
Softw Syst Model (2019) 18:1447–1466
https://doi.org/10.1007/s10270-017-0610-0

REGULAR PAPER

SMTIBEA: a hybrid multi-objective optimization algorithm
for configuring large constrained software product lines

Jianmei Guo1 · Jia Hui Liang2 · Kai Shi1 · Dingyu Yang3 · Jingsong Zhang4 ·
Krzysztof Czarnecki2 · Vijay Ganesh2 · Huiqun Yu1

Received: 13 December 2016 / Revised: 12 April 2017 / Accepted: 6 July 2017 / Published online: 22 July 2017
© Springer-Verlag GmbH Germany 2017

Abstract A key challenge to software product line engi-
neering is to explore a huge space of various products and to
find optimal or near-optimal solutions that satisfy all pre-
defined constraints and balance multiple often competing
objectives. To address this challenge, we propose a hybrid
multi-objective optimization algorithm called SMTIBEA
that combines the indicator-based evolutionary algorithm
(IBEA) with the satisfiability modulo theories (SMT) solv-
ing. We evaluated the proposed algorithm on five large,
constrained, real-world SPLs. Compared to the state-of-the-
art, our approach significantly extends the expressiveness
of constraints and simultaneously achieves a comparable
performance. Furthermore, we investigate the performance
influence of the SMT solving on two evolutionary operators
of the IBEA.

Keywords Software product lines · Search-based software
engineering · Multi-objective evolutionary algorithms ·
Constraint solving · Feature models

Communicated by Dr Philippe Collet.

B Jianmei Guo
gjm@ecust.edu.cn

B Jingsong Zhang
jasun@dmbio.info

1 School of Information Science and Engineering, East China
University of Science and Technology, Shanghai, China

2 Department of Electrical and Computer Engineering,
University of Waterloo, Waterloo, ON, Canada

3 School of Electronic Information, Shanghai Dianji
University, Shanghai, China

4 Institute of Biochemistry and Cell Biology, Chinese Academy
of Sciences, Shanghai, China

1 Introduction

Software product line (SPL) engineering is gaining momen-
tum in academia and industry to reduce development cost,
to enhance software quality, and to shorten time to mar-
ket [1,43]. An SPL is a collection of software products
that share a managed set of features satisfying the spe-
cific needs of a particular market segment or mission and
that are developed from a common set of core assets in
a prescribed way [7]. A feature is an essential abstrac-
tion of a functionality or product characteristic relevant
to stakeholders [8]. All features of an SPL and the con-
straints defined among features are captured in a fea-
ture model that describes and manages the commonalities
and variabilities of an SPL. Every product of an SPL
is specified as a unique selection of features, called a
configuration.

A central task in SPL engineering is to derive an opti-
mal product thatmeets specific requirements of stakeholders,
which we call the configuration optimization problem. It is
non-trivial to address the SPL configuration optimization
problem. Firstly, the high variability of different products
expressed by the feature combinatorics in the feature model,
gives rise to a huge configuration space, which often makes
the configuration space exploration beyond human capa-
bilities. Secondly, once a configuration is made, it must
be validated to satisfy the constraints defined in the fea-
ture model, which usually must rely on an automated
analysis technique. Thirdly, the configuration optimization
problem often involves multiple competing objectives, such
as low cost and high performance, so there is no single
optimal solution that excels in all objectives and stake-
holders usually would like to know a set of optimal or
near-optimal solutions that trade-off the multiple objectives
[22,49].

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10270-017-0610-0&domain=pdf
http://orcid.org/0000-0001-5787-6781

1448 J. Guo et al.

The SPL configuration optimization problem was first
studied in 2008 by White et al. [54] who reduced the prob-
lem to a multi-dimensional multi-choice knapsack problem
and proposed a method called Filtered Cartesian Flatten-
ing to solve it. To tackle the same problem, Guo et al. [19]
proposed the first genetic algorithm in 2011 that incorpo-
rates a repair operator that fixes configurations conforming
to the predefined constraints after each round of crossover
andmutation. These approaches were originally designed for
single-objective scenarios.Moreover, theywere evaluated on
randomly generated featuremodels that follow a set of empir-
ically approximated assumptions, which may diverge from
the characteristics of real-world SPLs [5].

In 2013, Sayyad et al. [49] first proposed to adapt
multi-objective evolutionary algorithms (MOEAs) for the
solving of the SPL configuration optimization problem. They
investigated seven widely used MOEAs and identified the
indicator-based evolutionary algorithm (IBEA) [58] to be
superior to the other MOEAs for the problem. Later, they
conducted the first study on large real-world feature models
and improved the scalability of IBEA to a feature model as
large as 6888 features [48]. Sayyad et al.’s previous works
define the number of constraints that are violated in the
generated configurations as one optimization objective to
minimize, and they produce valid configurations without
guarantee.

To deal with the constraints explicitly for the SPL con-
figuration optimization problem, in 2015 Henard et al. [26]
proposed the first hybrid method, called SATIBEA, that
augments IBEA with SAT (Boolean satisfiability problem)
solving. The SAT solving part of their approach encodes
the feature model in conjunctive normal form (CNF) for-
mulas and asks an off-the-shelf SAT solver to return a valid
configuration. They incorporated the SAT solving into the
mutation operator of IBEA to replace randomlymutated con-
figurations with valid ones. Their empirical results on large
real-world SPLs showed that their SATIBEA approach sig-
nificantly outperforms Sayyad et al.’s IBEA approach, which
established the current state-of-the-art.

The expressiveness of CNF formulas used in the state-of-
the-art is limited toBoolean constraints. However, real-world
SPLs embodies not only Boolean constraints but also non-
Boolean constraints, such as those over infinite domain
variables (integers, real numbers, and character strings)
together with arithmetic, relational, and string operators
[5,37,40–42]. SAT solving of such constraints is undecid-
able in general. To this end, we aim at an approach that
supports richer constraints, including Boolean and non-
Boolean constraints, for real-world SPLs. Moreover, we
aim at a deep understanding of the influence of the con-
straint solving on the evolutionary operators of an MOEA.
In this paper, we answer the following three research ques-
tions:

RQ1: Is it possible to design a hybrid approach that aug-
ments IBEA with support for expressing and solving
richer constraints?

RQ2: How does the constraint solving influence the evolu-
tionary operators of the IBEA?

RQ3: What is the performance of the proposed approach
compared to the state-of-the-art?

Our contributions of this paper are summarized as follows:

– We propose SMTIBEA, the first hybrid method that
augments IBEA with the satisfiability modulo theories
(SMT) solving for the SPL configuration optimization
problem. SMT combines standard SAT with richer the-
ories, such as equality reasoning, linear arithmetic, bit
vectors, and arrays [9].

– We demonstrate the effectiveness and scalability of our
approach by experiments on five large real-world SPLs,
ranging from 1244 to 6888 features and from 2468 to
343,944 constraints. We evaluate the performance of
algorithms in terms of five metrics, considering quality,
convergence, and diversity.

– Our evaluation is based on experimental results from
30 independent executions of algorithms. We conducted
inferential statistical testing for significance and assess-
ment of effect size.

– We design three SMTIBEA variants to investigate the
performance influence of SMT solving on the mutation
operator and the initial population generation of IBEA.
Our empirical results reinforce the importance of aug-
menting the mutation operator with constraint solving.
Moreover, augmenting the initial population generation
with constraint solving is preferable as well.

– Our empirical results show that our approach obtains per-
formance comparable to the state-of-the-art, given that
the expressiveness of constraints has been significantly
improved. In particular, in terms of a widely used qual-
ity metric Hypervolume, our approach outperforms the
state-of-the-art for 4 out of 5 SPLs when all generated
configurations are used for evaluation.When filtering out
all invalid configurations from the results, our approach
still works better for 2 SPLs.

– We implemented the SMTIBEA approach and made the
source code of our implementation publicly available at
http://github.com/jmguo/SMTIBEA.

The rest of this paper is organized as follows. Section 2
introduces background concepts on SPL engineering. Sec-
tion 3 defines the SPL configuration optimization problem.
Related methods of solving the problem are discussed in
Sect. 4. Section 5 proposes our approach SMTIBEA. We
describe our experimental setup in Sect. 6 and present the
results in Sect. 7. Section 8 discusses our experimental

123

http://github.com/jmguo/SMTIBEA

SMTIBEA: a hybrid multi-objective optimization algorithm for configuring large… 1449

results, explains threats to validity, and describes our per-
spectives and the future work. Section 9 concludes the paper.

2 Background

Originated from feature-oriented domain analysis (FODA)
proposed in 1990 [31], SPL engineering has emerged as one
of the most promising software development paradigms for
reducing development costs, enhancing software quality, and
shortening time to market [1,7]. SPL engineering achieves
software mass customization by exploiting the commonali-
ties of a set of software systems that belong to an SPL and
bymanaging the differences among those systems. Typically,
SPL engineering is composed of two development processes:
domain engineering and application engineering [43].

Domain engineering defines the commonalities and vari-
abilities of an SPL in terms of features and organizes all
features and their constraints in a domain feature model.
A feature is an essential abstraction of a functionality
or product characteristic relevant to stakeholders [8]. A
feature model is a tree-like structure that defines the rela-
tionships among features in a hierarchical manner. For
example, Fig. 1 shows a feature model of a sample mobile-
phone SPL, adapted from Benavides et al. [4]. Each fea-
ture except the root feature MobilePhone has a parent.
Relations between a feature and its group of child fea-
tures are classified as And (no arc)-, Or (filled arc)-, and
Alternative-groups (arc). The members of an And-group can
be either mandatory (filled circle) or optional (empty cir-
cle). Cross-tree constraints comprise requires and excludes
relations between features (e.g., Video requires Camera).
According to Batory et al. [3], a feature model can be
translated into a Boolean formula in CNF. The transla-

MobilePhone

OS

Android iOS

Calls

Voice Video

cost = 50
lat. = 80

cost = 35.5
lat. = 20

cost = 85.5
lat. = 70.5

cost = 95
lat. = 40

Connectivity

USB Wifi CameraBluetooth

feature

quality attribute

mandatory

optional

And-group

Or-group

Alternative-group

Cross-tree constraints : Video requires Camera

Objectives : minimizing cost, minimizing latency

Fig. 1 A feature model defining a configuration optimization problem
with two objectives for a sample mobile phone SPL. Each feature is
augmented with two quality attributes

tion rules of feature-selection constraints are summarized in
Table 1.

Application engineering configures the feature model
established in the domain engineering and derives a par-
ticular software product to meet user- or market-specific
requirements. Each product is specified as a unique selec-
tion of features, called a configuration. A configuration of
features is valid when all constraints defined in the feature
model are satisfied. For example, in Fig. 1, configuration (OS,
Android, Calls, Video, Connectivity, Camera)
is valid, but configuration (OS, Android, Calls, Video,
Connectivity, Wifi) is not, because the latter violates
the constraint: Video requires Camera.

Among a large number of valid configurations derived
from the feature model, users desire the optimal one that
meets certain quality requirements, such as low cost and low
latency. To describe the product quality, in the SPL com-
munity, a feature model is often augmented with the quality
attributes of each feature [19,48,49,54]. A quality attribute
of a feature indicates the feature’s influence on the quality
attribute of a final product that can be implemented and mea-
sured. As shown in Fig. 1, selecting feature Bluetooth
increases the cost by 50 and the latency by 80 in the final
product. The quality attributes of a derived product can be
calculated by aggregating the quality attributes of all selected
features and potential feature interactions involved. Follow-
ing the same settings as the state-of-the-art [26], we assume
that we already have a feature model along with the qual-
ity attributes. For research on measuring and inferring the
quality attributes, we refer the interested readers elsewhere
[18,46,51,57].

3 Problem definition

Given a feature model with n features, the configuration
optimization problem of an SPL is a quadruple P =
〈X, D,C, F〉, where X = {x1, . . . , xn} is a set of decision
variables on all n features, D = {D1, . . . , Dn} is a set of

Table 1 Feature-selection constraints in Boolean formulas (P repre-
sents a parent feature and C1, . . . ,Ci , . . . ,Cn are its child features;
M ⊆ {1, . . . , n} denotes the mandatory features by their indices in an
And-group; Fi and Fj denote arbitrary features)

Type Boolean formulas

Mandatory Ci ↔ P

Optional Ci → P

And-group (P → ∧
i∈M Ci) ∧ (

∨
1≤i≤n Ci → P)

Or-group P ↔ ∨
1≤i≤n Ci

Alternative-group (P ↔ ∨
1≤i≤n Ci) ∧ ∧

i< j (¬Ci ∨ ¬C j)

Requires Fi → Fj

Excludes ¬(Fi ∧ Fj)

123

1450 J. Guo et al.

domains of variables in X , C is a set of constraints on vari-
ables in X , and F = { f1, . . . , fm} is composedofm objective
functions to minimize simultaneously. Without loss of gen-
erality, we consider only minimization problems here.

