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Abstract Cloning is a convenient mechanism to enable
reuse across and within software artifacts. On the downside,
it is also a practice related to severe long-term maintainabil-
ity impediments, thus generating a need to identify clones
in affected artifacts. A large variety of clone detection tech-
niques have been proposed for programming and modeling
languages; yet no specific ones have emerged for model
transformation languages. In this paper, we explore clone
detection for rule-based model transformation languages,
including graph-based ones, such as Henshin, and hybrid
ones, such as ATL. We introduce use cases for such tech-
niques in the context of constructive and analytical quality
assurance, and a set of key requirements we derived from
these use cases. To address these requirements, we describe
our customization of existing model clone detection tech-
niques: We consider eScan, an a-priori-based technique,
ConQAT, a heuristic technique, and a hybrid technique
based on a combination of eScan and ConQAT. We compare
these techniques in a comprehensive experimental evalu-
ation, based on three realistic Henshin rule sets, and a
comprehensive body of examples from the ATL transfor-
mation zoo. Our results indicate that our customization of
ConQAT enables the efficient detection of the considered
clones, without sacrificing accuracy. With our contributions,
we present the first evidence on the usefulness of model
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clone detection for the quality assurance of model transfor-
mations and pave the way for future research efforts at the
intersection of model clone detection and model transforma-
tion.
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1 Introduction

Model transformation is of paramount importance to Model-
Driven Engineering [1]. Like all software artifacts, model
transformation systems undergo a life cycle including at
least two main phases: an initial creation phase, followed
by a long-term maintenance phase.

Cloning, the development of model transformations in the
copy–paste–modify paradigm, provides key benefits for the
creation phase; it is a fast, easy and universally applicable
practice. On the downside, cloning presents severe maintain-
ability challenges. For instance, once a bug is found, many
affected transformation rules may have to be updated cor-
respondingly, a tedious and error-prone process. As mainte-
nance tasks are estimated to account for 60% of all software
costs [2], it seems advisable to address this trade-off explic-
itly.

The drawbacks of cloning are well known from research
on the general issue of software clones. Yet, despite a sub-
stantial body of research [3], there is no universally accepted
directive for how to proceed with clones. In the semi-
nal work by Fowler [4], clones are deemed one particular
kind of “bad smell.” In this view, a refactoring to a bet-
ter suited abstraction is generally recommended. Empirical
studies lead to a more nuanced view: Kim et al. [5] iden-
tify different types of clones, some of them warranting a
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refactoring towards suitable abstractions, others rendering
such efforts clearly unjustified. Still, despite controversy on
the question of how to proceed with clones, there seems
to be a consensus that software clones “should at least be
detected” [6].

While numerous automated clone detection techniques
for programming and modeling languages have been pro-
posed [7], no specific ones have emerged for model trans-
formation languages. The lack of such techniques is partic-
ularly surprising since existing model transformations may
be affected heavily by cloning: Unlike in the case of most
programming languages, reuse mechanisms for model trans-
formations are just starting to become available [8]. Clone
detection can be an enabling technology for the evolution of
existing transformation programs towards these reuse mech-
anisms. But the variety of potential use cases for clone
detection are even broader. It includes the quality assessment
of existing transformations, performance optimizations and
even the identification of new design patterns. One contribu-
tion of this paper is an overview of such use cases.

The combination of different model transformation
paradigms and use cases leads to a large design space for
clone detection techniques. In this paper, we approach this
design space from a specific angle: We focus on rule-
based model transformation languages; in particular, we
consider two language paradigms where rules play a key
role [9]: graph-based languages, in which transformations
are expressed in terms of graph rewriting rules, and hybrid
languages, in which declarative rules are combined with
imperative language constructs. This selection allows us to
study cloning in two main paradigms of model transforma-
tions [9,10] which are related by a common denominator,
the notion of rules.
Example. Consider three in-place model transformation
rules expressed in a graph-based language. The rules, shown
in Fig. 1, specify variants of the move method refactor-
ing. Rule A describes the basic relocation of a method
between two classes related through a field. Rule B addi-
tionally creates a ”wrapper“ method as a delegate for this
method. Rule C adds an annotation to mark the wrapper as
deprecated.

Such rule sets are often created by copying a seed rule
and modifying the copies. If a rule set contains many
copied rules, maintaining it may be daunting and error-
prone. Therefore, it is advisable to provide dedicated support
for the copying and editing of such rules. For instance, the
rules could be unified using a reuse mechanism provided
by the model transformation language. Alternatively, the
consistent editing of the rules could be facilitated by tool
support. In both cases, a prerequisite for an improved man-
agement of clones is their detection.
Contributions. This paper extends our recent work on
clone detection for graph-based languages [12] in two main
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Fig. 1 Rules affected by cloning (from [11])

directions. First, in addition to graph-based languages, we
consider hybrid ones. Hybrid languages are a particularly
interesting complementary case where the notion of rule is
of equivalent importance, but expresses a slightly different
concept. Specifically, graph-based rules specify rewriting
patterns, whereas the rules in hybrid languages can be
seen as specifications of mappings between meta-models.
The former concept lends itself to application in endoge-
nous transformation scenarios; the latter is suitable for use
in exogenous scenarios. Both paradigms are increasingly
applied in industrial and academic contexts [13]. Second,
we provide a considerably extended evaluation. To evalu-
ate clone detection approaches for graph-based rules in a
large-scale setting, we consider an additional scenario with
a rule set of 1404 rules. For evaluation of the hybrid ones,
we performed an in-depth analysis of rules from the ATL
zoo,1 comprising 2566 rules in total.

In this work, we make the following contributions:

• We discuss use cases of clone detection for model trans-
formation languages. The discussion is informed by

1 https://www.eclipse.org/atl/atlTransformations/.
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recent developments in research on model transforma-
tions and software clones.

• Based on these use cases, we identify five key require-
ments for a clone detection technique for rule-based
model transformations.

• To address these requirements, we introduce a set of
adaptations of existing model clone detection tech-
niques. We consider eScan, an a-priori-based technique,
ConQAT, a heuristic one, and a hybrid composed of
eSan and ConQAT.
Our adaptations are tailored to the graph-based language
Henshin [14,15] and the hybrid language ATL [16].

• We provide an extensive experimental evaluation based
on three realistic graph-based transformations and a
body of example transformations from the ATL trans-
formation zoo.

An established taxonomy of software clones [3] dis-
tinguishes four types of clones based on their level of
similarity: Type I clones are identical fragments; Type II are
almost identical except for naming. Type III or near-miss
clones are identical except for subtle differences, such as
the presence or absence of certain elements, and Type IV
or semantic clones represent duplicate increments of func-
tionality where the duplication is not directly reflected on
the syntactic level. Since Type I and II clones are routinely
produced when transformation systems are developed in a
copy-and-paste manner, this work focuses on these types of
clones.

The rationale behind the selection of eScan and ConQAT
is to compare an a-priori-based and a heuristic approach
to the detection of Type I and II clones. A key finding of
our evaluation is that the accuracy of ConQAT was nearly
optimal when using the results of eScan and ScanQAT as a
ground truth. At the same time, the heuristic approach was
the only one scaling up to complete realistic rule sets, rather
than just selected subsets. With this finding, we provide a
first insight into the application of model clone detection
to model transformations. In the future, we aim to study
the case of Type III clones using the SIMONE clone detec-
tor [17], which has also been shown to produce excellent
results for Type I and II clones. The detection of Type IV
clones is another interesting research avenue, eliciting the
question of how semantically equivalent model transforma-
tions can be identified.

The rest of this paper is structured as follows. In Sect. 2,
we outline the identified use cases. In Sect. 3, we present the
necessary preliminaries. In Sect. 4, we propose requirements
derived from the use cases. We discuss our customization
of existing techniques in Sect. 5 and our evaluation of this
approach in Sect. 6. After discussing related work in Sect. 7,
we conclude in Sect. 8 and suggest future research directions
in Sect. 9.

