
Softw Syst Model (2019) 18:961–993
https://doi.org/10.1007/s10270-017-0632-7

SPECIAL SECTION PAPER

An example is worth a thousand words: Creating graphical
modelling environments by example

Jesús J. López-Fernández1 · Antonio Garmendia1 · Esther Guerra1 ·
Juan de Lara1

Received: 15 November 2016 / Revised: 19 October 2017 / Accepted: 5 November 2017 / Published online: 21 November 2017
© Springer-Verlag GmbH Germany, part of Springer Nature 2017

Abstract Domain-specific languages (DSLs) are heavily
used in model-driven and end-user development approaches.
Compared to general-purpose languages, DSLs present
numerous benefits like powerful domain-specific primitives,
an intuitive syntax for domain experts, and the possibility
of advanced code generation for narrow domains. While a
graphical syntax is sometimes desired for a DSL, construct-
ing graphical modelling environments is a costly and highly
technical task. This relegates domain experts to a rather pas-
sive role in their development and hinders a wider adoption
of graphical DSLs. Our aim is achieving a simpler DSL
construction process where domain experts can contribute
actively. For this purpose, we propose an example-based
technique for the automatic generation ofmodelling environ-
ments for graphical DSLs. This way, starting from examples
of the DSL likely provided by domain experts using drawing
tools like yED, our system synthesizes a graphical modelling
environment that mimics the syntax of the provided exam-
ples. This includes a meta-model for the abstract syntax of
the DSL and a graphical concrete syntax supporting spatial
relationships like containment and adjacency. Our system,
called metaBUP, is implemented as an Eclipse plug-in. In
this paper, we demonstrate its usage on a running example

Communicated by Prof. Andrzej Wasowski and Pieter van Gorp.

B Esther Guerra
Esther.Guerra@uam.es

Jesús J. López-Fernández
Jesusj.Lopez@uam.es

Antonio Garmendia
Antonio.Garmendia@uam.es

Juan de Lara
Juan.deLara@uam.es

1 Universidad Autónoma de Madrid, Madrid, Spain

in the home networking domain and evaluate its suitability
for the construction of graphical modelling environments by
means of a user study.

Keywords Domain-specific modelling languages ·
Graphical modelling environments · Example-based
meta-modelling · Flexible modelling

1 Introduction

Model-driven engineering (MDE) is founded on the use of
models to describe the systems to be built. Often, these
models are defined using domain-specific languages (DSLs)
that provide high-level primitives tailored to a particular
field [19]. Hence, MDE projects frequently need to create
DSLs and their associatedmodelling environments.DSLs are
also heavily used in end-user development approaches [28]
in order to allow users with no or little computer science
background to perform small programming tasks in particu-
lar domains using DSLs.

The concrete syntax of a DSLmay be graphical or textual,
though in this paper we focus on graphical DSLs [26]. Many
tools have emerged along the years to build environments for
graphical DSLs [10,15–17,26,32,40,48]. However, building
such environments remains a technical, complex, and time-
consuming task. For example, developing a graphical editor
with Graphiti [15] requires manual programming based on
a large Java API. In the case of GMF [16] and Sirius [48],
it is necessary to describe the different aspects of the edi-
tor by building one or more models, which may become
very detailed, large, and hard to build and maintain for non-
experts, and which frequently must be constructed using
unhandy tree-based editors.

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10270-017-0632-7&domain=pdf

962 J. J. López-Fernández et al.

Apart from the technical difficulties, a salient issue with
most graphical languageworkbenches is the need to construct
a meta-model upfront and to describe the features of the con-
crete syntax and themodelling environment using a technical
language or notation in a second stage. This approach hin-
ders the active participation of domain experts in the DSL
construction process, who might find it easier to work with
examples rather than with meta-models [3,14,34] and might
lack the technical knowledge to define complex environment
specifications. However, the active involvement of domain
experts is crucial for the success of the DSL to be built, as
otherwise, they may reject the resulting DSL [14,25].

To avoid these obstacles, we propose a novel technique
for the automatic generation of graphical modelling environ-
ments starting from examples of the DSL. Hence, instead
of building a meta-model first and describing its concrete
syntax at the meta-model level, our proposal is to collect
graphical examples built by domain experts using drawing
tools like PowerPoint, Dia or yED. Our framework processes
the provided examples to derive a meta-model by using the
bottom-up techniques presented in [34], and it also extracts
a description of the graphical concrete syntax that includes
graphical forms for classes (svg files), edge styles, and spatial
relationships like containment or adjacency.This information
is used to synthesize a graphical modelling environment that
mimics the graphical syntax used in the examples, and in
addition, it enforces the well-formedness rules of the DSL
and enables the creation of models (in contrast to drawings)
that can be manipulated using MDE technology (e.g. model
transformations and code generators). As a result, a graphical
DSL environment is generated with no need to code or cre-
ate complex technical specifications, hence giving rise to the
motto of the paper title “an example is worth a thousand
words”. Our proposal is backed by a working prototype,
called metaBUP, available as an Eclipse plug-in at http://
miso.es/tools/metaBUP.html.

This is an extended version of our previous paper [35]
with the following contributions. Prominently, we have per-
formed a user study where eleven participants, playing the
role of domain experts, have used our tool to develop a
graphical modelling environment from examples. From the
obtained results, we outline some lessons learnt, best prac-
tices, and common pitfalls. In addition, we now provide a
more detailed description of the approach to extract the con-
crete syntax from examples and give heuristics to handle
overlapping or conflicting spatial relationships coming from
different examples. The comparison with related works has
also been improved tomake it more systematic and grounded
on the basis of the running example. Finally, we have added
a section with a gallery of DSL examples and a discussion
of capabilities and limitations of the approach.

The remainder of this paper is organized as follows. First,
Sect. 2 presents an overview of our approach and a running

example. Then, Sect. 3 introduces example-based meta-
modelling, andSect. 4 showsour approach to extract concrete
syntax information from graphical examples. Section 5
describes the synthesis of graphical modelling environments
from the extracted information. Section 6 presents our tool
support. Next, Sect. 7 discusses the results of our user study.
Section 8 presents a gallery of DSL examples and discusses
the kinds of language our method is suitable for. Finally,
Sect. 9 compares our approach with related research, and
Sect. 10 draws some conclusions and lines of future work.
The appendices contain the documents and questionnaires
used in our user study and detail the effort spent by the mod-
elling expert.

2 Overview and running example

Our approach permits the automatic generation of graphical
modelling environments from examples (i.e. from drawings
made with informal diagramming tools). This includes the
automatic derivation of the abstract and concrete syntax of
the targeted DSL, as Fig. 1 shows. While the process is fully
automated, some intervention is allowed, e.g. to customize
the names of the extracted relations, or to supervise meta-
model refactorings. We term our approach “what you draw
is what you get” (WYDIWYG), as the resulting environ-
ment mimics the provided examples. However, one obtains
all the advantages of a modelling environment, like type
checking, constraint evaluation, and the possibility to apply
model transformations or code generators to the created
models.

Figure 2 shows a more detailed view of the process for
our example-based generation of graphical modelling envi-
ronments. It involves two roles: the Domain expert and the
Modelling expert. The former has knowledge in the domain
where the DSL is to be built and is responsible for providing
graphical examples and ultimately validating the generated
environment. In this way, domain experts provide domain
knowledge for the DSL by means of examples instead of
working at the meta-model level, which could be challeng-
ing for them as theymay lack the necessary computer science

Automatic derivation

Abstract syntax (meta-model)
Concrete syntax (including
spatial relationships)

Modelling tool
Eclipse
EMF
Sirius

Informal
drawing tool

yED

Fig. 1 From examples to modelling environments

123

http://miso.es/tools/metaBUP.html
http://miso.es/tools/metaBUP.html

An example is worth a thousand words: creating graphical modelling environments by example 963

Draw
fragment

Parse
fragment

Revise and
annotate
fragment

Export
meta-model

DSL editor
generation

Editor
validation

Update meta -
model according

to revised
fragment

Domain
expert

Modelling
expert

Automatic
activity

1

2 3

4
5

6

7

fragment

textual
model

annotated
model

current meta-model
(with concrete syntax

information)

meta-model

modelling
environment

Ecore
meta-model

Optional
activity

missing
reqs.

Concrete
syntax model

Fig. 2 Example-based process for developing graphical DSLs

background. They can define the examples using publicly
available drawing tools (e.g. yED) and may require dis-
cussing to identify good examples. We currently do not
provide support for monitoring such discussions, helping
with the selection of suitable domain type names and icons, or
deciding the slots each object in the examples should have.
On the other hand, the modelling expert has experience in
modelling andmeta-modelling and on the specificMDEplat-
form being used to create the DSL.Moreover, the task of this
role is monitoring the meta-model derivation process from
which the desired DSL environment is derived.

The core part of our process (steps 1–4 in Fig. 2) is itera-
tive. Here, the domain expert provides input examples made
with tools like yED, portraying how models should look like
graphically (label 1). These examples may represent com-
plete models, or they may focus on an aspect of interest and
therefore be partial, in which case we call them fragments.
Then, the examples are automatically parsed into models
conforming to our own internal meta-model, which are more
amenable to manipulation (label 2). These models are rep-
resented textually and declare the existing objects, attributes
and relations in the examples. Moreover, they are enriched
with annotations that make explicit information regarding
the graphical rendering of the elements in the examples
(e.g. spatial relationships between objects or line styles).
The modelling expert can optionally edit this textual rep-
resentation (label 3) to set more appropriate names to the
derived relations or to trigger refactorings in the meta-model
derivation process that takes place next (label 4). In this
automatic derivation process, the meta-model is updated so
that it accepts the provided example. Moreover, the meta-
model elements become automatically annotated with the
concrete syntax information (i.e. icons, edge styles, spatial
relationships) extracted from the examples. This way, an iter-
ation step finishes when the meta-model under construction
evolves to accept the revised fragment. This process can be

repeated with new fragments, which would update the pre-
viously derived meta-model accordingly.

After the system processes all provided examples, the
modelling expert can export the derived meta-model to a
suitable format. In our current implementation, we gener-
ate an Ecore [54] meta-model for the abstract syntax, and
the concrete syntax information is exported in the form of a
model that annotates the Ecore meta-model (label 5). Then,
the editor generator can be invoked to obtain a fully operat-
ing editor that mimics the concrete syntax of the examples
(label 6). Moreover, the examples are migrated into mod-
els and can be edited and visualized in the generated editor.
The domain expert can validate the editor (label 7), likely
based on the converted examples, requirement documents,
or using languages tailored to the validation and verification
of meta-models and DSLs [36,37]. If necessary, the domain
expert can refine the DSL by providing further examples and
regenerating the editor.

2.1 Running example

As a running example to illustrate our approach, we will
develop a DSL in the home networking domain. The DSL is
inspiredbyoneof the case studies in theSirius gallery.1 In this
DSL, we would like to represent the customer data held by
internet service providers (ISPs), the possible configurations
of home networks, and their connection with the ISP infras-
tructure. Customer homes are connected via cablemodems to
the ISP network. Typically, each home has a (normallyWiFi-
enabled) router to which the landline phone is connected and
with a number of Ethernet cable ports. WiFi networks are
password protected and work in a frequency range. More-
over, each home may have both cabled devices (e.g. PCs,
printers or laptops) and wireless devices (e.g. smartphones,
tablets or laptops).

1 https://eclipse.org/sirius/gallery.html.

123

https://eclipse.org/sirius/gallery.html

964 J. J. López-Fernández et al.

Fig. 3 Fragment showing a connection between customer homes and an ISP

Using our approach, domain experts provide example
fragments that illustrate interesting network configurations
and depict the desired graphical representation for them. As
an example, Fig. 3 shows one fragment built with yED,2 rep-
resenting the connection between some customer homes and
the ISP through cable modems. The elements in the drawing
define some properties, like the ipBase of cable modems, the
name of the home owner, the tier and location of the ISP net-
work, and the name of the ISP. The legend to the right assigns
a name to every picture used in the drawing.

3 Example-based meta-modelling

In [34], we introduced a bottom-up meta-modelling tech-
nique that enables the automatic derivation of a meta-model
starting from sketches3 built using drawing tools. The main
idea is to start at the object level (sketches) instead of at
the class level (meta-models). The rationale is twofold. On
the one hand, domain experts with little or no background
on computer science might find it more familiar working
with examples than with generalizations. This is so as, in
daily life, people are confronted with exemplars (of ani-
mals, houses, etc.), while meta-models contain universals,
i.e. abstract generalizations of concrete examples. On the
other hand, modelling tools can be too rigid for domain
experts, who might prefer the freedom of drawing tools and
use the graphical notation most intuitive to them. Hence,
domain experts keep working at the object level by sketch-

2 https://www.yworks.com/products/yed.
3 We call these examples sketches to distinguish them from models
conformant to a meta-model, though they are not hand-drawn but made
with diagramming tools.

ing examples, and our tool generalizes these examples into a
meta-model.

The meta-model derivation process starts by parsing the
provided sketch or fragment into a textual internal represen-
tation that is easier to manipulate by the modelling expert.
The type of the parsed objects is obtained from a legend that
assigns a name to each symbol in the fragment, as shown
in Fig. 3. Fragments have an open-world semantics, in the
sense that they only convey the relevant information for the
given scenario, and thus, they may omit additional informa-
tion thatwill be given in further fragments (e.g. theymaymiss
attributes or relations). As explained in Sect. 2, examples are
a special kind of fragments used to represent complete mod-
els, and they have a closed-world semantics as they need to
be correct when evaluated as full-fledged models.

For instance, Listing 1 shows the textual representation
model automatically obtained from parsing the fragment in
Fig. 3. Every object (e.g. h1 in line 2) receives a type as
indicated in the legend (e.g. Home) and may contain slots
(e.g. name in line 3) and links (e.g. modem in line 6) accord-
ing to the original fragment. The fact that this is a fragment
(in opposition to an example) is indicated with the keyword
fragment in line 1.

The modelling expert can revise the textual fragment to
annotate its objects, slots, and links. The annotations can
provide design or domain information accounting for well-
formedness constraints of the DSL (see [34]) or they can
convey concrete syntax details. In addition, the fragment
importer automatically adds some concrete syntax annota-
tions documenting the link styles and spatial relationships
between the objects in the graphical fragment. Node icons or
shapes do not need to be recorded in annotations as they are
already provided by the legend.

