
Software & Systems Modeling (2019) 18:3049–3082
https://doi.org/10.1007/s10270-018-00712-x

REGULAR PAPER

Models@run.time: a guided tour of the state of the art and research
challenges

Nelly Bencomo1 · Sebastian Götz2 · Hui Song3

Received: 9 February 2018 / Revised: 23 October 2018 / Accepted: 17 December 2018 / Published online: 9 January 2019
© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Abstract
More than a decade ago, the research topic models@run.time was coined. Since then, the research area has received increasing
attention. Given the prolific results during these years, the current outcomes need to be sorted and classified. Furthermore,
many gaps need to be categorized in order to further develop the research topic by experts of the research area but also
newcomers. Accordingly, the paper discusses the principles and requirements of models@run.time and the state of the art of
the research line. To make the discussion more concrete, a taxonomy is defined and used to compare the main approaches and
research outcomes in the area during the last decade and including ancestor research initiatives.We identified and classified 275
papers on models@run.time, which allowed us to identify the underlying research gaps and to elaborate on the corresponding
research challenges. Finally, we also facilitate sustainability of the survey over time by offering tool support to add, correct
and visualize data.

Keywords Models@run.time · Self-reflection · Causal connection · Systematic literature review

1 Introduction

Model-driven engineering (MDE) highlights the importance
of models to engineer systems. Models are artefacts with key
roles during the software development process and have suc-
cessfully been used for long time for communication between
stakeholders, documentation, code generation, deployment
and traceability between development stages, among other
uses [35,81]. In contrast to those traditional uses of models
during development time, more recent research initiatives
have shown the utility of models during runtime [30,37].
Runtimemodels are envisioned to provide intelligent support
to software during execution [16] as the distinction between

Communicated by Professor Yves Le Traon.

B Sebastian Götz
sebastian.goetz@acm.org

Nelly Bencomo
nelly@acm.org

Hui Song
hui.song@sintef.no

1 Aston University, Birmingham, UK

2 Technische Universität Dresden, Dresden, Germany

3 Stiftelsen SINTEF, Trondheim, Norway

software development and execution blurs. Runtime models
can be used by the system itself, other systems or humans
to help coping with the challenges posed by self-adaptive
systems [56] (systems able to adapt themselves even to unan-
ticipated changes) and the so-called eternal systems [133]
(i.e., software systems that are required to survive fluctua-
tions in their execution environment without or with only
little human intervention). Runtime models can support rea-
soning and decision-making based on knowledge that may
emerge at runtimebutwas not foreseen before execution [29].

A key principle underlying models@run.time is compu-
tational reflection as described by Pattie Maes, who defines
“computational reflection to be the behaviour exhibited by
a reflective system, where a reflective system is a computa-
tional system which is about itself in a causally connected
way” [123]. In other words, runtime models represent a
reflection layer, which is causally connected with the under-
lying system so that every change in the runtime model
leads to a change in the reflected system and vice versa.
Or, in Pattie Maes words: “A system is said to be causally
connected to its domain if the internal structures and the
domain they represent are linked in such a way that if one
of them changes, this leads to a corresponding effect upon
the other” [123]. Models@run.time combines the principles
of computational reflection with model-driven engineering.

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10270-018-00712-x&domain=pdf

3050 N. Bencomo et al.

Based on the above, a runtime model is defined as a causally
connected self-representation of the associated system that
emphasizes the structure, behaviour or goals of the system
and which can be manipulated at runtime for specific pur-
poses [35]. Models@run.time can be used as a catalyst for
the creation of future software that inevitably needs to be
long-lived while coping with ever-changing environmental
conditions, which are only partially known at development
time [10].

Since the term was introduced, a plethora of approaches
applying or supporting models@run.time have been devel-
oped [30,35,37,95]. The need to sort out and classify the
prolific results is natural and urgent. Researchers have so
far focused on applications and fundamentals of runtime
models according to different specific research interests and
goals. As a consequence, the research results are scattered
across several different research communities and domains
(such as robotics, embedded systems and MDE itself). On
the one hand, different approaches in several domains show
similarities, and approaches from different research commu-
nities could be rather complementary. The key point is that
some of those approaches have been proposed without being
aware of each other. This hinders the development of mod-
els@run.time towards a mature research field. On the other
hand, the gaps between the core models@run.time technol-
ogy and the diverse domains certainly need to be identified
and categorized in order to further develop the research topic
by researchers of the area.

Based on a systematic literature review, this paper pro-
vides a historical perspective on the development of the
research topic models@run.time. Such a study is relevant
at this point not only to appreciate the substantial body of
work that already exists in the area of models@run.time,
but also to step back, to understand current trends, and to
anticipate future needs to evolve the research area in a more
meaningful way. Hence, a gateway to newmodels@run.time
approaches can be opened combining different experiences
and new ideas to tackle new research challenges.

The main aims of this survey are to (i) evaluate the field
by its outcomes, (ii) provide support for researchers to sit-
uate themselves in the research area for different purposes,
including evaluation of their work and, (iii) discuss how the
models@run.time paradigm is useful to build software of the
future.

Research approach In order to pursue our aims, we are
following these specific objectives:

• Present a taxonomy to allow the classification of existing
models@run.time approaches.

• Based on the taxonomy, present an overview of the
current state of the art in the research area of mod-
els@run.time.

• Elaborate on the current trends, research initiatives,
research gaps and corresponding challenges, and propose
relevant research directions.

The survey includes 275 papers from multiple research
domains published in different venues. The timeline of the
papers analyzed covers mainly work since 2006, but also
some selected work (5 papers) before 2006, which can be
seen as influential predecessorwork ofmodels@run.time and
that laid the basis for the research line accordingly. First, we
derived a taxonomy that defines different dimensions iden-
tified by a first content analysis. A dimension refers to an
aspect of the research topic models@run.time to be stud-
ied. More concretely, based on an initial set of dimensions
defined according to our own experience in the topic and
having clarified the inclusion and exclusion criteria, we have
assembled a collection of papers which we have iteratively
analyzed. This analysis in turn refines the dimensions of the
taxonomy. After that, the final taxonomy was the tool to be
used to classify the papers, and therefore provided a thorough
overviewof the current state of research inmodels@run.time.
The results were used to perform an analysis cross-cutting
the different dimensions of the taxonomy to derive gaps in
the form of research challenges and potential directions for
future research efforts in the area.

By now, only one other survey on models@run.time has
been published so far [172]. This survey is based on a key-
word search and, thus, in contrast to this article, does not take
into account, for example, the present knowledge of themod-
els@run.time research community, e.g., by directly including
papers from the workshop series on models@run.time or by
studying seminal ancestor research initiatives. Further, we
explicitly came up with a taxonomy that allows the classi-
fication of the outcomes studied. This taxonomy includes
aspects studied in the survey by [172] such as the objec-
tives, techniques and kind of models. However, our survey
also includes the modelled artefacts, the domain to which
the work has been applied and the study of intersecting
research areas. Further, the dimension covering the modelled
artefacts has allowed us to focus not only on the concept
of architecture, but also on other aspects such as the con-
cept of the user interface of the system under analysis, the
study of the granularity of the architecture, the timeline of
the life cycle (e.g., design time and runtime) and more. We
studied at which level of abstraction which types of run-
timemodels were used, whichmodel-driven techniques have
been applied at runtime and the relationship to the pur-
pose of applying models@run.time. Different from other
studies, we also emphasize the difference of fundamental
research, i.e., research performed to develop approaches that
follow the models@run.time paradigm and applied research
of models@run.time, i.e., research efforts that use the run-
time models paradigm.

123

Models@run.time: a guided tour of the state of the art and research challenges 3051

A novelty, we introduce with this survey is that we pro-
vide means to the community to keep the data of the survey
updated over time and, by this, meet the prerequisite for a
self-sustainable survey. For this, we have developed an open-
source toolkit [94], which enables the community to easily
add the data about new papers, to correct the classification
of existing papers and to visualize the survey data using dif-
ferent types of charts and tables.

Organization This paper is structured as follows: Sec-
tion 2 describes the research method applied for the sys-
tematic literature review. Next, in Sect. 3 we present the
first contribution of this paper, a taxonomy for the classi-
fication of models@run.time approaches based on several
dimensions and which has been derived from an iterative and
detailed analysis of the existing research literature. Section 4
discusses threats to validity of our survey. The second con-
tribution, a classification of the surveyed models@run.time
approaches according to the taxonomy with a thorough
cross-dimension analysis between the different categories,
is discussed in Sect. 5 using bubble matrix charts. Section 6
identifies challenges and future research directions based on
the results of the survey. In Sect. 7, the paper concludes.

2 Researchmethod applied

The review of the state of the art developed in this paper fol-
lows the principles described by Kitchenham in [113]. Based
on those principles, a review is structured in three phases:
planning, conducting and reporting the review. Accordingly,
we explain in this section details about the planning applied,
i.e., the research questions we posed. In particular, Sect. 2.1
describes the research questions that have driven the survey,
Sect. 2.2 describes the procedure and the steps undertaken,
and Sect. 2.3 details the process of the literature search
explaining the inclusion and exclusion criteria used.

2.1 Research questions

In each of the three phases (planning, conducting and report-
ing), we followed the principles described in [113] adapting
them to the context given by the research topic studied and
the expertise of the authors in the topics. The initial activity
of the planning phase was to identify and critically reflect
upon the need for the survey to be conducted. The rational of
this discourse is the motivation for this work as described in
Sect. 1. Based on the aims and specific objectives described
in Sect. 1, we have formulated the following research ques-
tions, which state the basis of the survey:

• RQ1How can existing research on models@run.time be
classified?

• RQ2 What is the state of the art of models@run.time
research with respect to the classification?

• RQ3 What can be inferred from the results associated
with RQ2 that will lead to timely, relevant research direc-
tions for further investigation?

2.2 General procedure

Figure 1 depicts in detail the general procedure we have
undertaken. As a starting point, in the initialization step, we
specified the protocol used to conduct the survey. This proto-
col describes (i) which data sources to use, (ii) which criteria
have to bemet by a paper to be included in the survey, (iii) the
exclusion criteria and (iv) an initial taxonomy to be used for
the classification of papers, which qualified for the survey.

Based on this protocol, we defined our search strategy
to be twofold: (i) we use several conferences, workshops,
journals and books as primary data sources, and (ii) we use
our knowledge about people relevantly active in the research
community to identify further venues as primary data source,
namely those where these people have published. Based on
the papers collected using these primary data sources, we
brainstormed and derived an initial set of dimensions for
classification, whichwe iteratively refined during the process
of mapping the papers to classes of these dimensions. Using
the final set of dimensions, we derived the total collection
of papers for closer review, where we (i) filtered the papers
based on inclusion and exclusion criteria (cf. Sect. 2.3) and
(ii) added further papers subject to the filtering by following
citations with respect to the initial set of papers.

The outcome of the initialization step was, hence, a list
of dimensions and a list of papers qualified for inclusion to
the survey. Using these two artefacts, in the second step, we
constructed the taxonomy. Again, we conducted this process
iteratively, starting with an initial first draft of the taxonomy,
which was refined while reviewing the papers. The partial
result was the quasi-final taxonomy (the second draft). Due to
distributedwork by the authors, some identified classes in the
taxonomy received different (but similar) names; however,
they meant the same concept. Therefore, such classes were
merged together to obtain more manageable graphs to be
analyzed. The current draft of the taxonomy was cleansed
accordingly to obtain the final version of the taxonomy to
answer RQ1. The final version of the taxonomy is presented
in Sect. 3.

In the third step, using the final taxonomy from the pre-
vious step and the list of papers subject to closer review,
we mapped all qualified papers to the identified classes of
the taxonomy, checked the consistency of the taxonomy and
analyzed the resulting mapping, as an answer to RQ2. The
focus of the analysiswas on howbalanced thework across the
classes of the taxonomy is. By this, classes that have rarely or

123

3052 N. Bencomo et al.

not been addressed at all could be identified. Similarly, new
trends in the area were identified and analyzed accordingly.

Based on the analysis results, we finally proceeded to
realize the fourth step of collecting a set of future research
directions to give an answer to RQ3.

Throughout the whole process, we used a novel tool,
which has been developed alongside our study in student
projects at Technische Universität Dresden: the systematic
literature review toolkit publicly available and ready to use
for Windows, Linux and Mac-based systems.1 The EPL-
1.0 licensed open-source tool is under development since
October 2014 and supports researchers conducting literature
reviews in all before mentioned phases of a study, but, due
to the lack of free-to-use search APIs, with the exception of
collecting relevant literature from the publishers. The tool
is still under active development. Also, the data presented
in this paper (i.e., bibtex entries for all included papers, the
taxonomy and the paper classification) are available as an
example project of the toolkit online.2

The procedure we followed, as described above, is
depicted in Fig. 1. The following subsection provides details
about the selected literature.

2.3 Process of collecting relevant papers

A very important decision for literature surveys is which
data sources shall be used to find as much existing work
as possible. A typical approach is to use scholarly search
engines such as Google Scholar or Microsoft Academic
Search. Another opportunity is to collect papers directly
from the websites of publishers such as ACM, IEEE and
Springer. Both approaches are based on a good selection of
keywords for the respective search. However, the list of key-
words usually leads to a very large amount of results while
still being incomplete. The reason for this is the lack of a
commonvocabulary in different research communities, espe-
cially when the field of research, subject to investigation, is
young and changing, as it is in our case. In consequence,
many papers,which actually belong to the corpus of literature
to be investigated, are not found in those searches, because
they used another terminology.

To ameliorate this problem, we decided to follow an
alternative way, using conferences, workshops, books and
journals that interface with models@run.time, as primary
sources of papers for this survey, using our own knowl-
edge on the communities and these venues. The premium
selections were the models@run.time workshops [95], two
special issues of journals [35,37] and one book on mod-
els@runtime [30]. These venues tend to contain frontierwork

1 https://github.com/sebastiangoetz/slr-toolkit/releases.
2 https://github.com/sebastiangoetz/slr-toolkit/tree/master/examples/
mrt.

and ideas that connect to other relevant research venues and
therefore papers. At the same time, we looked at the top
conferences on generic software engineering and its major
branches, such as model-driven engineering (MODELS),
requirement engineering (RE), component-based software
(CBSE), and self-adaptive systems (SEAMS), among others.
Qualified papers from these venues show the acceptance of
models@run.time by a wider software engineering commu-
nity.Wealso performedvenue analysis on the development of
the research topic models@run.time. As an example of inter-
esting results, we found that in the area of software product
lines (SPLC), no qualified papers were found even though
it is a topic of interest. Models@run.time is cited in SPLC
keynotes [19], keynotes of related venues [29,98,102] and
also included in the call for papers of SPLCworkshops [136].

Table 1 lists all used sources and, for each source, the total
number of papers evaluated against inclusion and exclusion
criteria and the number of papers, which qualified for inclu-
sion. The table also provides the reader with the number of
papers per venue.

As a starting point,we evaluated 95papers published in the
models@run.time workshop series, which is running since
2006. Interestingly, only 80 papers qualified for inclusion
in the survey. The reason for the existence of papers pub-
lished in models@run.time workshop proceedings, which
neither contain fundamental nor applied research on mod-
els@run.time, can be found in the fact that the research
topic has been evolving during the last decade. Especially, in
early editions of the workshop, several papers on executable
models have been presented at the workshop, to discuss the
relation between executable and runtime models. However,
eventually, the community agreed upon the need for a causal
connection between a runtime model and a system for work
to be considered as a models@run.time approach and that is
not necessarily the case for executable model approaches.

In addition to these workshop papers, two special issues
on models@run.time (in Springer Computing [37] and IEEE
Computer [35], respectively) comprising nine (9) qualifying
papers in total, and a book onmodels@run.time [30] contain-
ing nine (9) qualifying papers have been used as key source
of information.

A further source for papers was the MODELS confer-
ence, which annually hosts the models@run.time workshop,
and, for several years also had separate tracks on mod-
els@run.time. A second close conference to the research
topic models@run.time is SEAMS, which also has shown
separate tracks on models@run.time, and, hence, has been
included as data source.

As models@run.time interfaces with many other research
areas, we decided to include the followingmajor conferences
who offer intersecting areas: ICAC and SASO represent-
ing the autonomous computing community; CompArch,
ECSA and WICSA representing the software architecture

123

https://github.com/sebastiangoetz/slr-toolkit/releases
https://github.com/sebastiangoetz/slr-toolkit/tree/master/examples/mrt
https://github.com/sebastiangoetz/slr-toolkit/tree/master/examples/mrt

Models@run.time: a guided tour of the state of the art and research challenges 3053

ne
w

 d
im

en
sio

ns
 fo

un
d

1.
1

De
fin

i�
on

 o
f t

he
 P

ro
to

co
l

1.
 In

i�
al

iza
�o

n
St

ep

1.
2

De
fin

i�
on

 S
ea

rc
h

St
ra

te
gi

es

1.
3

De
fin

i�
on

 o
f D

im
en

sio
ns

 /
Su

b-
di

m
en

sio
ns

1.
4

Di
m

en
sio

n-
ba

se
d

se
ar

ch
 fo

r
pa

pe
rs

1.
5

Re
vi

ew
 o

f p
ap

er
 (a

pp
ly

in
g

in
cl

us
io

n
/ e

xc
lu

sio
n

cr
ite

ria
)

To
ta

l c
ol

le
c�

on
 o

f
re

vi
ew

ed
 p

ap
er

s
cl

as
sifi

ed
 b

y
ve

nu
es

1.
6

Cr
os

s-
ci

ta
�o

n
se

ar
ch

Se
le

ct
ed

Pa
pe

rs
 to

 b
e

re
vi

ew
ed

Di
m

en
sio

ns

2.
1

Fi
rs

t D
ra

�
Ta

xo
no

m
y

2.
 S

te
p

RQ
1

-T
ax

on
om

y

2.
2

Pa
pe

r R
ev

ie
w

2.
3

Se
co

nd
 D

ra
�

Ta
xo

no
m

y

2.
4

Fi
na

l V
er

sio
n

Ta
xo

no
m

y

ne
w

co

nc
ep

ts

fo
un

d

Ta
xo

no
m

y

3.
1

M
ap

pi
ng

 o
f P

ap
er

s a
cc

or
di

ng

to
 T

ax
on

om
y

3.
 S

te
p

RQ
2

–
Ap

pl
ic

a�
on

 Ta
xo

no
m

y

3.
2

Co
ns

ist
en

cy
 C

he
ck

in
g

3.
3

An
al

ys
is

Se
le

ct
ed

Pa
pe

rs
 to

 b
e

re
vi

ew
ed

An

al
ys

is
Re

su
lts

4.
 S

te
p

RQ
3

–
Fu

tu
re

 R
es

ea
rc

h
Di

re
c�

on
s

4.
2

Cr
os

s A
na

ly
sis

4.
3

Tr
en

d
An

al
ys

is

Fu
tu

re
 R

es
ea

rc
h

Re
co

m
m

en
da

�o
ns

4.
1

Ve
nu

e
An

al
ys

is

2.
2.

1
Cl

ea
ns

in
g

Fi
g.
1

Pr
oc
ed
ur
e
fo
llo

w
ed

in
th
e
re
se
ar
ch

m
et
ho
d
ap
pl
ie
d
fo
r
th
e
su
rv
ey

pr
es
en
te
d

123

3054 N. Bencomo et al.

Table 1 Quantified overview of
included papers in this survey

Name Type #All papers #Included

Models@run.time Workshop 95 81

Requirements@run.time Workshop 13 11

RAM-SE Workshop 61 6

Ref. [30] Book 11 9

MODELS Conference 545 23

SEAMS Conference 182 29

ICAC Conference 366 31

SASO Conference 385 11

CompArch Conference 330 7

ECSA/WICSA Conference 334 8

RE Conference 528 6

SPLC Conference 120 2

ICSE Conference 640 6

Refs. [35,37] Journal 25 9

SoSyM Journal n/a 3

JSS Journal n/a 2

TOSEM Journal n/a 1

TSE Journal n/a 4

TAAS Journal n/a 4

Google Scholar Search n/a n/a 24

Total 3635 275

community; RE representing the requirements engineering
community; SPLC representing the software product line
community; and ICSE as a general conference spanning all
topics of software engineering.We also included in the search
the following journals: SoSyM, TOSEM, TSE, TAAC, JSS,
TAAS.

The inclusion of conferences and journals as sources of
information for this evaluation aims at identifying mature
work on models@run.time. To also include work on mod-
els@run.time which is at an early stage, we additionally
included the following workshops: the workshop on adaptive
and reflective middleware (ARM), which originally inspired
the models@run.time workshop; the workshop on reflec-
tion, AOP and metadata for software evolution (RAM-SE);
the European workshop on software architecture (EWSA);
the requirements@run.time workshop and the workshop on
dynamic software product lines (DSPL).

