
Software & Systems Modeling (2019) 18:1135–1154
https://doi.org/10.1007/s10270-017-0643-4

SPEC IAL SECT ION PAPER

Managing time-awareness in modularized processes

Roberto Posenato2 · Andreas Lanz1 · Carlo Combi2 ·Manfred Reichert1

Received: 20 December 2016 / Revised: 14 August 2017 / Accepted: 20 November 2017 / Published online: 16 February 2018
© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Abstract
Managing temporal process constraints in a suitable way is crucial for long-running business processes in many application
domains. However, proper support of time-aware processes is still missing in contemporary information systems. This paper
tackles a particular challenge existing in this context, namely the handling of temporal constraints for modularized processes
(i.e., processes comprising subprocesses), which shall enable both the reuse of process knowledge and the modular design
of complex processes. In detail, this paper focuses on the representation and support of time-aware modularized processes in
process-aware information systems. To this end, we present a sound and complete method to derive the duration restrictions
of a time-aware (sub-)process in such a way that its temporal properties are completely specified. We then show how this
characterization of a process can be utilized when reusing it as a subprocess within a modularized process. As a motivating
example, we consider a compound process from healthcare. Altogether the proper handling of temporal constraints for
modularized processes is crucial for the enhancement of time- and process-aware information systems.

Keywords Process-aware information system · Temporal constraints · Subprocess · Process modularity · Controllability

1 Introduction

It is widely acknowledged that the capability to modularly
design process schemas constitutes an important requirement
for creating comprehensible and reusable process schemas
[31,33]. Thus, the support of complex processes, which may
comprise subprocesses at different levels, is essential for
process-aware information systems (PAIS) as it allows for the
reuse of existing process knowledge from a process reposi-
tory as well as the modular design of such processes.

Communicated by Dr. Ilia Bider and Rainer Schmidt.

B Roberto Posenato
roberto.posenato@univr.it

Andreas Lanz
andreas.lanz@uni-ulm.de

Carlo Combi
carlo.combi@univr.it

Manfred Reichert
manfred.reichert@uni-ulm.de

1 Institute of Databases and Information Systems, Ulm
University, Ulm, Germany

2 Department of Computer Science, University of Verona,
Verona, Italy

On the other hand, temporal process constraints, such
as deadlines and maximum allowable delays between task
executions, must be suitably handled in many application
domains. Even tough this topic has received increasing
attention in the research community during the last years
[2,6,11,17,24], a complete support of time-aware processes
is still missing in contemporary PAIS.

At first glance, temporal process constraints and process
modularity seem to be orthogonal features that may be man-
aged in an independent way. However, when getting to the
heart of these two features, it turns out that modularity in
combination with the reuse of time-aware processes requires
the ability to represent the overall temporal behavior of a
process [19]. Only then, it becomes possible to evaluate the
temporal constraints of a process containing time-aware sub-
processes in a truly modular way, i.e., without replacing the
subprocess tasks with their (temporal) components. More-
over, onemay then attach temporal information to the process
schema when storing it in a central process repository. This
knowledge can, for example, be essential in the context of
business process analysis and optimization [32].

In [19], the issue of representing the temporal properties
of a process has been considered. This paper extends and
completes the approach for the representation and support
of time-aware modularized processes, which we presented
in [19]. In particular, we introduce and prove a sound and

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10270-017-0643-4&domain=pdf
http://orcid.org/0000-0003-0944-0419

1136 R. Posenato et al.

complete method to derive the duration restrictions of a
time-aware process in such a way that its temporal prop-
erties are completely described. Then, we show how this
characterization of a process can be merged with other
temporal constraints when reusing it as a subprocess of a
modularized process. In accordance with recent research
contributions, we focus on the issue of dynamic control-
lability (DC) of time-aware processes [6,17]. In general,
DC corresponds to the capability of a PAIS to execute a
process schema in a way such that all allowed durations
of all tasks are possible, while still satisfying all temporal
constraints; i.e., DC ensures that it is possible to execute
a process schema without any need to restrict the allowed
durations of a task for satisfying all temporal constraints.
In this context, task durations are called contingent as they
are not under the control of the PAIS (i.e., its process
engine).

The two main research questions addressed in this paper
are:

1. How can the overall temporal behavior of a process be
represented (cf. Sect. 5)? Addressing this issue consti-
tutes a fundamental prerequisite for providing some kind
ofmodularity from the temporal perspective aswell.Note
that without such characterization, it would be neces-
sary to recompute the temporal features of a subprocess
schema each time it is used in a modularized process.
More particularly, this paper focuses on providing a for-
mal description of how to represent and derive temporal
constraints for modularized processes. As will be shown,
a process duration can be represented as a kind of range
composed of two parts. One part represents all possible
durations, while the second one, which often constitutes
a restriction of the first part, represents the core of dura-
tions the PAIS cannot restrict at runtime. On the one
hand, the duration of the subprocess can be controlled
to some extent due to the nature of the contained tem-
poral constraints; on the other hand, it cannot be fully
controlled as the contingent durations of the contained
tasks cannot be controlled by the PAIS and must be guar-
anteed.
With respect to the informal proposal made in [19], this
paper provides a formal and complete description of how
to represent and derive the overall temporal behavior of
a process.

2. How to apply knowledge about the temporal behavior
of a process when reusing its schema as a subprocess
inside a modularized process in order to avoid having
to re-analyze the internal constraints of the subprocess
(cf. Sect. 6)? This will, for example, enable us to store
time-aware processes including their overall temporal
properties in a process repository and to reuse them in
a truly modular fashion.

In addition to our preliminary work on managing time-
awareness in modularized processes [19], this paper presents
all proofs related to the formal part of the approach. More-
over, we reorganize the structure applied in [19] to provide
a more insightful and detailed discussion of each relevant
aspect and we describe the design and implementation of
a proof-of-concept prototype of the approach (cf. Sect. 7).
In detail, the remainder of this work is organized as fol-
lows: Sect. 2 introduces a clinical guideline dealing with
the management of osteoarthritis of the hand, hip and knee
as an example of a process schema with subprocesses and
temporal properties. We use this clinical example for illus-
tration purposes throughout the paper. Section 3 extends the
discussion of existing work related to the management of
temporal constraints in business processes. In Sect. 4, we
present, in an extended way, the Simple Temporal Network
with Partially Shrinkable Uncertainty (STNPSU) model. In
particular, this model is used for temporal reasoning on sub-
processes. In turn, Sect. 5 constitutes the core of the paper.
It discusses how to characterize time-aware processes by
mapping them to corresponding STNPSUs extended with
the concept of contingency span. In this context, all relevant
concepts are formally described and formal statements are
proven. Section 6 then discusses how the temporal proper-
ties of a (sub-)process can be utilized in order to check the
controllability of the overall process without unfolding its
subprocesses. As another novel contribution, Sect. 7 presents
the architecture of ATAPIS, which is an open framework for
the design, verification and enactment of modularized tem-
poral processes. Finally, Sect. 8 summarizes the main results
of our work and gives an outlook on future work.

2 Motivating example

As a motivating scenario, we consider a high-level speci-
fication of an excerpt of a clinical guideline related to the
management of osteoarthritis of the hand, hip and knee [16].
A possible schema of this process is depicted in Fig. 1.

After completing the initial Patient Evaluation (task T0:
PatEv), two parallel branches become activated. The first
one is composed of process Non-Pharmacologic Recom-
mendation (P0: NonPharmR) followed by process Speci-
fication of Physical Exercises (P1: PhysEx). The second
one consists of process Pharmacologic Recommendation
(P2: PharmR) followed by a Treatment Explanation to the
patient (task T8: TrExp). As depicted in Fig. 1, P0, P1 and
P2 correspond to subprocesses (from a process repository)
that comprise other tasks and may be reused in the context
of other clinical processes (e.g., related to other patholo-
gies). In detail, Non-Pharmacologic Recommendation P0
consists of two parallel branches. The first branch evaluates
the patient’s ability to perform activities of daily live (task

123

Managing time-awareness in modularized processes 1137

(a)

(b)

(c)

(d)

Fig. 1 Motivating example. The process for managing osteoarthritis: a main process, b subprocess P2, c subprocess P0, d subprocess P1

T1: ADLsEv) followed by the identification of needed assis-
tive devices (task T2: DevId). The second branch consists of
giving instructions to the patient related to the use of thermal
modalities (task T3: ThermMod). In turn, the Specification
of Physical Exercises (i.e., P1) consists of the specifica-
tion of aquatic exercises (task T4: AqEx) followed by the
specification of land exercises (task T5: LndEx). Finally,
Pharmacologic Recommendation (i.e., P2) consists of the
evaluation of contraindications (task T6: CntrEval) fol-
lowed by a drug specification (task T7: DrgSp).

We enrich the process schemas with temporal constraints
that need to be obeyed in order to guarantee the clinically
successful completion of each step of the therapy. Further-
more, such temporal constraints will help practitioners (e.g.,
doctors and nurses) in planning their daily work as they can
anticipate how long previous steps will take and how much
freedom they have for performing their tasks. The temporal
constraints allow for the temporal characterization of tasks,
edges and gateways according to the concepts introduced
in [18]. Note that the durations of tasks are not completely
under the control of the PAIS as these tasks are carried out
by practitioners.

Therefore, task durations are represented as guarded
ranges. Such a duration range may be partially restricted

by the system during process execution in order to ensure
successful completion of the processes. For example, task T6
has temporal constraint

[[1, 2][4, 5]] meaning that prior to
the execution of the task, its duration may be restricted, but
in any case, the minimum required duration must not exceed
2 time units and themaximumduration cannot be constrained
below 4 (e.g., a duration of [3, 5] or [1, 2] would be disal-
lowed). As another example consider task T7 with temporal
constraint

[[1, 1][7, 7]]. The latter expresses that this task
may last 1 to 7 time units, and all possible durations shall
be allowed during process execution. This ensures that the
user executing the task has sufficient flexibility to success-
fully complete the task. Constraints on gateways and edges
constitute standard temporal constraints, specifying the pos-
sible durations (within a range), which are under the control
of the PAIS (i.e., its process engine).

As already discussed, two challenges emerge in this con-
text.