123

https://www.yworks.com/products/yed

An example is worth a thousand words: creating graphical modelling environments by example 965

1 fragment fragment1 {
2 h1 : Home {
3 attr name = "Elliott Smith"
4 @overlapping
5 @composition
6 ref modem = cm3
7 }
8 isp1 : InternetServiceProvider {
9 attr name = "lemon"

10 ref infrastructure = ispn1, ispn2
11 }
12 h2 : Home {
13 attr name = "Damien Jurado"
14 @overlapping
15 @composition
16 ref modem = cm2
17 }
18 h3 : Home {
19 attr name = "Laura Marling"
20 @overlapping
21 @composition
22 ref modem = cm1
23 }
24 cm1 : CableModem {
25 attr ipBase = "251.12.211.6"
26 ref isp = ispn1
27 }
28 cm2 : CableModem {
29 attr ipBase = "251.12.210.56"
30 ref isp = ispn1
31 }
32 cm3 : CableModem {
33 attr ipBase = "251.12.210.48"
34 ref isp = ispn2
35 }
36 ispn1 : ISPNetwork {
37 attr tier = 3
38 attr location = "MAD"
39 }
40 ispn2 : ISPNetwork {
41 attr tier = 3
42 attr location = "BCN"
43 }
44 }

Listing 1 Textual representation of the fragment in Figure 3

As an example, the importer added the annotation @over-

lapping in lines 4, 14 and 20 of Listing 1. They annotate the
modem references declared by three Home objects in lines 6,
16 and 22, respectively. In this way, these annotations con-
vey the fact that Home and CableModem objects overlap each
other. We will detail the use of this kind of annotations in
Sect. 4. In [34], we reported on another use of annotations,
as a means to encode meta-model integrity constraints. This
is the case of the @composition annotation in lines 5, 15 and
21. As we will see in Sect. 4, these@composition annotations
were heuristically added due to the existence of overlapping.

Textual fragments contain directed links, which are trans-
lated into directed references in the meta-model (in contrast
to associations). The direction of the link is taken from the
direction of the graphical edge in the fragment or from the
spatial relationships using some heuristics that are described
in Sect. 4. In any case, a link can be set to result in a bidi-
rectional association (i.e. two opposite references) in the
meta-model, by annotating it with @bidirectional [34].

Once the modelling expert has revised the textual frag-
ment, this is automatically processed to derive an appropriate

Home

name : String

CableModem

InternetService
Provider

name : String

0..1
infrastructure*

ISPNetwork
�er : int
loca�on : String

isp
ipBase : String

modem0..1

@overlapping

Fig. 4 Meta-model derived from the fragment in Listing 1

meta-model that “accepts” the fragment or to evolve a pre-
vious version of the meta-model if it already exists. For
example, if a fragment contains objects of an unknown type,
this type is incorporated into the meta-model. Similarly, if an
object assigns a value to features that are not present in its
type, then its meta-class is extended with these new features.

Figure 4 shows themeta-model derived from the fragment
in Listing 1. As this is the first fragment, the meta-model
was initially empty, and so, four new classes are added, each
containing the necessary attributes for the slots in the class’
objects. We use simple heuristics to assign a type to prim-
itive attributes, like setting the type to int when all slots
within a fragment are compatible with that type (e.g. tier

in the example). If a subsequent fragment invalidates such
an assumption, then the type will be changed to String. We
natively support numeric (int and float), string and boolean
data types. Regarding the cardinality of references, the mod-
elling expert can configure their default lower bound (0 or the
minimum in the fragment) and upper bound (unbounded or
the maximum in the fragment). In this example, the default
value for the lower and upper bounds is 0 and unbounded,
respectively. Hence, references will be assigned an upper
bound * as soon as an object points to two or more objects
using edges with the same style (e.g. infrastructure), or 1 if
it points to at most 1 object (e.g. modem). Moreover, if two
references have the same name, stem from objects with the
same or a compatible type, and point to objects of different
type, our algorithm creates an abstract superclass as target
of the reference type, with a subclass for the type of each
target object. Finally, domain and concrete syntax annota-
tions are transferred from the fragment to the appropriate
meta-model element (e.g. @overlapping). For clarity, in this
and the following figures containing meta-models, we rep-
resent the @composition annotation using the standard black
diamond notation (see, e.g. reference modem).

The system is equipped with an assistant that may recom-
mend refactorings to improve the quality of the meta-model
that results from processing each fragment. The catalogue of
available refactorings is extensible. As an example, if two
classes have similarities (common attributes or references
pointing to the same class) the system suggests applying

123

966 J. J. López-Fernández et al.

the extract superclass refactoring, to factor out the common
information [34].

Our technique is incremental, as new examples and frag-
ments can be provided to make the meta-model evolve.
Moreover, it fosters the active participation of domain experts
in the meta-model construction process, as they can con-
tribute with sketched fragments which are no longer passive
documentation, but they are used to derive a meta-model.
Up to now, our technique had been only able to derive the
abstract syntax of the DSL [34]. In the following, we elab-
orate on the main contribution of this paper, which is the
extension of our approach to derive a concrete syntax for the
DSL (Sect. 4) and to synthesize a graphical modelling envi-
ronment that emulates the syntax of the fragments (Sect. 5).
We also provide an evaluation of this contribution in Sect. 7.

4 Example-based concrete syntax inference

We take advantage from the graphical information already
encoded in fragments for both minimising the job of the
modelling expert and deriving a concrete syntax close to the
domain expert’s conception.

Figure 5 shows a conceptual model with the graphical
properties that we automatically extract from fragments and
use to derive the concrete syntax of the DSL. Some are
explicit features from the elements in the drawing, like their
colour or size.Other properties are implicit relationships con-
cerning the relative position of icons, like overlapping or
adjacency. Both kinds of graphical properties are encoded as
annotations of the corresponding objects and links in the tex-
tual representation of the fragment. Then, these annotations

are transferred to the appropriate domainmeta-model classes
and references when the fragment is processed. Figure 5 also
shows the correspondence between the graphical properties
and the elements they can annotate.

In the remainder of this section, we explain howwe extract
and manipulate this graphical information.

4.1 Detection of icons and line styles

We retrieve each icon employed in the provided fragments,
since this is the most relevant aspect of the appearance that
the domain expert expects from the final DSL. Since the
drawing tools we work with demand the definition and usage
of palettes with all available icons, technically, we provide
a directory where we store a copy of the files containing the
icons in the palette. These files are employed both in the seri-
alization of fragments and in the generation of the concrete
syntax, and are named according to the icon they contain.
For instance, Fig. 6 shows to the right the legend folder that
contains the svg files used to represent each domain object in
the fragment to its left. The file names (Home, CableModem,
etc.) will be used as type names for the objects represented
using the icons in the fragment.

Regarding edges,wedetect and classify their style, record-
ing their colour, line width, style (e.g. dotted, dashed) and
source and target decorations. Other types of decorations,
like labels or decorators in the middle of the edge, are not
supported.

As an example, Fig. 6 contains an edge linking a Router

and a Cable modem. When the fragment is imported, the link
is annotated with the identified style (lines 27–29 in List-
ing 2), and its name is made of the concatenation of the

StyleElement
color : String
width : Integer

Node
name : String
height : Integer
transparent : Boolean
fileLocation : String
x, y : Integer

Edge

lineType : LineType
srcDecoration : ArrowType
tarDecoration : ArrowType

Relation

SpatialRelation

Containment Overlapping Adjacency

fragment: metamodel:
@style
object

@style
metaclass

fragment: metamodel:
@containment
@overlapping

@adjacency
link

@containment
@overlapping

@adjacency
reference

fragment: metamodel:
@style

link
@style

reference

<<enum>>
Position

top
bottom
right
left

side alignment 0..* 0..*

Fig. 5 Graphical properties inferable from fragments and corresponding annotations

123

An example is worth a thousand words: creating graphical modelling environments by example 967

Fig. 6 Fragment with spatial features (left). Content of the legend folder (right)

graphical features of the style. For instance, the name inferred
for the link is notmodem, but the one struck through (see lines
30–31 in Listing 2). Because the text fragments can be edited,
the modelling expert has replaced the inferred namewith one
closer to the domain. What is interesting about this operation
is that, from this moment on, each time a link with the same
style between a router and a cable modem is imported, it
will be automatically named modem. If the modelling expert
renames the reference in the future, he will be offered two
options: either to replace the previous name modem with the
new one or creating a new reference in class Router which
would coexist with the existing reference modem.

By taking the edge style as a source of information, two
links between the same two objects will have the same type
if their style coincides and a different type if their style is
different. This avoids symbol overload for link types [41].
Nonetheless, the modelling expert can deactivate this func-
tionality if the edge style is irrelevant for the domain. In
such a case, any link between the same two objects will be
assigned the same type, and it will be named using the type
of the link’s target object in lowercase (cablemodem in case
of the link in line 31).

Any graphical information annotation on a link will be
transferred to the corresponding meta-model reference, and
eventually, to the concrete syntax generator.Meta-classes, on
the other hand, never carry graphical information with them,
since we store their exact representation (their icon) in the
legend folder.

4.2 Detection of spatial relationships

Sometimes, spatial relationships between graphical objects
have a meaning in the domain [52], which needs to be
reflected in the meta-model. However, it is likely that the

domain expert is unaware of whether a certain layout implies
some requirement for the domain. For this reason, we auto-
matically detect spatial relationships in fragments, and let
the modelling expert discard them by editing the textual
fragments. By keeping them, they will be reified in the meta-
model as references. We currently identify and give support
to three kinds of spatial relationships:

– Containment: a graphical object is within the bounds of
another object.

– Adjacency: two graphical objects are joined or very close.
The maximum distance with which adjacency is to be
considered is user-defined (0 by default). Two optional
properties are likewise detected: the sides from which
objects are attached to each other (e.g. two objects adja-
cent left-to-right), and if in addition they are aligned and
how (e.g. at the bottom).

– Overlapping: two graphical objects are superimposed but
not contained.

When we detect one of these spatial relationships, we rep-
resent it explicitly as a reference in the meta-model. In the
case of containment, the reference is added to the container
and points to the containee. For adjacency and overlapping,
we use the following heuristic: if an object o overlaps or is
adjacent to more than one object of the same kind, the ref-
erence stems from o’s class; otherwise, the reference stems
from the class of the bigger object, and if all objects have the
same size, there is the possibility to make the reference bidi-
rectional. The rationale is that, frequently, the different parts
of bigger objects are represented as smaller affixed elements
(e.g. a component with affixed ports).

123

968 J. J. López-Fernández et al.

The fragment in Fig. 6 illustrates the three kinds of spa-
tial relationships, which are automatically detected when the
fragment is imported (see Listing 2). In the fragment, the
Home contains a Router, a Fixed phone and a Wifi network;
hence, in the textual representation, theHome object has three
links annotated as @containment (lines 12, 16 and 20). The
Home overlaps with a Cable modem in the fragment; hence,
a new link annotated as@overlapping in the textual represen-
tation (line 8) is created from the node with the bigger icon
(the Home), to the smaller one (the Cable modem). Finally,
the Router has two adjacent Ports to the bottom side in the
fragment; since there are multiple ports, the Router is added
a link annotated as @adjacency in the textual representation
(line 25). The side parameter of this annotation indicates the
side where the adjacency occurs (at the bottom of the router),
but it can be removed if this is irrelevant to the domain.

1 fragment fragment2 {
2 home1 : Home {
3 attr phoneNo = 5550225
4 attr name = "Phil Ochs"
5

6 @overlapping
7 @composition
8 ref modem = cableModem1
9

10 @containment
11 @composition
12 ref electronicDevices = router1
13

14 @containment
15 @composition
16 ref phones = fixedPhone1
17

18 @containment
19 @composition
20 ref wifiNetworks = wifiNetwork1
21 }
22 router1 : Router {
23 @composition
24 @adjacency(side = bottom)
25 ref ports = port1, port2
26

27 @style (color = "#000000", width = 3,
28 line = dashed, source = none,
29 target = crows−foot−many)
30 ref ’00000_3_dashed_none_crows−foot−many’
31 modem = cableModem1
32 }
33 fixedPhone1 : FixedPhone { }
34 wifiNetwork1 : WifiNetwork {
35 attr name = "myWifi"
36 attr password = "myPw"
37 }
38 port1 : Port { attr portNo = 2 }
39 port2 : Port { attr portNo = 1 }
40 cableModem1 : CableModem {
41 attr ipBase = "251.12.211.16"
42 }
43 }

Listing 2 Textual representation of the fragment in Figure 6

In addition to creating explicit links for the detected spatial
relationships, our importer heuristically adds @composition

annotations to the created links (see lines 7, 11, 15, 19 and
23 in Listing 2). This helps in organizing and realising only

a minimal but sufficient set of meta-model references, in the
sense that it suffices to capture all inferred spatial relation-
ships. For example, both Ports in the fragment are contained
in the Home, but this relation is not made explicit in the
textual representation because they are already adjacent to
the Router, which is inside the Home. Hence, the importer
adds the @composition annotation, which allows inferring
that Ports are indirectly contained in Home objects via Router

objects (line 11). Section 4.3 will analyse this and other
heuristics that we have devised to handle redundant relation-
ships and conflicts.

Figure 7 shows the resulting meta-model after auto-
matically processing this second fragment, including the
annotations for style properties and spatial relationships. The
grey-shaded elements are new with respect to Fig. 4. In par-
ticular, the meta-model has been extended with four new
classes: Router, FixedPhone,WifiNetwork and Port. Each class
has been added attributes accounting for the slots appearing
in the fragment objects. As an example, the Home class now
includes the new attribute phoneNo that appears in the second
fragment but not in the first one. Regarding the new refer-
ences added, all compositions correspond to detected spatial
relationships, while the non-composition Router.modem rep-
resents the edge from the router to the cable modem in the
provided fragment. The lower boundof the created references
is 0 because this is the default value set by the modelling
expert, who can change it if appropriate. Moreover, if the
modelling expert modifies the derived reference cardinali-
ties, all previously imported fragments would be checked in
real time to notify potential inconsistencies with the current
meta-model version.

4.3 Resolution of conflicts in spatial relationships

In this section, we introduce several heuristics to avoid repre-
senting redundant spatial information, to deal with multiple
spatial relationships converging on the same objects, and to
handle optionality of spatial relationships appearing in some
fragments but not in others.Wewill illustrate these heuristics
showing small excerpts of fragments and the meta-models
inferred from them. In general, our heuristics represent spa-
tial relationships as compositions in order to identify objects
that are part of another ones, and to facilitate exporting the
generated meta-model to frameworks like EMF, where each
object should be contained directly or indirectly in a root
object. While the default behaviour of some heuristics can
be configured, in all cases, the modelling expert can modify
the obtained result if it does not fit the domain at hand.

4.3.1 Avoiding redundancy

As previously mentioned, our system tries to create the
minimum set of references needed to represent all spatial

123

An example is worth a thousand words: creating graphical modelling environments by example 969

Router

Port
portNo: int

ports*

WifiNetwork
name: String
password: String

Home

FixedPhone

name: String
phoneNo: int

modem electronicDevices0..10..1
modem

0..1

phones wifiNetworks

CableModem
ipBase : String

@overlapping @containment

@adjacency
(side = bottom)

@style

0..1 0..1

InternetService
Provider

name : String

0..1
infrastructure*

ISPNetwork
tier : int
location : String

isp

Fig. 7 Updated meta-model after processing the fragments of Listings 1 and 2

A
B

C
A

B CContainment+Overlapping

A
B

C

Containment+Adjacency

A

B C

A
B

C
A

B C
Containment+Containment

@containment

@overlapping

@containment

@adjacency

@containment

@containment

(a)

(b)

(c)

Fig. 8 Avoiding the creation of redundant references to express con-
tainment

relationships discovered in an imported fragment. For this
purpose, it takes advantage of the transitivity of composition
relations to decide which ones encode redundant information
and can be removed.