A solution s to the configuration optimization problem P
is a valid configuration of features, that is, a total assign-
ment of all variables in X to values in the corresponding
domains, such that all constraints in C are satisfied. All solu-
tions constitute the search space S. Each objective function
fi (S) assigns an objective value to each solution s ∈ S. Note
that multiple solutions may have the same values regarding
all objectives.

For multi-objective problems considered in this paper,
the optimization objectives are often competing, such as
achieving low cost and high performance. Therefore, there
is usually no single optimal solution that excels in all
objectives. Decision makers would like to know diverse,
ideally all, if their number is tractable, Pareto-optimal solu-
tions that trade-off the multiple objectives, such that they
can choose a posteriori the solution that best meets their
needs.

Given two solutions s and s′ to the problemP , we say that
s dominates s′, denoted by s ≺ s′, if and only if s is not worse
than s′ for any objective and s is better than s′ regarding at
least one objective, i.e.:

∀i ∈ {1, . . . ,m} : fi (s) ≤ fi (s′) and

∃ j ∈ {1, . . . ,m} : f j (s) < f j (s′) (1)

A solution to P is Pareto-optimal, which we denote by s̃,
if and only if no other solution s in S dominates s̃, i.e.:

�s ∈ S : s ≺ s̃. (2)

All the Pareto-optimal solutions constitute the exact
Pareto front S̃ .

4 Related work

In this section, we discuss the related methods of solving
the SPL configuration optimization problem. We categorize
the related methods into two classes: approximate and exact
methods. Also, we identify the state-of-the-art method for
each class.

4.1 Approximate methods

The SPL configuration optimization problem has a natural
connection to the community of search-based software engi-
neering (SBSE), a term coined in 2001 [23], referring to the
use of computational search as a means of optimizing differ-
ent software engineering problems [21,24,36,47]. A recent

survey [22] reported the upsurge in interest and activity in
the area of SBSE for SPL.

For the SPL configuration optimization problem, many
previous approacheswere proposed for single-objective opti-
mization, such as [19,54]. Wu et al. [55] introduced a
bi-objective optimization method that balances reliability
and cost for a single case study of mail server system devel-
opment. Lu et al. [33] proposed an approach called Zen-FIX
to recommend solutions that conform to all predefined con-
straints and maximize the overall efficiency of an interactive
product configuration process. Also, they evaluated their
approach on a single case study. Hierons et al. [28] proposed
amethod called SIP that optimizes first on the number of con-
straints and then on the other objectives. The case studies they
used are either relatively small (at most 290 features) or ran-
domly generated (e.g., the largest one with 10,000 features).

Sayyad et al. conducted the first and detailed study on
MOEAs for the SPL configuration optimization problem
in a series of papers [48–50]. Moreover, the feature mod-
els they used for evaluation come from large, constrained,
real-world SPLs. To deal with the constraints defined in the
feature model and produce valid configurations, they defined
the number of constraints that were violated in the gener-
ated solution as an optimization objective to minimize. Other
optimization objectives are relevant to user preferences, such
as minimizing cost and minimizing the number of defects.
They conducted experiments and compared the performance
of seven widely used MOEAs, such as IBEA [58], Non-
dominated Sorting Genetic Algorithm version 2 (NSGA-II)
[11], and Strength Pareto Evolutionary Algorithm version 2
(SPEA2) [59]. Their experimental results demonstrated the
superiority of IBEA to other algorithms for the SPL config-
uration optimization problem.

Henard et al. [26] proposed the first hybrid algorithm,
called SATIBEA, by combining IBEA with SAT solving.
Their SAT solving part encodes the feature model in a CNF
formula and asks a SAT solver to return a valid solution
[27]. They incorporated SAT solving into the mutation oper-
ator of IBEA. Concretely, SATIBEA has a probability to
replace a randomly mutated configuration with a new valid
one returned by the SAT solver, such that the predefined
constraints are resolved explicitly and some configurations
in the population are guaranteed to be valid. Moreover, to
increase the diversity of solutions found, SATIBEA ran-
domly permutes the parameters of the underlying solver at
each execution of SAT solving. Empirical results on the same
case studies as usedbySayyad et al.’s IBEAapproach showed
that SATIBEA significantly outperforms the IBEA approach
on large real-world SPLs.

In this paper, we refer to SATIBEA as the state-of-the-art
approximate optimization method for the SPL configuration
optimization problem and use SATIBEA as a baseline algo-
rithm for performance comparison.

123

SMTIBEA: a hybrid multi-objective optimization algorithm for configuring large… 1451

4.2 Exact methods

Olaechea et al. [38,39] first adapted the Guided Improved
Algorithm (GIA) [44] for the exact solving of the multi-
objective configuration optimization problem of an SPL. The
key idea of GIA relies on an improved search process, which
uses a constraint solver to return a valid solution and then
augments the current constraints with the superior constraint
to search for solutions that dominate ones found already.
Given a currently found solution s, the superior constraint
augmented for the next search is defined as follows:

sup(s) = {s′ ∈ S : s′ ≺ s}. (3)

Adding the superior constraint will force the solver to return
a solution dominating s; if there is no solution returned, then
solution s is Pareto-optimal. For example, as shown in Fig. 2,
the superior constraint of solution s4 defines the subspace that
contains all solutions that dominate s4.

The superior constraint defined above specifies a group
of linear inequalities, which go beyond the general expres-
siveness of SAT solving. Olaechea et al. [38] expressed the
superior constraint and implemented the improved search
using an off-the-shelf SMT solver. SMT significantly extends
standard SAT by adding richer theories, such as equality rea-
soning, linear arithmetic, bit vectors, and arrays [9]. Also, a
recent study [45] shows that SMTmight be the most efficient
reasoning formalism in checking model properties, com-
pared to CSP (Constraint Satisfaction Problem) [52], Alloy
[30], and ASP (Answer Set Programming) [35]. Empirical
results showed that GIA is able to compute all exact Pareto-
optimal solutions in reasonable time for SPL case studies
with less than 45 features, but it is not scalable to a case study
Eshopwith 290 features [38]. Later, Guo et al. proposed sev-
eral parallel algorithms to improve the scalability of GIA, but
their algorithms are not yet able to complete the exact solving
of the Eshop case in 6 days [20]. Note that the Eshop case

s1

s2

s3

Costminimization

ycneta
L

n
oit

a
zi

mi
ni

m

s6

s5

s4

s7

Fig. 2 Superior constraint of solution s4 defines the gray area that
contains all solutions that dominate s4

with 290 features has approximately 5.02e+49 valid config-
urations [20], so probably no algorithm is able to produce the
full, exact Pareto front in reasonable time. This demonstrates
the need for an approximate approach for large SPLs.

To the best of our knowledge, GIA is the state-of-the-art
exact optimization method for multi-objective SPL config-
uration optimization problem. GIA empirically works well
for the problems with up to 44 features [38]. However, many
real-world SPLs involve thousands of features, which poses
a great challenge for the SPL configuration optimization.
In this paper, we target large, constrained SPLs and keep
the same case studies as [26,48]. We will not carry out
performance comparison to GIA because of its insufficient
scalability on large SPLs. But we will investigate the perfor-
mance influence of the improved search and the general SMT
solving when incorporating either of them into the mutation
operator of the IBEA.

5 Our approach

In this section, we present our approach SMTIBEA that com-
bines IBEA with SMT solving.

5.1 Framework and operators

The basic algorithmic framework of SMTIBEA follows the
IBEA template of jMetal, an open-source Java framework
for multi-objective optimization [13,14]. The details of the
classic IBEA can be found elsewhere [58].

Our approach adopts the algorithmic template supporting
binary solution type, which is also used by the state-of-the-
art (SATIBEA) [26]. That is, each feature is binary, and each
configuration of a featuremodel is encoded as a binary string,
where the number of bits is equal to the number of features.
If a feature is selected, then the corresponding bit value is set
to 1, and 0 otherwise.

Standard operators used in SMTIBEA include: single-
point crossover, bit-flip mutation, and binary tournament
selection. The standard initial population generation follows
a random strategy; that is, the initial population is composed
of a set of randomly generated binary strings, each of which
represents an arbitrary configuration that may not be valid.
SMTIBEA stops its execution when the predefined timeout
is reached.

5.2 Specifications and SMT solving

SMTIBEA translates a feature model together with the
quality attributes into a set of quantifier-free formulas in first-
order logic [9]. By inputting the formulas to an off-the-shelf
SMT solver, we are able to resolve the predefined constraints
automatically and acquire a valid configuration conveniently.
Given the case studies we evaluated, three types of variables

123

1452 J. Guo et al.

are supported in our specifications:Boolean, integer, and real.
Each feature is encoded as a Boolean variable. Each quality
attribute is represented as either an integer or a real vari-
able, for example, the cost of each feature is real, and the
number of defects of each feature is integer. Moreover, two
standard theories, quantifier-free linear integer arithmetic and
quantifier-free linear real arithmetic, are used for reasoning.

A quality attribute of a configuration is represented by an
additional variable, and its value is the sum of the quality
attributes of the features selected in the configuration. For
example, the total cost of a configuration c is the sum of the
cost of each feature f selected in c, i.e, total_cost (c) =
∑

f ∈c cost (f).
As described in Sect. 2, the constraints defined between

features are usually encoded into a Boolean formula and
can be resolved automatically by SAT solving. However, in
practice, there may exist non-Boolean constraints defined on
quality attributes. Compared to traditional SAT solving, a dis-
tinguished advantage of SMT solving is able to conveniently
represent and automatically resolve these non-Boolean con-
straints. For example, one can represent a constraint defined
between the costs of two features (e.g., cost (f1) = 2 ∗
cost (f2) + 100) or a constraint defining the threshold of
a configuration’s total cost (e.g., total_cost (c) <= 1000).

By the additional variable for the total quality of a
configuration, we can further specify the superior con-
straint defined in equation (3). For example, the supe-
rior constraint regarding the cost is defined as follows:
total_cost (c′) < total_cost (c), where c′ is a subsequent
configuration returned by the underlying solver. Note that,
for multi-objective problems, the superior constraint is spec-
ified as a combination of multiple linear inequalities. Take
the case shown in Figure 1 as example, the superior con-
straint defined for the two objectives is (total_cost (c′) <

total_cost (c)) ∧ (total_latency(c′) < total_latency(c)).
The solver is repeatedly called, adding the superior constraint
after each call to improve upon the total cost of previously
found solutions, until a Pareto-optimal solution is found. This
way, we achieve the improved search process introduced in
Sect. 4.2.

We implement SMTIBEA with the efficient SMT solver
Z3 [10]. Following the same technique of the state-of-the-
art to increase the diversity of solutions returned by the
underlying solver, we randomly permute a parameter of the
Z3 solver: random_seed. The parameter controls the order
of variables considered at each call to the solver. That is,
SMTIBEA randomly permutes the variable order at each exe-
cution of SMT solving in order to increase the diversity of
solutions generated.

Table 2 Characteristics of three SMTIBEA variants compared to the
state-of-the-art (SATIBEA)

Algorithm Mutation Initial population
generation

SATIBEA SAT solving Random generation

SMTIBEAv1 SMT solving Random generation

SMTIBEAv2 SMT solving SMT solving

SMTIBEAv3 Improved search Random generation

5.3 SMTIBEA variants

To answer RQ2, we design three SMTIBEA variants by
incorporating the SMT solving into the mutation operator
and the initial population generation of IBEA. Table 2 sum-
marizes the key characteristics of the SMTIBEA variants,
compared to the state-of-the-art.

As a baseline algorithm, SATIBEA incorporates the SAT
solving into themutation operator of IBEA. In addition, SAT-
IBEA adopts the standard, random way of initial population
generation. Note that such an initial population may contain
invalid configurations.

The first variant SMTIBEAv1 replaces the SAT solving in
SATIBEA with the SMT solving. Once a mutation operator
is enabled, SMTIBEAv1 has a probability of randomly pick-
ing a configuration in the current population and replacing it
with a new valid one returned by the underlying SMT solver.
Also, SMTIBEAv1 keeps using the standard way of initial
population generation.

The second variant SMTIBEAv2 replaces the standard
way of initial population generation in SMTIBEAv1 with
a new way: The underlying SMT solver is repeatedly called
to create valid configurations for the initial population until
the population reaches a designated size. That is, all config-
urations in the initial population are guaranteed to be valid.
Furthermore, asmentioned in previous section, SMTIBEAv2
randomly permutes the variable order during the SMT solv-
ing to increase the diversity of the configurations generated.
Note that SMTIBEAv2 invokes the SMT solving twice in
the mutation and in the initial population generation, respec-
tively.

The third variant SMTIBEAv3 augments SMTIBEAv1
with the improved search using the superior constraint
defined in Eq. (3). To develop the capability of constraint
solving in the mutation operator, SMTIBEAv3 has a proba-
bility to invoke the improved search that forces the underlying
solver to return a valid and better solution than the currently

123

SMTIBEA: a hybrid multi-objective optimization algorithm for configuring large… 1453

found ones. Note that the SMT solving naturally supports
the superior constraint that usually goes beyond the general
expressiveness of SAT solving.

