanced graphical tool building
platform can be defined in a relatively easy way via meta-

model specialization. The proposed metamodel for editor
building is a direct extension of the metamodel used for lan-
guage syntax definition. Sections 7–12 provide the details of
the metamodels to be specialized and specialization exam-
ples for languages and editors.

This paper is an extended version of the conference
paper [8]. First, a deeper analysis of the existing traditional
instantiation-based approaches to language and tool defini-
tion (EclipseGMF, TDA,OMGDD, etc.) is added in Sects. 2,
3, 4, and 5. On the basis of this analysis, the new Sect. 13 now
provides a significantly deeper comparison of our approach
to the traditional ones. In addition, we provide a new section
describing how for those cases where the abstract syntax
of the DSL is required as well the editor definition can be
extended by a declarative definition of the mapping from
the graphical to abstract syntax using the same specializa-
tion approach. The section on implementation principles is
significantly extended as well, by providing internal meta-
models and other implementation details.

Sections 2, 3, 4, and 5 provide some details and also prob-
lems of the traditional approaches. Section2 gives a brief
overview of the graphical language definition via Eclipse
GMF framework [4]. The overview is based on a very sim-
ple graphical language —flowchart example (the example is
reused in subsequent sections as well). Models required for
the definition of the language editor are shown. On this basis,
it is shown that, though the GMF framework permits to build
support for various languages, even for this very simple lan-
guage the definition is not so trivial. Section3briefly revisits a
TDA platform approach for graphical syntax definition using
metamodel instantiation. Section 4 provides a brief analysis
of the OMG DD approach to language definition. Section 5
briefly comments on other instantiation-based approaches.

Sections 6–12 provide the details of the metamodel spe-
cialization approach and examples of its usage for graphical
language and tool definition. Section 6 presents the basic
principles of the proposed metamodel specialization. Sec-
tion 7 describes the Universal Metamodel for graphical
syntax definition and gives an example of its specialization
for the complete precise flowchart syntax definition. Sec-
tion 8 shows how the Universal Metamodel can be extended
and connected with a Universal Engine to provide the basis
for graphical editor definition. The complete Flowchart edi-
tor definition and an essential fragment of a simplified class
diagram editor is presented in Sects. 9 and 10, respectively.
Section 11 explains how the Universal Metamodel and the
Universal Engine can be extended to provide also a syn-
chronous building of the abstract syntax notation of the
DSL model. Section 12 presents basic ideas of the imple-
mentation. Section 13 provides a deeper comparison of the
specialization approach to traditional ones and shows its
advantages. The conclusion presents some future use cases
of our approach.

123



Metamodel specialization for graphical language support 1701

2 Brief overview of graphical language
definition in Eclipse GMF framework

In this section, we provide a brief overview of the very pop-
ular Eclipse GMF framework [4]. This framework for a long
time has been the most popular environment for building
tools for graphical DSLs. It is a very classic example of the
metamodel instantiation approach for tool building. GMF is
based on the classical paradigm for graphical language def-
inition, where the definition starts from the abstract syntax
or domain model for the given language. This model is built
as an instantiation of the Eclipse EMF [5] metamodel. All
semantic aspects of the language should be built into this
domain model, using OCL constraints for domain elements.
Other three models are required to build the graphical and
tooling aspects of the language. The graphical syntax of the
language is defined via graphics model which is an instance
of the GMF Graphical Definition (GMFGraph) metamodel.
The model describes the graphical syntax of the language in
terms of nodes, connections, compartments and labels. How-
ever, for these diagram elements many graphical aspects are
detailed in terms of figures, which in fact are taken from the
lower-level Eclipse framework GEF [9], on which GMF is
based. The GEF framework is not so model based, it is more
oriented toward direct Java APIs. Therefore, defining new
kinds of figures, as a rule, requires programming in Java.
The editor functionality aspects are defined by the tooling
model which is an instance of the GMF Tooling metamodel.
However, only palette and menus can be defined there. The
details of diagram element property editing should be defined
already at the domain model (EMF) level, by customizing
the generated Edit and Editor components, mainly at Java
level; therefore, we do not show this editing aspect in greater
detail. The graphics and tooling models are linked to the
domainmodel via themappingmodel which is an instance of
the GMF Mapping metamodel. The mapping model defines
in a hierarchic way the graphical elements by which each
domain element should be visualized. Some more compli-
cated mapping situations (e.g., involving a choice depending
on element properties) canbedetailed usingOCLconstraints.
In addition, for the main elements the related tooling ele-
ments from the tooling model are also shown in the mapping
model. TheGMF framework provides only oneway to obtain
a working graphical editor for the language—generate Java
code (resulting in an Eclipse plug-in). The code generation
can be customized by using one more model—generation
model which is an instance of the GMF Generation meta-
model. The generation model is derived from the mapping
model, and it references all four models described before.
Some customizing can be done at this model level, but more
complicated customizing typically involves programming in
Java.

Fig. 1 Flowchart example

The domain, graphics and mapping models together to
some degree can be considered as a graphical syntax defini-
tion of the language, but in practice this aspect is rarely used
because of being complicated and not very readable. It is one
of the reasons why an independent diagram graphical syntax
definition facility (DD) was proposed by OMG.

To explain the basic ideas, in this paper we introduce a
simple graphical language example—flowchart, on which all
language and tool definition approacheswill be demonstrated
and compared. Now a more detailed explanation follows.
Figure 1 shows a simple example of a flowchart.

Theflowchart contains four node types—start node, action
node, decision node and end node, and two edge types—flow
and conditional flow. An action node contains a text—the
action name, and decision node—the condition (an informal
text). Besides, a conditional flow also has a text attached—
the condition value – Y or N (for Yes or No). Other flowchart
elements have no texts. There is a restriction that no more
than one flow can start from a start or action node, and
no more than two conditional flows can start from a deci-
sion node (they must have different condition value labels).
Any number of flows or conditional flows can enter a node
(except the start node). And there may be only one start node
per flowchart. All actions in a flowchart must have unique
names. There may be one more kind of a node not shown in
the example—RefinedAction, referencing another flowchart
instance. This kind of action is shown in another color (red),
but its main functionality appears in the editor as a navigation
facility to the referenced diagram.

Now the definition of this simple flowchart language
will be shown in GMF. All five models mentioned in the
brief GMF overview above, in fact, are true class diagrams
(at MOF M1 level, being instances of the corresponding
metamodels at M2). However, in the GMF framework user
interface all models are natively created in the model tree
form. Only the domain model can be easily visualized as a
class diagram. Therefore, all five models for the flowchart
definition will be shown here in this GMF tree format. Fig-
ure 2 shows the domain model. For such a simple language,
its domain model (abstract syntax) is in fact one-to-one to its
graphical syntax.

The Flowchart class represents a flowchart itself, which
contains all other elements. Unfortunately, in the tree view
it is not visible which associations (shown as references
to the corresponding class) are containments (it is visi-

123



1702 A. Kalnins, J. Barzdins

Fig. 2 Domain model of the
flowchart (in the tree form)

123



Metamodel specialization for graphical language support 1703

ble only in the properties dialog of the tree element). To
make the definition of permitted relations between nodes
and edges (connections in GMF) easier, three abstract super-
classes are introduced in the model—node superclasses
FlowStartNode and FlowEndNode and an edge superclass
FlowchEdge. Using this principle, no OCL constraints are
required to define the node/edge multiplicity constraints
in the Flowchart. There are three explicit OCL constraints
present in this domainmodel—they represent the true seman-
tic constraints present in the informal flowchart definition.
Thus, all required semantic constraints of a flowchart can be
defined in the domain model.

Figure 3 shows the graphics model for the flowchart.
The initial part of this model shows all figures used in

the definition. Figures are contained in a Figure Gallery. The
default gallery in GMF is not very rich—there is a rectangle,
a rounded rectangle, an ellipse and a polygon for nodes and
polyline for edges (connections). Therefore, e.g., the “bull’s
eye” figure typically used in flowcharts and in activity dia-
grams for process endmust bemodeled as an ellipse inside an
ellipse, but the diamondfigure for decisions as a generic poly-
gon with corner points explicitly specified. For figures, their
preferred size and fill color can be specified (other properties
which are not used here can be seen only in the properties
dialog). Texts inside nodes and at edges are defined as label
figures (simple rectangles containing the text). The final part
of the tree contains the list of nodes, connections and labels in
the diagram, and nodes have references to the corresponding
figures.

Figure 4 shows the tooling model. Only creation of nodes
and edges is present in the palette.

Figure 5 shows the mapping model for the Flowchart.
Again, the tree view of the model does not reveal all rele-
vant aspects, and some important features are visible only in
property dialogs, e.g., what model element in fact is repre-
sented by a string in a mapping text. The initial part of the
mapping model shows diagram node mappings. The first is
the decision node, the Top Node Reference line for it shows
that the Decision in the domain model is reachable from the
top class Flowchart representing the diagram itself via the
path Flowchart.flowEnd (in fact, it leads to the superclass
FlowEndNode of the Decision class). The nodemapping line
shows that the Decision class in the domain is mapped to
the decision node in graphics. The Feature Label mapping
shows that the condition attribute of Decision in the domain
is mapped to the DecisionCondition label in graphics. Map-
ping details for other nodes are similar. Since edges in our
domain are modeled as classes (the alternative could be just
associations), for them the links to start and end classes in the
domain are explicitly defined. If required, OCL constraints
can be used for classes—here only one constraint is required
specifying that the Action subclass RefinedAction is not to

be mapped as the Action itself. The mapping definition con-
cludes with references to the other GMF models used.

Wedonot showhere the generationmodel since it contains
only technical information. Thus, the flowchart graphical
syntax (to a degree) and editor functionality (except the prop-
erty editor for attributes which is not visible in a model) is
shown. We see that even for this simple language the defini-
tion is not trivial.

Several research teams have come to the conclusion that
though theGMFapproach is quite universal for graphical edi-
tor developments, in practice its application is quite difficult,
especially for more complicated graphical languages. There-
fore, several trials to simplify the usage of GMF have been
proposed. The first one is the Obeo designer [10,11] where
a graphical diagram is defined as a viewpoint of the domain
model. In paper [11], the Obeo team notes that while the cre-
ation of an ER-style graphical editor for practical database
analysis would require 30 days for a GMF expert, it could
be done in 5 days by domain expert in Obeo designer. Now
a version of Obeo designer named Eclipse Sirius [12] has
appeared, but themain features for developinggraphical tools
are the same. The main development step there is the defini-
tion of the viewpoint of the domainmodelwhich specifies the
diagram description. This description combines the chosen
set of graphical elements for the diagram with their map-
ping to the corresponding domain model elements (thus, in
fact, GMF graphical and mapping models are merged here,
but in an alternative notation). Graphical elements include
various kinds of containers which are equivalents to GMF
nodes with compartments and compartments themselves.
The nodes here are simple ones containing only texts and/or
icons. Graphical style for a node supports the shape (a richer
set than in GMF), color and size. Bordered nodes are also
offered for representing ports. Edges represent connections
of elements, and they can bemapped to either domain associ-
ations or classes. The mapping definition can be extended by
expressions in Acceleo [13], which is a superset of OCL, or
in pure OCL. Editor functionality is defined via tools, which
are associated with mappings. A tool can have an applicabil-
ity condition expression and the body describing its action in
a special Operations language. Operations include also invo-
cation of a property dialog for editing element properties. An
operation can invoke also external Java code. Thus, the Sir-
ius approach seems to be sufficient for creating complicated
graphical tools, but its ease of usage is not so clear.

Another approach which criticizes GMF for complexity
and tries to simplify it is Eugenia [14,15]. Especially in [14],
the insufficient quality of GMF wizards offering initial ver-
sions of graphical, mapping and tooling models from the
domain model is criticized, since in the result all these three
models in fact have to be built manually from scratch. It
should be noted that such an effect occurred also for the
Flowchart example described above. Authors of Eugenia try

123



1704 A. Kalnins, J. Barzdins

Fig. 3 Graphics model of the
flowchart

123



Metamodel specialization for graphical language support 1705

Fig. 4 The tooling model

to improve the usability by offering high-level annotations
to domain model elements and using model transforma-
tions to generate the required GMF models automatically.
This permits also to synchronize easily the true definition
sources (domain model + annotations) after some modifica-
tions with the other models. The annotation for a domain
model class defines the GMF node by which it should be
visualized, including figure, color, border style, the contained
labels for class attributes, and tool features; thus, everything
in the graphic, mapping and tooling models for this class
in fact is specified. Similar principles are used for other
domain model elements. There is a standard transformation
in Epsilon transformation language [16], which generates
other models automatically. If required, the tool definer can
add a custom transformation polishing some details of the
models. Finally, a standard Epsilon transformation builds
the generation model from the previous models, and from
it the tool is obtained by the standard GMF generator. The
papers [15,17] report some results of more direct compari-
son of usability of GMF to the usability of its improvements.
Thus, the experimental development of a graphical editor for
BPMN metamodel took 25 days for pure GMF, 5 days for

Obeo designer (Sirius) and about 3 hours for Eugenia (by
medium qualified developers).

There is also a paper [18] reporting some experience
of using GMF for the development of graphical DSLs in
industry, namely the Siemens Company for development of
embedded software. The conclusion is similar—the deriva-
tion of other required models from the domain model is
error-prone and should be performed in minimal steps with
immediate testing. Thus, despite of some success stories of
serious practical usage of GMF, e.g., as the basis for the well-
known IBMUMLmodeling tool RSA [19], improvements of
the GMF technology are really required, in order to support
wide graphical DSL building.

Finally, the IMCS UL Modeling team, including the
authors of this paper, has also some experience in using
GMF for graphical DSL and their tool development. Ini-
tially, an attempt was made to use GMF as the basis for the
whole IMCS graphical DSL project. This research resulted
in the development of METAclipse—an extension of GMF
framework for implementinggraphicalmodel transformation
languages [20]. Several shortcomings of GMF were found,
e.g., the fact that the graphicalmodel inGMFhas no instances
at runtime (a hidden Notation model is used instead). These
shortcomingswere neutralized by direct extension ofGMF at
Java code level. In the result, a very flexible relation between
the domain model and graphical presentation model of the
language was achieved inMETAclipse by usingmodel trans-
formation languages, in the given case MOLA [21]. The
details of METAclipse platform and its implementation are
published in [22]. METAclipse is still used today for the
MOLA tool [23]. In this tool, the graphical editor for MOLA
is closely integrated with the language syntax checker and
compiler.