Figure 8 illustrates the situations where redundant rela-
tions can be safely removed. We consider the cases where a
containment relation can be derived out of other overlapping,
adjacent or containment relations.

In case a), A contains objects of type B and C, which in
their turn overlap.Moreover,B is bigger thanC, and therefore,
our heuristic identifies C objects as parts of B objects. In the
generated meta-model to the right, we create a composition
reference from A to B due to the containment, and another
from B to C due to the overlapping and the fact that the B

object is bigger. However, although the C object is also con-
tained in A, we do not add a composition reference between
classes A and C because the other two composition refer-
ences already imply that C objects are indirectly contained
in A objects.

The situation in case b) is similar,where the adjacent object
C is identified as a part of B. Case b) occurs in the running
example, as the Home object in Fig. 6 contains a Router with
adjacent Ports. In this case, a composition reference is cre-
ated between Home and Router, and between Router and Port,
but not between Home and Port. This situation is frequent in
languages where nodes have “ports” or “attachment points”
to connect to other elements (called plex languages [11])
and where nodes can be nested. Component diagrams are an
example of this kind of languages, which we will illustrate
in Sect. 8.3.

Finally, in case c), we use the transitivity property of spa-
tial containment, so that if C is inside B, and B inside A, then
C is inside A; hence, we do not reify the latter spatial relation-
ship with a composition because it is implied by the former
relations.

4.3.2 Multiple spatial relationships

Fragments where a set of objects participate inmore than one
spatial relationship between each other may lead to alterna-
tive ways to arrange the composition relations in the derived
meta-model to avoid conflicts between them. Figure 9 illus-
trates some representative scenarios.

In scenario a), containment and overlapping relationships
arise for an object of type B. In particular, the B object is
contained in an A object and overlaps with a C object, but in
contrast to case a) in Fig. 8, theA object does not contain theC
object but both overlap. As a result, the inferred meta-model
has two references to represent the different overlappings
of C, and the question is which one of them should be a
composition, and which one should not. Declaring that a ref-
erence is a composition implies a stronger relation between
the related classes. Due to the semantics of composition, both
references cannot be compositions because that would not
allow an object of type C to be contained in both references
at the same type, which is the case shown in the figure (the C

123

970 J. J. López-Fernández et al.

A
B

C
A

B C

1

2Containment+Overlapping

A

B
C

Overlapping+Adjacency

(a)

(b)

@containment
@overlapping

@overlapping

A

B C

1

2

@overlapping
@adjacency

@adjacency

A
B

C

Containment+Internal-adjacency

(c) internal adjacency
is not supported

A
B

C

Containment+Internal-adjacency+Adjacency

(d)

A
B

C

internal adjacency
is not supported A

B
C

Fig. 9 Handling multiple spatial relationships converging on the same
objects

object overlaps with objects of type A and B simultaneously).
Removing one of the references would not capture this case
either. Hence, both references are needed, and the modelling
expert should decide whether the composition corresponds
to the reference defined either by class A (option 1) or class B
(option 2). The possibility to always use the container (class
A) or the containee (class B) as holder of the composition can
be configured by default.

Scenario b) is similar to the previous one, where objects
of types A and B overlap and are adjacent to a C object.
Assuming that a composition reference is created from class
A to B because the A object is bigger than the B object, the
question is again which one of the two references inferred
from the adjacency relationships should be a composition.
As in scenario a), the default behaviour can be customized.

The last two scenarios show unsupported combinations of
spatial relationships. In scenario c), objects of types B and C

are contained in an object of type A, and moreover, the C

object is adjacent to both A and B objects. However, the adja-
cency of objects A and C is internal.4 Our system does not
currently support this kind of adjacency, which is just inter-
preted as containment, as shown in the fragment to its right.
Therefore, this scenario is treated like case b) in Fig. 8. Simi-
larly, in scenario d) of Fig. 9, the internal adjacency between
objects of types A and B is interpreted as containment, and
hence, the fragments shown to the left and to the right are
equivalent.

4 By internal adjacency we mean an object that is simultaneously con-
tained by and adjacent to one of the inner borders of another object.

4.3.3 Optional spatial relationships

Special cases also arise when some spatial relationship is
present in some examples but not in others,meaning that such
relationship is optional. This may imply reifying previously
derived spatial relationships as references, or reorganizing
the composition references in the derived meta-model, as
Fig. 10 shows.

In case a) of Fig. 10, there is a first fragment where the B

and C objects overlap and are contained in an A object. Then,
in a second fragment, a C object is inside an A object with-
out overlapping with any B object. The meta-model obtained
from the first fragment does not suffice to represent the con-
tainment relationship in the second fragment, since class A

does not define a container reference for C objects. Hence,
the meta-model is extended with a new composition from A

to C, together with a xor constraint to indicate that C objects
can be contained either in A objects (due to the containment
relationship in the second fragment), or in B objects (due to
the overlapping relationship in the first fragment).5

Similarly, in case b), C objects can be placed either inside
of B or A objects. This is represented by two compositions
from classes A and B to C, and a xor constraint.

In these two previous cases, the second fragment does
not contain B objects, which makes the relation between B

and C become optional because the fragment exemplifies
that A objects can contain C objects directly (in addition to
indirectly via B objects). Hence, the composition relation
from A to C needs to be made explicit.

Finally, in case c), the first fragment includes overlapping
objects of types A and B, which in addition are adjacent to a
C object. In this case, the modelling expert has selected the
second option in case b) of Fig. 9 to infer the meta-model,
and hence, the reference from B to C has been marked as
a composition. Then, in the second fragment, there is a C

object that is not adjacent to any B object. Therefore, we
move the composition from the reference between B and C,
to the reference between A and C. This change would not
be necessary if the modelling expert had selected this option
when processing the first fragment.

5 Generation of graphical modelling environments

Our approach to synthesize the graphical editor proceeds
in two steps, both automatically performed using model
transformations. First, we convert the information gathered
from the fragments into a technology-neutral representation,
and then, this representation is translated into a technology-
specific editor specification. We currently target Sirius [48],

5 Although this xor constraint would be implicit in UML, we show it
explicitly for clarity.

123

An example is worth a thousand words: creating graphical modelling environments by example 971

A
B

C
A

B CContainment +
Overlapping

A

C
{xor}

-Overlapping

A
B

C

Containment +
Containment

A

B

C
Overlapping +
Adjacency

A

C
-Overlapping

(a)

(b)

(c)

@containment

@overlapping

A

B C

@containment

@overlapping

@containment

A

B C
@containment

@containment

{xor}

A

B C
@containment

@containment

@containmentA

C

-Containment

A

B C
@overlapping

@adjacency

@adjacency A

B C

@overlapping

@adjacency

@adjacency

Fig. 10 Handling optionality of spatial relationships

but other technologies like EuGENia [32] could be easily
targeted as well.

Figure 11 outlines this process, where three transforma-
tions take place: one generates the meta-model with the
abstract syntax of the DSL (label 1); another takes care of the
concrete syntax by constructing a technology-neutral model
with the graphical information (label 2) from which a mod-
elling environment for a specific technology is synthesized
(label 3); the last transformation converts the provided frag-
ments into models conformant to the derived meta-model
(label 4). Note that, as explained in the previous section,
our approach represents the concrete syntax information
extracted from fragments, including spatial relationships, as
meta-model annotations (boxes concrete syntax info and leg-
end (images) in Fig. 11). Then, the transformation with label
2 collects this information and creates a graphical represen-
tation model where, e.g. spatial relationships are reified as
objects. Next, we describe in more detail this transformation
dealing with the concrete syntax, since it is the most chal-
lenging.

Figure 12 shows an excerpt of the neutral meta-model
we have developed to represent graphical concrete syntaxes,
which is calledGraphicRepresentation. It is an extended ver-
sion of the meta-model presented in [12], where we have
added further features like layers, spatial relationships, reuti-
lization throughnode inheritance, abstract nodes, and support
for figures and edge styles. Thus,we convert the concrete syn-
tax information derived from fragments into this intermediate
meta-model to be independent from the target technology, but
also, to be able to refine this information, e.g. by specifying

palette information, organize elements in layers, or select
labels for nodes.

A graphical representation in our GraphicRepresentation
meta-model is organized into oneormore layers (class Layer).
One of them is the defaultLayer where all diagram elements
belong by default.

DiagramElementTypes define the graphical representation
types of the objects of a certain meta-model class and can
be visualized either as nodes (class NodeType) or edges
(class EdgeClassType). In both cases, they may hold a Palet-

teDescription with information on how the element is to be
shown in the editor palette. NodeTypes may be represented
as geometrical shapes (Ellipse, Rectangle, etc.) or as image
figures (class Figure). They can display a label either inside
or outside the node, being possible to configure its font style
(class LabelAttribute). Moreover, some nodes may need to be
displayed in a relative position with respect to other nodes in
the diagram, like being adjacent to (class Adjacency) or being
contained in (class Containment) other nodes. The container,
overlapping or adjacent node types are indicated through
reference SpatialRelation.with. On the other hand, as above-
mentioned, classes can also be visualized as edges using class
EdgeClassType. In such a case, it is possible to configure their
style (class EdgeStyle). Regarding the representation of ref-
erences, they can be visualized as links by means of the class
EdgeReference and can define a style and decorators (omitted
in the figure).

The GraphicRepresentation meta-model also enables the
reuse of graphical property definitions by means of relation
inheritsFrom in class NodeType, so that graphical properties

123

972 J. J. López-Fernández et al.

Sirius
editor model

(.odesign)

º

legend
(images)

meta-model
(.mbup)

concrete
syntax info

meta-model
(.ecore)

GraphicRepresentation
modeltransf.

transf.

example-1
(.mbupf)

example-1
(.xmi)

EMF models

example-1
(.aird)

graphical models

transf.

transf.

fragments, examples

2 3

1

4

Fig. 11 Technical process: generating a (Sirius) graphical editor from examples

Fig. 12 Excerpt of the GraphicRepresentation meta-model

defined for a node are inherited by its children nodes. If a node
is only being used as a placeholder for reusable properties
but is not intended for being drawn on its own, then it should
be marked as abstract.

The generation of the modelling environment requires
establishing a correspondence between the abstract syntax
meta-model of the DSL and the concrete syntax meta-model
in Fig. 12. We consider abstract syntax meta-models defined
with Ecore, for whichmappings can be established according
to Fig. 13. In particular, classes in the domain meta-model
(class EClass) can be represented either as nodes (classNode-
Type) or as edges (class EdgeClassType) and are referred to
through the reference DiagramElementType.eClass. In case
the class is represented as an edge, it is possible to con-
figure the references of the class acting as source and target

of the edge. Attributes in the domain meta-model (class EAt-
tribute) can be mapped into a LabelAttribute. References in
the domain meta-model (class EReference) can be mapped
into EdgeReferences, and their concrete syntax annotations
are mapped into an EdgeStyle. In addition, if a reference is
annotated with @containment, @adjacency or @overlapping,
then it gets assigned a Containment, Adjacency or Overlapping

object, respectively (not shown in Fig. 13). All created graph-
ical elements are included in the default layer and receive a
palette description.

Altogether, to generate the modelling environment, we
first synthesize an Ecore meta-model with the definition
of the DSL abstract syntax, and then, we transform the
obtained GraphicRepresentation model into a Sirius model
(*.odesign) describing thegraphical syntax and its correspon-

123

An example is worth a thousand words: creating graphical modelling environments by example 973

Fig. 13 Mapping between GraphicRepresentation meta-model and Ecore meta-model (classes of Ecore are shaded)

dence to the Ecore meta-model. This latter transformation
is implemented using the Atlas Transformation Language
(ATL) [21].

6 Tool support

The architecture of our solution encompasses drawing tool
like yED or Dia to draw the graphical fragments, and two
Eclipse plug-ins: metaBup [34] and EMF Splitter [12,20].
WhilemetaBup supports thewhole bottom-up abstract syntax
construction process, we provide a specificmetaBup exporter
that wraps the resulting meta-model and passes it to EMF
Splitter, which produces a fully operational graphical mod-
elling environment from it. In the following, we explain
how these two tools are integrated to support the presented
approach (Sect. 6.1), as well as the extensibility mechanisms
of the tools (Sect. 6.2).

6.1 Tool support for the generation process

Domain experts can draw fragments with yED as shown in
Fig. 14. Once an initial set of examples is ready, the mod-
elling expert creates a newmetaBup project. Thiswill initially
contain a blank meta-model file with mbup extension, and
empty fragments and legend folders. The yED drawings are
imported one by one, and automatically converted into text
fragment models, which then are shown in the shell console
of metaBup. Once parsed, the modelling expert can modify
the textual fragments if needed. The revised fragments are
fed to the meta-model derivation process, which may trigger
refactorings on the meta-model. Figure 15 shows the tool

Fig. 14 Fragment drawn in yED

once the fragment of Fig. 14 has been parsed, including the
current version of the derived meta-model (accessible on the
second tab of the editor). Technically, we need to copy the
images used in the yED palette (right side of Fig. 14) into
our legend folder.

Each time the tool processes a fragment, it stores a
text version of the drawing in the fragments folder of the
project. These fragments are validated upon eachmeta-model
change, so that they will be error-flagged if they become
inconsistent after a meta-model modification.

After all fragments have been processed, the modelling
expert can produce the Sirius-based modelling editor by just

123

974 J. J. López-Fernández et al.

Fig. 15 metaBup tool: (1) legend folder, (2) fragments folder, (3)
parsed fragment in textual format, (4) current version of meta-model,
(5) generated Ecore meta-model, (6) Java code generated from Ecore

meta-model, (7) generated Sirius project, (8) Sirius editor model, (9)
models transformed from the initial yED fragments

clicking on a button. In this way, first some necessary EMF
artefacts are automatically generated, like the ecore and gen-
model files (label 5 in Fig. 15), and the generatedmeta-model
Java classes (label 6). These resources contain the equiva-
lent representation to our working meta-model in EMF. The
modelling expert is prompted to type a file extension for the
models that will be built with the newmodelling editor (“ext”
in our example).