6 Experimental setup

In this section, we present the settings of our conducted
experiments. Concretely, we introduce the subjects, the opti-
mization objectives, and the performance metrics. Moreover,
we describe the settings of our implementation, the measure-
ment, and the statistical tests.

6.1 Subjects

Scalability is a key concern for addressing the SPL configura-
tion optimization problem in practice. Since small problems
can even be solved exactly, as described in Sect. 4.2, we
aim at large, constrained, real-world SPL case studies in this
paper. In particular, we target the real feature model that has
more than 1000 features and is rich in constraints.

We performed our case studies on the same publicly avail-
able dataset deployed by the state-of-the-art. The dataset
covers five large, constrained, real-world feature models
taken from the Linux Variability Analysis Tools (LVAT)
repository [34]. We reported the software version, the num-
ber of features, and the number of constraints for each subject
in Table 3.

In the dataset we used, the original authors augmented
each feature of each feature model with three quality
attributes: cost, defects, and used_before [26].
They set the values for these attributes arbitrarily with a uni-
form distribution: cost takes real values between 5.0 and
15.0, used_before takes Boolean values, and defects
takes integer values between 0 and 10. Also, they defined a
dependency between two attributes: if (not used_before)
then defects = 0.

6.2 Optimization objectives

In our experiments,we consider the followingfive objectives:

1. Correctness. We seek to minimize the number of con-
straints of the feature model that are violated by a
configuration.

Table 3 Overview of subject SPLs

System Version #Features #Constraints

eCos 3.0 1244 3146

FreeBSD 8.0.0 1396 62,183

Fiasco 2011081207 1638 5228

uClinux 20100825 1850 2468

Linux 2.6.28.6 6888 343,944

2. Richness of features. We seek to minimize the number of
deselected features in a configuration.

3. Features that were not used before. We seek to minimize
the number of features that were not used before in a
configuration.

4. Known defects. We seek to minimize the number of
known defects in a configuration.

5. Cost. We seek to minimize the cost of a configuration.

Note that the first two objectives are related to the struc-
tural information of a configuration, and the later three
objectives come from the quality attributes that augment each
feature. In practice, other objectives can be also considered.
We selected the five objectives to ensure identical settings as
those reported by the state-of-the-art.

6.3 Performance metrics

We evaluated the performance of the studied algorithms in
terms of three aspects: (1) the quality of the approximate
Pareto front produced, (2) the convergence to the exact Pareto
front, and (3) the diversity of the solutions produced. As
suggested by Zitzler et al. [60], we measured the quality
of an approximate (Pareto) front using the following three
metrics:

– Hypervolume (HV) [6]. Thismetric calculates the volume
of the subspace covered by an approximate front A. It
evaluates how well the approximate front A fulfills the
optimization objectives. A higher HV indicates a better
Pareto front.

– Epsilon (ε) [60]. This metric calculates the shortest dis-
tance that is required to transform every solution in an
approximate front A to dominate the reference front R.
It evaluates how close an approximate front A is to the
reference front R. A lower ε indicates a better Pareto
front.

– Inverted Generational Distance (IGD) [29]. This metric
calculates the average distance from the solutions belong-
ing to the reference front R to the closest solution in an
approximate front A. It complements the ε metric to eval-
uate how close an approximate front A is to the reference
front R. A lower IGD indicates a better Pareto front.

We measured the convergence to the exact Pareto front
using the following metric:

– Error Ratio (ER) [32]. This metric calculates the percent-
age of solutions in an approximate front A that are not
solutions in the reference front R. It evaluates the pro-
portion of non-true solution in an approximate front A.
A lower ER indicates a better Pareto front.

We measured the diversity using the following metric:

123

1454 J. Guo et al.

– Generalized Spread (GS) [12]. This metric calculates the
extent of spread in the solutions of an approximate front
A. It evaluates the distribution of all solutions among
all the optimization objectives. A higher GS indicates a
better Pareto front.

Note that the quality aspect has a higher priority for perfor-
mance evaluation, since users usually desire a high-quality
population of solutions in the first place. Among a popula-
tion of solutions produced, users desire more Pareto-optimal
solutions, so the convergence matters next to the quality. In
addition, the diversity ensures that users have a variety of
solutions to choose when the quality and convergence are
satisfying. Therefore, the comparisons of the convergence
and the diversity are only important when there is quality in
the solutions found [26].

The computation of all the above metrics requires the ref-
erence front R. Ideally, the reference front is supposed to be
the exact Pareto front. Since most multi-objective optimiza-
tion problems are NP-hard, it is usually infeasible to acquire
the exact Pareto front, which has been evidenced in [20,38]
for the SPL configuration optimization problem. Therefore,
we acquired the reference front R by calculating the best solu-
tion found so far by all the studied algorithms. Concretely,
we made a union of all the approximate Pareto fronts found
by each algorithm, and then we discarded all the dominated
solutions in the union and used all the non-dominated solu-
tions composing the reference front.

To minimize the effects of objective value scaling, we
reported the normalized metrics (except for ER) for analy-
sis. We first normalized the objective values of all solutions
of an approximate front A and of the reference front R with
respect to the maximum andminimum values for each objec-
tive. For example, suppose the defects values range from
0 to 50, and thecost values range from100 to 100000. Since
the magnitudes of the cost values are significantly larger,
which is actually the case in our evaluated dataset, they may
dictate each metric because the defects values are negli-
gible. To address this issue, a defects value (resp. cost
value) x is normalized to x−0

50−0 (resp. x−100
100000−100), which is a

real value between 0.0 and 1.0. Afterward, each normalized
metric is calculated by using the normalized objective values
of solutions. Note that the ER metric is not affected by the
issue of objective value scaling, so we reported it directly.

6.4 SMTIBEA settings

Table 4 lists the values of key parameters of SMTIBEA. To
enable a fair comparison to the state-of-the-art, we used the
same settings as the ones reported by Henard et al. [26]. Note
that, once a mutation operator is enabled at a rate of 0.001,
each of the three SMTIBEA variants has a probability of 0.98
to perform the standard bit-flip mutation. With a probability

Table 4 Overview of the parameter settings of SMTIBEA

Parameter Value

Population size 300

Archive size 300

Single-point crossover rate 0.05

Mutation rate 0.001

Probability of using standard bit-flip mutation 0.98

Probability of using SMT solving for mutation 0.02

Probability of using improved search for mutation 0.02

Internal timeout of a call to the SMT Solver 6 s

of 0.02, SMTIBEAv1or SMTIBEAv2 returns a valid solution
by using the SMT solving, while SMTIBEAv3 returns a valid
and better solution than the currently found one by using the
improved search.

SMTIBEA employs the Z3 solver for SMT solving. As
reported by Henard et al. [26], each call to the SAT solver
during the execution of SATIBEA takes less than 6 s. There-
fore, to make a fair comparison, we set 6 s as the internal
timeout of a call to the Z3 solver. That is, each call to the
underlying solver during the execution of SMTIBEA has a
timeout of 6 s to return a valid configuration; if the timeout
is reached, a random solution that may not be valid will be
returned. Furthermore, we set the random_seed parameter
of Z3 solver to a random unsigned integer ranging from 0 to
5e+8, by which we randomly permute the variable order at
each execution of SMT solving.

6.5 Measurement settings

All measurements were performed on the same Windows 7
Machine with Intel Core i5 CPU 3.5 GHz and 16 GB RAM.
The algorithms are compute-bound and not memory inten-
sive. Since Henard et at. reported that SATIBEA stabilizes
on its ultimate solutions in 15min [26], we performed each
studied algorithm 15min to compute the approximate Pareto
front for each subject.

To reduce measurement fluctuations caused by random-
ness (e.g., the randomness of performing crossover and
mutation), we independently executed each algorithm 30
times for each subject to support inferential statistical test-
ing for significance and assessment of effect size. We took
both the median and mean values of the measurements for
analysis.

6.6 Statistical tests

Based on the experimental results of 30 executions per algo-
rithm, we conducted a statistical test at the significance level
of 5%. We performed the Mann–Whitney U test, which is

123

SMTIBEA: a hybrid multi-objective optimization algorithm for configuring large… 1455

a nonparametric test and makes fewer assumptions regard-
ing the underlying populations. We calculated the estimated
probability, i.e., p-value, that an algorithm produces different
results than the other.

As suggested by Arcuri and Briand [2], we reported the
nonparametric effect sizemeasure Â12, introduced byVargha
and Delaney [53]. It indicates the performance superiority,
and it measures the extent to which an algorithm outperforms
the other. Moreover, the superiority between algorithms is
considered as small, medium and large when Â12 value is
over 0.56, 0.64 and 0.71, respectively.

7 Experimental results

In this section, we present our experimental results. Sec-
tion 7.1 compares the performance of three SMTIBEA
variants and chooses the best. Section 7.2 compares the
selected SMTIBEA variant to the current state-of-the-art
(SATIBEA).

7.1 Comparison of three SMTIBEA variants

Table 5 records the experimental results of three SMTIBEA
variantswhen applied tofiveSPLs.The columnsSMTIBEAv1
(v1), SMTIBEAv2 (v2) and SMTIBEAv3 (v3) list themeasured
results of each approach. In particular, we report the median
and mean values of the measured results for 30 executions.
We conducted statistical analysis for the comparisons of any
two approaches and calculated the p values and the effect
sizes Â12. The columns v1 VS v3, v2 VS v3 and v2 VS v1
list three pairs of statistical analysis results. From them, the
other three pairs, including v3 VS v1, v3 VS v2 and v1 VS v2,
can be inferred, e.g., Â12(v1 V S v3) + Â12(v3 V S v1) =
1. So we reported only a half of Â12 results. The rows of
the table record the measured details for each subject SPL,
including Hypervolume (row HV), Epsilon (row ε), Inverted
Generational Distance (row IGD), Error Ratio (row ER) and
Generalized Spread (row GS) for 30 runs per algorithm. We
highlight the median and mean values in bold that are the
best for each subject system and each performance metric.

Our results reveal that no one variant is absolutely bet-
ter than the other two. In terms of HV, for example,
SMTIBEAv1 achieves the highest HV only for FreeBSD;
SMTIBEAv2 works the best for Linux and eCos; and
SMTIBEAv3 produces the best results for Fiasco and
uClinux.

We calculated all the p-values and the effect sizes Â12 for
the comparisons of any two approaches and presented three
pairs of them in Table 5. In terms of the p-values, the sta-
tistical differences between SMTIBEAv1 and SMTIBEAv3
(v1 VS v3) and between SMTIBEAv2 and SMTIBEAv3 (v2
VS v3) are significant (below 0.05 significance level), while

those between SMTIBEAv2 and SMTIBEAv1 (v2 VS v1) are
not quite significant (above 0.05 significance level) except for
Linux.

For the largest subject Linux, SMTIBEAv2 achieves the
best HV, and the statistical differences between SMTIBEAv2
and SMTIBEAv3 (v2 VS v3) and between SMTIBEAv2
and SMTIBEAv1 (v2 VS v1) are significant with a large
effect size (i.e., Â12 is over 0.71 and even equals to 1).
Although SMTIBEAv1 produces a better ε and a better
IGD than SMTIBEAv2, the effect sizes of SMTIBEAv1
versus SMTIBEAv2 are less than 0.56. Furthermore, the
comparisons of the convergence and the diversity are only
important when there is quality in the solutions found, e.g.,
HV [26].

Therefore, we identify SMTIBEAv2 as the best among
three variants and use it for the following comparison to the
state-of-the-art.

7.2 Comparison between SMTIBEAv2 and the
state-of-the-art

Table 6 compares the performances of SMTIBEAv2 and
the current state-of-the-art (SATIBEA) when applied to five
SPLs. To illustrate the statistical differences straightfor-
wardly, we reported the p-values and the effect sizes Â12

of both SMTIBEAv2 versus SATIBEA (column v2 VS SAT)
and SATIBEA versus SMTIBEAv2 (column SAT VS v2). We
highlight the median and mean values in bold that are the
best for each subject system and for each performance met-
ric at a significance level of 5% and with a large effect size
(Â12 ≥ 0.71).

In terms of HV, our results show that SMTIBEAv2
outperforms SATIBEA for 4 out of 5 SPLs (except for
uClinux), and their statistical differences are significant
with a large effect size. In terms of the ε and IGD,
we observed that SATIBEA seemed to work better than
SMTIBEAv2 for 4 out of 5 SPLs (except for Fiasco), but
the effect sizes Â12 of SATIBEA versus SMTIBEAv2 are
less than 0.56. Only for uClinux, SATIBEA outperforms
SMTIBEAv2 in terms of HV significantly with a large effect
size.

Although correctness is one of the optimization objectives
defined in Sect. 6.2, invalid configurations usuallymake little
sense in practice. Hence, we filter out all invalid configura-
tions from our experimental results, and then we recalculate
the performance metrics using the other four objectives. In
such a case, all evaluated solutions are valid.