– The first challenge concerns the representation of the
overall temporal behavior of (sub-)processes. One must
be able to describe how a subprocess like, for example,
PhysEx behaves temporally if it shall be reusable inside
any time-aware processes. Note that PhysEx involves

123

1138 R. Posenato et al.

physical therapists and is usually required in the con-
text of many other healthcare processes. For example,
the activities of this (sub-)process with the same inter-
nal temporal constraints might be also required when
managing patients that suffer from multiple sclerosis
[15] or sarcopenia (loss of muscular mass and decline
in associated muscular function occurring with aging
[8]). Furthermore, the subprocess is relevant for man-
aging patients with osteogenesis imperfecta (a pathology
caused by a mutation in a gene that affects bone for-
mation, bone strength, and the structure of other tissues
[26]) often undergoing multiple rehabilitation periods
after bone fractures. These three clinical scenarios only
constitute few examples of real-world clinical processes
whose definition couldmake use of subprocessPhysEx.
In general, the designers of a clinical process schema
would benefit from the establishment of a clinical process
library that collects reusable, suitably defined clinical
subprocesses. To allow for the proper reuse of such sub-
processes, in turn, their temporal behavior needs to be
part of their overall description. Note that similar con-
siderations can be made for other subprocesses as well.
For example, subprocess PharmR is common to many
decision-based care processes.

– The second challenge is related to the efficient temporal
analysis of the top-level (i.e., main) process. Ideally, this
analysis can be accomplished without need for unfold-
ing all used subprocesses P0, P1, and P2. Only then, the
temporal analysis can be accomplished effectively and
quickly. In general, the provision of modularized clinical
(sub-)processes will allow checking temporal properties
of the main process, while only considering a reduced
number of constraints and tasks/subprocesses. Regarding
the running example, for instance, it should be possi-
ble to verify the temporal properties of the process for
managing osteoarthritis patients without need to con-
sider the internal structure and constraints of PharmR,
NonPharmR, and PhysEx.

3 Related work

In the literature, there is considerable work on the manage-
ment of temporal constraints in PAIS [1,2,7,10–12,17,23,25].
Issues these approaches are focusing on include themodeling
and verification of time-aware processes.

For each process exhibiting temporal constraints, a time-
aware process schema needs to be defined [17]. In the
context of this work, a process schema corresponds to a
directed graph that comprises a set of nodes—representing
tasks and gateways (e.g., AND-Split/Join)—as well as a set
of control edges linking these nodes and specifying prece-
dence relations between them. Each process schema contains

Table 1 Process time patterns [24]

Category I: durations and time lags

TP1 Time lags between two activities

TP2 Durations

TP3 Time lags between events

Category II: restricting execution times

TP4 Fixed date elements

TP5 Schedule restricted elements

TP6 Time-based restrictions

TP7 Validity period

Category III: variability

TP8 Time-dependent variability

Category IV: recurrent process elements

TP9 Cyclic elements

TP10 Periodicity

unique start and end nodes, and may be composed of control
flow patterns like sequence, parallel split, and synchroniza-
tion.

Lanz et al. [22,24] introduced 10 time patterns represent-
ing common temporal constraints of time-aware processes
(cf. Table 1). In particular, time patterns facilitate the com-
parison of existing approaches based on a universal set of
notions with well-defined semantics. While [24] introduced
the empirically evidenced timepatterns informally, [22] addi-
tionally provided a formal semantics for them.Moreover, the
need for a sophisticated runtime support for the time patterns
was elaborated in [24].

Marjanovic et al. [25] defined a conceptual model for tem-
poral constraints on a process schema, which is tailored to
check for temporal consistency. Considering the time pattern
classification (cf. Table 1), [25] dealt with time lags between
activities (TP1), activity and process durations (TP2), and
fixed date elements (TP4). Furthermore, [25] proposed a set
of rules for verifying time-aware process schemas, whereas
no runtime support was considered.

Eder et al. [10] presented an extended version of the Crit-
ical Path Method, which is known from the project planning
domain. In detail, [10] proposed the use of Timed Work-
flow Graphs (TWG) for representing the temporal properties
of activities and their control flow relations. Regarding the
time patterns, [10] considered time lags between activities
(TP1), activity durations (TP2), fixed date elements (TP4),
and schedule restricted elements (TP5). Note that [10] pre-
sumes that activity durations are deterministic, i.e., activity
durations are the same for all process instances. As for activ-
ity durations, in [13,14], authors discussed a probabilistic
approach based on duration histograms to deal with tempo-
ral information about tasks.

123

Managing time-awareness in modularized processes 1139

Bettini et al. [1] proposed an approach based on Simple
Temporal Network (STN) [9]. In particular, this differs sig-
nificantly from the aforementioned ones. In an STN, nodes
represent timepoints, whereas each directed edge a

v−→ b
between timepoints a and b represents a temporal constraint
b − a ≤ v with v being a real value. If v ≥ 0 holds, the
constraint represents the maximum allowable delay between
b and a; otherwise (i.e., v < 0), it represents the mini-
mum time span to be elapsed after b before a may occur. In
[1], each process activity is represented by two nodes of the
respective STN, which correspond to the starting and ending
timepoint of the activity. In turn, the edges of the STN repre-
sent temporal constraints and precedence relations between
the corresponding nodes. Finally, [1] considered time lags
between activities (TP1), activity durations (TP2), and fixed
date elements (TP4).

Combi et al. [2,3] proposed a temporal conceptual model
for specifying time-aware process schemas. In this con-
ceptual model, time lags between activities (TP1), activ-
ity durations (TP2), fixed date elements (TP4), schedule
restricted elements (TP5), and periodicity (TP10) are con-
sidered. First of all, [3] shows how to check consistency
of time-aware processes at design time, Furthermore, [3]
argues that different strategies for ensuring consistency of
a process instance during runtime may be applied, depend-
ing on the considered kind of consistency of a process
schema. In [2], in turn, the authors extended their work
considering also tasks for which the execution time cannot
be decided, but only observed, analyzing the computa-
tional complexity of the dynamic controllability problem
(cf. Sect. 1) and proposing a general algorithm to check
for the dynamic controllability of a time-aware process
schema.

Zhang et al. [35] addressed the issue of determining
whether a business activity is eligible for relocation in
a business process in order to optimize overall execution
performance. Note that even in this case, it is crucial to char-
acterize the temporal behavior of each activity.

The concept of temporal controllability has been mainly
investigated in the AI area in connection with temporal con-
straint networks. In [30], Morris et al. proposed an STN [9]
extension, the Simple Temporal Network With Uncertainty
(STNU). Regarding STNUS, it is also possible to specify a
new kind of constraint, the contingent links. The latter are
not under the control of the system and, hence, the concept
of consistency is extended to the concept of dynamic con-
trollability.

Finally, Combi et al. [6] transferred the concept of
dynamic controllability to time-aware process schemas.
Recently, in [4,5], authors extended STNU to Conditional
SimpleTemporalNetworkwithUncertainty (CSTNU),which
additionally consider alternative execution paths.

4 Backgrounds

This work relies on Simple Temporal Network with Partially
Shrinkable Uncertainty (STNPSU), an extension of STNU
that enlarges contingent links to enable a more flexible man-
agement of temporal constraints [18]. This section provides
a detailed discussion on STNPSU. Moreover, it presents the
definitions required to understand the formal proofs given in
the following sections.

An STNPSU [18] is a directedweighted graph (cf. Fig. 2a)
whose nodes represent time-point variables (timepoints),
usually corresponding to the start or end of activities, and
whose edges A [x, y] B, called requirement links, represent a
lower and an upper bound constraint on the distance between
the two timepoints it connects; e.g., A [x, y] B represents a con-
straint expressing that timepoint B must occur between x and
y time units after the occurrence of A (i.e., x≤ B−A≤ y). For
an STNPSU, it is possible to characterize certain timepoints
as contingent timepoints, meaning that their value cannot be
decided by the system executing the STNPSU; instead, the
value is decided by the environment during runtime. Each
contingent timepoint has one incoming edge, which is called

guarded link and drawn as a double line, e.g., A
[[x, x ′][y′, y]]

C .

A guarded link A
[[x, x ′][y′, y]]

C consists of a pseudo-contingent
duration range [x, y] augmented with two guards, the lower
guard x ′ and the upper guard y′ [18]. A is called the activa-
tion timepoint. Before executing a guarded link, its duration
range [x, y] may be modified. However, any modification
must be accomplished in a way respecting the corresponding
guards, i.e., x≤ x ′ and y≥ y′.When activating a guarded link

A
[[x∗, x ′][y′, y∗]]

C (i.e.,when executing timepoint A), the current
value [x∗, y∗] of the duration range becomes a fully contin-
gent range, which is then made available to the environment
for executing timepoint C . That means, once A is executed,
C is guaranteed to be executed such that C − A ∈ [x∗, y∗]
holds. Note that the specific time at which C is executed is
uncontrollable since it is decided by the environment; i.e., it
can be only observed when it happens.

More formally, an STNPSU is a triple (T , C,G), where

– T is a set of timepoints;
– C is a set of requirement links X [u, v] Y , and
– G is a set of guarded links each having the form

A
[[x, x ′][y′, y]]

C , where A and C correspond to timepoints,
and 0< x≤ y<∞, x≤ x ′, 0< y′ ≤ y.

Moreover, if A1

[[x1, x ′
1][y′

1, y1]
]

C1 as well as A2

[[x2, x ′
2][y′

2, y2]
]

C2

are distinct guarded links in G, C1 and C2 will be distinct
timepoints. It is noteworthy that guarded links may be used
to represent two different types of constraints: If x ′ < y′
holds, a guarded link represents a temporal constraint with a

123

1140 R. Posenato et al.

Fig. 2 Non-DC STNPSU and
corresponding distance graph, a
non-DC STNPSU, b distance
graph of the STNPSU in a

(a) (b)

partially contingent range. Particularly, the guarded link then
represents a constraint with a contingent (i.e., unshrinkable)
core [x ′, y′] ⊆ [x, y]. In turn, if x ′ ≥ y′ holds, a guarded link
represents a temporal constraint with a partially shrinkable
range with a guarded core [y′, x ′].

Furthermore, each STNPSU is associated with a distance
graph D = (T , E), derived from the upper and lower bound
constraints [18,29]. In the distance graph (cf. Fig. 2b), each
link between a pair of timepoints A and B is represented
as two ordinary edges in E : A y B, representing constraint
B ≤ A+y, and A −x B for representing constraint B ≥ A+x ,
x, y ∈ R. Moreover, for each guarded link between a pair
of timepoints A and C , E contains two other labeled edges,
called lower and upper-case labeled values. A lower-case
labeled value, Ac : x ′

C , expresses that C cannot be forced to
be executed at a time greater than x ′ after A, i.e., , it is not
possible to add a constraint A −x ′′

C, x ′ < x ′′ to the network.
In turn, an upper-case labeled value, A C :−y′

C , expresses that
C cannot be forced to be executed at a time less than y′ after
A, i.e., it is not possible to add a constraint A y′′

C, y′′ < y′
to the network.