Then, a new SiriusViewpoint Specification project is auto-
matically created by internally using EMF Splitter (label 7 in
Fig. 15). This created project includes two key elements: (i)
an odesign file, the core resource of a Sirius editor, describ-
ing the DSL concrete syntax and its mapping to the DSL
abstract syntax, and (ii) a folder named models containing
models equivalent to those in the fragments folder, but now
in xmi format. These files serve as validation units, since they
are expected to be represented in the new editor similarly to
the original fragments. The generated Sirius project can then
be run, and Fig. 16 shows the resulting editor with one model
coming from an initial yED fragment.

Compared to the yED editor, the synthesized environment
relies on an underlying meta-model and can perform vali-
dation of integrity constraints (e.g. cardinalities, OCL) and
check whether the values of object slots are conformant to
their data type.Moreover, since the generated environment is
an Eclipse plug-in, it can work with the rich Eclipse ecosys-
tem of MDE tools, e.g. for model transformation or code
generation.

The environment can be evolved if so desired by providing
new fragments and regenerating it again. This means that, if
the generated editor definition is modified by hand, those
changes will be overridden. In future work, we plan to add
better evolution support to avoid this overriding.

Altogether, for the running example, we synthesized a
graphical DSL using 4 fragments, with 13 object types, 4
edge styles and using 3 spatial relationships (containment,
overlapping and adjacency, but not alignment). The system
automatically produced a meta-model with 16 classes, 16
attributes, 13 references and 8 inheritance relationships. The
generated Sirius odesign model contains 178 objects. The

123

An example is worth a thousand words: creating graphical modelling environments by example 975

Fig. 16 Sirius graphical modelling environment for the running example

details of this case study, and some other examples, are avail-
able at http://miso.es/tools/metaBUP.html.

6.2 Extension mechanisms

Both metaBup and EMF Splitter can be extended via Eclipse
extension points in four different parts of the process, as
shown in Fig. 17. First, there is the possibility to contribute
new fragment importers (label 1). For this purpose, we pro-
vide a platform-independent “pivot”meta-model to represent
the objects and relations in fragments [34], from which
we produce the internal textual representation shown in the
paper. We currently have importers from yED and Dia, but
other drawing tools could be supported as well. Addition-
ally, we provide a meta-model for modelling the graphical
properties explained in Sect. 4. Since spatial relationships are

automatically inferred from fragments, it is necessary to save
the location of objects in fragments (attributes width, height,
x and y in Fig. 5).

The catalogue of meta-model refactorings supported by
metaBup is also extensible (label 2 in Fig. 17). As the
meta-model grows, the modelling expert is suggested suit-
able refactorings to be performed on the meta-model. We
natively cover basic rules, like pluralizing multi-target ref-
erence names or generalizing common features to abstract
classes. These rules can be extended to create custom meta-
model modifications [34].

The tool can also be extended with new meta-model
exporters (label 3 in Fig. 17), like the one we have presented
for EMF Splitter. Similarly, EMF Splitter currently targets
the generation of Sirius-based editors, but other technologies
to build graphical editors like EuGENia could be targeted as
well (label 4).

123

http://miso.es/tools/metaBUP.html

976 J. J. López-Fernández et al.

Meta-
model

derivation
text

fragment
Meta-
model
export

meta-
model

Ecore MM
graph. repr

figures

sketch

yED Dia

Drawing
platform

…

Meta-model
refactorings

Ecore EMF
Splitter

catalogue

metaBUP EMF Splitter

Sirius EuGENia

Editor
generation

Exporter
Editor
platform

modelling
environment

1 2 3 4

…

Fig. 17 Extension points: (1) drawing platform, (2) meta-model refactorings, (3) exporter, (4) editor platform

On the other hand, the generated graphical editors are also
extensible via the standard Eclipse extension points, e.g. to
plug some MDE tools of the Eclipse ecosystem. However,
we currently do not provide specific extension points for that.

7 Evaluation

We have conducted a user study to evaluate our example-
based approach to generate graphical modelling environ-
ments. Since one of the goals of our proposal is enabling
the active involvement of domain experts in the DSL envi-
ronment construction process, the study was performed from
the point of view of the domain expert. Hence, the partici-
pants in our study played the role of domain experts, whereas
we (the authors) played the role of modelling experts. As
domain experts, the participants were asked to provide frag-
ments, aswell as to evaluate the environments generated from
them. In this way, the goal of our evaluation is twofold: first,
to assess whether our example-based approach is perceived
as useful to generate graphical environments, and second,
to explore to what extent the generated environments ful-
fil the domain experts’ expectations regarding their devised
DSL. Hence, our study explores the following two research
questions:

– RQ1: How useful is our approach to create graphical
environments?

– RQ2: How well do the generated environments reflect
the devised DSLs?

From a technical perspective, we are also interested in
the quality of the artefacts produced by our approach, which
leads to a third research question:

– RQ3: How is the quality of the derived domain meta-
models perceived?

7.1 Evaluation setup

To evaluate these research questions, we designed a user
study that emulates a typical example-based workflow, with
remote participants playing the role of domain experts (DEs),
and the authors playing the role of modelling experts (MEs).
Figure 18 summarizes this workflow. It includes the follow-
ing six steps:
Step 1 (DE): provision of fragments First, the participants
were given an online textual description of the requirements
of a DSL, and a yED installation which contained a palette
with admissible icons for the DSL. We decided to use the
DSL presented as a running example in this paper (i.e. home
networks), as this would allow analysing whether the same
requirements might lead to different graphical representa-
tions. “Appendix 1” contains the provided description of
DSL requirements, as well as the instructions to complete
the experiment.

In this step, the participants used yED to draw as many
examples as necessary to represent all desired aspects of the
expected DSL, and uploaded these examples via a web appli-
cation together with the time employed to complete them.
Step 2 (ME): generation of modelling environment Start-
ing from the fragments, we used our tooling to generate a
graphical modelling environment for each participant. Then,
we sent to each participant the environment generated out
of his/her fragments. At this stage, we occasionally had to
perform little formal corrections over the fragments, always
ensuring a minimal intervention (see Sect. 7.4 for more
details).
Step 3 (DE): evaluation of modelling environment The par-
ticipants were allowed to use the generated environment
freely with no time restrictions. Then, they replied an online
questionnaire rating different aspects, like resemblance of
the generated DSL to their expectations, and remarkable or
missed features in the modelling environment. We used both
Likert scales with scores from 1 to 5, and free-answer ques-
tions. In case the participants had developed meta-models
or modelling environments in the past, they were asked
additional technical questions related to the quality of the

123

An example is worth a thousand words: creating graphical modelling environments by example 977

Fig. 18 Evaluation process involving domain experts (DE) and modelling experts (ME)

generated meta-model and could comment on their prefer-
ences on using an example-based meta-model or graphical
editor construction process instead of using the typical top-
down approach. The complete questionnaire is available in
“Appendix 1” (questionnaire 1).
Step 4 (DE): new provision of fragments Participants were
given the opportunity to provide new examples complement-
ing those in the first iteration. This was optional, only if they
wanted to refine the generated environment, e.g. because they
had spotted some defect on the environment, or because they
had failed to represent some DSL requirement in the first
iteration.
Step 5 (ME): evolution of environment We used the new
examples to evolve the initial version of the modelling envi-
ronments.
Step 6 (DE): new evaluation of environment The participants
in this second iteration evaluated the new version of their
editors, answering whether their quality had improved and
which DSL aspects still remained uncovered. The complete
questionnaire is available in “Appendix 1” (questionnaire 2).

We invited 30 people with different backgrounds and ages
to participate in the study. In total, 11 replied to our petition,
3 female and 8 male, with ages ranging from 24 to 46 years
old. Amongst the different respondents, 8 were university
employees (either in an academic or a technical position), 2
worked in the private sector (one in the IT field and the other
in a different sector), and 1 was unemployed. Regarding their
technical background, 6 of them had developed meta-models
and graphical DSLs in the past, 2 had built meta-models but
not graphical DSLs, 1 had used modelling languages like
UML but had no experience on meta-modelling, and 2 had
no experience on modelling or meta-modelling.

7.2 Evaluation results

This section shows the results of our evaluation. First, we
analyse some features of the fragments provided by the
participants. Then, we use this information as well as the

3

4

2

1

0

1

0

1

2

3

4

1 2 3 4 5 6

pa

r�
ci

pa
nt

s

fragments

Fig. 19 Number of fragments per participant

questionnaire replies to give an answer to our three initial
research questions.

7.2.1 Diversity of fragments

Each participant could provide as many fragments as
desired. Eventually, the number of provided fragments per
participant ranges from 1 to 6, with a median of 2. Figure 19
shows howmany participants (y-axis) provided each number
of fragments (x-axis).

We examine the structure of the provided fragments to
assess the extent of use of the capabilities of our frame-
work. First, we study the scope of each fragment. Similar
to unit tests in test-driven development [6], in our methodol-
ogy, each fragment is meant to identify a situation of interest
(ideally one DSL requirement) using the minimal number of
elements to convey the given meaning. The DSL palette for
our experiment had 13 element types, and the average num-
ber of element types per fragment was 9 (see Fig. 20). The
three participants that provided a single fragment used all 13
element types in the fragment, which is understandable as,
otherwise, their editors would have resulted incomplete.

Concerning size, fragments had an average of 12 objects
and 9 edges, though their size strongly differ from 2 to 30

123

978 J. J. López-Fernández et al.

0

2

4

6

8

10

12

14

1 2 3 4 5 6

av
er

ag
e

fr
ag

m
en

t s
co

pe

provided fragments

Fig. 20 Average fragment scope (i.e. number of element types) w.r.t.
number of provided fragments

objects and from 0 to 29 edges. Considering that the average
number of object types per fragment is 9, we observe low
redundancy (i.e. few repeated objects of the same type).

If we compare the number of spatial relationships and
edge-based relationships used in fragments, we find that
objects are connected through edges 2.3 times more fre-
quently than they are using spatial relationships (overlapping,
adjacency, or containment). While every participant used at
least 1 edge per fragment, 4 participants did not employ any
of the detectable spatial relationships. However, if we do not
consider these 4 participants, the ratio of spatial relation-
ship/edge decreases to 1.3, which puts the average use of
both kinds of relationships at a closer level. Still, the general
shape of the DSLs was very much graph-like. Anyhow, it
is remarkable that all participants with no modelling back-
ground made use of spatial relationships in their fragments.

Similarly, although the documentation that accompanied
the DSL requirements detailed the possibility of using dif-
ferent edge styles, edge styling was seldom used. Only 2 out
of the 11 participants exploited this option to discriminate
different ways to connect pairs of the same object types. Just
as illustration, Fig. 21 shows to the left the fragment of a
user who made heavy use of most of the graphical features
supported by our framework, namely spatial relationships,
edge styling, and attribute labelling for nodes. The fragment
to the right belongs to another user who merely connected
the objects with non-styled edges and made no use of text
labels.

Altogether, we can summarize the use of graphical fea-
tures by the participants as follows:

– 100% used edges for connecting objects.
– 63% used spatial relationships.
– 27% used object or edge labelling.
– 18% gave style to edges for distinguishing different types
of connections between pairs of objects.

Despite the DSL requirements document encouraged the
use of edge styling and layout in fragments, and although
the proposed problem really fostered their usage, the results
evidence that, in the future, the possibilities of the environ-
ment should be further emphasized to potential users. On the
other hand, we did not find a correlation between the techni-
cal background of the participants, and the number, size, or
structure of the fragments they provided.

Once we have analysed the features generally present in
fragments, we answer the three research questions.

Fig. 21 User fragments with heavy (left) and meagre (right) use of the supported graphical features

123

An example is worth a thousand words: creating graphical modelling environments by example 979

15 20
30 30 30

37 40 40

60 60

120

0

20

40

60

80

100

120

140

1 2 3 4 5 6 7 8 9 10 11

Ti
m

e
to

 d
ra

w
 th

e
ex

am
pl

es
 (m

in
ut

es
)

Par�cipants

Fig. 22 Time employed to draw the fragments

7.2.2 RQ1: How useful is our approach to create graphical
environments?

We consider that our approach is useful if it speeds up the
construction of graphical environments and it promotes the
active involvement of domain experts. To evaluate this, we
first analyse the creation time of the environments in our
study, and then, we assess their usability.

Using our approach, the time to create a graphical envi-
ronment is the sum of the time employed to draw the DSL
examples, plus the time required by the modelling expert
to supervise the parsed fragments, plus the time to gener-
ate the environment from them. The supervision activities,
which are detailed in Sect. 7.4 and “Appendix 2”, took in
the order of a couple of minutes at most for every fragment.
Generating the environment from the revised fragments is
automatic, and its time negligible. Hence, the time to cre-
ate a graphical environment is clearly dominated by the time
to draw the examples. Figure 22 shows the time employed
in this task by our 11 participants. The times range from
15 to 120 min, with a median of 37 min and an average of
43.8 min, while the time per fragment is between 3 and 60
min. Hence, the average time to create an environment for
the DSL in our study was 43.8 min, with 72% of the par-
ticipants employing even less. This time can be considered
short, as developing a similar environment by hand would
require implementing the following artefacts (average num-
bers over all generated editors): an Ecore meta-model with
14 classes, 14 attributes, 22 references and 1,5 inheritance
relationships; and a Sirius odesign model with 232 objects.
Moreover, it would require having deep technical knowledge
on these technologies, which probably domain experts would
lack.

In the study, 6 participants had experience on develop-
ing meta-models and modelling environments. Surprisingly,
three of them were the slowest (60, 60 and 120 min), while
the other three were the fastest to build the examples (15, 20
and 30 min); hence, there is no correlation between time and
MDE experience. The only 2 participants that had no expe-

rience on modelling or meta-modelling dedicated 37 and 40
min on drawing 3 and 1 fragments, respectively. This demon-
strates that non-modelling experts can actively contribute to
developing graphical editors by providing DSL examples, as
our tool synthesizes working editors out of them.

Regarding the usability of the generated editors, Fig. 23b
shows how easy to use they are according to the participants.
The answers range from average (3) to very easy (5), with a
median of 4 (easy), and average of 4.1. These numbers sug-
gest a good usability of the final environments, although the
participants also mentioned some aspects to improve which
are summarized in Table 1. In particular, one participant sug-
gested reducing the high number of edge types that appear
in the palette, e.g. by having one button for all of them, and
deducing the type of any created edge from the types of the
objects it connects. While this is a good strategy for large
DSLs, the default drawing mode of Sirius is using a palette
button per edge type, and hence, we plan to study the feasibil-
ity of this proposal in the future. The rest of suggestions are
limitations of Siriuswhichwe cannot overcome.As an exam-
ple, two participants stated that containment seemed “odd”
in the generated editor and that objects placed in a container
could not be moved to any other container. We should not
ignore that the handling of containment is not currently one
of the best fine-tuned features in Sirius. Regarding the edi-
tor aspects the participants liked the most (question Q9 in the
questionnaire, see “Appendix 1”), they mentioned flexibility,
simplicity, being easy to use, and the support of many edge
styles. Table 2 details the answers to this question.