Table 7 presents the results of comparing SMTIBEAv2
to SATIBEA when filtering all invalid configurations out.
We highlight all results at the significance level of 0.05 and
with a large effect size. In terms of HV, SMTIBEAv2 sig-
nificantly outperforms SATIBEA for eCos and FreeBSD,
while SATIBEA works better than SMTIBEAv2 for Linux

123

1456 J. Guo et al.

Ta
bl
e
5

E
xp

er
im

en
ta
lr
es
ul
ts
of

fiv
e
pe
rf
or
m
an
ce

m
et
ri
cs

(H
V
,ε
,I
G
D
,E

R
,a
nd

G
S)

of
th
re
e
SM

T
IB
E
A
va
ri
an
ts
fo
r
fiv

e
su
bj
ec
tS

PL
s;
th
e
nu
m
be
r
in

bo
ld

in
di
ca
te
s
th
e
be
st
ca
se

fo
r
ea
ch

su
bj
ec
t

an
d
ea
ch

m
et
ri
c

SP
L

M
et
ri
c

SM
T
IB
E
A
v1

(v
1)

SM
T
IB
E
A
v2

(v
2)

SM
T
IB
E
A
v3

(v
3)

v1
V
S
v3

v2
V
S
v3

v2
V
S
v1

M
ed
ia
n

M
ea
n

M
ed
ia
n

M
ea
n

M
ed
ia
n

M
ea
n

p
va
lu
e

Â
12

p
va
lu
e

Â
12

p
va
lu
e

Â
12

eC
o
s

H
V

2.
86
69
e−

1
2.
86
68
e−

1
2.
87
30
e−

1
2.
86
90
e–
1

2.
47
70
e–
1

2.
47
47
e–
1

3.
01
99
e–
11

1.
00
0

3.
01
99
e–
11

1.
00
0

5.
29
78
e–
1

0.
54
8

ε
8.
02
55
e–
2

8.
44
46
e–
2

7.
89
22
e–
2

7.
96
83
e–
2

3.
92
25
e–
1

3.
90
34
e–
1

2.
99
35
e–
11

0.
00
0

2.
99
72
e–
11

0.
00
0

4.
03
35
e–
1

0.
43
7

IG
D

5.
28
73
e–
4

5.
28
09
e–
4

5.
22
73
e–
4

5.
21
62
e–
4

2.
09
14
e–
3

2.
14
58
e–
3

3.
01
99
e–
11

0.
00
0

3.
01
99
e–
11

0.
00
0

9.
04
90
e–
2

0.
37
2

E
R

1.
93
65
e–
1

2.
16
77
e–
1

2.
00
33
e–
1

2.
06
76
e–
1

8.
04
09
e–
1

8.
07
27
e–
1

3.
01
04
e–
11

0.
00
0

3.
00
66
e–
11

0.
00
0

5.
79
16
e–
1

0.
45
8

G
S

8.
84
75
e–
1

8.
94
31
e–
1

8.
85
65
e–
1

8.
92
82
e–
1

9.
77
81
e–
1

9.
89
67
e–
1

3.
52
01
e–
07

0.
11
7

3.
08
11
e–
08

0.
08
3

9.
82
31
e–
1

0.
49
8

Fi
a
sc
o

H
V

2.
04
83
e–
1

2.
05
00
e–
1

2.
04
94
e–
1

2.
05
43
e–
1

2.
78
64
e–
1

2.
77
99
e–
1

3.
01
99
e–
11

0.
00
0

3.
01
99
e–
11

0.
00
0

5.
79
29
e–
1

0.
54
2

ε
6.
87
57
e–
1

6.
86
72
e–
1

6.
87
01
e–
1

6.
84
87
e–
1

9.
67
49
e–
2

1.
00
67
e–
1

2.
81
98
e–
11

1.
00
0

2.
91
92
e–
11

1.
00
0

3.
71
98
e–
1

0.
43
3

IG
D

3.
14
44
e–
3

3.
13
97
e–
3

3.
14
27
e–
3

3.
13
06
e–
3

4.
95
47
e–
4

5.
07
05
e–
4

3.
01
99
e–
11

1.
00
0

3.
01
99
e–
11

1.
00
0

7.
84
46
e–
1

0.
47
9

E
R

2.
80
00
e–
1

2.
71
98
e–
1

2.
00
0e
–1

2.
22
47
e–
1

7.
84
62
e–
2

1.
00
36
e–
1

1.
54
25
e–
09

0.
95
4

2.
22
68
e–
06

0.
85
6

5.
93
78
e–
2

0.
35
8

G
S

9.
03
71
e–
1

9.
05
45
e–
1

9.
05
38
e–
1

9.
05
70
e–
1

9.
24
39
e–
1

9.
26
47
e–
1

1.
17
11
e–
02

0.
31
0

1.
32
72
e–
02

0.
31
3

8.
53
38
e–
1

0.
51
4

Fr
ee
B
SD

H
V

3.
39
35
e–
1

3.
37
59
e–
1

3.
37
87
e–
1

3.
37
05
e–
1

1.
42
93
e–
1

1.
43
17
e–
1

3.
01
99
e–
11

1.
00
0

3.
01
99
e–
11

1.
00
0

6.
73
50
e–
1

0.
46
8

ε
1.
51
68
e–
1

1.
55
61
e–
1

1.
55
98
e–
1

1.
57
07
e–
1

3.
92
59
e–
1

3.
91
42
e–
1

3.
00
47
e–
11

0.
00
0

3.
01
04
e–
11

0.
00
0

8.
53
36
e–
1

0.
51
4

IG
D

8.
72
72
e–
4

8.
77
62
e–
4

8.
56
81
e–
4

8.
64
07
e–
4

3.
05
34
e–
3

3.
04
66
e–
3

3.
01
99
e–
11

0.
00
0

3.
01
99
e–
11

0.
00
0

2.
00
95
e–
1

0.
40
3

E
R

6.
41
90
e–
2

7.
85
89
e–
2

7.
25
04
e–
2

7.
71
21
e–
2

1.
00
00
e–
0

9.
98
39
e–
1

9.
40
00
e–
12

0.
00
0

9.
38
70
e–
12

0.
00
0

7.
73
11
e–
1

0.
52
2

G
S

9.
34
47
e–
1

9.
37
43
e–
1

9.
31
46
e–
1

9.
41
87
e–
1

9.
58
68
e–
1

9.
74
96
e–
1

1.
44
12
e–
02

0.
31
6

2.
06
81
e–
02

0.
32
5

8.
18
75
e–
1

0.
48
2

u
C
li
n
u
x

H
V

2.
09
77
e–
1

2.
10
36
e–
1

2.
11
31
e–
1

2.
11
59
e–
1

2.
63
65
e–
1

2.
63
65
e–
1

3.
01
99
e–
11

0.
00
0

3.
01
99
e–
11

0.
00
0

4.
28
96
e–
1

0.
56
0

ε
6.
97
40
e–
1

6.
97
54
e–
1

6.
99
57
e–
1

6.
97
61
e–
1

8.
14
40
e–
2

7.
99
83
e–
2

2.
97
66
e–
11

1.
00
0

2.
98
03
e–
11

1.
00
0

8.
29
94
e–
1

0.
51
7

IG
D

5.
25
22
e–
3

5.
24
10
e–
3

5.
26
02
e–
3

5.
24
47
e–
3

5.
95
54
e–
4

6.
03
14
e–
4

3.
01
99
e–
11

1.
00
0

3.
01
99
e–
11

1.
00
0

9.
58
73
e–
1

0.
50
4

E
R

4.
01
67
e–
1

4.
08
89
e–
1

4.
45
00
e–
1

4.
62
56
e–
1

4.
86
36
e–
1

4.
95
13
e–
1

1.
62
79
e–
02

0.
31
9

4.
55
27
e–
01

0.
44
3

4.
16
06
e–
1

0.
56
2

G
S

7.
94
19
e–
1

7.
92
53
e–
1

7.
90
83
e–
1

7.
85
79
e–
1

1.
01
84
e–
0

1.
01
77
e–
0

3.
01
99
e–
11

0.
00
0

3.
01
99
e–
11

0.
00
0

3.
18
30
e–
1

0.
42
4

L
in
u
x

H
V

2.
60
80
e–
1

2.
61
04
e–
1

2.
63
66
e–
1

2.
63
56
e–
1

2.
40
26
e–
1

2.
39
70
e–
1

3.
01
99
e–
11

1.
00
0

3.
01
99
e–
11

1.
00
0

1.
24
77
e–
04

0.
78
9

ε
1.
62
49
e–
1

1.
56
33
e–
1

2.
85
39
e–
1

2.
74
74
e–
1

2.
20
71
e–
1

2.
13
38
e–
1

4.
68
36
e–
08

0.
08
9

1.
09
01
e–
05

0.
83
1

1.
69
38
e–
09

0.
95
3

IG
D

4.
63
00
e–
4

4.
74
21
e–
4

8.
16
99
e–
4

8.
15
45
e–
4

5.
59
59
e–
4

5.
81
33
e–
4

2.
92
15
e–
08

0.
05
3

3.
15
89
e–
10

0.
97
3

3.
01
99
e–
11

1.
00
0

E
R

5.
70
47
e–
2

6.
65
77
e–
2

6.
02
01
e–
2

6.
51
35
e–
2

4.
54
70
e–
1

4.
57
12
e–
1

3.
01
42
e–
11

0.
00
0

3.
01
42
e–
11

0.
00
0

9.
05
84
e–
01

0.
49
1

G
S

8.
55
54
e–
1

8.
66
98
e–
1

9.
11
33
e–
1

9.
18
41
e–
1

9.
21
55
e–
1

9.
29
21
e–
1

1.
33
67
e−

05
0.
17
2

4.
11
91
e–
01

0.
43
8

1.
86
08
e–
06

0.
85
9

123

SMTIBEA: a hybrid multi-objective optimization algorithm for configuring large… 1457

Table 6 Experimental results (including invalid configurations) of five performance metrics (HV, ε, IGD, ER, and GS) of SMTIBEAv2 and
SATIBEA for five subject SPLs; the number in bold indicates a significantly better case with a large effect size for each subject and each metric

SPL Metric SMTIBEAv2 (v2) SATIBEA (SAT) v2 VS SAT SAT VS v2

Median Mean Median Mean p value Â12 p value Â12

eCos HV 2.8664e–1 2.8638e–1 2.8203e–1 2.8178e–1 1.0937e–10 0.986 1.0937e–10 0.014

ε 1.3829e–1 1.3759e–1 6.4039e–2 6.6997e–2 3.2519e–11 0.999 3.2519e–11 0.001

IGD 6.9226e–4 6.8459e–4 5.8313e–4 5.8368e–4 4.6159e–10 0.969 4.6159e–10 0.031

ER 1.9167e–1 1.8585e–1 2.1000e–1 2.3000e–1 5.2712e–02 0.354 5.2712e–02 0.646

GS 9.5198e–1 9.4619e–1 8.7854e–1 8.9229e–1 3.1830e–03 0.722 3.1830e–03 0.278

Fiasco HV 2.4856e–1 2.4881e–1 2.4241e–1 2.4397e–1 1.7836e–4 0.782 1.7836e–4 0.218

ε 1.0139e–1 1.0313e–1 1.0959e–1 1.0890e–1 1.6531e–2 0.319 1.6531e–2 0.681

IGD 8.9115e–4 8.9490e–4 9.4019e–4 9.3008e–4 2.4157e–2 0.330 2.4157e–2 0.670

ER 1.6333e–1 1.7976e–1 2.5417e–1 2.5009e–1 1.2986e–3 0.258 1.2986e–3 0.742

GS 6.1394e–1 6.1753e–1 6.2685e–1 6.2895e–1 5.7929e–1 0.458 5.7929e–1 0.542

FreeBSD HV 3.2792e–1 3.2687e–1 2.6101e–1 2.6096e–1 3.0199e–11 1.000 3.0199e–11 0.000

ε 2.3596e–1 2.3250e–1 1.7366e–1 1.7394e–1 4.9712e–09 0.94 4.9712e–09 0.060

IGD 1.7802e–3 1.7677e–3 1.7009e–3 1.7144e–3 7.0127e–02 0.637 7.0127e–02 0.363

ER 4.1170e–2 4.3587e–2 6.7246e–1 6.6796e–1 3.0104e–11 0.000 3.0104e–11 1.000

GS 9.4224e–1 9.5058e–1 9.0261e–1 9.2948e–1 3.5137e–02 0.659 3.5137e–02 0.341

uClinux HV 2.0922e–1 2.0932e–1 2.9389e–1 2.9321e–1 3.0199e–11 0.000 3.0199e–11 1.000

ε 3.5314e–1 3.5611e–1 6.7987e–2 6.7847e–2 2.9027e–11 1.000 2.9027e–11 0.000

IGD 3.0566e–3 3.0972e–3 8.1260e–4 8.2772e–4 3.0199e–11 1.000 3.0199e–11 0.000

ER 2.8000e–1 3.0311e–1 3.4500e–1 3.4244e–1 1.1703e–01 0.382 1.1703e–01 0.618

GS 6.3612e–1 6.6254e–1 5.8158e–1 5.9492e–1 1.8916e–04 0.781 1.8916e–04 0.219

Linux HV 2.2168e–1 2.2217e–1 2.1870e–1 2.1841e–1 3.8481e–03 0.718 3.8481e–03 0.282

ε 5.5890e–1 5.5324e–1 1.4448e–1 1.4340e–1 3.0199e–11 1.000 3.0199e–11 0.000

IGD 2.7086e–3 2.6476e–3 1.0065e–3 9.8871e–4 3.0199e–11 1.000 3.0199e–11 0.000

ER 2.5207e–2 2.9674e–2 2.8984e–1 2.8867e–1 3.0123e–11 0.000 3.0123e–11 1.000

GS 9.5370e–1 9.5481e–1 9.4104e–1 9.5809e–1 4.8252e–01 0.553 4.8252e–01 0.447

and uClinux. Although SATIBEA tends to produce a better
ε and a better IGD than SMTIBEAv2, the effect sizes are not
large. Note that, in Table 7, a ER value of 0 indicates that
all solutions produced by the corresponding algorithm are a
part of the reference front. If all input data are 0, it is not
necessary to perform statistical tests, and we mark ‘–’ in the
table.