2 Use cases

In this section, we introduce potential use cases. In each
case, we pair a description of the use case with an account
of the research state of the art.

Clone refactoring. The replacement of clones with a
suitable reuse mechanism is a typical refactoring pro-
cess [4]. Its outcome is a semantically equivalent, yet syn-
tactically refined representation of the input artifacts. While
the strategies used in specific refactorings may vary, they
share the common requirement that a target reuse mecha-
nism is assumed. In the case of model transformations, reuse
approaches such as rule inheritance [18], refinement [19]
or variability-based rules [20] have emerged recently and
are now available to developers. For instance, the rules in
Fig. 1 can be expressed using rule refinement: To this end,
rule A becomes a basis rule, while the individual parts of
rules B and C are captured via two subrules. Conversely, the
same rules can be represented by one variability-based rule,
augmenting rule C with variability annotations to denote
individual parts of rules B and C. Usually, such refactor-
ings are performed manually. In legacy transformations with
hundreds of rules, such a task is daunting and error-prone.
An automated clone detection technique is an important pre-
requisite for automating this process.

Clone management. A suitable clone refactoring may
not always be available. Even if the language provides a
reuse mechanism, this mechanism may not match the scope
or granularity of affected clones. For instance, an external
reuse mechanism [8] does not help avoiding duplications in
the same rule set, such as that shown in Fig. 1. We explore
this issue further in Sect. 4. Furthermore, a refactoring may
not always be desirable: It has been observed that expert
developers create software clones intentionally with spe-
cific maintainability-related benefits in mind [6]. Despite
these benefits, the existing drawbacks may remain. In these
situations, the remaining maintainability drawbacks can be
mitigated by tool support: A recent idea is to manage clones,
using a system to monitor all clones constantly and to update
affected artifacts automatically when one of them is edited
[21,22].

Assessing specifications and languages. Clone detec-
tion can be used during the assessment of transformation
specifications, for instance, in a quality assurance pro-
cess [23] or to evaluate solutions in a student assign-
ment. Furthermore, the number of detected clones might
be an indicator that the reuse mechanisms of the employed
model transformation language are not adequate or not used
enough. Finally, clone detection might be useful to improve
the detection of design-pattern and anti-pattern instances
[24,25]: In contrast to model query engines, which generally
find exact matches of a particular pattern, clone detection
can identify common subpatterns as well. The detection of
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frequent patterns in transformation specifications can even
lead to the identification of new design patterns and anti-
patterns. In contrast to object-oriented programming lan-
guages, where a catalog of fundamentally accepted patterns
is available, the identification of transformation patterns is
a recent idea [26]. Clone detection may contribute to this
emerging branch of research by supporting the discovery of
new design patterns.

Usability improvements. The level of support offered
by most transformation editors to developers is below that
offered by programming language IDEs. For instance, none
of these editors benefits from advanced auto-complete func-
tionality. Detecting clones introduced during an editing step
could help providing such functionality by asking the devel-
oper if the reuse of an existing element is preferred. The
clone detection algorithm would run in the background,
much like the Java compiler runs in the background of
Eclipse.

Performance improvements. While the impact of soft-
ware clones on maintainability has been studied intensively,
maintainability is by no means the only quality concern
affected by cloning. Creating a large set of mutually simi-
lar rules may also entail a substantial computational effort
during the application or analysis of these rules. As a result,
cloning may give rise to longer execution times or even ren-
der entire transformations infeasible. Blouin et al. report on
a case where a rule set of 250 similar rules was too large
for execution [27]. While most existing performance opti-
mizations for model transformations focus on accelerating
the application of individual rules, clone detection might
be highly useful in improving the performance of a whole
model transformation system.

3 Preliminaries

In this section, we present formal preliminaries for clones
in rule-based model transformation languages, focusing on
graph-based and hybrid languages with rules. While we con-
sider clones in these two paradigms separately, a unifying
idea is that clones are defined as common parts of multi-
ple rules. In the graph case, this idea leads to the notion of
subrule: Common parts of multiple rules are generally self-
contained rules of their own. In the hybrid case, clones may
be rule fragments which do not form a self-contained rule.

3.1 Graph-based model transformation languages

We first present formal preliminaries for clones in graph-
based model transformation systems. To address the require-
ments identified later in this work, we extend our formaliza-
tion from [11,28] by the distinction of full and incomplete
clones, as well as scopes. We leave the notion of “graph”

unspecified, which allows us to insert a graph kind with
certain desired features. For instance, meta-model confor-
mance and attributes can be expressed using typed attributed
graphs [29].

Definition 1 (Rule) A rule r = L
le←− I

ri−→ R consists
of graphs L , I and R, called left-hand side, interface graph
and right-hand side, respectively, and two embedding mor-
phisms, le and ri . A transformation system is a set of rules.

The rules in Fig. 1 conform to this definition, representing it
in an integrated form: Elements of I are annotated with the
action preserve, elements of L \ I and R \ I with the actions
delete and create.

Our definition of clone reflects the idea that rules spec-
ify structural patterns: The left-hand side is a pattern to be
matched in the source model. The right-hand side is a pat-
tern specifying actions to derive the target model. Thus, we
define “clone” as common subpattern being present in a set
of rules. Such a subpattern is a fully formed rule itself, an
idea captured by the concept of subrules.

Definition 2 (Subrule) Given a pair of rules r0 = (L0
le0←−

I0
ri0−→ R0) and r1 = (L1

le1←− I1
ri1−→ R1) with embed-

dings lei , rii for i ∈ {0, 1}, a subrule morphism s : r0 → r1,
s = (sL , sI , sR) comprises injective morphisms sL : L0 →
L1, sI : I0 → I1 and sR : R0 → R1 s.t. (1) and (2) in
Fig. 2 commute and

(i) the intersection of sL(L0) and le1(I1) is isomorphic
to I0,

(ii) the intersection of sR(R0) and ri1(I1) is isomorphic
to I0 and

(iii) L1 − (sL(L0) − sL(le0(I0))) is a graph.

Conditions (i)–(iii) ensure that a subrule always performs
the same actions on related elements as the original rule.
For example, in Fig. 1, A is a subrule of B since A can be
injectively mapped to B and the actions on the original and
mapped elements are identical.

For simplicity, the formal treatment in this work does not
address an advanced feature of graph-based model transfor-
mation called negative application conditions (NACs, see

L0 I0 R0

L1 I1 R1

r0 =

r1 =

le0 ri0

le1 ri1

sL sI sRs (1) (2)

Fig. 2 Subrule morphism
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[30]). In a recent work [31], we show how the concept of
subrule can be extended to rules with NACs: A NAC is a
graph with a graph morphism between the left-hand side of
the rule and this graph. To define the subrule relation, the
notion of shifting a NAC over a given graph morphism [32]
is key: Each NAC of the subrule needs to have a counterpart
in the superrule that results from shifting the NAC over the
embedding morphism.

Given a set of rules, a clone is a subrule that can be
embedded into a subset of this rule set.

Definition 3 (Rule clone) Given a set R = {ri |i ∈ I } of
rules, a clone CR = (rc, C) overR consists of rule rc and set
C = {c j | j ∈ J, J ⊂ I } of subrule morphisms ci : rc → r j .
A clone CR induces a set of affected rules Raff(CR) = {r ∈
R | ∃c ∈ C : rc → r}.
In the example, any subrule of rule A is a clone over the
entire rule set {A, B, C} since it can be embedded in each of
these rules.

We discern full clones from partial clones. A full clone
is a largest subrule, that is, one not fully covered by another
clone over the same subset.