Despite this success, for the general modeling language
project at IMCSUL theMETAclipse approach was not used,
because in this project the main emphasis from the very
beginning was on defining DSLs directly via their graphical
syntax. In addition, this approach still was considered to be
too complicated for simple graphical modeling languages. In
the result, the TDA tool definition platform, to be discussed
in the next section, was developed.

3 Graphical language definition in TDA
platform

In this section, our TDA tool definition platform [6,7,24]
developed at IMCS UL is briefly discussed. The main design
goal of this platform has been to provide a simple environ-
ment for defining graphical modeling languages and their
tools directly on the basis of their graphical syntax. The plat-
form is fully based on metamodel instantiation. A simple
and natural Type metamodel for graph diagrams is proposed.

123



1706 A. Kalnins, J. Barzdins

Fig. 5 The mapping model

The graphical syntax of the given language is defined as an
instance of this metamodel. There is also an extended ver-
sion of this type metamodel. An instance of this metamodel
directly defines a graphical editor for the language—this
instance can be interpreted by the presentation engines of
the platform. To keep all this simple, the Type metamodel is
in fact at MOF level M1—a class diagram, but its instance is
at M0—an object diagram.

We start with a simplified version of Type metamodel in
TDA (Fig. 6). It is a fixed metamodel which contains type
classes for all elements of a graphical diagram language—
GraphDiagram, Node, Edge and Compartment (of Node or
Edge). It should be noted that the terminology used here
slightly differs from that used in OMG DD and Eclipse
GMF—in our approach, a Compartment is any textual
element in a diagram, single line ormultiline—both theCom-
partment and Label in the sense of OMG DD [3] or GMF. In
DD, a Compartment is a part of Node delimited by horizon-
tal lines which can contain many text lines (Labels) or other
Nodes. Our Compartment contains only text—Node nesting
is specified in another way. Classes of the Type metamodel
contain the basic style attributes of diagram elements—those
which typically are fixed when a diagram syntax is defined
informally, such as node shape and line-end shape. For the
sake of simplicity, other inessential style attributes such as
color and font size are not included. A node compartment
may be a structured text, e.g., a text line for a class attribute
consists of attribute name, type, initial value, with relevant

Fig. 6 Simplified type metamodel

separator strings included. This structuring is enabled by the
parentCompart—subCompart association and prefix, suffix
and subCompartNo attributes. It should be noted that in prac-
tical diagram definitions (including OMG standards) these
aspects typically are defined by including context-free gram-
mar fragments. The concepts of our Type metamodel have
been chosen with the goal to simplify diagram editor defini-
tion in TDA.

We remind that the syntax for a concrete diagram notation
is defined as an instance of this model (a UML object dia-

123



Metamodel specialization for graphical language support 1707

Fig. 7 Flowchart syntax definition by instantiation (simplified)

gram). The semantics of this definition is slightly implicit—it
is assumed that each node in a diagram has one of the defined
node types, each edge—one of the edge types and so on.

Figure 7 shows an example of flowchart syntax definition
obtained this way. This version is slightly simplified with
respect to the version provided in Section 2. There are only
four node types—start node, action node, decision node and
end node. We would like to retain also the restrictions—e.g.,
that no more than one flow can start from a start or action
node, but nomore than two conditional flows can start from a
decision node.However, these constraints cannot be specified
in Fig. 7. Only the basic structure of the intended flowchart
syntax can be defined by the object diagram in Fig. 7—which
edges can start from which nodes, what texts are associated
with the diagram elements. But the element multiplicities
cannot be defined this way—multiplicity constraints cannot
be attached to links in a UML object diagram. In addition, no
true OCL constraints can be attached to elements of syntax
definition—constraints can be added only to UML classes.

In the original TDA platform [7], multiplicities and other
missing features are introduced in a custom way. Some
specific attributes and associations are added to the type
metamodel, which permit to add the missing functionality
to an instance of this type metamodel by creating links and
slots for these specific metamodel elements. Then, they are
interpreted in a custom way to simulate multiplicities, gen-
eralization and simple constraints otherwise not available in
object diagrams.

Figure 8 shows this enhanced Type metamodel in TDA.
The multiplicity for edges is introduced by custom attributes
startMultiplicity and endMultiplicity for the EdgeType class.
Their values specify accordingly how many edges of this

type can maximally start from the node type referenced by
the start link and howmany can end into the node type refer-
enced by end link. If no value is specified in a type instance,
then no restrictions apply, i.e., ∗ multiplicity in UML terms.
Certainly, in this specification it is assumed that nomore than
one start or end link exits from an EdgeType instance. The
next custom element is the class specialization simulation by
subtype/supertype association in the type metamodel. It can
be applied to both node and edge types. This subclass simu-
lation is semantically complete—all slots and links from the
supertype instance are assumed to be relevant also for the
subtype. The complete Flowchart syntax definition in Fig. 9
shows how this imitated subclass feature permits to avoid
repeating of start or end links to several instances, and com-
mon slots also need not to be repeated for subtypes (in fact,
there are “surrogate superclasses”— FlowStart et al for the
true node type instances). The caption attribute for all classes
in fact simulates the class instance name (informally—the
diagram element name the instance represents). One more
specific feature is the ChoiceItem class. Its instances permit
to define the possible value set for a compartment type. Thus,
a simple OCL constraint saying that only a constant set of
values is valid for the given compartment can be imitated.
However, the case when this set is variable—dependent on
other diagram elements, cannot be imitated this way.

Figure 9 shows the complete flowchart syntax definition
as an instance of the complete Type metamodel in Fig. 8. All
features and constraints from the informal Flowchart def-
inition in Sect. 2 are included in this instance (except for
uniqueness of action names and uniqueness of conditional
flow labels from a decision). Thus, this approach is more or
less sufficient for not very complicated graphical language

123



1708 A. Kalnins, J. Barzdins

Fig. 8 Complete type
metamodel in TDA

Fig. 9 Complete definition of flowchart language by type metamodel instantiation

definitions. Only the readability of these definitions with the
nonstandard interpretation of object diagrams is not so clear
for a non-experienced reader.

Further extension of Type metamodel in TDA is used for
graphical editor definition for a graphical language set. All

language definition features are retained, but a number of new
editor-related classes are added—extended style elements,
palette, menus, text editing options, etc. Especially, this
metamodel now contains both diagram elements and their
types, linked by an association. Namely, an instance of this

123



Metamodel specialization for graphical language support 1709

Fig. 10 Screenshot of class diagram editor built using TDA framework

metamodel directly defines an editor—it can be directly inter-
preted by the engines in the TDA framework. The principles
of type metamodels in TDA to a large degree are influenced
by the desire to simplify the interfaces of these engines (they
are also defined as metamodels). In this context, the nonstan-
dard semantics of some model elements is fully acceptable.
In the editor context, the issue ofmissing dynamic constraints
is fully solved—a dynamic solution is proposed. The editor
metamodel contains the concept of extension points in the
editor functionality. At these extension points, custommodel
transformations in Lua/lQuery language [25] can be invoked,
thus extending the standard behavior of TDA engines. There
is a Configurator tool [26,27] in the platform which helps to
build an instance of the Type metamodel in an easy way. All
this together makes the TDA platform usable in practice for
the definition of nearly any graphical DSL and its support
tools. However, then a significant knowledge of TDA model
and engine internals is required from developers.

The TDA platform has been successfully used for several
large practical projects. The most notable one is the OWL-
Gred editor [28–31] built by IMCS UL for visualizing OWL
ontologies in a class diagram-like notation. This tool is freely
available in the web [32], and it can import various OWL
textual notations and has been used by many ontology devel-
opment teams in the world. Other TDA applications include
the development of custom graphical workflow notations and
tools for several companies and institutions in Latvia [33].
However, this second application shows also the complex-
ity of full TDA approach, since it is difficult for business
analysts to maintain and extend the tools. This complexity

aspect has been the main stimulus for the development of
metamodel specialization approach—the main topic of this
paper. One more application of TDA is the free simple UML
tool GradeTwo [34]. This tool is widely used at the Univer-
sity of Latvia for teaching UML basics. By the way, all class
diagram examples in this paper are built using this tool. Fig-
ure 10 shows an example of screenshot of the class diagram
editor in GradeTwo built using the TDA framework, and this
example contains the same class diagram as in Fig. 6.

4 Diagram definition standard proposed by
OMG

In this section, we provide a very brief overview of the
new OMG standard for Diagram Definition (DD) [3]. The
first version of this standard appeared in 2012, and the cur-
rent version is from 2015. As already stated in Introduction,
for a long time the graphical syntax (notation) of all OMG
standard modeling languages was specified informally. Only
starting from UML 2.5 [2], the graphical syntax is defined
using the OMG Diagram Definition (DD) standard [3]. DD
standard, in turn, consists of Diagram Interchange (DI) and
Diagram Graphics (DG) parts, each having a metamodel.
The official intention of the DI part is to specify at a logical
level those aspects of a diagrammatic language (e.g., UML)
which are vital for correct diagram interchange between
different tools supporting this language. Therefore, some
structure of diagram elements in the language is defined in
DI. The graphical form of the language elements is defined

123



1710 A. Kalnins, J. Barzdins

only by a transformation-based mapping of DI elements to
DG elements. The DI metamodel contains no concepts such
as rectangle or line, and they are present only in the DG.
It is emphasized that those graphical aspects of language
elements which are strictly defined in the given language
standard are not included in DI, because they are common to
all tools for this language. In addition, in the DI metamodel
the diagram structure is defined at a very high abstraction
level. It is tried to give some sense to diagram elements by
having a relation fromaDI element to an element it can repre-
sent in the metamodel of the abstract syntax (domain model)
of the language. To add more directly some meaning to ele-
ments of the DI metamodel which describes diagrams in a
language, it is proposed to specialize the DI metamodel to
an interchange metamodel for the language, with subclasses
defining more specific language elements. The specialized
UMLDImetamodel is given as an example in the OMG stan-
dards [2,3]. In UML 2.5 [2], the UMLDI metamodel covers
a relatively larger part of UML, but no mapping to DG is
present. In theDDstandard [3], only the class diagram related
part is present in UMLDI, and a mapping to DG is shown. It
should be noted that the UMLDImetamodel is obtained from
DI metamodel by a specialization approach quite similar to
that used in this paper (the difference is that an association
subsetting is also used, since the original associations are
significantly more abstract, new attributes can be added to
subclasses as well). The DI metamodel bears some similar-
ity to the UMM for diagram definition (see Fig. 15) used here
(Shape is similar to Node, Edge is used in both). However,
the abstraction level is much higher, e.g., no explicit con-
cept of textual element is in DI. The provided specialization,
UMLDI, is also more abstract than we would use, e.g., for
Class diagram definition (see Sect. 10). This high abstrac-
tion approach leads to the fact that an overwhelming part of
the concrete UML diagram structure in UML 2.5 is defined
informally as comments to UMLDI.

The DG metamodel contains purely graphical diagram
elements—rectangle, circle, line, etc., with style attributes
relevant for rendering an imported diagram. The diagram
elements in this metamodel contain no hints at all on their
expected usage in a diagram; instead, they have a similar-
ity to the elements of the SVG [35] rendering standard (in
some sense also to GEF mentioned in Sect. 2). It is assumed
that elements of the specialized DI metamodel are mapped
to elements of DG using some model transformation lan-
guage; e.g., in [3], the MOF QVT [36] operational mappings
are used. Therefore, the concrete graphical syntax of the lan-
guage can only be understood by reading this transformation.

The same way as for other existing approaches, we try to
demonstrate the DD approach on our Flowchart example.We
startwith a possible version of FlowchartDImetamodel. This
version is built using the UMLDI in [2] as an example, but
with slightly more details. The domain model of flowchart

created for the GMF approach (see Fig. 2) is interpreted here
as a domain metamodel and is also extended by a “top super-
class” FlElement—the usage of this model as a reference for
Flowchart DI requires such superclass (an equivalent to the
Element in UML). The flowchart domain (meta) model is
assumed to be in the package named Fl. Figure 11 shows
this Flowchart DI metamodel. Only the start, end and action
nodes and flow edge are present there because the goal is
simply to illustrate the situation. But other nodes and edges
could be added here in a similar way (nodes are renamed
to shapes according to DI traditions). In fact, all basic fea-
tures (edge multiplicity constraints, labels inside nodes) are
already demonstrated here.

The next step according to the DDmethodology would be
to define amodel transformation fromFlowchart DImodel to
theDGmodel (in any appropriate transformation language—
MOF QVT, ATL, etc.). We will not show this step here,
because the UML class diagram example from the DD stan-
dard [2] and paper [37] shows that an easy readable mapping
from the specialized DImetamodel to DGmetamodel cannot
be defined even for simple situations. And without this map-
ping, there is no hint at all in Fig. 11 how the graphical form
of a flowchart should look like. Simple style attributes which
could be added to DI elements do not include the real graphi-
cal form of a shape—is it a rectangle or circle. Thus, the goal
of defining a simple and easy readable formal specification of
the graphical syntax for a diagrammatic language most prob-
ably cannot be reached this way. This is confirmed by the fact
that in UML 2.5 [2] the graphical syntax is still defined infor-
mally on examples, and only tables relating these example
fragments with corresponding UMLDI classes are added. At
the same time, the real practical goal of the DD standard—
to define a diagram interchange between tools implementing
the same graphical language, can be reached; experiments
with UML tools in [37] confirm this.