8 Discussion

In this section, we discuss the experimental results and
answer the research questions. We present our perspectives
regarding several interesting aspects, including selection
of performance metrics, convergence speed of algorithms,
expressiveness of our approach, timeout of a call to a con-
straint solver, and strategies of handling constraints. Finally,
we explain the threats to validity.

8.1 Research questions

Regarding RQ1, we proposed SMTIBEA, the first approach
that augments IBEA with SMT solving to address richer
constraints in real-world SPLs. SMTIBEA maps the SPL
configuration optimization problem to quantifier-free first-
order formulas, which significantly extend the expressive-
ness of the CNFBoolean formulas used in the state-of-the-art
(SATIBEA). SMTIBEA enhances the capability of con-
straint reasoning by combining SAT solving with linear
arithmetic over integers and real variables. In particular,
SMTIBEA enables the representation and automated reso-
lution of constraints defined not only on features but also
on quality attributes. Moreover, SMTIBEA supports the
improved search [38] using the superior constraint defined
in equation (3), which essentially involves a combination of
linear inequalities.

Regarding RQ2, we incorporated the SMT solving into
the mutation operator and the initial population genera-

123

1458 J. Guo et al.

Table 7 Experimental results (excluding invalid configurations) of five performance metrics (HV, ε, IGD, ER, and GS) of SMTIBEAv2 and
SATIBEA for five subject SPLs; the number in bold indicates a significantly better case with a large effect size for each subject and each metric

SPL Metric SMTIBEAv2 (v2) SATIBEA (SAT) v2 VS SAT SAT VS v2

Median Mean Median Mean p value Â12 p value Â12

eCos HV 2.8360e–1 2.8383e–1 2.7914e–1 2.7918e–1 2.6695e–09 0.948 2.6695e–09 0.052

ε 1.4959e–1 1.4872e–1 5.2745e–2 5.4492e–2 3.0085e–11 1.000 3.0085e–11 0.000

IGD 2.5344e–3 2.6055e–3 1.4870e–3 1.5587e–3 6.0658e–11 0.992 6.0658e–11 0.008

ER 3.6777e–3 8.0555e–3 3.5527e–3 7.1132e–3 8.0600e–01 0.518 8.0600e–01 0.482

GS 8.4228e–1 8.4768e–1 8.1362e–1 8.2148e–1 6.7869e–02 0.638 6.7869e–02 0.362

Fiasco HV 2.4589e–1 2.4390e–1 2.4766e–1 2.4745e–1 3.2553e–01 0.426 3.2553e–01 0.574

ε 1.0607e–1 1.0582e–1 7.8301e–2 8.1879e–2 1.1058e–04 0.791 1.1058e–04 0.209

IGD 9.4013e–3 9.1720e–3 6.8848e–3 6.4806e–3 1.3594e–07 0.897 1.3594e–07 0.103

ER 0.0000e–0 1.4493e–3 0.0000e–0 1.2289e–2 2.0038e–03 0.337 2.0038e–03 0.663

GS 7.1778e–1 7.2302e–1 6.9608e–1 6.8854e–1 2.0095e–01 0.597 2.0095e–01 0.403

FreeBSD HV 1.2933e–1 1.2645e–1 6.3163e–2 7.2578e–2 2.2986e–2 0.767 2.2986e–2 0.233

ε 6.3110e–1 6.2687e–1 0.0000e–0 6.5392e–2 1.8852e–06 1.000 1.8852e–06 0.000

IGD 1.4785e–1 1.8820e–1 0.0000e–0 1.1499e–2 2.2958e–06 0.996 2.2958e–06 0.004

ER 0.0000e–0 0.0000e–0 0.0000e–0 1.6265e–3 4.8778e–01 0.467 4.8778e–01 0.533

GS 9.9790e–1 9.9346e–1 1.1063e–0 1.0894e–0 5.7888e–01 0.433 5.7888e–01 0.567

uClinux HV 2.0922e–1 2.0932e–1 2.9389e–1 2.9321e–1 3.0199e–11 0.000 3.0199e–11 1.000

ε 3.5314e–1 3.5611e–1 5.6624e–2 5.8685e–2 2.9210e–11 1.000 2.9210e–11 0.000

IGD 1.3923e–2 1.4078e–2 2.8927e–3 2.9652e–3 3.0199e–11 1.000 3.0199e–11 0.000

ER 0.0000e–0 5.3333e–3 2.3333e–2 2.2339e–2 9.3307e–06 0.184 9.3307e–06 0.816

GS 5.9739e–1 6.1310e–1 5.3003e–1 5.4193e–1 2.4327e–05 0.818 2.4327e–05 0.182

Linux HV 1.2684e–1 1.1858e–1 1.6351e–1 1.6490e–1 9.5349e–09 0.064 9.5349e–09 0.936

ε 8.1048e–1 8.1790e–1 1.2577e–1 1.0932e–1 4.4618e–11 1.000 4.4618e–11 0.000

IGD 1.1803e–1 1.1613e–1 7.0226e–3 6.4436e–3 4.4618e–11 1.000 4.4618e–11 0.000

ER 0.0000e–0 0.0000e–0 0.0000e–0 0.0000e–0 – – – –

GS 9.8525e–1 9.7513e–1 9.8389e–1 9.8174e–1 6.5466e–01 0.466 6.5466e–01 0.534

tion of IBEA, and we designed three approach variants
SMTIBEAv1, SMTIBEAv2, and SMTIBEAv3 for perfor-
mance comparison. Firstly, our experimental results rein-
forced the importance of incorporating the constraint solving
into the mutation operator, which has been demonstrated by
the state-of-the-art as well.

Secondly, the key difference between SMTIBEAv1 and
SMTIBEAv2 is that SMTIBEAv2 starts with an initial pop-
ulation of all valid configurations. According to our results
in Table 5, the statistical differences between SMTIBEAv1
and SMTIBEAv2 are not quite significant for 4 SPLs, but
SMTIBEAv2 significantly outperforms SMTIBEAv1 with
a large effect size for Linux. Therefore, we conclude that
incorporating constraint solving into the initial population
generation of IBEA is preferable.

Thirdly, the variant SMTIBEAv3 augments the mutation
operator of SMTIBEAv1 with the improved search that com-
bines the SMT solving and the superior constraint to return a
better solution than the currently found ones. Our empirical

results in Table 5 show that SMTIBEAv3 produces the worst
HV among three variants for 3 out of 5 SPLs significantly
with a large effect size. Hence, according to our experimen-
tal results, we do not recommend augmenting the mutation
operator with the improved search.

Regarding RQ3, Our SMTIBEA approach achieves a com-
parable performance to the state-of-the-art (SATIBEA),
given that SMTIBEA has significantly improved the expres-
siveness of constraints. As reported in Table 6, our approach
significantly outperforms SATIBEA in terms of HV for 4 out
of 5 SPLs (except for Fiasco) with a large effect size. After
filtering out all invalid configurations from the results, as
listed in Table 7, our approach still works significantly better
than the state-of-the-art for 2 SPLs (eCos and FreeBSD).

8.2 Performance metrics

The performance evaluation of MOEAs depends mainly on
a number of heuristically chosen metrics, such as Hyper-

123

SMTIBEA: a hybrid multi-objective optimization algorithm for configuring large… 1459

volume [6]. However, every metric provides some specific,
but incomplete, quantifications of optimality and can only be
used effectively under certain conditions [56]. In the original
SATIBEA paper [26], the authors introduced a Pareto Front
Size (PFS)metric to assess the diversity of the produced solu-
tions. The PFSmetric is defined as the number of solutions in
an approximate front A produced by an algorithm. A higher
PFS is preferred since more options are given to users.

Table 8 presents the PFS results comparing SMTIBEAv2
to SATIBEA when applied to five SPLs. We highlight the
median and mean values in bold that are better for each sub-
ject at a significance level of 5% and with a large effect size
(Â12 ≥ 0.71). As shown in the table, SMTIBEAv2 gains
a higher PFS than SATIBEA for 3 out of 5 SPLs with a
large effect size. For subject Fiasco, the calculated p-value is
not significant. For subject FreeBSD, the effect size reaches
medium (over 0.64 but less than 0.71) but not large.

Even though we buy the idea of the PFS metric, we prefer
a metric that has been widely accepted by the community.
Technically, the PFSmetric indicates the absolute cardinality
of an approximate front A, while the ER metric calculates
the percentage of solutions in an approximate front A that
are not solutions in the reference front R. Thus, the PFS
metricmight be skewed to an algorithm that produces a larger
approximate front A without checking the correlation to the
global reference front R, whereas the ER metric is able to
reflect the correlation and helps users to choose an algorithm
that can find more “really good” solutions (globally Pareto-
optimal in the reference front). Therefore, in this paper, we
adopt the ER metric instead of the PFS metric to assess the
diversity. Note that this diversity metric is only important
when high quality is preserved.

8.3 Convergence speed

It is interesting to understand the convergence speed of
our approach compared to the state-of-the-art. For each of
the five subjects, we conducted experiments that performed
SMTIBEAv2 and SATIBEA, respectively, within a certain
time budget, from 5 to 30min. We independently executed
each algorithm 30 times for each subject and each time bud-
get, and we took the mean values of the measurements for

analysis. Our experimental results indicated that the conver-
gence speeds of SMTIBEAv2 andSATIBEAare comparable.
As shown in Figure 3, for subject Linux, which is the
largest available SPL hitherto reported upon in the litera-
ture, both algorithms quickly converge to a relatively stable
HV value even in 5min. Moreover, from 5 to 30min, the HV
changes within a small range of 0.04. In addition, the HV
values of SATIBEA present slight fluctuation, while those of
SMTIBEAv2 tend to behave stably.

8.4 Expressiveness

The configuration optimization problems in real-world SPLs
usually involve various complex constraints, including not
only Boolean but also non-Boolean constraints, such as those
over infinite domain variables (integers, real numbers, and
character strings) together with arithmetic, relational, and
string operators [5,37,40,41]. Previous approaches [3,4,26,
48] mostly support only Boolean constraints and thus suffer

Fig. 3 Hypervolume over time for SMTIBEAv2 and SATIBEA on
Linux

Table 8 Experimental results of
the Pareto Front Size (PFS)
metric of SMTIBEAv2 and
SATIBEA for five subject SPLs;
the number in bold indicates a
significantly better case with a
large effect size

SPL SMTIBEAv2 (v2) SATIBEA (SAT) v2 VS SAT SAT VS v2

Median Mean Median Mean p value Â12 p value Â12

eCos 182 181 168 168 2.9283e–09 0.946 2.9283e–09 0.054

Fiasco 119 121 115 140 1.7807e–01 0.602 1.7807e–01 0.398

FreeBSD 223 224 220 218 3.5580e–02 0.658 3.5580e–02 0.342

uClinux 116 117 106 107 2.2941e–07 0.889 2.2941e–07 0.111

Linux 296 295 290 290 4.7581e–08 0.909 4.7581e–08 0.091

123

1460 J. Guo et al.

from limited applicability. Our SMTIBEA approach signifi-
cantly improves the expressiveness fromBoolean constraints
to quantifier-free first-order constraints, particularly without
sacrificing much performance.