In summary, the participants found our approach to create
graphical modelling environments useful. More importantly,
participants with no modelling background were able to
design a graphical DSL and, by providing examples, cre-
ating an editor for the DSL. Nonetheless, the participants
have also proposed some improvements to the usability of
the generated environments, which we plan to incorporate
whenever possible in future versions of metaBup.

7.2.3 RQ2: How well do the generated environments reflect
the devised DSLs?

To answer this research question, we examine the responses
to questions Q4, Q5, and Q6 in questionnaire 1. Question
Q4 requests a score for grading how precisely metaBup was
capable of producing a graphical syntax that resembles the
original drawings. Figure 23a summarizes the given scores,
which went from much (4) to very much (5), with a median
of 4 and average of 4.36.

Questions Q5 and Q6 in the survey (both free-answer
questions) provide more elaborate answers concerning the
accuracy of the generated graphical DSLs. First, one par-
ticipant complained that fixed and mobile phones could
be placed both inside and outside homes in the generated

123

980 J. J. López-Fernández et al.

(a) (b) (c)

Fig. 23 Scores to different aspects of the generated environments and their underlying domain meta-models

Table 1 Answers to question Q8: Which aspects of the (generated)
environment would you improve?

There are too many edge types in the palette.

Creating new models is not intuitive.

Objects are hard to resize.

Handling of containment is intricate.

Moving an object between containers is not possible.

Difficulty to draw edges and layout.

Table 2 Answers to question Q9: Which aspects of the (generated)
environment do you like the most?

The conversion performed by the tool is spectacular.

Very intuitive and flexible.

The placement of the objects in the editor.

Easy to use.

Intuitive tool, which captures well the DSL semantics.

I liked the integration of a drawing tool within Eclipse.

Generating an editor out of 3 fragments is quite useful.

environment. It is significant that this participant provided
fragments inwhich phoneswere inside homes, and fragments
in which they were not. Because we incorrectly interpreted
these fragments as examples (i.e. as complete versions of
models), our tool generated an environment where phones
could be placed in two different kinds of containers: homes
and “the canvas”. Interpreting the drawings as fragments (i.e.
as possibly incomplete models) solves the problem. Alterna-
tively, the environment could have been refined in a second
iteration, though the participant deemed it was not neces-
sary.Another participant stated that objects originally painted
superimposed in the fragments had been substituted by con-
tainment relationships in the final editor. This is a limitation
of Sirius, which does not support overlapping relationships
between objects. To handle this, our Sirius exporter offers
the possibility to choose which of the two remaining spatial
relationships (adjacency or containment) should substitute
overlapping in the editor. During the experiment, this pref-
erence was set to containment for all examples. Finally, two

participants reported differences on the size and position of
the model elements with respect to the original fragments,
but they did not report mismatches regarding the expected
DSL itself.

Among the aspects best captured by the generated DSLs,
the users mentioned the edge styles and the containment
and adjacency relationships. Anecdotally, one participant
liked that the position of elements had been preserved in
the migrated models, which surprisingly, was mentioned as
an aspect to improve by another participant.

Notably, no participant requested a second iteration to
refine the generated environments. This fact, and the aver-
age score 4,36 out of 5 (i.e. 93%) given by the participants
when asked if the DSL met their expectations, indicate that
the environments reflect very well the devised DSLs.

7.2.4 RQ3: How is the quality of the derived domain
meta-models perceived?

All solutions led to similar meta-models, with differences
lying in how participants chose to graphically represent cer-
tain aspects of the domain.

Next, to answer RQ3, we analyse the replies to questions
Q11,Q12, andQ13 in questionnaire 1,whichwere only avail-
able to participants with meta-modelling experience (8 out
of 11 participants). Question Q11 provides a measure of the
degree in which the derived meta-model matches the user’s
expectations. As Fig. 23c shows, the similarity between the
expected meta-model and the generated meta-model ranges
from average to very much, with a median of 4.5 and average
of 4.25. These numbers indicate that the derived meta-model
was found similar to what a modelling expert would build by
hand.

Question Q12 identifies aspects incorrectly captured by
the derived meta-model, hence giving an indication of the
perceived meta-model quality. This is of special interest
in the case of participants that assigned lower scores to
Q11. Table 3 summarizes the identified issues. Two partici-
pants commented that they would have created one abstract
class holding common references to other classes. Interest-

123

An example is worth a thousand words: creating graphical modelling environments by example 981

ingly, our tool supports this refactoring and recommended
its application in these cases, though we did not apply it
becausewedid notwant to pervert the evaluationwithmanual
modifications to the derived meta-model. Another partici-
pant complained that the name of some inferred references
was strange, e.g. containment; as before, these names could
have been modified by the modelling expert in the fragment
revision phase. This same participant alsomissed somemeta-
model attributes to represent the object locations; however,
this is not necessary in our approach as this information is
directlymanaged by the concrete syntax layer, and anyhow, it
would be easy to add it as a configuration option in the future.
The remaining 5 participants (including one that ranked 3 to
Q11) did not find errors in the derived meta-model. Overall,
these results show that the participants perceived the quality
of the derived meta-models as high.

Regarding Q13, only 2 participants stated that they would
prefer building the meta-model by hand, even though they
had rated the derived and expected meta-models as very sim-
ilar (maximum score in Q11). The remaining 6 participants
would prefer using an example-based approach, 4 of them
requiring the ability to modify the resulting meta-model by
hand, and the other 2 considering this unnecessary.

Altogether, the participants ranked the quality of the gen-
erated meta-models as 4.25 out of 5 in average; hence,
the perceived quality of the generated meta-models is high.
Regarding the few detected issues (like the generalization of
common features), our tool assists the modelling expert in
their correction by recommending suitable refactorings.

7.3 Threats to validity

Next, we analyse the threats to the validity of our study.
We tried to minimize the selection bias by promoting the

participation of people with different background, ranging
from computer science students with a shallow knowledge
of modelling techniques, professors both with and without
expertise on DSLs, workers on technology companies with-
out a specific training on modelling, and people working
on non-technological companies. This is representative of
very different domain expert profiles. However, the partic-
ipants were not real experts on the selected home network
domain, and therefore, they might have been less demanding
when evaluating the expressiveness of the generated editors.
We tried to minimize this effect by asking the participants

Table 3 Answers to question Q12: Which aspects does the (generated)
meta-model not capture correctly?

Common features are not generalized.

Missing attributes to represent object locations.

Some features have strange names, e.g. containment.

whether the final DSL was the one they had in mind, for
which the domain expertise is not relevant. Similarly, we did
not offer any incentive (monetary or of any other kind) to
the participants, which may have hindered their engagement
leading to less accurate scores or answers and preventing
their participation on a second iteration of the editor [29].

Another threat to the internal validity of the results is the
6–7 days elapse since the participants provided the exam-
ples until they evaluated the generated environment, as in
the meantime, some of their initial expectations regarding
the DSL may have been distorted. This elapse was due to
the variety of participant profiles, and in order to promote
the participation, we granted 7 days to draw and submit the
examples off-line, and another 7 to evaluate the generated
editor and fill in the questionnaire. Moreover, 3 participants
delayed their evaluation 7 extra days due to professional com-
mitments.

On the other hand, having performed an off-line double-
blind user study has eliminated any experimenter bias that
we could have inadvertently introduced.

Regarding thegeneralizability of our results across people,
as we mentioned before, we selected participants with dif-
ferent backgrounds on modelling and DSLs in order to make
our results as general as possible. However, considering the
nature of the proposed problem (in the field of computer net-
work configuration), all of themhad some trainingorworking
experience on computer science and programming. Hence, it
remains as a threat to the external validity of our study consid-
ering other kinds of domain experts with a low technological
profile.

Another threat to the generalizability is that the study is on
the construction of one DSL, and hence, the results might be
biased to the features of this DSL. To minimize this risk, we
selected a DSL that allowed using a rich set of spatial rela-
tionships and connections between nodes (so-called hybrid
visual languages [8]). To have an intuition of the generality
of our approach, Sect. 8 explores the use of our framework
to build a gallery of DSLs of different types.

Moreover, our study emulated a workflowwhere only one
domain expert contributed DSL examples. Hence, our find-
ings cannot be generalized to situations where contributions
come from several experts who might even provide differ-
ent representations for the expected DSL. In particular, in
a project setting, there would probably be teams of domain
experts providing fragments.

Finally, regardless the number of people invited to par-
ticipate in our study, only 11 participants completed the
evaluation. As stated in [29], recruiting participants in tool
studies is difficult, but we aim at performing further studies
with more participants, working in teams.

123

982 J. J. López-Fernández et al.

7.4 Discussion

Next, we discuss some interesting details of the experiment,
lessons learnt, and open challenges for future work.

In our roles of modelling experts, we tried to interfere
as little as possible in the editor generation process. How-
ever, in some cases, we had to perform little adjustments
to the imported fragments to correct evident mistakes made
by accident when drawing the examples, or to perform fixes
that did not affect the semantics of the domain. We show
an example in Fig. 24. In yED, each element in the palette is
contained in an invisible bounding box, andwe calculate spa-
tial relationships in accordance to this box. Thus, in Fig. 24,
although the intention of the domain expert was to draw all
ports adjacent to the router, the two ports that are superim-
posed to the bounding box of the router (i.e. Port1 and Port2)
get classified as overlapping references by our tool. Hence, in
this case, we had to manually modify the imported fragment
to delete the overlapping_ports reference and add Port1 and
Port2 to the adjacency_ports reference.

Next, we list the adjustments we had to perform, indicat-
ing in parenthesis the frequency of changes with respect to
the total number of participants (a detailed list of individual
changes is given in “Appendix 2”):

– Ignore invisible bounding box (3/11). The abovemen-
tioned case, in which a participant is ignorant of the
transparent bounding box of objects.

– Rename reference (11/11). Because fragments do not
include reference names, we manually set reference
names that were easily identifiable in the generated edi-
tor, in the format <source>2<target>.

– Rename auto-generated superclass (1/11). Our meta-
model derivation algorithm is able to infer abstract super-
classes for common features, assigning as class name
a common substring of the children class names (e.g.
Phone if the children classes are FixedPhone and Mobile-

Phone). If the subclasses lack a common morpheme, the

Fig. 24 Common faux pas in the drawing of fragments (left) and its
automatic parsing into text fragment (right)

modelling expert is prompted to set a domain-significant
name for the new class.

We found positive that, although the process entitles the
modelling expert to perform deep changes over the frag-
ments and the meta-model, little manual editing was needed
to obtain well-valued editors.

Currently, our approach supports fragments fromyEDand
Dia, and we based our evaluation on yED. To this respect,
roughly half the participants expressed some discomfort with
the use of yED. Most criticisms indicated the complexity to
draw edges in yEDas themain reason to delay the completion
of fragments. However, when analysing the results of the sur-
vey, the time to draw each fragment does not seem significant
in the assessment of the generated editors. Looking at Q4,
which asked whether the synthesized environment met the
envisioned graphical syntax, the average score given by the
participants who took 24min (the average time per fragment)
or more to complete each fragment is 4.25 out of 5, while the
score given by the participants who took less than 24 min to
draw each fragment is 4.43, which is not a significant differ-
ence. Probably, a more usable or popular drawing tool, like
PowerPoint, would have led to shorter drawing times. Any-
how, our framework can be extendedwith importers for other
drawing tools, not being the particular selection of drawing
tool a limitation of our approach.

Similarly,most identifieddeficiencies regarding theusabil-
ity of the generated editors are due to limitations of some
Sirius features. Although our framework is likewise extensi-
ble in the export stage as it is in the import, Sirius is one of
the most powerful tools nowadays for developing graphical
modelling editors.

Regarding the fragment provision process, we have
detected that there is a need to better instruct domain experts
in some features of our framework, in particular concerning
the usage of spatial relationships and edge styling.Moreover,
some participants did not understand the difference between
fragment and example. A better understanding would have
helped in clarifying certain ambiguities and misinterpreta-
tions, contributing to the utter completion of more qualified
editors. In our framework, examples are built in the sameway
as fragments, but only the former represent completemodels.
Hence, the meta-model derivation algorithm does not have
to apply heuristics or prompt disambiguation tasks to the
modelling expert when processing examples, as it may hap-
pen for fragments. Ideally, fragments should containminimal
sets of objects representing portions of domain information,
whereas examples are more widespread. In both cases, they
can be used as test cases [37] to identify conflicts that should
be resolved before altering the domain meta-model.

Finally, the experiment has purposely omitted some
advanced features of our system for simplicity. For instance,

123

An example is worth a thousand words: creating graphical modelling environments by example 983

yED drawings can be annotated to introduce domain restric-
tions which get compiled into OCL meta-model constraints
(see [34] for more details). Actually, one participant stated
in the questionnaire that the Sirius editor should have incor-
porated an OCL constraint.

8 Gallery of DSLs

This section presents additional DSL examples built with
our tool and identifies some of the strengths and limitations
of our approach. The examples are also available at http://
jesusjlopezf.github.io/metaBup/gallery.html.

We base our presentation on the classification of visual
languages proposed in [8], which distinguishes two main
types of visual languages: connection-based and spatially
defined. The former type includes plex-like languages (where
nodes are connected via ports) and graph-like languages, fur-
ther divided into multipartite graphs (with different types
of nodes) and hypergraphs (where edges can connect any
number of nodes). Spatially defined languages are classified
into containment-based and adjacency-based. Grid-based
languages (e.g. a chess board) belong to both categories as
board cells contain pieces and are adjacent to each other.
Finally, hybrid languages, like statecharts, have features of
both connection-based and spatially defined languages.

As it can be observed, our running example is hybrid
as it makes use of graph-like connections (e.g. routers con-
nected to different devices), containment (devices inside the
home), adjacency (ports adjacent to the router), and overlap-
ping (modems overlapping the home).

Next, we present examples of DSLs in every category. The
research question we aim to answer is whether our frame-
work can handle different types of DSLs—according to a
well-established classification of visual features—in order
to identify strengths and limitations. Hence, we did not rely
on domain experts to build these examples, but we built them
ourselves.

8.1 Connection-based languages

Figure 25 shows an editor built with our tooling for a graph-
like language to define fault-tree diagrams. These diagrams
are multipartite graphs with four types of nodes: or gates,
and gates, basic events, and intermediate events.

Building amultipartite graph-likeDSLusingour approach
typically requires providing fragments that illustrate the
properties of each node type and how they can be connected.
In this case, we used the two fragments shown in Fig. 26,
which include three different types of objects: circles rep-
resent basic events, rectangles are intermediate events, and
gates are labelled with their type. The first fragment uses 4
objects and 3 connectors, while the second one uses 7 and 6,

respectively. None of the two fragments make use of spatial
relationships, but just connections.

