
Softw Syst Model (2019) 18:1305–1344
https://doi.org/10.1007/s10270-017-0602-0

REGULAR PAPER

End-to-end model-transformation comprehension through
fine-grained traceability information

Victor Guana1 · Eleni Stroulia1

Received: 11 October 2016 / Revised: 27 February 2017 / Accepted: 7 May 2017 / Published online: 1 June 2017
© Springer-Verlag Berlin Heidelberg 2017

Abstract The construction and maintenance of model-to-
model and model-to-text transformations pose numerous
challenges to novice and expert developers. A key chal-
lenge involves tracing dependency relationships between
artifacts of a transformation ecosystem. This is required
to assess the impact of metamodel evolution, to determine
metamodel coverage, and to debug complex transformation
expressions. This paper presents an empirical study that
investigates the performance of developers reflecting on the
execution semantics of model-to-model and model-to-text
transformations. We measured the accuracy and efficiency
of 25 developers completing a variety of traceability-driven
tasks in two model-based code generators. We compared the
performance of developers using ChainTracker, a traceabil-
ity analysis environment developed by our team, and that of
developers using Eclipse Modeling. We present statistically
significant evidence that ChainTracker improves the perfor-
mance of developers reflecting on the execution semantics of
transformation ecosystems. We discuss how developers sup-
ported by off-the-shelf development environments are unable
to effectively identify dependency relationships in nontrivial
model-transformation chains.

Keywords Model-transformation comprehension ·
Transformation comprehension · Traceability analysis ·
Software maintenance · Development environments

Communicated by Prof. Lionel Briand.

B Victor Guana
guana@ualberta.ca

Eleni Stroulia
stroulia@ualberta.ca

1 Department of Computing Science, University of Alberta,
Edmonton, AB, Canada

1 Introduction

Model-to-model (M2M) and model-to-text (M2T) transfor-
mations can be used to solve complex software engineering
tasks. These include, but are not limited to, code genera-
tion from high-level specifications [1,2], database schema
migration[3,4], code analysis and verification [5,6] and
deployment automation [7,8].

Due to the complex execution semantics of model-
transformation languages, the construction and maintenance
of model transformations pose multiple challenges to novice
and expert developers [9,10]. A key challenge involves
tracing dependency relationships between artifacts of a trans-
formation ecosystem [11]. In effect, traceability information
is required to assess the impact of metamodel and trans-
formation evolution [12–14], to debug complex transforma-
tion expressions [15], to identify transformation-refactoring
opportunities [16,17], and to determine the metamodel
coverage of complex transformation ecosystems [18–21].
Moreover, collecting traceability information becomes con-
siderably more difficult when transformation ecosystems
include model-transformation chains (MTCs) [22,23].

In order to increase the adoption of model-driven engi-
neeringpractices,weneeddevelopment environments specif-
ically tailored to support the construction of model transfor-
mations [9,22]. This is particularly relevant in the context of
modern software developers, that continuously experiment
with development technologies, and that quickly abandon
tools with no evident economic return [24,25]. Unfortu-
nately, most of the existing development environments for
model transformations have been tailored for model-driven
engineering experts, thus limiting their adoption among the
general software engineering community [26].

In [27], we introduced a model-transformation analysis
technique to gather fine-grained traceability links. In [28,29],

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10270-017-0602-0&domain=pdf

1306 V. Guana, E. Stroulia

we introduced ChainTracker, a traceability collection and
analysis environment that enables developers to explore the
execution semantics of model-to-model, and model-to-text
transformations. The main goal of this paper is to evaluate
the usability of ChainTracker using Eclipse Modeling as the
industry baseline.

ChainTracker is built on top of a generalizable traceabil-
ity analysis technique for transformation technologies that
use the Object Constraint Language (OCL) [30] as underly-
ing model manipulation formalism. ChainTracker considers
model-to-model and model-to-text transformations individ-
ually, and in nontrivial transformation chains.

