
Software & Systems Modeling (2019) 18:3005–3023
https://doi.org/10.1007/s10270-018-00707-8

REGULAR PAPER

A unifying framework for homogeneous model composition

Jörg Kienzle1 · Gunter Mussbacher1 · Benoit Combemale2 · Julien Deantoni3

Received: 13 January 2018 / Revised: 27 November 2018 / Accepted: 8 December 2018 / Published online: 3 January 2019
© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Abstract
The growing use of models for separating concerns in complex systems has lead to a proliferation of model composition
operators. These composition operators have traditionally been defined from scratch following various approaches differing in
formality, level of detail, chosen paradigm, and styles. Due to the lack of proper foundations for defining model composition
(concepts, abstractions, or frameworks), it is difficult to compare or reuse composition operators. In this paper, we stipulate the
existence of a unifying framework that reduces all structural composition operators to structural merging, and all composition
operators acting on discrete behaviors to event scheduling. We provide convincing evidence of this hypothesis by discussing
how structural and behavioral homogeneous model composition operators (i.e., weavers) can be mapped onto this framework.
Based on this discussion, we propose a conceptual model of the framework and identify a set of research challenges, which,
if addressed, lead to the realization of this framework to support rigorous and efficient engineering of model composition
operators for homogeneous and eventually heterogeneous modeling languages.

Keywords Model composition · Symmetric merge · Event scheduling · Event structures · Separation of concerns

1 Introduction

Extending the time-honored practice of separation of con-
cerns [13,39], Model-Driven Engineering (MDE) promotes
the use of separate models to address the various concerns in
the development of complex software-intensive systems [40].
The main objective is to chose the right level of abstraction
to specify and reason about the system under develop-
ment depending on stakeholder needs and system concerns.
While some of these models can be defined with a single
modeling language (e.g., UML), Domain-Specific Modeling

Communicated by Dr Jeff Gray.

B Benoit Combemale
benoit.combemale@irit.fr

Jörg Kienzle
joerg.kienzle@mcgill.ca

Gunter Mussbacher
gunter.mussbacher@mcgill.ca

Julien Deantoni
julien.deantoni@polytech.unice.fr

1 McGill University, Montreal, Canada

2 University of Toulouse, Toulouse, France

3 Universite Cote d’Azur, I3S/INRIA, Nice, France

Languages (DSMLs) are increasingly used to handle various
concerns in system and software development [6]. To sup-
port this trend, theMDE community has developed advanced
techniques for designing new DSMLs.

A consequence of separating concerns is that different,
possibly heterogeneous, models need to be composed in
order to execute the application or reason over global prop-
erties. In general, model composition unfolds along two
dimensions, i.e., structure and behavior. So far, frameworks
that offer composition operators had to define their own com-
position rules and provide custom-made implementations of
their operators (e.g., through transformations).

Depending on the context of use, different or customized
composition operators are needed to provide support for
different development paradigms (e.g., incremental devel-
opment or Software Product Line (SPL) development) and
address the various objectives (e.g., analysis, compilation,
runtime management, etc.) of the developer. Furthermore,
due to the increasing number of application domains of inter-
est, and the growing number of stakeholders, newDSMLs are
constantly developed and new composition operators need to
be developed accordingly.While dedicated foundations have
been proposed in the last decade to systematically engineer
modeling languages and more specifically DSMLs, this is
not yet the case for defining the corresponding composition

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10270-018-00707-8&domain=pdf

3006 J. Kienzle et al.

operators. Those foundations need to be elaborated in order
to move from tedious, ad hoc crafting of composition oper-
ators to structured, streamlined engineering.

This paper proposes a framework for engineering com-
position operators that is based on the hypothesis that all
structural composition can be expressed with symmetric
merging, and all (discrete-event) behavioral composition can
be reduced to asymmetric event scheduling. The framework
introduces a canonical categorization of homogeneousmodel
composition operators (i.e., weavers) and establishes a foun-
dational set of capabilities required for most, if not all,
DSMLs to support composition and modularization. Con-
cretely, the contributions of this paper are (1) a clear definition
of model composition via a clear definition of merging
and event scheduling, (2) a survey of existing approaches
dedicated to homogeneous model composition w.r.t. this cat-
egorization, and (3) a set of research challenges indicating
how to realize the proposed model composition framework
and outlining future research directions.

The structure of this paper is as follows. Section 2
illustrates the need for different homogeneous and hetero-
geneous composition operators by outlining examples in
which structural and behavioral model composition is used
in different contexts and for different purposes. Section 3
positions the proposed model composition framework in
the landscape of composition techniques and describes four
generic steps for composition operators. Section 4 then
goes into further details of structural composition, while
Sect. 5 discusses behavioral composition. Section 6 provides
a description of the key concepts of the proposedmodel com-
position framework as part of the presentation of the set of
research challenges. General purpose weavers are contrasted
as related work with the proposed framework in Sect. 7.
Finally, Sect. 8 concludes the paper.

2 Illustrating examples

This section presents concrete real-world examples in which
models and model composition have been used to sepa-
rate concerns during development. Each situation required
the definition and implementation of composition operators,
either structural or behavioral, tailored to the application con-
text of the composition and the notation(s) that had to be
composed.

2.1 Need for different homogeneous composition
operators for standardmodeling notations

Standard modeling notations, for example, the UnifiedMod-
eling Language, have been used extensively in the context of
MDEover the last two decades.While theUML specification
document published by OMG [37] standardizes the nota-

tion, it does not specify in what context or for what purpose
the notation should be used during software development.
For example, class diagrams have been used in very differ-
ent contexts that imply different composition strategies, for
example, for specifying object-oriented design structure, for
specifying domain models, and even for defining the abstract
syntax for modeling languages in form of metamodels.

While modeling and model-driven engineering continue
to gain popularity, it soon also became clear that despite
the power of abstraction of modeling, models of real-world
problems and systems quickly grow to such an extent that
managing the complexity by using proper modularization
techniques becomes necessary [1].As a result,many standard
modeling notations have been extended with aspect-oriented
mechanisms to support advanced separation of concerns. Not
surprisingly, for a given notation, depending on the purpose
for whichmodels are being used, different composition oper-
ators have been proposed in the literature.

A concrete example of this, adapted from [19], is illus-
trated in Fig. 1. The top of the figure depicts two state
diagrams, SD1 and SD2. The bottom left shows the result of
composing SD1 with SD2 using the state diagram composi-
tion operator defined by theHiLA approach [43]. The bottom
right shows the result of composing the same state diagrams
using the state diagram composition operator defined as part
of the Protocol Modeling approach (PM) [30], which is in
turn inspired by the CSP parallel composition operator ‖.

The results of the composition are clearly different. HiLA
is an approach where state diagrams are used in the con-
text of low-level software design to describe the behavior of
system components and generate code. In HiLA, states with
matching names are merged, and transitions and states that
only appear in one of the input models are copied. PM on the
other hand is used during high-level requirements specifica-
tion and analysis for simulation and test generation purpose.
In this context, to ensure the tractability of protocol analysis
and enable local reasoning, the ‖ composition operator was
designed to preserve the trace behavior of the input mod-
els. In other words, composing another protocol with a given
protocol SD cannot override a constraint that SD says must
be true. The ‖ composition operator ignores state names and
composes transitions that are equivalents in both input mod-
els by ensuring they are taken synchronously. In our specific
example, since there are no equivalent transitions between
SD1 and SD2, the composition result contains the Cartesian
product of the states in the two input models (4*2 = 8
states).

2.2 Need for heterogeneous composition operators
between DSMLs

The development ofmodern complex software-intensive sys-
tems often involves the use of multiple DSMLs that capture

123

A unifying framework for homogeneous model composition 3007

Validating

ok

Prompt

password

Result of Compose(SD1,SD2) with HiLA

State Diagram SD1

Success

Fail
notOk

AbandonedPrompt

cancel

State Diagram SD2

Validating

ok

Prompt

password

Success

Fail
notOk

Abandoned

cancel

Result of Compose(SD1,SD2) with PM

Validating/
Prompt

ok

Prompt/
Prompt

password

Success/
Prompt

Fail/Prompt

notOk

Prompt/
Abandoned

cancel

Validating/
Abandoned

ok

password

Success/
Abandoned

Fail/
Abandoned

notOk

cancel

cancel

cancel

Fig. 1 Different composition operators for state diagrams

different system aspects. In addition, models of the sys-
tem aspects are seldomly manipulated independently of each
other. System engineers are thus faced with the difficult task
of relating information presented in different models. For
example, a system engineer may need to analyze a sys-
tem property that requires information scattered in models
expressed in different DSMLs. Current DSML development
workbenches provide good support for developing indepen-
dent DSMLs, but provide little or no support for integrated
use of multiple composed DSMLs. The lack of support
to explicitly relate concepts expressed in different DSMLs
makes it very difficult for developers to reason about informa-
tion spread across different models in one composed model.

Modern complex software-intensive systems increasingly
use software as an integration layer. As a consequence,
architectures require system-level models to integrate var-
ious engineering-specific architectures. For example, block
diagrams describing device characteristics may have to be
composed with class diagrams describing software systems.