Figure 27 shows the textual representation extracted from
the fragment to the right of Fig. 26. Several references have
been manually annotated with general (lines 4, 7, 16, and
19). Consequently, the derived meta-model generalizes these
references by creating the abstract classes Event and Gate to
correctly classify events and gates (see right of the figure).
The name of the created abstract classes is automatically
generated, being the common intersection of all subclasses
names.

8.2 Spatially defined languages

In this kind of languages, nodes are related via spatial
relationships like adjacency, containment, and overlapping.
Typical languages belonging to this category are Venn dia-
grams and their variants [53], as well as grid-based languages
such as board games like chess, checkers, or Ludo [43].

As an example, Fig. 28 shows the editor generated for the
chess game. The editor permits creating the board, its cells,
and the pieces. We employed two fragments to generate this
editor. The first fragment consisted of the board, which con-
tained a grid of cells related to each other by adjacency and
alignment spatial relationships. The second fragment illus-
trated the containment of white and black pieces inside cells.

Fig. 25 An editor for fault-tree diagrams

Fig. 26 Fragments used to define the DSL in Fig. 25

123

http://jesusjlopezf.github.io/metaBup/gallery.html
http://jesusjlopezf.github.io/metaBup/gallery.html

984 J. J. López-Fernández et al.

1 fragment yed sketch {
2 ”Motor does...” : IntermediateEvent {}
3 OrGate 1 : OrGate {
4 @general ref output = ”Motor does...”
5 }
6 ”Motor Fails...” : BasicEvent {
7 @general ref gateInput = OrGate 1
8 }
9 ”No EMF applied...” : IntermediateEvent {

10 ref gateInput = OrGate 1
11 }
12 ”Wire from...” : BasicEvent {
13 ref gateInput = AndGate 1
14 }
15 ”No EMF from...” : IntermediateEvent {
16 @general ref gateInput = AndGate 1
17 }
18 AndGate 1 : AndGate {
19 @general ref output = ”No EMF applied...”
20 }
21 }

Event

Basic
Event

Intermediate
Event

Gate

Or
Gate

And
Gate

gateInput

0..1

output 1

Fig. 27 Textual fragment (left). Derived meta-model (right)

Fig. 28 A chess game editor

8.3 Hybrid languages

Hybrid languages combine edge-based connections with
spatial relationships. As an example of this kind of lan-
guages, Fig. 29 shows an editor for use case diagrams. These
diagrams employ containment and several types of nodes
(actors, systems, packages, and use cases) that can be con-
nected with both directed and undirected edges. On the one
hand, use cases can be contained in subsystems and pack-
ages. On the other, use cases can be connected between them
with two types of directed edges, while actors can inherit
from each other using directed edges, and be connected to
use cases with undirected edges. In particular, the editor from
Fig. 29 was derived from 3 fragments including 5, 9, and 10
objects, which used 4 different types of objects. All frag-
ments included some containment relationship between the
objects: in the first fragment, one subsystem contained two
use cases; in the second one, therewas a subsystemwith 5 use
cases; and the last fragment included 3 packages containing
several use cases.

Fig. 29 An editor for use case diagrams

Fig. 30 An editor for component diagrams

Component diagrams are another example of hybrid lan-
guage. They have been used to evaluate graphical DSL
generation frameworks, like Eugenia [30]. This kind of dia-
gram has plex features as components are interconnected
via ports, and containment is relevant to indicate the sub-
components of a composed component. Figure 30 shows an
editor for component diagrams, where there are components
inside components, and some components are interconnected
through their attached ports. This editor was inferred from
only 2 fragments using 2 different object types. The frag-
ments included8and4objects each, consisting in anumber of
components that exhibited an overlapping relationship with
several ports connected between them.

To build the editors for these languages, the provided frag-
ments need to illustrate the allowed connections and spatial
relationships. For the case of component diagrams, the con-
tainment relation between components is optional, as there
may be top-level components and subcomponents. Hence,
fragments reflecting both cases need to be provided.

123

An example is worth a thousand words: creating graphical modelling environments by example 985

8.4 Strengths and limitations of the approach

Next, we characterize the kinds of DSLs our approach sup-
ports. In general, as we have shown, our approach permits
creating editors for the three kinds of languages identified
in [8]: connection-based, spatially defined, and hybrid. How-
ever, we have to mention some limitations.

First, our approach supports DSLs where there is a one-
to-one mapping between the abstract syntax and the concrete
syntax. Hence, every class in the meta-model must be repre-
sented through an icon or an edge type. We do not support
a combination of abstract syntax elements to be represented
as a single icon, or having several concrete syntax represen-
tations for the same abstract syntax element. This leaves out
languages like sequence diagrams, where the concrete and
abstract syntax are very dissimilar. Likewise, our approach
does not support variations on the concrete syntax elements
(icons or edges) depending on attribute values, as it occurs for
example in UMLwhere associations can have decorations in
case they are compositions, and class names are shown in
italics when the class is abstract.

Edges can have decorators in the source and target ends
but not in the middle, and we currently do not support edge
labels.

Concerning spatial relationships, our algorithm identifies
containment, adjacency, alignment, and overlapping. How-
ever, adjacency only works for rectangular elements, as it
is calculated based on the elements’ bounding box. This
means adjacency cannot generally work, e.g. with trian-
gles, and hence, complex adjacency-based languages like
Nassi-Shneiderman diagrams or structograms [57] cannot
be described with our approach. Moreover, our current tar-
get Sirius does not support overlapping. Instead, we give the
option to substitute it by adjacency or containment. Hence,
languages heavily relying on overlapping, like Venn and
Euler diagrams [7,51], cannot be handled. Regarding align-
ment, it is only reified on the presence of adjacency. While
this is a reasonable heuristic for most engineering diagrams,
it leaves out some pure spatially defined languages like the
Braille language for the blind.

Finally, line-based diagrams, like those representing
knots [44], cannot be recognized either. This is so as our
approach is targeted to DSLs that include node types, and
line-to-line relationships like overpassing or underpassing
are not recognized.

Altogether, the main limitations of our approach come
from being unable to handle spatial relationships over non-
rectangular shapes, or very dissimilar concrete and abstract
syntaxes. Anyhow, most languages in software engineering
are hybrid (e.g. like those in Fig. 29 and 30), do not make use
of complex spatial relationships, and relations are most fre-
quently depicted as edges (maybe via ports) and containment.

The running example and the DSLs in this section illustrate
the kind of languages our approach is suitable for.

9 Related work

In this section, we review related approaches to the defini-
tion of DSL requirements (Sect. 9.1) and the generation of
flexible modelling tools (Sect. 9.2) and perform a feature-
based comparison of the main tools for the flexible creation
of graphical DSLs (Sect. 9.3).

9.1 DSL requirements

According to [33,39], domain analysis techniques are still
missing for DSLs, as this phase is most frequently done in an
informal way. Our work uses drawings built with diagram-
ming tools to represent DSL requirements. Other ways to
represent requirements include feature diagrams [23] or nota-
tions inspired by mind maps [42]. While these approaches
focus on representing and classifying desired DSL features,
our example-based approach relies on concrete examples
of language use, promoting a more direct involvement of
domain experts.

In some sense, our approach is conceptually similar to
test-driven development approaches [6]. This is so as, in test-
driven development, the software requirements are expressed
as test cases, and the software is evolved to make it pass the
tests; while in our approach, the example models can be seen
as DSL requirements, and we provide an automated process
that evolves the current version of the DSL meta-model so
that it accepts the examples.

In [1], domain analysis is application-driven and DSLs
are produced as output artefacts when developing a software
framework, while in [49], the Question-Options-Criteria
guides the design decisions involved when creating UML-
based DSLs. However, none of these two works propose a
concrete notation to represent DSL requirements.

9.2 Flexible modelling

While MDE is founded on the ability to process models with
a precisely defined syntax, some authors have recognized the
need for more flexible and informal ways of modelling. This
is useful in the early phases of system design [38,46,56] or
as a means to promote an active role of domain experts in
DSL development [9,14,59], as we advocate in this paper.

There are two orthogonal design choices enabling flexible
modelling in DSL development: (i) the use of examples to
drive the construction process and (ii) the explicit genera-
tion of a meta-model and a modelling tool different from the
drawing tool used to build the initial examples.

123

986 J. J. López-Fernández et al.

Regarding the first design choice, “by-demonstration”
techniques have been applied to several MDE artefacts, like
model transformations [2,4,5,24,27,55] and model refac-
torings [13]. Some approaches, like [2], rely on mappings
specified manually over examples with a graphical concrete
syntax. However, the use of example-based techniques is not
so common to describe graphical modelling environments.
The closestwork to ours is theMLCBDframework [9],which
describes a system atop Microsoft Visio to derive DSLs by
demonstration. Given a single example, the system derives
the concrete syntax from the icons in the palette, and some
abstract syntax constraints, e.g. concerning the connectivity
of elements. This information is recorded and used within
Microsoft Visio. Instead, we derive an explicit meta-model,
infer spatial relationships like containment and overlapping,
and generate a modelling tool. Moreover, our deduced meta-
model supports modelling concepts like abstract classes,
inheritance, compositions, and attributes, which are not
found in [9].

The approach in [31,59], called Muddles, uses yED to
draw examples of the DSL. Types are assigned to elements
based on type annotations, and functions can be defined
to check for shape overlapping, colour, or proximity. Type
annotations are placed on every node in the drawing and
can indicate subtyping relations. All modelling is performed
within yED, and no dedicated modelling environment is
explicitly generated. The rationale of the approach is to
enable early use of model management languages over the
drawings. For this purpose, Muddles permits the use of the
Epsilon model management languages to query and manipu-
late the yED models directly. This is possible because the
Epsilon languages communicate with the modelling plat-
form through a connectivity layer. Muddles does not expose
a meta-model to the user, but instead, a meta-model is cre-
ated in-memory from the type annotations. This meta-model
deliberately leaves out elements like cardinalities or compo-
sition references.

The Free Modeling Editor (FME) presented in [14] per-
mits developing DSLs starting either from example models
or from meta-model concepts. The proposal is based on the
Openflexo tool, which supports the concurrent development
of both models and meta-models and has importers for mod-
els stored in PowerPoint and Word formats. The approach
has been successfully applied to an industrial project [14].

Some tools for DSL development generate an external
modelling tool different from the one used to define the DSL.
For instance, EuGENia Live [45] is a web tool for designing
graphical DSLs. It supports on-the-fly meta-model editing
while the user is building a sample model and its concrete
syntax. From this definition, the tool exports an Ecore meta-
model enriched with concrete syntax annotations, which can
be used to generate an Eclipse GMF-based environment.

Some modelling tools promote flexibility in the early
phases of system design by offering sketching capabilities
similar to pen-and-paper drawing. For instance, SKETCH[46]
provides an API to enable sketch-based editing on Eclipse;
Calico [38] is a sketching tool for electronic whiteboards,
where the sketched elements can be scrapped and reused in
other parts of the diagrams; and FlexiSketch [56] allows cre-
ating sketches and tomanually lift the created shapes and con-
nections to themeta-model level. However, FlexiSketch does
not support meta-modelling features like named attributes,
class inheritance, abstract classes, or different association
types (e.g. compositions).

Finally, although not specific for DSL creation, there is
a trend in recent modelling tools to promote flexibility by
relaxing the conformance relationship in early phases of
modelling, while enforcing strictness in later phases [18,50].
These tools benefit from the flexibility of JavaScript as the
underlying implementation language.

Altogether, bottom-up approaches to DSL construction
(FME, MLCBD, metaBup) foster an active participation of
domain experts, who provide examples that drive the DSL
construction process, including the derivation of the meta-
model. However, for large meta-models (e.g. found in large
standards like UMLor BPMN) a combinationwith top-down
meta-model design would be more adequate, to organize and
architect the different parts of the meta-model. Regarding
DSL evolution, the relaxed model/meta-model conformity
provided by flexible modelling approaches might be useful
to cope with non-conforming models. Moreover, the incor-
poration of new requirements to an existing DSL might be
simplified with bottom-up approaches, if those requirements
can be expressed as a new example.

9.3 Comparison of flexible tools to build graphical DSLs

Table 4 compares our approach metaBup with the most
prominent tools for the flexible creation of graphical DSLs,
namely EuGENia Live [45], FlexiSketch [56], FME [14],
MLCBD [9], and Muddles [31,59]. In the following, we
comment on the differences between the features of these
tools.

9.3.1 Approach

First, we compare the overall approach the tools implement.
metaBup and EuGENia Live rely on informal drawing tools
to specify examples and then generate an external modelling
tool that mimics the exemplified graphical syntax. In par-
ticular, metaBup generates a Sirius-based modelling editor,
and EuGENia Live generates a GMF-based one. In contrast,
MLCBD and Muddles also start from informal drawings,
but then modelling is performed in the same drawing tools
(i.e. no external modelling tool is generated). The remaining

123

An example is worth a thousand words: creating graphical modelling environments by example 987

Table 4 Flexible approaches for DSL creation

Approach Process DSL examples DSL meta-model Modelling
environment

Advanced
recognition

metaBup Informal
drawings +
editor
generation

Examples +
meta-model
derivation

yED, Dia Automatic (rich
meta-modelling
features)

Generated
(Eclipse)

Spatial relations

EuGENia Live [45] Informal
drawings +
editor
generation

Examples +
meta-model

Inside tool Manual Generated
(Eclipse)

–

FlexiSketch [56] Flexible tool
(sketches+models)

Examples +
meta-model
derivation

Inside tool Automatic (basic
meta-modelling
features)

Inside tool Sketching

FME [14] Flexible tool
(exam-
ples+models)

Examples +
meta-model

Inside tool,
Office

Manual Inside tool –

MLCBD [9] Informal
drawings +
informal editor

Examples Ms Visio – Ms Visio –

Muddles [31,59] Informal
drawings +
informal editor

Examples yED Automatic (type
annotations)

yED Spatial relations

cases (FlexiSketch and FME) do not rely on external draw-
ing tools or graphical modelling frameworks, but they are
themselves flexible self-contained modelling environments.
FME, in addition, can also import drawings from some exter-
nal tools, but the meta-model needs to be manually created.

9.3.2 Process

Second, we compare the process followed to define the
DSL. metaBup implements a bottom-up approach, where
the provided examples are used to automatically deduce a
meta-model making explicit the syntactic rules of the DSL.
FlexiSketch and Muddles also deduce a meta-model; how-
ever, their use is internal and does not get exposed to the
user. Instead, MLCBD does not infer or need an explicit
meta-model, while EuGENia Live and FME require creat-
ing a meta-model manually.

9.3.3 DSL examples

Table 4 also compares how the examples are created in the
different tools. Some of them use existing popular drawing
tools like yED, Dia or the Microsoft Office suite. The advan-
tage is that domain experts might find familiar some of them.
Instead, EuGENia Live and FlexiSketch require using the
modelling tool itself to draft the examples.

Like our approach, Muddles relies on yED drawings,
where each node should be annotated with its type. This is
done using type extension fields. In contrast, our type names

are taken from the icon used to create each node. This is
less demanding for the user, who does not need to explicitly
annotate each node.