These two kinds of labels are fundamental for determining
the dynamic controllability of the network as explained in the
following.Note that these two representations of an STNPSU
can be used interchangeably.

AnSTNPSU is denoted as dynamically controllable (DC),
if there exists a strategy for executing its timepoints in such a
way that: i) all constraints in the network can be satisfied, no
matter how the execution of any guarded link turns out, and

ii) for any other guarded link A
[[x, x ′][y′, y]]

C , the lower bound
x must not be increased beyond its lower guard x ′ and the
upper bound y must not be decreased below its upper guard
y′ [18].

In [18], it was shown how one can adapt and extend
the edge-generation rules and algorithm proposed by Mor-
ris et al. for checking the dynamic controllability (DC) of
STNU [29] in order to check the DC of an STNPSU in poly-
nomial time (cf. Algorithm 1).

Algorithm 1: STNPSU-DC-Check(G)
Input: G = (T , C,G): STNPSU graph instance to analyze.
Output: the dynamic controllability of G.

1 D:= distance graph of G;
2 for 1 to CutOffBound do // CutOffBound=O(|T |)
3 D′:= AllMax-Projection of D;
4 if (D′ has a negative cycle) then return false Generate new

edges in D using edge-generation rules from Table 2;
5 if (no edges generated) then return true

6 return false;

The checking algorithm works by recursively generating
new edges in the STNPSU distance graph according to the
rules from Table 2 and by checking whether newly added
edges result in so-called negative semi-reducible cycles in
the graph [27]. For each rule, existing edges are represented
as solid arrows and newly added ones as dashed arrows. Each
of the first four rules takes two existing edges as input and
generates a single edge as output. Finally, notation R
≡ S
expresses that R and S must be distinct time-point vari-
ables, but does not represent a constraint on the values of
those variables. A path in an STNPSU distance graph is
called semi-reducible if, through the subsequent application
of the edge-generation rules (cf. Table 2), it can be trans-
formed into a path solely consisting of ordinary or upper-case
edges [27]. A semi-reducible cycle with negative unlabeled
length is called a negative semi-reducible cycle. To detect
negative semi-reducible cycles,Algorithm1uses theAllMax-
Projection of the STNPSU. The AllMax-Projection is the
distance matrix for the Simple Temporal Network (STN) [9]
formed by all of the original and generated ordinary and
upper-case edges (without their alphabetic labels) and rep-
resents the occurrence when all guarded links in the original
network assume their upper guard value.

Example 1 (Negative Semi-Reducible Cycle) Consider the
distance graph depicted in Fig. 2b corresponding to the
STNPSU from Fig. 2a. It is a matter of applying the edge-
generation rules from Table 2 to verify that Fig. 3 depicts the

123

Managing time-awareness in modularized processes 1141

Table 2 Edge-generation rules
of the STNPSU-DC-Check
algorithm. Dashed edges are the
generated ones

Fig. 3 New generated edges in distance graph of Fig. 2b

derived distance graph of Fig. 2b (dashed lines are the gen-
erated ones) containing the semi-reducible cycle A−C − A.
Moreover, as the unlabeled length of this semi-reducible
cycle is negative, the respective STNPSU cannot be dynam-
ically controllable. In particular, let us consider the scenario
where D is executed 4 time units after C and B is executed
2 time units after A. Then, due to the fact that D may be
executed at most 2 time units after B, C has to be executed
at most 0 time units after A (i.e., at the same item as A). In
turn, in the scenario where D is executed 2 time units afterC
and B is executed 4 time units after A, C has to be executed
at least 1 time unit after A in order to be able to satisfy the
requirement link between B and D. However, it is not pos-
sible to satisfy both conditions at the same time. Thus, the
STNPSU is not DC.

We observe that the edge-generation rules from Table 2
only generate ordinary or upper-case edges. The upper-case
edges generated by respective rules represent conditional
constraints, called waits [29]. In particular, an upper-case
edge BC :−v A represents the following constraint: as long
as contingent timepoint C remains unexecuted, timepoint B
must wait at least v units after the execution of A, the activa-

tion timepoint for C . Note that [27] and [28] presented two
optimizations of the original algorithm, which are not further
discussed in this paper.

5 Characterization of time-aware processes

This section shows how to determine a proper representation
for the duration of a process. For this purpose, we consider a
process schema P with a single start and a single end node.
In this paper, we do not consider the choices pattern, but we
are currently extending STNPSU to support choices as well.
However, our preliminary analysis has shown that the results
presented in this paperwill be also applicable to this extended
kind of STNPSU.

First, we show how to verify the dynamic controllabil-
ity (DC) of process schema P and, if P is DC, how to derive
itsminimal constraints. Second, we discuss how to determine
the guards for a guarded link representing the duration of a
process. Finally, we propose to extend the concept of guarded
range in order to completely represent the overall temporal
properties of a process.

5.1 STNPSU representation of a process schema

In order to verify the dynamic controllability of a pro-
cess schema P , it is transformed into an STNPSU S using
the transformation rules depicted in Table 3. The resulting
STNPSU has a single initial timepoint that occurs before any
other one—called Z—and a single ending timepoint—called
E—that occurs after any other timepoint. This STNPSU is
then checked for DC by applying the standard algorithm for
DC checking [18] to it. Given the above transformation, one
can easily show that the original process is DC if and only if

123

1142 R. Posenato et al.

Table 3 STNPSU
transformation rules (adopted
from [19])

Process schema STNPSU Process schema STNPSU

Start/End node Time Lag

Z E Z E
[0, ∞][0, ∞] A B

E[t, u]S

end-start

AS AE BS BE
[t, u]

Task

A[[x, x ′][y′, y]] AS AE

[[x, x ′][y′, y]][0,∞] [0,∞] A B
S[t, u]S

start-start
AS AE BS BE

[0,∞]
[t, u]

ANDsplit

[1,1]

+S +E
[0,∞] [1, 1]

[0,∞]

[0,∞]

A B
E[t, u]E

end-end
AS AE BS BE

[0,∞]
[t, u]

ANDjoin

[1,1]

+S +E

[0,∞]

[0,∞] [1, 1] [0,∞]
A B

S[t, u]E

start-end
AS AE BS BE

[0,∞]

[t, u]

Control Edge

A B AS AE BS BE
[0,∞]

the corresponding STNPSU is DC. In turn, this results in the
following theorem.

Theorem 1 Given a time-aware process schema P, which
uses the process modeling elements from Table 3, there exists
an STNPSU SP such that P is dynamically controllable if and
only if SP is DC.

Proof Table 3 depicts the mapping of the elements available
for modeling a time-aware process (i.e., tasks, control edges,
AND gateways, and temporal constraints) to the associated
STNPSU fragments.

– Task. Given a process schema, each task node A is
transformed into two STNPSU timepoints, AS and AE ,
representing its start and end instants. The duration
attribute of A, [[x, x ′][y′, y]], is converted to the guarded
link AS

[[x, x ′][y′, y]]
AE .

– ANDjoin/ANDsplit gateways. The conversion pro-
cess is analogous to the one of a task. However, dura-
tion attribute [x, y] is converted to a requirement link
AS

[x, y] AE as control connectors are executed by the pro-
cess engine of the PAIS.

– Control Edge. A control edge from task A to task
B is converted to a requirement link AE

[0,∞] BS with
duration range [0,∞] in order to guarantee the correct
execution order of the original process.

– Time Lags. Consider a time lag 〈IF〉[t, u]〈IS〉, where
IF and IS represent the kind of instants to be considered,
i.e., ‘S’ for the start instant and ‘E’ for the end instant. If
the considered time lag is between tasks A and B, it is
converted to a requirement link between the timepoints
associated with instants AIF and BIS of the two tasks A

and B. The resulting requirement link then has the same
duration range [t, u] as the time lag.

Let P be a time-aware process schema. Applying the
above transformation to P and to the possible time lags, one
can simply verify that the obtained STNPSU represents all
precedence relations and temporal constraints of the original
process schema P .

As introduced in Sect. 1, a time-aware process schema is
dynamically controllable if it is possible to execute it for all
required durations of all activities, while still satisfying all
temporal constraints. Furthermore, recall that an STNPSU is
dynamically controllable if it is possible to execute it in a
way such that, no matter how the execution of any guarded

link turns out, for any other guarded link A
[[x, x ′][y′, y]]

C , the
lower bound x must never be increased beyond its guard x ′
and the upper bound y must never be decreased below its
guard y′ in order to ensure controllability of the network.

Therefore, it is a matter of definition to verify that the
dynamic controllability of a process schema implies dynamic
controllability of the corresponding STNPSU and vice versa.

��

5.2 Lower and upper guard

Assuming that the process is DC, it is noteworthy that the DC
checking algorithm also derives the minimum andmaximum
duration between timepoints Z and E , i.e., the minimum and
maximum durations of the process. However, these bounds
are not sufficient for characterizing the temporal behavior
of the process as they do not represent its possible non-
restrictable duration ranges. As an example consider the

123

Managing time-awareness in modularized processes 1143

STNPSU depicted in Fig. 4c, which corresponds to process
P2 of Fig. 1. One can easily show that the duration range
between Z and E corresponds to [5, 19]. However, this range
cannot be reduced to [5, 10], for example, since internal task
T7 has a contingent duration of 1 to 7, which cannot be con-
trolled (i.e., restricted) by the PAIS. In particular, if T7 lasts
exactly 7 time units, process P2 will last at least 11 time units.
On the other hand, representing a subprocess by considering
the duration range between Z and E to be contingent would
make the overall process over-constrained and thus limit the
overall temporal flexibility of the modularized process.

We, therefore, suggest representing the duration of a pro-
cess by a guarded rangewith proper guards in order to prevent
unacceptable restrictions of the duration range of the pro-
cess. In the following, we propose a method to determine
the lower and upper guard of such a guarded range based on
the STNPSU representation of the process schema. In this
context, the upper guard for the duration range of a process
P represents the lowest value the maximum duration of the
process may be decreased to. In other words, considering
the STNPSU S corresponding to P , the upper guard corre-
sponds to the lowest value the upper bound of the requirement
link, which is derived between Z and E by the DC check-
ing algorithm, may be decreased to. It can be determined by
considering the maximum guards of any guarded link and
the lower bounds of any requirement link in S as outlined in
Ex. 2.