An interesting issue is whether the DD approach can be
used for the second topic of this paper—graphical editor defi-
nition.At a first glance, it seems that the approach provides no
facilities in this direction. However, there has been one par-
tially successful experiment in this direction. InModels 2015
paper [38], the authors of the DD approach investigate on the
basis of their previous experiment with UML class diagrams
[37], whether a UML class diagram editor could be built in a
standard way on the basis of this diagram syntax defined via
DD. Eclipse GMF is chosen as the target environment. The
first result is very interesting—a considerably more detailed
UMLDI specialization is required, in some sense similar to
that we propose to use in Universal Metamodel specializa-
tion for class diagram editor definition in Sect. 10. However,
there are several problems in the DD approach. The first one
is to find the correct correspondence between the associa-
tions in the specialized DI metamodel and their counterparts
in the domain metamodel—only classes of the specialized

123



Metamodel specialization for graphical language support 1711

Fig. 11 Flowchart DI metamodel (fragment)

DI are directly related to domain classes; for associations,
an ambiguity can appear. Care should be taken to relate cor-
rectly the responses to graphical user actions (strictly bound
to graphical objects) with diagram logical structure modifi-
cation (related to DI). Finally, one more problem appears in
the implementation, because the desire is to obtain directly
the GMFGeneration model. This goal requires a deep under-
standing of the GMF Generation model internals and even
more deeper specialization of UMLDI metamodel (provided
by using stereotypes for UMLDI classes). Formally, the
experiment in [38] was successful—a GMF based editor for
the class diagram subset was generated from the provided
DD. But without further extensions of the DD facilities the
practical generation of usable editors from language defini-
tion via DD seems to be not so easy.

5 Other existing approaches to graphical
syntax and editor definition

We start with the graphical syntax topic. Besides the meta-
model based DD approach for graphical syntax definition,

there are also some approaches based on other formalisms
such as graph grammars, including eXtended Positional
Grammars [39] or Layered Graph Grammars [40]. But none
of them seems to be as usable as the metamodel based
approach. Evidently, there is no active research in this direc-
tion at a time.

Now about platforms for graphical editor definition. There
are a lot of such platforms, not only the Eclipse GMF and
TDA already discussed. Most of them are based on the
abstract syntax (domain metamodel) definition of the lan-
guage via the classic MOF approach and adding some sort
of mapping from this syntax to graphical notation elements.
There are more Eclipse-based variations of GMF than the
two already mentioned. There is the Tiger platform [41,42]
adding the possibilities of the graph transformation language
AGG [43]. The original version of Tiger [41] used graph
transformations for linking the domain model in EMF to
GEF based editing of diagrams, but a newer version [42]
offers graph transformations of the domain model for defin-
ing extended editing commands in addition to basic editing
offered by GMF. A similar approach is the ViatraDSM plat-
form [44] which defines a mapping from the domain model

123



1712 A. Kalnins, J. Barzdins

to GEF-level presentation concepts using the Viatra2 model
transformation language [45]. An alternative to GMF is the
Graphiti framework [46] which is more Java programming
than model oriented. In addition to a typical domain model
in EMF, an alternative Pictogram model is used for graphics
definition and their linking via a Link model (which must be
implemented via a Diagram type agent). There is a rich pro-
gram library based on simple APIs for building such agent;
similarly, the diagram rendering is provided by an extendable
internal rendering engine (which in fact is based on GEF
runtime). There is now also an offspring of the described
GMF extension Eugenia—Eugenia Live [47]. This platform
is especially aimed at graphical DSL design and experiment-
ing with them. Originally, there is no fixed metamodel of the
new DSL; instead, a diagram example and its future meta-
model can be built in parallel. Themetamodel of the platform
itself contains both Node and NodeType classes linked by an
association, similarly for edges, etc., and there is no true
domain model at all. Thus, the approach has some similarity
to TDA at metamodel level, and an interpreter-based exe-
cution is used in both. The main difference is in the usage
style. In TDA, the type instances have to be explicitly defined
using the Configurator [27] before the diagram building. But
in Eugenia Live the type instances constituting the palette
(a sort of future definition of the language) are created on
the fly, the same way as elements of the diagram example;
however, a type instance must be created before using it as a
palette element for node. The platform is implemented as a
browser plug-in in JavaScript-related [48] languages. When
the experiments with a new DSL are complete, the result can
be exported for future use in Eclipse GMF (Eugenia version).
The approach is promising, but currently only the basic dia-
gram features (when compared to TDA) are implemented.

A special position in the list of Eclipse related platforms
is taken by Collaboro platform [49], aimed at collective
development of a DSL by a team. Therefore, the support
of team development there comes at foreground, even before
the language definition facilities themselves. The language
definition is based on metamodels in a classical way—here
is a Domain metamodel in EMF and a Notation (concrete
syntax) metamodel. The Notation metamodel contains ele-
ments for graphical and textual syntax simultaneously; thus,
a textual and graphical syntax for a DSL can be developed
in parallel. Currently, the language is defined by instantia-
tion of both metamodels, with a notation instance having a
link to the corresponding domain instance (a staticmapping).
The teamdevelopment process itself (proposal, versions, vot-
ing, etc.) is defined by a metamodel as well. The platform
is implemented via an Eclipse-based backend on a server
and a frontend to be used by each team member—either as
a browser plug-in or a front end in Eclipse. The backend
supports both the language to be developed and the team
development process.

Certainly, there are also many non-Eclipse-based graph-
ical tool definition platforms. Microsoft DSL [50] uses a
“standard” pattern by starting with a domain metamodel and
then adding the presentation and mapping metamodels and
ending up in code generation, and only metamodels are cre-
ated in a “dialect” of UML. A completely domain-specific
metamodeling language GOPPRR is used in the MetaEdit
[51] platform where the graphical syntax metamodel can
be defined directly, but with limited functionality, and still
involving some code generation. A common feature for all
these platforms, and some similar ones, is that for each new
DSL a new metamodel must be created in some metamod-
eling language. There is also an early approach (2003) for
creating graphical modeling tools on the basis of graphics
metamodels (typed graphs) and graph transformations— the
GenGED platform [52]. The metamodel is used to define the
graphical elements of the language. The graph transforma-
tions must be defined in the AGG language [43] to specify
the permitted editor behavior for creating syntactically cor-
rect diagrams (a sort of executable grammar rules). A similar
approach is used also in DiaGen [53] and ATOM3 [54] plat-
forms.

6 New approach to graphical language and
tool definition based onmetamodel
specialization

The previous sections devoted to analysis of the existing
approaches to language and tool definition based on instantia-
tion have indicated a number of shortcomings and problems,
especially for language graphical syntax definition, where
the OMG DD approach has many problems. Our goal in this
paper is to offer a new approach based on metamodel spe-
cialization which is superior in a number of cases.

Class specialization by subclasses is a well-known con-
cept in UML. In a sense, it is a cornerstone in building
understandable class diagrams. It is also a widely used
approach for buildingmetamodels inMOF.However, there is
a variation of specialization which can provide a completely
new idea in building class models. It is the specialization of
a whole metamodel.

Now let us explore this idea in details.
The starting point for the application of the specialization

approach is to define themetamodel to be specified—theUni-
versal Metamodel (UMM) for the given task. Certainly, this
makes sense in situations when there are many similar cases
of the task, each of which can be more or less completely
defined by a specialization of the UMM. A very appropriate
example of such task is the graphical syntax definition of
a node–edge style graphical language, to be considered in
the next section. But there are other similar tasks—they will
be considered in subsequent sections. The most important

123



Metamodel specialization for graphical language support 1713

Fig. 12 UMM for a simple workflow

of them is the graphical editor definition for the language. It
should be emphasized that the Universal Metamodel for this
task is a direct extension of the UMM for language syntax
definition.

The metamodel specialization is based on standard UML
features—creating subclasses of the base metamodel
(UMM), redefining (or subsetting) class properties and
adding new OCL constraints. To make the notation simpler
and more compact, we slightly restrict the metamodel spe-
cialization facilities to be used. Any number of subclasses
may be defined for a UMM class. For subclasses, only the
attributes inherited from UMMmay be used—they are rede-
fined by default. Thus, we can add new default values, but we
do not redefine attribute names, types and multiplicity. Asso-
ciations between subclasses must redefine the corresponding
associations from UMM (explicit redefinition must be used
when new role names are introduced), and subsetting is not
used. Thus, no new attributes or associations may be intro-
duced in the specialization. Arbitrary OCL constraints may
be added to classes and attributes in the specialization. A spe-
cialized class may be also abstract, with concrete subclasses
in the specialization. We remind that the defined specializa-
tion of UMM remains at the same MOF layer as the UMM
itself.

We illustrate the approach on a very simple example—a
custom workflow language definition. Figure 12 shows the
UMM for this language – it contains just two classes with no
attributes. A specialization of such generic workflow could,
for example, define a Business Trip or a document submis-
sion to a state institution. For each of such workflow cases,
custom names of actions and a specific permitted sequence of
actions could be defined. Figure 13 shows the specialization
defining a Business Trip.

The specialization still represents a metamodel for Busi-
ness Trip. Classes of the specialization can have instances in
a normal way, e.g., TripToBerlin, ReserveLufthansaFlight.
The explicit redefinesmodifier is used here only for the rede-
fined role names. Classes of a UMM will be shown in this
paper with a white background, but the specialized classes—
with a colored one.

In order to make the metamodel specialization examples
more readable and compact, in this paper we use a custom
notation for specialized classes and redefined associations—
we show only the specialized classes and add the original
class and role names from UMM in braces (and in bold italic
font), and the redefinition is shownwithout the redefines key-
word (in a similar style). See Fig. 14 which presents the same
specialization as in Fig. 13.

Finally, some comments on other usage cases of meta-
model specialization. Despite the fact that class specializa-
tion is a well-known UML feature, there are very few usage
cases of the whole metamodel specialization. The closest
one to our approach is the usage for DI metamodel special-
ization [2,3,38], e.g., UMLDI, already mentioned in Sect. 4.
In particular, in [38] the usage of specialization for defining
an appropriate level of details for UMLDI is explained in
details and the conclusion is that the approach is adequate
for the goal. Some other cases of metamodel specializa-
tion ([55,56]) are completely unrelated to the topic of this
paper. One more aspect to be mentioned here is that the
most used metamodeling paradigm—instantiation accord-
ing to the multi-layer approach in MOF—has its internal
problems as well. As pointed out by several researchers—
T. Kuhne and C. Atkinson [57,58] and B. Henderson-Sellers
[59],MOF instantiation approach is not very precise from the
formal semantics point of view. Various improvements such
as strict versus loose metamodeling [60,61] and a Metamod-
eling Kernel [62] have been proposed. All this could mean
that the metamodel specialization paradigm is also more
precise formally than the traditional instantiation. It should
be noted that the above research on instantiation has been
done in the context of a broader topic—multilevel modeling

Fig. 13 Workflow specialization
defining a Business Trip

Fig. 14 Custom notation for the
Business Trip specialization

123



1714 A. Kalnins, J. Barzdins

Fig. 15 UMM for diagram syntax definition

(where unlimited number of layers can be used). However,
this aspect is completely unrelated to the given paper.

7 Graphical language definition bymeans of
metamodel specialization

In this section, we demonstrate how the proposed alternative
metamodeling paradigm—the metamodel specialization can
be used for the graphical syntax definition in an efficient
way. We show that most of the desired syntax features can
be defined relatively simply here, using only standard UML
elements. The extension of the language definition to a com-
plete editor definition also requires the same simple UML
facilities.

As mentioned before, the starting point for the application
of the specialization approach to a modeling task is the Uni-
versal Metamodel (UMM) for this task. Here we will define
the Universal Metamodel for the graphical diagram syntax
definition. The syntax of any concrete graphical language
is defined by a specialization of this metamodel. Figure 15

shows the Universal Metamodel. In a sense it is similar to
the TDA Type metamodel in Sect. 3—the choice of classes
in this UMM has been to a great degree influenced by a pos-
itive experience in using TDA. However, diagram elements
are used instead of their types and some more elements are
added. The main semantic difference is that for a UMM
specialization each permitted diagram element is a direct
instance of a specialized class—a subkind of node, edge or
compartment. This permits to apply all UML class model
facilities—multiplicities, OCL constraints, etc., directly to
the specializedmetamodel. The new class CompartmentRow
represents a line in a multiline compartment. The informal
semantics of the compartment classes is similar to that in
TDA—they represent any textual element or subelement in
the concrete syntax of the language. The value attribute is
added to compartment classes for writing OCL constraints
on the textual value of a compartment or subcompartment.
Thus, in fact, the specialization of this UMM for a language
represents an alternative form of the context-free grammar of
the textual syntax embedded in the graphics. Even more—
the textual elements which are hidden (made invisible) in

123



Metamodel specialization for graphical language support 1715

Fig. 16 Flowchart syntax
defined using metamodel
specialization

this notation, but exist due to the fact that they are entered as
independent entities by the user in the language editor con-
text, should appear in the specialization as subcompartments.
This is because we do not have the abstract syntax view of the
language in our approach. The top class of the UMM— the
GraphicalLanguage class, is used to represent the situation
when the language to be defined contains several diagram
types (e.g., as the UML does).

Now let us show the same Flowchart syntax definition
using the metamodel specialization, see Fig. 16. This def-
inition is shown in the custom notation introduced in the
previous section, and this notation will be used for all subse-
quent specialization examples. The classes in the specializa-
tion represent graphical syntax elements of a Flowchart. The
specialized classes retain only those inherited from UMM
attributes which are really needed for the Flowchart defi-
nition. If an attribute must have a constant value, an OCL
constraint is added to this attribute in the subclass. All
required diagram element multiplicities are defined directly
as multiplicities on the relevant redefined associations. In
order tominimize the number of redefined associations in the
specialization, two abstract node superclasses FlowStartN-
ode and FlowEndNode are introduced in the specialization;
in addition, one edge superclass FlowchEdge is used as well.