Modern systems like cyber-physical systems and the Inter-
net of Things are highly connected to the environment.
Various DSMLs have been defined for describing the system
behavior on the one hand, and the environment or the physi-
cal world on the other hand. For example, statemachinesmay
be used to describe the behavior of a system (e.g., ThingML1

for embedded and distributed systems) and may have to be
composed with sequence diagrams for interactions with the
environment.

1 Cf. http://thingml.org/.

3 The landscape of composition operators

The term composition is used in many situations [33]. At its
most abstract, composition refers to the act of creating new
entities from existing ones (e.g., by assembling together two
or several smaller entities). This may occur at low levels of
granularity (e.g., by adding an association or generalization
between two classes) or at high levels of granularity (e.g., by
connecting required and provided interfaces of components).
In this paper, we are interested in composition in the context
of MDE and DSMLs, i.e., in the composition of models at
high levels of granularity. In other words, we are not inter-
ested in the composition of individual modeling elements
such as a single class or state with another class or state,
respectively, but at the composition of structural and behav-
ioral models that represent broader concerns of interest to
stakeholders. For space reasons, the paper further narrows
the detailed discussions to the composition of homogeneous
models (i.e., models defined by the same metamodel). While
the initial focus is on homogeneous models, the intent is to
investigate the applicability of our envisioned model compo-
sition framework to heterogeneous models in greater detail
in the future.

Recently, aspect-oriented techniques have enabled advan-
ced separation of concerns; i.e., they provide a developerwith
systematic means for the identification, separation, repre-
sentation, and most importantly composition of crosscutting
concerns. Aspect-oriented language extensions and dedi-
cated composition operators (also known as weavers) have
been defined for many programming languages and model-

123

http://thingml.org/

3008 J. Kienzle et al.

Fig. 2 Overview of unifying
framework for homogeneous
model composition

ing languages. We evaluate our proposed model composition
framework by mapping well-known model weavers (and
hence a rich set of varied but clearly scoped composition
operators) to the framework.

Many model composition operators have been proposed
in the literature over the last two decades. In [29], Marchand
et al. argue that any composition process can be reduced to
four steps:

1. Optional preprocessing of the inputs,
2. Determining the composition location (either through

implicit or explicit matching, and by intention or by
extension),

3. Combining the inputs at the location(s) determined in
step 2 to produce the output, and

4. Optional postprocessing of the output.

It is therefore not surprising that existing composition
operators define algorithms for executing these steps, where
Step 1 and Step 4 are optional. This applies to structural com-
positions such as UML Package Merge [38], Kompose [14],
RAM Class Diagrams [21], Theme/UML Class Diagrams
[7], and AoGRL [34] as well as behavioral compositions
such as ADORE [31], TreMer+ [35], RAM Sequence Dia-
grams [21], Theme/UMLSequenceDiagrams [7], HiLa [43],
AoUCM [34], and RAM Protocol Models [2].

The preprocessing step (Step 1) may, for example, rename
model elements as inKompose [14]. Thematching step (Step
2) may involve the evaluation of a pattern as in AoGRL
and AoUCM [34] (i.e., an implicit approach) or the estab-
lishing of an explicit binding as in RAM [21]. Furthermore,
matches may be defined by intention (i.e., expressed at the
language level) as in TreMer+ [35] or by extension (i.e.,
expressed at the model level) as in Theme/UML [7]. Many
other techniques have been discussed in the literature that
perform different kinds of matching with varying degrees of
sophistication and could be applied in Step 2. The final post-

processing step (Step 4)may involve applying transformation
rules to address conflicting model elements as in UML Pack-
age Merge [38].

The following two sections on structural and behavioral
combination focus on Steps 2 and 3, since they are manda-
tory steps that all operators need to provide and because this
allows us to consistently identify commonalities and differ-
ences between the operators. All aspect-oriented modeling
techniques mentioned explicitly in this section are presented
in more detail in the following two sections (some in greater
detail than others for readability reasons). We outline how in
each case, the third combination step can always be mapped
to a symmetric merge operation for structural models and
asymmetric event scheduling for behavioral models. The
aim is to provide convincing evidence that the hypothesis
on which the vision of our framework is built is indeed true.

Figure 2 illustrates the proposed framework, including the
composition process and highlighting the step of the process
to which symmetric merge (discussed in Sect. 4) and asym-
metric event scheduling (discussed in Sect. 5) apply as well
as the early DSL for the definition of reusable composition
operators (as proposed in Sect. 6).

4 Structural combination: merge

This section precisely defines the structural merge operator
of our framework and then shows in detail how it can suc-
cessfully be applied to compose class diagrams. Then, further
examples of how merge can provide composition for other
modeling notations are outlined and the mathematical prop-
erties of merge are discussed.

4.1 Definition

Essentially, a structural model consists of elements (some
of which are containers) with a set of properties, including

123

A unifying framework for homogeneous model composition 3009

Model (I2)
EQ

EQ

Model (I1)

Model (O)

merge

Fig. 3 merge(I1, I2, EQ) ⇒ O

relationships to other elements. The structural composition
examples listed in Sect. 3 suggest that the combination oper-
ation for structural elements is always a symmetric merge.
Formally, the merge combination operator takes two models
I1 and I2 as inputs, as well as a set of equivalence relation-
ships EQ = e1 ⇔ e2 with e1 ∈ I1 and e2 ∈ I2. Each
model element e of input model I has a finite set of prop-
erties {pe}, which can refer to other model elements inside
the same input model I . The merge combination operator
produces a new output model O that contains for each rela-
tionship between e1 and e2 in EQ a single model element
that has as a set of properties the union of the properties of
the related elements, i.e., {pe1} and {pe2}. All model ele-
ments in I1 and I2 that are not mentioned in EQ are simply
copied over into O . See Fig. 3 for an illustration of symmetric
merge.

4.2 Examples of structural weavers

4.2.1 Class diagramweaving

The Reusable Aspect Models approach (RAM) [21] defines
two composition operators for composing class diagrams. In
RAM, the software designer that elaborates a class diagram
can incorporate structural elements defined in another class
diagram by either reusing or extending the other class dia-
gram. In the case of reuse, the reused class diagram exposes
a set of model elements (classes, operations, parameters) that
provide structural properties that are intended to be combined
with model elements from the reusing class diagram in a so-
called customization interface. The designer needs to map
each element from the customization interface to the desired
model element in the reusing model. In the case of extension,
the extending class diagram can add additional properties to
any model element of the extended class diagram, as well
as define additional model elements. Here, any model ele-
ments with the same signature (e.g., name for classes, name
and parameter types for operations, etc.) are combined by
default, but the designer can specify additional mappings
between elements of the extending model and the extended
model, if desired.

A simplifiedmetamodel ofRAMClassDiagrams is shown
in Fig. 4 (classes highlighted in gray).RAMAspect is the root
of the containment hierarchy, and it contains one ClassDi-
agram, which is composed of many Classifiers, which in
turn contain Operations and Attributes. For illustration pur-
pose, the visibility and abstract properties for Classifier and
Operation are shown. Other information, for example, type
information, parameters, etc., is omitted for readability rea-
sons. A class diagram can also contain Associations, which
are linked to two AssociationEnds that are contained in the
Classifier that they belong to.

<<enumeration>>
Visibility

- public
- aspect
- protected
- private

RAM Aspect

ClassDiagram CompositionDirectivesMappableElement

structuralView 1 mappings 0..*

extensions

0..*

fromElement

1
1 toElement

1 extendedAspect

customizationInterface 0..*

- visibility: Visibility
- abstract: Boolean

Operation
- visibility: Visibility
- abstract: Boolean

operations

0..*

classes 0..*

AspectReuse

reuses 0..*

0..* mappings

reusedAspect 1

AspectExtension

Attributes

attributes 0..*

NamedElement
- name: String

AssociationEnd

Association

0..* associationEnds

0..*

assocs
1 assoc

2 ends

Fig. 4 Parts of the class diagram metamodel of the RAM modeling approach

123

3010 J. Kienzle et al.

1

subject

myLog

1

Account
- int balance
- int numOfObservers
+ void withdraw(int amount)
+ void deposit(int amount)
+ int getBalance()
+ void setBalance(int amount)

myLog

1

Account
- int balance
+ void withdraw(int amount)
+ void deposit(int amount)
+ int getBalance()
+ void setBalance(int amount)

Subject
- int numOfObservers

observers

0..*+ * modify(..)

Observer

+ void update(Subject)

1

subject

AccountWindow

+ void refreshWindow(Account)

Aspect Observer:

Aspect Bank:
Bank reuses Observer
Subject Account

 modify withdraw
 modify deposit
Observer AccountWindow

 update refreshWindow

Composed Model: AccountWindow

+ void refreshWindow(Account)

observers

0..*

Log

+ void log(String)

Log

+ void log(String)

Fig. 5 Example composition of class diagrams in the RAM modeling approach

The classes in white are the ones that are used to specify
composition. AspectReuse is used to specify a reuse compo-
sition, whereas AspectExtension is used to specify an extends
composition. In both cases, the mappings (instances of
CompositionDirective) specify which model element from
the reused or extended aspect is mapped to which element
in the current aspect, i.e., fromElement refers to a model ele-
ment in the reused/extended class diagram, and toElement
points to a model element in the current class diagram.