9.3.4 DSL meta-model

Asabovementioned,metaBup, FME,Muddles andFlexiSketch
allow building meta-models from the examples, although the
latter two do not expose the meta-model to the user. Mud-
dles relies on type annotations to derive the meta-model and
allows the specification of type hierarchies. While it can
recognize spatial relationships programmatically, they are
not reified as meta-model references, which makes model
management cumbersome. FlexiSketch permits assigning a
type name to the elements created in a sketch. However,
the deduced meta-models do not support regular modelling
concepts like inheritance, abstract classes, compositions, or
constraints. Nodes can be assigned several untyped labels to
emulate attribute values, but they have no name and their
type-checking w.r.t. basic data types cannot be performed.
FME requires manual creation of the meta-model, but sup-
ports features like abstract classes, inheritance, cardinalities,
and full-fledged attributes.

Similar to FME, metaBup supports conceptual modelling
facilities like composition, attributes, cardinalities, and inher-
itance. In contrast to FME, the meta-model is automatically
deduced from the examples.Moreover,metaBup incorporates
a catalogue of refactorings that can be used to improve the
meta-model quality and an assistant able to recommend those
refactorings.

123

988 J. J. López-Fernández et al.

9.3.5 Modelling environment

Regarding the modelling environment obtained from the
DSL definition, metaBup and EuGENia Live generate exter-
nal modelling environments for Eclipse, MLCBD, andMud-
dles enable the tools they use to draw examples as modelling
environments, and FlexiSketch and FME support modelling
inside them.

We believe that creating a dedicated meta-model and
modelling environment atop a meta-modelling framework
has several benefits. First, a modelling environment pro-
vides customized forms to create and edit objects of the
different meta-model types, with appropriate fields for the
object attributes and facilities for their type checking. Instead,
attribute values must be specified via tags in drawing tools
like Visio and yED, and there is no conformance or type
checking. Second, the created models can be manipulated
using standard model management languages for model
transformation or code generation.

9.3.6 Advanced recognition

Some of the analysed tools can recognize advanced graphical
aspects (i.e. beyond the identification of nodes and edges) in
the provided examples. Muddles identifies spatial relation-
ships, like proximity or overlapping. Similar to our approach,
overlapping is recognized based on the bounding box of ele-
ments, so overlapping of shapes like triangles or circles is
only approximated. Spatial relationships are not reified in
its internal meta-model, and they are not enforced when
modelling. FlexiSketch is the only analysed tool that sup-
ports sketching, but it does not provide spatial relationship
recognition. Among the approaches that generate a dedicated
environment, metaBup is the only one able to identify spa-
tial relationships between elements and enforce them in the
generated modelling environments.

9.3.7 Comparison based on the running example

We have used the tools from Table 4 that are publicly
available, to develop the DSL of our running example. In
particular, we were able to use FlexiSketch and FME. Mud-
dles is also available, but as modelling occurs within yED,
the resulting editor would look like our fragments (see, e.g.
Fig. 14).

Figure 31 shows the running example DSL built with
FlexiSketch. The tool works on mobile devices and Android
tablets. The node icons can be both images and hand-made
sketches, thoughwe opted for the latter to avoid transparency
issues. The first time a node is created, it can be assigned a
type name. Nodes can be connected using edges with differ-
ent styles. While we have emulated containment of devices
inside the home, overlapping of the modem and the house,

and adjacency of ports and the router, these spatial relation-
ships do not have any meaning because the tool does not
interpret them. Instead, it is necessary to provide explicit
edges. We could not provide information of edge cardinali-
ties, but edge labels are supported.Attributes can be emulated
through plain text annotations with no name and no declared
type.

Figure 32 shows how the running example DSL looks like
in FME. This tool permits importing example drawings from
PowerPoint files or directly drawing example models in the
tool. Then, the user can select manually which shapes in the
models should become concepts of themeta-model. This step
is similar in FlexiSketch. Concepts can be enriched with full-
fledged attributes of a set of predefineddata types, be declared
abstract, or inherit from other concepts. Edges in examples
can also be lifted to meta-model associations, and define
cardinalities. Similar to FlexiSketch, the tool does neither
support nor recognize spatial relationships, which need to
be specified in models using edges. Hence, although Fig. 32
shows devices inside the home, a modem overlapping the
house, and ports adjacent to the router, these relationships do
not have any impact on semantics.

In summary, FME is able to import examples from Pow-
erPoint, similar to our approach. Both FME and FlexiSketch
support bottom-up meta-modelling, though it is not auto-

Fig. 31 Running example DSL in FlexiSketch

Fig. 32 Running example DSL in FME

123

An example is worth a thousand words: creating graphical modelling environments by example 989

matic, but the modelling expert must select manually the
model elements to be lifted to the meta-model, and configure
attributes and cardinalities by hand. Instead, our approach
derives a meta-model automatically upon the provision of
new examples. Hence, the burden of the modelling expert is
lower in our case. Moreover, deriving the meta-model auto-
matically prevents errors derived from forgetting assigning
types to model elements. According to [58], this is an issue
in flexible modelling approaches that manually construct the
meta-model. None of these two tools generate an explicit
meta-model, and the resulting editor is embedded in the tool
itself. In contrast, we produce an explicit meta-model and
a separated modelling environment. This results in a cus-
tomized environment for the end user, which is not mixed
with meta-modelling functionalities. As our environment is
based on EMF, it can be combined with model management
tools of the rich EMF ecosystem. Finally, neither FlexiSketch
nor FME support spatial relationships, a salient feature of our
approach. Instead, these need to be emulated using edges.

9.4 Summary

Altogether, our approach is novel as it enables the creation
of graphical DSL editors based on drawings produced by
domain experts, automatically generating a meta-model and
a dedicated modelling environment. With respect to existing
flexible modelling tools (see Table 4), it has advantages like
recognition of spatial relationships, reification of those in the
meta-model, and explicit generation of a meta-model and
a custom graphical modelling environment. This approach
helps in transitioning from informal modelling in a diagram-
matic tool, to formal modelling in a modelling tool, where
models are amenable to automated manipulation.

10 Conclusions and future work

This paper has presented our approach to the example-
based generation of graphical modelling environments. In
our approach, domain experts contributewith examples of the
DSL built with diagramming tools, and our system derives
a meta-model and a graphical modelling environment, cur-
rently based on Sirius. The paper has shown the advantages
of the approach, like: (i) there is no need to code or create
editor specifications; (ii) it lowers the barrier to build graph-
ical environments, which is a highly technical task requiring
expert knowledge; (iii) it bridges the gap between draw-
ing tools (likely used by domain experts in early phases of
the development) and modelling tools (useful for automated

model manipulation); and (iv) drawings can be transformed
into models and be manipulated using MDE technology
(transformations and code generators). We have conducted a
user study that shows positive results and encourages further
research on this approach to DSL creation.

In the future, we plan to facilitate the validation of the
final editor by the domain experts by integrating our mmX-

tens language [36], which is able to generate examplemodels
satisfying certain properties of interest using constraint solv-
ing. We also plan to improve our support for the editor
evolution. For instance, a common scenario might be the
manual modification of the Sirius editor model. To avoid
overriding thesemanual changes, wemay employ techniques
similar to [32], where manual changes are described as a
program that is reapplied when re-generation occurs. Simi-
larly, we also plan to provide support for meta-model/model
co-evolution. Another interesting aspect is to integratemech-
anisms for assessing the quality of the created DSL within
our process, in the style of [22,41,47], and improve the tool
capabilities regarding concrete syntax. A particular challeng-
ing aspect is the inference of conditional styles. We will also
improve the bottom-up meta-model construction process by
providing support for enumerations and investigating possi-
ble effects of fragment ordering.

Regarding the provision of fragments, we currently do not
maintain traceability between the graphical and textual frag-
ments. If the domain expert changes a graphical fragment,
this should be imported again into the system, and it would
be considered as a new fragment. Hence, we plan to add
traceability support, as well as the possibility to update or
roll back some previously introduced example.

Acknowledgements Work funded by the Spanish Ministry of Econ-
omy and Competitivity (TIN2014-52129-R), and the R&D programme
of the Madrid Region (S2013/ICE-3006).

Appendix 1

This appendix contains the following documents provided
to the participants in our evaluation: formulation of the
expected DSL requirements, instructions of the experiment,
and questionnaires. Questionnaire 1 was answered by all the
participants, in order to convey their opinions on the first ver-
sion of the generated modelling tool. Questionnaire 2 was
only answered by the participants that opted for generating a
second version of the modelling tool. Mandatory questions
are marked with an asterisk.

123

990 J. J. López-Fernández et al.

Formulation of DSL requirements:

Next, we describe a domain for which we want to create a graph-
ical modelling language. For this purpose, we only need you to
provide some drawings with the appearance you would like to
have in your models.
Description: We want to model domestic networks in which a Ser-
vice Provider (ISP) provides Internet access to its clients by means
of local networks. Each client hosts a domestic net, connected to
a unique local network via a modem. Each client can also have a
router (which can be enabled for WiFi connections) with a number
of ports to which different devices can be connected. The router
has access to Internet through the modem.
Devices are connected to the net in a different way, depending
on whether they are wireless or not. Printers, desktop computers,
servers and fixed phones are connected through the router. They
need to be plugged to one of the router ports, but the fixed phone
which is directly connected to the router. On the other hand, wire-
less devices (laptops, Smart TVs and smartphones) can only access
Internet through a WiFi network, which will be the one connected
to the router directly.

Instructions:

You can provide as many drawings as you deem necessary, each
one illustrating domain examples according to your own criterion.
They do not mandatorily have to be complete examples, but they
can focus on specific aspects of the problem domain. For instance,
you can make a diagram with just some local networks connected
to Internet, another with the configuration of a WiFi network, etc.
The drawings do not need to include unnecessary elements for
the aspect you want to model, while you should make as many
drawings as necessary to illustrate all aspects of the domain. Each
element in the palette should be used at least once in some drawing.
When making the drawings, please remind that the following
properties are meaningful. (i) If you want to establish several
kinds of connections between two objects, you should use differ-
ent line styles. (ii) The relative position of objects is meaningful.
This means that drawings can make use of containment, adja-
cency and overlapping of objects. (iii) You can add information
to objects by attaching them labels with the following format:
〈 f ield − name〉 = 〈 f ield − value〉.

Questionnaire 1:

Q1 Indicate your age * :
Q2 Indicate your gender * :

◦ Male◦ Female

Q3 Indicate your current workplace * :

◦ University◦ Information technology company◦ Different sector◦ Unemployed

Q4 Does the synthesized modelling environment meet the graph-
ical syntax you envisioned when providing the examples? *
Not at all ◦1 ◦2 ◦3 ◦4 ◦5 Very much

Q5 Which aspects of the graphical language are not correctly
captured by the modelling environment?

Q6 Which aspects of the graphical language are best captured
by the modelling environment?

Q7 How easy is it to use the modelling environment? *
Very difficult ◦1 ◦2 ◦3 ◦4 ◦5 Very easy

Q8 Which aspects of the environment would you improve?
Q9 Which aspects of the environment do you like the most?

Q10 Which is your higher level of expertise with modelling? *

◦ I have developed both meta-models and graphical
domain-specific languages.◦ I have developed meta-models, but not graphical domain-
specific languages.◦ I have used domain-specific languages like UML or
BPMN.◦ I have never used or developed models or meta-models.

Answer the following questions only if you selected one of the first
two choices in the previous question (Q10).

Q11 Is the meta-model generated from the examples similar to the
one you would have built by hand? *
Not at all ◦1 ◦2 ◦3 ◦4 ◦5 Very much

Q12 Which aspects does the meta-model not capture correctly? *
Q13 Which approach would you prefer to build the meta-model?

*

◦ I would prefer designing the meta-model myself.◦ I would prefer using examples, and then being able to
modify the meta-model manually.◦ I would prefer using examples, and I do not think neces-
sary to modify the meta-model manually.

Questionnaire 2:

Q1 Has the editor quality been improved with respect to the first
iteration? Not at all ◦1 ◦2 ◦3 ◦4 ◦5 Very much

Q2 Which aspects of the language are still not reflected in the
editor?

◦ None◦ Other:

123

An example is worth a thousand words: creating graphical modelling environments by example 991

Appendix 2

Table 5 shows the changes made by the modelling expert on
the fragments provided by the participants in our evaluation
(cf. Sect. 7). The columns contain the participant identifiers,
the number of fragments, the editing actions, and the time
employed to commit them in seconds.

Table 5 Manual changesmadeby themodelling expert to the fragments
provided in the evaluation, and time taken

Part. #Fr. Edits made by modelling expert Time (s)

1 1 Rename references 19

2 1 Rename references 27

3 1 Rename references 44

Delete references ignoring the
invisible bounding box of objects
(see Fig. 24)

Fix inconsistent spatial relations

Change the type of an attribute
from String to Integer; this
attribute had been assigned the
value ’n’ to indicate a number in
the fragment

4 2 Rename references 49

Rename auto-generated superclass

5 2 Rename references 12

6 2 Rename references 70

7 2 Rename references 78

Adjust containment spatial
relations (for CableModem)

8 3 Rename references 66

Move object misplaced in the
graphical sketch

9 3 Rename references 128

Delete references ignoring the
invisible bounding box of objects
(see Fig. 24)

Move object misplaced in the
graphical sketch

Adjust containment spatial
relations (for CableModem and
Router)

10 4 Rename references 77

11 6 Rename references 224

Adjust containment spatial
relations

References

1. Amatriain, X., Arumí, P.: Frameworks generate domain-specific
languages: a case study in the multimedia domain. IEEE Trans.
Softw. Eng. 37(4), 544–558 (2011)

2. Avazpour, I., Grundy, J., Grunske, L.: Specifying model transfor-
mations by direct manipulation using concrete visual notations and

interactive recommendations. J. Vis. Lang. Comput. 28, 195–211
(2015)

3. Bak, K., Zayan, D., Czarnecki, K., Antkiewicz, M., Diskin, Z.,
Wasowski, A., Rayside, D.: Example-driven modeling: model =
abstractions + examples. In: IEEE/ACM ICSE, pp. 1273–1276
(2013)

4. Baki, I., Sahraoui, H.A.: Multi-step learning and adaptive search
for learning complex model transformations from examples. ACM
Trans. Softw. Eng. Methodol. 25(3), 20 (2016)

5. Balogh, Z., Varró, D.: Model transformation by example using
inductive logic programming. Softw. Syst. Model. 8(3), 347–364
(2009)

6. Beck, K.: Test Driven Development: by Example. Addison-Wesley
Professional, Boston (2003)

7. Bottoni, P., Fish, A.: Coloured Euler diagrams: a tool for visualiz-
ing dynamic systems and structured information. In: Proceedings
Diagrams, volume 6170 of Lecture Notes in Computer Science,
pp. 39–53. Springer (2010)