In order to ensure the inclusion of relevant work, we addi-
tionally performed a thorough search through a big spectrum
of published papers withGoogle Scholar, using the keywords
“runtime model” and “models@run.time”. We indeed found
additional papers that had not been classified before.

2.3.1 Inclusion criteria

We used the following criteria to filter the papers taken from
the data sources described above, based on their title and

abstract. For a paper to be included in this survey, it has to
meet the following key requirement:

• The paper covers research where a model, which reflects
the state of a system, should be causally connected with
that system.

We consider every abstract representation of a system for
a given purpose as amodel, following the definition by [149].
By this, we do not only include structural representations of
the system, but also models focusing on a certain aspect of
the system, such as performance or variability.

For the causal connection, we follow the definition by
Maes: “A system is said to be causally connected to its
domain if the internal structures and the domain they rep-
resent are linked in such a way that if one of them changes,
this leads to a corresponding effect upon the other” [123, p.
2]. Notably, this does not require that changes in the run-
time model can be directly mapped to changes in the system,
but includes approaches, where the effects are computed by
(more complex) reasoning (e.g., performance models).

To ease the detection of papers to be included, we espe-
cially emphasized on the fact that at least one of the following
characteristics is approached in the paper:

• The paper addresses runtime models or explicitly uses
the term models@run.time.

123

Models@run.time: a guided tour of the state of the art and research challenges 3055

0

20

40

60

80

100

120

140

Fig. 2 Distribution of papers by venue types

• The paper uses self-representation, reflection or self-
modelling.

While the first characteristic can only be met by papers
after 2006, when the term models@run.time was coined for
the first time, the second criteria can be met by papers pub-
lished before 2006. As explained earlier, papers published
before 2006 have been included as well, as they have also
contributed in a significant way to the development of the
research topic.

2.3.2 Exclusion criteria

Approaches on executable models are not to be considered
models@run.time approaches, if they lack the causal con-
nection to the system, but are the actual system. The survey
only includes papers published until December 2017.

2.4 Overview of all included papers

In total, our survey covers 275 papers. As a first interest-
ing observation, the distribution of these papers among the
venue types where they have been published shows that mod-
els@run.time indeed has matured: most papers are published
on conferences as illustrated in Fig. 2.

Another observation is that more and more work on mod-
els@run.time is not applying models@run.time for some
specific purpose, but addresses fundamental research ques-
tions of models@run.time itself. Figure 3 illustrates that
one-fifth of all papers captured by this survey addresses fun-
damental research questions.

A diagrammatic overview of the number of models@
run.time papers published over the years is illustrated in
Fig. 4. It can be seen that after 2007 the number drastically
increased and, except for 2016, moves between 21 and 33

Applied
(219)
80%

Fundamental
(56)
20%

Fig. 3 Applied versus fundamental research

5

10 10

27

32

26

22 22
25

33

26

16

21

0

5

10

15

20

25

30

35

before
2006

2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017

Papers per Year

Fig. 4 Publication trend over the years

papers per year. The seemingly declining trend starting after
2014 started to reverse last year.

3 A taxonomy for research on
models@run.time

In this section, we provide a general description of our taxon-
omy and a detailed description and analysis of its five major
dimensions: applied research, fundamental research, appli-
cation domains, intersecting research areas and supporting
research initiatives.

3.1 Conceiving the taxonomy

A first draft of the taxonomy was identified according to 7
general questions, which are in line with seven (7) of the
dimensions shown in the taxonomy proposed. The different
nature of the first 4 and last 3 questions, was already visible
at this point in time, as the questions have been grouped into
primary and secondary questions.

The primary questions used as basis for the taxonomy
were:

123

3056 N. Bencomo et al.

1. What software engineering artefact is modelled? (e.g.,
code or architecture).

2. What types of runtimemodels havebeen employed? (e.g.,
structural or behavioral models).

3. What are the purposes of the runtime model? (e.g., to
build self-adaptive systems).

4. Which techniques from Model-driven Software Devel-
opment have been used? (e.g., model comparison).

The secondary questions did not refer to a runtime model
or concrete technique, but were more general:

5. To which application domain does the paper refer (e.g.,
automotive software engineering or ambient assisted liv-
ing).

6. Which research areas are intersecting with the paper?
(e.g., software product lines or model checking).

7. Which research initiatives funded or supported the con-
ducted work?

The final quality of the results of undertaking a literature
review process highly depends on the taxonomy applied, and
therefore, the questions above are relevant. The taxonomy
has driven the process and the understanding and has also
allowed us to record each research initiative reported. As a
prerequisite for the development of a taxonomy, an initial set
of dimensions cross-cutting the research areawere identified.
Based upon our experience and reviewing papers from the
various data sources described previously, we derived the
following seven (7) dimensions.

• Modelled Artefacts
• Types of Used Models
• Purposes of Runtime Models
• Applied Techniques
• Domain of Application
• Intersecting Research Areas
• Related Research Initiatives

After an initial taxonomy was identified, we employed an
iterative process to refine the taxonomy dimensions. While
reviewing the collected papers with the aim to assign the
papers to the dimensions described above, another general
dimension was identified: the type of research, which is par-
titioned into applied and fundamental research. The first four
dimensions are specific to applied research,while the remain-
ing three are separate dimensions besides the typeof research.

Based on the above, the final taxonomy was derived and
is depicted in Fig. 5.

We have conceived the survey with tool support to update
the data over time. We have developed a toolkit [94] that
supports four main features: importing bibliographies, the
specification of the taxonomy, classification of the literature

and generation of analysis diagrams. The tool as well as the
data of this survey is available open-source online.3 We fore-
see that independent researchers can download the toolkit
and contribute to the survey by supporting its evolution over
the years, i.e., by placing themselves in the process described
in Fig. 1. By this, the toolkit forms the basis for the sustain-
ability of the survey.

In the following, we discuss in detail each of the fun-
damental questions described above to define the final
taxonomy. For each question, we discuss the values of the
corresponding dimension. That is, each dimension has a
given number of possible values used to characterize the
studied models@run.time approaches. As an example, the
dimension Modelled Artefacts has at least the following
valuesGoals/Aims/Requirements, Architecture,Components
and Code. In the following, we briefly discuss these values.
For each valuewe found,we show in braces howmany papers
fall into it. Note that some papers fall into multiple values per
dimension, for example, an approach combining goal and
architectural models. For each class, we provide three exem-
plary references, if there aremore than three papers classified
with it. We selected the three most recent publications while
putting preference on journals first, conference papers sec-
ond, workshop publications third and book chapters last.

3.2 Applied research onmodels@run.time

In the following, the four dimensions to classify applied
research on models@run.time are discussed in detail, which
correspond to the first level in the dimensions shown in
Fig. 5, i.e., the modelled artefacts, the types of runtime mod-
els applied, the purposes for which the runtime models have
been used and the techniques from model-driven software
development that have been used.

3.2.1 Modelled artefacts

Abstraction is the neglection of unnecessary detail and an
inherent characteristic of models by definition, as models
are “abstractions of a subject for a given purpose” [149].
Models@run.time is specialized on abstracting the runtime
state of a system. This runtime state can be observed from
different levels of abstraction.

The most coarse-grain view onto a system is its archi-
tecture, i.e., the top-level components and how they are
connected. Here, details of how the components work are
neglected. Instead, the focus is on how the top-level compo-
nents interact and which components depend on each other.
For example, a traffic management system which focuses on
streets and vehicles.

3 https://github.com/sebastiangoetz/slr-toolkit.

123

https://github.com/sebastiangoetz/slr-toolkit

Models@run.time: a guided tour of the state of the art and research challenges 3057

Fig. 5 Taxonomy of research on Models@run.time

Afiner-grained view is, if individual components aremod-
elled to capture, how they provide the offered functionality.
Here, models of a traffic light’s or a vehicle’s behaviour serve
as an example.

At the lowest level, software can be abstracted on code
level, where each individual statement is considered impor-
tant. A typical notation for code-level models is abstract syn-
tax trees. Among the various purposes to keep and work on
abstract syntax trees at system runtime arewell-formed code-
composition [112] and dynamic software updating [135].

In addition to modelling the system itself, runtime mod-
els are also constructed from some specific perspectives of
abstraction, such as the semantics and context of the system’s
domain and external environment, the status of system with
respect to its goals and requirements, the status of the sys-
tem’s process and its GUI. These abstraction perspectives
may cross different levels of architecture, component and
code. Hence, this dimension in general covers different per-
spectives of abstraction related to modelled artefacts and not
just the perspectives of levels of abstraction.

The modelled artefact is often not applicable to funda-
mental approaches of models@run.time, i.e., approaches
focusing on how runtime models should be represented and
processed. This includes, in particular, meta-modelling for
runtime models, model transformations (incl. megamodel
processing) and techniques to evaluate runtime models.

The artefacts we found during our study are listed below.
For each type of artefact, the number of occurrences is given
in braces. The list is sorted according to the number of these

occurrences, except for the value “none”, which is always at
the bottom of the list.

• Architecture (131) denotes a runtime model represent-
ing the current state of the static structure of the system’s
components and connectors (e.g., [71,101,132]).

• Goals and requirements (32) denotes a runtime model
representing the state of the goals a system aims to
achieve and the fulfilment of its requirements (occurs
especially for self-optimizing systems) (e.g., [46,48,68]).

• Component (26) denotes a runtime model per compo-
nent, not taking the connections between components
into account (e.g., [38,75,126]).

• Semantics/context (20) denotes the current state of the
system’s domain instead of the system itself (e.g., [12,
82,86]).

• Code (16)denotes a runtimemodel representing the static
(e.g., an abstract syntax tree) or dynamic (e.g., a state
chart) structure of source code or code in an intermediate
representation (e.g., [60,89,127]).

• Process (12) denotes the current state of a system’s
dynamic structure, i.e., which components exist and
when or in which order they interact with each other
(e.g., [15,77,183]).

• GUI (1) denotes a description of the current state of a
system’s graphical user interface ([53]).

• None (37) is used for fundamental approaches, which do
not refer to a specific modelled artefact.

123

3058 N. Bencomo et al.

A comparative discussion on these findings is given in
Sect. 5.1 for model types, Sect. 5.2 for purposes and Sect. 5.3
for modelling techniques.

3.2.2 Types of models@run.time

Besides the artefacts captured in runtime models, we also
investigated which types of models were used at runtime.We
identified the following types of causally connected runtime
models in our study. For each model type, the number of
occurrences is given in braces. Please note that some papers
presented approaches with more than one type of runtime
model.

• Structural (131) denotes a runtime model capturing the
system constituents and their state (e.g., [71,101,132]).

• Behavioural (45) denotes a runtime model capturing the
dynamics of the systems, i.e., what the system can or will
do based on its current state (e.g., [15,38,77]).

• Quality (23) denotes models describing the current val-
ues of quality properties (i.e., non-functional properties)
of a system or its constituents (e.g., [4,48,96]).

• Goal (14) denotes a runtime model capturing the cur-
rent state of the system’s goals (e.g., if they are currently
fulfilled or violated) (e.g., [42,47,150]).

• Variability (10) denotes a runtime model capturing pos-
sible variants of the system or it’s constituents and which
variant is currently in use (e.g., [46,130,187]).

• Design (7) denotes design-time decisions, which are con-
tinuously synchronized with an evolving running system
(used, e.g, for eternal system approaches) (e.g., [75,153,
170]).

• Requirements (6) denotes models representing the cur-
rent set of requirements a system has to meet (e.g., [63,
68,178]).

• Feedback loop (6) denotes models describing one or
more feedback loops, their connections and current
state (i.e., are a special type of behavioural model)
(e.g., [118,179,183]).

• Physical (4) denotesmodels describing the dynamics and
current state of physical (i.e., continuous) phenomena
(e.g., in Simulink) (e.g., [109,111,175]).

• Metamodel (3) denotes runtime models that are used to
specify how the system or its environment are modelled
(e.g., [119,147,163]).

• None (26) some fundamental approaches did not focus
on a particular type of runtime model.

A comparative discussion on these findings is given in
Sect. 5.1 for modelled artefacts, Sect. 5.4 for purposes and
Sect. 5.5 for modelling techniques.

3.2.3 Purposes

An important aspect of applied research onmodels@run.time
is the purpose for which runtime models are actually
used. We, hence, investigated our body of literature in this
regard and found the following purposes for using mod-
els@run.time.

• Self-adaptation (123) denotes the application of run-
timemodels to build and/or operate self-adaptive systems
(e.g., [48,71,75]).

• Assurance (41) denotes the application of runtime mod-
els to assure selected non-functional properties of a
running system (e.g., [4,132,159]).

• Development (32) denotes the combination of runtime
models with models from the development process to
enable the usage of design-time knowledge at runtime
(e.g., [6,49,126]).

• Evolution (17) denotes the application of runtime mod-
els to ease or enable the evolution of a software product
(e.g., [5,44,68]).

• Self-optimization and -organization (18) denotes the
application of runtime models to build and/or operate
self-optimizing or -organizing systems4 (e.g., [87,96,
101]).

• Interoperability (9) denotes the application of runtime
models to bridge architectural mismatches between indi-
vidual systems (e.g., [28,33,38]).

• Fault tolerance (7) denotes the application of runtime
models to increase the fault tolerance of systems (e.g., [2,
76,169]).

• Prediction (6) denotes the application of runtimemodels
to predict the behaviour of a system under observation
(e.g., [65,97,161]).

• None (22) denotes approaches, which belong to fun-
damental research, where no particular purpose can be
identified.

A comparative discussion on these findings is given in
Sect. 5.2 for modelled artefacts, Sect. 5.4 for model types
and Sect. 5.6 for modelling techniques.

3.2.4 Techniques

The fourth dimension denotes the model-driven techniques
used in our body of literature on models@run.time. The
intention of having this dimension is to enable an analysis
of which techniques from model-driven software develop-

4 Self-optimizing systems are a special subclass of self-adaptive
systems [151]. Approaches of this class are not included in class
self-adaptation to enable a separate investigation. Other subclasses of
self-adaptive systems did not reveal to be significant.

123

Models@run.time: a guided tour of the state of the art and research challenges 3059

ment, which have traditionally been designed to be used at
design time, are now transferred to be used at runtime. The
following list summarizes the techniques that we found are
now applied at runtime:

• Model-transformation (54)denotes all techniqueswhich
realize a transformation of one model into another
(e.g., [38,49,54]).

• Reflection (42) denotes techniques used to realize a
causal connection between a subject and its model
(e.g., [1,89,97]).

• Reasoning (33) denotes techniques to reason about mul-
tiple models. For example, to enable self-adaptation and
optimization (e.g., [2,87,132]).

• Analysis (30) denotes techniques to gain novel insights
from models. For example, to check their consistency
(e.g., [15,77,101]).

• Monitoring (24) denotes techniques to capturing obser-
vations of a running system in a model (e.g., [125,126,
162]).

• Variability modelling (22) denotes techniques to model
variants of a system (e.g., [3,68,82]).

• Machine learning (15) denotes techniques to give “com-
puters the ability to learn without being explicitly pro-
grammed” [152] (e.g., [48,75,99]) and to capture this
knowledge in models.

• Requirements engineering (10) denotes techniques to
capture and assess the requirements of a system inmodels
(e.g., [17,173,189]).

• Workflows (6) denotes techniques to model and execute
complex processes (e.g., [110,117,131]).

• Model comparison (4) denotes techniques comparing
models with each other (e.g., [128,129,137]).

• None (34) denotes approaches, which belong to funda-
mental research, where no particular technique can be
identified.

A comparative discussion on these findings is given in
Sect. 5.3 for modelled artefacts, Sect. 5.5 for model types
and 5.6 for purposes.

3.3 Fundamental research onmodels@run.time

Besides approaches which make use of runtime models,
we also identified 56 approaches, which aim at improving
models@run.time as such fundamentally, i.e., fundamen-
tal approaches for models@run.time. For such approaches,
most often the dimensions of applied research for mod-
els@run.time are not applicable. For example, an approach
focusing on extending the expressiveness of runtime mod-
els, e.g., to capture a history of how each value changed over
time, does not have a particular purpose for which the run-

time model is applied. Instead, applied approaches can make
use of fundamental approaches.

Our study revealed four main types of fundamental
research on models@run.time which are explained in the
following:

• Characteristics (29) of runtime models, i.e., approaches
extending the expressiveness of runtime models to cap-
ture, e.g., temporal, continuous or spatial characteristics
(e.g., [71,99,132]).

• Processing runtimemodels (11)Approaches investigat-
ing novelways to utilize runtimemodels, e.g., approaches
to model workflows of individual processing steps of a
runtime model (e.g., [54,89,100]).

• Causal connection (9)Approaches trying to improve the
way a system and its model are kept in synchronization,
e.g., approaches introducing the concept of transactions
to the causal connection (e.g., [13,88,143]).

• Distributed Models@run.time (7) Approaches inves-
tigating the effects and new challenges when multiple
systems, each having their own runtime model, have to
work together (e.g., [58,179,183]).

An interesting observation is that most fundamental work
focused on novel characteristics for runtime models. But, the
remaining three types of fundamental research are likely to
be addressed more heavily in future work, due to the effects
of the Internet of Things, for example.

3.4 Application domains

Alongside the type of research, we also classified our body of
literature with respect to the domain to which the approach
has been applied. Typically, the application domain denotes
the origin of the case studies used to evaluate the respective
approach. A surprising observation is that most approaches
have been evaluated in the domain of enterprise software.
Additionally, it can be observed that the list of domains
where models@run.time has been applied is rather long
(25 domains), showing the general applicability of mod-
els@run.time. On the contrary, almost half of all approaches
(127) have not been applied to a specific domain. We refer
the interested reader to the appendix for the complete list of
the domains.

3.5 Intersecting research areas

While the application domain discussed in the previous sub-
section focuses on the domain in which case studies have
been conducted to evaluate the respective approach, the
dimension of intersecting research areas denotes which other
research disciplines are addressed. In other words, the inter-
secting research areas denote areas to which the approach is

123

3060 N. Bencomo et al.

contributing instead of just using it as a domain for evalua-
tion.

In the following, we list all interfacing research areas we
found by classifying our body of literature.

• Self-adaptive Software (73)
• Model-driven Software Development (34)
• Software Architecture (27)
• Distributed Systems (14)
• Formal Methods (12)
• Resource Management (11)
• Cloud Computing (9)
• Software Evolution (9)
• Security (9)
• Requirements Engineering (9)
• Fault Tolerance (8)
• Programming Languages (7)
• Software Product Lines (7)
• Autonomic Computing (5)
• Aspect-oriented Programming (5)
• Interoperability (5)
• Database Engineering (4)
• Multi-agent Systems (4)
• Performance Engineering (4)
• Business Process Engineering (3)
• Embedded Systems (3)
• Human–Computer Interaction (3)
• Optimization (3)
• Safety Engineering (3)
• Social Sciences (2)
• None (26)

Interestingly, the list of interfacing research areas is long
(25). This emphasizes the high degree of interdisciplinarity
of models@run.time as a research area. It can also be seen
that there is a strong overlap with the research areas self-
adaptive systems and model-driven software development,
which is not surprising as models@run.time originated from
these two research areas.

3.6 Supporting research initiatives

Finally,we investigated the research initiatives inwhichwork
on models@run.time has been conducted. We focused our
search on research projects and found that there has been a
large variety of research projects and funding agencies sup-
porting work on models@run.time, but (except for very few
projects, such as DiVA, MORISIA and M@TURE) a minor-
ity explicitly focuses onmodels@run.time. The above shows
that models@run.time has also become an underlying tech-
nology. However, the small number of projects explicitly
focusing on models@run.time hinders its further develop-
mentwith respect to the fundamental dimension.A structured

list of all identified research projects can be found in the
appendix of this paper.