Figure 5 shows an example class diagram that models the
structure of theObserver design pattern [15]. The Bank class
diagram reuses the Observer by specifying a reuse com-
position specification that maps Subject → Account,
modify → withdraw/deposit, Observer →
AccountWindow and update → refreshWindow.

To produce the composedmodel, the RAMweaver creates
a copy of theBank aspect and then deep-copies or merges the
model elements of the Observer aspect into this new model
according to the CompositionDirectives. In other words, it
performs the merge operation described in Sect. 4.1, where
I1 = Observer, I2 = Bank, and EQ = instances of
CompositionDirectives (see mappings in Fig. 4).

In the case of reuse composition, the preprocessing step of
the composition operator (see step 1 in Sect. 3) changes the
visibilities of the elements in the reused class diagram from
public to package. The motivation for this is the informa-
tion hiding principle [39]: The interface of the reusing class
diagram should not expose structural elements of the reused
class diagram. There is no need for the matching step, since
the composition directives enumerate all elements that are
to be combined with our proposed merge operator. There is
also no need for postprocessing the merged output.

In the case of extends composition, thematching step com-
pares the model elements in the two input models to identify
element pairs with the same signature. For each pair, a com-

position directive that maps one to the other is created and
added to the AspectExtension. The augmented mappings are
then passed to the RAM weaver, who as a result merges the
model elements with identical signatures according to the
semantics of RAM model extension.

4.2.2 UML packagemerge

Package merge has been introduced in UML2 to improve
modularity [38] and is extensively used in the UML specifi-
cation itself. The package merge composition operator takes
as input two class diagrams and extends the first with the
second by merging their common classes and deep-copying
the other ones. These common classes are identified by their
names and types. The merge is done recursively, following
the containment links of the models. The output of the merge
replaces the first class diagram; hence, the merge is asym-
metric, in the sense that only the first model is modified.
However, except for the place where the merged model is
stored and for conflict resolutions applied during the post-
processing step, the technique is symmetric. In other words,
the combination step does not depend on the order of the
inputs and maps nicely to symmetric merge in the proposed
framework in a similar way as explained above for RAM
class diagrams.

4.2.3 Kompose

Kompose is a model composition tool [14] implemented
in the Kermeta language [20]. It merges two homogeneous
models by comparing the signatures of their elements. These
signatures can be arbitrarily complex, using the element’s
name, type, field, or method names and types, and so on.
Elements with the same signature are merged, while all other
ones are deep-copied. Kompose proposes a system of pre-

123

A unifying framework for homogeneous model composition 3011

and postdirectives to modify the models before and after the
merge. The two models are called base model and aspect
model, which suggests an asymmetric treatment, yet the tool
is symmetric [14]. The composition operator follows the four
steps described in Sect. 3, and in particular, includes the sym-
metric merge combination operator.

4.2.4 Theme/UML

Theme/UML [7] for class diagrams is similar to the afore-
mentioned techniques in that structural model elements are
merged symmetrically with each other, in this case based
on specified binding relationships for template parameters.
The properties of bound elements are merged, while non-
template-parameter elements are added to the composed
result. The approach of Theme/UML matches the proposed
framework in its use of a symmetricmerge combination oper-
ator.

4.2.5 AoGRL

The Aspect-oriented and Goal-oriented Requirement Lan-
guage (AoGRL) [34] matches a parameterized goal model
fragment (i.e., a pattern) against the base goal model to iden-
tify locations where aspectual goal model elements are to be
inserted into the base model. While the specification of the
composition is asymmetric, the actual operator is symmet-
ric once the insertion locations have been identified, because
conceptually pattern elements from the aspect are merged
with matched elements from the base. AoGRL therefore
adheres to the proposed framework.

4.3 Mathematical properties of merge

The merge combination operator inherits its mathematical
properties from the union operator on which it is based.
It is therefore commutative [merge(a, b) = merge(b, a)]
and associative [merge(a,merge(b, c)) = merge(merge
(a, b), c)].

Nevertheless, the composition operators of the different
approaches listed above are not necessarily commutative; i.e.,
they are not necessarily symmetric. This stems from the fact
that the preprocessing, matching, and postprocessing steps
of many composition operators perform operations that are
not commutative.

For example, in RAM, the reuse composition opera-
tor changes the visibilities of the elements in the reused
class diagram from public to package in the preprocess-
ing step. The motivation for this is the information hiding
principle [39]: The interface of the reusing class diagram
should not expose structural elements of the reused class dia-
gram. This preprocessing step implies RAM_reuse(a, b) �=

RAM_reuse(b, a), because the visibility of the model ele-
ments in the composed model would be different.

Conflict resolution also sometimes results in asymmetry,
although different approaches handle conflict resolution in
different ways. This is due to the fact that what constitutes a
conflict depends highly on the modeling language. Conflicts
can be resolved during preprocessing or postprocessing (as it
is done in Kompose or UML PackageMerge, where conflict-
ing elements must be renamed before the symmetric merge
happens), but also by choosing different models that are to
be composed (as it is done in RAM).

Finally, some composition operators perform in-place
update, i.e., they modify one of the input models during
composition, which renders them asymmetric. For example,
UMLpackagemerge composes onemodel into the other one,
or in other words, the composed model replaces one of the
inputs. This is orthogonal to the merge operation proposed
in our framework. In our framework, after the models are
composed, the user of the framework can decide whether to
store the resulting model separately, or whether to overwrite
one of the input models.

Some AOM approaches, for example, MATA [41], allow
an aspect to also remove elements from the basemodel. Since
our structural composition is based on merge, it supports
additive composition only.Removing elements is not of com-
positional nature and related to program or model slicing [4].
Slicing is a technique used, for example, to extract parts of a
system so that it can be reused in a different context, or when
using negative variability in software product line develop-
ment. To support removing of elements, our framework could
be combined with a generic slicer such as [4], but this is out
of the scope of this paper.

5 Behavioral combination: event scheduling

This section defines event structures and the behavioral event
scheduling operator of our framework and then shows in
detail how it can successfully be applied to compose sequence
diagrams, state diagrams, and Aspect-oriented Use Case
Maps. Then, further examples of how event scheduling can
provide composition for other modeling notations are out-
lined.

5.1 Definition

A behavioral model is a model where its structure (ele-
ments and properties) represents behavior, possibly non-
deterministic or concurrent. Such behavior can be obtained
by applying the operational semantics of the language used
to build the behavioral model on themodel (i.e., by executing
the model). Such process is for instance detailed in [26] or
[10].

123

3012 J. Kienzle et al.

The behavioral composition examples listed in Sect. 3
act on behavioral input models and create a new behavioral
model that specifies a particular interleaving of the input
models’ behaviors. Therefore, even if the composition opera-
tors take as input the behavioral models, they actually need to
infer an internal representation of the execution of the input
models to reason about their interleaving. Independently, this
internal representation can be inferred statically (with dedi-
cated analysis) or dynamically (simulation).

To reason on concurrent behaviors, concurrency theory
introduced causal (also called true-concurrent) represen-
tations. A causal representation captures the concurrency,
dependency and alternative relations among actions in a
particular behavior. A well-known instance of such rep-
resentation is Event Structure [36,42]. An event structure
represents a partial order of events specifying the causal-
ity relations as well as alternative relations between actions
of concurrent behavior. This fundamental model totally
abstracts data and model structure to concentrate on the
partial ordering of its actions. This model is not expressive
enough to encode (continuous) timed or synchronous behav-
iors, and there exist several extensions of this model, for
example, tagged signals [27] or the time model [3]. In this
paper, however, we choose to present the framework based on
event structures since it is expressive enough for the examples
that follow and allows for simpler explanations. In any case,
all the explanations and definitions given in the remainder of
the paper are also appropriate formore powerful fundamental
models.

Due to its nature, an event structure is a means to apply
abstraction to anymodel by concentrating only on the observ-
able actions in the model. An event structure is independent
of the abstraction level since an event can abstract any kind
of action (from the entering into a state to the call of an arbi-
trarily complex action). Due to this independence from the
abstraction level, the same model can be represented by dif-
ferent, more or less detailed, event structures. For the same
reason, there are usually different models that can be repre-
sented in an abstract way by the same event structure.

We believe that the combination operation for two behav-
ioral models A and B can always be reduced to event
scheduling that operates on the two event structures describ-
ing the behavior of A and B. Formally, the event scheduling
operator takes as input two event structures esA and esB rep-
resenting the behavior of models A and B, as well as a set
of causal relationships between events of different models
Causal R := e j → ek . If e j is an event from esA, then ek
must be an event from esB , or vice versa. e j → ek means
that ek must take place at the same time or after e j . The
result of applying the schedule combination operator is a
combined event structure esC that takes the event relation-
ships Causal R into account. See Fig. 6 for an illustration
of event scheduling, where the events and dependencies of

Fig. 6 schedule(esA, esB ,Causal R) ⇒ esC

Fig. 7 Usual and compact representation of alternatives

esA are shown in blue, the events and dependencies of esB
in red, and the causal relationships between events from esA
and esB are shown with black arrows.