The analysis environment includes interactive traceabil-
ity visualizations, and projectional code editors targeted at
novice transformation developers. Furthermore, it provides
features such as binding filters and code highlighters that
support experienceddevelopers assessing the impact ofmeta-
model changes, and more effectively debugging nontrivial
transformation expressions. Currently, ChainTracker is capa-
ble of analyzing ATL [31] model-to-model transformations,
and Acceleo [32] model-to-text transformations, two widely
adopted model-transformation technologies in industry and
academic environments.

Although model transformations can be used to tackle
numerous software engineering tasks, over the last 10 years
model-based code generation has been the flagship paradigm
used to promote their adoption among the general software
engineering community. Model-based code generators inte-
grate model-to-model and model-to-text transformations to
build applications that systematically differ from each other.
More often than not, code generators use multistep transfor-
mation chains to translate high-level system specifications,
captured by domain-specific languages, into executable arti-
facts, i.e., code and deployment scripts [33,34].

Like all software, model-based code generators are bound
to evolve [35]. Evolutionary changes in model-based code
generators can be classified in two scenarios of evolu-
tion: metamodel evolution and platform evolution [35]. In
the metamodel evolution scenario, changes to underlying
domain languages are required to improve their expres-
siveness, and to better capture information relevant to the
to-be-constructed systems. In the platform evolution sce-
nario, changes to generated artifacts are required tomeet new
requirements not captured by the generation infrastructure.
Such modifications also include code refactoring for design
improvement, performance tuning for mission critical sys-
tems, energy consumption optimization, and bug fixes [36].
In both scenarios of evolution, model-to-model and model-
to-text transformations potentially need to be modified in
order to reflect changes in a systematic way.

In the last few years, tools have been proposed to auto-
matically assess the impact of changes in model transforma-
tions [11,37]. However, automatically performing adaptive

changes in a transformation ecosystem is extremely hard.
This task must consider both the purpose of the modifi-
cation (i.e., updative, adaptive, performance, corrective or
reductive) and its technical aspects (i.e., the when, where,
what and how of changes) [38]. In this study, we hypoth-
esize that enabling developers to interactively explore the
execution semantics of a transformation ecosystem can sig-
nificantly improve the performance of developers reflecting
on its design and evolution. In this context, developers need to
interpret the execution semantics of transformations in order
to answer traceability-driven questions such as:

– T1. What is the order of precedence for the correct exe-
cution of the transformations in my ecosystem?

– T2. How well is the information captured by the meta-
models used by the transformations in my ecosystem?

– T3. What transformation bindings intervene in the gen-
eration of this line of code?

– T4. What metamodel elements are derived using this ele-
ment or property?

– T5. Are there unused rules or binding expressions in the
transformations that comprise my ecosystem?

This paper presents an empirical study that investigates the
performance of developers when reflecting on the execution
semantics of model-to-model and model-to-text transforma-
tions. In effect, we measured the accuracy and efficiency
of developers when asked to identify dependency relation-
ships between transformation artifacts using ChainTracker.
Furthermore, we compared their performance with that of
developers using Eclipse Modeling. We intend to investigate
two research questions:

– RQ1: Do developers using ChainTracker identify meta-
model and generation dependencies in transformation
ecosystems more accurately and efficiently than those
using Eclipse Modeling?

– RQ2: Do the size and complexity of transformation
ecosystems affect the effectiveness of ChainTracker in
helping developers identifying their metamodel and gen-
eration dependencies?

We found that when using Eclipse Modeling, most devel-
opers could not effectively identify metamodel dependencies
defined in nontrivial model-to-model transformations. Fur-
thermore, we observed that developers were unable to
precisely pinpoint dependencies between metamodels and
generated textual artifacts in the context of model-to-text
transformations. Our study also revealed that developers
often fail to identify chained upstream and downstreammeta-
model dependencies in both linear andmultibranchedmodel-
transformation chains. Moreover, we found that Chain-
Tracker’s interactive visualizations and projectional editors

123

End-to-end model-transformation comprehension through fine-grained traceability information 1307

considerably improve the performance of developers reflect-
ing on the execution semantics of transformation ecosystems.