Theoretically, SMT solving may take more time than SAT
solving, because it encodes and resolves more variables and
more complex constraints. Given a subject SPL, let the num-
ber of features be N and the number of structural constraints
defined between features M . For example, as defined in
Table 3, the subject Linux contains N = 6 888 features
and M = 343 944 constraints. In general, the SAT encoding
used by SATIBEA contains M structural constraints for each
system and thus the SAT solver finds a valid solution that sat-
isfiesM constraints defined between features. In contrast, the
SMT encoding used by SMTIBEA contains not only struc-
tural constraints but also quality constraints. For example, if
a feature f of subject Linux has a cost of 100, then there
is a quality (cost) constraint encoded as cost (f) = 100,
as explained in Sect. 5.2. In this way, for a certain quality
attribute, a system has to encode N quality constraints for
all N features. In our case studies, as mentioned in Sect. 6.1,
there are three kinds of quality attributes: cost, defects,
and used_before. Hence, the SMT encoding used by
SMTIBEA contains (M + 3N) constraints in total for each
system.

We aim at a fair comparison to SATIBEA using the same
experimental settings in this paper, which limits the expres-
siveness of SMT solving to some extent. To this end, we
designed SMTIBEAv3 with the improved search that incor-
porates the superior constraints defined by Eq. (3). The
superior constraints cannot be encoded and resolved directly
by SAT solving, but we are aware that there exist techniques
that translate some pseudo-Boolean constraints into SAT
[15].

Our empirical studies on large, constrained SPLs demon-
strated the effectiveness and scalability of SMTIBEA. Sur-
prisingly, SMTIBEA even achieves a comparable perfor-
mance to the state-of-the-art. Furthermore, we published the
source code of our implementation of SMTIBEA, and we
encourage researchers to use it to express and solve more
SPL configuration optimization problems with various com-
plex constraints.

8.5 Timeout setting

As mentioned above, SMT solving may take more time than
SAT solving. To make a fair comparison to the state-of-the-
art, we set the same timeout of a call to the underlying solver
to 6 s in our experiments. What if we increase the timeout
of a call as well as the total running time of an algorithm?
We conducted an experiment that compares SMTIBEAv2 to
SATIBEA using the same experimental setup mentioned in
Sect. 6 but only tuned the timeout of a call to the underlying

Z3 solver in SMTIBEAv2 to be 12 s and the total running
time of SMTIBEAv2 and SATIBEA to be 30min. Table 9
shows the experimental results. SMTIBEAv2 outperforms
SATIBEA for 3 out of 5 SPLs in terms of HV. For subject
Linux, SMTIBEAv2 gains a higher HV than SATIBEA, but
the statistical results (p-value) are not significant. Comparing
to the previous results in Table 6 where the timeout of a Z3
call is 6 s, our experimental results demonstrated that increas-
ing the timeout of the underlying solver of SMTIBEAv2may
not necessarily improve the algorithm performance.

It is non-trivial to set an appropriate timeout of a call to the
underlying constraint solver for a hybrid evolutionary algo-
rithm (e.g., SMTIBEA or SATIBEA), because it involves the
trade-off between constraint solving and evolutionary search
within a certain time limit. If the timeout is set to be higher,
the algorithm tends to spend more time in constraint solv-
ing to acquire a valid solution, but this significantly reduces
the running time for evolutionary search. Moreover, the case
becomes worse if the solver cannot find a valid solution and
returns a random, probably invalid, solution in the end, and
thus a higher timeout maybe leads to wasting more time. If
the timeout is set to be lower, the solver may have a higher
probability not to find a valid solution, which still wastes the
running time.

The above trade-off becomes more complex for SMTIBE
Av3where the improved search is incorporated.The improved
search is the key to the state-of-the-art exact multi-objective
optimization approach for the SPL configuration optimiza-
tion problem [18,38]. It relies on the incremental solving
by augmenting additional constraints, which is widely used
in the community of artificial intelligence and constraint
programming [17,25]. Also, the incremental solving is sup-
ported by many off-the-shelf solvers, such as sat4j and Z3.
However, an improved search that finds a better solution by
augmenting the superior constraint defined in equation (3),
usually takes much more time than a straightforward call to
the underlying solver to return an arbitrary solution. Further-
more, the running time of finding a better solution changes
dynamically in terms of the currently augmented constraint
and the specific problem. Hence, it is non-trivial to predefine
an appropriate timeout for returning a better solution during
the improved search. In the future, it deserves to study further
how to tune the timeout and reach a sweet spot between the
improved search and the evolutionary search, which might
be interesting and meaningful for both communities.

8.6 Strategies of handling constraints

There are many hybrid algorithm variants we can design by
incorporating SAT/SMT solving, random generation, and the
improved search into different components of IBEA and by
tuning the parameter values of IBEA. An interesting variant
is to keep configurations valid “all along the way” that is both

123

SMTIBEA: a hybrid multi-objective optimization algorithm for configuring large… 1461

Table 9 Experimental results of five performance metrics (HV, ε, IGD,
ER, and GS) of SMTIBEAv2 and SATIBEA for five subject SPLs in
30min; the timeout of a call to the underlyingZ3 solver of SMTIBEAv2

is 12 s; the number in bold indicates a significantly better case with a
large effect size for each subject and each metric

SPL Metric SMTIBEAv2 (v2) SATIBEA (SAT) v2 VS SAT SAT VS v2

Median Mean Median Mean p value Â12 p value Â12

eCos HV 2.8963e–1 2.8938e–1 2.8666e–1 2.8632e–1 2.0152e–08 0.922 2.0152e–08 0.078

ε 1.1366e–1 1.1885e–1 6.1366e–2 6.1956e–2 3.0085e–11 1.000 3.0085e–11 0.000

IGD 5.3500e–4 5.3690e–4 4.3174e–4 4.3436e–4 4.9752e–11 0.994 4.9752e–11 0.006

ER 1.6861e–1 1.8950e–1 2.3500e–1 2.5193e–1 1.8510e–03 0.266 1.8510e–03 0.734

GS 8.3794e–1 8.3602e–1 8.2472e–1 8.2989e–1 5.7930e–01 0.542 5.7930e–01 0.458

Fiasco HV 2.5353e–1 2.5449e–1 2.4970e–1 2.5102e–1 4.0330e–03 0.717 4.0330e–03 0.283

ε 1.0669e–1 1.0667e–1 1.0828e–1 1.0717e–1 8.1863e–01 0.482 8.1863e–01 0.518

IGD 9.5590e–4 9.6205e–4 9.9559e–4 9.9688e–4 8.7710e–02 0.371 8.7710e–02 0.629

ER 1.7333e–1 1.8760e–1 2.4833e–1 2.4091e–1 1.3259e–02 0.313 1.3259e–02 0.687

GS 6.2102e–1 6.2199e–1 6.6546e–1 6.5555e–1 6.9125e–04 0.244 6.9125e–04 0.756

FreeBSD HV 3.5881e–1 3.5856e–1 2.8820e–1 2.8765e–1 3.0199e–11 1.000 3.0199e–11 0.000

ε 1.5756e–1 1.6265e–1 1.6867e–1 1.7055e–1 7.8490e–02 0.367 7.8490e–02 0.633

IGD 1.2342e–3 1.2346e–3 1.6901e–3 1.6951e–3 8.9934e–11 0.012 8.9934e–11 0.988

ER 3.2193e–2 4.0784e–2 7.5007e–1 7.3555e–1 3.0066e–11 0.000 3.0066e–11 1.000

GS 9.5904e–1 9.6559e–1 9.5024e–1 9.5308e–1 1.9073e–01 0.599 1.9073e–01 0.401

uClinux HV 2.3109e–1 2.3189e–1 3.0334e–1 3.0357e–1 3.0199e–11 0.000 3.0199e–11 1.000

ε 3.3993e–1 3.4103e–1 7.5908e–2 7.4576e–2 2.9229e–11 1.000 2.9229e–11 0.000

IGD 2.4728e–3 2.4804e–3 8.3877e–4 8.5572e–4 3.0199e–11 1.000 3.0199e–11 0.000

ER 2.4167e–1 2.6978e–1 3.3667e–1 3.4356e–1 1.3512e–02 0.315 1.3512e–02 0.685

GS 6.5184e–1 6.4823e–1 5.9173e–1 5.9157e–1 8.3520e–08 0.903 8.3520e–08 0.097

Linux HV 2.2608e–1 2.2572e–1 2.2294e–1 2.2412e–1 1.1882e–01 0.618 1.1882e–01 0.382

ε 5.3585e–1 5.3545e–1 1.2852e–1 1.2627e–1 3.0199e–11 1.000 3.0199e–11 0.000

IGD 2.7879e–3 2.7641e–3 1.1992e–3 1.1655e–3 3.0199e–11 1.000 3.0199e–11 0.000

ER 3.3445e–2 3.3288e–2 2.6845e–1 2.7740e–1 3.0142e–11 0.000 3.0142e–11 1.000

GS 9.4682e–1 9.5138e–1 9.1734e–1 9.1713e–1 4.4592e–04 0.764 4.4592e–04 0.236

in the initial population and at each iteration of the algorithm.
To meet this goal, we designed a variant called SMTIBEAv4
that changes three parameter values of SMTIBEAv2: The
mutation rate is one, the probability of using standard bit-flip
mutation is zero, and the probability of usingSMTsolving for
mutation is one. Note that SMTIBEAv4 generates an initial
population of all valid configurations, and it always performs
mutation to produce a valid configuration at each iteration.

Table 10 shows the experimental results of SMTIBEAv2
and SMTIBEAv4 when applied to five SPLs. We high-
light the median and mean values in bold that are better
for each subject at a significance level of 5% and with a
large effect size. As shown in the table, SMTIBEAv2 out-
performs SMTIBEAv4 for all subject SPLs in terms of HV
with a large effect size. Moreover, we counted the num-
ber of invalid configurations produced by SMTIBEAv2 for
each subject SPL and listed the medians and means in
Table 11. As expected, not all configurations produced by
SMTIBEAv2 are valid, since correctness is used as an opti-

mization objective in the experimental settings. In contrast,
all configurations produced by SMTIBEAv4 are valid, which
is a distinct advantage if users prefer valid configurations all
along the way. In this paper, we aim at a fair comparison to
SATIBEA using the same experimental settings and further
study on the validity and other concerns will be conducted
in future.

Eiben and Smith [16] introduced three techniques to
handle the constraints when carrying out evolutionary com-
puting: (1) designing a penalty function to de-prioritize
solutions that violate constraints, (2) designing a repair oper-
ator to ensure that each solution is fixed to satisfy constraints,
and (3)modifying the combination andmutation operators so
that only valid solutions are generated. Sayyad et al.’s IBEA
approach [49] adopts the first technique, that is, using the
number of constraints violated as an optimization objective
to minimize. Henard et al.’s SATIBEA approach [26] and
our three SMTIBEA variants (SMTIBEAv1, SMTIBEAv2
and SMTIBEAv3) adopt a combination of the first and the

123

1462 J. Guo et al.

Table 10 Experimental results of five performance metrics (HV, ε, IGD, ER, and GS) of SMTIBEAv2 and SMTIBEAv4 for five SPLs; the number
in bold indicates a significantly better case with a large effect size for each subject and each metric

SPL Metric SMTIBEAv2 (v2) SMTIBEAv4 (v4) v2 VS v4 v4 VS v2

Median Mean Median Mean p value Â12 p value Â12

eCos HV 2.8632e–1 2.8602e–1 2.2691e–1 2.2158e–1 3.0199e–11 1.000 3.0199e–11 0.000

ε 8.5066e–2 8.9225e–2 2.3157e–1 2.3404e–1 3.0047e–11 0.000 3.0047e–11 1.000

IGD 9.0442e–4 9.0753e–4 1.7347e–3 1.8343e–3 3.0199e–11 0.000 3.0199e–11 1.000

ER 1.2000e–1 1.3050e–1 9.1238e–1 9.1319e–1 3.0047e–11 0.000 3.0047e–11 1.000

GS 9.6413e–1 9.6193e–1 6.5595e–1 6.5273e–1 3.0199e–11 1.000 3.0199e–11 0.000

Fiasco HV 2.4617e–1 2.4651e–1 1.1048e–1 1.1000e–1 3.0199e–11 1.000 3.0199e–11 0.000

ε 9.9678e–2 9.9815e–2 4.4150e–1 4.3990e–1 2.9580e–11 0.000 2.9580e–11 1.000

IGD 1.0544e–3 1.0470e–3 7.7143e–3 7.7120e–3 3.0199e–11 0.000 3.0199e–11 1.000

ER 1.2000e–1 1.4227e–1 8.9906e–1 9.0043e–1 3.0180e–11 0.000 3.0180e–11 1.000

GS 6.0952e–1 6.1151e–1 6.8368e–1 6.8527e–1 4.9980e–09 0.060 4.9980e–09 0.940

FreeBSD HV 3.3788e–1 3.3687e–1 1.8238e–1 1.8159e–1 3.0199e–11 1.000 3.0199e–11 0.000