These superclasses permit to specify the constraints express-
ingwhich edges can start fromwhich node kinds in a compact
way (in fact, a similar approach was already used in TDA
using imitated subclasses in Sect. 3). The requirement that
all action names in a diagram must be distinct is specified
as an OCL constraint for the ActionNameCompart class.
Another constraint specifies that no more than one condi-
tional flow from a decision can be labeled by “Y” (and the
same for ”N”). The third constraint specifies that no other
strings may be used as labels. Here such constraints can be
defined in a natural way, using only elements of the spe-
cialized metamodel—property names for navigation. Thus,
all the desired Flowchart syntax features have been defined
in the specialization in a direct and readable way. In order
to define the action refinement feature, an Action subclass
RefinedAction is introduced—the link refinement (redefining
seedDecomposition in UMM) permits to reach the refin-
ing flowchart. While this feature may be not so important
for flowcharts, the decomposition possibility included in
UMM is vital for more complicated graphical languages.
The flowchart example does not have a very complicated
graphical syntax, and the whole language consists of just one
diagram type (therefore, the GraphicalLanguage class is not
specialized). But it has been checked that a complete graph-

123



1716 A. Kalnins, J. Barzdins

ical syntax definition of UML Class diagram notation can
be defined this way—it takes about four pages in a readable
resolution. The subcompartment concept permits to define
also the structure of complicated text elements such as class
attributes and operations with the same details as in the UML
documentation. Some elements of this approach are demon-
strated in Sect. 10 where graphical editor fragments for a
UML class diagram subset are presented.

8 Graphical diagram editor definition using
metamodel specialization

The graphical syntax definition approach can be easily
extended to a graphical editor definition platform for the
given diagram notation – the most natural executable behav-
ior to be based on the diagram syntax. First, the Universal
Metamodel has to be extended by some new classes and some
new attributes have to be added to the existing classes—see
Fig. 17. Attributes added for the editor definition are in bold
font. Similarly, the new classes and two new enumerations
have bold outlines in Fig. 17. However, themain new element
is the concept of Universal Engine—a generic diagram editor
whose generic behavior can be defined in terms of UMM, but
the real behavior details depend on the given UMM special-
ization.

Typically, any real diagram editor contains the concept of
project – a set of related diagrams having a common usage.
Therefore, we also include project class in our UMM—it
replaces the GraphicalLanguage class used in the UMM for
syntax definition (we assume that the project can contain dia-
gram types in a graphical language). The contents of a project
has to be somehow visualized – frequently via a tree. How-
ever, since we want to restrict our visualization facilities, a
project diagram is introduced instead. It contains Diagram
seeds—nodes from which the corresponding diagram can be
accessed via double-click. Thus, a project diagram is a nor-
mal graph diagram, and the seed class for a diagram type will
be a subclass of the Node class in the relevant specialization
(therefore, no specific seed class in the UMM). To support
the navigation from a seed node to a diagram the UMM asso-
ciation seed—seedDecompos is really used. However, this
association may be used in other contexts as well, e.g., for
action refinement in flowcharts already mentioned in Sect. 2.
The new attributes are best to be explained when the UE is
described.

The Universal Engine for diagram editors is an abstract
editorwhose generic behavior is explained in terms ofUMM.
But it is assumed that there exist one or more specializa-
tions of the UMM according to which UE really behaves.
The behavior dynamics description certainly involves also
the editor user whose actions actually determine the result.
The possible user actions will not be explicitly captured as

UMM classes, but they will be tied up to most of UMM
classes. The semantics of the UE behavior will be defined
just in terms of these actions. It is assumed that UE man-
ages a project which contains diagrams of one or more types
constituting a graphical language defined via the diagram
syntax definition facilities described in Sect. 7. By means of
the already mentioned project diagram containing seeds, the
user can create a new diagram or open an existing diagram
in order to modify it. When a new empty diagram of the
given type is opened, a standard style Palette is opened as
well. This Palette contains elements for all node types and
edge types defined via Node and Edge subclasses present in
the given specialization (more precisely, for all non-abstract
subclasses). UE infers these elements from the specializa-
tion, and the concrete Palette element appearance (icon and
textual identification) is specified via the new attributes of
Node or Edge in UMM—palIcon and palCaption. It should
be mentioned that the project diagram also has a palette for
seeds of all diagram types defined in the specialization.

Abstract subclasses in the specialization are used just
as “containers” for common attributes and associations for
their concrete subclasses. When the user clicks on a palette
element,UEcreates the correspondingdiagramelement.Cer-
tainly, for a new node the user after the click has to select
an empty place in the diagram area, but for a new edge—its
start and end nodes.More style attributes such as background
color, line color and line width are defined in the extended
UMM in Fig. 17, and default values for these attributes can
be defined in the specialization. UE then creates a node or
edge with the given style, and it supports also an explicit
modification of these “nonessential” style attributes by the
user later on. In addition, UE checks the structure and multi-
plicity constraints in the specialization defined implicitly via
the specialization as a UML class diagram or explicitly via
OCL. If the user tries to violate a constraint, the new element
is not created and a standard error message is displayed.

Another aspect supported by UE is the creation of tex-
tual elements in the diagram. For each node or edge to be
created, UE opens a dialog form based on the specialized
NodeCompartment or EdgeCompartment classes attached to
the specialized diagramelement class (if there are such). Sim-
ilarly, this form is opened by UEwhen the user double-clicks
a node or edge. The form contains elements for all com-
partments of the node or edge defined in the corresponding
specialization. The main new attribute added in the UMM
for this purpose is inputContr, which determines the input
control type, which is offered to the user for entering the
compartment value. Certainly, the supported types of input
controls depend on the capabilities of the implemented UE,
but the minimum list includes simple text input, checkbox
for entering Boolean values and listbox or combobox for
offering to the user a list of values to select from (in case of
combobox a direct value input is also permitted). For both

123



Metamodel specialization for graphical language support 1717

Fig. 17 UMM for graphical editor definition

these controls, there must be a possibility to define the appro-
priate value list; therefore, the itemList attribute of the type
Set(String) is added (or of the type String [∗] according to
the strict UML syntax). The default value of this attribute
must be set in the specialized compartment class (if list-
box or combobox is selected for the compartment input),
and this value may be a constant set or an OCL expression
deriving the set from other diagram elements already created.
Another non-trivial control type isMultiLineInput. This con-
trol is specially adjusted to creating node compartment texts
consisting of logically independent lines (multiline compart-
ments), such as attributes or operations in aClass node. There
UEprovides an independent entry of each line using theCom-
partmentRow class (a subclass of Compartment) in UMM
which must be specialized for a multiline compartment. If
the line has a more complicated structure than a simple text
string, a new subform is opened for each new line entry. It
should be reminded that the concept of multiline compart-

ment andCompartmentRowwas already present in theUMM
for diagram syntax for defining such structures.

A compartment text may have a substructure, e.g., a class
attribute text inUMLconsists of its name, type, default value,
modifiers, etc. These elements are separated by constant pre-
fixes or suffixes in the common string value, and the order of
concatenation may be defined by the subCompNo attribute if
required. But during the value creation by the user they typi-
cally are processed as separate compartments. Therefore, UE
for a compartment with subcompartments in the specializa-
tion creates a nested structure in the entry form. All these
advanced UE features are demonstrated in Sect. 10 for an
editor for a subset of class diagrams. In order to offer some
structuring of the input form also for edge compartments,
two compartment groups for compartments logically related
to edge start or end are offered, see the UML association
entry example in Sect. 10.

The whole input process of a compartment is organized
by UE in a fixed way. The specialization may configure

123



1718 A. Kalnins, J. Barzdins

a compartment structure and the input control used for a
compartment/subcompartment entry, and it may provide the
required style values. In addition, a standard UML constraint
(anOCLexpression returning aBoolean value)may be added
to the specialized compartment class to check the correctness
of the entered compartment value after the user has completed
the input of this compartment. We remind that this value is
stored in the value attribute of the compartment.

We conclude the description of UE with some general
behavior features. Upon start, UE permits the user to cre-
ate a new diagram editor project of the kind defined by the
current specialization (a flowchart project, a class diagram
project, etc.), or open an existing project of this kind. After
that, the project diagram (either empty or already filled) with
its palette is shown. The user can add a new diagram of a
supported kind by creating its seed from the palette or open
an existing diagram—by double-clicking on the seed. Then,
the editing of the diagram may start as described above.
Besides this specialization-related UE behavior, UE offers
some default behavior to the user—to save a project, to mod-
ify nonessential style attributes of a node or edge, to copy
elements from diagram to diagram, to delete a diagram ele-
ment, to modify the layout, etc.

Finally, to build UMM specializations described here, one
more metamodel specialization facility must be permitted—
the definition of a default value of an attribute. For graphical
syntax definition, the only proposed way to specify attribute
values was via OCL constraints on attributes. But for an edi-
tor definition it is very natural to define default values of
attributes for specialized classes—according toUML seman-
tics, these values are set when a new class instance (here—a
diagram element) is created. For nonessential style attributes
which can bemodified by the user, this is the only correctway
to define the values. But we allow also to use default values
instead of constraints for other attributes as well, in order to
obtain a more compact notation. The default value may be
specified by a constant or OCL expression. In addition, some
of the most typical default values can be set already in UMM
(e.g., isVisible = true for compartments) and redefined in the
specialization when needed.

9 Flowchart editor specialization example

In this section, the editor definition facilities are demon-
strated on a flowchart editor according to the flowchart
diagram syntax defined in Sect. 7. For the editor UMM
specialization examples, we will use here only the custom
notation for the UMM class specialization introduced in
Sect. 6.We recall that for association ends, where the original
and redefined role names coincide, no explicit redefinition is
required. Class inheritance within the specialization will be
shown according to the standard UML notation.

Figure 18 shows the editor UMM specialization for the
flowchart editor. There all required attribute settings are
defined via the default value option, but not OCL constraints.

The project class from UMM is specialized to Flowchart-
project with just one FlowchartProjectDiagram attached to
it. This diagram contains named FlowchSeed nodes from
which the corresponding Flowchart diagram instance can be
opened. The created palette for theFlowchart project diagram
contains only one element for the seed node. Thus, the user
can create any number of flowcharts in the project. In order to
have a user-defined name for a seed (and the related flowchart
as well), the FlowchNameCompart class (specialized from
theNodeCompartment) is associatedwith FlowchSeed.Only
the caption and inputContr attributeswith their default values
appear in the compartment specialization—other attribute
values are not required for this simple case. The Flowchart
specialization for editor definition is quite similar to that for
Flowchart syntax definition in Sect. 7, the same concrete
and abstract classes are used. The generated palette for a
Flowchart contains five node elements and two edge ele-
ments (for all non-abstract Node and Edge subclasses). The
difference is that more attribute values have to be specified
in this specialization. For all compartments, the inputContr
attribute must be specified; for the condition value to be set
on a conditional flow the use of listbox is demonstrated—
the possible values are “Y” or “N,” specified by a constant
set expression. Since these values must be shown in square
brackets in the diagram, the prefix and suffix attributes are set
to the corresponding values. The position attribute specifies
that the textmust be positioned near to the edge start. The role
of abstract superclasses in the specialization is the same as
in the syntax definition—to reduce the number of redefined
associations. The editor behavior on a new RefinedAction
instance added to a flowchart is similar to that on a seed
in the project diagram—upon double-click on it the refine-
ment flowchart (with the given action name) is opened. UE
enables this similarity of behavior because in both cases the
same UMM association from a seed node to a diagram is
redefined.

The OCL constraint attached to the Action name compart-
ment now has a more active semantics—UE checks whether
a new Action to be added to a Flowchart indeed has a name
distinct from all existing action names in this Flowchart (if
not, an error message is shown). Similarly, the editor checks
that no more than one edge labeled by “Y” (or “N”) exits
from a decision.

The example shows that most of the editor features can
be specified using standard UML class diagram facilities
(including default attribute values) in the specialization, and
explicit OCL constraints have to be used only for more com-
plicated cases.

123



Metamodel specialization for graphical language support 1719

Fig. 18 Definition of flowchart graphical editor

10 Fragments of a simplified class diagram
editor example

Now let us consider a more complicated and also a more
realistic example. This section presents a basic fragment of a
simplifiedUMLclass diagrameditor. This editor supports the
subset of UML which corresponds to class diagram features
included in the EMOF metamodel [1] for the abstract syn-
tax. In the class diagram, according to EMOF specification,

Class and Enumeration nodes and Association and General-
ization edges are supported. The Class node in turn includes
all features for the EMOF support. Figure 19 shows the editor
features related to attributes in a ClassNode—the multiline
Attribute compartment and all details of an Attribute (name,
type, multiplicity, default value, IsDerived feature and basic
modifiers—readOnly, ordered and isIdent). In addition, the
Class name and isAbstract compartments are also included—
to illustrate the specific notation for showing that a class is

123



1720 A. Kalnins, J. Barzdins

Fig. 19 The attribute fragment of EMOF class editor definition

abstract. Figure 20 shows the basic editor features related
to AssociationEdge (association name and role, multiplicity
and aggregation for both ends). The complete definition of
a class diagram editor for EMOF subset would require two
more diagrams of approximately the same size (Class Oper-
ations and Class generalization, Instances+ Enumerations).

The main goal of the example in Fig. 19 is to illustrate
how the given UMM specialization approach can be used for
the relatively complicated structure of an Attribute in a class
diagram. All already mentioned subcompartment features
are used here. In fact, some more features are necessary—
they were already included in the UMM in Fig. 17, but not

explained so far. The complete definition of Attribute syntax
requires two-level subcompartments – there is a list of Modi-
fiers of several kinds in braces as part of an Attribute row. To
support such lists of options, compartment in UMM includes
also the delimiter attribute (for Modifiers the delimiter is
the “,” character). Actually, two-level subcompartments and
delimiters are needed for other class diagram elements
as well, e.g., for Operation parameters. One more feature
already present in our UMM is the support for visual presen-
tation of optional parts in the final compartment value—the
trueValueRepresent attribute for NodeCompartment class. In
the editor dialog form, these parts typically are represented

123



Metamodel specialization for graphical language support 1721

Fig. 20 The Association fragment of EMOF class editor definition

by a checkbox control, but, if the user selects true, typically
some string must be included in the complete value, e.g.,
“ordered” is specified for the Ordered subcompartment.