Before continuing, the reader should note that an event
structure specifies all possible concurrent or alternative
execution paths of themodel. In an event structure, two alter-
native execution paths at a specific point in time (i.e., from a
specific configuration of the event structure) are usually rep-
resented by two causalities to different event occurrences,
creating two different paths that do not contain any causality
to a common event occurrence (even if from some point they
have the same future, seemiddle of Fig. 7). On the other hand,
two concurrent execution paths at a specific point in time are
represented by two causalities to different event occurrences,
creating two different paths that will eventually be causality
related to a common event occurrence in the event structure
(see left of Fig. 7).

To represent alternative execution paths in amore compact
way than duplicating all common futures, we use a dummy

123

A unifying framework for homogeneous model composition 3013

node marked ’A’ in an event structure. The outgoing causal-
ities of the dummy node denote exclusive execution paths,
even if they are eventually causally related to a common event
occurrence. The use of the dummy node is illustrated on the
right side of Fig. 7. The figure on the left describes a situa-
tion where after event a two event sequences (b..x) and (c..y)
occur potentially in parallel and then synchronize again for
d. On the other hand, the event structure shown in the middle
represents a situation where two possible futures exist after
the occurrence of a, one starting with b and the other one
starting with c. In the case where both futures have a com-
mon event sequence at some point in the future, the dummy
node allows us to join the two branches at the first common
event (d in our case as illustrated by the model on the right)
instead of having to show two distinct sub-trees.

5.2 Examples of behavioral weavers

In this section, we illustrate the event scheduling operator
on three different examples. These examples have been cho-
sen to evaluate the applicability of our approach on different
kinds of behavioral models (inspired by the UML behavioral
models). Thefirst one is SequenceDiagram, amessage-based
behavioral language, the second one is StateDiagram, a state-
based behavioral language, and the third one is AoUCM, a
workflow-based behavioral language (as UML activity dia-
grams). We end the section by briefly explaining how the
proposed framework can be applied on existing approaches
that are proposing a composition operator.

5.2.1 Sequence diagram composition

RAM allows a software designer to express behavior using
sequence diagrams [21]. In sequence diagrams, instances of
objects, represented by lifelines, sendmessages to each other.
The important behavioral events are the message send and
message receive events. For each lifeline, a causal ordering
is specified for the message reception and message sending
events. Between lifelines, another causal ordering speci-
fies that a receive event of a message cannot occur before
the corresponding send event has occurred. While sequence
diagrams can be used to depict both asynchronous and syn-
chronous sending of messages, they are always used in RAM
to specify the interactions in form of synchronous operation
invocations that happen between objects as a result of an
operation call.

To support advanced separation of concerns, RAM allows
themodeler to specify object interactions pertaining to differ-
ent concerns in separate sequence diagrams and use compo-
sition to generate the combined behavior when needed. For
instance, if the behavior of operations p and q is described
in separate sequence diagrams, and if somewhere within
the model of p the operation q is invoked, then the RAM

sequence diagram weaver can combine the two models to
produce a new model that depicts the combined flow of exe-
cution by “inlining” the communication of q within p at the
right place.

RAM also supports aspect-oriented composition of seq-
uence diagrams, an example of which is shown in Fig. 8. On
the top left of the figure, a simple RAM sequence diagram
is shown that specifies the behavior of the transfer oper-
ation of the Account class previously shown in Fig. 5. It
simply calls the withdraw operation of Account s, and,
in case the withdraw was successful then calls deposit on
Account t. The corresponding event structure EStrans f er is
depicted underneath the sequence diagram. The first event
on the :Account lifeline is the reception event of the
transfer call, which is followed by the send event of the
withdraw call, followed by the reception event of the return
of the withdraw call as well as the receive event of the call
of withdraw, etc.

A separate sequence diagram, shown on the top right
of Fig. 8, depicts the behavior of Logging. It specifies
that whenever transfer is invoked, followed by a call
to withdraw, followed by a call to deposit, then the
remaining behavior of transfer is first executed (depicted
by a rectangular box containing a �).After that, the successful
transfer is logged by calling log provided by myLog. The
event structure ESlogging corresponding to the Logging
sequence diagram is shown underneath. Note that the rect-
angular box with the � was converted into two events.

To compose the two behaviors, additional causal rela-
tionships are added between the events of EStrans f er and
ESlogging . They are shown as dotted arrows in Fig. 8. For all
events that match in both event structures, a causal depen-
dency from the base model to the aspect model is created,
i.e., ∀ei ∈ EStrans f er , e j ∈ ESlogging|match(ei , e j) 	⇒
(ei → e j) ∈ Causal R. In this example, this is true for
the events receiveCallT rans f er , sendCallWithdraw,
sendCallDeposi t , and sendRetT rans f er . Since the loca-
tion of the rectangular box with the � in the Logging
sequence diagram determines when the execution of the
remaining behavior of transfer should occur, two addi-
tional causal relationships have to be added to Causal R:
from the enter Box aspect model toward the first remain-
ing event occurring on the Bank lifeline in the transfer
model (enter Box → receiveRet Deposi t), as well as
from the last event of the execution of transfer in the
base model toward the exi t Box event in the aspect model
(receiveRet Deposi t → exi t Box).

This simple example illustrates also that our behav-
ioral weaving framework can support semantic weaving. In
case the withdraw operation is unsuccessful, the sendCall
Deposi t event never occurs, and hence the behavior of the
logging aspect is never executed.

123

3014 J. Kienzle et al.

opt [success]

: Banktransfer(s, d, amount) myLog: Log

receiveCallTransfer

sendCallLog receiveCallLog

sendRetLog
receiveRetLog

sendRetTransfer

receiveCallTransfer

sendCallWithdraw

receiveRetWithdraw

sendCallDeposit

Transfer Sequence Diagram Logging Sequence Diagram

*

: Banktransfer(s, d, amount)

sendCallWithdraw

sendCallDeposit

receiveCallWithdraw

sendRetWithdraw

EStransfer ESlogging

s: Account d: Account
success := withdraw(amount)

deposit(amount)

success := withdraw(amount)

deposit(amount)

receiveCallDeposit

sendRetDeposit

receiveRetDeposit

sendRetTransfer

enterBox

exitBox

A

Fig. 8 RAM sequence diagram composition

5.2.2 State diagram composition

RAM allows a software designer to specify operation invo-
cation protocols for each design class using state views [2],
which are a variant of protocol state diagrams called proto-
col models [30]. A state view comprises a set of states and
a set of named transitions that stand for the operations that
the class declares. For instance, a state view comprising two
states for a File class might specify that a file initially starts
in a “Closed” state, waiting for a call to the open operation,
which transitions to the “Opened” state. There, the operations
read and write are available, until theclose operation is
called,which brings the file back to the “Closed” state. In pro-
tocol modeling terms, the “Closed” state accepts open and
rejects read, write, and close, whereas the “Opened”
state does the inverse. Operations that are not mentioned in a
state view are ignored, i.e., no decision on whether to accept
or reject them is taken.

A state view is mapped to an event structure by creating
an event et for every transition t in the model. The event
structure is then given by the tree containing all possible event
occurrence scenarios acceptable by the state view starting

from the initial state. For state viewswith cycles, the resulting
event structure is usually infinite.

Figure 9 illustrates the transformation from state view to
event structure on an example. In the state view PM1, the
first transition that can occur is p. This is why the event
structure ESPM1 has the event ep(1) at the root.2 After p,
transition q, x , or y can be taken in the state view. ESPM1

therefore contains eq(1), ex(1) and ey(1), and ep(1) → eq(1),
ep(1) → ex(1) and ep(1) → ey(1). If transitionq is taken, then
p can be taken again. Therefore, ESPM1 contains another
occurrence of transition p, namely the event occurrence ep(2)

and eq(1) → ep(2). The resulting infinite tree represents all
possible executions of the state view.

When the structural weaver of RAM merges two classes,
resulting in the union of the operations of the classes as
explained in Sect. 4.2, the RAM protocol weaver also needs
to combine the two state views associated with the classes
to yield the state view that specifies how to correctly use the
new merged class.

2 We are using the subscript (i) to emphasize that the dots in the event
structure represent event occurrences and not event types.

123

A unifying framework for homogeneous model composition 3015

xp

q

qx x

r

ep(2)

PM1 PM2

ESPM1 ESPM2
ep(1)

ep(2)

ep(2)

eq(1)

eq(1)

eq(2)

ex(1)

ex(2)

ex(2) eq(2)

eq(1) ex(3)

ex(1)

eq(1)

ex(2)er(1)

eq(2)

ex(2)er(2)

y

ey(1)

ey(1)

ey(1)

ex(1)

ey(1)

ey(1)

Bidirectional causal relationship, which
ensures that the events happen at the
same time in the merged event
structure and may
actually occur in an execution of the
merged models.

Bidirectional causal relationship, which
ensures that the events happen at the
same time in the merged event
structure, but
cannot occur in an execution of the
merged models.