4 Threats to validity

As in any survey, there are several threats to the validity of
our study. In the following, we discuss the different aspects
of these threats.
Research questionsThe research questions definedmight not
provide complete coverage of the current research field. To
address this threat, we had several discussions, collected ini-
tial feedback from the community in the discussion sessions
of our annual workshop on models@run.time and followed
a thorough reflection process to validate the questions. The
research questions were in line with the dimensions of the
taxonomy identified and refined.
Set of dimensions An initial set of dimensions cross-cutting
the research area of models@runtime were identified. We
cannot guarantee that all relevant dimensions were identi-
fied. It is possible that other dimensions were missed or the
current dimensions were biased. Also, the initial draft of
the taxonomy was based on the experience of the authors,
although collected by a constant exchange with the commu-
nity over several years. (The study was conducted over a
period of 3 years.) The latter may have steered the revisions
of the taxonomy in a restricted way. In consequence, it may
be the case that possibly not all classes were identified due
to the restricted set of initial dimensions. We mitigated this
characteristic threat to the extent possible by receiving early
feedback and with discussions during our annual workshop.
Also, we underwent an initial review of seminal papers from
the various data sources following a thorough reflection pro-
cess that ended in a refined set of dimensions.
Publication bias As in any study, we show no guarantee
that all relevant studies were selected. It is possible that
some relevant studies were not chosen throughout the search
process. However, we think we have mitigated this threat.
We decided against a keyword-based search to gather an
initial set of papers subject to review. Instead, we initially
targeted several relevant and well-known conferences, work-
shops and journals as the initial data source. The venues have
a strong focus on software engineering. Although, using this
approach, it is likely to findmore relevant papers compared to
the keyword-based search, there is still the possibility to miss
relevant papers, which have been published in conferences,
workshops, journals or books, which were not included as
a data source. The latter was mitigated by double checking
with a thorough search using Google Scholar with specific
keywords (e.g., “runtime model” and “models@runtime”)
to allow the search through a big spectrum of publications
(including IEEE and ACM publications and others).

123

Models@run.time: a guided tour of the state of the art and research challenges 3061

Search conducted Tomitigate the bias included in any survey
when performing the search, we complemented our venue-
based search with a keyword-based search. First, our search
was based on an initial list of relevant venues, whichwas then
extended by searches performed in digital databases. By this,
other publications that were not considered initially were
included too, as they were not published in the traditional
venues where models@run.time and software engineering
publications are usually hold, but are at the same time known
in the community. The result is that our survey potentially
covers publication venues from different domains, too. For
example, several papers published at ICAC would not have
been found by a keyword-based search, because they do not
explicitly point out the usage of a runtimemodel. Instead, the
performance models described in these papers are naturally
runtime models, and the authors had no need to point this out
explicitly.
Data extraction During the extraction process, the analy-
sis was conducted based on our own judgement. However,
despite double checking, some studies may have been clas-
sified incorrectly. In order to mitigate this threat, the classi-
fication process was performed and double checked by more
thanone researcher.Also, undergraduate students helpeddur-
ing the process by continuously developing an open-source
toolkit5 and therefore avoid potential pitfalls.

5 Cross-dimensional analysis of the
taxonomy

In the following, we describe a cross-dimensional analysis
of the work that has been conducted for all six combi-
nations of the four applied research dimensions, i.e., the
modelled artefacts, the type of runtime model, the purpose
of using a runtime model and the modelling techniques
transferred to runtime. The aim of this analysis is to iden-
tify gaps in the research landscape of models@run.time.
The analysis highlights value pairs, which either have been
extensively addressed (e.g., the use of structural models for
self-adaptation) or have not been addressed at all (e.g., vari-
ability models for assurance). For this, we illustrate and
analyze for each combination the number of approaches we
have found during the survey.

The figures in the following sections list the values of
the two dimensions under comparison as a bubble matrix
chart. In all figures for each dimension, the value none has
been omitted for clarity.6 For each value, a number is pro-
vided in braces before its name. This number denotes how

5 https://github.com/sebastiangoetz/slr-toolkit.
6 Most of the 56 approaches classified as fundamental work would else
be shown as dominating axes in the bubblematrix charts, which distracts
from the investigation of applied approaches.

many papers have been classified with this value and any
value of the other dimension. Notably, this excludes papers
which have not been classified in the other dimension (i.e.,
are classified as “none”). Accordingly, the numbers shown
here can be smaller than those shown in Sect. 3.2. For exam-
ple, in Fig. 6, the value “architecture” is accounted as 130,
while in Sect. 3.2.1, it is accounted as 131. Themissing paper
is of fundamental nature, has a clear focus on architecture,
but does not focus on any particular type of runtime model.
Each bubble in the bubble matrix charts depicts the num-
ber of approaches, which have been classified with respect
to the two dimensions at this intersection. This number is
visualized by differently sized circles. For the combination
with the most approaches, the circle spans the full size of the
cell. For other combinations, the size is scaled with respect
to this reference number. For each combination with at least
10 approaches, the number is shown additionally.

In this section, we draw conclusions based on the data we
have found, but do not derive challenges yet. The resulting
challenges will be explained in the succeeding section.

5.1 Comparing themodelled artefacts and types of
runtimemodels

Figure 6 shows that the most common combination is the
use of structural runtime models at the architectural level
(97 approaches). All remaining combinations have at most
13 approaches. Both categories are also clearly the most
dominant in their respective dimension. However, besides
this clear difference, further conclusions can be drawn from
Fig. 6. Namely, and unsurprisingly, most work has been done
on artefacts at higher levels of abstraction.

Notably, meta-models are only used in fundamental
approaches [119,147,164]. As such approaches typically do
not focus on a particular artefact, no approach can be found
for any type of modelled artefact, which makes use of meta-
models.

The sparsity of combinations in Fig. 6 indicates that many
types of runtime models have only been investigated for few
artefacts. For example, it seems that the use of variability
models is still to be investigated on all levels except for the
goal and architectural level. On the other hand, some runtime
model types, like behaviour and quality models, have been
investigated at almost all levels.

Finally, the graphical user interface (GUI) is a peculiar
artefact. In our study, we only found one approach for this
case [53],which uses structural runtimemodels. It can also be
concluded that quality, goal and requirementmodels could be
promising further types of runtime models to be investigated
in this context.

123

https://github.com/sebastiangoetz/slr-toolkit

3062 N. Bencomo et al.

12

13

13

m
et

am
od

el
 (0

)

de
si

gn
 (6

)

va
ria

bi
lit

y
(1

0)

st
ru

ct
ur

e
(1

28
)

component (26)

process (12)

code (16)

context (20)

gui (1)

architecture (130)

goals (32)

M
od

el
le

d
Ar

ei
fa

ct
s

Fig. 6 Modelled artefact versus type of runtime model

5.2 Comparing themodelled artefacts and purpose
of runtimemodel

Figure 7 shows howmodels@run.time for differentmodelled
artefacts are used for different purposes.

From Fig. 7, it is evident that the combination of archi-
tecture and self-adaptation is dominant. Although this is
consistent with the dominant positions of the two concepts in
their own dimensions, it still indicates that an architecture-
level runtime model does provide strong support for self-
adaptation. In fact, modern software systems usually provide
a flexible architecture in order to be able to adapt to the
ever-changing environment at runtime. Models@run.time
is a natural choice to enhance such an architectural level
of adaptation and provides the necessary semantic basis
for the system to achieve self-adaptation. A runtime model
at a high abstraction level with a global view appears to
be useful for self-adaptation. There are many approaches
using a higher-level goal-based runtime model for self-
adaptation [18,23,42]. On the contrary, there are relatively
few self-adaptation approaches using runtime models on
component or at source code level. Actually, we expect to
see more work using context-level models at runtime to sup-
port self-adaptation, because it is still at a high abstraction
level and the context changes are a main driving force behind
self-adaptation.

Besides self-adaptation, there is also a significant number
of approaches using architectural level models@run.time on
development and assurance. Assurance used to be the main

purpose of using static architecture models [51,74,90,132].
By analysis and validation of the system architecture, design-
ers can have an early view on the high-level properties before
starting the development. Therefore, it is not a surprise to
see there are still many approaches using runtime informa-
tion carried by an architecture model to support high-level
assurance. However, what is interesting to see is that by
connecting an architecture model with the running system,
more researchers seek for a full-loop self-adaptation rather
than only analysis and assurance of the system. An archi-
tectural runtime model is either used for developers as a
reference [141], or by the program itself as a context at run-
time [168].

The usage of goal-level runtime models is also con-
centrated on self-adaptation purposes [18,23,42]. Mod-
els@run.time at the levels of context, component and code is
used as well [11,61,67]. At the context level, and besides
self-adaptation, we expected more approaches on self-
optimization and prediction. There are approaches attempt-
ing to use component and code-level models@run.time for
almost every purpose, but so far, there is not a dominant
purpose for either level revealing the real strength of mod-
els@runtime.

Finally, at the level of processes and GUIs, there are only
few approaches using models@run.time, and only for few
selected purposes.

123

Models@run.time: a guided tour of the state of the art and research challenges 3063

17 20 61 12

25

as
su

ra
nc

e
(3

8)

de
ve

lo
pm

en
t (

28
)

fa
ul

t-t
ol

er
an

ce
 (7

)

pr
ed

ic
tio

n
(6

)

se
lf-

ad
ap

ta
tio

n
(1

13
)

in
te

ro
pe

ra
bi

lit
y

(7
)

ev
ol

ut
io

n
(1

5)

se
lf-

op
tim

iz
at

io
n

an
d

or
ga

ni
za

tio
n

(1
8)

component (26)

process (10)

code (16)

context (20)

gui (1)

architecture (127)

goals (32)

Purpose of Runtime Model
M

od
el

le
d

Ar
tif

ac
ts

Fig. 7 Modelled artefact versus purpose of runtime model

5.3 Comparing themodelled artefacts and applied
model-driven techniques

In Fig. 8, the modelled artefacts are mapped onto applied
model-driven techniques.

Specifically, Fig. 8 shows that a big part of the research
efforts has been towards the application of applied model-
driven techniques at architectural levels. Specifically, at this
level of abstraction, the most popular model-driven tech-
niques are model-transformations [47,52,114,166,191,192]
and reflection [97,120] followed by reasoning [11] and vari-
ability modelling [129] as well as analysis [159]. Similarly,
it is also shown that there have been efforts in the application
of model-driven techniques at the abstraction level of com-
ponents. We concluded that it is, up to a point, related to the
work performed at the architecture level of abstraction.

There is a list of natural pairs which are visible in
Fig. 8, such as the application of workflow-based tech-
niques [131,146] at the abstraction level of processes. The
same applies to both, the pair of goal-based abstraction level
with requirements engineering techniques [189] and goal-
based abstraction level with reasoning techniques [17,42,
144,193].

The model-driven techniques reflection [14,59], model-
transformations [106], monitoring [66] and analysis [60]
have been virtually applied to all artefacts with the excep-
tion of the GUI, which has been less active. In fact, we only
found one paper, where it has been approached with model-
transformation techniques [53].

The model-driven techniques reasoning [39,57,144] and
variability modelling [24,46,121,134] have been applied to
different artefacts. However, there is no representation at the
level of processes or GUIs.

5.4 Comparing the type of runtimemodel and their
purpose

In Fig. 9, the type of runtime model is mapped onto the pur-
pose of the runtime model dimension.

Among the surveyed approaches, the main driver behind
models@run.time research appears to be the usage of struc-
tural models for self-adaptation [73,79,86]. A structural
runtime model supports self-adaptation with a high-level,
holistic view of the running system, in such a way that the
self-adaptation engines can use the model to analyze the run-
time phenomenon and enact the system directly. A related
purpose is assurance [90], which involves mainly the analy-
sis part of self-adaptation. In addition, structural models are
also widely used in development and evolution [80,92].

Behavioural runtime models are mainly used for self-
adaptation [131] and assurance [132], exposing the behaviour
of the running system to the adaptation engines based on run-
time models. Goal models are also manipulated at runtime,
providing a high-level reference for self-adaptation [138].
Although self-adaptation is often built on top of control
theory, there are not many approaches directly using a feed-
back loop to construct runtime models [183]. Instead, they

123

3064 N. Bencomo et al.

25 30 19 16 10 14

10

re
fle

ct
io

n
(4

1)

m
od

el
-

tra
ns

fo
rm

at
io

n
(4

8)

re
as

on
in

g
(3

3)

va
ria

bi
lit

y-
m

od
el

lin
g

(2
2)

m
ac

hi
ne

-
le

ar
ni

ng
 (1

4)

m
on

ito
rin

g
(2

2)

an
al

ys
is

 (3
0)

component (26)

process (11)

code (16)

gui (1)

architecture (124)

goals (32)

Fig. 8 Modelled artefact versus applied model-driven techniques

rather use a feedback loop on top of a structure or behaviour
model [167].

Qualitymodels arewidely used at design and development
time for assurance and fault-tolerance purposes, but they are
not widely used as a way to construct models@run.time.
A similar conclusion can be drawn for variability models.
Although we admit that there is an abstraction gap between
the system’s runtime phenomenon and the quality or vari-
ability model, we still expect more approaches investigating
the usage of these two types of models at runtime.

5.5 Comparing the type of runtimemodel and the
appliedmodel-driven techniques

Figure 10 depicts which model-driven techniques have been
transferred or applied to which types of runtime models.
Noteworthy, in this comparison, themodel-driven techniques
can be classified into major, middle and minor techniques in
terms of the numbers of approaches we found in each cate-
gory.

Not surprisingly, the major techniques are model transfor-
mations and reflection. Especially, reflection is an expected
technique to appear, as it is part of the definition of mod-
els@run.time. On the other hand, model transformations are
a natural prerequisite for models@run.time in order to con-
nect the runtimemodel and the system it reflects.Middle used
techniques are analysis, reasoning, monitoring and variabil-
ity modelling. This, again, is an expected result, as all four
techniques are natural means to achieve the different pur-

poses for which runtime models are used (cmp. Sect. 5.6).
Minor techniques found are model comparison, machine
learning, requirements engineering andworkflowmodelling.

An analogous categorization can be done for the types of
models. Major types are structural and behavioural models.
Middle types are quality and goal models, and the remaining
types can be considered minor types.

It is not surprising that the major techniques are applied
to major types of models. However, an interesting exception
is that model transformations and reflection, as major tech-
niques, are applied on a relatively low level on behaviour
models, compared to structural models. In contrast, analy-
sis is the most popular technique for behavioural models.
This reveals the complexity of behavioural models at run-
time, and as a result the current research is more in a stage of
directly observing runtime behaviours rather than utilizing
them together with other models.

An interesting observation from Fig. 10 is the lack of
techniques applied to runtime physicalmodels,meta-models,
feedback loops and requirement models.

5.6 Comparing appliedmodel-driven techniques
and the purpose of runtimemodels

Figure 11 depicts a comparison between applied model-
driven techniques versus purpose of runtime model.

Among the surveyed applied model-driven techniques,
self-adaptation [2,11,23] as a purpose appears as the main
driver. Further, it has had a strong emphasis on the use of

123

Models@run.time: a guided tour of the state of the art and research challenges 3065

13

0241

3111658151

10

as
su

ra
nc

e
(3

9)

de
ve

lo
pm

en
t (

31
)

fa
ul

t-t
ol

er
an

ce
 (7

)

pr
ed

ic
tio

n
(6

)

se
lf-

ad
ap

ta
tio

n
(1

17
)

in
te

ro
pe

ra
bi

lit
y

(9
)

ev
ol

ut
io

n
(1

6)

se
lf-

op
tim

iz
at

io
n

an
d

or
ga

ni
za

tio
n

(1
8)

feedback loop (6)

metamodel (3)

goal (14)

design (7)

requirement (6)

behavior (44)

variability (10)

physical (4)

structure (125)

quality (23)

Purpose of Runtime Model
Ty

pe
 o

f R
un

tim
e

M
od

el

Fig. 9 Type of runtime model versus purpose of the runtime model

the techniques model-transformation [52], reasoning [55]
and reflection [9,72] followed by variability modelling [45],
requirements engineering techniques, analysis [77] andmon-
itoring [78,107]. However, even if smaller, efforts have been
made using techniques such as model comparison [7,130]
and machine learning [28,71,75]. Techniques such as model-
transformation have been applied for different purposes apart
from self-adaptation such as development, evolution and
interoperability.

Unsurprisingly, the technique reflection has again found
to be used in all the surveyed purposes. It may be considered
as predictable, as reflection is a technique that supports the
implementation of models@run.time at any level of abstrac-
tion.

An observation from Fig. 11 is the limited use of model-
driven techniques for prediction and fault tolerance followed
by evolution and interoperability. The research efforts, in
terms of the application of model-driven techniques, are
related to the purposes self-adaptation, assurance and devel-
opment, followed by self-optimization and interoperability.

6 Research challenges

Based on the data collected and the analysis performed and
shown earlier, in this section we discuss the research chal-
lenges and the foreseen efforts needed to bring forward
the state of the art up to the envisioned future of mod-
els@run.time research. We aim to classify the fundamental

challenges based on the taxonomy proposed in Fig. 5. This
strategically enables us to portrait the challenges in the con-
text provided by the concepts previously discussed, and the
analysis performed in Sect. 5.

In general, the analysis applied using the proposed tax-
onomy reveals that the research in the models@run.time
community has concentrated on a set of dominant topics such
as architectural runtime models, which have targeted partic-
ular purposes such as self-adaptation. As a result, potentially
relevant topics, as well as their combination, have been over-
looked by researchers. We hope that this survey helps to
reveal some of these potentially useful combinations.

In this section, we summarize the areas where we consider
that the state of the art of models@run.time can be improved.
We also discuss research topics that have the potential to push
forward the state of the art if explored further.

6.1 Challenges based on themodelled artefacts

The survey has shown that a big part of research efforts has
been focused on the architectural level of abstraction, exploit-
ing structural runtime models for running systems. Further,
most of these approaches have targeted the particular pur-
pose of self-adaptation. There has not been a strong focus
on the use of models@run.time for neither lower levels of
abstractions than those offered at the architecture level, i.e.,
code or components, nor higher levels of abstraction, such as
systems of systems and the use of contextual situations. This
section summarizes the challenges expected, both applying

123

3066 N. Bencomo et al.

12

2131025372

re
fle

ct
io

n
(4

2)

m
od

el
-

tra
ns

fo
rm

at
io

n
(5

0)

w
or

kf
lo

w
 (6

)

re
as

on
in

g
(3

2)

va
ria

bi
lit

y-
m

od
el

lin
g

(2
2)

m
ac

hi
ne

-
le

ar
ni

ng
 (1

4)

m
on

ito
rin

g
(2

3)

an
al

ys
is

 (
30

)

re
qu

ire
m

en
ts

en

gi
ne

rri
ng

 (1
0)

m
od

el
-

co
m

pa
ris

on
 (4

)

feedback loop (1)

metamodel (3)

goal (14)

design (7)

requirement (4)

behavior (44)

variability (10)

physical (3)

structure (126)

quality (21)

Applied Model-driven Technique
Ty

pe
 o

f R
un

tim
e

M
od

el

Fig. 10 Type of runtime model versus applied model-driven technique

models@run.time at lower and higher levels than architec-
ture.
The need to apply models@run.time at lower levels than
architecture Technology is complex and rapidly changing
and, therefore, software engineering researchers also need
to provide approaches with more direct support to devel-
opers [35] who have to deal with very specific technical
knowledge. Therefore, there is the need to focus not just
on architectural models, but on artefacts at lower levels of
abstraction and finer-grained models, such as configurations
of components and source code. For instance, authors in [43]
explain initial ideas about how runtimemodels can be used to
deal with what they call software changes in-the-small, i.e.,
changes at the code level, as opposed to software changes
in-the-large, i.e., changes at the component or component
configuration levels.

It is relevant to understand the runtime phenomenon of
software systems from lower levels of abstraction than the
macro-architectural level, such as the status inside individ-
ual components, or the behaviour of a particular piece of
code while, at the same time, being able to exploit the use of
abstractions and models. We especially foresee potential in
approaches that deal with structural and behavioural runtime
models used at the level of code (e.g., [5,160]). In fact, var-
ious models of code have been investigated by the compiler
construction community (e.g., control flow graphs represent-
ing behavioural models or abstract syntax trees representing
structural models). Traditionally, models used in compilers
are not available at runtime, i.e., after the compilation pro-

cess. The rising need for dynamic software updates with
zero downtime (see, e.g., [135]) poses the challenge to re-
compile programs while they run and, hence, to keep the
compiler models at runtime. As a direct consequence, mod-
els used in such compilers can be enriched with knowledge
only available at system runtime. The effectiveness of com-
bining model-driven techniques with code-level techniques
from the domain of compiler construction has just recently
been promoted at theMODELS2017 conference in a keynote
by Ira Baxter [20].