Definition 4 (Full and partial clone) A clone CR = (rc, C)
over a setR of rules is a full clone iff there is no clone C ′

R =
(r ′

c, C′) overR with a subrule mapping i : rc → r ′
c such that

i �= id. Non-full clones are called partial clones.

The full clones present in the example rules are listed in
Table 1. Clones are characterized by their size, calculated as
the total number of involved nodes and edges. In particular,
C2 represents all nodes and edges found in rule A. In addi-
tion, C1 incorporates the nodes and edges present in B, but
not in A. All subrules of A except for the complete rule are
partial clones. Please note that we omit attributes here for
simplicity.

In the established taxonomy of software clones [3], our
definition includes Type I and II clones, identical and almost
identical (except for naming) duplications. Furthermore,
depending on the selected base graph kind, the definition
may extend to Type III or near-miss clones, differing just
in the presence or absence of certain attributes. In contrast,
Type IV or semantic clones cannot be captured using syn-
tactic properties, as we do. Identifying semantic clones in
rule sets based on their behavior is an interesting avenue for
future work.

We further distinguish clones based on their scope.

Table 1 Full clones in the
example graph-based rules

Name Rules Size

C1 {B, C} 10

C2 {A, B, C} 8

Definition 5 (Scope) The scope of a clone is either MICRO,
INTERNAL or EXTERNAL.

scope(CR) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

MICRO |Raff(CR)| = 1

INTERNAL |Raff(CR)| ≥ 2 and

∃ transformation system T
s.t.Raff(CR) ⊂ T

EXTERNAL else

This definition is illustrated in Fig. 3. Micro-clones are
pattern duplications within the same rule. In the case of code
clones, an effect has been observed that the last in a set
of micro-clones is particularly prone to errors [33]. Inter-
nal clones, as exemplified in our running example, extend to
multiple rules within the same model transformation system.
Transformation systems are prone to internal clones if they
capture multiple variants of a rule: Some included actions
may be common to all variants, others optional. External
clones shared between multiple transformation systems may
occur if a system or parts of it are adapted for a new purpose,
for instance in exogenous transformations: The target lan-
guage of the transformation may be replaced while retaining
the source language.

The reuse mechanisms found in transformation languages
[8] correspond to these scopes. Micro-clones can be avoided
by specifying multiplicity at the level of individual graph
nodes and edges [34]. Internal clones can be replaced using
reuse mechanisms such as rule inheritance [18], refinement
[19] or variability-based rules [20]. A suitable alternative to
the creation of external clones are external reuse approaches,
such as generic model transformations [35].

3.2 Hybrid model transformation languages

Our investigation of clones in hybrid languages is inspired
by the ATL Transformation Language (ATL, [16]). ATL
features a declarative rule concept called matched rule. A
matched rule comprises a source pattern, specifying a set
of source elements, and an optional OCL constraint called
guard, preventing the rule from being applied if the con-
straint is not fulfilled. In addition, a rule has a target pattern,
specifying a set of target elements. Each target element
has a set of bindings, specifying values for references and
attributes of the target element. Finally, rules may declare
variables that can be used within the target pattern elements.
In what follows, we focus on matched rules, leaving the
imperative parts of ATL such as helpers and statements out-
side our scope.

Example. This example is motivated by a large real-
life clone we identified during our evaluation. Consider a
model-to-model transformation that refines class models to
program models. Just as class models do, program mod-
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Micro-clones
Duplications within the

same rule

Internal clones
Duplica�ons across rules in the
same transforma�on system

External clones
Duplica�ons across mul�ple 

transforma�on systems

Fig. 3 Scope of clones in model transformation systems

Fig. 4 ATL module with two matched rules

els have classes, fields and methods. In addition, program
models have some additional elements that can be used dur-
ing code generation, such as annotations. In this context,
Fig. 4 shows two matched rules dealing with the transfor-
mation of classes. The rules address the complementary
cases where a boolean attribute called deprecated is set
to false or true, respectively. The first rule deals with the
false case: It ensures that names, super-classes and the val-
ues of the abstract and interface attributes are transferred
correctly during the refinement of classes. The second rule
addresses the true case. It does the same as the first rule. In
addition, it establishes that an annotation @deprecated is
created together with the class. Since these two rules share
a significant number of commonalities, a refactoring seems
recommended.

The following definition captures such rules. In particu-
lar, matched rules are required to have non-empty sets of
source and target pattern elements. If this is not the case, we

only speak of fragments. Each matched rule is also a frag-
ment, but not vice versa.

Definition 6 (Matched rule fragment) A matched rule frag-
ment r = (S, g, V, T ), in short: fragment, consists of a set
S of atomic elements, called source pattern elements, a con-
straint g, called guard, a set V of key–value pairs, called
variables, and a set T of output pattern elements. An output
pattern element is a pair (t, Bt ) of an atomic element t and
a set Bt of key–value pairs, called bindings.
If both S and T are non-empty, r is called a matched rule.

Rule ClassNotDeprecated is a matched rule in which
S = {s}, g =’not s.isDeprecated’, V = ∅ and
T = {(t1, Bt1)} s.t. Bt1 contains the four shown entries.
Note that the specification of guards is optional: If a rule
does not specify a guard explicitly, the guard of that rule is
true, that is, it is always fulfilled.

As a prerequisite for our notion of clones, we consider a
subfragment relation:

Definition 7 (Subfragment) Given a pair of fragments f =
(S f , g f , V f , T f ) and s = (Ss, gs, Vs, Ts), s is a subfrag-
ment of f iff

– Ss ⊆ S f ,
– gs ∈ {g f , true},
– Vs ⊆ V f

– and ∀(t, Bt ) ∈ Ts there ∃(t, B ′
t ) ∈ T f s.t. Bt ⊆ B ′

t .

For instance, if the guard of rule ClassNotDeprecated
was replaced with true, then this rule would be a subfrag-
ment of ClassDeprecated.

Definition 8 (Clone of matched rules) Given a set R of
matched rules, a fragment c is called a clone overR if c is a
subfragment of at least two rules in R. A clone c induces a
set of affected rules Raff(c) = {r ∈ R | c is a subfragment
of r}.

Rules ClassDeprecated and ClassNotDeprecated
are affected by clones: For instance, one clone is the frag-
ment with S = {s}, g = true, V = ∅ and T =
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Table 2 Key requirements for
clone detection techniques in
the identified use cases: Clone
refactoring (U1), clone
management (U2), assessment
(U3), usability improvement
(U4), performance improvement
(U5)

� = Hard requirement, � = soft requirement, � = not required

{(t1, Bt1)} s.t. Bt1 contains the four bindings from rule
ClassNotDeprecated.

Taking up the same distinction as in Definition 4, clones
can be either full or partial.

Definition 9 (Full and partial clones) A clone c over a set
of matched rulesR is a full clone iff there is no clone c′ over
the same rule set so that c′ is a subfragment of c. Non-full
clones are called partial clones.

The aforementioned clone is a full one. If one of the four
bindings was missing, the result would be a partial clone,
since this clone would be a subfragment of the aforemen-
tioned one.

Similar to clones of graph-based rules, this definition may
include Type I and II clones [6], identical and almost iden-
tical (except for naming) clones, depending on whether we
consider the name of an element to be a part of its identity.
As a Type III clone, we may consider a set of rules that only
differ in a number of elements, where the number is below
a certain user-defined similarity threshold. Type IV clones
may be addressed by also considering the imperative part of
an ATL transformation.

We can define the scope of a clone as either internal or
external. An internal clone spans exactly one module, while
an external one spans multiple ones.

Definition 10 (Scope) The scope of a clone is either INTER-
NAL or EXTERNAL.

scope(c) =
{
INTERNAL | ∃ module T s.t.Raff(c) ⊆ T
EXTERNAL else

In contrast to Definition 5, micro-clones are not part of this
definition, since we assume that elements can be uniquely
identified. Therefore, there is generally exactly one way to
map a subfragment to a matched rule.