The remainder of this paper is structured as follows.
Section 2 reviews related work on traceability collection
and visualization techniques. Section 3 presents a detailed
description of the ChainTracker analysis environment. Sec-
tion 4 introduces the hypotheses of our empirical study.
Section 5 discusses our experimental protocol. Section 6
presents the results of our study. Section 7 discusses our
findings, and key take-home messages. Section 8 presents
our threats to validity. Section 9 summarizes our contribu-
tions and discusses our future avenues of research.

2 Related work

The term traceability is not regarded very strictly by authors
in the model-driven engineering community [14]. We elab-
orate on the traceability definition proposed by Winkler
et al. [14] in which traceability is understood as “the
ability to collect traceability links from a set of transfor-
mation expressions.” Traceability links are understood as
the relations between a set of artifacts in a transforma-
tion ecosystem. These artifacts include a transformation’s
codebase, its source and target metamodels, corresponding
model instances, and potential generated artifacts.Moreover,
a traceability link is understood as a “dependency relation-
ship between two artifacts a1 and a2, in which a2 relies on
the existence of a1, or that changes in a1 potentially result
in changes in a2” [14,39,40]. We consider the term transfor-
mation ecosystem as the set of artifacts that comprise one or
multiple transformations that work cooperatively in a model-
based software engineering tool.

2.1 Extracting traceability information

Surveys such as in [41], and more recently in [14,42] have
compiled the existing work toward collecting traceability
links from model-to-model and model-to-text transforma-
tions. Current analysis techniques conceive traceability links
as dependency relationships between a variety of trans-
formation artifacts, in different levels of granularity, and
conforming to different levels of abstraction.

Authors such as in [43–47] have proposed traceabil-
ity analysis techniques for model-to-model transformations.
They conceive traceability links as dependency relationships
between the models used by a transformation and those pro-
duced after its execution, i.e., traceability at themodel level of
abstraction.Yet other researchers such as in [48–50] conceive
traceability links as the symbolic dependencies between the
metamodels used by a transformation, and its corresponding
binding expressions, i.e., traceability at the metamodel level
of abstraction. Most the aforementioned techniques iden-

tify dependency relationships by means of a) instrumenting
and executing the transformations under analysis, thereby
obtaining traceability information as a byproduct of a trans-
formation execution itself, or b) comparing the source and
target models of a transformation in order to infer its exe-
cution mechanics. Other traceability techniques such as in
[51–54] investigate how to collect traceability links inmodel-
to-text transformations. They conceive traceability links as
relationships of dependency betweenmetamodels, code tem-
plates, and generated textual artifacts.

To the best of our knowledge, there are no proposals
that provide a unified traceability visualization technique for
heterogeneous transformation compositions, i.e., transfor-
mation chains that combine bothmodel-to-model andmodel-
to-text transformations. Moreover, none of the existing tech-
niques provide analysis capabilities to identify end-to-end
fine-grained traceability links. Access to fine-grained trace-
ability links significantly increases the developers’ ability to
reflect on the execution semantics of complex transformation
ecosystems (Sect. 7).

2.2 Visualizing traceability links

Multiple techniques have been proposed to diagrammati-
cally depict traceability information in software systems.
Most of these techniques have been developed in the field
of requirements engineering [14]. They have inspired little,
but precious work on visualizing traceability information
in the context of model-driven engineering. According to
Wieringa [55], traceability visualizations can be categorized
in three main groups: matrices, cross-references, and graph-
based representations. Let us briefly discuss each one of them
and provide examples of traceability visualizations that fol-
low their design guidelines.