Amixed notation forUMMattribute specialization is used
in Fig. 19. Attributes to be set to a constant value are defined
via the default value option, but thosewhose valuemust be set
via a proper OCL expression are defined by OCL constraints
(font style for Class name). In addition, one entered value
check is shown as an OCL constraint—the uniqueness of
attribute names per class. The constraints typically are based
on the value attribute for a compartment class. Though this
attribute is in fact present for all such classes in the special-
ization (it is inherited fromUMM), in examples we show this
attribute only for those classes where it is referenced in OCL
constraints.

Nowsomemore detailed comments on interesting features
in the editor definition are given.According to theUMLspec-
ification, the fact whether a class is abstract is visualized by
the font style of the class name. The user can enter the isAb-
stractCompartment value via the standard checkbox –UE
internally stores the entered value as strings true or false. But
this compartment itself must not be visualized—therefore,
the attributeisVisible is set to false in this subclass. Instead,
the ClassNameCompartment style must be set to italic if the

class is abstract and to bold if it is not. Exactly this fact is
specified by the OCL constraint attached to ClassNameCom-
partment (the definition by a constraint ensures also that the
given relationship remains in force when the user modifies
the IsAbstractCompartment value). The presence of all tex-
tual elements of the language syntax in the specialization
permits to define rich OCL constraints, which can span con-
tents of several related diagram elements, without the need
to use an independent abstract syntax definition.

The multiline Attribute compartment is to be created
by the user via the MultiLineInput control. Therefore,
UE provides an independent entry of each line using the
AttributeRow class which is a subclass of CompartmentRow
inUMM.On the one hand,UE for this feature provides amul-
tiline text view of the whole multiline compartment, with the
possibility to addor remove lines.But since theCompartmen-
tRow (and consequently also the specialized AttributeRow)
is a subclass of Compartment in UMM, UE supports also all
the functionality for Compartment here. In particular, a row
may have subcompartments—in the given case there are six
subcompartments – for entering IsDerived, attribute name,
attribute type, multiplicity, default value and modifiers (the
order of subcompartments is defined via the subCompNo
attribute). UE for each line can show a dialog subform con-

123



1722 A. Kalnins, J. Barzdins

taining controls for subcompartment input—either for initial
entry or value modification. To obtain the final value of
a line, the subcompartment values are concatenated in the
given order using the defined prefix or suffix, e.g., the “:”
character is inserted before the attribute type, as required
by the UML syntax. A prefix or suffix is not inserted if the
value has not been entered by the user (this is possible for
subcompartments with the multiplicity 0..1). The Attribute-
Type compartment is to be entered via a combobox, with
the item list showing the most typical values—UML prim-
itive types, but any other type value can be entered as well.
The Modifiers subcompartment involves the second level
subcompartments—three options, which all may be present
or not (entered via checkbox). For each option, the visible
string in the case of presence is shown, and the options are
separated by “,” in the final resulting string.

The only proper value check on input by the user here
is the uniqueness of attribute names, see the attached OCL
constraint. The constraint is evaluated by UE when the user
has completed the value entry (moved away from the control),
at both initial value input and modification.

Now some comments on the Association fragment of the
editor in Fig. 20. The Class node definition is repeated in
the fragment to represent the association ends in a class dia-
gram, and UE automatically selects the appropriate instances
according to user selection in the diagram. The name com-
partment is attached directly to the Association edge, but
other compartments—role, multiplicity and aggregation for
both ends, are attached to the start and end groups, respec-
tively. The groups in the association form are shown via tabs.
In order to remind the user to which class in the diagram the
respective association end is attached, the groups start with
a read-only compartment displaying the class name. Two of
the OCL constraints control how the association ends must
be visualized, but the third one prohibits wrong aggregation
settings for both ends by the user (since it is attached to the
AssociationEdge class, it is checked when the user has com-
pleted the association editing).

The provided examples confirm the fact that typical dia-
gram editor functionality can be defined this way. Certainly,
advanced value prompting and value checks present in com-
mercial UML editors would require significantly more com-
plicated OCL constraints. However, the approach is mainly
oriented toward such graphical DSL support where typically
only features similar to those shown here are required.

11 Extension of the editor for declarative
mapping to abstract syntax

In this section, we demonstrate an additional task to be nat-
urally solved by metamodel specialization. But first some
general comments on tasks for which metamodel specializa-

tion is well applicable. In fact, these are families of similar
model processing tasks where each specific task can be
defined solely by a specialization of the UMM for the family.
The UMM for the family describes common semantics for
the tasks in the family. The corresponding UE implements
dynamic aspects of this semantics—it should be defined to
work on instances of UMM, and the specialized behavior
should be dependent only on (fixed) values of some attributes
of UMMclasses. It should be noted that not all model-related
tasks are in this category; for example, tasks to be solved
by “classic” model transformations frequently are best to be
defined on non-specialized metamodels.

To take all this into account, the task of declarative map-
ping of the graphical syntax of a language to its abstract
syntax is very adequate since the graphical syntax is already
defined by metamodel specialization. And it is natural to
attach this task to the graphical editor definition in order to
obtain a synchronous building of the abstract syntax model
according to a classical EMOFmetamodel. In many existing
graphical editor frameworks, such as EclipseGMF [4], all the
functionality is based on the abstract syntax of the language
to be supported and on mapping this syntax to the graphical
one. On the contrary, our approach to graphical languages
is based directly on the graphical syntax. But there are tasks
where the parallel abstract syntax representation is required.
If the language has an executable semantics, this semantics as
a rule is based on the abstract syntax. Therefore, compiler or
interpreter support for the language frequently requires this
syntax as well. Even the OMGDiagram Definition (DD) and
Diagram Interchange (DI) standard [3] requires a mapping
to abstract syntax to be maintained, therefore abstract syntax
is required even for ensuring correct interchange of diagrams
created in our editors with other classic tools.

Frequently, a mapping between graphical and abstract
syntax of a language is maintained by some executable code,
such as model transformations. But here we offer a com-
pletely declarative definition of such mapping based on the
specialization of an extended UMM including also the map-
ping part (Fig. 21). This UMM in fact is a direct extension of
UMM for editors in Fig. 17. To make things simpler here, we
assume that the mapping from graphical syntax to abstract
syntax is one-to-one. For each main graphical syntax class
(Node or Edge) instance, we assign at first an instance of the
corresponding mapping class which, in turn, is mapped to an
instance of the corresponding abstract syntax class. This is
completely in line with a simple editor behavior – as soon as
a new graphical element is created, its counterpart in abstract
syntax is created as well. Certainly, in some situations things
are a bit more complicated (especially for compartments),
and this will be explained later.

In our approach (based on metamodel specialization), a
specific situation is how to include in the mapping defini-
tion the relevant part of an existing metamodel for abstract

123



Metamodel specialization for graphical language support 1723

Fig. 21 Extended UMM for editor and mappings

syntax. For example, this is required for defining such map-
ping from our class diagram fragment (EMOF level) to the
standardUMLmetamodel for that part of class diagrams. Fig-
ure 22 shows a very minimal fragment of the UML abstract
syntax metamodel relevant for class diagram features used
in our examples (taken from the EMOF documentation [1]).
The fragment contains a number of abstract classes whose
only goal is to lift common attributes or associations as high
as possible. The fragment shows how the name attribute is
inherited from NamedElement to classes really used in our
mapping examples (Class, Property, Association). This situ-
ation is very typical to UML metamodel, which makes this
metamodel quite difficult to understand. In fact, some other
attributes of Property are defined in abstract superclasses as

well, but we simplify the fragment in order to minimize the
example size, since the situation is very similar to name.

Since the reuse of existing metamodel fragments in a
specialization is different from the direct “in-place” special-
ization of UMM classes, a slight extension of our metamodel
specialization features is required for this task. This exten-
sion will be explained in detail when discussing the extended
UMMand its use formapping examples.However, the proper
mapping “infrastructure” part can be defined by UMM spe-
cialization features already described. We define a mapping
for a graphical language as a set of classes and associations,
providing at instance level for each element of the graphical
syntax a link to a mapping instance from which another link
leads to an instance in the abstract syntax model. At first,
we show the extended UMM for editors including also the

123



1724 A. Kalnins, J. Barzdins

mapping support. Figure 21 presents this extended UMM.
The right part of it contains the main classes of the UMM
for editors (from Fig. 17). The left part of the UMM repre-
sents the proper mapping metamodel (classes with the suffix
Map). Classes on the far left (with the suffix Class) are a sort
of metamodel class templates to be used as formal super-
classes of the existing abstract syntax metamodel (ASMM)
classes. Such template classes in UMM have no attributes
at all. Their role is to attach the required associations from
mapping classes to the relevant ASMMclasses in the special-
ization (in a way usable by UE). To attach an association to
an ASMM class, we simply have to specify in the specializa-
tion that this ASMM class is a subclass of the corresponding
template class in UMM. Then at runtime, the extended UE
for each new graphical element instance in editor will cre-
ate also the corresponding linked mapping instance, a new
ASMM instance template (with no attributes at all) and the
link from the mapping instance to this template.

Another new specialization feature used in this UMM is
the possibility to reference an attribute (of an ASMM class)
whose name is not defined in the UMM but appears only in
the specialization. In fact, the mapping classes in UMM are
of two kinds—main ones (NodeMap, RowMap, EdgeMap,
StartGroupMap, EndGroupMap) that have a direct link to
an ASMM class and compartment related (NCompartMap,
RowPartMap, ECompartMap) for which such link is not
present (or optional). These compartment-related classes
have an additional attribute attrName, which in the special-
ization points to a specific attribute of the ASMM class to
which the parent main mapping class is linked. The infor-
mal dynamic semantics of this construct is that UE will add
an attribute with the specified name (and the value obtained
via the mapping instance from the compartment value) to
the ASMM instance template created for the compartment
parent map. However, formally this action is performed in
a more complicated way since UE cannot directly add an
attribute not defined in theUMMtoanUMMclass instance—
see the technical details in Sect. 12. For the RowPartMap
class, the situation is even more complicated. First, it can
be mapped to an attribute of the parent mapping (RowMap)
target class in the ASMM. But it can be mapped also to an
attribute of a separate ASMM class (only linked to the parent
mapping target). Therefore, this class has one more optional
navig attribute which in the specialization can be set to the
role name by which to find the required ASMM class (from
the ASMM class linked to the parent). However, there are
two distinct subcases—either the additional reference class
instance already exists in the AS model and must be found
using the value of the specified attribute (via attrName) or
this class instancemust be createdwhen themapping instance
is created by UE. Therefore, two distinct ASMM template
classes are included in the UMM—RowPartReference and
RowPartClass. In a specialization, one of them must be

Fig. 22 Fragment of UML metamodel used in mapping examples

chosen—certainly the RowPartReference class for the first
subcase. But in both cases the class instancemust be attached
by UE via the specified link. Further details of these new spe-
cialization features will be explained on examples.

Two example fragments will be given showing how Class
attribute and association fragments can be mapped to the
fragment of UML metamodel in Fig. 22. Though all the pre-
sentation in this section is related to class editor example, the
proposed UMM and the related UE is in no way specific to
this example. It has been checked that an editor and a map-
ping for UML activity diagrams can also be defined using
this approach (in fact, for a subset of UML activity notation,
since the complete activity notation is no more a pure graph
diagram). Similar experimentsweremade for someworkflow
modeling notations.

We start with the mapping specialization example for the
EMOF class editor attribute fragment in Fig. 19. Figure 23
shows how this editor definition can be extended to a related
mapping definition. For each specialized diagram element in
the class diagram editor fragment, the corresponding special-
ized mapping class is presented. In order to reduce the figure
size, we do not repeat here all class attribute features from
Fig. 19, but only those which require some unique facilities
to define their mappings (others are similar).

The far left part of this specialization contains the small
fragment of the UML metamodel already shown in Fig. 22
in the role of ASMM. Certainly, main classes here are
Class and Property. The Class metaclass plays the role of
BaseElemClass in the UMM, and the ClassMap class in
the specialization is directly linked to it—via the class link

123



Metamodel specialization for graphical language support 1725

Fig. 23 Mapping specialization for the attribute fragment of EMOF class editor

which redefines the nodeCl link in UMM. Thus, the natural
semantics of a Class node in a class diagram is enabled—it
corresponds to a Class in the UML metamodel.

We continuewith the details of a class node. Two “simple”
Class node compartments—isAbstract and name, are shown
with their mappings, and they are mapped to the UML Class
attributes isAbstract and name, respectively (using the spe-
cialized values of attrName). Further, themultiRowAttribute
compartment together with its Attribute row is mapped using
the AttrRowMap class (this class is linked to both the com-
partment and row classes). The attribute row is mapped to
the ASMM class Property – the natural counterpart of class
attribute in the UML abstract syntax. To do this, Property is
made a subclass of the UMM class CompRowClass. For the
row, themapping of three parts is shown—the attribute name,
type and isDerived. The name and isDerived are mapped
to the corresponding attributes of Property. But the type is
mapped to the name of the ASMM class Type—this class is
made a subclass of RowPartReference. The reference case
must be used here since an attribute can have only a type
existing in the model. Certainly, the Type class is an abstract
superclass, so a concrete subclass of it must be found having

the required name—most frequently either a PrimitiveType
or an Enumeration instance. This search is done automat-
ically by UE (in fact its component SE operating on the
specializedmodel) when themapping instance is created and
the type instance is linked to Property via the specified navig
link type. If such an instance is not found, an error message
is shown. We want to emphasize once more that the com-
partment structuring facilities in our UMM are sufficient to
define in the specialization any requiredmapping of text parts
to attributes in ASMM.