4 Requirements

In this section, we present key requirements for a clone
detection technique for rule-based model transformations.

The requirements were identified from the use cases intro-
duced in Sect. 2. We summarize them in Table 2.

(R1) Pattern based. In accordance with our definition
of clones, the identification of structural patterns is a hard
requirement in all identified use cases. A detection tech-
nique capable of identifying cloned patterns is required,
rather than one aimed at identifying pairs of similar ele-
ments. The latter typically assumes that individual elements
contain a significant amount of information, such as names
[36]. In rules, conversely, nodes and edges usually express
only limited amounts of information, such as just a type and
an action. Moreover, for the performance improvement use
case, it is crucial to find patterns; individual elements in iso-
lation are hard to handle efficiently during rule application
[37].

(R2) Performance. Clone detection needs to support sce-
narios with many rules and large individual rules—arguably
situations where maintainability is problematic [38]. In
such scenarios, performance becomes a significant chal-
lenge. The task at hand is pattern mining, the identification
of structurally corresponding subgraphs, which boils down
to the NP-complete subgraph isomorphism problem [39].
Clearly, a high execution time in the range of hours or days
would not be beneficial for use cases that are applied con-
stantly, such as refactorings. Still, a high latency may be
acceptable if clone detection is to be used in a nonrecurring
manner: Performance optimizations can be carried out stati-
cally before running the transformation. Clone management
may require a one-time setup of the transformation system.
Yet even in such cases, execution time is not the only issue—
a large search space may lead to memory-related program
terminations.

(R3) Exhaustiveness. To deal with the computational
cost, a clone detection tool might trade-off performance for
exhaustiveness: It may apply a heuristic to trim its search
space. As a result, certain duplications may not be consid-
ered, leading to the reporting of partial clones (Definition
4). In three use cases, this kind of outcome is problematic:
In clone refactoring, using partial clones as a starting point
leads to unnatural results that retain certain duplications.
A clone management tool that only propagates arbitrary
updates to corresponding instances is undesirable. The qual-
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ity of a specification may be assessed incorrectly if the full
extent of cloning is not discovered. In contrast, exhaustive-
ness plays no evident role in auto-completion features and
performance optimizations that normally operate on a best-
effort basis.

(R4) Scope. Since all identified use cases operate on a
specific scope, a clone detection technique needs to match
this scope. For instance, during clone refactoring, it is essen-
tial that the upfront clone detection step operates in a scope
where a suitable reuse mechanism is available for refactor-
ing. The refactoring of internal clones requires an internal
reuse mechanism, while that of external clones requires an
external reuse mechanism (see the discussion after Defini-
tion 5).

(R5) Tool integration. It is best to enable the exploration
of clones in the environment familiar to maintainers, that is,
their transformation editor. Even in scenarios where clone
detection is an upfront step to an automated refactoring,
developers need to inspect the reported clones to influence
the refactoring result. This requirement can be neglected
in performance optimizations since they are usually trans-
parent to the user, and to some extent in usability-oriented
recommender systems that use clone detection as a back-
ground technique only.

5 Adapting existing clone detection techniques

In this section, we explore our adaptations of existing
clone detection techniques to the requirements of rule-based
model transformations.

We considered the applicability of several clone detec-
tion techniques. Since rule patterns are abstractions of model
structures, the most suitable candidate techniques are those
focusing on model clone detection. We consider two tech-
niques, eScan [40] and ConQAT [41,42], as they allow us
to address R1, the identification of identical patterns in their
input models, by supporting the identification of Type I and
II clones. Both techniques were originally devised for the
domain of Simulink models. It is noteworthy that they may
not seem a natural fit for our purpose: Simulink models are
structured based on control flow, while rules do not prescribe
a specific navigation order.

We selected eScan and ConQAT since they represent two
complementary paradigms to the detection of Type I and II
clones: eScan provides an a priori strategy that can generally
achieve perfect precision and recall during clone detection,
assuming unlimited memory and time. ConQAT provides an
heuristic strategy that improves the efficiency during clone
detection by trimming the search space to focus on the most
viable alternatives, which comes at the cost of decreased
recall. The study of alternative heuristic approaches such as
the text-based one of SIMONE [17] is an interesting avenue

Groups of clone
fragments

eScan

Labeled graph

A priori algo

Clusters of
clone pairs

Labeled graph

ConQAT

Heuristics

convert
rules

Clones

Rules

1

convert
results

3

search
clones2 2

Rule converters

Result converters

Fig. 5 Overview of adapted clone detection techniques

for future work; it might become especially relevant when
we extend the present work to address Type III clones, which
are only supported by SIMONE so far.

For both considered techniques, our adaptations follow
the same basic process shown in Fig. 5. First, as both
techniques assume a directed, labeled graph as input data
structure, we provide rule converters that encode the input
rules into such graphs. Second, the actual clone search takes
place. Third, we provide converters to map the identified
clones back to the original rules.

5.1 Adaptation for graph-based model transformation

5.1.1 Phase 1: Convert rules

Our rule converters produce the following encoding of Hen-
shin rules, illustrated in Fig. 6.

– Nodes: Henshin rules arrive in the form of multiple
graphs, following Definition 1. Our encoding of these
graphs to just one graph is inspired by the representa-
tion shown in Fig. 1. The action and type assigned to a
node are reflected in its label. This encoding allows us to
capture the subrule relation: For instance, a clone never
includes the left-hand side instance of a preserve node
while neglecting the right-hand side counterpart, thereby
turning it into a delete node.

– Edges: Similar to nodes, each edge contained in the rule
is represented by one edge in the graph, labeled with its
action and type.
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attr

attr

attr

preserve fields preserve type

create methodsdelete methods

preserve :Class

preserve :Field

preserve :Method

preserve name=src preserve name=trg

 preserve name=m

preserve :Class

Fig. 6 Labeled graph for encoding the Henshin rule move (cf. Fig. 1)

– Attributes: Attributes are represented as additional graph
elements. Each attribute becomes a pair of a node and an
edge, labeled with the attribute action, type and value.
Encoding attributes as distinct elements allows us to
account for reuse mechanisms that accommodate the
attribute level.

Note that in our current implementation, we focus on rep-
resenting the elements of rules that can be encoded using
the actions delete, preserve and create, which correspond to
the rule parts stipulated in Definition 1. An additional rule
feature not addressed yet are NACs. However, based on the
extended formalization discussed in Sect. 3, an adaptation
to NACs would be straightforward: Each NAC can be rep-
resented using one additional action. For example, in a rule
with two NACs n1 and n2, we would have two additional
actions, forbid#n1 and forbid#n2.

5.1.2 Phase 2: Clone search

We use the search phases of the considered approaches
in a black box manner. For completeness, we still give a
brief account of the internal workings of these approaches.
Details are found elsewhere [40,42].

ConQAT proceeds by finding pairs of nodes with the
same label and combining these node pairs to clone pairs.
A clone pair represents two isomorphic subgraphs of the
input graph. To group only promising node pairs together,
a heuristics is applied. To this end, a similarity function
is used, comparing the neighborhoods of two input nodes.
Starting with one of the node pairs with the highest similar-
ity value, ConQAT executes a breadth first search to find a
clone pair of the largest possible size, that is, number of
included node pairs. In each step, one of the node pairs of
highest similarity is used to extend the clone pair.