Example 2 (Upper Guard) Consider the STNPSUdepicted in
Fig. 4c. While the upper bounds of the internal requirement
links may be restricted to their lower bounds (i.e., 1) by the
process engine, the upper bounds of the two guarded links
cannot be restricted below their upper guards (i.e., 4 and 7,
respectively). Therefore, the value we obtain when summing
the lower bound values of the requirement links and the upper
guards of the guarded links, i.e., 1 + 4 + 1 + 7 + 1 = 14,
represents the minimal value the upper bound of the link
between Z and E may be restricted to.

In turn, the lower guard for the duration range of a pro-
cess P represents the greatest value the minimum duration of
the process may be increased to. Regarding the STNPSU S,
therefore, the lower guard corresponds to the greatest value
the lower bound of the requirement link between Z and E
may be increased to.

If there are several paths leading from Z to E , it becomes
necessary to consider the maximum/minimum value con-
sidering all paths. Therefore, Definitions 1 and 2 specify
the concept of lower/upper guard for any timepoint of an
STNPSU.

Definition 1 (Upper Guard) Let S be a dynamically con-
trollable STNPSU with distance graph D = (T , E) and let
C be a timepoint. Then: The minimum value that may be set

for the upper bound v of a requirement link Z [u, v] C is called
the upper guard of C :

upperGuardS(C)

=max
B∈T

⎧
⎪⎨

⎪⎩

0 if Z ≡ C

upperGuardS(B)+x if (B −x C)∈E
upperGuardS(B)+y′ if (B D :−y′

C)∈E

Definition 2 (Lower Guard) Let S be a dynamically con-
trollable STNPSU with distance graph D = (T , E) and let
C be a timepoint. Then: The maximum value that may be set
for the lower bound u of a requirement link Z [u, v] C is called
the lower guard of C :

lowerGuardS(C)

= min
B∈T

⎧
⎪⎨

⎪⎩

0 if Z ≡ C

lowerGuardS(B) + y if (B y C) ∈ E
lowerGuardS(B) + x ′ if (B d : x ′

C) ∈ E

Considering Definition 1 and 2 it is easy to verify that

– when there is a requirement link Z [x, y] C in STNPSU S,
the upper guard of C is ≥ x ;

– when there is a guarded link Z
[[x, x ′][y′, y]]

C in STNPSU
S, the upper guard of C is in [y′, y];

– when there is a requirement link Z [x, y] C in STNPSU S,
the lower guard of C is ≤ y;

– when there is a guarded link Z
[[x, x ′][y′, y]]

C in STNPSU
S, the lower guard of C is in [x, x ′];

– in general, for any timepoints A and C with Z [a, b]

A [c, d] C derived by the DC checking algorithm, it holds
upper guard of C is ≥ upperGuard(A) + c and the lower
guard of C is ≤ lowerGuard(A) + d.

Example 3 Regarding the STNPSUs fromFig. 4, one can ver-
ify that the values of lowerGuard and upperGuard between
Z and E correspond to

– lowerGuardP0(E) = 15 and upperGuardP0(E) = 15,
– lowerGuardP1(E) = 13 and upperGuardP1(E) = 11,
and

– lowerGuardP2(E) = 10 and upperGuardP2(E) = 14.

Definitions 1 and 2 allow determining to which extent the
upper/lower boundof the derived requirement linkbetween Z
and a timepointC in anSTNPSU Smaybe reduced/increased
without affecting the DC of S (cf. Lemmas 1 and 2).

Lemma 1 (Upper Guard) Let S be a dynamically con-
trollable STNPSU, Z be the initial timepoint, and C be

123

1144 R. Posenato et al.

(a)

(b)

(c)

Fig. 4 STNPSUs corresponding to subprocesses P0, P1 and P2 from Fig. 1 a STNPSU corresponding to P0 b STNPSU corresponding to P1 c
STNPSU corresponding to P2

a timepoint in S. Then: The upper bound v of the dis-
tance Z [u, v] C between Z and C may be reduced to at most
upperGuardS(C), preserving the DC of S.

Proof First, we show that if v is set to a value less than
upperGuardS(C), the network cannot be DC. Let B1 . . . Bk

be the path from Z to C in the distance graph D that deter-
mines the value for upperGuard(C), i.e.,

Z α0 B1
α1 . . .

αk−1 Bk
αk C

where αi is either an ordinary or upper-case edge and
−∑

i∈{0,...,k} α̃i = upperGuard(C) with α̃i corresponding
to the value of αi ignoring any label. Given such path, in the
AllMax-Projection D′, any upper-case edge αi = {Di :−y′

i }
is replaced by α̃i = −y′

i . Thus, it is easy to verify that by the
standard STNpropagation rules in theAllMax-Projection, an
ordinary edge Z

∑
α̃i C is derived. At the same time, if we add

a requirement edge Z v∗
C with v∗ < upperGuard(C) to the

distance graph D of the original STNPSU S, the same edge
will also be added to the AllMax-Projection D′, resulting in
a negative cycle Z

∑
α̃i C v∗

Z , i.e., the STNPSU cannot be
DC.

Second, we show that if S is DC and v is reduced
to a value v′ ≥ upperGuardS(C), v′ cannot be part of
any negative semi-reducible cycle, i.e., the resulting net-
work must be DC as well. Let us assume that Z [u, v] C
is restricted to Z [u, v′] C with upperGuard(C) ≤ v′ ≤ v

and that the resulting network is not DC. This implies that
there exists a negative semi-reducible cycle Z α0 E1

α1

. . .
αl−1 El

αl C v∗
Z in the distance graph D consist-

ing only of ordinary or upper-case edges αi such that∑
i∈{0,...,l} α̃i + v∗ < 0, i.e., v∗ < −∑

i∈{0,...,l} α̃i . Based

on Definition 1, it follows that for any such path E1, . . . , El

from Z to C it holds upperGuard(C) ≥ −∑
i∈{0,...,l} α̃i

and, thus, upperGuard(C) ≤ v∗ < −∑
i∈{0,...,l} α̃i ≤

upperGuard(C). This, in turn, contradicts the assumption.
��

Lemma 2 (Lower Guard) Let S be a dynamically con-
trollable STNPSU, Z be the initial timepoint, and C be
a timepoint in S. Then: The lower bound u of distance
Z [u, v] C between Z and C may be increased to at most
lowerGuardS(S), preserving the DC of S.

Proof The proof is analogous to the one of Lemma 1 using
the AllMin-Projection and applying a similar reasoning. The
AllMin-Projection is similar to the AllMax-Projection, but
considers solely ordinary and lower-case edges. ��

UsingDefinition 1 and 2, it becomes possible to determine
to which extent the lower/upper bound of the duration range
of a process can be restricted, while preserving its DC. This
is illustrated by Example 4.

Example 4 The minimum and maximum durations of the
processes from Fig. 1 are determined by the DC checking
algorithm as P0: [10, 20], P1: [5, 19], and P2: [5, 19]. Using
Definitions 1 and 2, it now becomes possible to determine to
which extent these duration ranges may be restricted:

– the minimum duration of P0 may be restricted to
lowerGuardP0(E) = 15 at most, whereas its maximum
duration may be restricted to upperGuardP0(E) = 15;

– the duration of P1 may be restricted to lowerGuardP1(E)

= 13 and upperGuardP1(E) = 11, respectively, and

123

Managing time-awareness in modularized processes 1145

– the duration of P2 may be restricted to lowerGuardP2(E)

= 10 and upperGuardP2(E) = 14, respectively.

Therefore, the guarded range representing the duration
of the three subprocesses P0, P1, and P2 are

[[10, 15][,
]]1520, [[5, 13][11, 19]], and [[5, 10][14, 19]], respectively.

Based on the definitions of lowerGuard and upperGuard,
one can easily verify that their value is always non-negative.
Moreover, it becomes easy to show that the upperGuard(C)

value is given by value u of edge Z −u C in the AllMax-
Projection graph of the network, whereas the lowerGuard(C)

value is given by value v of edge Z v C in the AllMin-
Projection graph. Using standard STN algorithms [9], there-
fore, the computational cost of determining lowerGuard(C)

and upperGuard(C) is at most O(n3), with n being the num-
ber of timepoints in the considered STNPSU.

5.3 Contingency span

Given a range [u, v] that represents the overall duration of a
DC process, Definitions 1 and 2 assure that it is always possi-
ble to reduce one of the two bounds of the respective duration
range to the corresponding guard (i.e., upperGuard(E) or
lowerGuard(E)) without affecting the DC of the process.
However, it is not possible to restrict both bounds simulta-
neously since the restriction of one bound may change the
guard of the other bound as shown by Example 5.

Example 5 Consider the STNPSU from Fig. 4c, which cor-
responds to subprocess P2. One can easily show that
lowerGuardP2(E) = 10 and upperGuardP2(E) = 14 hold.
Moreover, the duration range of the process corresponds to
[5, 19] as determined by the DC checking algorithm. Con-
sidering Lemmas 1 and 2, it then can be easily shown that the
minimum duration of the process may be increased to 10 or
its maximum duration may be restricted to 14. However, for
process P2 it is not possible to increase theminimumduration
to 10 while, at the same time, restricting the maximum dura-
tion to 14. In particular, if the minimum duration is increased
to 10, due to the partially contingent guarded link between
timepoints T7S and T7E (representing task T7), the maximum
durationmust not be decreased below 16 to further guarantee
DC of the process. On the other hand, the maximum duration
may be decreased to 14. In this case, the minimum duration
must not be increased beyond 8. In detail, a span of at least 6
must be ensured for the final duration range of the process.

To fully represent the overall temporal properties of a process,
we suggest considering an additional value that represents
the minimal span to be guaranteed for the duration range.
We denote this value as the contingency span of the process.
It can be defined using the link contingency span and path
contingency span of the corresponding STNPSU.

Definition 3 (Link Contingency Span)A positive link con-
tingency span Δ corresponds to the span that needs to be
guaranteed for a link in order to ensure theDCof anSTNPSU.
In turn, a negative link contingency span corresponds to the
maximum span provided by a link that can be used to reduce
the contingency span of previous guarded link.

a) For a guarded link A
[[a, a′][b′, b]]

B, the link contingency
span ΔAB is defined as ΔAB = b′ − a′.

b) For a requirement link A [a, b] B, the link contingency span
ΔAB is defined as ΔAB = a − b.