To support lower-level runtime models, novel techniques
are required to realize the causal connection between the run-
ning system and such models. In order to keep a code-level
runtime model (e.g., an abstract syntax tree) in synchroniza-
tion with a running application subject to dynamic program
rewriting or dynamic code analysis, current approaches
focusing on architectural models cannot be directly applied
(e.g., compare [160] with [165]). Current approaches do not
offer enough support, and therefore, further research efforts
are needed.
The need to apply models@run.time at higher level of
abstractions than systems architectures The external con-
text of systems and their interactions with other systems as
is the case in systems-of-systems [124] have not yet been
exhaustively investigated in the context ofmodels@run.time.
Indeed, we have not found any work on models@run.time
for systems-of-systems, but some work focusing on context-
adaptive systems (e.g., [105,184]). In [40], an overview of the
current state of the art in self-aware computing systems [116],

123

Models@run.time: a guided tour of the state of the art and research challenges 3067

17

0211

21

14

17

as
su

ra
nc

e
(1

6)

de
ve

lo
pm

en
t (

18
)

fa
ul

t-t
ol

er
an

ce
 (5

)

pr
ed

ic
tio

n
(6

)

se
lf-

ad
ap

ta
tio

n
(8

4)

in
te

r-
op

er
ab

ilit
y

(9
)

ev
ol

ut
io

n
(1

7)

se
lf-

op
tim

iz
at

io
n

an
d

or
ga

ni
za

tio
n

(1
2)

model-
comparison (4)

reflection (41)
model-
trans-

formation (50)
workflow (5)

reasoning (32)

variability-
modelling (22)

machine-
learning (13)

monitoring (23)

analysis (30)

reqeng (10)

Purpose of Runtime Model
A

pp
lie

d
M

od
el

-d
riv

en
 T

ec
hn

iq
ue

Fig. 11 Applied model-driven technique versus purpose of runtime model

i.e., systems which are aware of themselves, their context
and their collaboration partners (i.e., systems-of-systems),
is given. As we have shown in the previous sections, most
work onmodels@run.time focused on self-adaptive software
systems, which are—in contrast to self-aware computing
systems—mainly aware of themselves, but typically nei-
ther on their environmental context nor their interaction with
other systems. Current andmost future types of software sys-
tems are inherently embedded into complex environments
(e.g., autonomous vehicles including cars, trains and ships;
or wearables like fitness trackers and health monitors) that
work in different contexts. Hence, more work is required to
investigate the application of models@run.time to capture
and reason about the context of and interactions between
these systems. Thus, we consider the application of the mod-
els@run.time paradigm to context-aware systems [103] and
systems-of-systems [124] as a highly relevant research topic.

6.2 Challenges based on the runtimemodel type

Regarding the model types, it was observed that the ample
majority of the surveyed papers represent the running system
using structural models. Structural models tend to focus on
how the software is composed, for example, in terms of com-
ponents and their connections (i.e., architecture); or aspects
and their patterns of composition. In contrast, behavioural
models emphasize how the system executes, e.g., in terms
of flows of events through the system. The following are the

challenges we have identified with respect to the types of
runtime models.
Goal models at runtime to address uncertainty Accord-
ing to our findings, runtime representations of goal-based
models have not been studied exhaustively. (Just 14 papers
were found, cf. Sect. 3.2.2.) Goal-based models allow mir-
roring the domain problem in declarative ways in contrast
to procedural ways. Their use has opened possibilities to
tackle decision-making using the support of machine learn-
ing (e.g., [23,140]) in order to tackle uncertainty, making
them relevant in the design and development of future soft-
ware systems. The emergence of the need to deal with
uncertainty adds to the significance of the need of run-
time goal models and models that in general offer support
for reasoning about the domain problem in more declar-
ative ways [25,155]. A particular aspect that needs to be
addressed by modern software with respect to uncertainty is
self-explanation [25]. Goal-based models have already been
used to support self-explanation [188], but—as our analysis
shows—have not, yet, been investigated extensively at run-
time.
Towards variability models at runtime Surprisingly, only few
research initiatives have investigated variability models at
runtime (10 papers). Further, they have been applied only
at the level of goals and architecture, which contrasts to
the needs claimed by the variability community (i.e., SPLC
and DSPL) [19,29,36,98,102,136]. Especially, the vision
of dynamic software product lines, i.e., the ability to sup-
port runtime updates with zero downtime for products of a

123

3068 N. Bencomo et al.

software product line, denotes an obvious link between vari-
ability models being used at runtime to adapt the respective
programs. The challenge for dealing with runtime variability
is that it should support a wide range of product customiza-
tions under various circumstances that might be unknown
until execution as new product variants can be identified
only at runtime [29]. Contemporary variability models face
the challenge of representing runtime variability to therefore
allow the modification of variation points during the execu-
tion of the system, and underpin the automation of the system
reconfiguration [41]. The runtime representation of feature
models (i.e., their runtime models) is required to automate
the decision-making.
Towards runtime models to support feedback loops Even
though the feedback loop is a core concept behind self-
adaptation and it has been shown to be beneficial to separate
it from the system itself [190], there are only few approaches
investigating the usage of an explicit model of this feed-
back loop for self-adaptation (6 of 275 papers; cmp. Fig. 9).
We expect that further research is done with respect to this
aspect. An example of its use is to enable analyses and
reasoning about feedback loops, e.g., to support resource
management as shown in [118]. Multiple runtime models
would be required to provide views for various stages of feed-
back loops, such as monitoring, analysis, decision-making or
adaptation [180].

6.3 Challenges based on the purposes for using
models@run.time

Regarding the purpose of models@run.time, it can be
observed that self-adaptation is dominant in the surveyed
approaches. Self-adaptation approachesmostly exploit struc-
tural (i.e., architecture) and behavioural models (cf. Fig. 9).
Only few approaches using quality and variability models
exist for self-adaptation (10 and 8 of 275 papers; cmp. Fig-
ure 9). Belowwediscuss challenges on the purposes for using
models@run.time that can be related to self-adaptation but
also can transcend it.

Model-driven techniques have been poorly investigated
for the purposes of prediction, fault tolerance and interoper-
ability (6, 7 and 9 of 275 papers; see Fig. 11). However, all
three purposes are highly required to build future software
systems. For example, for the Internet of Things (IoT), vast
amounts of connected devices from different vendors need to
work together by interoperability [69]. Some of these devices
will be safety critical (e.g., autonomous cars) and, hence,
need to be fault-tolerant. Finally, IoT devices have to oper-
ate energy efficiently as they are often battery-powered, i.e.,
only have a limited capacity of energy until they need to
be recharged. Prediction is one central element for realizing
energy-efficient software in general [93]. The following are

the challengeswe have identifiedwith respect to the purposes
runtime models may serve.
Models@run.time for assurances Assurance is another pur-
pose besides self-adaptation that has attracted reasonable
research interest (cf. Sect. 3.2.3). However, other than at the
architecture level and using structural models, there is a lack
of approaches with respect to this purpose (cmp. Figs. 7 and
9). Still further research on assurances formodels@run.time-
based systems is required, as already stated four years ago
in [30].

Among others, a compelling application for assurances
in the context of models at runtime is autonomous vehicles.
Increasingly, cars offer intelligent driver assistance [50,122].
Such driving software is safety critical and, thus, poses the
need for methods to assure required safety qualities. For this,
such systems require quality models to capture the respective
non-functional properties, environmental context models to
enable the adaptation to contextual changes and goal models
representing the connection between required quality assur-
ances and contextual situations. Currently, such models are
typically implicit and coded manually into the running sys-
tem. In order to provide assurance of properties, thesemodels
need to be leveraged explicitly during the full life cycle,
including runtime. An interesting first step in this direc-
tion has been described by Schneider et al. in [156–159],
who introduced the concept of conditional safety certificates,
which allow safety checks at system runtime.

Assurance is required for functional (i.e., those which
specify the functions of the systems) and non-functional
properties of the system (i.e., those which specify how these
functions need to work, e.g., efficiency, performance, avail-
ability, robustness, and stability). The ability to guarantee
these properties at runtime poses challenges due to the vari-
ations of the systems, their environment and their inherent
uncertainty [70,145]. However, addressing these challenges
offers as well new opportunities for runtime verification and
validation, enabling assurances for critical system properties
at runtime. Further, since runtime models form the founda-
tion ofmany assurance tasks [50], their quality depends upon
the quality of the runtime models. The definition of perfor-
mance and accuracy for the assessment of runtime models
is a crucial research challenge [174]. Efforts in the research
area of models@run.time are fundamental to the develop-
ment of runtime assurance techniques [50]. The central issue
in this context is the modelling of uncertainty, as understand-
ing and leveraging uncertainty is central to deliver assurance
guarantees. This topic is discussed further in Sect. 6.5 as it
can be considered as fundamental and not applied research
in models@run.time.
Models@run.time for development Development has, too,
attracted some research interest (cf. Sect. 3.2.3). As for assur-
ances, there are no approaches despite than at the architecture
level and using structural models (see the Figs. 7, 9).

123

Models@run.time: a guided tour of the state of the art and research challenges 3069

Software engineers have come to the conclusion that there
is no clear separation between development time and run-
time [16]. Here, there are opportunities formodels@run.time
as it can act as a vehicle to understand and address the issues
that inevitably arise. However, as in development time while
using MDE, different interrelated models need to be used to
systematically build up a software system. Different inter-
related runtime models as representation of different parts
of the executing systems are employed simultaneously, and
their relationships need to be maintained at runtime. The
result is a complex development process as the models and
their relationships need to be managed [182] that in the case
of runtime is aggravated by the fact that the runtime mod-
els are treated and even conceived during the execution of
the system. Just few initiatives exist that address the issues
of managing runtime models and their relationships [182].
However, the issues are rather neglected by applying ad hoc
solutions if at all. Further, some authors [181] advocate for
the unification of development and runtime models to sys-
tematically realize their integration and management. It may
not be the case that a comprehensive unification is possible or
even advised; however, it may be a way to support an incre-
mental strategy of adoption of runtime models from manual
maintenance to automated management.
Models@run.time for self-awarenessModels@run.time is at
the core of self-aware systems [40], and their role in self-
awareness is studied in [115,116]. Runtime models provide
the vehicle for the self-representation needed by a self-aware
system. Runtime models correspond to the models that con-
tain knowledge about the environment and the system itself.
They support learning of that knowledge. Runtime mod-
els can be traversed and consulted to provide up-to-date
information for analysis, prediction and planning needed for
self-awareness [115]. Different types of runtimemodels may
be needed to capture different facets of which a system needs
to be self-aware. What aspects a system needs to be aware
of and what kinds of runtime models are needed is subject to
future studies.

6.4 Challenges based on appliedmodel-driven
techniques

The major model-driven technique that has been trans-
ferred from design to runtime is the model-transformation
technique.We indeed foundwork on runtimemodel transfor-
mations at all identified abstraction levels (cmp. Fig. 8). The
main focus again, as for all other model-driven techniques,
was on architectural runtime models. However, other tech-
niques are relevant for the models at runtime vision. Below
we highlight a set of relevant techniques to be exploited to
advance further the state of the art of runtime models and the
challenges we have identified in doing so.

Machine learning Machine learning can be used to build
context-aware systems, systems-of-systems and self-aware
systems. As discussed before, we consider work on mod-
els@run.time for systems aware of their context and their
interactions with other systems as a promising research chal-
lenge. The use of machine learning is a promising direction
to address this challenge as for example shown in [75] for
the case of self-organizing systems, in [185] for the case
of resource management in data centres and in [48] for the
case of non-functional properties in the context of cloud-
based systems. In general, we only found 15 approaches
investigating the use of machine learning in the context
of models@run.time. Further, this challenge is intrinsically
related to the challenge of providing runtime model infer-
ence during execution explained in Sect. 6.5, as it is with
the use of techniques such as machine learning techniques
that runtime models would be able to be inferred or learned
at runtime. The need to apply machine learning to address
the challenges of context-aware systems, systems-of-systems
and self-aware systems among others has just recently been
highlighted again in the context of self-aware computing sys-
tems [116]. Accordingly, the rise of machine learning should
be tackled by the community of models@run.time.
Towards runtime model comparison A counter-intuitive
observation we found was that very little work has been
conducted on applying model comparison techniques at run-
time (7 of 275 papers, see Sect. 3.2.4). The motivation of the
approaches with non-trivial runtime model comparisons we
found in our survey is either originating from the problem
domain (e.g., error detection [104]) or from novel types of
models (e.g., aspect-oriented models [130]). This is in con-
trast to the finding that most initiatives focus on approaches
for self-adaptive software, for which comparisons between
the current and desired system state are essential. Presum-
ably, current approaches only use simple, custom-made
comparison approaches for this purpose. The application of
comparison techniques at runtime poses additional require-
ments compared to design time. Namely, especially for
self-adaptive systems, the runtime model required to per-
form comparisons is getting more important, e.g., to meet
real-time deadlines. We, thus, assume that the application or
transfer of existing comparison techniques to runtime is a
promising candidate for future research.
Towards runtimemodels forworkflowsAnother poorly inves-
tigated technique is workflow modelling and execution (6 of
275 papers; see Sect. 3.2.4). Although this topic is close to
the research area of model execution (which we explicitly
excluded from this survey), the need to couple workflows
with the system for which they specify the order of actions
to take is inevitably required. Surprisingly,most of the papers
we found in our survey have been published at least 4 years in
the past (e.g., [131] on self-tuning BPEL processes in 2009
or [110] with a vision paper on business processes at run-

123

3070 N. Bencomo et al.

0

5

10

15

20

25

30

35

1995 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017

Papers per Year
Applied Fundamental

Fig. 12 Research on Models@run.time per year

time in 2013). In consequence, approaches focusing on the
causal connection between workflows and the systems they
are bound to are a promising field for future research, where
initial investigations have been made, but the research efforts
almost stagnated.

6.5 Challenges for fundamental research on
models@run.time

As already discussed in Sect. 2.4, 20% of the papers we
included in this survey address fundamental research onmod-
els@run.time. A more detailed look is provided in Fig. 12,
which shows the number of applied and fundamental papers
published per year as stacked bar chart. Notably, a small but
constant research effort focusing on fundamental research
for models@run.time can be observed since 3 years after the
term models@run.time was coined (i.e., since 2009). This
section summarizes the challenges we have concluded for
fundamental research on models@run.time.
Towards managed uncertainty at runtime Further tech-
niques to deal with uncertainty and incompleteness of events
and information from systems and their environment are
required [51]. One aspect of this challenge is monitoring
and sensing, which is widely used by modern intelligent
and adaptive software. Monitoring can be imprecise and can
provide just partial information. Using the correct runtime
abstractions to enable the measurement of uncertainty is a
core challenge. Runtime models can be used to represent
uncertainty, while more evidence is collected by the running
system. In [22], the authors use Bayesian inference to model
the level of confidence related to the monitoring infrastruc-
ture.

Further, in order to design software systems that are able
to tackle uncertainty, inferring the knowledge necessary to
reason about the system behaviour seems to be an essential
task. Such models can be used to dynamically build runtime
models during the execution of the system. The acquired
knowledge could support solving uncertainty, but, on the
other hand, it could incorporate more. Suitable mathemat-
ical and formal abstractions should be used to represent and
reason upon uncertainty. Probability theory, fuzzy set theory

with the use of machine learning should be used to further
investigate this issue. Probability theory, based on historical
data, can be used to identify which non-functional properties
are less likely to be satisfied [27]. Bayesian inference can
be used to manipulated values of probabilities or parame-
ters of utilities that change over time and therefore, enable
the quantification of the impact of these values during the
decision-making [139]. Likewise, fuzzy set theory can be
used to produce an initial model of flexible design that can
be progressively completed as more information about the
environment and the system itself becomes available [31].
Towards runtimemodel inference during executionThis chal-
lenge is somehow a consequence of the previous one posed
by the uncertainty modern software systems face. In the
area of self-adaptive systems, conventional software adap-
tation techniques and more contemporary models@runtime
approaches usually require an a priori model to specify the
system’s behaviour and structure. In contrast, runtime mod-
els can be learned and reified at runtime. However, just few
research efforts have been done towards these research lines.
For instance, the authors in [71] proposed mining software
component interactions based on the execution traces of the
underlying running system, in order to build a probabilistic
model that will be used to analyze, plan, and execute adap-
tations. The domain in [71] was self-adaptation. In [28], the
runtime models are automatically inferred during execution
and refined by exploiting learning techniques and ontolo-
gies. The final goal was the dynamic synthesis of code to
generate mediators to support the interoperability of systems
that were built without previous knowledge of the inter-
action needed. Several issues exist that are worth further
consideration. For example, the replacement or insertions of
a component may introduce new unexpected behaviours by
changing the functional behaviour of the system, or their non-
functional properties (e.g., availability, reliability, etc.). The
recent progress in machine learning and Bayesian inference,
among other techniques, is key for the extraction of informa-
tion at runtime to dynamically build the models [23,75,140].
Towards runtime code synthesisRuntimemodels can support
the extension of the success of model-driven engineering to
synthesize code at runtime [28,154]. This issue still requires
much more research and, obviously depends on the pre-
vious issues on runtime model inference and uncertainty.
Ontology-based solutions seem to be a promising direction
in this respect. Ontologies have been exploited to enrich the
runtime models with information that was not know before
runtime [23], but is required to dynamically synthesize code.
Towards distributed runtime models Current and previous
methods to support the discovery of runtime architecture
take centralized approaches, meaning that the process of
discovery is carried out from a single location [84,176].
These methods are inadequate for large distributed systems
because they either present a single point of failure or do

123

Models@run.time: a guided tour of the state of the art and research challenges 3071

not scale up well [148,177]. A key characteristic of future
software systems is that they will operate in collaboration
with other systems as covered by the terms systems-of-
systems [124], collective adaptive systems [8] and collective
self-aware computing systems [64]. In our survey, we only
found 8 papers investigating distributed models@run.time,
whereof two [32,142] only describe the necessity for such
approaches. The most prominent approach in this area orig-
inates from the EUREMA project (cf. Sect. 3.6) by Holger
Giese and Thomas Vogel, who investigated how the integra-
tion and/or synchronization of multiple runtime models of
different systems can be systematically described and auto-
mated [179,182,183,186]. For this, they transfer the term
megamodel [34], i.e., a model comprised of other models,
to runtime. In their approach, the processing of models at
runtime can be described as a workflow. But, still several
research questions for this topic remain open. For example,
how to handle partial distributed runtime models [91], i.e.,
models of different systems representing overlapping knowl-
edge. Thus, further research on distributed runtime models
is required.
Towards transaction-safe causal connections The causal
connection between the systemand the runtimemodel should
support the concept of transactions to, for example, offer
roll-back capabilities for consistency. Various research ques-
tions in this regard are still unanswered: When are system
and model allowed to be out of sync? What happens when a
decision ismade based on outdated information in themodel?
What happens when an effect is realized on the system based
on an outdated model? What about race conditions when
multiple models reflect upon and control the same system?
To the best of our knowledge, these questions related to trans-
actional concepts and the frequency of the synchronization
have been addressed, until now, only once by the research
community [62], even if the topic has been highlighted in
the models@run.time workshop’s call for papers [95] since
2015.
Towards self-modelling, self-designing systems Increasingly,
more and more approaches are proposed for the engineering
of systems with emergent properties [26]. Such approaches
go beyond the state of the art in self-adaptive or -organizing
systems, as they aim at self-modelling, self-designing sys-
tems [21]. However, we argue that the research community
of self-adaptive and self-organizing systems [56] can offer
useful techniques as self-modelling and self-designing sys-
tems can be casted as self-adapting systems. Thus, making
a complex system build itself can be seen as both letting
it autonomously change/adapt the organization of its com-
ponents and, by enabling these latter parts change/adapt
their behaviour in an autonomous way. Autonomous, self-
adaptive and self-organizing systems, hence, would act as
a non-human modellers, treating models according to high-
level goals rather than a predefined script [83]. Traditional

approaches to self-adaptive and self-organizing software
require human experts for the specification of models, poli-
cies and processes by which software can adapt according
to its goals and environment. For future software systems,
these tasks need to be automated, i.e., the systems need to
be enabled to perform modelling and design themselves. In
other words, future systems required self-modelling capa-
bilities. Some initial approaches have already been pro-
posed [28,71,75], where the authors present approaches,
which do not require defining the system’s behaviour before-
hand, but instead involve techniques to infer the interactions
from system execution using, e.g., probabilistic usage mod-
els and machine learning. The challenges of self-modelling
systems still require much more research efforts. Formal
methods and models@run.time-based solutions, with the aid
of model/constraint checking, seem to be a promising direc-
tion to follow [28]. For example, models@run.time can offer
support for reasoning by the system as the runtime model
can assemble the learned knowledge based on observation in
order to allow the systems to redesign itself to better suit the
environment around it.

7 Conclusions

Themainmotivation for this workwas to investigate the state
of the art in models@run.time, by identifying three main
research questions and systematically mapping the literature
creating and using a taxonomy to answer those questions.
Supported by the taxonomy, we have determined the issues
to study, aswell as theirmeaning and relevance to the research
topic of models@run.time, to therefore provide aid and guid-
ance to researchers who are planning future research in the
area.

The list of all papers included in our survey as well as our
classification and taxonomy is available online.7 The SLR
Toolkit, a software tool for systematic literature reviews, was
developed by one of the authors of this paper with the support
of his students. The SLR Toolkit was developed and used
while we performed this survey [94]. Figure 13 depicts a
screenshot of the tool, showing the list of papers on the left, a
detail view of a selected paper in the centre top, the taxonomy
on the right and, at the centre bottom, a bar chart enumerating
all papers by the of runtime models used.