Event occurrence that is never
reached in the merged event structure

Fig. 9 RAM state diagram composition

The rules for combining the two state views is equivalent
to the CSP parallel composition operator typically denoted
‖. It specifies that for an operation to be accepted by I1 ‖ I2,
both I1 and I2 must either accept or ignore the operation.
In other words, if either I1 or I2 rejects the operation, then
I1 ‖ I2 also rejects the operation.

In RAM, to combine two event structures representing
two state views, it suffices to add causal relationships among
the event occurrences of the sets of transitions TPM1 and
TPM2 that match. More precisely, ∀t1 ∈ TPM1,∀t2 ∈
TPM2|match(t1, t2) 	⇒ (∀et1i ∈ ESPM1, et2i ∈
ESPM2, ((et1i → et2i) ∈ Causal R ∧ (et2i → et1i) ∈
Causal R) with eti defined as the ith event occurrence of the
transition t). The composition of the state views PM1 and
PM2 is shown at the bottom of Fig. 9 with the additional
arrows representing some of the introduced causal relation-
ships between the event structures ESPM1 and ESPM2.
Whenever there are causal dependencies in both directions,
it is ensured that they have to happen simultaneously.

5.2.3 Aspect-oriented Use Case Map composition

Aspect-oriented Use Case Maps (AoUCM) [34] is a sce-
nario/workflow notation that employs a pattern-based
approach to identify locations in the basemodelwhere aspec-
tual behavior is to be inserted. Since AoUCMmodels capture
causal relationships, they are straightforwardly transformed
into event structures by denoting each AoUCM model ele-
ment m as an event em (except for those AoUCM model
elements that represent purely control flow information and
are hence directly mapped onto causal relations instead of
events).

The AoUCM approach features an enhanced matching
algorithm that takes semantic equivalences in the UCM
notation into account and allows interleaving of scenarios.
However, once the insertion location has been determined by
the sophisticatedmatching algorithm, the actual composition
of the aspectual and base behavior is always accomplished
by the insertion of an aspect marker, which acts as a reference
in the base model to the aspectual behavior that needs to be
inserted.

The example AoUCM model [32] was selected, because
it features a more complex composition based on interleaved
scenarios. The base AoUCM model on the left of Fig. 10
shows the scenario for ordering a video online, comprised
of the steps selectMovie, processOrder, payForMovie, and
sendMovie. The aspectual model in the middle defines the
movie points scenario, which is interleaved with the base
behavior with the help of the diamond-shaped pointcut stubs.
Eachpointcut stub represents a pattern that ismatched against
the base model, for example, the processOrder pointcut stub
is matched against the processOrder step in the base model
(the actual definition of the pattern is not shown in the figure).
The movie points scenario requires a membership form to be
filled out before processing an order, allows movie points to
be redeemed instead of paying for the movie, and enables
earning of movie points after sending a movie if the transac-
tion was not a redemption.

At the bottom of Fig. 10, the combined event structures
of the AoUCM base and aspect model are shown. The event
structure of the base model is represented on the left side, the
one of the aspect model on the right side, and the causalities
required by the combination of both models are shown in the
middle. First of all, each pattern match is synchronized, for

123

3016 J. Kienzle et al.

Fig. 10 AoUCM
scenario/workflow composition

Online Video Store

Customer

fillMemberForm

pointsUsed

usePoints

redeemMoviePoints

[else]

[signUp]

processOrder

[else]

[member &&
enoughPoints]

P
payForMovie

earnMoviePoints

[else]

[member &&
!redemption]

sendMovie

Customer

selectMovie

Online Video Store

processOrder

bought

buy

payForMovie sendMovie

P

P

A

buy

selectMovie

processOrder

payForMovie

sendMovie

bought

usePoints

fillMemberForm

processOrder

redeemMoviePoints

payForMovie

sendMovie

earnMoviePoints

pointsUsed

BaseModel AspectModel

A

A

A

example, the processOrder event from the base model is
synchronized with the processOrder event from the aspect
model. This is equivalent to the synchronizationof events per-
formed for RAMsequence diagrams. Then, additional causal
relationships are expressed in the aspectual event structure for

segments created by the synchronized elements. Three types
of segments exist. A segment may (a) start at a start point
and end at a synchronized element (e.g., from usePoints to
processOrder), (b) start and end at a synchronized element
(e.g., from processOrder to sendMovie), or (c) start at a

123

A unifying framework for homogeneous model composition 3017

synchronized element and end at an end point (e.g., from
sendMovie to pointsUsed).

The first element in a segment has an additional causal
relation from a base model element (i.e., usePoints) or is
a synchronized element (i.e., processOrder , sendMovie).
Additional causal relations never have to be specified for
already synchronized elements. If the first element in a seg-
ment is not a synchronized element, then the causal relation
exists from the base model element immediately preceed-
ing the base model element synchronized with the aspectual
element at the end of the segment (i.e., selectMovie →
usePoints).

If the segment ends with a synchronized element, then all
elements in the segment have a causal relation to the base
element synchronized with the end of the segment (e.g.,
usePoints → ProcessOrder , f illMember Form →
ProcessOrder , and redeemMoviePoints → send
Movie). However, if the segment ends in an end point,
then all elements have a causal relation to the base element
immediately following the basemodel element synchronized
with the aspectual element at the start of the segment (e.g.,
earnMoviePoints → bought , pointsUsed → bought).

AoUCM allows base behavior to be replaced by aspectual
behavior (e.g., redeemMoviePoints may replace payFor-
Movie). Therefore, the event structure of the base model
needs to be augmented with alternatives to allow base ele-
ments to be skipped (see the ’A’ node in the event structure
of the base model).

More precisely, during the translation from a model to
its event structure, the expressiveness of the weaver must be
taken into account and made explicit in the resulting event
structure. Because the AoUCM weaver allows for remov-
ing (i.e., skipping) some actions from the original model,
the translation of any AoUCMmodel must contain, between
each event occurrence, an alternative allowing to skip one or
more event occurrences. This does not only apply toAoUCM
but to any weaver of a behavioral model that allows replace-
ment (e.g., it is also necessary for RAMsequence diagrams to
support around advice). While these additional skip causal-
ities may appear as a limitation of our proposed framework,
we believe, on the contrary, that the skip causalities make
explicit something often hidden deep inside the core of a
weaver andwhich is nowmade visible to any tool in a generic
way (e.g., to a generic analysis tool). Skip causalities could
for instance be used by a model checker to conclude that
the base model respects a property, but that a specific aspect
could lead to a property violation. Even more interesting,
considering property violations, the concerned alternative
could be removed, effectively reducing the expressiveness
of the weaver to ensure that no aspect can violate a specific
property. In the composed model in Fig. 10, all possible skip
causalities are not shown to simplify the representation. The
shown skip causality (i.e., the ’A’ node) in the event struc-

ture of the base model corresponds to the one from the aspect
model that resides in the same segment and is the only one
that is relevant for the composed model in this example.

5.2.4 ADORE

ADORE is a tool for service orchestration using PROLOG.
It allows the scheduling of partial orchestrations (fragments)
in a main orchestration using a set of user-defined rela-
tionships [31]. A fragment essentially represents partially
ordered service calls and ends, which can be represented
through an event structure. The relationships between frag-
ments which describe the orchestration correspond to the
asymmetric combination operation event scheduling of our
framework, which acts thanks to event relationships between
the event structures inferred from the input fragments.

5.2.5 TreMer+

In [35], Nejati et. al. propose an approach, implemented
in TreMer+, to merge statechart diagrams while preserving
their semantics by ensuring bisimulation. Thus, the operator
is not only structural, but also ensures a particular rela-
tionship between the behaviors that represent the statechart
diagrams. A statechart diagram represents a partial order of
events, naturally represented by an event structure. Concur-
rent actions, for example, regions in statechart diagrams, can
be represented by concurrent branches in the event struc-
ture, and synchronizations between concurrent machines can
be ensured by causalities in the event structure Then, the
combination operation infers the required event relationships
(Causal R) between the two input event structures to ensure
a bissimilar combined event structure (based on a powerful
matching step).

5.2.6 Theme/UML

Theme/UML [7] for sequence diagrams is very similar to
RAMin that the combinedflowof execution for two sequence
diagrams also involves proper “inlining”. Therefore, the
behavioral composition can be expressed the same way as
for RAM.

5.2.7 HiLa

The High-Level Aspects for UML State Machines (HiLA)
approach [43] targets themodeling of use case scenarios with
UML state machines, enhanced with aspect-oriented mod-
eling features. To derive the corresponding event structure,
inputs coming from the environment are mapped to events.
Synchronization between events in the base model and the
aspect model can be achieved with two inverse causal rela-
tionships. HiLa also provides what is called dynamic aspects

123

3018 J. Kienzle et al.

Fig. 11 Foundational primitives
for model composition

Combination
Operator

BehavioralStructural

Model
Element

Structural
Model

* *
Equivalence

Mapping

2
*

Causal
Relationship

Event
Structure

Behavioral
Model

*
src

1

tgt
1

Model
Event

Combination
Event

Event

Combination
Event

Structure

*

combinedEvents
1..*

that can compose statemachines basedon the execution trace.
For instance, a so-called «history» property allows amodeler
to specify a constraint that checks, for instance, that a cer-
tain state was entered more than n times in order to trigger
behavior expressed in the aspect state machine. To achieve
this composition using event structures, a causal relationship
enabling the first event of the aspect state machine must be
scheduled in all event orders of the base machine that visit
the state more than n times.