Taking Definition 3 it is easy to verify that, respectively

– the link contingency span of a requirement link is less
than or equal to zero, i.e., A [a, b] B ⇒ ΔAB ≤ 0;

– the link contingency span of a partially shrinkable

guarded link is less thanor equal to zero, i.e., A
[[a, a′][b′, b]]

B
∧ a′ ≥ b′ ⇒ ΔAB ≤ 0;

– the link contingency span of a partially contingent

guarded link is greater than zero, i.e., A
[[a, a′][b′, b]]

B∧a′ <

b′ ⇒ ΔAB > 0.

Next, we need to find a way to determine the contin-
gency span of a path based on the link contingency span

of its links. First, let us consider a guarded link A
[[a, a′][b′, b]]

B
followed by a requirement link B [c, d] C . In this case, the con-
tingency span required by the guarded link can be partially
or fully compensated by the subsequent requirement link, as
the duration of the latter can be decided based on the actual
duration of the former. Thus, the contingency of the path
from A to C is given by ΔAB + ΔBC . In turn, for a require-

ment link A [a, b] B followed by a guarded link B
[[c, c′][d ′, d]]

C ,
we must differentiate two subcases: If the guarded link is
partially contingent (i.e., c′ < d ′), the previous requirement
link cannot be used to compensate its contingency span as
the duration of the requirement link must be decided before
executing the guarded link. Therefore, the contingency span
of the path from A to C is given by ΔBC . However, if the
guarded link ispartially shrinkable (i.e.,d ′ ≤ c′), its link con-
tingency ΔBC is negative. In this case, the contingency span
of the path from A toC is again given byΔAB +ΔBC as both
links could be used to reduce the contingency of a previous
guarded link. Finally, the combination of two requirement
links (guarded links) is similar to the above cases.When con-
sidering a path that consists of more than two links, the link
contingency spans need to be combined in an incremental
way starting from the initial timepoint Z . When consider-
ing two or more parallel paths, in turn, it becomes necessary
to consider the most demanding case, i.e., the path with the
largest contingency span. This leads to the following recur-

123

1146 R. Posenato et al.

sive approach for calculating the contingency span of a path.

Definition 4 (Path Contingency Span) Let S be a dynami-
cally controllable STNPSU and let Z be its initial timepoint.
By definition, the path contingency span of Z is contS(Z) =
0. Then: The path contingency span contS(C) of any other
timepoint C is given by

contS(C) = max

{
0,max

B∈T
{contS(B) + ΔBC }

}

It is noteworthy that the path contingency spanof any time-
point is always greater or equal to zero, i.e., contS(C) ≥ 0.
Moreover, the problem of determining the value of contS(C),
i.e., themaximum contingency span among all possible paths
from Z to C , can be reduced to the problem of finding the
minimal distance between Z and C in a suitable weighted
graph whose construction considered the link contingency
spans as edge values.

Definition 5 (Contingency Graph) Let S = (T , C,G) be
an STNPSU to which the DC checking algorithm has been
applied (cf. Algorithm 1). The corresponding contingency
graph for S has the form CO = (T , ECO). Thereby, each
timepoint in T serves as a node in the graph; ECO is a set of
weighted edges:

a) For each guarded link A
[[x, x ′][y′, y]]

B ∈ G, there exists a
single edge A−ΔAB B ∈ ECO.

b) For each requirement link A [x, y] B ∈ C, there exist two
edges A−ΔAB B, B −ΔAB A ∈ ECO.

c) For each timepoint T ∈ T , there exists an edge Z 0 T ∈
ECO.

Based on Definition 4, one can easily verify that the path
contingency span of any timepointC ∈ T corresponds to the
negative value of the shortest path from initial timepoint Z to
C in the corresponding contingency graph (cf. Definition 5).

Two comments are noteworthy with respect to Defini-
tion 4 and Definition 5. First, as a requirement link may
connect two-non sequential timepoints, its link contingency
span can be used in combination with the contingency
coming from any of its endpoints. Definition 5 consid-
ers these two mutually exclusive options by adding two
edges A−ΔAB B, B −ΔAB A ∈ ECO. Second, edges Z 0 T ∈
ECO, T ∈ T added by Step c) in Definition 5 guarantee that
the length of any path in the graph starting at timepoint Z is
always less than or equal to 0, i.e., the corresponding path
contingency is always positive as requested by the definition.

Moreover, as S is DC, the contingency graph CO cannot
contain any negative cycles. In particular, the only edges with
a negative edge value are the ones resulting from a partially

contingent guarded link A
[[x, x ′][y′, y]]

B. Then, for any path

B = E0, . . . , Ek = A it must hold −∑
i=1...k−1 ΔEi Ei+1 ≥

ΔAB , otherwise S cannot be DC. Using the Bellman–Ford
algorithm, the computational cost of determining contS(C)

is at most O(n3), with n being the number of timepoints in
the STNPSU.

Example 6 The path contingency graph corresponding to the
STNPSU depicted in Fig. 4a is shown in Fig. 5. Note that
insignificant edges determined by theDCchecking algorithm
have been omitted for the sake of readability. Applying the
Bellman–Ford algorithm to this graph, the grayed values in
bracket are determined (insignificant edges are re-omitted).
In particular, edge ZE is derived as Z −2 E . Moreover, by
applying Definition 4 to Fig. 4a, it can be easily verified that
contP0(E) = 2 holds.

Regarding the other STNPSUs from Fig. 4, the path con-
tingency span of timepoints E are as follows:

– contP1(E) = 2, and
– contP2(E) = 6.

Based on Definition 4, it becomes possible to describe
the admissible duration ranges between two timepoints in an
STNPSU.

Lemma 3 Let S be a dynamically controllable STNPSU, Z
be its initial timepoint, and C be any other timepoint. Then:
In order to preserve the DC of S, any restriction Z [u∗, v∗] C
(u ≤ u∗ ≤ lowerGuardS(C), upperGuardS(C) ≤ v∗ ≤ v) of
the distance between Z and C must be set in such a way that
v∗ − u∗ ≥ contS(C) holds.

Proof We solely consider timepoints C with a positive path
contingency span contS(C) > 0 and upperGuardS(C) −
lowerGuardS(C) < contS(C); otherwise it is already
ensured that v∗ − u∗ ≥ contS(C) holds (either by the fact
that v∗ − u∗ ≥ 0 holds or by the guards).

First of all, let us consider the definition of contS(C). Note
that a positive path contingency span can only occur when
there is at least one partially contingent guarded link inside
S. Moreover, taking the definition of contS(), it is always
possible to find a sequence of timepoints B0, . . . , Bk with
Bk ≡ C for which it holds

contS(C) = contS(B0) + ΔB0,B1 + · · · + ΔBk−1,Bk

with

1. contS(B0) = 0,
2. ∀ j ∈ {1, . . . , k}∑

i∈{1,..., j} ΔBi−1,Bi > 0,

i.e., ∀ j ∈ {1, . . . , k} contS(Bj) > 0

Then, by definition, link B0B1 is a partially contingent

guarded link: B0

[[x1, x ′
1][y′

1, y1]
]

B1.

123

Managing time-awareness in modularized processes 1147

Fig. 5 Contingency Graph of the STNPSU in Fig. 4a showing values determined by the Bellman–Ford algorithm (grayed bracketed values)

If path B0, . . . , Bk contains a sequence of require-
ment links Bi−1

[xi , yi] Bi
[xi+1, yi+1] Bi+1, there also exists an

equivalent single requirement link Bi−1
[xi + xi+1, yi + yi+1] Bi+1

resulting in the same value of contS(Bi+1). Moreover,
if path B0, . . . , Bk contains a sequence of guarded links

Bi−1

[[xi , x ′
i][y′

i , yi]
]

Bi
[[xi+1, x ′

i+1][y′
i+1, yi+1]

]

Bi+1, it is always possible
to split timepoint Bi into two timepoints B ′

i and B
′′
i connected

by a requirement link with value [0, 0] without changing
the properties of the network (particularly contS(Bi+1)), i.e.,

Bi−1

[[xi , x ′
i][y′

i , yi]
]

Bi
[[xi+1, x ′

i+1][y′
i+1, yi+1]

]

Bi+1 ≡ Bi−1

[[xi , x ′
i][y′

i , yi]
]

B ′
i

[0, 0] B ′′
i

[[xi+1, x ′
i+1][y′

i+1, yi+1]
]

Bi+1.
In summary, without loss of generality, we can assume

that the sequence of timepoints B0, . . . , Bk always has the
following pattern:

Z [a, b] B0

[[x1, x ′
1][y′

1, y1]
]

B1
[x2, y2] B2

[[x3, x ′
3][y′

3, y3]
]

B3
[x4, y4] B4 . . .

. . .
[[xk−1, x ′

k−1][y′
k−1, yk−1]

]

Bk−1
[xk, yk] Bk ≡ C

where Z [a, b] B0 is the requirement link derived by the DC
checking algorithm.

We can now show by induction that it is not possible to
restrict Z [u, v] Bk to [u∗, v∗] such that v∗ − u∗ < contS(Bk)

holds. Particularly, assuming that v∗ − u∗ = contS(Bk) −
ε, ε > 0 holds, we show that at least one link inside path
Z , B0, . . . , Bk has to be restricted beyond its bounds/guards.