Throughout our literature study, we followed three objec-
tives stated Sect. 1, which were formulated as three research
questions in Sect. 2.1. In the following, we provide the
answers to the three research questions, and which represent
the main contribution of this article.

7 https://github.com/sebastiangoetz/slr-toolkit/tree/master/examples/
mrt.

123

https://github.com/sebastiangoetz/slr-toolkit/tree/master/examples/mrt
https://github.com/sebastiangoetz/slr-toolkit/tree/master/examples/mrt

3072 N. Bencomo et al.

Fig. 13 Screenshot of SLR Toolkit

RQ1: How can existing research on models@run.time be
classified? In Sect. 3, we presented a novel taxonomy to clas-
sify research on models@run.time. We classified 275 papers
on models@run.time using this taxonomy, which evaluates
its suitability. Our taxonomy, concisely depicted in Fig. 5,
is comprised of four main dimensions: the type of research,
the domain of application (e.g., healthcare), the intersect-
ing research areas and related research initiatives. The type
of research was further refined into applied and fundamental
research, where applied research denotes approaches that use
models@run.time to address particular research questions
and fundamental research denotes approaches that answer
research questions about the models@run.time paradigm
itself (e.g., how to realize a transaction-safe causal connec-
tion). Finally, the dimension of applied research is further
refined into the modelled artefact (e.g., the architecture or
context), the type of runtimemodel used (e.g., behavioural or
structural models), the purpose for which the runtime model
was used (e.g., to enable the interoperation of systems) and
the model-driven techniques, which have been applied in the
approach (e.g., model comparison).
RQ2: What is the state of the art of models@run.time
research with respect to the classification? To answer this
research question, we first analyzed the frequency of the
values we found for each dimension of the taxonomy (see
Sect. 3.2 until 3.6). Later, as shown in Sect. 5, we performed
a cross-dimensional analysis using bubble matrix charts for
the classification covering 275 papers. Our main findings are

that most research on models@run.time has a strong focus
on particular topics with respect to our taxonomy. Namely,
by far the most applied research on models@run.time has
(a) focused on the architecture, (b) used structural runtime
models, (c) used the runtime models for self-adaptive soft-
ware and (d) used model transformations. Also, an analysis
of the application domains (25) and intersecting research
areas (25) shows that models@run.time is a highly inter-
disciplinary research topic. Finally, a conclusion to be drawn
from analyzing related research initiatives is that even if there
is a plethora of initiatives that use models@run.time (45),
virtually no initiatives exist and that focus on fundamental
research topics.
RQ3: What can be inferred from the results associated with
RQ2 that will lead to timely, relevant research directions for
further investigation? In Sect. 6, we derived and motivated
a set of research challenges, which have been rarely investi-
gated according to our study. We categorized our identified
challenges using our taxonomy into fundamental research
challenges and challenges with respect to the four dimen-
sions of applied research on models@run.time. In total, we
described 18 challenges as shown in Fig. 14. The challenges
have been strategically connected to related discussions, ref-
erences and concepts.

In conclusion, the work on models@run.time over the last
13 years has been very proliferous and has been applied onto
different domain areas.However,we have seen that it has also
been largely focused on the use of structural models at the

123

Models@run.time: a guided tour of the state of the art and research challenges 3073

Fig. 14 Challenges for research
on Models@run.time Modelled

Artefact
Type of

Run�me Model
Purpose of

Run�me Model
Applied

Model-driven
Technique

Code-level Models

Run�me
Context Models

Run�me Models for
Systems-of-Systems

Goal Models

Variability Models

Feedback Loops

Providing
Assurances

Machine Learning

Model Comparison

Workflow Modeling

Fundamental Research Topics

Run�me Model Inference Managed Uncertainty Distributed Run�me Models

Run�me Code Synthesis Self-modelling Systems Transac�on-safe
Causal Connec�ons

Using Development
Models at Run�me

Self-awareness

architectural abstraction level to build self-adaptive systems
using model-transformations. The researchers of the area of
models@run.time still have many research opportunities to
develop future software that inevitablywill increasingly need
to work under uncertainty, will be distributed, will need to
take advantage of new techniques (such as those based on
machine learning or nature-inspired algorithms) and exploit
the power provided by new technologies such as IoT and
Cloud. Models at runtime will certainly serve as a vehicle to
underpin the building of such systems.

Acknowledgements This work has been partially funded by the Ger-
man Research Foundation (DFG) under Project Agreement SFB912/2
and GRK1907 and the Systems Analytics Research Institute (SARI) in
Aston University.

Appendices

A List of application domains

The following list summarizes all domains to which mod-
els@run.time has been applied so far according to our body
of literature.

• Enterprise Software (23), e.g., enterprise resource plan-
ning (ERP) or customer relationshipmanagement (CRM)
software (e.g., [130]).

• Cloud-based (17) systems, especially Software as a Ser-
vice (SaaS) (e.g., [48]).

• Energy-efficient Software (11) of software systems like,
e.g., optimization approaches trading performance and
energy consumption (e.g., [99]).

• Home Automation Systems (10), e.g., approaches for
the Smart Home (e.g., [54]).

• Communication Technology (8), i.e., telecommunica-
tion networks (e.g., [132]).

• Cyber-Physical Systems (8), i.e., networked embedded
systems (e.g., [101]).

• Monitoring Systems (7), i.e., approaches to intelligently
observe the state of a running physical or virtual system
(e.g., [28]).

• eCommerce Systems (7), e.g., sales platforms and web-
shops (e.g., [87]).

• Embedded Systems (6), i.e., single devices, which are
embedded into a physical environment and react to
changes in it (e.g., [171]).

• Healthcare (6), e.g., approaches to monitor patient data
(e.g., [2]).

• Robotics (6), e.g., approaches to reason about the col-
laboration of multiple robots (e.g., [85]).

• Traffic Advising (5), i.e., routing/navigation software
(e.g., [12]).

• Ambient Assisted Living (AAL) (5), i.e., systems
designed with the aim to help elderly people or people
with special needs in their everyday life (e.g., [159]).

• Games (4), e.g., approaches to improve the reasoning
about strategies of non-player characters (e.g., [61]).

• Crisis Management (4), e.g., flood warning systems
(e.g., [15]).

• Travel Advising (4), i.e., software suggesting holiday
packages, including flights, hotel, rental car and activities
(e.g., [162]).

• ITManagement Systems (4), i.e., systems used to man-
age all electronic devices in a building (e.g., [118]).

• Internet of Things (3), i.e., approaches to capture the
network of connected devices, typically with the aim
to integrate previously unknown system with each other
(e.g., [49]).

123

3074 N. Bencomo et al.

• DatabaseManagement Systems (3), i.e., approaches to
reason about how (data format) and where to store data
(e.g., [65]).

• Mobile Software (2), i.e., software applications running
onmobile devices, which need to react to changes in their
environment (e.g., [82]).

• Office Management Systems (1), i.e., systems used
to manage all software applications of a company
(e.g., [42]).

• eGovernment (1), i.e., software systems enabling citi-
zens to interact with governmental administration over
the Internet [106].

• Java Virtual Machine (1), i.e., approaches to improve
garbage collection [108].

• Scientific Computing (1), e.g., simulations of climate
models [9].

• Social Networks (1), i.e., approaches to analyze trends
and to identify hot topics based on what people share in
social networks [175].

• None (127), i.e., no case study has been conducted.

B List of supporting research initiatives

In the following, we list all research projects we found,
grouped by their origin of funding. For each funding organi-
zation, we provide the number of identified research projects
in braces.

• European Union (19)

– NeCS European Network for Cyber-security. EU
H2020 (EU.1.3.1).

– ALIVE Coordination, Organisation and Model
Driven Approaches for Dynamic,Flexible, Robust
Software and Services Engineering. EU FP7-ICT.

– CHOReOS Large Scale Choreographies for the
Future Internet. EU FP7-ICT.

– CONNECT Emergent Connectors for Eternal Soft-
ware Intensive Systems. EU FP7-ICT.

– DiVA Dynamic Variability in Complex, Adaptive
Systems. EU FP7-ICT.

– DIVERSIFY Ecology-inspired software diversity
for distributed adaptation in CAS. EU FP7-ICT.

– EINSNetwork of Excellence in Internet Science. EU
FP7-ICT.

– MASSIF MAnagement of Security information and
events in Service InFrastructures. EU FP7-ICT.

– MODAClouds MOdel-Driven Approach for design
and execution of applications onmultiple Clouds. EU
FP7-ICT.

– Lucretius Foundations for Software Evolution. ERC
Advanced Investigator Grant.

– PaaSage Model-Based Cloud Platform Upperware.
EU FP7-ICT.

– PERSIST PERsonal Self-Improving SmarT spaces.
EU FP7-ICT.

– RECOGNITION Relevance and cognition for self-
awareness in a content-centric Internet. EU FP7-ICT.

– REMICS REuse and Migration of legacy applica-
tions to Interoperable Cloud Services. EU FP7-ICT.

– S-CubeSoftwareServices andSystemsNetwork. EU
FP7-ICT.

– SeSaMo Security and Safety Modelling. EU FP7-
JTI.

– SMSCom Self-Managing Situated Computing. EU
FP7-IDEAS-ERC.

– MODELPLEX Modelling solution for complex
software systems. EU FP6-IST.

– MUSIC Self-adapting applications for mobile users
in ubiquitous Computing Environments. EU FP6-
IST.

• German Research Foundation (DFG) (4)

– CRC 912—HAEC Highly Adaptive Energy Effi-
cient Computing. DFG collaborative research centre
(CRC).

– RTG 1907—RoSI Role-based Software Infrastruc-
tures for continuous-context-sensitive Systems. DFG
research training group (RTG).

– SPP 1593 Design For Future-Managed Software
Evolution. DFG priority programme (SPP).

– RAMSES Reflective and Adaptive Middleware for
Software Evolution of Non-stopping Information
Systems.

• German FederalMinistry of Education andResearch
(BMBF) (4)

– CoolSoftware BMBF cluster of excellence.
– SysPlace EcoSystem of Displays.
– OptimAALKompetenzplattform für die Einführung
und Entwicklung von AAL-Lösungen.

– SPES2020 Software Plattform Embedded Systems.

• France National Research Agency (ANR) (2)

– FAROSCompositionEnvironment forBuildingReli-
able Service-oriented Architectures.

– SALTY Self-Adaptive very Large disTributed sYs-
tems.

• French Institute for Research in Computer Science
and Automation (Inria) (1)

– Project M@TURE Models @ run Time for self-
adaptive pervasive systems: enabling User-in-the-
loop, REquirement-awareness, and interoperability

123

Models@run.time: a guided tour of the state of the art and research challenges 3075

in ad hoc settings. Inria/Brazil International Scien-
tific Cooperation Program (year 2014).

– Project M@TURE 2 Inria/Brazil International Sci-
entific Cooperation Program (year 2015).

• Netherlands Organisation for Applied Scientific
Research (TNO) funded projects (2)

– AMSN Adaptive Multi-Sensor Networks research
program.

– Trader Reliability by design.

• iMinds Funded Projects (2)

– D-BASE Decentralized support for Business Pro-
cesses in Application Services.

– DMS2 Decentralized Data Management and Migra-
tion of SaaS.

• UK Engineering and Physical Sciences Research
Council (EPSRC) Funded Projects (2)

– DAASE Dynamic Adaptive Automated Software
Engineering.

– LSC-ITS Large Scale Complex IT System.

• Projects Funded by other Grants (9)

– ARM Adaptive Resource Management Project.
Funded by University of Milano-Bicocca.

– CAPUCINE Context-aware Service-oriented Prod-
uct Lines. Funded by Fonds Unique Interministeriel
(France).

– CARAMELOS Collaborative Action Research on
Agile Methodologies for Enterprises in the Little,
adhering to the Open Source principle. Funded by
the Vlaamse Interuniversitaire Raad (Belgium).

– GenData 2020 Data-Driven Genomic Computing.
Funded by the Ministry of Education, University and
Research (Italy).

– GIOCOSOGIOchi pediatrici per la COmunicazione
e la SOcializzazione (Regione Lombardia).

– MAISMultichannel Adaptive Information Systems.
Funded by Politecnico di Milano (Italy).

– MEDICAL Embedded middleware for sensor and
application integration for in-home services. Finded
by Minalogic.

– MORISIA Models at Runtime for Self-Adaptive
Software. Funded by HPI.

– Value@Cloud Model-Driven Incremental Develop-
ment of Cloud Services Oriented to the Customers’
Value. Funded by CICYT.

References

1. Abeywickrama, D.B., Serbedzija, N., Loreti, M.: Monitoring
and visualizing adaptation of autonomic systems at runtime. In:
Proceedings of the 30th Annual ACM Symposium on Applied
Computing, SAC ’15, pp. 1857–1860.ACM,NewYork, NY,USA
(2015). https://doi.org/10.1145/2695664.2695983

2. Albassam, E., Porter, J., Gomaa, H., Menasci, D.A.: Dare: a dis-
tributed adaptation and failure recovery framework for software
systems. In: 2017 IEEE International Conference on Autonomic
Computing (ICAC), pp. 203–208 (2017). https://doi.org/10.1109/
ICAC.2017.12

3. Alfarez, G., Pelechano, V., Mazo, R., Salinesi, C., Diaz, D.:
Dynamic adaptation of service compositionswith variabilitymod-
els. J. Syst. Softw. 91, 24–47 (2014). https://doi.org/10.1016/j.jss.
2013.06.034

4. Almorsy, M., Grundy, J., Ibrahim, A.S.: Adaptable, model-driven
security engineering for SaaS cloud-based applications. Autom.
Softw. Eng. 21(2), 187–224 (2014)

5. Al-Refai, M., Cazzola, W., France, R.: Using models to dynam-
ically refactor runtime code. In: Proceedings of the 29th Annual
ACM Symposium on Applied Computing, SAC ’14, pp. 1108–
1113.ACM,NewYork,NY,USA(2014). https://doi.org/10.1145/
2554850.2554954

6. Amoui, M., Derakhshanmanesh, M., Ebert, J., Tahvildari, L.:
Achieving dynamic adaptation via management and interpreta-
tion of runtimemodels. J. Syst. Softw. 85(12), 2720–2737 (2012).
https://doi.org/10.1016/j.jss.2012.05.033

7. Anaya, I.D.P., Simko, V., Bourcier, J., Plouzeau, N., Jézéquel,
J.M.: A prediction-driven adaptation approach for self-adaptive
sensor networks. In: Proceedings of the 9th International Sympo-
sium on Software Engineering for Adaptive and Self-Managing
Systems, SEAMS2014, pp. 145–154. ACM,NewYork, NY,USA
(2014). https://doi.org/10.1145/2593929.2593941

8. Anderson, S., Bredeche, N., Eiben, A., Kampis, G., van Steen,M.:
Adaptive Collective Systems: Herding Black Sheep. Bookprints,
Minneapolis (2013)

9. Andersson, J., Ericsson, M., Löwe, W.: Automatic rule derivation
for adaptive architectures. In: 7thWorking IEEE/IFIP Conference
on Software Architecture, pp. 323–326. IEEE (2008)

10. Andersson, J., Lemos, R., Malek, S., Weyns, D. (2009) Modeling
dimensions of self-adaptive software systems. In: Cheng B.H.,
Lemos R., Giese H., Inverardi P., Magee J. (eds.) Software Engi-
neering for Self-Adaptive Systems, Chap. Modeling Dimensions
of Self-Adaptive Software Systems, pp. 27–47. Springer, Berlin.
https://doi.org/10.1007/978-3-642-02161-9_2

11. Anthony, R., Pelc, M., Ward, P., Hawthorne, J., Pulnah, K.: A
run-time configurable software architecture for self-managing
systems. In: International Conference on Autonomic Computing,
2008. ICAC ’08, pp. 207–208 (2008). https://doi.org/10.1109/
ICAC.2008.23

12. Arcaini, P., Riccobene, E., Scandurra, P.: Modeling and analyz-
ing MAPE-K feedback loops for self-adaptation. In: Proceedings
of the 10th International Symposium on Software Engineering
for Adaptive and Self-Managing Systems, SEAMS ’15, pp. 13–
23. IEEE Press, Piscataway, NJ, USA (2015). http://dl.acm.org/
citation.cfm?id=2821357.2821362

13. Arcega, L., Font, J., Haugen, Ø., Cetina, C.: An infrastructure for
generating run-time model traces for maintenance tasks. In: Pro-
ceedings of the 11th InternationalWorkshoponModels@run.time
co-located with 19th International Conference on Model Driven
Engineering Languages and Systems (MODELS 2016), Saint
Malo, France, 4 October 2016, pp. 35–42 (2016). http://ceur-ws.
org/Vol-1742/MRT16_paper_7.pdf

123

https://doi.org/10.1145/2695664.2695983
https://doi.org/10.1109/ICAC.2017.12
https://doi.org/10.1109/ICAC.2017.12
https://doi.org/10.1016/j.jss.2013.06.034
https://doi.org/10.1016/j.jss.2013.06.034
https://doi.org/10.1145/2554850.2554954
https://doi.org/10.1145/2554850.2554954
https://doi.org/10.1016/j.jss.2012.05.033
https://doi.org/10.1145/2593929.2593941
https://doi.org/10.1007/978-3-642-02161-9_2
https://doi.org/10.1109/ICAC.2008.23
https://doi.org/10.1109/ICAC.2008.23
http://dl.acm.org/citation.cfm?id=2821357.2821362
http://dl.acm.org/citation.cfm?id=2821357.2821362
http://ceur-ws.org/Vol-1742/MRT16_paper_7.pdf
http://ceur-ws.org/Vol-1742/MRT16_paper_7.pdf

3076 N. Bencomo et al.

14. Arias, T.B.C., America, P., Avgeriou, P.: Defining execution
viewpoints for a large and complex software-intensive system.
In: Joint Working IEEE/IFIP Conference on Software Architec-
ture, 2009 and European Conference on Software Architecture.
WICSA/ECSA2009, pp. 1–10. IEEE (2009). (Theyneveruse the
term “models@runtime”, nor cite our paper, but it is essen-
tially the same idea)

15. Barbier, F., Cariou, E., Le Goaer, O., Pierre, S.: Software adap-
tation: classification and a case study with state chart xml. IEEE
Softw. 32(5), 68–76 (2015)

16. Baresi, L., Ghezzi, C.: The disappearing boundary between
development-time and run-time. In: Proceedings of the FSE/SDP
Workshop on Future of Software Engineering Research, FoSER
’10, pp. 17–22. ACM, New York, NY, USA (2010). https://doi.
org/10.1145/1882362.1882367

17. Baresi, L., Pasquale, L., Spoletini, P.: Fuzzy goals for
requirements-driven adaptation. In: RE 2010, 18th IEEE Interna-
tionalRequirementsEngineeringConference, Sydney,NewSouth
Wales, Australia, 27 September–1 October 2010, pp. 125–134
(2010). http://dx.doi.org/10.1109/RE.2010.25

18. Baresi, L., Pasquale, L.: Live goals for adaptive service composi-
tions. In: Proceedings of the 2010 ICSE Workshop on Software
Engineering for Adaptive and Self-Managing Systems, SEAMS
’10, pp. 114–123. ACM, New York, NY, USA (2010). https://doi.
org/10.1145/1808984.1808997

19. Baresi, L.: Self-adaptive systems, services, and product lines.
In: Proceedings of the 18th International Software Product Line
Conference—Volume 1, SPLC ’14, pp. 2–4. ACM, New York,
NY, USA (2014). https://doi.org/10.1145/2648511.2648512

20. Baxter, I.: Keynote: supporting forward and reverse engineering
with multiple types of models. In: Proceedings of the 20th Inter-
national Conference on Model-driven Engineering, Systems and
Languages. IEEE (2017)

21. Bellman, K.L., Landauer, C., Nelson, P., Bencomo, N., Götz,
S., Lewis, P., Esterle, L.: Self-Modeling and Self-Awareness, pp.
279–304. Springer, Cham (2017). https://doi.org/10.1007/978-3-
319-47474-8_9

22. Bencomo, N., Belaggoun, A., Issarny, V.: Dynamic decision net-
works for decision-making in self-adaptive systems: a case study.
In: Proceedings of the 8th International Symposium on Software
Engineering for Adaptive and Self-Managing Systems, SEAMS
’13, pp. 113–122. IEEEPress, Piscataway,NJ,USA (2013). http://
dl.acm.org/citation.cfm?id=2487336.2487355

23. Bencomo, N., Belaggoun, A., Issarny, V.: Dynamic decision net-
works for decision-making in self-adaptive systems: a case study.
In: Proceedings of the 8th International Symposium on Software
Engineering for Adaptive and Self-Managing Systems, SEAMS
2013, San Francisco, CA, USA, 20–21 May 2013, pp. 113–122
(2013). https://doi.org/10.1109/SEAMS.2013.6595498