One more issue here is the compartment value type com-
patibility with the type of the corresponding ASMM class
attribute. The compartment value type in UE always is
String, but the attribute type may be any type available in
EMOF. In all normal situations, the value correspondence
rule can be described by an OCL constraint in the specializa-
tion. However, in many typical situations the specialization
definer’s task can be simplified—UE can infer automatically
the required value transformation from the input control used
for the compartment value entry in the editor and the attribute
type (they should be in away compatible). No transformation
is required if the attribute also has the String type. Similarly, if

123



1726 A. Kalnins, J. Barzdins

Fig. 24 Mapping specialization for the association fragment of EMOF class editor

the compartment is entered via a checkbox (and thus can have
only the values “true” and “false”), UE can uniquely interpret
the entered value as a Boolean type. One more case is when
only literal names of an Enumeration type can be entered via
a listbox having an appropriate item list, then they can be
easily converted to literals of this type themselves. But, if the
developer is unsure, an explicit OCL constraint may be used
anyway. In the example in Fig. 23, the default transformation
rules apply in all cases (the attributes have either String or

Boolean type), so no explicit OCL is shown. But in the next
fragment (Fig. 24) for one case an explicit OCL is required.

Figure 24 shows themapping specialization for the EMOF
class editor association fragment in Fig. 20 (as in the attribute
case, mappings for all compartments are not shown, others
are similar). Again the specialized mapping target meta-
model is the same UML fragment in Fig. 22. The association
compartment grouping into start and end groups is very ade-
quate for mappings as well, since in the UML metamodel

123



Metamodel specialization for graphical language support 1727

each of the association ends is represented by a Property
instance attached under the corresponding Class. Therefore,
the group mappings AssocStartMap and AssocEndMap both
have links to the Property class. Since the Property class
is used as a mapping link endpoint both for attributes and
associations, it has two formal superclasses from theUMM—
CompRowClass and LineEndClass. The association from
Class to Property redefines three associations from UMM
as well (for attribute row and both association ends). Only
the association namemapping is related directly to the Asso-
ciation class in UML, and others are related to one of the
groups. The value conversion from compartments to ASMM
class attributes is supported by default facilities (as it is for
attributes in Fig. 23), except one case – the association multi-
plicity (both at start and end, in Fig. 24 only the EndMultMap
is detailed). The standard string values for multiplicity are
“1,” “0..1,” “0..∗,” “1..∗,” but in abstract syntax they are coded
by two attributes lower and upper of Property (in full UML,
the coding is even more complicated, these attributes are
derived ones, but we ignore this here). Therefore, the End-
MultMap class references two attributes and use an OCL
constraint specifying how exactly the values are mapped (the
constraint in Fig. 24 supports only the standard values, but it
can be extended to the general case). In addition, we remind
that in UML the graphical and semantical start/end concepts
are different for roles and multiplicities.

In addition, we have to extend the definition of UE for the
mapping support. Some comments on the UE functionality
were already made when UMM was explained, but here we
give a more thorough summary. The general setting here is
very simple—when anewgraphical syntax element is created
by the editor in a diagram, a new set of the correspond-
ing mapping class instances is created as well. In addition,
the relevant ASMM class instances are created as well. If
an existing diagram element (compartment) is modified, the
relevant modification is performed also in the correspond-
ing ASMM class (on the basis of existing mappings and
their links). UE has to perform all these tasks at the UMM
instance and link level. There are no problems in this respect
when UE processes the instances of UMM classes related
to graphical editor or mapping since only attributes already
present in UMM are used in a specialization (this permits
to treat a specialized class instance as the corresponding
UMM class instance as well). But ASMM class templates
in UMM have no attributes at all—it is impossible to pre-
dict what attributes will be present in a specialized ASMM
class taken, for instance, from a UML metamodel fragment.
Some comments on this issue were already given when dis-
cussing the attrName feature in the extended UMM. The
solution is that UE uses a more complicated internal cod-
ing for ASMM template class instances when attributes have
to be added to them. Later on, these coded instances are
interpreted in a uniform way as true instances of the spe-

cialized ASMM classes (in fact, predefined abstract syntax
classes). Therefore, UE internally uses an extended UMM
runtime version – these extensions are not relevant for the
UMM specialization developer, see more in Sect. 12. Thus,
the set of graphical diagrams in a project and the abstract
syntax model is kept synchronized by UE during the editing.
For our class diagram examples, the class attribute editing
case is quite straightforward in this respect. But for associa-
tions the situation is slightly more complicated since UE has
to attach the created Property instances (in fact, their coded
“images” according to UMM) for association ends under the
corresponding Class instances. Since UE knows from which
class node to which one the association was drawn, the cor-
responding links to mapping class instances (existing also in
the UMM, not only in the specialization) permit to locate the
UML Class instances (in fact, their images in UMM) under
which the new Property instances must be attached.

The extended UMM permits to extend the general func-
tionality of UE in some aspects. First, the default graphical
copy/paste facility in diagrams can be easily extended to a
“semantic copying” where all graphical copies of a node
reference the same mapping instance and consequently the
same abstract syntax instance. In this situation, the map-
ping becomesmany-to-one, andmultiplicities in theUMMin
Fig. 21 must be modified accordingly. Such a semantic copy-
ing is typically supported in all industrial UML editors. In
addition, a very simple model tree support for a project could
be easily added, including also the relevant abstract syntax
elements. For this, the UMM in Fig. 21 has to be extended
by three classes, which can be specialized to specify among
other things that UML Class instances should be shown in
the tree (not only the diagrams), and also under each class its
properties should be shown. Thus, a functionality typical to
standard UML class editors based on abstract syntax could
be supported in our approach to a certain degree.

12 Implementation principles

Sections 6–11contain a sufficiently detailed informal descrip-
tion of the proposed functionality of UE for graphical editors
from the editor user’s point of view. Thus, a sort of require-
ments for the UE implementation are already present. The
goal of this section is to provide proposals for adequate
structuring of UE into components and some design patterns
which would significantly simplify the UE implementation.
All this is based on the experience of IMCS UL team in
building the existing TDA platform.

First we want to recall that on the basis of the Type
metamodel discussed in Sect. 3 (in fact, a certain exten-
sion of it – tool definition metamodel) the TDA platform
[6,7,24,26,27,63] for graphical editor building has been
implemented and used in practice for various graphical DSL

123



1728 A. Kalnins, J. Barzdins

Fig. 25 Metamodel for palette
tree

support. The platform contains theMain engine—a universal
interpreter for a tool definition (an object model of the Type
diagram) and several functional engines, such as Graph dia-
gram (graphical presentation) engine and Dialog engine. The
Graph diagram engine draws and modifies a diagram, sup-
ports an advanced layout algorithm, recognizes user events in
a diagram and notifies the Main engine on “logical” events,
e.g., a new node creation request. The Dialog engine builds
forms for compartments and accepts user input; however,
the logical processing of user input is done by the Main
engine. A similar architecture could be used for implement-

ing the UE associated with UMM for editor definition. The
UE would consist of several components as well—the Main
engine (ME) managing diagram projects, diagrams and dia-
gram elements (all at UMM instance model level), UMM
Specialization engine (SE) which navigates the current spe-
cialization of UMM and manages its instance set and the
Graph Diagram engine (GDE) and the Dialog engine (DE)
with a functionality similar to those in TDA. A new compo-
nent required is theOCLconstraint evaluator—but suchOCL
engines exist for several model repositories (see, e.g., [64],
[65]). The main difference from TDA is the Specialization

123



Metamodel specialization for graphical language support 1729

engine (SE) which has to process the specialized metamodel
and provide the specific information in it (the specialized
attribute values and redefined associations) to other engines
in a generic way consistent with UMM. The only reasonable
solution for UE is to store the runtime instances of diagrams
and their elements in the current project according to the
given specialization of UMM (SMM for short). This is done
by SE in a project Repository (PR) according to SMM. In
order to make other components of UE (ME, GDE and DE)
independent of a specialization, the Specialization engine
has to provide a temporary copy TR of the project Reposi-
tory according to the original UMM. The copying process is
simple—specialization instances are also instances of UMM
classes, and attributes are the same. And in the temporary
repository links for the redefined associations can also be
interpreted as links for the original ones. Then, other engines
can work in TR only in terms of UMM, but the Specializa-
tion engine provides the initial content of TR (for an existing
project). In order to ease the synchronization between PR
and TR, each UMM class at runtime is extended by a hid-
den ID attribute, and UE assigns a unique value to it at an
instance creation. When an instance set creation (or mod-
ification) according to a user request is completed by UE,
it notifies SE on new/modified instances via their Id value
list. Then, SE can integrate these instances as proper SMM
instances in PR. Modified instances are completely identi-
fied by the ID value (temporarily kept by SE also in PR).
The class of a new instance created in TR is identified by its
caption attribute to be explained later. The OCL expression
evaluation is done by SE only in PR (upon requests by UE),
since these expressions are fully based on SMM.

Now we explain how the minimal knowledge on SMM
content—the class names, the fixed attribute values and the
used redefined associations can be passed to UE in a usable
way. In addition, the proposed solution helps to check that
the information on the given specialization is sufficient for
UE to function in a way specified in the previous sections.
This is especially critical in the cases when new elements are
to be created. The main idea behind this is that a new UMM
instance creation by UE is always related to a palette. The
palettes and dialog schemas for elements are created from
specializations. There will be a language developer mode
in the editor workbench, where one or more UMM special-
izations will be built as standard class diagrams, in totality
constituting a graphical language. When the specialization is
complete, it is “compiled” to a palette tree, which contains
the palette for the project diagram—in its turn containing
palette seeds for all defined diagram types in the language.
Under each project palette seed, a local palette tree for the
corresponding diagram type is stored. This tree contains the
diagram palette with an element for each specialized node or
edge. Under each such element, the complete compartment
subtree for this element (as defined in the specialization) is

built. Such a subtree related to a diagram element is called
the element template. For all attributes with default values
set in the specialization, these values are present in the tem-
plate. The usage of such templates for the specification of a
model fragment to be created is one of typical design patterns
in model transformations. The palette tree is built according
to a metamodel, a fragment of which is shown in Fig. 25.
This fragment corresponds to the main elements of UMM
for editors in Fig. 17 (groups for edge compartments are not
shown). The metamodel is used only internally at runtime
by UE and SE; therefore, the editor-related classes contain
the technical attributes (ID, position, etc.). But a feature has
to be explained here more in detail. All classes now have
the caption attribute—this attribute was present already for
most classes of UMM in Fig. 15. In UMM specializations,
this attribute was set to a specific value in order to identify
uniquely what diagram element kind the user currently is
watching (e.g., in a dialog form). Therefore, its value, nat-
urally, is unique for different subclasses of a UMM class.
Here the caption attribute internally has a more formal role
aswell—it helps SE to identify the proper specialized class of
a UMM class instance created by UE/ME. For classes where
a visible caption is not needed, the value of this attribute is
set internally to the specialized class name at the palette tree
creation. This principle works well also for the extended ver-
sion of the metamodel supporting the mappings. There is no
such built-in identification for redefined role names in SMM,
but SE can uniquely infer these names from role names in
UMM when classes have been identified. This is because in
cases where more than one association links two classes in
UMM, the redefined role names must be different also in a
correct specialization.

Figure 25 shows that the template structure in the palette
tree replicates the required structure of diagram elements.
Thus, the components of UE have to build a true diagram
element from the corresponding template by setting the
remaining “dynamic” attribute values according to the edi-
tor user wishes. The internal links to be created also have the
same role names as in UMM. Thus, the task ofME is to build
in TR a complete instance replica of the relevant palette tree
fragment when the user has requested a creation of a new
diagram element. This principle naturally extends also to the
case when along with diagram elements their mappings to
abstract syntax must be created. Associations from template
elements to the corresponding diagram elements are included
in themetamodel tomake this replication process easier (they
are not maintained in the resulting model in TR).

Now some extended comments onASMMclass templates
in UMM. These classes have no attributes at all in UMM;
therefore,ME cannot directly add attributes to a new instance
of such class template. To solve this, in the runtime UMM
these classes are extended by a link to an internal Attribute
class with two string-typed attributes name and value. ME

123



1730 A. Kalnins, J. Barzdins

Fig. 26 Fragment of palette tree
for class attributes

creates in a uniform way a new instance of Attribute class
and links it to the instance of class template when logically
a new ASMM class attribute has to be created according to
a mapping for a new compartment instance in the graph-
ical syntax (using the mapping templates included in the
palette tree as well). When the user action processing is
completed byME, it notifies the SE on the new instances cre-
ated (by ID list), including also these ASMM template class
instances. SE can uniquely convert in PR these instances to
true ASMMclass instances (e.g., Class or Property). The rel-
evant class name is coded in the class caption attribute, and
linked Attribute instances are converted to true attributes of
the ASMM class. The interpretation of string values as val-
ues of the corresponding type occurs at this moment (using
an OCL expression when it is provided in the specialization).
A similar temporal internal coding can be used also to hold
links for the redefined UMM associations related to ASMM
template classes.

Figure 26 shows a fragment of palette tree for the class
diagram editor related to the attribute part.

Thus, the proposed implementation schema for a special-
ization based editor workbench is expected to require not
very great effort since several components of UE (GDE, DE)
could be reused from the existing TDA. It should be noted
that ME and SE are true model transformation tasks. ME is a
set of in-place transformations based on UMM (with a func-
tionality similar to parts of TDA). The only completely new
component is the SE for synchronizing the model in PR with
the UMM based model in TR and performing some general
management.

Now about the DSL developer workplace—its goal is to
create a specialization of the given UMM. This workplace
could be implemented on the basis of an appropriate open-
source UML tool in Eclipse, e.g., Papyrus [66]. Then, one of
the existing OCL interpreters, e.g., Eclipse OCL [64] could
be used as well. All this is possible since metamodel special-
ization is completely based on standard UML features. How-
ever, the usage of standard UML tools (class diagram editor)
for the DSL tool definition has a problemwith prompting the
possible UMM elements to be used in a specialization, etc.

123



Metamodel specialization for graphical language support 1731

Obviously, for defining DSL tools a specialized class dia-
gram editor with advanced prompting facilities is required.
Certainly, these prompting facilities will depend on the fea-
tures of the given UMM. It is not difficult to get assured that
such specialized class diagram editor can be built as a spe-
cialization of the editor definition UMM described in Sect.8.
To implement such bootstrapping process, the initial version
of this editor building tool must be created using a standard
UML tool.