6 Discussion

6.1 Conceptual model

In Sects. 4 and 5, we gave evidence of foundational prim-
itives for structural and behavioral model combination that
can handle many composition operators developed for a vari-
ety of modeling languages. In Fig. 11, we summarize these
foundations as an early DSL that could be used for defining
reusable model composition operators in the future.

A Combination Operator can be either a
Structural combination operator between Model
Elements of Structural Models, or a Behavioral
combination operator between Events of the
Combination Event Structure. The combination
event structure possibly extends the Event Structure
inferred from the execution of (i.e., specifiedBy)
BehavioralModels, with additional Combination
Events that represent a combination of events for a par-
ticular purpose of the combination operator.

A structural combination operator is composed of
Equivalence Mappings between two unordered model
elements, while a behavioral combination operator is com-
posed of CausalRelationship between a source event

and a target event. Of course this event relationship can be
completed by more specific ones (e.g., mutual exclusion,
temporal relationships).

The vision we have proposed in this paper takes the
form of a complete framework to support rigorous and
efficient engineering of homogeneous and potentially het-
erogeneous model composition operators. If successful, the
proposed frameworkwould provide a reusable building block
for (modeling) language design efforts and streamline the
creation and application of domain-specific languages with
support for separation of concerns in the context of MDE.

6.2 Research challenges

As outlined in Sect. 3, the execution of composition operators
can be decomposed into four steps: preprocessing, matching,
combining, and postprocessing. The discussion of this paper
has focusedmostly on themost important step of this process,
step 3,which addresses the actual combination ofmodels.We
argued that it can be provided in a genericwayby a symmetric
mergeoperator for structuralmodels and an asymmetric event
scheduling operator for behavioral models after they have
been transformed into event structures. In order to realize the
entire proposed vision, several research challenges remain:

– C1: Ensure that all behavior models (that we want to be
able to compose in the context of MDE) can be mapped
to corresponding event structures.

– C2: Establish proof that our hypothesis (structural combi-
nation =merge, behavioral combination = event schedul-
ing) is correct.

– C3: Render all steps of the composition operators as
generic / reusable as possible.

– C4: Provide efficient automation where possible.

123

A unifying framework for homogeneous model composition 3019

– C5: Operationalize the proposed composition operator
framework by integrating it with a language engineering
workbench.

6.3 Proposed work items

The challenges to which the following six work items con-
tribute are shown in parentheses in the header of each
individual work item.

6.3.1 W1: mapping to event structures (C1)

We already conducted experiments that represent other
behavioral models with specific kind of events structures
[11,12]. To contribute further to C1, additional behavioral
modeling languages should be mapped onto event structures.

6.3.2 W2: automate mapping to event structures (C4)

To contribute toC4, the application of themapping from indi-
vidual models to event structures needs to be automated by
defining and implementing concrete model transformations.
In this context, we have already published algorithms that
create a symbolic event structure that encodes all the pos-
sible event structures of a behavioral model in [17,18,28].
Finally, to avoid constructing the symbolic event structure
manually, we used a specification of the language execution
semantics suitable to generate the symbolic event structure
of any model conforming to the language [9,10].

6.3.3 W3: implementing composition operators (C2)

With initial tool support in place, additional evidence to
support C2 needs to be provided by implementing the
homogeneous composition operators surveyed in this paper
according to the thoughts outlined in Sects. 4 and 5 with our
framework. For heterogeneous composition, we have previ-
ously experimented with the coordinated execution of event
structures in [16]. Vara Larson et al. [24] use a symbolic rep-
resentation of event structures to conjointly execute different
models according to a specific coordination. Most recently,
we also proposed the coordination of heterogeneous models
based on rules expressed at the language semantics level in
[25].

6.3.4 W4: toward generic behavioral matching (C3)

While for all the behavioral model composition operators
surveyed in this paper the matching step is notation specific,
we hypothesize that it does not need to be. In fact, instead
of transforming a behavioral model into an event structure
after the matching (step 2) and before combining (step 3),

the transformation could be performed after the notation-
specific preprocessing (step 1). This would allow exploring
the possibility of defining a generic behavioral matcher that
operates solely on event structures. Intuitively, both common
input options for matching mechanisms—explicit bindings
or patterns—can typically be translated into event structures
following mapping rules similar to the ones used to map the
input models to event structures themselves. In this case, a
generic event pattern matcher would be able to identify any
locations of interest in the behavior, provided that all potential
matching points of the notation (i.e., the join points in aspect-
oriented terms) are represented in the form of events in the
event structure. Since event structures represent the execution
of behavior, an additional advantage of matching at this level
is that patterns that occur in the execution can be detected
(i.e., the semantic interpretation of a model), as opposed to
detecting patterns in the model itself (i.e., the abstract syn-
tax of the model). For instance, such a matcher would be
very convenient to match patterns that are known to require
loop unrolling in the context of sequence diagramweaving as
described in [22] or an understanding of the semantic equiv-
alences of hierarchical decomposition as described in [34].

Providing generic matching capabilities in the context of
our proposed framework would significantly contribute to
C3.

6.3.5 W5: efficient creation of the combined event structure
(C4, C5)

To further contribute toC4and to the operationalization of the
framework as stated for C5, combined event structures need
to be created efficiently. In the case where the event structure
obtained from a behavioral model is finite, for example, for
Figs. 8 and 10, the combined event structure is also finite
and can easily be created offline (i.e., not at runtime). A
first work item concerns the creation of the combined event
structure for behavioral models with infinite event structure
(e.g., the one of Fig. 9). In this case, it is not possible to cre-
ate the infinite event structure offline and consequently not
possible to create the combined event structure “statically.”
However, it is possible to provide a framework to coordinate
the execution of the base and the aspect model executions.
It is then necessary to monitor the execution of each model
and to set up a runtime matcher that triggers the creation
of Event Relationship elements at runtime. The simulation
framework must then be able to implement such new rela-
tions on the fly. Using a runtime matcher can be costly in
time so that a second work item concerns the finite encoding
of infinite event structure. While this has been done earlier in
[17,18,28], their encoding was very low level so that it is not
well adapted for composition reasoning. Our current idea is
to investigate a simple ’folding’ node (a kind of parametrized
jump) allowing finite representation of infinite event struc-

123

3020 J. Kienzle et al.

Online Video Store

Customer

fillMemberForm

pointsUsed

usePoints

redeemMoviePoints

Aspect Model

[else]

[signUp]

processOrder

[else]

[member &&
enoughPoints]

P
payForMovie

earnMoviePoints

[else]

[member &&
!redemption]

sendMovie

Base Model
Customer

selectMovie

Online Video Store

processOrder

bought

buy

payForMovie sendMovie

P

P
A BC

D E

F

Composed Withdraw+Logging Behavior:

: Accountwithdraw(amount) myLog: Log

log("w:"+amount)

setBalance
(balance-amount)

Fig. 12 Visualization of composed model with tags/markers (AoUCM) or inline (RAM sequence diagrams)

ture, while supporting generic composition. The final goal is
to propose a generic, static model weaver supporting finite
and infinite event structures with or without loop unrolling
and other semantic-based compositions.

6.3.6 W6: visualizing the composed behavior (C5)

In addition, to be fully equivalent to existing behavioral
composition operators, it does not always suffice to create
a composed event structure that exhibits the correct com-
posed behavior. To contribute to the operationalization of the
framework as stated for C5, it is often important to be able
to visualize the composed behavior in the original modeling
formalism. The visualization takes place after the four steps
discussed in this paper. A bidirectional mapping from amod-
eling language to event structures and back would allow the
causal relations between the base and the aspect model to be
indicated with tags or markers. An examination of the causal
relations between the base and aspect model identifies the
locations in the event structure, where aspectual behavior is
added. This can then be translated into a location in the orig-
inal modeling formalism with the help of the bidirectional
mappings. The composed model could then be indicated by
showing a visual element either before, at, or after the loca-
tion in the original modeling formalism.

Consider, for example, the case of AoUCM’s weaver
[32,34], which results in the placement of aspect markers
in the base model as shown in Fig. 12. The locations where
aspectmarkers need to be inserted in the basemodel are iden-
tified by the synchronized events in the event structures of
the base model and their bidirectional mappings back to the
source base model. The type of aspect marker that needs to
be inserted depends on the type of aforementioned segments
in the event structure of the aspect model. A segment with
a start point or end point results in an aspect marker with
an outgoing link to the aspect model and an incoming link

from the aspect model (see, e.g., aspect marker A and F in
Fig. 12). For segments where both the start and the end are
synchronized elements, aspect markers with only an outgo-
ing link (e.g., B and D) or only an incoming link (e.g., C and
E) are inserted into the base model depending on whether the
aspect marker corresponds to the start or end of the segment,
respectively.