ε 1.4783e–1 1.4800e–1 4.0628e–1 4.0055e–1 3.0010e–11 0.000 3.0010e–11 1.000

IGD 1.1314e–3 1.1442e–3 2.9916e–3 3.0234e–3 3.0199e–11 0.000 3.0199e–11 1.000

ER 4.1169e–2 4.3589e–2 7.5555e–1 7.5015e–1 3.0123e–11 0.000 3.0123e–11 1.000

GS 9.3080e–1 9.4051e–1 7.6730e–1 7.6822e–1 3.0199e–11 1.000 3.0199e–11 0.000

uClinux HV 2.9750e–1 2.9591e–1 1.1080e–1 1.1282e–1 3.0199e–11 1.000 3.0199e–11 0.000

ε 1.5959e–1 1.6022e–1 4.5333e–1 4.4872e–1 2.9991e–11 0.000 2.9991e–11 1.000

IGD 1.1919e–3 1.2445e–3 5.7614e–3 5.7053e–3 3.0199e–11 0.000 3.0199e–11 1.000

ER 2.2833e–1 2.6933e–1 1.0000e–0 9.9963e–1 2.3602e–12 0.000 2.3602e–12 1.618

GS 5.0094e–1 5.2249e–1 5.9722e–1 5.9640e–1 1.5582e–08 0.074 1.5582e–08 0.926

Linux HV 2.5851e–1 2.5885e–1 2.4093e–1 2.4080e–1 3.0199e–11 1.000 3.0199e–11 0.000

ε 2.3782e–1 2.2780e–1 3.8842e–1 3.6713e–1 4.2706e–07 0.119 4.2706e–07 0.881

IGD 7.8999e–4 8.0719e–4 2.2598e–3 2.2540e–3 3.0199e–11 0.000 3.0199e–11 1.000

ER 2.8523e–2 3.3374e–2 5.1905e–1 5.1811e–1 3.0123e–11 0.000 3.0123e–11 1.000

GS 8.5187e–1 8.4611e–1 7.6980e–1 7.7058e–1 2.4386e–09 0.949 2.4386e–09 0.051

third techniques, especially incorporating constraint solving
into the mutation operator. SMTIBEAv4 adopts the second
technique, because the mutation essentially fixes a configu-
ration to be always valid at each iteration of the algorithm. In
the future,we plan to investigatemore about the strengths and
weaknesses of each technique and study algorithm variants
by combining the above three techniques.

8.7 Threats to validity

To enhance internal validity, we replicated the state-of-the-
art (SATIBEA) using the exactly same code published by
the original authors [26]. To make a fair comparison, our
implementation of the SMTIBEA method uses the same
framework and parameter settings as the state-of-the-art. As
listed in Table 2, the key difference lies in the SMT solv-
ing and the improved search using the superior constraints.
The improved search follows the standard method of GIA
[38]. To avoid the misleading effects caused by random

Table 11 Median and mean of
the number of invalid
configurations produced by
SMTIBEAv2 for five SPLs

System Median Mean

eCos 21 22.5

FreeBSD 294 293.1

Fiasco 228 229.7

uClinux 0 0

Linux 294 293.0

fluctuation in measurements, each studied method was per-
formed 30 times for each subject. We took the median and
mean values for analysis and performed inferential statistical
tests for significance and assessment of effect size. Further-
more, we published the source code of our implementation
of SMTIBEA for any study on reproducibility.

Even though the feature models we used in our experi-
ments are real, a threat to our analysis is the use of synthetic
data as the three quality attributes of features, as described
in Sect. 6.1. The data were generated randomly based on

123

SMTIBEA: a hybrid multi-objective optimization algorithm for configuring large… 1463

distributions seen in historical datasets [49]. The difficulty
of acquiring real data comes from the fact that the real data
are often proprietary and not published. Future work should
attempt to collect real data for evaluation in practice.

Many metrics were proposed to evaluate the perfor-
mance of MOEAs. We are aware that every existing metric
provides some specific, but incomplete, quantifications of
performance and can only be used effectively under certain
conditions [56]. Tomake our performance evaluation as com-
prehensive as possible, we used five performance metrics
taking quality, convergence, and diversity into account.

To increase external validity, we evaluated five large SPL
case studies. All these SPLs have been deployed and used
in real-world scenarios, and they are highly constrained. The
quality attributes of features and the optimization objectives
are synthetic, since the actual data are not available for the
studied subjects. To make a fair comparison, we used the
same synthetic data provided by the state-of-the-art. How-
ever, we are aware that the results of our experiments may
not be automatically transferable to all other configuration
optimization problems of SPLs.

9 Conclusion

We proposed SMTIBEA, the first hybrid multi-objective
optimization algorithm that combines IBEA with SMT
solving for the SPL configuration optimization problem.
SMTIBEA significantly extends the constraint expressive-
ness of the state-of-the-art from CNF Boolean formulas to
quantifier-free first-order formulas and thus supports richer
constraints in real-world SPLs.

We conducted experiments on five large, real-world,
highly constrained SPLs, and we evaluated the algorithms in
terms of five performance metrics. Empirical results demon-
strated that our approach is comparable in performance to the
state-of-the-art, given that the expressiveness of constraints
has been significantly improved.

We designed three SMTIBEA variants to investigate the
performance influence of SMT solving on the mutation oper-
ator and the initial population generation of the IBEA. Our
empirical results reinforced the importance of augmenting
the mutation operator with constraint solving. Augmenting
the initial population generation with SMT solving tends to
produce solutions with a better HV, so it is recommended.

Future work includes investigating the expressiveness of
our approach on more complex SPL configuration optimiza-
tion problems. Moreover, different ways of combining the
improved search with the evolutionary search to improve the
performance will be studied.

Acknowledgements We would like to thank anonymous reviewers
for their helpful comments. This research was partially supported by
Shanghai Municipal Natural Science Foundation (No. 17ZR1406900),

Shanghai Pujiang Talent Program (No. 17PJ1401900), Specialized
Fund of ShanghaiMunicipal Commission of Economy and Informatiza-
tion (No. 201602008), SpecializedResearch Fund forDoctoral Program
of Higher Education (No. 20130074110015), National Natural Science
Foundation of China (No. 61173048, 61602460), China Postdoctoral
Science Foundation (No. 2016M600338), Natural Sciences and Engi-
neering Research Council of Canada, and Pratt & Whitney Canada.

References

1. Apel, S., Batory, D.S., Kästner, C., Saake, G.: Feature-Oriented
Software Product Lines—Concepts and Implementation. Springer,
Berlin (2013)

2. Arcuri, A., Briand, L.C.: A practical guide for using statistical
tests to assess randomized algorithms in software engineering. In:
Proceedings of 33rd International Conference on Software Engi-
neering (ICSE), pp. 1–10 (2011)

3. Batory, D.: Featuremodels, grammars, and propositional formulas.
In: Proceedings of 9th International Software Product Line Con-
ference (SPLC), pp. 7–20 (2005)

4. Benavides, D., Segura, S., Cortés, A.: Automated analysis of fea-
ture models 20 years later: a literature review. Inf. Syst. 35(6),
615–636 (2010)

5. Berger, T., She, S., Lotufo, R., Wasowski, A., Czarnecki, K.: A
study of variability models and languages in the systems software
domain. IEEE Trans. Softw. Eng. 39(12), 1611–1640 (2013)

6. Brockhoff, D., Friedrich, T., Neumann, F.: Analyzing hypervolume
indicator based algorithms. In: Proceedings of 10th International
Conference on Parallel Problem Solving from Nature (PPSN), pp.
651–660 (2008)

7. Clements, P., Northrop, L.: Software Product Lines: Practices and
Patterns. Addison-Wesley, Boston (2001)

8. Czarnecki, K., Eisenecker, U.: Generative Programming:Methods,
Tools, and Applications. Addison-Wesley, Boston (2000)

9. deMoura, L., Bjørner, N.: Satisfiability modulo theories: introduc-
tion and applications. Commun. ACM 54(9), 69–77 (2011)

10. de Moura, L., Bjørner, N.: Z3: An Efficient SMT Solver. In: Pro-
ceedings of 14th International Conference onTools andAlgorithms
for the Construction and Analysis of Systems (TACAS), pp. 337–
340 (2008)

11. Deb, K., Agrawal, S., Pratap, A., Meyarivan, T.: A fast and eli-
tist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol.
Comput. 6(2), 182–197 (2002)

12. Deb, K., Mohan, M., Mishra, S.: Towards a quick computation of
well-spread Pareto-optimal solutions. In: Proceedings of Second
International Conference on Evolutionary Multi-Criterion Opti-
mization (EMO), pp. 222–236 (2003)

13. Durillo, J.J., Nebro, A.J.: jMetal: a java framework for multi-
objective optimization. Adv. Eng. Softw. 42, 760–771 (2011)

14. Durillo, J.J., Nebro,A.J., Alba, E.: The jMetal framework formulti-
objective optimization: design and architecture. In: Proceedings of
IEEE Congress on Evolutionary Computation (CEC), pp. 4138–
4325. Barcelona, Spain (2010)

15. Eén, N., Sörensson, N.: Translating pseudo-boolean constraints
into SAT. J. Satisf. Boolean Model. Comput. 2(1–4), 1–26 (2006)

16. Eiben, A.E., Smith, J.E.: Introduction to Evolutionary Computing.
Natural Computing Series. Springer, Berlin (2003)

17. Gavanelli, M.: An algorithm for multi-criteria optimization in
CSPs. In: Proceedings of 15th European Conference on Artificial
Intelligence (ECAI), pp. 136–140 (2002)

18. Guo, J., Czarnecki, K., Apel, S., Siegmund, N., Wąsowski, A.:
Variability-aware performance prediction: a statistical learning
approach. In: Proceedings of 28th IEEE/ACM International Con-
ference on Automated Software Engineering (ASE), pp. 301–311
(2013)

123

1464 J. Guo et al.

19. Guo, J., White, J., Wang, G., Li, J., Wang, Y.: A genetic algorithm
for optimized feature selection with resource constraints in soft-
ware product lines. J. Syst. Softw. 84(12), 2208–2221 (2011)

20. Guo, J., Zulkoski, E., Olaechea, R., Rayside, D., Czarnecki, K.,
Apel, S., Atlee, J.M.: Scaling exact multi-objective combina-
torial optimization by parallelization. In: Proceedings of 29th
ACM/IEEE International Conference on Automated Software
Engineering (ASE), pp. 409–420 (2014)

21. Harman, M.: The current state and future of search based soft-
ware engineering. In: Proceedings of International Workshop on
the Future of Software Engineering (FOSE), pp. 342–357 (2007)

22. Harman,M., Jia, Y., Krinke, J., Langdon,W.B., Petke, J., Zhang,Y.:
Search based software engineering for software product line engi-
neering: a survey and directions for future work. In: Proceedings
of 18th International Software Product Line Conference (SPLC),
pp. 5–18 (2014)

23. Harman, M., Jones, B.F.: Search-based software engineering. Inf.
Softw. Technol. 43(14), 833–839 (2001)

24. Harman, M., Mansouri, S., Zhang, Y.: Search based software engi-
neering: a comprehensive analysis and review of trends techniques
and applications. Tech. rep., King’s College London TR-09-03
(2009)

25. Hartert, R., Schaus., P.: A support-based algorithm for the bi-
objective Pareto constraint. In: Proceedings of 28th AAAI Con-
ference on Artificial Intelligence (AAAI), pp. 2674–2679 (2014)

26. Henard, C., Papadakis, M., Harman, M., Traon, Y.L.: Combining
multi-objective search and constraint solving for configuring large
software product lines. In: Proceedings of 37th IEEE/ACM Inter-
national Conference on Software Engineering (ICSE), pp. 517–528
(2015)

27. Henard, C., Papadakis, M., Perrouin, G., Klein, J., Traon, Y.L.:
Multi-objective test generation for software product lines. In: Pro-
ceedings of 17th International Software Product Line Conference
(SPLC), pp. 62–71 (2013)

28. Hierons, R.M., Li, M., Liu, X., Segura, S., Zheng,W.: SIP: optimal
product selection from feature models using many-objective evo-
lutionary optimization. ACM Trans. Softw. Eng. Methodol. 25(2),
17 (2016)

29. Ishibuchi, H., Masuda, H., Tanigaki, Y., Nojima, Y.: Modified dis-
tance calculation in generational distance and inverted generational
distance. In: Proceedings of 8th International Conference onEvolu-
tionary Multi-Criterion Optimization (EMO), pp. 110–125 (2015)

30. Jackson, D.: Software Abstractions: Logic, Language, and Analy-
sis. MIT, Cambridge (2006)

31. Kang, K., Cohen, S., Hess, J., Novak, W., Peterson, A.: Feature-
oriented domain analysis (FODA) feasibility study. Tech. rep.,
CMU SEI, SEI-90-TR-21 (1990)

32. Knowles, J., Corne, D.: On metrics for comparing nondominated
sets. In: Proceedings of IEEE Congress on Evolutionary Compu-
tation (CEC), pp. 711–716 (2002)