We are now in the process of development of a new spe-
cialization based platform for graphical DSLs at IMCS UL
(according to the principles described above), using the expe-
rience and components the IMCS UL team has from the
previous platform—TDA based on metamodel instantiation.
From the end user point of view, the DSL tools created by the
new approach, e.g., the EMOF level class diagram editor will
look very similar to the existing TDA. The user interface for
the desktop version will be the same as in Fig. 10. The user
interface for the web version will be similar to that described
in [67,68].

13 Summarized comparison of the
specialization approach to instantiation
approaches

In this section, we provide a summary of the comparison
of our proposed metamodel specialization approach to the
metamodel instantiation approaches analyzed in the paper.
It will be done for the main two tasks discussed in the
paper—graphical language syntax definition and building
editors for these languages. There are two basic aspects in
this comparison—the expressivity of the approach (what can
be done in principle) and usability (how easy it is to do this
for an end user).

Generally speaking, the formal expressive power of both
approaches is equal—you can create as many subclasses
of a UMM metamodel class (and with the same names)
as instances (at M1 layer) of a metamodel class (at M2
layer). Only in the case of specialization we stay at the same
layer. Similarly, the same principal possibilities are for class
attributes and associations—except that for instantiation you
can create as many new attributes and associations as you
like, while for specialization theymust be redefinitions of the
existing ones in UMM. However, there may be differences
in details. The situation is different for the TDA approach,
since there the metamodel is already at M1 and its instantia-
tion creates object diagrams.

However, in practice the styles of “start” metamodels are
different. For specialization, we try to select the UMM as
complete as possible for covering all features of the chosen
family of tasks. Thus, for graphical syntax definition (see
Sect. 7, Fig. 15) we have chosen the UMM covering all fea-

tures of true graph diagrams, consisting of nodes and edges
with arbitrary text structure and with node nesting supported.
Since we do not use the domain (abstract syntax) model as a
basic element, the concrete textual syntax is defined with any
required detail using compartment structuring. Therefore, a
complete set of required OCL constraints can be added to a
UMM specialization, and these constraints can involve sev-
eral related diagram elements (see Sect. 7). The basic style
elements fixed in the corresponding graphical syntax specifi-
cation are also included, with sufficiently rich sets of literals
for enumerable types. Thus, we can assert that graphical syn-
tax of any language based on true graph diagrams can be
defined by aUMMspecialization. But for example, the UML
sequence diagram definition would require an extension of
our diagram definition UMM.

The “classic” instantiation-based approaches applicable
for graphical syntax definition such as Eclipse GMF and its
derivatives (see Sect. 2) or OMGDD (see Sect. 4) do not have
the syntax definition as the main goal. Thus, the main goal
of GMF is the editor definition, but the main real goal of DD
is the diagram interchange definition. In addition, they are
strictly based on the domain model of the language (to which
the main OCL constraints are attached) and on some sort of
mapping the graphical syntax to this model. Therefore, the
expressivity of the approach to a great degree depends on the
mapping definition facilities used. In addition, the metamod-
els of graphical syntax to be instantiated in these approaches
are significantlymore general than ourUMM; therefore, they
cover a larger variety of diagrams but require more effort to
create a specific diagram definition. The instantiation-based
TDA (see Sect. 3 for details) is in a different position—it has
a Type metamodel version (see Fig. 8) just for the graphical
syntax definition, but due to one-layer technique it requires
some non-UML semantics for the resulting object diagram,
and not all constraints can be defined.

Now on the other task—the graphical editor definition for
a language. The expressivity of the approach here depends
both on the editor definition features included in the meta-
model andpossibilities of the runtime support in the platform.
Typically the features supported by the runtime are all
included in the corresponding platform metamodel (to be
instantiated or specialized) – we call them standard features
of the platform. In addition, usually there are default support
features for diagram management not to be configured via
the metamodel.

However, in practice graphical tool building for a language
typically requires some specific features to be implemented
by extending the standard runtime. And platforms typi-
cally have such extension possibility. Thus in Eclipse GMF
(Sect. 2), there are broad possibilities to implement such
extensions naturally in Java; however, they require a deep
knowledge of the internal model structure and existing run-
time libraries in Eclipse. In TDA platform (Sect. 3), there is

123



1732 A. Kalnins, J. Barzdins

a special concept of an extension point in the editor-oriented
metamodel, where custom transformations in Lua/lQuery
language can be invoked. It should be noted that the standard
facilities for editor definition in TDA (e.g., toolbar elements,
context menus) are richer and easier configurable than in
Eclipse. However, the one-layer metamodel in TDA with
its mix of elements and their types frequently makes such
transformation development complicated—model transfor-
mations typically are oriented toward model-metamodel
separation.

Now about the situation in our metamodel specialization
approach for editor building. Since the UMM for editor defi-
nition (see Sect. 8, Fig. 17) is a direct extension of the UMM
for language definition, the general capabilities of special-
ization, including OCL constraints, seem to be sufficient
for defining any standard feature of editor (similarly to the
language definition case). However, custom features extend-
ing the capabilities of UE (which supports the given UMM)
would be required anyway. Since our UMM is directly ori-
ented toward graphical syntax, the need for such extensions
could be less than, e.g., in GMF. Many custom editing fea-
tures directly related to metamodel elements can be specified
simply as additional OCL constraints. However, for features
related to some external elements, such as diagram export in
various formats and custom context menu items. OCL con-
straints may not be sufficient. A possible solution could be to
use code fragments in some transformation language instead
of OCL as our extension points. These transformations could
also access directly the runtime repository API (where UE
stores the models, see Sect. 12). This possibility most prob-
ably would be sufficient for most editor building cases. An
efficientmanagement of extension pointsmay require adding
a couple more editor-specific attributes to diagram element-
related classes of UMM.

Finally, on the comparisonof usability. For the sakeof sim-
plicity, we have chosen the flowchart diagram as the common
test case. But a similar situation would be for a more com-
plicated diagram as well. The flowchart example—for both
language definition and editor definition—shows convinc-
ingly that the specialization approach is much simpler both
for development and understanding. For flowchart syntax
definition, compare Fig. 16 (Sect. 7) using the specialization
approach to the corresponding figures for other approaches.
Thus for GMF as a language definition, you have to create
(or understand) Figs. 2, 3 and 5 (Sect. 2). For TDA, the cor-
responding definition is in Fig. 9 (Secti. 3)—though not very
large, it is based on non-UML semantics for several elements
in this diagram; in addition, not all semantic constraints can
be specified there. For OMG DD, Fig. 11 (Sect. 4) presents
only the DI model part of the solution—it has to be accom-
panied by a mapping of this model to the true graphics—the
DD metamodel.

A similar situation is with the flowchart editor definition.
Fig. 18 (Sect. 9) shows the complete editor definition via
specialization.But theEclipseGMFsolution requires Figs. 2,
3, 4 and 5 (Sect. 2) plus the generationmodel not shown in the
paper. Though the class diagram editor example (Sect. 10)
is much more complicated, the essential fragments of this
definition via specialization in Figs. 19 and 20 are still very
readable.

One more aspect of comparison is the maintainability
(ease ofmodification/extension) of solutions. The specializa-
tion approach requires only one model to be modified—the
specialization for language or editor (including its OCL con-
straints). If the mapping to abstract syntax is defined as well,
then only this specialization should be modified (it includes
the editor definition as a submodel). There are no related
models which should be modified as well—as it is, for exam-
ple, in GMF or OMGDD. Thus in GMF, you have to modify
consistently the domain model, graphics model and mapping
model (frequently also the tooling and generation model);
therefore, this modification is very error-prone [18].

14 Conclusions

A unified approach for graphical diagrammatic language
syntax definition and graphical editor building has been pro-
posed in this paper. The approach is based on a Universal
Metamodel (UMM) which is then specialized for a con-
crete language. We want to emphasize once more that the
whole approach uses metamodel specialization technique,
but not the metamodel instantiation mainly used so far. The
most popular use cases of the traditional instantiation-based
approach for language and editor definition have been briefly
analyzed in Sections 2–5, with their advantages and draw-
backs discussed. Sections 6–12 provide a detailed description
of the proposed specialization approach.

Section 13 provides a summary of comparison of the
metamodel specialization approach to typical metamodel
instantiation approaches. This comparison clearly shows that
the specialization approach is simpler and easier to use for
the definition of graphical modeling language syntax and
their editors. This is especially visible in the case of simpler
languages (such as the flowchart example is), but the class
diagram example shows that the samewould be true for more
general domain-specific modeling languages as well.

Nowabout our future plans.We are in the process of devel-
opment of a new specialization based platform for graphical
DSLs, according to the principles described in Sect. 12. The
goal is to create a DSL platform with a functionality sim-
ilar to the existing TDA, but much more user friendly due
to the specialization approach. Besides that, the platform
should be accessible via web browser. In order to check
the web access possibility for such a platform, one of our

123



Metamodel specialization for graphical language support 1733

teammembers has performed a successful experiment (how-
ever, for the instantiation-based approach) [67,68]. The main
advantage here is the possibility for several users to access
the same diagram, with an automatic synchronization at
updates. This will solve the problem of team development
mode for DSLs, similarly to Eugenia Live and Collaboro
(see Sect. 5).

The main proposed application area for the specialization
approach is the graphical DSL and their tool definition, dis-
cussed in this paper. However, we believe that the approach
can be applied to a much broader areas. A very promis-
ing use case could be the definition of user interfaces
for web-based information systems. Currently, there is an
instantiation-based trial to use metamodels for user inter-
face definition—the IFML standard by OMG [69–71]. We
hope that the application of the specialization approach could
provide advantages in this case as well, especially by extend-
ing the variability of supported user interface kinds. Another
possible use case could be the ontology building based on
specialization. Ontology specialization could be used as a
new facility for large ontology structuring, with the main
goal to represent complicated ontologies in an easy under-
standable way.

Acknowledgements This work is supported by the Latvian National
research program SOPHIS under grant agreement Nr.10-4/VPP-4/11.

References

1. Object Management Group. Meta Object Facility (MOF) Core
Specification – Version 2.5 – formal/2014-06-05 (2015)

2. Object Management Group. Unified Modeling Language (UML)
– Version 2.5 – formal/2015-03-01 (2015)

3. Object Management Group. Diagram Definition (DD) – Version
1.1 – formal/2015-06-01 (2015)

4. Graphical Modeling Framework (GMF) Tooling. http://eclipse.
org/gmf-tooling/

5. Eclipse Modeling Framework (EMF). https://projects.eclipse.org/
projects/modeling.emf/

6. Barzdins, J., Rencis, E., Kozlovics, S.: The Transformation-Driven
Architecture. In: Proceedings of DSM’08 Workshop of OOPSLA
2008, Nashville, Tennessee, pp. 60 – 63, University of Alabama at
Birmingham (2008)

7. Sprogis, A.: Configuration Language for Domain Specific Tools
and its Implementation. Ph.D. thesis (in Latvian), University of
Latvia, Riga (2013)

8. Kalnins, A., Barzdins, J.: Metamodel Specialization for Graphical
Modeling Language Support. In: Proceedings of MODELS 2016,
19th ACM/IEEE International Conference on Model Driven Engi-
neering Languages and Systems, ACM, pp. 103–112 (2016)

9. Graphical Editing Framework (GEF). http://www.eclipse.org/gef/
10. Obeo Designer: Domain Specific Modeling for Software Archi-

tects. http://www.obeodesigner.com
11. Juliot, E. Benois, J.: Viewpoints creation using Obeo Designer or

how tobuildEclipseDSMwithout being an expert developer?Obeo
Whitepaper. http://spotidoc.com/doc/197222/

12. Sirius overview. http://www.eclipse.org/sirius/overview.html
13. Acceleo – Eclipsepedia. http://wiki.eclipse.org/Acceleo

14. Kolovos, D., Rose, L., et al.: Taming EMF and GMF using Model
Transformation. In: Petriu, D., Rouquette, N., Haugen, O. (eds.)
Proceedings of the 13th International Conference onModel Driven
Engineering Languages and Systems (MODELS 2010), LNCS,
Vol. 6394, pp. 211–225. Springer (2010)

15. Kolovos, D., Rose, L., et al.: Eugenia: towards disciplined and
automated development of GMF-based graphical model editors.
SoSyM 16(1), 229–255 (2017)

16. Kolovos, D., Roze, l., Garcia-Dominguez, A., Paige, R.: The
Epsilon Book. http://www.eclipse.org/epsilon (2017)

17. Kouhen, A., et al.: Evaluation of modeling tools adapta-
tion. HAL archives (2012). https://hal.archives-ouvertes.fr/hal-
00706701/file/Evaluation_of_Modeling_Tools_Adaptation.pdf

18. Wienands, C. Golm, M.: Anatomy of a visual domain-specific
language project in an industrial context. In: Proceedings of 12th
International Conference onModel Driven Engineering Languages
and Systems (MODELS 2009), LNCS, Vol. 5795, pp. 453–467.
Springer (2009)

19. IBM Rational Software Architect Designer RSA). https://www.
ibm.com/support/knowledgecenter/SS8PJ7/rsa_family_welcome.
html

20. Kalnins, A., Vilitis, O., Barzdins, J., et al.: Building Tools byModel
Transformations in Eclipse. In: Proceedings of DSM’07 workshop
of OOPSLA 2007, Montreal, Canada, Jyvaskyla University Print-
ing House, pp. 194–207 (2007)

21. Kalnins, A., Barzdins, J., Celms, E.: Model transformation lan-
guage MOLA. In: Proceedings of Model Driven Architecture:
EuropeanMDAWorkshops: Foundations andApplications, LNCS,
Vol. 3599, pp. 62-76. Springer (2005)

22. Vilitis, O.: Metamodel-based transformation-driven graphical tool
building platform. GlobeEdit (2015)

23. MOLA Home, IMCS University of Latvia. http://mola.mii.lu.lv/
index.html

24. Barzdins, J., et al.: GrTP: Transformation Based Graphical Tool
Building Platform. In: Proceedings of MDDAUI‘07 Workshop of
MODELS 2007, Nashville, Tennessee, USA, CEUR Workshop
Proceedings, Vol. 297, 4 pp. (2007)