Similarly, a weaver for RAM sequence diagrams [21] that
is based on their event structures would identify the location
of inserted behavior by the location of the causal relations
to enter Box and exi t Box and the existence of aspectual
behavior specified before or after these two relations, for
example, after in the case of the sequence diagram in Fig. 8.
Consequently, behavior needs to be inserted into the identi-
fied base model location based on the bidirectional mappings
from the event structure of the aspectual model to the source
model. For notations such as sequence diagrams that can be
lay outed automatically, it is then even possible to show the
inserted behavior inline in the basemodel as shown inFig. 12.

7 Related work: general purpose weavers

This section discusses the shortcomings of existing tools and
frameworks which may be used to combine two models with
each other.

7.1 GeKo

GeKo is a generic, extensiblemodelweaver that can compose
any models that conform to a common metamodel [23]. It
takes as parameters a base model, a pointcut model (which
can specify a pattern), and an advice model and replaces all
instances of the pointcut model that are found in the base
model with the advice model. The mappings between base
and advice are inferred by the weaver by comparing model

123

A unifying framework for homogeneous model composition 3021

element properties. The combination of models that is done
for each pointcut match is equivalent to our merge, i.e., it
operates on the structure of themodel only.As a result, GeKo,
although applicable to behavioral models, cannot perform
semantic-based combination.

7.2 MATA

MATA is similar to GeKo in that it can compose any models
conforming to a common metamodel, but uses graph trans-
formations to do so [41]. Similarly to GeKo, MATA operates
on model structure and cannot perform semantic-based com-
bination, which is possible with event structures.

7.3 ModMap

ModMap is a mapping language to express bidirectional
translation between models conforming to object-oriented
metamodels [8]. The mapping language allows for creat-
ing relationships between any metamodel element such as
classes, attributes, or relations between classes. The inter-
pretation mechanism is achieved through the assignment of
a strategy to a given mapping. Strategies in the ModMap
language are operations which allow the alignment of the
two models involved. These operations are either predefined
(rename an element, concatenate one or several elements
with strings, add or remove an element from a collection) or
defined by the user with a provided action language. While
ModMap offers one generic merge algorithm, there is no
consideration of behavioral semantics.

7.4 Event-basedmodularization

In [5], the authors present how an aspect-oriented approach
can be augmented with an explicit specification of events as
a way to express pointcuts. They show how such pointcut
events can be combined to express conditions on the weav-
ing of an advice. The authors propose few generic operators
between events, but mainly focus on high-level operators for
decomposition.

In contrast to existing general purpose weavers, our com-
position framework addresses structural models as well as
the semantics of behavioral models, which is crucial as com-
plex systems always have to be defined and evolve along both
structural and behavioral dimensions.

8 Conclusion

The growing use of domain-specific languages and the need
to combine instances of such languages leads to a contin-
ued demand for customized composition operators. This
paper discusses a unifying framework that reduces all struc-

tural composition operators to structural merging, and all
composition operators acting on discrete behaviors to event
scheduling. The framework aims to support the definition and
reuse of composition operators and avoid having to define
them from scratch for each use. Based on a discussion of the
properties of structural and behavioral composition operators
and an analysis of how existingmodel composition operators
can be mapped onto our proposed framework, we introduce
a conceptual model of the framework and enumerate a set
of research challenges that need to be addressed to realize
the proposed framework and support rigorous and efficient
engineering of model composition operators for homoge-
neous and eventually heterogeneous modeling languages. In
future work, we will address the work items related to the
five research challenges discussed in Sect. 6. Furthermore,
we will investigate how heterogeneous composition opera-
tors can be supported by our proposed framework.

References

1. Aspect-Oriented Modeling Workshop Series. http://www.aspect-
modeling.org/

2. Al Abed, W., Schöttle, M., Ayed, A., Kienzle, J.: Concern-oriented
behaviour modelling with sequence diagrams and protocol models.
In: Behavior Modeling—Foundations and Applications, vol. 6368
of LNCS. Springer, Berlin (2015)

3. André, C., Mallet, F., De Simone, R.: Modeling time(s). In: Pro-
ceedings of the 10th International Conference on Model Driven
Engineering Languages and Systems, MODELS’07, pp. 559–573,
Springer, Berlin (2007)

4. Blouin, A., Combemale, B., Baudry, B., Beaudoux, O.: Kompren:
modeling and generating model slicers. Softw. Syst. Model. 14(1),
321–337 (2015)

5. Bockisch, C.,Malakuti, S., Akşit,M., Katz, S.:Making aspects nat-
ural: events and composition. In: 10th International Conference on
Aspect-Oriented SoftwareDevelopment (AOSD ’11).ACM(2011)

6. Bull, C.,Whittle, J.: Supporting reflective practice in software engi-
neering education through a studio-based approach. IEEE Softw.
31(4), 44–50 (2014)

7. Clarke, S., Walker, R.J.: Generic aspect-oriented design with
Theme/UML. In: Filman,R.E., Elrad, T., Clarke, S.,Aksit,A. (eds.)
Aspect-Oriented Software Development, pp. 425–458. Addison-
Wesley, Boston (2005)

8. Clavreul, M., Barais, O., Jézéquel, J.-M.: Integrating legacy sys-
tems with MDE. In: 32nd ACM/IEEE International Conference on
Software Engineering (ICSE’10), pp. 69–78. ACM (2010)

9. Combemale, B., Deantoni, J., Larsen, M.V., Mallet, F., Barais, O.,
Baudry, B., France, R.: Reifying concurrency for executable meta-
modeling. In: Erwig, M., Paige, R.F., Van Wyk, E. (eds) SLE–6th
International Conference on Software Language Engineering, vol.
8225, pp. 365–384, Indianapolis. Springer (2013)

10. Deantoni, J., Diallo, P.I., Teodorov, C., Champeau, J., Combemale,
B.: Towards ameta-language for the concurrency concern in DSLs.
In: Design, Automation and Test in Europe Conference and Exhi-
bition (DATE), Grenoble, France (2015)

11. Deantoni, J.,Mallet, F.: TimeSquare: treat yourmodelswith logical
time. In Furia, S.N.C.A. (ed.) TOOLS—50th International Confer-
ence on Objects, Models, Components, Patterns—2012, vol. 7304,
pp. 34–41, Prague, Czech Republic. Czech Technical University in
Prague, in co-operation with ETH Zurich, Springer (2012)

123

http://www.aspect-modeling.org/
http://www.aspect-modeling.org/

3022 J. Kienzle et al.

12. Deantoni, J., Mallet, F., Thomas, F., Reydet, G., Babau, J.-P.,
Mraidha, C., Gauthier, L., Rioux, L., Sordon, N.: RT-simex: retro-
analysis of execution traces. In: Sullivan, K.J., Roman, G.-C. (eds.)
SIGSOFT FSE, vol. ISBN 978-1-60558-791-2 of Proceedings of
the 18thACMSIGSOFT International Symposium on Foundations
of Software Engineering, pp. 377–378, Santa Fe, United States
(2010)

13. Dijkstra, E.W.: ADiscipline of Programming, vol. 1. Prentice-Hall,
Englewood Cliffs (1976)

14. France, R., Fleurey, F., Reddy, R., Baudry, B., Ghosh, S.: Providing
support for model composition in metamodels. In EDOC, pp. 253–
264 (2007)

15. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns.
Addison Wesley, Reading (1995)

16. Garcés, K., Deantoni, J., Mallet, F.: A model-based approach
for reconciliation of polychronous execution traces. In: SEAA
2011—37th EUROMICRO Conference on Software Engineering
and Advanced Applications, Oulu, Finland, IEEE (2011)

17. Glitia, C., Deantoni, J.,Mallet, F.: Logical Time@Work: capturing
data dependencies and platform constraints. In: Kaźmierski, T.J.J.,
Morawiec, A. (eds) System Specification and Design Languages,
vol. 106 of Lecture Notes in Electrical Engineering, pp. 223–238.
Springer, New York (2012)

18. Goknil, A., Deantoni, J., Peraldi-Frati, M.-A., Mallet, F.: Tool
support for the analysis of TADL2 timing constraints using
TimeSquare. In: ICECCS’2013—18th International Conference
on Engineering of Complex Computer Systems, Singapore, Sin-
gapore, (2013)

19. Hölzl, M., Knapp, A., Zhang, G.: Modeling the Car Crash Crisis
Management System Using HiLA, pp. 234–271. Springer, Berlin
(2010)

20. Jézéquel, J.-M., Combemale, B., Barais, O., Monperrus, M., Fou-
quet, F.: Mashup of metalanguages and its implementation in the
Kermeta language workbench. Softw. Syst. Model. 14, 905–920
(2013)

21. Kienzle, J., Al Abed, W., Klein, J.: Aspect-oriented multi-view
modeling. In: 8th International Conference on Aspect-Oriented
Software Development (AOSD’09), pp. 87–98. ACM Press (2009)

22. Klein, J., Hélouet, L., Jézéquel, J.-M.: Semantic-based weaving of
scenarios. In: AOSD, pp. 27–38. ACM Press (2006)

23. Kramer, M.E., Klein, J., Steel, J.R.H., Morin. B., Kienzle, J.,
Barais, O., Jézéquel,J.-M.: Achieving practical genericity in model
weaving through extensibility. In: 6th International Conference on
Model Transformation (ICMT’13), vol. 7909 of LNCS, pp. 108–
124. Springer, Berlin (2013)