2.2.1 Matrix representations

Traceability matrices portray traceability links between a
two-dimensional set of software artifacts. They follow a grid-
based layout in which rows and columns capture information
about two families of related entities. Primitive traceability
matrices represent the existence of a dependency relation-
ship between two artifacts by placing a mark, such as a black
box, in their corresponding intersecting cell [14]. Almeida
et al. in [56] use a matrix-based representation to study the
conformance relationships between the implementation of a
model-to-model transformation and its application domain
(Fig. 1). Traceability matrices provide developers with little
information about the type of relationship that a traceabil-
ity link represents. However, enhancements can be made to
matrices in order to enrich the information that they convey
[55]. For example, matrices can be made interactive as to

123

1308 V. Guana, E. Stroulia

Fig. 1 Traceability cross-table used in [56] to relate the models, appli-
cation requirements, and transformations scripts of an ecosystem

allow navigation to specific linked artifacts, such as using
pop ups [57] or color encoded properties [58].

Traceability matrices are easy to understand by expert and
novice developers. However, they have several limitations
when used to represent the traceability links in a trans-
formation ecosystem. A matrix representing the symbolic
dependencies between the source and target metamodels
of a transformation can be extremely cluttered and over-
whelmingly large. Furthermore, the size of such traceability
matrix will depend on the size of each underlying meta-
model, and the complexity of the transformations under
analysis. Research has shown that large traceability matri-
ces become unreadable very quickly [59,60], and that their
two-dimensional nature makes them unsuitable to represent
n-ary traceability links, or links between hierarchical artifacts
[14]. This is a common scenario in the context of transfor-
mation ecosystems, in which artifacts such as metamodels
and transformations have hierarchal structures.

2.2.2 Cross-reference representations

Traceability links can be expressed as cross-references
embedded in the artifacts of a software system [63]. Cross-
references can be represented using natural language, or
using interactive referencing features such as hyperlinks. In
their most simple form, cross-references can be found as in-
line documentation in source code and design documents. In
the context of rule-based transformation languages such as
ATL, RubyTL [64] and ETL [65], it is a widespread practice
to document the source code of every transformation rule
with cross-referencing notes, e.g., “This rule transforms ele-
ment A into element B” or “This rule uses helper X.”

Hyperlinks enable developers to navigate through the
traceability links of a given artifact, in order to switch
between their different contexts.A limitation of this approach
is that hyperlinks can only reveal localized outgoing and
upcoming traces between twoartifacts [14].Cross-referencing
is very common in modern integrated development environ-
ments. For example, the Eclipse plug-ins for transformation
technologies such as ATL and Acceleo allow developers
to use interactive code editors and navigate through their
execution dependencies via cross-referencing hyperlinks.
Developers can click on the procedural calls between trans-
formation rules in order to have access to their definition from
outlying segments of code. Similarly, Eclipse plug-ins enable
developers to explore detailed information about individual
metamodel elements, bymeans of hyperlinks that open views
with detailed listings describing their relationships and prop-
erties (Figs. 2, 3).

Even though cross-reference representations allow the
navigation of interdependent traceability links, they do so at
the cost of limiting the scope of its views to one single artifact

Fig. 2 Acceleo Eclipse plug-in: in-line cross-referencing editor [61]

Fig. 3 ATL Eclipse plug-in: cross-referencing multipanel editor [62]

123

End-to-end model-transformation comprehension through fine-grained traceability information 1309

at the time. Thismakes cross-referencing a poor alternative to
portray global dependency views between artifacts in model-
transformation chains. Furthermore, using cross-reference
representations to visualize n-ary links is highly impractical
[14]. Representing n-ary traceability links is a fundamental
requirement in model-transformation ecosystems. Complex
ecosystems usually involve multiple fine-grained artifacts
with multiple outgoing and upcoming dependency relation-
ships.As a concrete example, please consider the dependency
relationships between a model-to-text transformation and a
generated segment of code. A metamodel element can be
used in the generation of multiple lines of code, and a line
of code may be the result of querying multiple metamodel
elements in a single binding expression [52].