24. Bencomo, N., Grace, P., Flores-Cortés, C.A., Hughes, D., Blair,
G.S.: Genie: supporting the model driven development of reflec-
tive, component-based adaptive systems. In: 30th International
Conference on Software Engineering (ICSE 2008), Leipzig, Ger-
many, 10–18 May 2008, pp. 811–814 (2008). https://doi.org/10.
1145/1368088.1368207

25. Bencomo, N., Whittle, J., Sawyer, P., Finkelstein, A., Letier,
E.: Requirements reflection: requirements as runtime entities.
In: 2010 ACM/IEEE 32nd International Conference on Software
Engineering, vol. 2, pp. 199–202 (2010). https://doi.org/10.1145/
1810295.1810329

26. Bencomo, N.: The role of models@run.time in autonomic sys-
tems: keynote. In: 2017 IEEE International Conference on Auto-
nomic Computing, ICAC 2017, Columbus, OH, USA, 17–21 July
2017, pp. 293–294 (2017). https://doi.org/10.1109/ICAC.2017.
55

27. Bencomo, N., Belaggoun, A.: Supporting Decision-Making for
Self-Adaptive Systems: From Goal Models to Dynamic Decision
Networks, pp. 221–236. Springer, Berlin (2013). https://doi.org/
10.1007/978-3-642-37422-7_16

28. Bencomo, N., Bennaceur, A., Grace, P., Blair, G., Issarny, V.: The
role ofmodels@run.time in supporting on-the-fly interoperability.
Computing 95(3), 167–190 (2012)

29. Bencomo, N., Hallsteinsen, S., De Almeida, E.S.: A view of the
dynamic software product line landscape. Computer 45(10), 36–
41 (2012). https://doi.org/10.1109/MC.2012.292

30. Bencomo, N., France, R., Cheng, B.H.C., Aßmann, U.: Mod-
els@run.time. Foundations, Applications, and Roadmaps, vol.
8378. Springer, Cham (2014)

31. Bencomo, N., Torres, R., Salas, R., Astudillo, H.: An architecture
based on computing with words to support runtime reconfigura-
tion decisions of service-based systems. Int. J. Comput. Intell.
Syst. 11(1), 272–281 (2018). (Copyright 2018, the Authors. Pub-
lished by Atlantis Press. This is an open access article under the
CC BY-NC license (http://creativecommons.org/licenses/by-nc/
4.0/). Funding: UNAB Grant DI-1303-16/RG, grant FONDEF
IDeA ID16I10322, FONDECYT Grant 1140408)

32. Bennaceur, A., France, R.B., Tamburrelli, G., Vogel, T., Moster-
man, P.J., Cazzola, W., Costa, F.M., Pierantonio, A., Tichy, M.,
Aksit, M., Emmanuelson, P., Huang, G., Georgantas, N., Redlich,
D.: Mechanisms for leveraging models at runtime in self-adaptive
software. In: Models@run.time—Foundations, Applications, and
Roadmaps (Dagstuhl Seminar 11481, 27 November–2 Decem-
ber 2011), pp. 19–46 (2014). https://doi.org/10.1007/978-3-319-
08915-7_2

33. Bennaceur, A., Issarny, V.: Automated synthesis of mediators to
support component interoperability. IEEE Trans. Softw. Eng. 41,
221–240 (2015)

34. Bézivin, J., Jouault, F., Valduriez, P.: On the need for megamod-
els. In: Proceedings of the OOPSLA/GPCE: Best Practices for
Model-Driven Software Development Workshop, 19th Annual
ACM Conference on Object-Oriented Programming, Systems,
Languages, and Applications, Vancouver, Canada (2004). https://
hal.archives-ouvertes.fr/hal-01222947

35. Blair, G., Bencomo, N., France, R.: Models@run.time. Computer
42(10), 22–27 (2009). https://doi.org/10.1109/MC.2009.326

36. Bosch, J.: Delivering customer value in the age of autonomous,
continuously evolving systems. In: 2016 IEEE 24th International
Requirements Engineering Conference (RE), pp. 1–1 (2016).
https://doi.org/10.1109/RE.2016.16

37. Calinescu, R., France, R., Ghezzi, C.: Models@run.time. Com-
puter 95(3), 165–166 (2013)

38. Calinescu, R., France, R.B., Ghezzi, C.: Editorial. Comput-
ing 95(3), 165–166 (2013). https://doi.org/10.1007/s00607-012-
0238-4

39. Cámara, J., Correia, P., De Lemos, R., Garlan, D., Gomes, P.,
Schmerl, B., Ventura, R.: Evolving an adaptive industrial software
system to use architecture-based self-adaptation. In: Proceedings
of the 8th International Symposium on Software Engineering for
Adaptive and Self-Managing Systems, SEAMS ’13, pp. 13–22.
IEEE Press, Piscataway, NJ, USA (2013)

40. Cámara, J., Bellman, K.L., Kephart, J.O., Autili, M., Bencomo,
N., Diaconescu, A., Giese, H., Götz, S., Inverardi, P., Kounev, S.,
Tivoli, M.: Self-Aware Computing Systems: Related Concepts
and Research Areas, pp. 17–49. Springer, Cham (2017). https://
doi.org/10.1007/978-3-319-47474-8_2

41. Capilla, R., Bosch, J.: The promise and challenge of runtime vari-
ability. Computer 44(12), 93–95 (2011). https://doi.org/10.1109/
MC.2011.382

42. Castañeda, L., Villegas, N.M., Müller, H.A.: Self-adaptive appli-
cations: on the development of personalizedweb-tasking systems.
In: Proceedings of the 9th International Symposium on Software

123

https://doi.org/10.1145/1882362.1882367
https://doi.org/10.1145/1882362.1882367
http://dx.doi.org/10.1109/RE.2010.25
https://doi.org/10.1145/1808984.1808997
https://doi.org/10.1145/1808984.1808997
https://doi.org/10.1145/2648511.2648512
https://doi.org/10.1007/978-3-319-47474-8_9
https://doi.org/10.1007/978-3-319-47474-8_9
http://dl.acm.org/citation.cfm?id=2487336.2487355
http://dl.acm.org/citation.cfm?id=2487336.2487355
https://doi.org/10.1109/SEAMS.2013.6595498
https://doi.org/10.1145/1368088.1368207
https://doi.org/10.1145/1368088.1368207
https://doi.org/10.1145/1810295.1810329
https://doi.org/10.1145/1810295.1810329
https://doi.org/10.1109/ICAC.2017.55
https://doi.org/10.1109/ICAC.2017.55
https://doi.org/10.1007/978-3-642-37422-7_16
https://doi.org/10.1007/978-3-642-37422-7_16
https://doi.org/10.1109/MC.2012.292
http://creativecommons.org/licenses/by-nc/4.0/
http://creativecommons.org/licenses/by-nc/4.0/
https://doi.org/10.1007/978-3-319-08915-7_2
https://doi.org/10.1007/978-3-319-08915-7_2
https://hal.archives-ouvertes.fr/hal-01222947
https://hal.archives-ouvertes.fr/hal-01222947
https://doi.org/10.1109/MC.2009.326
https://doi.org/10.1109/RE.2016.16
https://doi.org/10.1007/s00607-012-0238-4
https://doi.org/10.1007/s00607-012-0238-4
https://doi.org/10.1007/978-3-319-47474-8_2
https://doi.org/10.1007/978-3-319-47474-8_2
https://doi.org/10.1109/MC.2011.382
https://doi.org/10.1109/MC.2011.382

Models@run.time: a guided tour of the state of the art and research challenges 3077

Engineering for Adaptive and Self-Managing Systems, SEAMS
2014, pp. 49–54. ACM, New York, NY, USA (2014). https://doi.
org/10.1145/2593929.2593942

43. Cazzola, W., Rossini, N.A., Bennett, P., Mandalaparty, S.P.,
France, R.B.: Fine-grained semi-automated runtime evolution. In:
Models@run.time—Foundations, Applications, and Roadmaps
(Dagstuhl Seminar 11481, 27 November–2 December 2011), pp.
237–258 (2014). https://doi.org/10.1007/978-3-319-08915-7_9

44. Cazzola, W., Rossini, N.A., Al-Refai, M., France, R.B.: Fine-
Grained Software Evolution Using UML Activity and Class
Models, pp. 271–286. Springer, Berlin (2013). https://doi.org/10.
1007/978-3-642-41533-3_17

45. Cetina, C., Giner, P., Fons, J., Pelechano, V.: A model-driven
approach for developing self-adaptive pervasive systems. In: Pro-
ceedings of the 3rd International Models@ Runtime Workshop,
pp. 97–106 (2008)

46. Cetina, C., Giner, P., Fons, J., Pelechano, V.: Autonomic com-
puting through reuse of variability models at runtime: the case of
smart homes. Computer 42(10), 37–43 (2009)

47. Chen, B., Peng, X., Yu, Y., Nuseibeh, B., Zhao, W.: Self-
adaptation through incremental generative model transformations
at runtime. In: 36th International Conference on Software Engi-
neering, ICSE ’14, Hyderabad, India—31May–07 June 2014, pp.
676–687 (2014). https://doi.org/10.1145/2568225.2568310

48. Chen, T., Bahsoon, R.: Self-adaptive and online qos modeling for
cloud-based software services. IEEE Trans. Softw. Eng. 43(5),
453–475 (2017). https://doi.org/10.1109/TSE.2016.2608826

49. Chen, X., Li, A., Zeng, X., Guo, W., Huang, G.: Runtime model
based approach to iot application development. Front. Comput.
Sci. 9(4), 540–553 (2015)

50. Cheng, B.H.C., Eder, K.I., Gogolla, M., Grunske, L., Litoiu, M.,
Müller, H.A., Pelliccione, P., Perini, A., Qureshi, N.A., Rumpe,
B., Schneider, D., Trollmann, F., Villegas, N.M.: Using models
at runtime to address assurance for self-adaptive systems. In:
Models@run.time—Foundations, Applications, and Roadmaps
(Dagstuhl Seminar 11481, 27 November–2 December 2011), pp.
101–136 (2011). https://doi.org/10.1007/978-3-319-08915-7_4

51. Cheng, B.H.C., Eder, K.I., Gogolla, M., Grunske, L., Litoiu, M.,
Müller, H.A., Pelliccione, P., Perini, A., Qureshi, N.A., Rumpe,
B., Schneider, D., Trollmann, F., Villegas, N.M.: Using models
at runtime to address assurance for self-adaptive systems. In:
Models@run.time—Foundations, Applications, and Roadmaps
(Dagstuhl Seminar 11481, 27 November–2 December 2011), pp.
101–136 (2014). https://doi.org/10.1007/978-3-319-08915-7_4

52. Combemale, B., Broto, L., Crégut, X., Daydé, M., Hagimont, D.:
Autonomic management policy specification: from uml to dsml.
In: Model Driven Engineering Languages and Systems, pp. 584–
599. Springer (2008)

53. Criado, J., Vicente-Chicote, C., Padilla, N., Iribarne, L.: Amodel-
driven approach to graphical user interface runtime adaptation. In:
Proceedings of the 5thWorkshop onModels@run.time, pp. 49–59
(2010)

54. Dávid, I., Ráth, I., Varró, D.: Foundations for streaming model
transformations by complex event processing. Softw. Syst.Model.
(2016). https://doi.org/10.1007/s10270-016-0533-1

55. de Grandis, P., Valetto, G.: Elicitation and utilization of
application-level utility functions. In: Proceedings of the 6th Inter-
national Conference on Autonomic Computing, pp. 107–116.
ACM (2009). https://doi.org/10.1145/1555228.1555259

56. de Lemos, R., Giese, H., Müller, H.A., Shaw, M., Andersson, J.,
Litoiu, M., Schmerl, B., Tamura, G., Villegas, N.M., Vogel, T.,
Weyns, D., Baresi, L., Becker, B., Bencomo, N., Brun, Y., Cukic,
B., Desmarais, R., Dustdar, S., Engels, G., Geihs, K., Göschka,
K.M., Gorla, A., Grassi, V., Inverardi, P., Karsai, G., Kramer, J.,
Lopes, A., Magee, J., Malek, S., Mankovskii, S., Mirandola, R.,
Mylopoulos, J., Nierstrasz, O., Pezzè, M., Prehofer, C., Schäfer,

W., Schlichting, R., Smith,D.B., Sousa, J.P., Tahvildari, L.,Wong,
K., Wuttke, J.: Software Engineering for Self-Adaptive Systems:
A Second Research Roadmap, pp. 1–32. Springer, Berlin (2013).
https://doi.org/10.1007/978-3-642-35813-5_1

57. De Oliveira Filho, J., Papp, Z., Djapic, R., Oosteveen, J.: Model-
based design of self-adapting networked signal processing sys-
tems. In: IEEE 7th International Conference on Self-Adaptive
and Self-Organizing Systems (SASO), 2013, pp. 41–50 (2013).
https://doi.org/10.1109/SASO.2013.16

58. Debbabi, B., Diaconescu, A., Lalanda, P.: Controlling self-
organising software applications with archetypes. In: IEEE 6th
International Conference on Self-Adaptive and Self-Organizing
Systems (SASO), 2012, pp. 69–78 (2012). https://doi.org/10.
1109/SASO.2012.21

59. DeLoach, S.A., Ou, X., Zhuang, R., Zhang, S.: Model-driven,
moving-target defense for enterprise network security. In:
Models@run.time—Foundations, Applications, and Roadmaps
(Dagstuhl Seminar 11481, 27 November–2 December 2011), pp.
137–161 (2014). https://doi.org/10.1007/978-3-319-08915-7_5

60. Denker, M., Ressia, J., Greevy, O., Nierstrasz, O.: Modeling fea-
tures at runtime. In: Model-Driven Engineering Languages and
Systems, pp. 138–152. Springer (2010)

61. Derakhshanmanesh, M., Amoui, M., O’Grady, G., Ebert, J.,
Tahvildari, L.: Graf: graph-based runtime adaptation framework.
In: Proceedings of the 6th International Symposium on Software
Engineering for Adaptive and Self-Managing Systems, SEAMS
’11, pp. 128–137. ACM, New York, NY, USA (2011). https://doi.
org/10.1145/1988008.1988026

62. Derakhshanmanesh, M., Grieger, M., Ebert, J.: On the need for
extended transactional models@run.time. In: Götz, S., Bencomo,
N., Blair, G., Song, H. (eds.) Proceedings of the 10th Interna-
tionalWorkshoponModels@run.time, pp. 21–30.CEUR-WS.org
(2015)

63. Devries, B., Cheng, B.: Using models at run time to detect
incomplete and inconsistent requirements. In: Proceedings of the
12th International Workshop on Models@run.time Co-located
with 20th International Conference onModel Driven Engineering
Languages and Systems (MODELS 2016), 19 September 2017,
Austin, TX, USA (2017)

64. Diaconescu, A., Bellman, K.L., Esterle, L., Giese, H., Götz,
S., Lewis, P., Zisman, A.: Architectures for Collective Self-
Aware Computing Systems, pp. 191–235. Springer, Cham (2017).
https://doi.org/10.1007/978-3-319-47474-8_7

65. Didona, D., Romano, P., Peluso, S., Quaglia, F.: Transactional
auto scaler: elastic scaling of in-memory transactional data grids.
In: Proceedings of the 9th International Conference onAutonomic
Computing, pp. 125–134. ACM (2012). https://doi.org/10.1145/
2371536.2371559

66. Ding, Y., Namatame, N., Riedel, T., Miyaki, T., Budde, M.:
Smartteco: context-based ambient sensing and monitoring for
optimizing energy consumption. In: Proceedings of the 8th ACM
InternationalConference onAutonomicComputing, pp. 169–170.
ACM (2011). https://doi.org/10.1145/1998582.1998612

67. Ebraert, P., Tourwe, T.: A reflective approach to dynamic software
evolution. In: Cazzola, W., Chiba, S., Saake, G. (eds.) Research
Report C-196, pp. 37–43. Department of Mathematical and Com-
puting Sciences, Tokyo Institute of Technology, Tokyo (2004)

68. El Kateb, D., Zannone, N., Moawad, A., Caire, P., Nain, G.,
Mouelhi, T., Le Traon, Y.: Conviviality-driven access control pol-
icy. Requir. Eng. 20(4), 363–382 (2015). https://doi.org/10.1007/
s00766-014-0204-0

69. Elkhodr, M., Shahrestani, S.A., Cheung, H.: The Internet of
Things: new interoperability, management and security chal-
lenges. CoRR arXiv:1604.04824 (2016)

123

https://doi.org/10.1145/2593929.2593942
https://doi.org/10.1145/2593929.2593942
https://doi.org/10.1007/978-3-319-08915-7_9
https://doi.org/10.1007/978-3-642-41533-3_17
https://doi.org/10.1007/978-3-642-41533-3_17
https://doi.org/10.1145/2568225.2568310
https://doi.org/10.1109/TSE.2016.2608826
https://doi.org/10.1007/978-3-319-08915-7_4
https://doi.org/10.1007/978-3-319-08915-7_4
https://doi.org/10.1007/s10270-016-0533-1
https://doi.org/10.1145/1555228.1555259
https://doi.org/10.1007/978-3-642-35813-5_1
https://doi.org/10.1109/SASO.2013.16
https://doi.org/10.1109/SASO.2012.21
https://doi.org/10.1109/SASO.2012.21
https://doi.org/10.1007/978-3-319-08915-7_5
https://doi.org/10.1145/1988008.1988026
https://doi.org/10.1145/1988008.1988026
https://doi.org/10.1007/978-3-319-47474-8_7
https://doi.org/10.1145/2371536.2371559
https://doi.org/10.1145/2371536.2371559
https://doi.org/10.1145/1998582.1998612
https://doi.org/10.1007/s00766-014-0204-0
https://doi.org/10.1007/s00766-014-0204-0
http://arxiv.org/abs/1604.04824

3078 N. Bencomo et al.

70. Esfahani, N., Malek, S.: Uncertainty in Self-Adaptive Software
Systems, pp. 214–238. Springer, Berlin (2013). https://doi.org/
10.1007/978-3-642-35813-5_9

71. Esfahani, N., Yuan, E., Canavera, K.R., Malek, S.: Inferring soft-
ware component interaction dependencies for adaptation support.
ACM Trans. Auton. Adapt. Syst. 10, 26:1–26:32 (2016)

72. Evesti, A., Ovaska, E.: Ontology-based security adaptation at run-
time. In: 4th IEEE International Conference on Self-Adaptive
and Self-Organizing Systems (SASO), 2010, pp. 204–212 (2010).
https://doi.org/10.1109/SASO.2010.11

73. Ferry, N., Hourdin, V., Lavirotte, S., Rey, G., Tigli, J.Y., Riveill,
M.: Models at runtime: service for device composition and adap-
tation. In: Proceedings of the 4thWorkshop onModels@run.time,
pp. 51–60 (2009)

74. Fiadeiro, J.L., Lopes, A.: A model for dynamic reconfiguration
in service-oriented architectures. In: Proceedings of 4th European
Conference on Software Architecture, ECSA 2010, Copenhagen,
Denmark, 23–26 August 2010, pp. 70–85 (2010). https://doi.org/
10.1007/978-3-642-15114-9_8

75. Filho, R.R., Porter, B.: Defining emergent software using continu-
ous self-assembly, perception, and learning. ACM Trans. Auton.
Adapt. Syst. 12(3), 16:1–16:25 (2017). https://doi.org/10.1145/
3092691

76. Filieri, A., Ghezzi, C., Grassi, V., Mirandola, R.: Reliabil-
ity analysis of component-based systems with multiple failure
modes. In: Proceedings of 13th International Symposium on
Component-Based Software Engineering, CBSE 2010, Prague,
Czech Republic, 23–25 June 2010, pp. 1–20 (2010). https://doi.
org/10.1007/978-3-642-13238-4_1

77. Filieri, A., Tamburrelli, G., Ghezzi, C.: Supporting self-adaptation
via quantitative verification and sensitivity analysis at run time.
IEEE Trans. Softw. Eng. 42(1), 75–99 (2016). https://doi.org/10.
1109/TSE.2015.2421318

78. Fleurey, F., Dehlen, V., Bencomo, N., Morin, B., Jezequel, J.M.:
Modeling and validating dynamic adaptation. In: Proceedings of
the 3rd International Models@ Runtime Workshop, pp. 36–46
(2008)

79. Fouquet, F., Morin, B., Fleurey, F., Barais, O., Plouzeau, N.,
Jézéquel, J.: A dynamic component model for cyber physical sys-
tems. In: Proceedings of the 15th ACM SIGSOFT Symposium
on Component Based Software Engineering, CBSE 2012, Part of
Comparch ’12 Federated Events on Component-Based Software
Engineering and Software Architecture, Bertinoro, Italy, 25–28
June 2012, pp. 135–144 (2012). https://doi.org/10.1145/2304736.
2304759