First, consider a path consisting of 3 timepoints B0, B1,

and B2, i.e., Z
[a, b] B0

[[x1, x ′
1][y′

1, y1]
]

B1
[x2, y2] B2 (Note that the

case of two timepoints follows by assuming y2 = x2 = 0 and
the case of one timepoints is given by definition as b − a ≤
contS(B0) − ε =< 0 holds then). In this case, contS(B2) is
given by contS(B2) = contS(B0)+(y′

1−x ′
1)+(x2−y2)with

contS(B0) = 0. Assume Z [u, v] B2 is restricted to Z [u∗, v∗] B2

with v∗ − u∗ = contS(B2) − ε = (y′
1 − x ′

1) + (x2 − y2) − ε,
ε > 0. Then, by applying the No-Case Rule (cf. Table 2),
a requirement link Z [u∗ − y2, v∗ − x2] B1 between Z and B1 is
derived.Moreover, the Lower-Case Rule (cf. Table 2) derives

anordinary edge B0
x ′
1 − (u∗ − y2) Z . In turn, theUpperCaseRule

(cf. Table 2) derives a wait B0
B1 :(v∗ − x2) − y′

1 Z . This wait is
then transformed into the ordinary edge B0

(v∗ − x2) − y′
1 Z by the

Label Removal Rule (cf. Table 2). Note that (v∗ −x2)− y′
1 ≥

−x ′
1 holds as v∗ ≥ y′

1 + x2 ≥ y′
1 − x ′

1 + x2 must hold for
the original network to be DC. In summary, a requirement

link Z [(u∗ − y2) − x ′
1, (v

∗ − x2) − y′
1] B0 is derived. Hence, it must hold

b ≤ (v∗ − x2) − y′
1 and a ≥ (u∗ − y2) − x ′

1 and, therefore,
it must also hold:

b − a ≤ (v∗ − x2) − y′
1 − ((u∗ − y2) − x ′

1)

= v∗ − u∗ + y2 − x2 + x ′
1 − y′

1

= (y′
1 − x ′

1) + (x2 − y2) − ε

+ y2 − x2 + x ′
1 − y′

1 v∗−u∗=contS(B2)−ε

= −ε < 0

which shows that the network can no longer be DC as the
requirement link Z B0 is restricted too much.

Now let us consider a path consisting of k + 3 time-
points B0, . . . , Bk+2 as depicted below (Again, the case of
k + 2 timepoints follows by assuming yk+2 = xk+2 = 0).

Z B0 Bk Bk+1 Bk+2

[a, b] [[xk+1, x
′
k+1][y′

k+1, yk+1]
]

[xk+2, yk+2]

[u∗, v∗]

[u∗ − yk+2, v
∗ − xk+2]

[(u∗ − yk+2) − x ′
k+1, (v

∗ − xk+2) − y′
k+1]

Let us assume that Z [u, v] Bk+2 is restricted to Z [u∗, v∗] Bk+2

with v∗ − u∗ = contS(Bk+2) − ε, ε > 0. Then,
by the No-Case Rule (cf. Table 2), a requirement link
Z [u∗ − yk+2, v

∗ − xk+2] Bk+1 is derived. Moreover, the Lower-Case

Rule derives an ordinary edge Bk
x ′
k+1 − (u∗ − yk+2) Z . In turn, the

Upper Case Rule derives a wait Bk
Bk+1 :(v∗ − xk+2) − y′

k+1 Z . This

wait is transformed into ordinary edge Bk
(v∗ − xk+2) − y′

k+1 Z by
the Label Removal Rule because (v∗ − xk+2) − y′

k+1 ≥
−x ′

k+1 holds, as v∗ ≥ y′
k+1 + xk+2 ≥ y′

k+1 − x ′
k+1 + xk+2

must hold for the original network to be DC. In summary, a

requirement link Z
[(u∗ − yk+2) − x ′

k+1, (v
∗ − xk+2) − y′

k+1] Bk is derived.

123

1148 R. Posenato et al.

Thus, for the span of the requirement link Z [p, q] Bk

between Z and Bk derived by the DC checking algorithm, it
holds:

q − p ≤ (v∗ − xk+2) − y′
k+1 − ((u∗ − yk+2) − x ′

k+1)

= (v∗ − u∗) − (y′
k+1 − x ′

k+1) − (xk+2 − yk+2)

= contS(Bk+2) − ε − ΔBk Bk+1 − ΔBk+1Bk+2

v∗−u∗=contS(Bk+2)−ε, Definition 3

= contS(Bk) + ΔBk Bk+1 + ΔBk+1Bk+2 − ε

− ΔBk Bk+1 − ΔBk+1Bk+2 Definition 4
= contS(Bk) − ε

Hence, the range of the requirement link Z [p, q] Bk is
restricted such that q − p ≤ contS(Bk) − ε < contS(Bk)

holds. By subsequent application of the same steps (i.e., by
induction), it follows that for Z [a, b] B2 it holds b − a <

contS(B2). However, as previously shown, this implies that
the network can no longer be DC. ��

From the previous observations, we can derive important
relationships between lowerGuard(C), upperGuard(C), and
cont(C) values:

Lemma 4 Let S be a dynamically controllable STNPSU, Z
be its initial timepoint, and C be any other timepoint. If T
is the network derived from S by restricting upper bound
v of the distance Z [u, v] C between Z and C to v∗, with
upperGuardS(C) ≤ v∗ ≤ v, for T it holds:

lowerGuardT (C) = min
{
lowerGuardS(C); v∗ − contS(C)

}

Lemma 5 Let S be a dynamically controllable STNPSU, Z
be its initial timepoint, and C be any other timepoint. If T
is the network derived from S by restricting the lower bound
u of the distance Z [u, v] C between Z and C to u∗, with u ≤
u∗ ≤ lowerGuardS(C), for T it holds:

upperGuardT (C) = max
{
upperGuardS(C); u∗ + contS(C)

}

Proof The proofs of Lemmas 4 and 5 are very similar. For
the sake of brevity, we only prove Lemma 4.

First, let us assume that lowerGuardT (C) > v∗ −
contS(C) holds. When applying Definition 2 and Lemma 2,
we obtain that u may be increased to u∗ = lowerGuardT (C)

> v∗ − contS(C). According to Lemma 3, however, then the
resulting network cannot be DC.

Second, let us assume that u is increased to u∗ = v∗ −
contS(C) with u∗ ≤ lowerGuardS(C) in T and that the
resulting network is not DC. This implies that there exists
a negative semi-reducible cycle

Z α0 E1
α1 E2 . . .

αl−1 El
αl C −(v∗ − contS(C)) Z

in the distance graphDT of T such that
∑

i∈{1,...,l} α̃i −(v∗−
contS(C)) < 0 holds, i.e., contS(C) < v∗ − ∑

i∈{1,...,l} α̃i .
Moreover, it holds that v∗ ≤ v ≤ ∑

i∈{1,...,l} α̃i and thus
contS(C) < v∗ − ∑

i∈{1,...,l} α̃i ≤ 0, which contradicts the
basic property that contS(C) ≥ 0 holds.

Third, let us assume that u is increased to u∗ =
lowerGuardS(C) with u∗ ≤ v∗ − contS(C) and that the
resulting network is not DC. Again, this implies that there
exists a negative semi-reducible cycle

Z α0 E1
α1 E2 . . .

αl−1 El
αl C − lowerGuardS(C) Z

in the distance graph DT of T such that
∑

i∈{1,...,l} α̃i −
lowerGuardS(C) < 0 holds, i.e.,

∑
i∈{1,...,l} α̃i <

lowerGuardS(C). Consequently, it also holds
∑

i∈{1,...,l} α̃i <

lowerGuardS(C) ≤ v∗ − contS(C) ≤ v∗ ≤ v, i.e.,∑
i∈{1,...,l} α̃i < v, which contradicts the basic assumption

that v has been restricted to v∗. ��

5.4 Overall temporal properties of a process

The previous results give rise to the following theorem that
enables a complete description of the overall temporal prop-
erties of a process.

Theorem 2 (Overall Temporal Properties of a Process)
Considering a process P and its corresponding STNPSU S,
let Z and E be the single start and single end timepoints of S.
Then: The overall temporal properties of P can be described
by a guarded range with contingency

[[x, x ′][y′, y]] � c,
where

– x and y are the bounds of the requirement link Z [x, y] E
between initial timepoint Z and ending timepoint E in S,
as derived by the DC checking algorithm,

– x ′ = lowerGuardS(E) and y′ = upperGuardS(E), and
– c = contS(E).

Proof Definitions 1 and 2 show how to use the values of
lowerGuardS(E) = x ′ and upperGuardS(E) = y′ to spec-
ify the possible restrictions regarding the lower and upper
bounds of the duration range [x, y] of a process (i.e., its
minimum and maximum duration). This way, we can fully
represent the possible duration ranges of the process as a
guarded range

[[x, x ′][y′, y]]. Moreover, Lemmas 3–5 show
how to use the path contingency span contS(E) = c in order
to ensure that any possible restriction of the duration range[[x, x ′][y′, y]]�c of the process preserves its DC. ��

Based on Theorem 2, it becomes possible to represent
the overall temporal properties of a process using a single
guarded range with contingency. This is illustrated by Exam-
ple 7.

123

Managing time-awareness in modularized processes 1149

Example 7 First, consider process P1 (cf. Fig. 1) and its
corresponding STNPSU (cf. Fig. 4). The overall temporal
properties of this process may be described by guarded range
with contingency

[[5, 13][11, 19]]�2. Since the contingency
span of this process corresponds to 2, it is possible to restrict
the overall duration range of the process to [13, 15] or [9, 11],
while still preserving its DC. In turn, the overall temporal
properties of process P2 (cf. Figs. 1 and 4) can be described
by a guarded range with contingency

[[5, 10][14, 19]]� 6.
For example, therefore, the duration range of the process can
be restricted to [6, 14], [10, 17], or [8, 14]. However, due to
the required contingency span of 6, it must not be restricted
to, for example, [10, 14], or [10, 15].

Such kind of compact representation of the overall tem-
poral properties of a process schema is crucial for reusing it
as part of a modularized process. In particular, when adding
a subprocess task to a process schema, a duration range must
be specified. Based on the guarded range with contingency
determined for the subprocess, it now becomes possible to
determine a proper duration range for it, when adding it to
the main process.Without any need to re-analyze the subpro-
cess schema, this duration range ensures that any restriction
of the duration of the subprocess task in the main (i.e., top-
level) process will be made in such a way that the subprocess
remains dynamically controllable.

6 Checking the dynamic controllability of
modularized time-aware processes

As shown in the previous section, for each time-aware pro-
cess, one can derive a guarded range with contingency that
fully describes the overall temporal properties of the process.
In particular, this guarded range with contingency speci-
fies the possible durations of the process as well as the
permissible restrictions that may be applied to its duration
range without violating the DC of the process. This section
shows how such a knowledge can be utilized to enable a
sophisticated PAIS support for modularized time-aware pro-
cesses.