24. Larsen, M.V., Goknil, A.: Railroad crossing heterogeneous model.
In: GEMOC workshop 2013—International Workshop on The
Globalization of Modeling Languages, Miami, Florida, USA
(2013)

25. Larsen, M.E.V., Deantoni, J., Combemale, B., Mallet, F.: A behav-
ioral coordination operator language (BCOoL). In: Lethbridge, T.,
Cabot, J., Egyed, A. (eds.) International Conference on Model
Driven Engineering Languages and Systems (MODELS), vol. 18,
pp. 462, Ottawa, Canada, September 2015. ACM (to be published
in the Proceedings of the Models 2015 Conference)

26. Latombe, F., Crégut. X., Combemale, B., Deantoni, J., Pantel,
M.: Weaving concurrency in executable domain-specific model-
ing languages. In: 8th ACM SIGPLAN International Conference
on Software Language Engineering (SLE), Pittsburg. ACM (2015)

27. Lee, E.A., Sangiovanni-Vincentelli, A.: The tagged signal model-
a preliminary version of a denotational framework for comparing
models of computation. Memo. UCB/ERL M 96, 71 (1996)

28. Mallet, F., Deantoni, J., André, C., De Simone, R.: The clock con-
straint specification language for building timed causality models.
Innov. Syst. Softw. Eng. 6(1–2), 99–106 (2010)

29. Marchand. J., Combemale, B., Baudry, B.: A categorical model of
model merging and weaving. In: 4th International Workshop on
Modelling in Software Engineering (MiSE 2012). IEEE (2012)

30. McNeile, A., Simons, N.: Protocol modelling: a modelling
approach that supports reusable behavioural abstractions. SoSyM
5(1), 91–107 (2006)

31. Mosser. S., Blay-Fornarino.M., France. R.:Workflow design using
fragment composition. In: TAOSD VII, vol. 6210, pp. 200–233
(2010)

32. Mussbacher. G.: Aspect-Oriented User Requirements Notation.
Ph.D. thesis, University of Ottawa, Canada (2010)

33. Mussbacher, G., Alam, O., Alhaj, M., Ali, S., Amálio, N., Barn.
B., Bræk, R., Clark, T., Combemale. B., Cysneiros, L.M., Fatima,
U., France, R., Georg, G., Horkoff, J., Kienzle, J., Leite, J.C., Leth-
bridge, T.C., Luckey,M.,Moreira, A.,Mutz, F., Padua,A., Oliveira,
A., Petriu, D.C., Schöttle,M., Troup, L.,Werneck, V.M.B.: Assess-
ing composition in modeling approaches. In: Workshop CMA’12.
ACM (2012)

34. Mussbacher. G., Amyot. D., Whittle, J.: Composing goal and sce-
nario models with the aspect-oriented user requirements notation
based on syntax and semantics. In: Aspect-Oriented Requirements
Engineering. Springer, Berlin (2013)

35. Nejati, S., Sabetzadeh, M., Chechik, M., Easterbrook, S., Zave,
P.: Matching and merging of statecharts specifications. In: ICSE
(2007)

36. Nielsen, M., Plotkin, G., Winskel, G.: Petri nets, event structures
and domains. In: Semantics of concurrent computation, vol. 70 of
LNCS. Springer, Berlin (1979)

37. Object Management Group.: Unified Modeling Language (v2.5.0)
(2015)

38. OMG.: Uml infrastructure specification v2.4 (2010)
39. Parnas, D.L.: On the criteria to be used in decomposing systems

intomodules.Commun.Assoc.Comput.Mach.15(12), 1053–1058
(1972)

40. Schmidt, D.C.: Model-driven engineering. IEEE Comput. 39, 41–
47 (2006)

41. Whittle, J., Jayaraman, P., Elkhodary, A., Moreira, A., Araújo,
J.: MATA: a unified approach for composing UML aspect mod-
els based on graph transformation. In: Transactions on Aspect-
Oriented Software Development VI, vol. 5560 of LNCS, pp.
191–237. Springer, Berlin (2009)

42. Winskel, G.: Event structures. In: Brauer, W., Reisig, W., Rozen-
berg, G. (eds.) Advances in Petri Nets 1986, Part II on Petri Nets:
Applications and Relationships to Other Models of Concurrency.
Springer, New York (1987)

43. Zhang, G., Hölzl, M.M.: HiLA: high-level aspects for UML state
machines. In: MoDELS Workshops, vol. 6002 of LNCS, pp. 104–
118. Springer (2009)

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123

A unifying framework for homogeneous model composition 3023

Jörg Kienzle is an associate pro-
fessor at the School of Computer
Science at McGill University in
Montreal, Canada. He holds a
Ph.D. and engineering diploma
from the Swiss Federal Institute
of Technology in Lausanne
(EPFL). His current research
interests include model-driven
engineering, concern-oriented soft-
ware development, reuse of mod-
els, software development meth-
ods in general, aspect-orientation,
distributed systems and fault tol-
erance. He is actively involved in

the MODELS and Modularity:AOSD communities.

Gunter Mussbacher is an Assis-
tant Professor in the Department
of Electrical and Computer Engi-
neering at McGill University, with
100+ publications related to
model-driven requirements engi-
neering, modularity in modeling,
concern-driven development and
reuse, and sustainability engineer-
ing. He has co-edited with Daniel
Amyot all versions of the User
Requirements Notation (URN), an
international requirements
engineering standard published by
the International Telecommunica-

tion Union as ITU Recommendation Z.151, and is currently Associate
Rapporteur responsible for URN at ITU. He was Program Co-Chair
for SAM’14 and Finance Chair for RE’15, and is currently the Confer-
ence Chair for ICSE 2019. He co-founded the Model-Driven Require-
ments Engineering (MoDRE) workshop series at RE and is a regu-
lar PC member of key conferences in his field (e.g., RE, MODELS,
SLE). Gunter worked in industry as a research engineer for Mitel Net-
works, where he applied and taught URN concepts. He continues to
teach software engineering courses and URN tutorials at university,
for industry, for governmental departments, and at international con-
ferences.

Benoit Combemale is Full Profes-
sor at the University of Toulouse
since 2017, and researcher at Inria
since 2018. He received his Ph.D.
in Computer Science from the
University of Toulouse in 2008,
and his Habilitation in Computer
Science from the University of
Rennes in 2015. Before joining
the University of Toulouse he was
an Associate Professor at the Uni-
versity of Rennes 1 since 2009,
and a postdoctoral fellow at
INRIA in 2008. His research inter-
ests include model-driven engi-

neering (MDE), software language engineering (SLE) and Valida-
tion & Verification (V&V). For more information, please visit http://
people.irisa.fr/Benoit.Combemale/

Julien Deantoni is an associate
professor in computer sciences at
the University Cote d’Azur. After
studies in electronics and micro
informatics, he obtained a Ph.D.
focused on the modeling and anal-
ysis of control systems, and had
a post doc position at INRIA in
France. He is currently a member
of the I3S/Inria Kairos team. His
research focuses on the join use
of Model Driven Engineering and
Formal Methods for System Engi-
neering. He is particularly inter-
ested in understanding how the

explicit modeling of the operational semantics of languages can be
used for heterogeneous simulation and reasoning.

123

http://people.irisa.fr/Benoit.Combemale/
http://people.irisa.fr/Benoit.Combemale/

	A unifying framework for homogeneous model composition
	Abstract
	1 Introduction
	2 Illustrating examples
	2.1 Need for different homogeneous composition operators for standard modeling notations
	2.2 Need for heterogeneous composition operators between DSMLs

	3 The landscape of composition operators
	4 Structural combination: merge
	4.1 Definition
	4.2 Examples of structural weavers
	4.2.1 Class diagram weaving
	4.2.2 UML package merge
	4.2.3 Kompose
	4.2.4 Theme/UML
	4.2.5 AoGRL

	4.3 Mathematical properties of merge

	5 Behavioral combination: event scheduling
	5.1 Definition
	5.2 Examples of behavioral weavers
	5.2.1 Sequence diagram composition
	5.2.2 State diagram composition
	5.2.3 Aspect-oriented Use Case Map composition
	5.2.4 ADORE
	5.2.5 TreMer+
	5.2.6 Theme/UML
	5.2.7 HiLa

	6 Discussion
	6.1 Conceptual model
	6.2 Research challenges
	6.3 Proposed work items
	6.3.1 W1: mapping to event structures (C1)
	6.3.2 W2: automate mapping to event structures (C4)
	6.3.3 W3: implementing composition operators (C2)
	6.3.4 W4: toward generic behavioral matching (C3)
	6.3.5 W5: efficient creation of the combined event structure (C4, C5)
	6.3.6 W6: visualizing the composed behavior (C5)

	7 Related work: general purpose weavers
	7.1 GeKo
	7.2 MATA
	7.3 ModMap
	7.4 Event-based modularization

	8 Conclusion
	References