80. Fouquet, F.,Nain,G.,Morin,B.,Daubert, E., Barais,O., Plouzeau,
N., Jézéquel, J.M.: An eclipse modelling framework alternative
to meet the models@ runtime requirements. In: Proceedings of
the 15th International Conference on Model Driven Engineering
Languages and Systems, pp. 87–101. Springer (2012)

81. France, R., Rumpe, B.: Model-driven development of complex
software: a research roadmap. In: Briand, L., Wolf, A. (eds.)
Future of Software Engineering. IEEE-CS Press, Piscataway
(2007)

82. Gamez, N., Fuentes, L., Troya, J.: Creating self-adapting mobile
systems with dynamic software product lines. IEEE Softw. 32(2),
105–112 (2015)

83. Garcia, A., Bencomo, N.: Non-human modelers: Can they work?
In: Proceedings of Workshops, STAF 2017, Software Technolo-
gies: Applications and Foundations (2017)

84. Garlan, D., Schmerl, B.: Using Architectural Models at Runtime:
Research Challenges. Springer, Berlin (2004)

85. Georgas, J.C., van der Hoek, A., Taylor, R.N.: Using architectural
models to manage and visualize runtime adaptation. Computer
42(10), 0052–60 (2009)

86. Gerbert-Gaillard, E., Lalanda, P.: Self-aware model-driven per-
vasive systems. In: 2016 IEEE International Conference on
Autonomic Computing (ICAC), pp. 221–222 (2016). https://doi.
org/10.1109/ICAC.2016.26

87. Ghahremani, S., Giese, H., Vogel, T.: Efficient utility-driven
self-healing employing adaptation rules for large dynamic archi-
tectures. In: 2017 IEEE International Conference on Autonomic
Computing (ICAC), pp. 59–68 (2017). https://doi.org/10.1109/
ICAC.2017.35

88. Ghezzi, C., Mocci, A., Sangiorgio, M.: Runtime monitoring of
component changes with spy@runtime. In: Proceedings of the
34th International Conference on Software Engineering, ICSE
’12, pp. 1403–1406. IEEE Press, Piscataway, NJ, USA (2012).
http://dl.acm.org/citation.cfm?id=2337223.2337430

89. Gjerlufsen, T., Ingstrup, M., Olsen, J.W.: Mirrors of meaning:
supporting inspectable runtime models. Computer 42(10), 61–
68 (2009). (This paper is focused on the reflection of programs’
runtime status)

90. Gonzalez-Herrera, I., Bourcier, J., Daubert, E., Rudametkin, W.,
Barais, O., Fouquet, F., Jézéquel, J.M.: Scapegoat: an adap-
tive monitoring framework for component-based systems. In:
IEEE/IFIPConference on SoftwareArchitecture (WICSA), 2014,
pp. 67–76. IEEE (2014)

91. Götz, S., Gerostathopoulos, I., Krikava, F., Shahzada, A.,
Spalazzese, R.: Adaptive exchange of distributed partial mod-
els@run.time for highly dynamic systems. In: Proceedings of the
10th International SymposiumonSoftwareEngineering forAdap-
tive and Self-Managing Systems (SEAMS). IEEE (2015)

92. Götz, S., Kühn, T.: Models@run.time for object-relational map-
ping supporting schema evolution. In: Götz, S., Bencomo, N.,
Blair, G., Song, H. (eds.) Proceedings of the 10th Interna-
tionalWorkshoponModels@run.time, pp. 41–50.CEUR-WS.org
(2015)

93. Götz, S., Schöne,R.,Wilke,C.,Mendez, J.,Assmann,U.: Towards
predictive self-optimization by situation recognition. In: Proceed-
ings of 2nd Workshop “Energy Aware Software—Engineering
and Development” (EASED) (2013)

94. Götz, S.: Supporting systematic literature reviews in computer
science: the systematic literature review toolkit. In: MoDELS
Companion, pp. 22–26. ACM (2018)

95. Götz, S., Bencomo, N., France, R.B.: Devising the future of the
models@run.time workshop. ACM SIGSOFT Softw. Eng. Notes
40(1), 26–29 (2015). https://doi.org/10.1145/2693208.2693249

96. Grohmann, J., Herbst, N., Spinner, S., Kounev, S.: Self-tuning
resource demand estimation. In: 2017 IEEE International Confer-
ence onAutonomicComputing (ICAC), pp. 21–26 (2017). https://
doi.org/10.1109/ICAC.2017.19

97. Guo, T., Shenoy, P.: Model-driven geo-elasticity in database
clouds. In: 2015 IEEE International Conference on Autonomic
Computing (ICAC), pp. 61–70 (2015). https://doi.org/10.1109/
ICAC.2015.46

98. Hallsteinsen, S., Hinchey, M., Park, S., Schmid, K.: Dynamic
software product lines. Computer 41(4), 93–95 (2008). https://
doi.org/10.1109/MC.2008.123

99. Hartmann, T., Moawad, A., Fouquet, F., Le Traon, Y.: The next
evolution of MDE: a seamless integration of machine learning
into domain modeling. Softw. Syst. Model. (2017). https://doi.
org/10.1007/s10270-017-0600-2

100. Hartmann, T.,Moawad, A., Fouquet, F., Nain, G., Klein, J., Traon,
Y.L.: Stream my models: Reactive peer-to-peer distributed mod-
els@run.time. In: ACM/IEEE 18th International Conference on
Model Driven Engineering Languages and Systems (MODELS),
2015, pp. 80–89 (2015). https://doi.org/10.1109/MODELS.2015.
7338238

101. Heinzemann, C., Becker, S., Volk, A.: Transactional execution of
hierarchical reconfigurations in cyber-physical systems. Softw.

123

https://doi.org/10.1007/978-3-642-35813-5_9
https://doi.org/10.1007/978-3-642-35813-5_9
https://doi.org/10.1109/SASO.2010.11
https://doi.org/10.1007/978-3-642-15114-9_8
https://doi.org/10.1007/978-3-642-15114-9_8
https://doi.org/10.1145/3092691
https://doi.org/10.1145/3092691
https://doi.org/10.1007/978-3-642-13238-4_1
https://doi.org/10.1007/978-3-642-13238-4_1
https://doi.org/10.1109/TSE.2015.2421318
https://doi.org/10.1109/TSE.2015.2421318
https://doi.org/10.1145/2304736.2304759
https://doi.org/10.1145/2304736.2304759
https://doi.org/10.1109/ICAC.2016.26
https://doi.org/10.1109/ICAC.2016.26
https://doi.org/10.1109/ICAC.2017.35
https://doi.org/10.1109/ICAC.2017.35
http://dl.acm.org/citation.cfm?id=2337223.2337430
https://doi.org/10.1145/2693208.2693249
https://doi.org/10.1109/ICAC.2017.19
https://doi.org/10.1109/ICAC.2017.19
https://doi.org/10.1109/ICAC.2015.46
https://doi.org/10.1109/ICAC.2015.46
https://doi.org/10.1109/MC.2008.123
https://doi.org/10.1109/MC.2008.123
https://doi.org/10.1007/s10270-017-0600-2
https://doi.org/10.1007/s10270-017-0600-2
https://doi.org/10.1109/MODELS.2015.7338238
https://doi.org/10.1109/MODELS.2015.7338238

Models@run.time: a guided tour of the state of the art and research challenges 3079

Syst. Model. (2017). https://doi.org/10.1007/s10270-017-0583-
z

102. Hinchey, M., Park, S., Schmid, K.: Building dynamic software
product lines. Computer 45, 22–26 (2012). https://doi.org/10.
1109/MC.2012.332

103. Hong, Jy, Suh, Eh,Kim, S.J.: Context-aware systems. Expert Syst.
Appl. 36(4), 8509–8522 (2009). https://doi.org/10.1016/j.eswa.
2008.10.071

104. Hooman, J., Hendriks, T.: Model-based run-time error detection.
In: Giese, H. (ed.)Models in Software Engineering, LectureNotes
in Computer Science, vol. 5002, pp. 225–236. Springer, Berlin
(2008). https://doi.org/10.1007/978-3-540-69073-3_24

105. Hussein, M., Han, J., Yu, J., Colman, A.: Enabling runtime
evolution of context-aware adaptive services. In: 2013 IEEE Inter-
national Conference on Services Computing, pp. 248–255 (2013).
https://doi.org/10.1109/SCC.2013.77

106. Iordanov, B., Alexandrova, A., Abbas, S., Hilpold, T., Upadrasta,
P.: The semanticweb as a softwaremodeling tool: an application to
citizen relationship management. In: Model-Driven Engineering
Languages and Systems, pp. 589–603. Springer (2013)

107. Jacques-Silva, G., Challenger, J., Degenaro, L., Giles, J., Wagle,
R.: Towards autonomic fault recovery in system-s. In: 4th Inter-
national Conference on Autonomic Computing, 2007. ICAC ’07,
pp. 31–31 (2007). https://doi.org/10.1109/ICAC.2007.40

108. Janik, A., Zielinski, K.: Transparent resource management and
self-adaptability using multitasking virtual machine RM API.
In: Proceedings of the 2006 International Workshop on Self-
Adaptation and Self-Managing Systems, SEAMS ’06, pp. 51–57.
ACM, New York, NY, USA (2006). https://doi.org/10.1145/
1137677.1137688

109. Javed, F., Arshad, N.: Adopt: an adaptive optimization frame-
work for large-scale power distribution systems. In: 3rd IEEE
International Conference on Self-Adaptive and Self-Organizing
Systems, 2009. SASO ’09, pp. 254–264 (2009). https://doi.org/
10.1109/SASO.2009.26

110. Johanndeiter, T., Goldstein, A., Frank, U.: Towards business pro-
cess models at runtime. In: Proceedings of the 8th Workshop on
Models@run.time, pp. 13–25. CEUR-WS.org (2013)

111. Junior, A.S., Costa, F., Clarke, P.: A model-driven approach to
develop and manage cyber-physical systems. In: Proceedings
of the 8th Workshop on Models@run.time, pp. 62–73. CEUR-
WS.org (2013)

112. Karol, S., Bürger, C., Aßmann, U.: Towards well-formed frag-
ment composition with reference attribute grammars. In: Grassi,
V.,Mirandola,R.,Medvidovic,N., Larsson,M. (eds.) Proceedings
of the 15th ACM SIGSOFT Symposium on Component Based
Software Engineering, CBSE 2012, Part of Comparch 12 Fed-
erated Events on Component-Based Software Engineering and
Software Architecture, pp. 109–114. ACM (2012)

113. Kitchenham, B.: Procedures for Performing Systematic Reviews
(2004)

114. Kounev, S., Brosig, F., Huber, N.: Self-aware QoS management
in virtualized infrastructures. In: Proceedings of the 8th ACM
InternationalConference onAutonomicComputing, pp. 175–176.
ACM (2011). https://doi.org/10.1145/1998582.1998615

115. Kounev, S., Kephart, J.O., Milenkoski, A., Zhu, X. (eds.): Self-
Aware Computing Systems. Springer, Cham (2017)

116. Kounev, S., Lewis, P.R., Bellman, K.L., Bencomo, N., Cámara,
J., Diaconescu, A., Esterle, L., Geihs, K., Giese, H., Götz, S.,
Inverardi, P., Kephart, J.O., Zisman, A.: The notion of self-aware
computing. In: Self-Aware Computing Systems, pp. 3–16 (2017).
https://doi.org/10.1007/978-3-319-47474-8_1

117. Křikava, F., Collet, P., France, R.B.: Actress: domain-specific
modeling of self-adaptive software architectures. In: Proceedings
of the 29th Annual ACM Symposium on Applied Computing,

SAC ’14, pp. 391–398.ACM,NewYork,NY,USA (2014). https://
doi.org/10.1145/2554850.2555020

118. Krikava, F., Rouvoy, R., Seinturier, L.: Infrastructure as run-
time models: towards model-driven resource management. In:
ACM/IEEE18th InternationalConference onModelDrivenEngi-
neering Languages and Systems (MODELS), 2015, pp. 100–105
(2015). https://doi.org/10.1109/MODELS.2015.7338240

119. Kuhn, A., Verwaest, T.: FAME—a polyglot library for meta-
modeling at runtime. In: Proceedings of the 3rd International
Models@Runtime Workshop, pp. 57–66 (2008)

120. Kusic, D., Kandasamy, N., Jiang, G.: Approximation modeling
for the online performance management of distributed computing
systems. In: 4th International Conference onAutonomic Comput-
ing, 2007. ICAC ’07, pp. 23–23 (2007). https://doi.org/10.1109/
ICAC.2007.8

121. Lee, J.,Muthig, D., Naab,M.: An approach for developing service
oriented product lines. In: Proceedings of the 12th International on
Software Product Line Confer SPLC 2008, pp. 275–284 (2008).
https://doi.org/10.1109/SPLC.2008.34

122. Loulou, H., Saudrais, S., Soubra, H., Larouci, C.: Adapting secu-
rity policy at runtime for connected autonomous vehicles. In: 2016
IEEE 25th International Conference on Enabling Technologies:
Infrastructure for Collaborative Enterprises (WETICE), pp. 26–
31 (2016). https://doi.org/10.1109/WETICE.2016.16

123. Maes, P.: Concepts and experiments in computational reflection.
In: Conference Proceedings on Object-Oriented Programming
Systems, Languages and Applications, OOPSLA ’87, pp. 147–
155. ACM, New York, NY, USA (1987). https://doi.org/10.1145/
38765.38821

124. Maier, M.W.: Architecting principles for systems-of-systems.
Syst. Eng. 1(4), 267–284 (1998). https://doi.org/10.1002/
(SICI)1520-6858(1998)1:4<267::AID-SYS3>3.0.CO;2-D

125. Maoz, S.: Usingmodel-based traces as runtimemodels. Computer
42(10), 0028–36 (2009)

126. Mocci, A., Sangiorgio, M.: Detecting component changes at run
time with behavior models. Computing 95(3), 191–221 (2013).
https://doi.org/10.1007/s00607-012-0214-z

127. Mongiello, M., Pelliccione, P., Sciancalepore, M.: Ac-contract:
run-time verification of context-aware applications. In: Proceed-
ings of the 10th International Symposium on Software Engineer-
ing for Adaptive and Self-Managing Systems, SEAMS ’15, pp.
24–34. IEEE Press, Piscataway, NJ, USA (2015). http://dl.acm.
org/citation.cfm?id=2821357.2821363

128. Morin, B., Fleurey, F., Bencomo, N., Jézéquel, J.M., Solberg,
A., Dehlen, V., Blair, G.: An aspect-oriented and model-driven
approach for managing dynamic variability. In: Model Driven
Engineering Languages and Systems, pp. 782–796. Springer
(2008)

129. Morin,B.,Nain,G.,Barais,O., Jezequel, J.M.: Leveragingmodels
from design-time to runtime. A live demo. In: Proceedings of the
4th Workshop on Models@run.time, pp. 21–30 (2009)

130. Morin, B., Barais, O., Jezequel, J., Fleurey, F., Solberg, A.: Mod-
els@ run. time to support dynamic adaptation. Computer 42(10),
44–51 (2009)

131. Mosincat, A.D., Binder, W.: Self-tuning BPEL processes. In:
Proceedings of the 6th International Conference on Autonomic
Computing, pp. 47–48. ACM (2009). https://doi.org/10.1145/
1555228.1555239

132. Moyano, F., Fernandez-Gago, C., Lopez, J.: A model-driven
approach for engineering trust and reputation into software ser-
vices. J. Netw. Comput. Appl. 69, 134–151 (2016). https://doi.
org/10.1016/j.jnca.2016.04.018. http://www.sciencedirect.com/
science/article/pii/S1084804516300698

133. Mullins, R.: The EternalS Roadmap—Defining a Research
Agenda for Eternal Systems, pp. 135–147. Springer, Berlin
(2013). https://doi.org/10.1007/978-3-642-45260-4_10

123

https://doi.org/10.1007/s10270-017-0583-z
https://doi.org/10.1007/s10270-017-0583-z
https://doi.org/10.1109/MC.2012.332
https://doi.org/10.1109/MC.2012.332
https://doi.org/10.1016/j.eswa.2008.10.071
https://doi.org/10.1016/j.eswa.2008.10.071
https://doi.org/10.1007/978-3-540-69073-3_24
https://doi.org/10.1109/SCC.2013.77
https://doi.org/10.1109/ICAC.2007.40
https://doi.org/10.1145/1137677.1137688
https://doi.org/10.1145/1137677.1137688
https://doi.org/10.1109/SASO.2009.26
https://doi.org/10.1109/SASO.2009.26
https://doi.org/10.1145/1998582.1998615
https://doi.org/10.1007/978-3-319-47474-8_1
https://doi.org/10.1145/2554850.2555020
https://doi.org/10.1145/2554850.2555020
https://doi.org/10.1109/MODELS.2015.7338240
https://doi.org/10.1109/ICAC.2007.8
https://doi.org/10.1109/ICAC.2007.8
https://doi.org/10.1109/SPLC.2008.34
https://doi.org/10.1109/WETICE.2016.16
https://doi.org/10.1145/38765.38821
https://doi.org/10.1145/38765.38821
https://doi.org/10.1002/(SICI)1520-6858(1998)1:4<267::AID-SYS3>3.0.CO;2-D
https://doi.org/10.1002/(SICI)1520-6858(1998)1:4<267::AID-SYS3>3.0.CO;2-D
https://doi.org/10.1007/s00607-012-0214-z
http://dl.acm.org/citation.cfm?id=2821357.2821363
http://dl.acm.org/citation.cfm?id=2821357.2821363
https://doi.org/10.1145/1555228.1555239
https://doi.org/10.1145/1555228.1555239
https://doi.org/10.1016/j.jnca.2016.04.018
https://doi.org/10.1016/j.jnca.2016.04.018
http://www.sciencedirect.com/science/article/pii/S1084804516300698
http://www.sciencedirect.com/science/article/pii/S1084804516300698
https://doi.org/10.1007/978-3-642-45260-4_10

3080 N. Bencomo et al.

134. Nascimento, A., Rubira, C., Castor, F.: UsingCVL to support self-
adaptation of fault-tolerant service compositions. In: IEEE 7th
International Conference on Self-Adaptive and Self-Organizing
Systems (SASO), 2013, pp. 261–262 (2013). https://doi.org/10.
1109/SASO.2013.34

135. Neamtiu, I.G.: Practical Dynamic Software Updating. Ph.D. The-
sis (2008)

136. Park, S., Hinchey, M., In, H.P., Schmid, K.: 8th Interna-
tional workshop on dynamic software product lines (dspl 2014).
In: Proceedings of the 18th International Software Product
Line Conference—Volume 1, SPLC ’14, pp. 355–355. ACM,
New York, NY, USA (2014). https://doi.org/10.1145/2648511.
2648554

137. Parra, C., Blanc, X., Cleve, A., Duchien, L.: Unifying design and
runtime software adaptation using aspect models. Sci. Comput.
Program. 76(12), 1247–1260 (2011). https://doi.org/10.1016/j.
scico.2010.12.005

138. Pasquale, L., Baresi, L., Nuseibeh, B.: Towards adaptive systems
through requirements@runtime. In: Proceedings of the 6thWork-
shop on Models@run.time, pp. 13–24 (2011)

139. Paucar, L.H.G., Bencomo, N., Yuen, K.K.F.: Juggling preferences
in a world of uncertainty. In: 25th IEEE International Require-
ments Engineering Conference, RE 2017, Lisbon, Portugal, 4–8
September 2017, pp. 430–435 (2017). https://doi.org/10.1109/
RE.2017.12

140. Paucar, L.H.G., Bencomo, N.: Runtimemodels based on dynamic
decision networks: enhancing the decision-making in the domain
of ambient assisted living applications. In: Proceedings of the
11th International Workshop on Models@run.time Co-located
with 19th International Conference onModel Driven Engineering
Languages and Systems (MODELS 2016), Saint Malo, France,
4 October 2016, pp. 9–17 (2016). http://ceur-ws.org/Vol-1742/
MRT16_paper_12.pdf

141. Pickering, B., Robert, S., Menoret, S., Mengusoglu, E.: Model-
driven management of complex systems. In: Proceedings of the
3rd International Models@ Runtime Workshop, pp. 117–126
(2008)

142. Piechnick, C., Piechnick, M., Götz, S., Püschel, G., Aßmann, U.:
Managing distributed context models requires adaptivity too. In:
Götz, S., Bencomo, N., Blair, G., Song, H. (eds.) Proceedings of
the 10th InternationalWorkshop onModels@run.time, pp. 61–70.
CEUR-WS.org (2015)