In the example, there are 26 relevant node pairs.2 The
“src” nodes in Rules B and C are determined most similar
as they share the largest number of common adjacent nodes
and edges. Starting at this pair, Phase 2 produces six clone

2 For simplicity, we neglect attributes in these illustrations.

pairs, four of size 4 (rule A with corresponding parts of rules
B and C, and reversed) and two of size 5 (rule B with the
corresponding part of rule C, and reversed).

eScan works by systematically deriving all clone frag-
ments, that is, subgraphs with an isomorphic counterpart,
contained in the input graph. Starting with subgraphs com-
prising of just one edge and its source and target node,
eScan produces larger subgraphs incrementally. In each
iteration, given the cloned subgraphs with k edges, eScan
finds the set of (k+1) edge subgraphs by including addi-
tional edges from the graph. Subgraphs without isomorphic
counterparts are discarded. Isomorphy between subgraphs
is detected by comparing their canonical labels, an encoded
representation of their elements. An optimization ensures
that each subgraph is used as a starting point just once.

In the example, the input graph contains 15 subgraphs
of size 1: four in rule A, five in rule B and six in rule C.2

With the exception of the annotations edge in rule C, each
of these subgraphs is a clone fragment and is consequently
used to derive subgraphs of size 2. After termination, there
are 14 clone fragments of size 1, 16 of size 2, 16 of size 3,
11 of size 4 and 2 of size 5.

Both approaches include a post-processing of the clone
search result. The two main actions are clustering and filter-
ing. Clustering groups individual clones to sets of isomor-
phic subgraphs. From these sets, filtering removes entries
that are completely covered by another one. For instance,
in the eScan result, the groups containing the subgraphs of
size 1, 2 and 3 are completely covered by the group of size
4. Covered groups are discarded since they are typically not
useful to developers.

Note that ConQAT and eScan report only connected
subgraphs as clones. Where desirable, larger unconnected
clones can be assembled from connected ones by enumer-
ating the power set of the set of clones a particular rule is
affected by.

5.1.3 Phase 3: Convert results

To obtain clones (Definition 3), we map the results of
Phase 2 back to the rules, using a mapping that we created
during Phase 1. In the example, both approaches produce the
output shown in Table 1.

5.2 Adaptation for hybrid model transformations

5.2.1 Phase 1: Convert rules

Our rule converters produce the following encoding of ATL
rules to the ConQAT and eScan input data structures, illus-
trated in Fig. 7:
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elems elems

srcPattern trgPattern

guard

binds

binds

binds

binds

:SrcPattern

:Rule

:TrgPattern

s:ClassModel!Class:SrcElem t1:ProgramModel!Class:TrgElem

"not s.isDeprecated":Guard

"name<-s.name":Binding

"superClass<-s.superClass":Binding

"isAbstract<-s.isAbstract":Binding

"isInterface<-s.isInterface":Binding

Fig. 7 Labeled graph for encoding the ATL rule
ClassNotDeprecated (cf. Fig. 4)

– Nodes: Given a matched rule, we create one node for
each of the following objects: the rule itself, its guard,
the source and target patterns, each source pattern ele-
ment, each variable, each target pattern element and each
binding of each target pattern element. The labels spec-
ify all information required to determine elements iden-
tities as required for the subfragment relationship (see
Definition 7). The node labels for rules as well as source
and target patterns are simply :Rule, :SrcPattern
and :TrgPattern, since the identity of these ele-
ments is irrelevant for clone detection. For the remaining
elements, we use the following information: for source
pattern elements, the name and type; for the guard con-
straint, the constraint value; for variables, the name, type
and value; for target pattern elements, the name and
type; for bindings, the type and value.

– Edges: Edges represent the containment references
between the represented elements. Apart from contain-
ment ones, no other kind of reference is relevant in our
definition of clones.

5.2.2 Phase 2: Clone search

For a description of the internal workings of ConQAT and
eScan, see Sect. 5.1.2.

5.2.3 Phase 3: Convert results

Again we convert the clone detection results to actual rule
clones, using stored mappings between both artifacts from
Phase 1. In the case of the example, this step yields pre-
cisely one clone, indicated in Table 3. The clone comprises
elements s as well as t1 with its four bindings, leading to a
size of 6 (:Rule, :SrcPattern and :TrgPattern are
not part of the clone).

Table 3 Full clones in the example ATL rules

Name Rules Size

C1 {ClassNotDeprecated, ClassDeprecated} 6

In general, the employed strategy during Phase 2 may
have implications for the exhaustiveness of the result (R3).
Since eScan eventually produces every possible sub-graph,
it finds all full clones (Definition 4)—assuming unlimited
memory and time. In practice, eScan has been shown not
to scale up to larger models in the Simulink domain [42].
In contrast, ConQAT shows good scalability behavior, yet
the employed heuristic might lead to some detected clones
being incomplete.

6 Evaluation

In this section, we present an evaluation of our approach. We
address the following research question:
Can the requirements for rule-based model transformation
clone detection be satisfied by adapting existing model clone
detection techniques?

Using our customizations of ConQAT and eScan, we
addressed the requirements as follows:

– ConQAT and eScan are pattern based (R1) by design.
Since this requirement is important in all identified use
cases, we selected these particular techniques to investi-
gate clone detection in model transformation rules.

– To study performance (R2), we conducted an experi-
mental evaluation. To this end, we applied each tech-
nique on rule sets from realistic model transformation
systems and measured execution time.

– In the course of our experimental evaluation, we also
studied exhaustiveness (R3). While eScan guarantees
exhaustiveness by design, we devised a custom setup to
study the exhaustiveness of ConQAT: We fed the largest
clones reported by ConQAT as input to eScan-Inc [40],
an incremental variant of eScan that allows continu-
ing the clone search from clones of a given size. This
method that we call ScanQAT potentially allows any
clones missed by ConQAT to be detected. The number
of full clones missed by ConQAT gives an indication of
its exhaustiveness.

– To study scope (R4), we discuss how our customiza-
tion of the existing techniques accounts for the different
scopes of clones.

– To study tool integration (R5), we report on our expe-
rience with integrating the studied techniques in the
existing tool environment of the Henshin model trans-
formation language [14].
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ConQAT eScan ScanQAT

Clone detection algorithm
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Broadest clones
(# rules)

Time
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FMEDIT

UMLEDIT

Independent variables Dependent variablesExperiment

8 rule sets

54 rules
19.7 nodes/rule
30.7 edges/rule
10 attributes/rule

8 rule sets
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5.2 nodes/rule
15.8 edges/rule
4.6 attributes/rule

13 rule sets

1404 rules
2.5 nodes/rule
1.9 edges/rule
0.8 attributes/rule

Fig. 8 Experimental design for graph-based model transformations

In the rest of this section, we first present the setup
and results of our experimental evaluation, focusing on the
requirements of performance (R2) and exhaustiveness (R3).
We start with the case of graph-based model transformations
in Sect. 6.1 and continue with hybrid ones in Sect. 6.2. In our
wrap-up discussion in Sect. 6.3, we also address scope (R4)
and tool integration (R5). Finally, in Sect. 6.4, we discuss
threats to validity.

6.1 Graph-based model transformation

6.1.1 Methods and materials

An overview of our experimental design and detailed infor-
mation on all rule sets is given in Fig. 8. As the inde-
pendent variable, we varied the clone detection technique
by applying ConQAT, eScan and the hybrid ScanQAT
(described above). In our experiments, we used rule sets
from three transformation scenarios. The rule sets were
chosen since they represent realistic, non-trivial rule sets
available to the authors (convenience sampling). OCL2NGC

is a set of rules from an OCL to nested graph constraint
translator [43]. FMEDIT and UMLEDIT are sets of edit-
ing rules for feature models and UML models, respectively,
used in the context of model differencing [44]. All rule
sets have recently been made publicly available as part of
a benchmark set [45].