In a PAIS, in general, the available process schemas are
stored in a central process model repository [34]. Based
on the results presented in Sect. 5, it now becomes possi-
ble to enhance the repository information about a process
schema with its overall temporal properties represented as a
guarded range with contingency. Such information can then
be utilized when reusing a process schema as part of a modu-
larized time-aware process. In particular, during design time,
a process designer may select a process schema from the
repository and reuse it as a subprocess task. Similar to an
atomic task, the designer then has to configure the subpro-
cess task in the process schema; i.e., he must specify the

duration range of the particular subprocess task. In this con-
text, it must be ensured that the temporal constraints of the
modularized process as well as the ones of the subprocess
can be satisfied. In order to ensure the executability of the
modularized process the designer must guarantee that the
duration range set for the subprocess task is compliant with
the overall temporal properties of the (sub-)process schema.
In this context, the repository information about the overall
temporal properties of the (sub-)process schema can be used
to support the process designer in choosing a proper duration
range for the respective subprocess task. In other words, the
designer must select a guarded range as duration range of the
subprocess task, which satisfies the guards as well as the con-
tingency of the guarded range with contingency representing
the overall temporal properties of the (sub-)process schema
as stored in the repository.

In general, the duration range
[[x, x ′][y′, y]] of a subpro-

cess task needs to be selected with respect to the overall
temporal properties of the respective (sub-)process schema[[u, u′][v′, v]] � c such that u ≤ x ≤ x ′ ≤ u′ and
v ≥ y ≥ y′ ≥ v′ hold. Moreover, if c > 0 holds, y′ − x ′ ≥ c
must hold as well. When observing these constraints, it is
guaranteed that, during the execution of a subprocess task
of a modularized process, the respective subprocess instance
may be completed without violating any of its temporal con-
straints (i.e., the subprocess is DC).

Example 8 Figure 6 depicts the modularized process from
Fig. 1. Proper duration ranges have been selected for
the three subprocess tasks P0, P1 and P2, which are
related to (sub-)process schemas NonPharmR, PhysEx
and PharmR. For example, for subprocess task P0, dura-
tion range

[[10, 14][16, 20]] is used. This range has the same
outer bounds as the overall temporal properties of the respec-
tive process schema, i.e.,

[[10, 15][15, 20]]�2.Moreover, the
lower and upper guard of the duration range ensure that the
guards as well as the contingency value determined for the
process schema are observed. In turn, for subprocess task P1,
the designer decides to further restrict the upper bound of the
duration range to 11 (thus also decreasing the lower guard to
9 due to the contingency of 2). Note that this still guarantees
theDCof subprocess schemaPhysEx as the new constraints
comply with the respective guards and contingency. Finally,
for subprocess P2, the designer increases the lower bound
to 8 and the upper guard to 17, thus providing a possible
contingency of 7 instead of the required contingency of 6.

After completing the design of the modularized process
schema, the dynamic controllability of the parent process
schema itself needs to be verified. Then, the overall temporal
properties of the modularized process schema may be deter-
mined based of the approach presented in Sect. 5.

Finally, the modularized process itself may be added to
the process repository. It may then be reused as a subprocess

123

1150 R. Posenato et al.

Fig. 6 Modularized process

in the context of another modularized process. This enables
the definition of hierarchically structured modularized time-
aware process schemas comprising multiple levels.

7 Architecture and implementation of the
proof-of-concept prototype

The presented approach was implemented as a proof-of-
concept prototype in the ATAPIS Toolset [20,21], which, in
turn, is based on the AristaFlow BPM Suite [31].

Due to its Open API as well as its strict modular and
service-oriented design,AristaFlowcan be easily applied and
adapted to different application domains. This way, it allows
for the integration of advanced process support functions into
domain-specific PAIS as well as the provision of domain-
specific client, service and activity implementations.

In our case, we extended the original AristaFlow architec-
ture by modifying the time-aware modules, Design Toolset,
ChangeOperations, and ProcessManager, to consider tem-
poral aspects of tasks and (sub-)processes. Moreover, we
introduced a newmodule, calledTimeManager, that provides
the runtime support for all the temporal features discussed in
this paper. We denoted this extended framework as ATAPIS
Toolset. Figure 7 depicts the architecture of the ATAPIS
Toolset, where the extended/newmodules are displayed with
a gray background. ATAPIS Toolset supports the designer in
specifying a time-aware process, verifying its properties, and
enacting it.

In particular, the design toolset, called Process Template
Editor, and the underlyingmodules enable designers to create
time-aware process schemas and to automatically transform
them to a corresponding STNPSU. The STNPSU, in turn, can
then be checked for dynamic controllability. Moreover, the
overall temporal properties of the process can be determined.

123

Managing time-awareness in modularized processes 1151

Fig. 7 ATAPIS toolset: Aristaflow temporally extended architecture

Fig. 8 Determining process overall temporal properties in ATAPIS toolset

The screenshot from Fig. 8 shows the Process Template Edi-
tor.1

At the top of Fig. 8, frame A depicts the common options
available for opening, editing and viewing time-aware pro-

1 A screencast demonstrating the toolset is available at http://dbis.info/
atapis.

cess schemas. Moreover, there are the main options for
creating the corresponding STNPSU of the loaded process
schema, checking the temporal features of the STNPSU, and
enacting the time-aware process schema. Frame B, in turn,
depicts the panel where the process schema is designed. In
Fig. 8, the process schema from Fig. 1c is shown. At the bot-
tom, the automatically generated STNPSU, frame E, and the

123

http://dbis.info/atapis
http://dbis.info/atapis

1152 R. Posenato et al.

STNPSU after the DC check, frame D, are depicted. Finally,
the dialog in the middle, frame C, shows the overall temporal
properties of the process schema, which have been deter-
mined based on the STNPSU.

Using the ATAPIS prototype, it becomes possible to cre-
ate modularized time-aware processes and to assign a proper
duration range to each subprocess task based on the overall
temporal properties of the respective (sub-)process schema.
The resulting modularized time-aware process schema can
then be checked for dynamic controllability, and its over-
all temporal properties be determined. It is then possible to
reuse this modularized time-aware process schema for any
subprocess task in another modularized process.

First, simulations based on the ATAPIS prototype show a
significantly improved performance of our modularization-
based approach compared to the “classical approach”, where
each subprocess task has to be replaced by its respective
(temporal) components. Overall, the prototype demonstrates
the applicability of our approach.

8 Summary and outlook

Time andmodular design constitute two fundamental aspects
for properly supporting business processes by PAIS. So far,
these aspects haveonly been considered in isolation, although
the overall temporal behavior of a (sub-)process significantly
differs from the one of simple tasks.

This paper closes this gap by considering modularization
and time-awareness of processes in conjunction with each
other. In particular, we propose a novel approach for deter-
mining and representing the overall temporal behavior of a
process, called guarded range with contingency. Using this
representation, we can specify the possible durations of a
(sub-)process as well as any permissible restriction that may
be applied to it, while still ensuring the executability of the
process. Moreover, we show how this may be used in the
context of process repositories andmultilayered process hier-
archies.

We are currently extending STNPSU to consider condi-
tional aspects as well. In future work, we want to study the
integration of (modularized) time-aware processes in PAISs,
specifically focusing on aspects like scalability and usability.
Finally, we would like to explore the concept of modulariza-
tion in the context of temporal networks in order to improve
the performance of controllability checking of such network.

References

1. Bettini, C., Wang, X.S., Jajodia, S.: Temporal reasoning in work-
flow systems. Distrib. Parallel Databases 11(3), 269–306 (2002).
https://doi.org/10.1023/A:1014048800604

2. Combi, C., Gambini, M., Migliorini, S., Posenato, R.: Represent-
ing business processes through a temporal data-centric workflow
modeling language: an application to the management of clinical
pathways. IEEE Trans. Syst. Man Cybern. Syst. 44(9), 1182–1203
(2014). https://doi.org/10.1109/TSMC.2014.2300055

3. Combi, C., Gozzi, M., Posenato, R., Pozzi, G.: Conceptual model-
ing of flexible temporal workflows. ACM Trans. Auton. Adapt.
Syst. (TAAS) 7(2), 19:1–19:29 (2012). https://doi.org/10.1145/
2240166.2240169

4. Combi, C., Hunsberger, L., Posenato, R.: An algorithm for check-
ing the dynamic controllability of a conditional simple temporal
network with uncertainty. In: ICAART 2013—Proceeding of the
5th international conference on agents and artificial intelligence,
vol. 2, pp. 144–156. SciTePress (2013). https://doi.org/10.5220/
0004256101440156

5. Combi, C., Hunsberger, L., Posenato, R.: An algorithm for check-
ing the dynamic controllability of a conditional simple temporal
network with uncertainty - revisited. In: Filipe, J., Fred, A.L.N.
(eds.) Agents and artificial intelligence—5th international confer-
ence, ICAART 2013, Barcelona, Spain, February 15–18, 2013.
Revised Selected Papers, Communications in Computer and Infor-
mation Science, vol. 449, pp. 314–331. Springer (2013). https://
doi.org/10.1007/978-3-662-44440-5_19

6. Combi, C., Posenato, R.: Controllability in temporal conceptual
workflow schemata. In: Business process management, 7th inter-
national conference, BPM 2009, Ulm, Germany, September 8–10,
2009. Proceedings, LNCS, vol. 5701, pp. 64–79. Springer (2009).
https://doi.org/10.1007/978-3-642-03848-8_6

7. Combi, C., Posenato, R.: Towards temporal controllabilities for
workflow schemata. In: Markey, N., Wijsen, J. (eds.) 17th interna-
tional symposiumon temporal representation and reasoning (TIME
2010), pp. 129–136. IEEE Computer Society (2010). https://doi.
org/10.1109/TIME.2010.17

8. Cruz-Jentoft,A.,Baeyens, J., Bauer, J., et al.: Sarcopenia: European
consensus on definition and diagnosis. AgeAgeing 39(4), 412–423
(2010). https://doi.org/10.1093/ageing/afq034

9. Dechter, R.,Meiri, I., Pearl, J.: Temporal constraint networks.Artif.
Intell. 49(1–3), 61–95 (1991)

10. Eder, J., Gruber,W., Panagos, E.: Temporal modeling of workflows
with conditional execution paths. In: Proceedings of DEXA’00, pp.
243–253. Springer (2000)

11. Eder, J., Panagos, E., Rabinovich, M.: Time Constraints in Work-
flow Systems, pp. 191–205. Springer, Berlin (2013). https://doi.
org/10.1007/978-3-642-36926-1_15

12. Eder, J., Panagos, E., Rabinovich, M.:Workflow timemanagement
revisited. In: Seminal contributions to information systems engi-
neering, pp. 207–213. Springer, Berlin (2013). https://doi.org/10.
1007/978-3-642-36926-1_16

13. Eder, J., Pichler, H.: Duration histograms for workflow systems.
In: Rolland, C., Brinkkemper, S., Saeki, M. (eds.) Proceedings of
the working conference on engineering information systems in the
internet context (IFIP TC8/WG8.1), IFIP conference proceedings,
vol. 231, pp. 239–253. Kluwer, B.V. (2002)