143. Porter, J., Menascé, D.A., Gomaa, H.: Desarm: a decentral-
ized mechanism for discovering software architecture models
at runtime in distributed systems. In: Proceedings of the 11th
International Workshop on Models@run.time Co-located with
19th International Conference onModel Driven Engineering Lan-
guages and Systems (MODELS 2016), Saint Malo, France, 4
October 2016, pp. 43–51 (2016). http://ceur-ws.org/Vol-1742/
MRT16_paper_3.pdf

144. Ramirez, A.J., Cheng, B.H., Bencomo, N., Sawyer, P.: Relaxing
claims: coping with uncertainty while evaluating assumptions at
run time. In: Proceedings of the 15th International Conference on
Model Driven Engineering Languages and Systems, pp. 53–69.
Springer (2012)

145. Ramirez, A.J., Jensen, A.C., Cheng, B.H.C.: A taxonomy of
uncertainty for dynamically adaptive systems. In: Proceedings
of the 7th International Symposium on Software Engineering
for Adaptive and Self-Managing Systems, SEAMS ’12, pp. 99–
108. IEEE Press, Piscataway, NJ, USA (2012). http://dl.acm.org/
citation.cfm?id=2666795.2666812

146. Redlich, D., Blair, G.S., Rashid, A., Molka, T., Gilani, W.:
Research challenges for business process models at run-time. In:
Models@run.time—Foundations, Applications, and Roadmaps
(Dagstuhl Seminar 11481, 27 November–2 December 2011), pp.
208–236 (2014). https://doi.org/10.1007/978-3-319-08915-7_8

147. Ressia, J., Renggli, L., Girba, T., Nierstrasz, O.: Run-time evo-
lution through explicit meta-objects. In: Proceedings of the 5th
Workshop on Models@run.time, pp. 37–48 (2010)

148. Riva, C., Rodriguez, J.V.: Combining static and dynamic views for
architecture reconstruction. In: Proceedings of the 6th European
Conference on SoftwareMaintenance andReengineering, pp. 47–
55 (2002). https://doi.org/10.1109/CSMR.2002.995789

149. Rothenberg, J., Widman, L.E., Loparo, K.A., Nielsen, N.R.: The
nature of modeling. In: Artificial Intelligence, Simulation and
Modeling, pp. 75–92. Wiley (1989)

150. Sabatucci, L., Cossentino, M.: From means-end analysis to
proactive means-end reasoning. In: Proceedings of the 10th
International Symposium on Software Engineering for Adap-
tive and Self-Managing Systems, SEAMS ’15, pp. 2–12. IEEE
Press, Piscataway, NJ, USA (2015). http://dl.acm.org/citation.
cfm?id=2821357.2821361

151. Salehie, M., Tahvildari, L.: Self-adaptive software: landscape and
research challenges. ACM Trans. Auton. Adapt. Syst. 4(2), 141–
1442 (2009). https://doi.org/10.1145/1516533.1516538

152. Samuel, A.L.: Some studies in machine learning using the game
of checkers. IBM J. Res. Dev. 44(1.2), 206–226 (2000). https://
doi.org/10.1147/rd.441.0206

153. Sanchez,M., Barrero, I., Villalobos, J., Deridder,D.:An execution
platform for extensible runtimemodels. In: Proceedings of the 3rd
International Models@ Runtime Workshop, pp. 107–116 (2008)

154. Saudrais, S., Staikopoulos, A., Clarke, S.: Using specification
models for runtime adaptations. In: Proceedings of the 4th Work-
shop on Models@run.time, pp. 109–117 (2009)

155. Sawyer, P., Bencomo, N., Whittle, J., Letier, E., Finkelstein, A.:
Requirements-aware systems: a research agenda for re for self-
adaptive systems. In: 2010 18th IEEE International Requirements
Engineering Conference, pp. 95–103 (2010). https://doi.org/10.
1109/RE.2010.21

156. Schneider, D., Becker, M., Trapp, M.: Approaching runtime trust
assurance in open adaptive systems. In: Proceedings of the 6th
International Symposium on Software Engineering for Adaptive
and Self-Managing Systems, SEAMS ’11, pp. 196–201. ACM,
New York, NY, USA (2011). https://doi.org/10.1145/1988008.
1988036

157. Schneider, D., Becker, M.: Runtime models for self-adaptation
in the ambient assisted living domain. In: Proceedings of the 3rd
International Models@ Runtime Workshop, pp. 47–56 (2008)

158. Schneider, D., Trapp, M.: A safety engineering framework for
open adaptive systems. In: 5th IEEE International Conference on
Self-Adaptive and Self-Organizing Systems (SASO), 2011, pp.
89–98 (2011). https://doi.org/10.1109/SASO.2011.20

159. Schneider, D., Trapp, M.: Conditional safety certification of open
adaptive systems. ACMTrans. Auton. Adapt. Syst. 8(2), 8:1–8:20
(2013). https://doi.org/10.1145/2491465.2491467

160. Schöne, R., Götz, S., Aßmann, U., Bürger, C.: Incremental
runtime-generation of optimisation problems using rag-controlled
rewriting. In: Proceedings of the 11th International Workshop on
Models@run.time Co-locatedwith 19th International Conference
onModelDrivenEngineeringLanguages andSystems (MODELS
2016), Saint Malo, France, 4 October 2016, pp. 26–34 (2016).
http://ceur-ws.org/Vol-1742/MRT16_paper_5.pdf

161. Sheikh, M.B., Minhas, U.F., Khan, O.Z., Aboulnaga, A., Poupart,
P., Taylor, D.J.: A Bayesian approach to online performance
modeling for database appliances usingGaussianmodels. In: Pro-
ceedings of the 8th ACM International Conference on Autonomic
Computing, pp. 121–130. ACM (2011). https://doi.org/10.1145/
1998582.1998603

162. Simmonds, J., Ben-David, S., Chechik,M.:Monitoring and recov-
ery for web service applications. Computing 95(3), 223–267
(2013). https://doi.org/10.1007/s00607-012-0215-y

123

https://doi.org/10.1109/SASO.2013.34
https://doi.org/10.1109/SASO.2013.34
https://doi.org/10.1145/2648511.2648554
https://doi.org/10.1145/2648511.2648554
https://doi.org/10.1016/j.scico.2010.12.005
https://doi.org/10.1016/j.scico.2010.12.005
https://doi.org/10.1109/RE.2017.12
https://doi.org/10.1109/RE.2017.12
http://ceur-ws.org/Vol-1742/MRT16_paper_12.pdf
http://ceur-ws.org/Vol-1742/MRT16_paper_12.pdf
http://ceur-ws.org/Vol-1742/MRT16_paper_3.pdf
http://ceur-ws.org/Vol-1742/MRT16_paper_3.pdf
http://dl.acm.org/citation.cfm?id=2666795.2666812
http://dl.acm.org/citation.cfm?id=2666795.2666812
https://doi.org/10.1007/978-3-319-08915-7_8
https://doi.org/10.1109/CSMR.2002.995789
http://dl.acm.org/citation.cfm?id=2821357.2821361
http://dl.acm.org/citation.cfm?id=2821357.2821361
https://doi.org/10.1145/1516533.1516538
https://doi.org/10.1147/rd.441.0206
https://doi.org/10.1147/rd.441.0206
https://doi.org/10.1109/RE.2010.21
https://doi.org/10.1109/RE.2010.21
https://doi.org/10.1145/1988008.1988036
https://doi.org/10.1145/1988008.1988036
https://doi.org/10.1109/SASO.2011.20
https://doi.org/10.1145/2491465.2491467
http://ceur-ws.org/Vol-1742/MRT16_paper_5.pdf
https://doi.org/10.1145/1998582.1998603
https://doi.org/10.1145/1998582.1998603
https://doi.org/10.1007/s00607-012-0215-y

Models@run.time: a guided tour of the state of the art and research challenges 3081

163. Song, H., Huang, G., Chauvel, F., Sun, Y.: Applying MDE tools
at runtime: experiments upon runtime models. In: Proceedings of
the 5th Workshop on Models@run.time, pp. 25–36 (2010). (Tool
demo paper)

164. Song, H., Huang, G., Xiong, Y.F., Chauvel, F., Sun, Y., Mei, H.,
et al.: Inferring meta-models for runtime system data from the
clients of management APIs. In: Proceedings of the 13th Interna-
tional Conference on Model-Driven Engineering Languages and
Systems (MODELS 2010), vol. 6395 (2010)

165. Song, H., Xiong, Y., Chauvel, F., Huang, G., Hu, Z., Mei, H.:
Generating synchronization engines between running systems and
their model-based views. In: Proceedings of the 4th Workshop on
Models@run.time, pp. 11–20 (2009)

166. Song, H., Zhang, X., Ferry, N., Chauvel, F., Solberg, A., Huang,
G.: Modelling adaptation policies as domain-specific constraints.
In: Model-Driven Engineering Languages and Systems, pp. 269–
285. Springer (2014)

167. Spinner, S., Kounev, S., Zhu, X., Lu, L., Uysal, M., Holler, A.,
Griffith, R.: Runtime vertical scaling of virtualized applications
via online model estimation. In: IEEE 8th International Con-
ference on Self-Adaptive and Self-Organizing Systems (SASO),
2014, pp. 157–166 (2014). https://doi.org/10.1109/SASO.2014.
29

168. Staikopoulos, A., Saudrais, S., Clarke, S., Padget, J., Cliffe, O.,
De Vos, M.: Mutual dynamic adaptation of models and service
enactment in alive. In: Proceedings of the 3rd International Mod-
els@ Runtime Workshop, pp. 26–35 (2008)

169. Stehle, E., Lynch, K., Shevertalov, M., Rorres, C., Mancoridis, S.:
On the use of computational geometry to detect software faults at
runtime. In: Proceedings of the 7th International Conference on
Autonomic Computing, pp. 109–118. ACM (2010). https://doi.
org/10.1145/1809049.1809069

170. Szvetits, M., Zdun, U.: Enhancing root cause analysis with run-
time models and interactive visualizations. In: Proceedings of the
8th Workshop on Models@run.time, pp. 38–49. CEUR-WS.org
(2013)

171. Szvetits,M., Zdun,U.: Reusable event types formodels at runtime
to support the examination of runtime phenomena. In: ACM/IEEE
18th International Conference onModel Driven Engineering Lan-
guages and Systems (MODELS), 2015, pp. 4–13 (2015). https://
doi.org/10.1109/MODELS.2015.7338230

172. Szvetits, M., Zdun, U.: Systematic literature review of the objec-
tives, techniques, kinds, and architectures of models at runtime.
Softw. Syst. Model. 15(1), 31–69 (2016)

173. Tallabaci, G., Souza, V.E.S.: Engineering adaptation with Zan-
shin: an experience report. In: Proceedings of the 8th Interna-
tional Symposium on Software Engineering for Adaptive and
Self-Managing Systems, SEAMS ’13, pp. 93–102. IEEE Press,
Piscataway, NJ, USA (2013)

174. Tamura, G., Villegas, N.M., Müller, H.A., Duchien, L., Sein-
turier, L.: Improving context-awareness in self-adaptation using
the dynamico reference model. In: Proceedings of the 8th Inter-
national Symposium on Software Engineering for Adaptive and
Self-Managing Systems, SEAMS ’13, pp. 153–162. IEEE Press,
Piscataway, NJ, USA (2013)

175. Tanvir Al Amin, M., Li, S., Rahman, M., Seetharamu, P., Wang,
S., Abdelzaher, T., Gupta, I., Srivatsa, M., Ganti, R., Ahmed, R.,
Le, H.: Social trove: a self-summarizing storage service for social
sensing. In: IEEE International Conference on Autonomic Com-
puting (ICAC), 2015, pp. 41–50 (2015). https://doi.org/10.1109/
ICAC.2015.47

176. Taylor, R.N., Medvidovic, N., Oreizy, P.: Architectural styles for
runtime software adaptation. In: JointWorking IEEE/IFIPConfer-
ence on SoftwareArchitecture, 2009 andEuropeanConference on
Software Architecture. WICSA/ECSA 2009, pp. 171–180. IEEE
(2009). (Need to define for fundamental)

177. Vasconcelos,A.,Werner,C.: Software architecture recovery based
on dynamic analysis. In: XVIII Brazilian Symposiumon Software
Engineering,Workshop onModern SoftwareMaintenance (2004)

178. Vialon, A., Tei, K., Aknine, S.: Soft-goal approximation context
awareness of goal-driven self-adaptive systems. In: 2017 IEEE
International Conference on Autonomic Computing (ICAC), pp.
233–238 (2017). https://doi.org/10.1109/ICAC.2017.25

179. Vogel, T., Giese, H.: A language for feedback loops in self-
adaptive systems: executable runtime megamodels. In: Proceed-
ings of the 6th International Symposium on Software Engineering
for Adaptive and Self-Managing Systems, pp. 129–138 (2012).
https://doi.org/10.1109/SEAMS.2012.6224399

180. Vogel, T., Giese, H.: Language and framework requirements for
adaptation models. In: Proceedings of the 6th Workshop on Mod-
els@run.time, pp. 1–12 (2011)

181. Vogel, T.,Giese,H.:Onunifyingdevelopmentmodels and runtime
models. In: Götz, S., Bencomo, N., France R. (eds.) Proceedings
of the 9th InternationalWorkshop onModels@run.time, pp. 5–10.
CEUR-WS.org (2014)

182. Vogel, T., Seibel, A., Giese, H.: Toward megamodels at runtime.
In: Proceedings of the 5th Workshop on Models@run.time, pp.
13–24 (2010)

183. Vogel, T., Giese, H.: Model-driven engineering of self-adaptive
software with eurema. ACM Trans. Auton. Adapt. Syst. 8(4),
18:1–18:33 (2014). https://doi.org/10.1145/2555612

184. Vrbaski, M., Mussbacher, G., Petriu, D., Amyot, D.: Goal models
as run-time entities in context-aware systems. In: Proceedings
of the 7th Workshop on Models@Run.Time, MRT ’12, pp. 3–
8. ACM, New York, NY, USA (2012). https://doi.org/10.1145/
2422518.2422520

185. Walter, J., Marco, A.D., Spinner, S., Inverardi, P., Kounev, S.:
Online learning of run-time models for performance and resource
management in data centers. In: Self-Aware Computing Systems,
pp. 507–528. IEEEPress, LosAlamitos, CA,USA (2017). https://
doi.org/10.1007/978-3-319-47474-8_17

186. Wätzold, S., Giese, H.: Classifying distributed self-* systems
based on runtime models and their coupling. In: Götz, S.,
Bencomo, N., France, R. (eds.) Proceedings of the 9th Interna-
tionalWorkshoponModels@run.time, pp. 11–20.CEUR-WS.org
(2014)

187. Weissbach,M., Chrszon, P., Springer, T., Schill, A.: Decentralized
coordination of adaptations in distributed self-adaptive software
systems. In: 2017 IEEE 11th International Conference on Self-
Adaptive and Self-Organizing Systems (SASO) (2017)

188. Welsh, K., Bencomo, N., Sawyer, P., Whittle, J.: Self-explanation
in adaptive systems based on runtime goal-basedmodels, pp. 122–
145 (2014). https://doi.org/10.1007/978-3-662-44871-7_5

189. Welsh, K., Sawyer, P., Bencomo, N.: Run-time resolution of
uncertainty. In: RE 2011, 19th IEEE International Require-
ments Engineering Conference, Trento, Italy, 29 August 2011–2
September 2011, pp. 355–356 (2011). https://doi.org/10.1109/
RE.2011.6051673

190. Weyns, D., Iftikhar, M.U., Söderlund, J.: Do external feedback
loops improve the design of self-adaptive systems? A controlled
experiment. In: Proceedings of the 8th International Symposium
on Software Engineering for Adaptive and Self-Managing Sys-
tems, SEAMS ’13, pp. 3–12. IEEE Press, Piscataway, NJ, USA
(2013). http://dl.acm.org/citation.cfm?id=2487336.2487341

191. Wolfe, C., Graham, T.N., Phillips, W.G.: An incremental algo-
rithm for high-performance runtime model consistency. In:
Model Driven Engineering Languages and Systems, pp. 357–371.
Springer (2009)

192. Zhang, X., Chen, X., Zhang, Y., Wu, Y., Yao, W., Huang, G., Lin,
Q.: Runtimemodel basedmanagement of diverse cloud resources.
In: Model-Driven Engineering Languages and Systems, pp. 572–
588. Springer (2013)

123

https://doi.org/10.1109/SASO.2014.29
https://doi.org/10.1109/SASO.2014.29
https://doi.org/10.1145/1809049.1809069
https://doi.org/10.1145/1809049.1809069
https://doi.org/10.1109/MODELS.2015.7338230
https://doi.org/10.1109/MODELS.2015.7338230
https://doi.org/10.1109/ICAC.2015.47
https://doi.org/10.1109/ICAC.2015.47
https://doi.org/10.1109/ICAC.2017.25
https://doi.org/10.1109/SEAMS.2012.6224399
https://doi.org/10.1145/2555612
https://doi.org/10.1145/2422518.2422520
https://doi.org/10.1145/2422518.2422520
https://doi.org/10.1007/978-3-319-47474-8_17
https://doi.org/10.1007/978-3-319-47474-8_17
https://doi.org/10.1007/978-3-662-44871-7_5
https://doi.org/10.1109/RE.2011.6051673
https://doi.org/10.1109/RE.2011.6051673
http://dl.acm.org/citation.cfm?id=2487336.2487341

3082 N. Bencomo et al.

193. Zhong, C., DeLoach, S.A.: Runtime models for automatic reor-
ganization of multi-robot systems. In: Proceedings of the 6th
International Symposium on Software Engineering for Adap-
tive and Self-Managing Systems, SEAMS ’11, pp. 20–29. ACM,
New York, NY, USA (2011). https://doi.org/10.1145/1988008.
1988012

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

Nelly Bencomo is a lecturer in
Computer Science in Aston Uni-
versity, UK. Before, she was a
Marie Curie Fellow at INRIA
Paris (2011–2013) and a Senior
Research Associate in Lancaster
University, UK, where she also
got her Ph.D. She has built a
portfolio of successful collabora-
tive and innovative research in
areas such as decision-making
under uncertainty and distributed,
self-adaptive and autonomous sys-
tems. She was the Program Chair
of the Symposium Software Engi-

neering for Adaptive and Self-Managing Systems (SEAMS) in India,
in 2014, and a Co-program Chair of the 12th IEEE International Con-
ference on Self-Adaptive and Self-Organizing Systems, Italy, in 2018.

Sebastian Götz is a senior
researcher at Technische Univer-
sität Dresden, Germany. His
research interests are model-driven
self-optimizing systems, energy-
efficient software systems and
software engineering for robotics.

Hui Song is research scientist
in SINTEF Digital, Norway. He
got his Ph.D. from Peking Uni-
versity, China, and before join-
ing SINTEF, he worked as Post-
Doc in Trinity College Dublin,
Ireland. His research interest is
Software Engineering techniques,
especially model-driven engineer-
ing, and the application of them
on cloud computing and Internet
of Things.

123

https://doi.org/10.1145/1988008.1988012
https://doi.org/10.1145/1988008.1988012

	Models@run.time: a guided tour of the state of the art and research challenges
	Abstract
	1 Introduction
	2 Research method applied
	2.1 Research questions
	2.2 General procedure
	2.3 Process of collecting relevant papers
	2.3.1 Inclusion criteria
	2.3.2 Exclusion criteria

	2.4 Overview of all included papers

	3 A taxonomy for research on models@run.time
	3.1 Conceiving the taxonomy
	3.2 Applied research on models@run.time
	3.2.1 Modelled artefacts
	3.2.2 Types of models@run.time
	3.2.3 Purposes
	3.2.4 Techniques

	3.3 Fundamental research on models@run.time
	3.4 Application domains
	3.5 Intersecting research areas
	3.6 Supporting research initiatives

	4 Threats to validity
	5 Cross-dimensional analysis of the taxonomy
	5.1 Comparing the modelled artefacts and types of runtime models
	5.2 Comparing the modelled artefacts and purpose of runtime model
	5.3 Comparing the modelled artefacts and applied model-driven techniques
	5.4 Comparing the type of runtime model and their purpose
	5.5 Comparing the type of runtime model and the applied model-driven techniques
	5.6 Comparing applied model-driven techniques and the purpose of runtime models

	6 Research challenges
	6.1 Challenges based on the modelled artefacts
	6.2 Challenges based on the runtime model type
	6.3 Challenges based on the purposes for using models@run.time
	6.4 Challenges based on applied model-driven techniques
	6.5 Challenges for fundamental research on models@run.time

	7 Conclusions
	Acknowledgements
	Appendices
	A List of application domains
	B List of supporting research initiatives
	References