Table 4 provides detailed metrics information on the used
rule sets. The rules in OCL2NGC are organized in sets of 4–

7 rules. The rules in FMEDIT are organized in sets of 2–11
rules. The rules in UMLEDIT are organized in sets of 22–682
automatically generated rules, and 2–8 manually created
ones. In the case of OCL2NGC, we selected small, average
and large rules as samples for our experiments, presenting
them in the table. In the case of FMEDIT and UMLEDIT, we
studied all rule sets. These sets provide a semantic grouping
of the transformations without prescribing a particular con-
trol flow. In addition, the OCL2NGC transformation exhibits
an elaborate control flow expressed using units, an activity-
diagram-like control mechanism, which we neglected as it
was orthogonal to the grouping into rule sets. To explore
scalability, we also applied the considered techniques to the
entire rule sets.

We created an implementation prototype for our experi-
ments, implementing the customization outlined in Sect. 5.
For Phase 2, in the case of ConQAT we used the publicly
available implementation.3 We created our own implemen-
tation of eScan as no existing one was available to us. We
ran all experiments on a Windows 10 system (2.6 GHz; 8
GB of RAM).

6.1.2 Results

We applied the techniques on all rule sets, obtaining the
results shown in Tables 5, 6 and 7. For each combination of
technique and rule set, we show the largest and the broadest

3 https://www.cqse.eu/en/products/conqat/install/.
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Table 4 Sample rule sets with number of rules (#R) and average num-
ber of nodes (#N), edges (#E) and attributes (#A) in each rule

Rule set #R #N #E #A

(a) OCL2NGC

trE04 4 8.0 10.0 2.3

trE0506 4 8.0 10.0 3.3

trE1112 4 14.0 18.0 7.3

trE09 4 11.0 16.0 4.3

trE10 4 10.0 13.0 3.3

trE13 6 19.5 29.5 10.0

trE16 4 20.0 29.0 12.3

trE17 7 26.7 41.7 17.9

All 54 19.7 30.7 10.0

(b) FMEDIT

a.arbitrary 7 3.9 5.1 2.7

a.generalize 9 3.2 4.3 2.2

a.refactor 2 2.0 1.0 2.0

a.specialize 9 3.1 3.6 3.0

c.arbitrary 4 5.3 9.3 4.5

c.generalize 8 6.9 35.8 8.5

c.refactor 11 6.6 17.0 4.7

c.specialize 7 8.1 39.9 7.4

All 57 5.2 15.8 4.6

(c) UMLEDIT

gen/ADD 26 2.1 1.5 0.0

gen/CHANGE 282 1.0 0.0 1.0

gen/CREATE 100 2.7 2.1 4.8

gen/DELETE 105 2.3 1.7 0.0

gen/MOVE 682 3.5 3.0 0.1

gen/REMOVE 26 2.1 1.5 0.0

gen/SET 136 1.2 0.3 0.8

gen/UNSET 22 2.1 1.3 0.0

man/CREATE 8 3.9 5.9 13.3

man/DELETE 8 3.8 5.6 0.0

man/MOVE 2 3.0 2.0 0.0

man/SET 4 1.8 0.8 0.3

man/UNSET 3.0 2.0 1.0 0.0

All 1404 2.5 1.9 0.8

clone. The largest clone is the one with the greatest num-
ber of common elements. The broadest clone is the one
found in the greatest number of input rules; ties are broken
by selecting the one with the greatest number of common
elements.
Performance. The performance plots in Fig. 9a–c show the
runtimes in relation to the sizes of the considered rule sets.
Size was measured in terms of the accumulative number of
elements in all included rules; note the logarithmic scale on
the time axis. ConQAT took between 7 ms and 8.8 s for

each individual rule set. When applied to the full rule sets, it
took 64.4 s for OCL2NGC, 3.7 s for UMLEDITand 1.1 s for
FMEDIT. Our ScanQAT and eScan implementations did not
yield results for all rule sets: In some cases, they terminated
with memory overflow errors or did not terminate within 1 h.
In the result tables, these cases are indicated by dashes. In
the cases where they produced results, they mostly did so
in less than 10 s; yet the longest successful runs took 57 s
for eScan and 16.7 min for ScanQAT, respectively. Note that
our implementations of eScan and ScanQat may in principle
be flawed. Yet our experience of memory issues is in line
with earlier experiments in the Simulink domain [42].
Exhaustiveness. In the cases where eScan and ScanQAT did
not yield results, we cannot evaluate the exhaustiveness of
ConQAT. In the other cases, the clones reported by Con-
QAT, ScanQAT and eScan for the rule sets of OCL2NGC

and FMEDIT were always identical in size. In the case
of UMLEDIT, we observed a number of subtle differences
between the reported results: The largest clone found by
ConQAT for the gen/CHANGE and gen/MOVE rule sets
spanned more or fewer rules, respectively, than the ones
reported by ScanQAT and eScan did. In man/DELETE,
the reported largest clone was a slightly smaller one.
These observations indicate that in situations where perfect
exhaustiveness is required, a scalable tool is still not avail-
able. In other cases, ConQAT seems generally suitable to
address the exhaustiveness requirement. Note that the largest
clones found by ConQAT for all rules were larger than those
in the individual rule sets—these clones spanned over sev-
eral rule sets.

6.1.3 Methods and materials

Figure 10 provides an overview of our experimental eval-
uation of clone detection techniques for hybrid languages.
Again we considered our adaptions of ConQAT and eScan
as well as the hybrid clone detector ScanQAT. We used sam-
ples from the ATL transformation zoo,4 called ATLZOO in
short. ATLZOO is an online collection of 103 transformation
scenarios with 202 modules in total. Several modules occur
in multiple versions, a particularly interesting scenario for
clone detection.

We applied ConQAT, ScanQAT and eScan to ATLZOO in
its entirety. In addition, to study performance and exhaus-
tiveness in a more detailed manner, we applied them to
suitable subsets of ATLZOO. Specifically, in a preparation
step, we identified 21 “clusters” of modules that are mutu-
ally related via common clones. To this end, we applied
our adaptation of ConQAT to get a first approximation of
present clones. To group the modules based on the identified
clones, we used a standard clustering algorithm: hierarchi-

4 https://www.eclipse.org/atl/atlTransformations/.
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Table 5 OCL2NGC results

Rules ConQAT eScan ScanQAT

R N E A R N E A R N E A

trE04 2 7 8 1 2 7 8 1 2 7 8 1

4 6 5 1 4 6 5 1 4 6 5 1

trE0506 2 7 8 2 2 7 8 2 2 7 8 2

4 6 5 2 4 6 5 2 4 6 5 2

trE09 2 10 14 3 2 10 14 3 2 10 14 3

4 9 11 3 4 9 11 3 4 9 11 3

trE10 2 9 11 2 2 9 11 2 2 9 11 2

4 8 8 2 4 8 8 2 4 8 8 2

trE1112 2 13 16 6 – 2 13 16 6

4 12 13 6 – 4 12 13 6

trE13 2 20 30 10 – –

6 2 1 1 – –

trE16 2 19 27 11 – 2 19 27 11

4 18 24 11 – 4 18 24 11

trE17 2 28 42 19 – –

7 4 2 1 – –

All 2 33 55 16 – –

31 2 1 1 – –

For each rule set, the largest (first row) and the broadest (second row)
reported clones are denoted with their number of rules (R), nodes (N),
edges (E) and attributes (A). “–” denotes memory-related program
exits or execution times longer than 1 h

Table 6 FMEDIT results

Rules ConQAT eScan ScanQAT

R N E A R N E A R N E A

a.arbitary 2 3 2 0 2 3 2 0 2 3 2 0

2 3 2 0 2 3 2 0 2 3 2 0

a.generalize 2 3 2 0 2 3 2 0 2 3 2 0

2 3 2 0 2 3 2 0 2 3 2 0

a.refactor 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

a.specialize 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0

c.arbitary 2 4 5 1 2 4 5 1 2 4 5 1

3 2 1 0 3 2 1 0 3 2 1 0

c.generalize 2 5 7 2 2 5 7 2 2 5 7 2

7 2 2 0 7 2 2 0 7 2 2 0

c.refactor 2 6 13 1 2 6 13 1 2 6 13 1

10 2 1 0 10 2 1 0 10 2 1 0

c.specialize 2 5 7 2 2 5 7 2 2 5 7 2

6 3 2 0 6 3 2 0 6 3 2 0

All 2 8 18 1 – –

18 3 2 0 – –

See footnote of Table 5

Table 7 UMLEDIT results (excluding five rule sets for which no clone
was found by either technique: gen/{SET,UNSET}, man/{MOVE,
SET, UNSET})