14. Eder, J., Pichler, H., Gruber,W., Ninaus,M.: Personal schedules for
workflow systems. In: van derAalst,W.M.P., ter Hofstede, A.H.M.,
Weske,M. (eds.) Proceedings of the 1st international conference on
business process management (BPM’03), Lecture Notes in Com-
puter Science, vol. 2678, pp. 216–231. Springer (2003). https://doi.
org/10.1007/3-540-44895-0

15. Haselkorn, J., Hughes, C., Rae-Grant, A., et al.: Summary of
comprehensive systematic review: rehabilitation inmultiple sclero-
sis. Neurology 85(21), 1896–1903 (2015). https://doi.org/10.1212/
WNL.0000000000002146

16. Hochberg, M.C., et al.: American college of rheumatology 2012
recommendations for the use of nonpharmacologic and pharmaco-

123

https://doi.org/10.1023/A:1014048800604
https://doi.org/10.1109/TSMC.2014.2300055
https://doi.org/10.1145/2240166.2240169
https://doi.org/10.1145/2240166.2240169
https://doi.org/10.5220/0004256101440156
https://doi.org/10.5220/0004256101440156
https://doi.org/10.1007/978-3-662-44440-5_19
https://doi.org/10.1007/978-3-662-44440-5_19
https://doi.org/10.1007/978-3-642-03848-8_6
https://doi.org/10.1109/TIME.2010.17
https://doi.org/10.1109/TIME.2010.17
https://doi.org/10.1093/ageing/afq034
https://doi.org/10.1007/978-3-642-36926-1_15
https://doi.org/10.1007/978-3-642-36926-1_15
https://doi.org/10.1007/978-3-642-36926-1_16
https://doi.org/10.1007/978-3-642-36926-1_16
https://doi.org/10.1007/3-540-44895-0
https://doi.org/10.1007/3-540-44895-0
https://doi.org/10.1212/WNL.0000000000002146
https://doi.org/10.1212/WNL.0000000000002146

Managing time-awareness in modularized processes 1153

logic therapies in osteoarthritis of the hand, hip, and knee. Arthritis
Care Res. 64(4), 465–474 (2012)

17. Lanz, A., Posenato, R., Combi, C., Reichert, M.: Controllability
of time-aware processes at run time. In: Meersman, R., Panetto,
H., Dillon, T.S., Eder, J., Bellahsene, Z., Ritter, N., Leenheer, P.D.,
Dou, D. (eds.) On the move to meaningful internet systems: OTM
2013 conference-confederated international conference: CoopIS,
DOA-Trusted Cloud, and ODBASE, Lecture Notes in Computer
Science, vol. 8185, pp. 39–56. Springer (2013). https://doi.org/10.
1007/978-3-642-41030-7_4

18. Lanz, A., Posenato, R., Combi, C., Reichert, M.: Simple tempo-
ral networks with partially shrinkable uncertainty. In: Loiseau,
S., Filipe, J., Duval, B., van den Herik, H.J. (eds.) ICAART
2015—Proceedings of the international conference on agents and
artificial intelligence, vol. 2, Lisbon, Portugal, 10–12 January,
2015., pp. 370–381. SciTePress (2015). https://doi.org/10.5220/
0005200903700381

19. Lanz, A., Posenato, R., Combi, C., Reichert,M.: Controlling Time-
Awareness in Modularized Processes. In: Enterprise, Business-
Process and Information Systems Modeling - 17th International
conference, BPMDS 2016, 21st international conference, EMM-
SAD 2016, Lecture Notes in Business Information Processing,
vol. 248, pp. 157–172 (2016). https://doi.org/10.1007/978-3-319-
39429-9_11

20. Lanz, A., Reichert, M.: Dealing with changes of time-aware pro-
cesses. In: Proceedings of BPM’14, LNCS, vol. 8659, pp. 217–233
(2014)

21. Lanz, A., Reichert, M.: Enabling time-aware process support with
the atapis toolset. In: Proceedings of BPM’14 demo track (2014)

22. Lanz, A., Reichert, M., Weber, B.: A formal semantics of time pat-
terns for process-aware information systems. Technical Represents
UIB-2013-02, University of Ulm (2013)

23. Lanz, A., Reichert, M., Weber, B.: Process time patterns: a formal
foundation. Inf. Syst. 57, 38–68 (2016). https://doi.org/10.1016/j.
is.2015.10.002

24. Lanz, A., Weber, B., Reichert, M.: Time patterns for process-aware
information systems. Requir. Eng. 19(2), 113–141 (2014). https://
doi.org/10.1007/s00766-012-0162-3

25. Marjanovic, O., Orlowska, M.E.: On modeling and verification of
temporal constraints in production workflows. Knowl. Inf. Syst.
1(2), 157–192 (1999)

26. Monti, E., Mottes, M., Fraschini, P., Brunelli, P., Forlino, A.,
Venturi, G., Doro, F., Perlini, S., Cavarzere, P., Antoniazzi, F.: Cur-
rent and emerging treatments for the management of osteogenesis
imperfecta. Ther. Clin. Risk Manag. 6, 367 (2010)

27. Morris, P.: A structural characterization of temporal dynamic con-
trollability. In: F. Benhamou (ed.) International conference on
principles and practices of constraint programming (CP’06), pp.
375–389. Springer (2006)

28. Morris, P.: Dynamic controllability and dispatchability relation-
ships. In: Simonis, H. (ed.) International conference on integration
ofAI andOR techniques in constraint programming (CPAIOR’14),
LNCS, vol. 8451, pp. 464–479. Springer (2014)

29. Morris, P.H., Muscettola, N.: Temporal dynamic controllabil-
ity revisited. In: National conference on artificial intelligence
(AAAI’05), pp. 1193–1198 (2005)

30. Morris, P.H., Muscettola, N., Vidal, T.: Dynamic control of plans
with temporal uncertainty. In: International joint conference on
artificial intelligence (IJCAI’01), pp. 494–502. Morgan Kaufmann
(2001)

31. Reichert, M., Weber, B.: Enabling Flexibility in Process-
Aware Information Systems—Challenges, Methods, Technolo-
gies. Springer, Berlin (2012). https://doi.org/10.1007/978-3-642-
30409-5

32. Reijers, H.A.: Design and Control of Workflow Processes.
Springer, Berlin (2003)

33. Vanhatalo, J., Völzer, H., Koehler, J.: The refined process structure
tree. Data Knowl. Eng. 68(9), 793–818 (2009). https://doi.org/10.
1016/j.datak.2009.02.015

34. Weber, B., Reichert, M., Mendling, J., Reijers, H.A.: Refactor-
ing large process model repositories. Comput. Ind. 62(5), 467–486
(2011). https://doi.org/10.1016/j.compind.2010.12.012

35. Zhang, Y., Perry, D.E.: AData-Centric Approach toOptimize Time
in Workflow-Based Business Process. In: 2014 IEEE international
conference on services computing, pp. 709–716. IEEE (2014).
https://doi.org/10.1109/SCC.2014.129

Roberto Posenato received the
Laurea degree in Computer Sci-
ence and the Ph.D. in Computa-
tional Mathematics from the Uni-
versity of Milan, in 1991 and 1996,
respectively. Currently, he is Ass-
istant Professor of Computer Sci-
ence at the Department of Com-
puter Science, University of Ver-
ona, Italy. Main research interests
are related to the temporal con-
straint networks, with an empha-
sis on the management of busi-
ness processes.

Andreas Lanz finished his Ph.D.
thesis on adaptive time- and pro-
cess-aware information systems in
2017. Before, he was a research
assistant at the Institute of Data-
bases and Information Systems at
Ulm University, where he also
graduated with a diploma in com-
puter science. His research inter-
ests include temporal aspects in
information systems and adaptive
process management systems.

Carlo Combi received the Laurea
Degree in E.E. from the Politec-
nico of Milan in 1987. In 1993,
he received the Ph.D. degree in
biomedical engineering. Currently,
he is Full Professor of Computer
Science at the Dept. of Computer
Science, University of Verona,
Italy. From July 2009 to June 2013,
he was chair of the Artificial Intel-
ligence in Medicine Society (AI-
ME). Since 2017 he is Editor-
in-Chief of the journal Artificial
Intelligence in Medicine. Main re-
search interests are related to the

database and information system field, with an emphasis on the man-
agement of clinical data and processes.

123

https://doi.org/10.1007/978-3-642-41030-7_4
https://doi.org/10.1007/978-3-642-41030-7_4
https://doi.org/10.5220/0005200903700381
https://doi.org/10.5220/0005200903700381
https://doi.org/10.1007/978-3-319-39429-9_11
https://doi.org/10.1007/978-3-319-39429-9_11
https://doi.org/10.1016/j.is.2015.10.002
https://doi.org/10.1016/j.is.2015.10.002
https://doi.org/10.1007/s00766-012-0162-3
https://doi.org/10.1007/s00766-012-0162-3
https://doi.org/10.1007/978-3-642-30409-5
https://doi.org/10.1007/978-3-642-30409-5
https://doi.org/10.1016/j.datak.2009.02.015
https://doi.org/10.1016/j.datak.2009.02.015
https://doi.org/10.1016/j.compind.2010.12.012
https://doi.org/10.1109/SCC.2014.129

1154 R. Posenato et al.

Manfred Reichert is a full pro-
fessor at Ulm University, where
he is director of the Institute of
Databases and Information Sys-
tems. His research interests inclu-
de business process management,
service-oriented computing, and
mobile services. Manfred was PC
Co-chair of the BPM’08, CoopI-
S’11 and EDOC’13 conferences.
Furthermore, he served as Gen-
eral Chair of the BPM’09 and
EDOC’14 conferences as well as
the BPM’15 workshops. Recently,
he co-authored a Springer book

on process flexibility and obtained the BPM Test of Time Award at the
BPM 2013 conference.

123

	Managing time-awareness in modularized processes
	Abstract
	1 Introduction
	2 Motivating example
	3 Related work
	4 Backgrounds
	5 Characterization of time-aware processes
	5.1 STNPSU representation of a process schema
	5.2 Lower and upper guard
	5.3 Contingency span
	5.4 Overall temporal properties of a process

	6 Checking the dynamic controllability of modularized time-aware processes
	7 Architecture and implementation of the proof-of-concept prototype
	8 Summary and outlook
	References