25. Liepins, R.: Library for model querying – lQuery. In: Proceedings
of 2012Workshop on OCL and Textual Modelling (part of Models
2012), ACM Digital Library, p. 6 (2012)

26. Sprogis, A.: The configurator in DSL tool building. Comput. Sci.
Inf. Technol. Sci. Pap. Univ. Latv. 756, 173–192 (2010)

27. Sprogis, A., Barzdins, J.: Specification, configuration and imple-
mentation of DSL tool. In: Frontiers of AI and applications,
Databases and Information Systems VII, Vol. 249, pp. 330–343,
IOS Press (2013)

28. Barzdins, J., Barzdins, G., Cerans, K., Liepins, R., Sprogis, A.:
UML style graphical notation and editor for OWL 2. In: Proceed-
ings of Perspectives in Business Informatics Research (BIR 2010),
LNBIP, Vol. 64, pp. 102–113. Springer (2010)

29. Barzdinš, J., Barzdinš, G., Cerans, K., Liepinš, R., Sprogis, A.:
OWLGrEd: a UML Style Graphical Editor for OWL. In: Ontology
Repositories and Editors for the Semantic Web, Proceedings of the
1stWorkshop onOntologyRepositories and Editors for the Seman-
tic Web, Hersonissos, Greece, CEURWorkshop Proceedings, Vol.
596, p. 5 (2010)

30. Cerans, K., Liepinš, R., Ovcinnikova, J., Sprogis, A.: Advanced
OWL 2.0 Ontology Visualization in OWLGrEd. In: Frontiers of
AI and Applications, Databases and Information Systems VII, Vol.
249. pp. 41–54, IOS Press (2013)

31. Liepins, R., Grasmanis, M., Bojars, U.: OWLGrEd ontology
visualizer. In: Proceedings of the International SemanticWeb Con-
ference, Developers Workshop 2014 (ISWC-DEV’2014), CEUR
Workshop Proceedings, Vol. 1268, pp. 37–42 (2014)

32. OWLGrEd home, http://owlgred.lumii.lv/

123

http://eclipse.org/gmf-tooling/
http://eclipse.org/gmf-tooling/
https://projects.eclipse.org/projects/modeling.emf/
https://projects.eclipse.org/projects/modeling.emf/
http://www.eclipse.org/gef/
http://www.obeodesigner.com
http://spotidoc.com/doc/197222/
http://www.eclipse.org/sirius/overview.html
http://wiki.eclipse.org/Acceleo
http://www.eclipse.org/epsilon
https://hal.archives-ouvertes.fr/hal-00706701/file/Evaluation_of_Modeling_Tools_Adaptation.pdf
https://hal.archives-ouvertes.fr/hal-00706701/file/Evaluation_of_Modeling_Tools_Adaptation.pdf
https://www.ibm.com/support/knowledgecenter/SS8PJ7/rsa_family_welcome.html
https://www.ibm.com/support/knowledgecenter/SS8PJ7/rsa_family_welcome.html
https://www.ibm.com/support/knowledgecenter/SS8PJ7/rsa_family_welcome.html
http://mola.mii.lu.lv/index.html
http://mola.mii.lu.lv/index.html
http://owlgred.lumii.lv/


1734 A. Kalnins, J. Barzdins

33. Barzdins, J., Cerans, K., Grasmanis,M., Kalnins, A., Kozlovics, S.,
Lace, L., Liepins, R., Rencis, E., Sprogis, A., Zarins, A.: Domain
specific languages for business process management: a case study.
In: Proceedings of 9th OOPSLA Workshop on Domain-Specific
Modeling, Orlando, USA, October 2009, pp. 34–40 (2009)

34. GradeTwo Tool. http://gradetwo.lumii.lv/
35. Eisenberg, J.: SVG Essentials. O’Reilly Media, Sebastopot (2011)
36. Object Management Group, Meta Object Facility (MOF) 2.0

Query/ View/Transformation Specification – Version 1.2 –
formal/2015-02-01 (2015)

37. Elaasar, M., Labiche, Y.: Diagram definition: a case study with the
UML class diagram. In: Proceedings of the ACM/IEEE 14th Inter-
national Conference on Model Driven Engineering Languages and
Systems (MODELS 2011), LNCS, Vol. 698, pp. 364-378. Springer
(2011)

38. Fouché, A., Noyrit, F., Gérard, S., Elaasar, M.: Systematic genera-
tion of standard compliant tool support of diagrammatic modeling
languages. In: Proceedings of the ACM/IEEE 18th International
Conference onModel Driven Engineering Languages and Systems
(MODELS 2015), pp. 348–357, IEEE (2015)

39. Costagliola, G., Deufemia, V., Polese, G.: A framework for model-
ing and implementingvisual notationswith applications to software
engineering. ACM Trans. Softw. Eng. Methodol. 13(4), 431–487
(2004)

40. Rekkers, J., Schurr, A.: Defining and parsing visual languages with
layered graph grammars. J. Vis. Lang. Comput. 8(1), 27–55 (1997)

41. Ermel, C., Ehrig, K., Taentzer, G., Weiss, E.: Object oriented and
rule-based design of visual languages using tiger. In: Proceedings
of GraBaTs’06, Electronic Communications of the EASST, p. 12
(2006)

42. Taentzer, G., Crema, A., Schmutzler, R., Ermel, C.: Generating
domain-specific model editors with complex editing commands.
In: Proceedings of AGTIVE 2007, LNCS, Vol. 5088, Springer, pp.
98–103 (2007)

43. Taentzer, G.: AGG: A Graph Transformation Environment for
Modeling and Validation of Software. In: Proceedings of Appli-
cations of Graph Transformations with Industrial Relevance
(AGTIVE 2003), LNCS, Vol. 3062, pp. 446-453. Springer (2004)

44. Rath, I., Varro, D.: Challenges for advanced domain-specific
modeling frameworks. In: Proceedings of Workshop on Domain-
Specific ProgramDevelopment (DSPD), ECOOP 2006, p. 4 (2006)

45. Visual Automated Model Transformations (VIATRA2), GMT
subproject, Budapest University of Technology and Eco-
nomics. http://dev.eclipse.org/viewcvs/indextech.cgi/gmthome/
subprojects/VIATRA2/index.html

46. Graphiti Home. http://www.eclipse.org/graphiti/
47. Rose, L., Kolovos, D., Paige, R.: EuGENia Live: a flexible graph-

ical modelling tool. In: Proceedings of XM’12, ACM Digital
Library, pp. 15–20 (2012)

48. Reid, J., Valentine, T.: JavaScript Programmer’sReference.Apress,
New York (2013)

49. Izquierdo, J.C., Cabot, J.: Collaboro: a collaborative (meta) mod-
eling tool. PeerJ Computer. Science 2, e84 (2016)

50. Cook, S., Jones, G., Kent, S., Wills, A.C.: Domain-Specific
Development with Visual Studio DSL Tools. Addison-Wesley Pro-
fessional, Boston (2007)

51. Kelly, S., Tolvanen, J.-P.: Domain-Specific Modeling: Enabling
Full Code Generation. Wiley, Hoboken (2008)

52. Bardohl, R., Ermel, C., Weinhold, I.: GenGED – A visual defi-
nition tool for visual modeling environments. In: Proceedings of
Applications of Graph Transformations with Industrial Relevance
(AGTIVE 2003), LNCS, Vol. 3062, pp. 413–419. Springer (2004)

53. Minas, M.: Concepts and realization of a diagram editor generator
based on hypergraph transformation. Sci. Comput. Program. 44(2),
157–180 (2002)

54. Vangheluwe, H., de Lara, J.: Domain-specific visual modelling
in AToM3. Proceedings of DSM 04, p. 8 (2004). http://www.
dsmforum.org/events/DSM04/papers.html

55. Pierre, S., et al.: A family-based framework for i-DSML adapta-
tion. In: Proceedings of 10th European Conference ECMFA 2014,
LNCS, Vol. 8569, pp. 164–179. Springer (2014)

56. Bruck, J., Damus, C.: Creating Robust Scalable DSLs with
UML, eclipsecon 2008 tutorial. https://www.eclipsecon.org/2008/
indexf901.html?page=sub/&id=172 (2008)

57. Atkinson, C., Kuhne, T.: Concepts for comparing modeling tool
architectures. In: Briand, L., Williams, C. (eds.) Model Driven
Engineering Languages and Systems: 8th International Conference
(MODELS 2005), LNCS, Vol. 3713, pp. 398–413. Springer (2005)

58. Atkinson, C., Gerbig, R., Kuhne, T.: A unifying approach to
connections for multi-level modeling. In: Proceedings of the
ACM/IEEE 18th International Conference on Model Driven Engi-
neering Languages and Systems (MODELS 2015), pp. 216–225,
IEEE (2015)

59. Clark, T., Gonzalez-Perez, C., Henderson-Sellers, B.: A Founda-
tion for Multi-Level Modelling. In: Proceedings of the Workshop
on Multi-Level Modelling (MULTI 2014), CEUR Workshop Pro-
ceedings, Vol. 1286, pp. 43–52 (2014)

60. Atkinson, C., Kuhne, T.: Profiles in a strict metamodeling frame-
work. Sci. Comput. Program. 44(1), 5–22 (2002)

61. Atkinson, C.: Supporting and applying theUML conceptual frame-
work. In: Proceedings of the Conference: The Unified Modeling
Language (UML’98), LNCS,Vol. 1618, pp. 21–36. Springer (1998)

62. Atkinson, C., Gerbig, R., Kuhne, T.: comparing multi-level mod-
eling approaches. In: Proceedings of theWorkshop onMulti-Level
Modelling (MULTI 2014), CEUR Workshop Proceedings, Vol.
1286, pp. 53-62 (2014)

63. Rencis, E., Barzdins, J., Kozlovics, S.: Towards open graphical
tool-building framework. In: Proceedings of BIR 2011, pp. 80-87,
RTU Press, Riga (2011)

64. Eclipse OCL (Object Constraint Language). https://projects.
eclipse.org/projects/modeling.mdt.ocl

65. Dresden OCL. https://github.com/dresden-ocl
66. Papyrus Project in Eclipse. http://projects.eclipse.org/projects/

modeling.mdt.papyrus
67. Sprogis, A.: DSML Tool Building Platform in WEB. In: DB&IS

2016 Proceedings, CCIS Vol. 615, pp. 99–109. Springer (2016)
68. Sprogis,A.: ajoo:WEBBased framework for domain specificmod-

eling tools. In: Frontiers in Artificial Intelligence and Applications,
Databases and Information Systems IX,Vol. 291, pp. 115–125. IOS
Press (2016)

69. Object Management Group. Interaction flow modeling language
(IFML) Version 1.0 formal/2015-02-05 (2015)

70. Brambilla,M., Fraternali, P.: Interaction FlowModelingLanguage.
Model-Driven UI Engineering of Web and Mobile Apps with
IFML. Elsevier, Amsterdam (2015)

71. Wazlawick, R.: Object-Oriented Analysis and Design for Infor-
mation Systems. Modeling with UML, OCL and IFML. Elsevier,
Amsterdam (2014)

123

http://gradetwo.lumii.lv/
http://dev.eclipse.org/viewcvs/indextech.cgi/gmthome/subprojects/VIATRA2/index.html
http://dev.eclipse.org/viewcvs/indextech.cgi/gmthome/subprojects/VIATRA2/index.html
http://www.eclipse.org/graphiti/
http://www.dsmforum.org/events/DSM04/papers.html
http://www.dsmforum.org/events/DSM04/papers.html
https://www.eclipsecon.org/2008/indexf901.html?page=sub/&id=172
https://www.eclipsecon.org/2008/indexf901.html?page=sub/&id=172
https://projects.eclipse.org/projects/modeling.mdt.ocl
https://projects.eclipse.org/projects/modeling.mdt.ocl
https://github.com/dresden-ocl
http://projects.eclipse.org/projects/modeling.mdt.papyrus
http://projects.eclipse.org/projects/modeling.mdt.papyrus


Metamodel specialization for graphical language support 1735

Audris Kalnins is a part-time
full professor at the University
of Latvia and a senior researcher
at the Institute of Mathematics
and Computer Science (IMCS),
University of Latvia. His research
interests include model-driven
development, model transforma-
tions, metamodeling, domain-
specific languages and develop-
ment tools for such languages. He
holds Ph.D. and Dr. Habil. Degree
in Computer Science from Uni-
versity of Latvia. He has lead the
development of model transfor-

mation language MOLA and has been the principal investigator for the
EU research project ReDSeeDS at IMCS.

Janis Barzdins is a Full mem-
ber of the Latvian Academy of
Sciences, a part-time full profes-
sor at the University of
Latvia and a senior researcher at
the Institute of Mathematics and
Computer Science, University of
Latvia. He heads the SOPHIS
project "Ontology-based
knowledge engineering technolo-
gies". His research interests
include conceptual modeling,
metamodeling, model transforma-
tions, model-driven engineering,
tool-building frameworks. He is

the author of more than 120 scientific papers in different areas of com-
puter science, including algorithm theory, inductive inference, mod-
eling technologies, model transformations, tool-building frameworks,
etc.

123


	Metamodel specialization for graphical language support
	Abstract
	1 Introduction
	2 Brief overview of graphical language definition in Eclipse GMF framework
	3 Graphical language definition in TDA platform
	4 Diagram definition standard proposed by OMG
	5 Other existing approaches to graphical syntax and editor definition
	6 New approach to graphical language and tool definition based on metamodel specialization
	7 Graphical language definition by means of metamodel specialization
	8 Graphical diagram editor definition using metamodel specialization
	9 Flowchart editor specialization example
	10 Fragments of a simplified class diagram editor example
	11 Extension of the editor for declarative mapping to abstract syntax
	12 Implementation principles
	13 Summarized comparison of the specialization approach to instantiation approaches
	14 Conclusions
	Acknowledgements
	References