Rules ConQAT eScan ScanQAT

R N E A R N E A R N E A

gen/ADD 2 2 2 0 2 2 2 0 2 2 2 0

2 2 2 0 2 2 2 0 2 2 2 0

gen/CHANGE 9 0 0 1 5 0 0 1 5 0 0 1

11 0 0 1 11 0 0 1 11 0 0 1

gen/CREATE 7 2 2 10 7 2 2 10 7 2 2 10

9 0 0 7 9 0 0 7 9 0 0 7

gen/DELETE 2 3 4 0 2 3 4 0 2 3 4 0

7 2 2 0 7 2 2 0 7 2 2 0

gen/MOVE 2 3 4 0 12 3 4 0 11 3 4 0

34 2 2 0 34 2 2 0 34 2 2 0

Gen/REMOVE 2 2 2 0 2 2 2 0 2 2 2 0

2 2 2 0 2 2 2 0 2 2 2 0

man/CREATE 3 6 7 28 – –

3 6 7 28 – –

man/DELETE 3 6 7 0 2 6 9 0 2 6 9 0

3 6 7 0 3 6 7 0 3 6 7 0

All 3 6 7 28 – –

34 2 2 0 – –

See footnote of Table 5

cal agglomerative clustering [46], which has been used as
a grouping mechanism in the MDE context before [47]. We
configured the clustering algorithm to use the average link-
age strategy and clone size as the similarity metric.

An overview of the clusters obtained from this prepara-
tion is shown in Table 8. We discarded clusters that only
contained a single module; the number of modules in the
remaining clusters ranged from 2 to 46. A first interesting
observation is that 166 of all 202 modules are contained in
one of the clusters—in other words, 82% of all modules are
affected by at least one external clone (Definition 10). Sub-
scripts indicate versions of the same module. Several groups
of versions are part of the same cluster, e.g., two versions of
UML2MOF. Conversely, several groups have been split over
multiple clusters, e.g., the eight versions of TypeA2TypeB
are split over two clusters.

6.2 Hybrid model transformation

6.2.1 Results

The results of this experiment are shown in Table 9. Again,
the table indicates the largest and broadest reported clones,
that is, the ones incorporating the greatest number of ele-
ments and spanning the largest number of rules, respectively.
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Fig. 9 Performance plots for the four example rule sets. a OCL2NGC, b FMEDIT, c UMLEDIT, d ATLZOO

ConQAT eScan ScanQAT

Clone detection algorithm

Largest clones
(# elements)

Broadest clones
(# rules)

Time
(ms)

Independent variables Dependent variablesExperiment

ATL Zoo

21 clusters

202 modules
2566 rules
1.03 input elem./rule
0.05 variables/rule
2.05 output elem./rule
6.02 bindings/rule
0.58 guards/rule

Fig. 10 Experimental design for hybrid model transformations

Performance. The performance plot in Fig. 9d relates exe-
cution time to the size of the considered modules. Size is
given in terms of the accumulative number of elements in
all rules of all included modules; note the logarithmic scale
on the time axis. ConQAT took 111.3 s for the entire ATL-
ZOO. For the individual clusters, it took between 0.2 and
1.3 s in three cases and less than 0.1 s in all other cases.
eScan and ScanQAT did not produce results in six cases:
the entire rule set, the three largest clusters and two clus-

ters of medium size that included the modules UML2MOF
and MOF2UML, respectively. A defining feature of the latter
two cases is the relatively large size of their included rules,
as characterized by the number of elements per rule. Large
input graphs are challenging for eScan and ScanQAT as they
suffer from the combinatorial explosion of opportunities for
extending clone candidates during their search. In the cases
where they reported a result, eScan took between 2 ms and
662 s; ScanQAT took between 7 and 340 ms.
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Exhaustiveness. While eScan and ScanQAT are exhaus-
tive by design, the exhaustiveness of ConQAT can only be
assessed in the cases where a baseline result produced by
either eScan or ScanQAT exists. Since eScan and ScanQAT
did not terminate for the complete rule set and the five clus-
ters mentioned above, we can only study the exhaustiveness
in the remaining 16 of the 21 clusters.

In these cases, we find a complete agreement of all
three techniques on the largest and broadest clones. In other
words, the exhaustiveness provided by ConQAT was perfect
in these cases. Among the determined clones were several
ones of considerable size.

We consider some particular interesting data points more
detailedly. The largest clone found for the entire ATLZOO

concerns the rules ConceptHasSuper and Concept
HasSuperAndisAbstract in the DSL2XML module.
This clone, a Type I clone including 39 common target pat-
tern elements and 88 bindings is comparable to the one in
the example shown in Fig. 4: It results from addressing
two vastly similar cases of a translation that only dif-
fer in the handling of a meta-attribute of the considered
source class. The broadest clone found for the complete
ATLZOO, found in 340 rules, comprises a target pattern ele-
ment called o of the type XML!Element. The broadest
clone found in an individual set was found in the mod-
ule UML2Copy, a guard of the value (thisModule.
inElements->includes(s)) found in each of the
167 rules in this module. Such small clones may appear
to be not immediately useful to developers. However, it is
worth noting that even clones of the smallest extent have
been observed to be related to defects [33].

6.3 Discussion

Our results can be summarized as follows: ConQAT,
ScanQAT and eScan were on par with regard to all identified
requirements except performance, where ConQAT outper-
formed the other approaches. From the performance plots in
Fig. 9, it is noticeable that the main issue of eScan and Scan-
QAT is scalability: while these techniques are capable of
providing perfect exhaustiveness for inputs of a certain size,
they do not cope with the combinatorial explosion during
clone detection for larger inputs. Conversely, the promising
exhaustiveness results for ConQAT complement the find-
ings from our recent work where we used this technique to
construct rules in a performance optimization scenario [11].
The new findings indicate that ConQAT is potentially use-
ful in all considered use cases, a conclusion that particularly
applies to situations with considerably large rule sets such
as UMLEDIT or ATLZOO. Moreover, we found that eScan
and ScanQAT can be used to determine a ground truth for
assessing the accuracy of heuristic techniques. However, for
realistic rule sets in the magnitude of the ones used in our

evaluation, it might be necessary to consider selected sub-
sets for this purpose.
Scope. The encoding described in Sect. 5 can be used to
apply the considered techniques on all desired scopes: The
input graph provided to the technique may represent one rule
as well as multiple rules from the same or different trans-
formation systems. An interesting border case we observed
in the larger rules of OCL2NGC includes clones that cover
other clones of a separate scope: Internal clones may exhibit
multiple embeddings to the same rule, that is, cover a micro-
clone. The preferable directive in this case depends on the
use case. For instance, if adequate reuse concepts are avail-
able, clones can be refactored incrementally, first explicating
the reuse inside the rule and then that across multiple rules.
Tool integration. To explore the integration with existing
tools, we designed and implemented an Eclipse plug-in
on top of the Henshin language [14]. Figure 11 shows a
screenshot of the user interface: We devised a custom Clone
Detection view as an extension to the Henshin transforma-
tion editor, listing reported clones. When the user selects
an entry in this view, the corresponding elements are high-
lighted in the editor. This view can be combined with most
considered use cases, for instance, by serving as an entry
point for a clone refactoring. We describe the use of this
plug-in more detailedly in another work [48]. Providing tool
support for the ATL clone detectors created as part of this
work is left to future work.