2.2.3 Graph-based representations

Most artifacts in model-based software engineering tools
are represented using both graphical and textual concrete
syntaxes, e.g., ametamodel can be studied in its textual struc-
tured form, or as a class diagram that captures its elements
and properties. The dual nature of artifacts in transforma-
tion ecosystems makes diagrams and general graph-based
representations the most common mechanism to represent
their traceability information [14]. Let us now review current
graph-based approaches to represent traceability information
in transformation ecosystems.

Falleri et al. [43] propose an imperative language to col-
lect traceability links from model-to-model transformations.
It represents traceability information as a bipartite graph
in which nodes represent individual model elements, and
edges their dependency relationships. This technique sup-
ports traceability analysis in Kermeta [66], a transformation
language developed by the same authors. Falleri et al. use
Graphviz [67] in order to create a simple visual representa-
tion of their trace graph. It is important to mention that due
to the static nature of the visualization, no additional infor-
mation can be obtained by means of interacting with it.

In [45], Von Pilgrim et al. present a traceability tool for
ATL, andMTF.1 Similar to Falleri’s technique, this tool con-
ceives traceability links at the model level of abstraction .
Furthermore, it supports the collection and visualization of
model-to-model transformation chains. Authors use GEF3D
[69] to visualize a collection of overlapped 2D class dia-
grams linked by edges in a 3D space (Fig. 4). Each layer
of the visualization captures a diagram corresponding to
the models resulting from the execution of each shackle of
a transformation chain. The 3D visualizations presented in
this tool have numerous scalability issues. Considering that
model instances may contain several elements, handling the
visualization of large class diagrams is challenging in terms

1 http://goo.gl/YcWHNX.

Fig. 4 Traceability 3D visualization created using GEF3D [45]

of memory space [70]. Furthermore, in terms of usability,
research has shown that large class diagrams pose significant
cognitive challenges to developers when filtering, isolating,
and summarizing information [71,72], which is exacerbated
by the 3D overlapping nature of the proposal.

Van Amstel et al. [50,68] present a tool that gath-
ers and visualizes traceability information in the context
of ATL model-to-model transformations. In [50], the tool
includes features to collect symbolic dependencies between
the artifacts of model-to-model transformation chains. More
recently, in [68] Van Amstel et al. presented an extension
of their work targeted at identifying traceability links at
the model level of abstraction. Both tools use TraceVis
[73] to visualize traceability information. They highlight the
hierarchical structure of the transformation expressions that
determine the presence of symbolic dependencies between
source and target metamodel elements, e.g., grouping them
in helpers, matched rules, lazy matched rules, unique lazy
matched rules, and called rules. TraceVis supports hierar-
chical edge bundling which makes both tools highly scalable
in front of large ecosystems [74]. A similar visualization
approach based on TraceVis is presented by Di Rocco et
al. in [48].

Santiago et al. introduce iTrace [47], a framework for
the management and analysis of traceability information
in model-driven engineering. iTrace identifies traceability
links as symbolic dependencies between metamodel ele-
ments given ATL model-to-model transformations. It offers
two dashboards to the end user, namely the overview dash-
board, and workload dashboard.

The overview dashboard presents a tabular view that
summarizes the metamodel elements used by a transforma-
tion. The workload dashboard presents information about

123

http://goo.gl/YcWHNX

1310 V. Guana, E. Stroulia

Table 1 Traceability
visualization techniques for
model transformations and
transformations compositions