8. Bottoni, P., Grau, A.: A suite of metamodels as a basis for a classi-
fication of visual languages. In: IEEE Computer Society VL/HCC,
pp. 83–90 (2004)

9. Cho ,H., Gray, J.G., Syriani, E.: Creating visual domain-
specific modeling languages from end-user demonstration. In:
MiSE@ICSE, pp. 22–28 (2012)

10. deLara, J., Vangheluwe,H.:AToM3: a tool formulti-formalismand
meta-modelling. In: FASE, volume 2306 of LNCS, pp. 174–188.
Springer (2002)

11. Feder, J.: Plex languages. Inf. Sci. 3(3), 225–241 (1971)
12. Garmendia, A., Pescador, A., Guerra, E., de Lara, J.: Towards the

generation of graphical modelling environments aided by patterns.
In: SLATE, volume 563 of CCIS, pp. 160–168. Springer (2015)

13. Ghannem, A., El-Boussaidi, G., Kessentini, M.: Model refactoring
using examples: a search-based approach. J. Softw. Evol. Process
26(7), 692–713 (2014)

14. Golra, F.R., Beugnard, A., Dagnat, F., Guerin, S., Guychard, C.:
Using freemodeling as an agilemethod for developing domain spe-
cific modeling languages. In: MoDELS, pp. 24–34. ACM (2016)

15. Graphiti. https://eclipse.org/graphiti/
16. Gronback, R.C.: Eclipse Modeling Project: A Domain-Specific

Language (DSL) Toolkit. Addison-Wesley Professional, Boston
(2009)

17. Grundy, J.C., Hosking, J.G., Li, K.N., Ali, N.M., Huh, J., Li, R.L.:
Generating domain-specific visual language tools from abstract
visual specifications. IEEE Trans. Softw. Eng. 39(4), 487–515
(2013)

18. Hili, N.: A metamodeling framework for promoting flexibility and
creativity over strict model conformance. In: FlexMDE @ MoD-
ELS, volume 1694 of CEUR Workshop Proceedings, pp. 2–11.
CEUR-WS.org (2016)

19. Hutchinson, J., Whittle, J., Rouncefield, M.: Model-driven engi-
neering practices in industry: social, organizational andmanagerial
factors that lead to success or failure. Sci. Comput. Program. 89,
144–161 (2014)

20. Jiménez-Pastor, A., Garmendia, A., de Lara, J.: Scalable model
exploration formodel-driven engineering. J. Syst. Softw. 132, 204–
225 (2017)

21. Jouault, F., Allilaire, F., Bézivin, J., Kurtev, I.: ATL: Amodel trans-
formation tool. Sci. Comp. Programm. 72(1), 31–39 (2008)

22. Kahraman, G., Bilgen, S.: A framework for qualitative assessment
of domain-specific languages. Softw. Syst. Model. 14(4), 1505–
1526 (2015)

23. Kang, K.C., Cohen, S.G., Hess, J.A., Novak, W.E., Peterson, A.S.:
Feature-oriented domain analysis (foda) feasibility study. In: Tech-
nical Report, Carnegie-Mellon University Software Engineering
Institute (1990)

123

https://eclipse.org/graphiti/

992 J. J. López-Fernández et al.

24. Kappel, G., Langer, P., Retschitzegger, W., Schwinger, W., Wim-
mer, M.: Model transformation by-example: a survey of the first
wave. In: ConceptualModelling and Its Theo. Foundations, volume
7260 of LNCS, pp. 197–215. Springer (2012)

25. Kelly, S., Pohjonen, R.: Worst practices for domain-specific mod-
eling. IEEE Softw. 26(4), 22–29 (2009)

26. Kelly, S., Tolvanen, J.: Domain-SpecificModeling—Enabling Full
Code Generation. Wiley, Hoboken (2008)

27. Kessentini, M., Sahraoui, H.A., Boukadoum, M., Benomar, O.:
Search-based model transformation by example. Softw. Syst.
Model. 11(2), 209–226 (2012)

28. Ko, A.J., Abraham, R., Beckwith, L., Blackwell, A.F., Burnett,
M.M., Erwig,M., Scaffidi, C., Lawrance, J., Lieberman, H.,Myers,
B.A.,Rosson,M.B.,Rothermel,G., Shaw,M.,Wiedenbeck, S.: The
state of the art in end-user software engineering. ACM Comput.
Surv. 43(3), 21 (2011)

29. Ko, A.J., LaToza, T.D., Burnett, M.M.: A practical guide to con-
trolled experiments of software engineering tools with human
participants. Empir. Softw. Eng. 20(1), 110–141 (2015)

30. Kolovos, D.S., García-Domínguez, A., Rose, L.M., Paige, R.F.:
Eugenia: towards disciplined and automated development of gmf-
based graphical model editors. Softw. Syst. Model. 16(1), 229–255
(2017)

31. Kolovos, D.S.,Matragkas, N.D., Rodriguez, H.H., Paige, R.F.: Pro-
grammaticmuddlemanagement. In:XM@MoDELS, volume1089
of CEURWorkshop Proceedings, pp. 2–10. CEUR-WS.org (2013)

32. Kolovos,D.S.,Rose,L.M., binAbid, S., Paige,R.F., Polack, F.A.C.,
Botterweck, G.: Taming EMF and GMF using model transforma-
tion. In: MoDELS Part I, volume 6394 of LNCS, pp. 211–225.
Springer (2010)

33. Kosar, T., Bohra, S., Mernik, M.: Domain-specific languages: a
systematic mapping study. Inf. Softw. Technol. 71, 77–91 (2016)

34. López-Fernández, J.J., Cuadrado, J.S., Guerra, E., de Lara, J.:
Example-driven meta-model development. Softw. Syst. Model.
14(4), 1323–1347 (2015)

35. López-Fernández, J.J., Garmendia, A., Guerra, E., de Lara, J.:
Example-based generation of graphical modelling environments.
In: ECMFA, volume 9764 of LNCS, pp. 101–117. Springer (2016)

36. López-Fernández, J.J., Guerra, E., de Lara, J.: Example-based val-
idation of domain-specific visual languages. In: SLE, pp. 101–112.
ACM (2015)

37. López-Fernández, J.J., Guerra, E., de Lara, J.: Combining unit and
specification-based testing for meta-model validation and verifica-
tion. Inf. Syst. 62, 104–135 (2016)

38. Mangano ,N., Baker, A., Dempsey, M., Navarro, E.O., van der
Hoek, A.: Software design sketching with calico. In: ASE, pp. 23–
32. ACM (2010)

39. Mernik, M., Heering, J., Sloane, A.M.: When and how to develop
domain-specific languages. ACM Comput. Surv. 37(4), 316–344
(2005)

40. Microsoft. https://msdn.microsoft.com/en-us/library/aa937723
(v=vs.113).aspx (2017)

41. Moody, D.L.: The “physics” of notations: toward a scientific basis
for constructing visual notations in software engineering. IEEE
Trans. Softw. Eng. 35(6), 756–779 (2009)

42. Pescador, A., de Lara, J.: Dsl-maps: from requirements to design
of domain-specific languages. In: ASE, pp. 438–443. ACM (2016)

43. Rensink, A., Dotor, A., Ermel, C., Jurack, S., Kniemeyer, O.,
de Lara, J., Maier, S., Staijen, T., Zündorf, A.: Ludo: a case study
for graph transformation tools. In: Proc. AGTIVE, volume 5088 of
Lecture Notes in Computer Science, pp. 49–513. Springer (2007)

44. Rosa, M.D., Fish, A., Fuccella, V., Saleh, R., Swartwood, S.,
Costagliola, G.: A toolkit for knot diagram sketching, encoding
and re-generation. In: Proceedings DMS, pp. 16–25. KSI Research
Inc./Knowledge Systems Institute Graduate School (2016)

45. Rose, L.M., Kolovos, D.S., Paige, R.F.: Eugenia live: a flexible
graphical modelling tool. In: XM @ MoDELS, pp. 15–20. ACM
(2012)

46. Sangiorgi, U.B., Barbosa, S.D.: SKETCH: modeling using free-
hand drawing in eclipse graphical editors. In: FlexiTools @ ICSE
(2010)

47. Semeráth, O., Barta, A., Horváth, A., Szatmári, Z., Varró, D.: For-
mal validation of domain-specific languages with derived features
and well-formedness constraints. In press, Software and System
Modeling (2016)

48. Sirius. https://eclipse.org/sirius/
49. Sobernig, S., Hoisl, B., Strembeck, M.: Extracting reusable design

decisions for uml-based domain-specific languages: a multi-
method study. J. Syst. Softw. 113, 140–172 (2016)

50. Sottet, J., Biri, N.: JSMF: a javascript flexible modelling frame-
work. In: FlexMDE@MoDELS, volume1694ofCEURWorkshop
Proceedings, pp. 42–51. CEUR-WS.org (2016)

51. Stapleton, G., Howse, J., Taylor, J., Thompson, S.J.: The expres-
siveness of spider diagrams. J. Log. Comput. 14(6), 857–880
(2004)

52. Stapleton, G., Jamnik,M., Shimojima, A.:Whatmakes an effective
representation of information: a formal account of observational
advantages. J. Logic Lang. Inf. 26(2), 143–177 (2017)

53. Stapleton, G., Thompson, S.J., Fish, A., Howse, J., Taylor, J.: A
new language for the visualization of logic and reasoning. In: Pro-
ceedings DMS, pp. 287–292. Knowledge Systems Institute (2005)

54. Steinberg, D., Budinsky, F., Paternostro, M., Merks, E.: EMF:
Eclipse Modeling Framework, 2nd edn. Addison-Wesley Profes-
sional, Boston (2008)

55. Sun, Y., Gray, J., White, J.: A demonstration-based model transfor-
mation approach to automatemodel scalability. Softw. Syst.Model.
14(3), 1245–1271 (2015)

56. Wuest, D., Seyff, N., Glinz, M.: Flexisketch team: collaborative
sketching and notation creation on the fly. ICSE 2, 685–688 (2015)

57. Yoder, C., Schrag, M.: Nassi-Shneiderman charts: an alternative
to flowcharts for design. In: ACM SIGSOFT/BIGMETRICS Soft-
ware and Assurance, Workshop, , pp. 386–393 (1978)

58. Zolotas, A., Clariso, R., Matragkas, N., Kolovos, D.S., Paige,
R.F.: Constraint programming for type inference in flexible model-
driven engineering. In: Computer Languages, Systems & Struc-
tures, to Appear (2017)

59. Zolotas, A., Kolovos, D.S., Matragkas, N.D. , Paige, R.F.: Assign-
ing semantics to graphical concrete syntaxes. In: XM@MoDELS,
volume 1239 of CEURWorkshop Proceedings, pp. 12–21. CEUR-
WS.org (2014)

Jesús J. López-Fernández is
a Ph.D. in Computer Science
by the Universidad Autónoma
in Madrid, and holds a master’s
degree in International Business
Administration by the University
of Almería. Currently employed
as a Senior Innovation Consul-
tant in the private sector, he
has formerly developed publicly
funded research work for the
“Information Systems” (2009–
2012) and “Modelling and Soft-
ware Engineering” (2012–2016)
groups, having participated in

several research and consultancy projects.

123

https://msdn.microsoft.com/en-us/library/aa937723(v=vs.113).aspx
https://msdn.microsoft.com/en-us/library/aa937723(v=vs.113).aspx
https://eclipse.org/sirius/

An example is worth a thousand words: creating graphical modelling environments by example 993

Antonio Garmendia is a Ph.D.
student, member of the “Mod-
elling and Software Engineer-
ing” research group (http://www.
miso.es) at UAM. He holds
a MSc in Computer Science
from the Universidad Autónoma
in Madrid. His research inter-
ests are in scalability in Model-
Driven Engineering (MDE) and
the construction of graphical
modelling environments. He has
participated in the MONDO EU
project on scalability in MDE.

Esther Guerra is associate pro-
fessor at the Computer Science
Department of the Universidad
Autónoma in Madrid, and an
active member of the “Mod-
elling and Software Engineer-
ing” research group (http://www.
miso.es). She has been a doc-
toral researcher at the Institute
of Theoretical Computer Science
(TU Berlin) and the University
of Rome “Sapienza”, and a vis-
iting professor at the University
of York (UK) and the Univer-
sity of Toronto (Canada). She is

interested in Model-Driven Engineering, primarily in model transfor-
mations, model transformation testing, meta-modelling and domain-
specific languages.

Juan de Lara is an associate
professor at the Computer Sci-
enceDepartment of theUniversi-
dad Autónoma in Madrid, where
he leads the “Modelling and
Software Engineering” research
group (http://www.miso.es). He
holds a PhD degree in Computer
Science, and his research inter-
ests includemeta-modelling,multi-
level modelling, domain-specific
languages and model transfor-
mation. He has been a post-
doctoral researcher at the MSDL
lab (McGill University), the

institute of theoretical computer science (TU Berlin), the department
of computer science of the University of Rome “Sapienza”, and a vis-
iting professor at the University of York (UK) and the University of
Toronto (Canada).

123

http://www.miso.es
http://www.miso.es
http://www.miso.es
http://www.miso.es

	An example is worth a thousand words: Creating graphical modelling environments by example
	Abstract
	1 Introduction
	2 Overview and running example
	2.1 Running example

	3 Example-based meta-modelling
	4 Example-based concrete syntax inference
	4.1 Detection of icons and line styles
	4.2 Detection of spatial relationships
	4.3 Resolution of conflicts in spatial relationships
	4.3.1 Avoiding redundancy
	4.3.2 Multiple spatial relationships
	4.3.3 Optional spatial relationships

	5 Generation of graphical modelling environments
	6 Tool support
	6.1 Tool support for the generation process
	6.2 Extension mechanisms

	7 Evaluation
	7.1 Evaluation setup
	7.2 Evaluation results
	7.2.1 Diversity of fragments
	7.2.2 RQ1: How useful is our approach to create graphical environments?
	7.2.3 RQ2: How well do the generated environments reflect the devised DSLs?
	7.2.4 RQ3: How is the quality of the derived domain meta-models perceived?

	7.3 Threats to validity
	7.4 Discussion

	8 Gallery of DSLs
	8.1 Connection-based languages
	8.2 Spatially defined languages
	8.3 Hybrid languages
	8.4 Strengths and limitations of the approach

	9 Related work
	9.1 DSL requirements
	9.2 Flexible modelling
	9.3 Comparison of flexible tools to build graphical DSLs
	9.3.1 Approach
	9.3.2 Process
	9.3.3 DSL examples
	9.3.4 DSL meta-model
	9.3.5 Modelling environment
	9.3.6 Advanced recognition
	9.3.7 Comparison based on the running example

	9.4 Summary

	10 Conclusions and future work
	Acknowledgements
	Appendix 1
	Appendix 2
	References