6.4 Threats to validity

Based on the classification of threats to the validity of soft-
ware engineering experiments proposed by Wohlin et al.
[49], our experiments are vulnerable to construct, internal
and external validity threats. We discuss the implications
and mitigation of these threats in what follows. Construct
validity refers to the extent to which an experiment suc-
cessfully measures the phenomena under investigation, in
this case the performance and exhaustiveness of clone detec-
tion algorithms. A first threat to the construct validity of our
study concerns exhaustiveness. We have not compared the
results to a list of known clones, which would be the most
reliable strategy. Unfortunately, such lists are difficult to
produce manually for large rule sets. Furthermore, we only
focus on the detection of the largest clones, ignoring smaller
ones. While more comprehensive exhaustiveness studies are
desirable, large clones are the most relevant for refactoring
and performance optimizations.

Internal validity concerns an experiments capacity to
highlight a causal relationship between its factors and out-
comes. In our case, internal validity is ensured by the
experimental design and by precautions taken while running
the experiment. The adopted design does not suffer from
potential confounding factors, and all trials were conducted
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Fig. 11 Clone Detection view and Henshin editor

under similar conditions: on the same machine running the
same minimal set of applications.

External validity indicates an experiments ability to pro-
duce generalizable results. We discuss the external validity
of our experiments from two orthogonal perspectives: (1) the
considered transformation scenarios and (2) the considered
model transformation languages. From the first perspective,
the external validity of our experiments is threatened by the
limited sample of transformation rules sets. Although the
studied graph-based scenarios are based on three heteroge-
neous and non-trivial rule sets, the rules were not created
in an industrial context. From the second perspective, we
argue that Henshin is similar in terms of features to other
graph-based model transformation languages such as AGG
[50], GReAT [51], VMTS [52] and Story Diagrams [53].
We therefore expect the findings of this experiment to be
generalizable to such languages. Our findings are, however,
not generalizable to model transformation languages rep-
resenting other paradigms than graph transformation and
the hybrid paradigm as embodied by ATL. Still, since we
selected the graph-based and hybrid paradigms as two of
the most commonly used transformation paradigms, we are
confident that our results give interesting insights to both
researchers and practitioners.

7 Related work

Several other techniques for model clone detection have
been proposed. While the approaches by Störrle [36,54] and
Ekanayake et al. [55] enable the identification of groups
of similar elements in UML and business process mod-
els, respectively, we focus on the detection of identical
patterns. Liang et al. [56] propose a clone detection tech-
nique based on identifying the longest subsequences in paths
through the input models. The technique shows a compara-
ble accuracy to that of ConQAT while yielding a runtime
improvement. We focus on ConQAT due to its publicly

available implementation that fully satisfied the require-
ments in our experiments.

Tairas et al. [57] propose a model-based approach for
identifying clones in textual Domain Specific Languages
(DSLs) and exemplify this approach by applying it to sev-
eral OCL code bases, including the ATL zoo. The presented
experiment suggests that clones appear in large numbers in
publicly available OCL repositories. This work is comple-
mentary to our proposal; a promising combination of both
approaches is to use the OCL clone detection algorithm in
conjunction with our approach for detecting clones in the
structure of ATL transformations.

The clones considered in this paper are Type I–II clones.
Additional classes of clones are Type III or “near-miss
clones,” which include layout changes and additions of con-
nections, and Type IV or “semantic” clones. The SIMONE
clone detector proposed by Cordy and his colleagues [17,
58,59] focuses on Type III clones in Simulink models. An
evaluation of SIMONE indicates that, in addition to Type
III clones, it is capable of identifying all Type I–II clones
detected by ConQAT [58], suggesting that Type III clones
in rule-based model transformation languages may also be
reliably identified. This is an important area of future work
in the direction opened by the present paper.

In our evaluation, we compared the available model clone
detection techniques by using the exact detection results
reported by eScan and ConQAT as a ground truth, a strat-
egy that was suitable for small to medium rule sets, but did
not scale up to the largest ones we considered. In the future,
we may benefit from available works on the evaluation of
model clone detection techniques. In the context of Type III
clones, a suitable strategy for clone detector evaluation is
mutation analysis [60,61]: This strategy involves the appli-
cation of certain mutator operations to seed variations in a
set of clones, which allows Type I and II clones to be turned
into Type III ones.

A number of quality assurance approaches for model
transformations are related. Van Amstel et al. [62] pro-
pose a variety of analytical methods, such as metrics and
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1014 D. Strüber et al.

dependency graphs. Without mentioning specifics, they also
foresee the use of clone detection. Kapová et al. [63] propose
a set of quality metrics to evaluate QVT-R transformations;
the number of clones is mentioned as one metric. Wimmer et
al. [64] introduce a refactoring catalog to improve the qual-
ity of M2M transformations; duplicate code is mentioned as
a bad smell. Gerpheide et al. [65] present a quality model
for QVT-O comprising 37 quality properties and four qual-
ity goals: functionality, understandability, performance and
maintainability. In line with our discussion of clone refac-
toring and management as use cases for clone detection (see
Sect. 2), Alkhazi et al. [66] propose a search-based solu-
tion for the automatic refactoring of ATL transformations.
Some of the supported refactorings (e.g., “extract superrule,”
“extract helper” and “merge rule”) stand out as direct appli-
cations of clone detection.

8 Conclusion

Clone detection is an important static analysis for enabling
the identification of duplications in software artifacts, thereby
supporting the transition from an ad-hoc development style
to a more systematic one. In this work, we present the first
approach to address clone detection for model transforma-
tions, focusing on the rule-based transformation paradigms
of graph-based and hybrid model transformations.

Our experimental evaluation features a selection of large-
scale rule sets from realistic Henshin and ATL transforma-
tion scenarios. The results indicate that our adaptation of
ConQAT, a technique from the domain of Simulink models,
is well suited to satisfy the requirements of clone detection
in rule-based model transformations: It supports the iden-
tification of overlapping patterns, which is a particularly
important requirement in the context of graph-based trans-
formations, where rule elements do not necessarily have
names. In cases where we could assess its accuracy, Con-
QAT’s accuracy was excellent, while providing favorable
performance in particular for larger rule sets. Our current
investigation focused on Type I and II clones.

9 Future work

Since research on clone detection for model transformation
languages is still in its infancy, there are several directions
for future work.

The hypothesis that transformation developers can benefit
from clone detection must be validated empirically. To this
end, a user experiment based on our prototypical tool sup-
port is appropriate. Moreover, we aim to broaden the scope
of our work towards additional model transformation and
clone detection features and paradigms.

First, in addition to transformation rules as addressed in
this work, transformation languages often come with imper-
ative features such as control flow mechanisms or even
completely imperative transformation programs.

To detect clones related to these features, integrating
existing clone detection approaches for imperative program-
ming languages as well as textual DSLs is one particular
development of interest. Using this approach, we aim to
establish whether similar results as the ones provided for
graph-based and hybrid model transformation languages can
be obtained for other paradigms, such as imperative ones.

Second, in our evaluation, we saw that the number and
extent of clones reported to the user can be substantial. The
identification of suitable clones for a particular use cases
might require to identify subsets of clones based on cer-
tain fitness criteria. This task may benefit from advances in
search-based model optimization [67].

Third, a desirable clone detection feature we intend to
address in the future includes support for Type III and IV
clones. Since we were able to adapt existing clone detection
techniques for Type I and II clones, we aim to estab-
lish whether similar results can be obtained in this case.
Specifically, to detect Type III clones, we plan to adapt the
SIMONE clone detector, which has shown excellent results
in the Simulink domain. Moreover, an important feature to
address in future work is an incremental execution mode for
clone detection, which reuses detection results from earlier
runs. In particular, this feature might be beneficial for the use
cases of performance optimization and usability improve-
ments.
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