33. Lu, H., Yue, T., Ali, S., Zhang, L.: Nonconformity resolving rec-
ommendations for product line configuration. In: Proceedings of
Ninth International Conference on Software Testing, Verification
and Validation (ICST), pp. 57–68 (2016)

34. LVAT: Linux variability analysis tools. http://code.google.com/p/
linux-variability-analysis-tools

35. Marek,V., Truszczynski,M.: Stablemodels and an alternative logic
programming paradigm. In: The Logic Programming Paradigm: A
25-year Perspective. Springer (1999)

36. Mkaouer, W., Kessentini, M., Shaout, A., Koligheu, P., Bechikh,
S., Deb, K., Ouni, A.: Many-objective software remodularization
using NSGA-III. ACM Trans. Softw. Eng. Methodol. 24(3), 1–45
(2015)

37. Nadi, S., Berger, T., Kästner, C., Czarnecki, K.: Where do con-
figuration constraints stem from? An extraction approach and an
empirical study. IEEE Trans. Softw. Eng. 41(8), 820–841 (2015)

38. Olaechea, R., Rayside, D., Guo, J., Czarnecki, K.: Comparison
of exact and approximate multi-objective optimization for soft-
ware product lines. In: Proceedings of 18th International Software
Product Line Conference (SPLC), pp. 92–101 (2014)

39. Olaechea, R., Stewart, S., Czarnecki, K., Rayside, D.: Modeling
andmulti-objective optimization of quality attributes in variability-
rich software. In: Proceedings of Fourth International Workshop
on Nonfunctional System Properties in Domain SpecificModeling
Languages (NFPinDSML), pp. 2:1–2:6 (2012)

40. Passos, L.T., Berger, T., Novakovic, M., Czarnecki, K., Xiong, Y.,
Wasowski, A.: A study of non-boolean constraints in variability
models of an embedded operating system. In: Proceedings of Third
Workshop on Feature-Oriented Software Development (FOSD),
pp. 9–16 (2011)

41. Passos, L.T., Guo, J., Teixeira, L., Czarnecki, K., Wasowski, A.,
Borba, P.: Coevolution of variability models and related artifacts:
a case study from the Linux kernel. In: Proceedings of 17th Inter-
national Software Product Line Conference (SPLC), pp. 91–100
(2013)

42. Passos, L.T., Teixeira, L., Dintzner, N., Apel, S., Wasowski, A.,
Czarnecki, K., Borba, P., Guo, J.: Coevolution of variabilitymodels
and related software artifacts—a fresh look at evolution patterns in
the Linux kernel. Empir. Softw. Eng. 21(4), 1744–1793 (2016)

43. Pohl, K., Bockle, G., van der Linden, F.: Software Product line
Engineering: Foundations, Principles, and Techniques. Springer,
Berlin (2005)

44. Rayside, D., Estler, H.C., Jackson,D.: A guided improvement algo-
rithm for exact, general purpose, many-objective combinatorial
optimization. Tech. rep., MIT-CSAIL-TR-2009-033 (2009)

45. Saadatpanah, P., Famelis, M., Gorzny, J., Robinson, N., Chechik,
M., Salay,R.: Comparing the effectiveness of reasoning formalisms
for partial models. In: Proceedings of the Workshop on Model-
Driven Engineering, Verification and Validation (MoDeVVa), pp.
41–46 (2012)

46. Sarkar, A., Guo, J., Siegmund, N., Apel, S., Czarnecki, K.: Cost-
efficient sampling for performance prediction of configurable
systems. In: Proceedings of 30th IEEE/ACM International Con-
ference on Automated Software Engineering (ASE), pp. 342–352
(2015)

47. Sarro, F., Petrozziello, A., Harman, M.: Multi-objective software
effort estimation. In: Proceedings of 38th International Conference
on Software Engineering (ICSE), pp. 619–630 (2016)

48. Sayyad, A., Ingram, J., Menzies, T., Ammar, H.: Scalable product
line configuration: A straw to break the camel’s back. In: Pro-
ceedings of 28th International Conference on Automated Software
Engineering (ASE), pp. 465–474 (2013)

49. Sayyad, A., Menzies, T., Ammar, H.: On the value of user pref-
erences in search-based software engineering: A case study in
software product lines. In: Proceedings of 35th International Con-
ference on Software Engineering (ICSE), pp. 492–501. IEEE
(2013)

50. Sayyad, A.S., Ingram, J., Menzies, T., Ammar, H.: Optimum fea-
ture selection in software product lines: let your model and values
guide your search. In: Proceedings of 1st International Workshop
on CombiningModelling and Search-Based Software Engineering
(CMSBSE), pp. 22–27 (2013)

51. Siegmund, N., Kolesnikov, S., Kästner, C., Apel, S., Batory, D.,
Rosenmüller,M., Saake, G.: Predicting performance via automated
feature-interaction detection. In: Proceedings of 34th International
Conference on Software Engineering (ICSE), pp. 167–177 (2012)

52. Tsang,E.: Foundations of constraint satisfaction.Academic, (1993)
53. Vargha, A., Delaney, H.D.: A critique and improvement of the CL

common language effect size statistics of McGraw and Wong. J.
Educ. Behav. Stat. 25(2), 101–132 (2000)

54. White, J., Doughtery, B., Schmidt, D.C.: Filtered cartesian flatten-
ing: an approximation technique for optimally selecting features

123

http://code.google.com/p/linux-variability-analysis-tools
http://code.google.com/p/linux-variability-analysis-tools

SMTIBEA: a hybrid multi-objective optimization algorithm for configuring large… 1465

while adhering to resource constraints. In: Proceedings of First
International Workshop on Analyses of Software Product Lines
(ASPL), pp. 209–216 (2008)

55. Wu, Z., Tang, J., Kwong, C.K., Chan, C.Y.: An optimization model
for reuse scenario selection considering reliability and cost in soft-
ware product line development. Int. J. Inf. Technol. Decis. Mak.
10(5), 811–841 (2011)

56. Yen, G., He, Z.: Performance metric ensemble for multiobjective
evolutionary algorithms. IEEE Trans. Evol. Comput. 18(1), 131–
144 (2014)

57. Zhang,Y.,Guo, J., Blais, E., Czarnecki,K.: Performance prediction
of configurable software systems by Fourier learning. In: Proceed-
ings of 30th IEEE/ACM International Conference on Automated
Software Engineering (ASE), pp. 365–373 (2015)

58. Zitzler, E., Künzli, S.: Indicator-based selection in multiobjective
search. In: Proceedings of 8th International Conference on Parallel
Problem Solving from Nature (PPSN), pp. 832–842 (2004)

59. Zitzler, E., Laumanns, M., Thiele, L.: SPEA2: Improving the
strength Pareto evolutionary algorithm formultiobjective optimiza-
tion. In: Proceedings of the Conference on Evolutionary Methods
for Design, Optimization and Control with Applications to Indus-
trial Problems (EUROGEN), pp. 95–100 (2001)

60. Zitzler, E., Thiele, L., Laumanns, M., Fonseca, C.M., da Fonseca,
V.G.: Performance assessment of multiobjective optimizers: an
analysis and review. IEEE Trans. Evol. Comput. 7(2), 117–132
(2003)

Jianmei Guo is an Associate
Professor of Computer Science
and Engineering at East China
University of Science and Tech-
nology (ECUST). Before com-
ing to ECUST, he was a Post-
doctoral Fellow at the Univer-
sity of Waterloo (2012–2015),
Canada. He received his Ph.D.
in computer science from Shang-
hai Jiao Tong University in 2011.
His research interests involve
software engineering and arti-
ficial intelligence, focusing on
a systematical methodology of

hardware–software co-design to achieve automated, verifiable and intel-
ligent product development, configuration and integration. He received
an ACM SIGSOFT Distinguished Paper Award at ASE 2015, and two
Best Paper Awards at Canadian AI 2017 and SPLC 2016.

Jia Hui Liang is a Ph.D. stu-
dent in the Electrical and Com-
puter Engineering department
at the University of Waterloo,
under the supervision of Vijay
Ganesh and Krzysztof Czar-
necki. His research involves con-
straint solving and their appli-
cation to efficiently instantiate
and multi-objectively optimize
high-level Clafer models. Jia is
the main contributor to Clafer’s
choco solver as well as a con-
tributor to the underlyingChoco4
CSP library.Hiswork on improv-

ing SAT solving received two first prizes at the main and application
tracks of the 2016 SAT Competition.

Kai Shi is a Ph.D. candidate
in the Department of Computer
Science and Engineering, East
China University of Science and
Technology. His main research
interests include multi-objective
evolutionary algorithms and par-
allelization, constraint solving,
software product lines, search-
based software engineering, and
cloud computing.

Dingyu Yang received the B.E.
and M.E. degrees from the
Kunming University of Science
and Technology, and the Ph.D.
degree from the Shanghai Jiao
Tong University, all in com-
puter science. He is currently an
assistant professor at the Shang-
hai Dian Ji University, Shang-
hai, China. His research interests
include resource prediction and
anomaly detection in cloud com-
puting and big data.

Jingsong Zhang received the
Ph.D. degree in the Department
of Computer Science and Engi-
neering in 2015 from Shang-
hai Jiao Tong University, China.
He is currently a Postdoctoral
Fellow in Institute of Biochem-
istry and Cell Biology, Shang-
hai Institutes for Biological Sci-
ences, Chinese Academy of Sci-
ences, China. His research inter-
ests include sequence analysis,
bioinformatics, sequential pat-
tern mining, data mining. He has
been a reviewer for some aca-
demic journals and conferences.

123

1466 J. Guo et al.

Krzysztof Czarnecki is a Pro-
fessor of Electrical and Com-
puter Engineering at the Univer-
sity of Waterloo. Before com-
ing to Waterloo, he was a
researcher at DaimlerChrysler
Research (1995–2002),Germany,
focusing on improving software
development practices and tech-
nologies in enterprise, automo-
tive, and aerospace domains. He
co-authored the book on “Gen-
erative Programming” (Addison-
Wesley, 2000), which deals with
automating software component

assembly based on domain-specific languages. While at Waterloo,
he held the NSERC/Bank of Nova Scotia Industrial Research Chair
in Requirements Engineering of Service-oriented Software Systems
(2008–2013) and has worked on a range of topics in model-driven
systems and software engineering, including product lines engineer-
ing, design synthesis, variability modeling, model transformation, and
domain-specific languages. He received the Premier’s Research Excel-
lence Award in 2004 and the British Computing Society in Upper
Canada Award for Outstanding Contributions to IT Industry in 2008.

VijayGanesh is an assistant pro-
fessor at the University ofWater-
loo since 2012. Prior to that he
was a research scientist at MIT
and completed his PhD in com-
puter science from Stanford Uni-
versity in 2007. Vijay’s primary
area of research is the theory
and practice of automated rea-
soning aimed at software engi-
neering, formal methods, secu-
rity, and mathematics. In this
context he has led the develop-
ment of many SAT/SMT solvers,
most notably, STP, The Z3 string

solver, MapleSAT, and MathCheck. He has also proved several decid-
ability and complexity results relating to the SATisfiability problem for
various mathematical theories. For his research, he has won over 21
awards, honors, and medals including an ACM Test of Time Award at
CCS 2016, two Google Faculty Research Awards in 2011 and 2013,
and a Ten-Year Most Influential Paper Award at DATE 2008.

Huiqun Yu received his B.S.
degree from Nanjing University
in 1989, M.S. degree from East
China University of Science and
Technology (ECUST) in 1992,
and Ph.D. degree from Shang-
hai Jiao Tong University in 1995,
all in computer science. He is
currently a Professor of com-
puter science with the Depart-
ment of Computer Science and
Engineering at ECUST. From
2001 to 2004, he was a Vis-
iting Researcher in the School
of Computer Science at Florida

International University. His research interests include software engi-
neering, high confidence computing systems, cloud computing and
formal methods. He is a senior member of the IEEE, a member of
the ACM, and a senior member of the China Computer Federation.

123

	SMTIBEA: a hybrid multi-objective optimization algorithm for configuring large constrained software product lines
	Abstract
	1 Introduction
	2 Background
	3 Problem definition
	4 Related work
	4.1 Approximate methods
	4.2 Exact methods

	5 Our approach
	5.1 Framework and operators
	5.2 Specifications and SMT solving
	5.3 SMTIBEA variants

	6 Experimental setup
	6.1 Subjects
	6.2 Optimization objectives
	6.3 Performance metrics
	6.4 SMTIBEA settings
	6.5 Measurement settings
	6.6 Statistical tests

	7 Experimental results
	7.1 Comparison of three SMTIBEA variants
	7.2 Comparison between SMTIBEAv2 and the state-of-the-art

	8 Discussion
	8.1 Research questions
	8.2 Performance metrics
	8.3 Convergence speed
	8.4 Expressiveness
	8.5 Timeout setting
	8.6 Strategies of handling constraints
	8.7 Threats to validity

	9 Conclusion
	Acknowledgements
	References