Transformation type Level of abstraction

Visualization technique M2M M2T MTC Meta-level Model-level

Matrix-based

Almeida et al. [56] � �
Santiago et al. [47] � � �
Cross-reference based

ATL Eclipse plug-in [62] � � �
Acceleo Eclipse plug-in [61] � � �
Graph-based

Falleri et al. [43] � �
Van Amstel et al. [50] � �
Van Amstel et al. [68] � � �
Santiago et al. [54] � �
Von Pilgrim et al. [45] � � �
Di Rocco et al. [48] � �

a transformation’s runtime behavior, including the num-
ber of elements processed by each of its transformation
rules. In [54], iTrace was extended to support the visual-
ization of model-to-text transformations using a multipanel
editor. The editor includes information such as the model
elements used by a model-to-text transformation, and the
textual artifacts derived from its execution. Unfortunately,
iTrace has not been designed to support the visualization of
model-transformation chains; it considers traceability links
in model-to-model and model-to-text separately, and in dif-
ferent levels of abstraction. Furthermore, iTrace portrays
traceability links using interactive two-dimensional tables,
thus suffering from the limitations of matrix-based represen-
tations discussed in Sect. 2.2.1.

Table 1 summarizes the traceability visualization tech-
niques discussed in this section. It is important to mention
that none of the reviewed techniques proposes a traceabil-
ity visualization for model-to-text transformations as a part
of a model-transformation chain. Furthermore, to the best of
our knowledge, none of the traceability collection techniques
has been empirically validated with nontrivial case studies.
They are usually presented using pedagogical examples of
small complexity that do not necessarily reflect on chal-
lenges of collecting and representing traceability information
in complex transformation ecosystems. In effect, most of
the reviewed proposals provide traceability collection and
visualization techniques that only deal with coarse-grained
traceability links, e.g., between source and target metamodel
elements (in case of model-to-model transformations), and
metamodel elements and generated files (in case ofmodel-to-
text transformations). This limits their usability in the context
of transformation design and evolution scenarios that require
fine-grained traceability links, such as when reflecting on the
dependency relationships between the properties of meta-

model elements in an ecosystem. More importantly, even
though most proposals claim that their traceability collection
and visualization techniques help developers to build and
maintain transformation ecosystems in a more effective or
efficient fashion, none of themhas been empirically validated
in controlled experiments with real developers. Moreover,
none of the tools reviewed in this section is publicly available
for download to be studied or compared by other research
teams. To the best of our knowledge, ChainTracker is the
first traceability collection and visualization technique to be
formally evaluated with real developers using nontrivial case
studies.

3 ChainTracker

ChainTracker collects and visualizes traceability links from
rule-based model-to-model, and template-based model-to-
text transformations. Furthermore, it collects traceability
links from individual transformations, and model-
transformation chains. It takes as input one or multiple
model-transformation scripts, along with their correspond-
ing source and target metamodels, and optionally model
instances that conform to these metamodels. Our traceabil-
ity analysis technique combines static and dynamic analysis
strategies to gather fine-grained traceability links [28]. In the
case of model-to-model transformations, ChainTracker con-
siders traceability links as symbolic dependencies between
three main artifacts, a) a transformation’s source metamodel,
b) a transformation’s target metamodel, and c) a trans-
formation’s binding expressions. Likewise, ChainTracker
considers traceability in model-to-text transformations as
symbolic dependencies between a) a transformation’s source
metamodel, b) a transformation’s binding expressions, and
c) the lines of text generated after its execution.

123

End-to-end model-transformation comprehension through fine-grained traceability information 1311

A transformation ecosystem can be understood as imple-
mentation units with runtime behaviors, or as a collection
of static elements that are bound to each other at develop-
ment time. The ChainTracker analysis environment presents
two views of a transformation ecosystem using an inter-
active multi-view approach. According to Clements et al.
[75], a view can be understood as the representation of
a set of system elements and the relationships associated
with them. Each view defines the concrete and abstract syn-
taxes of the elements and relationships of the system. The
goal of having multiple views for a software system is to
enable developers to think about the architecture of a soft-
ware system in multiple ways simultaneously. In [76], Soni
et al. present the four types of views that allow developers
to reflect on a system’s architecture using complementary
perspectives:

1. The conceptual view describes a system in terms of its
major design elements and relationships.

2. The module view presents a system as set of implemen-
tation or functional units.

3. The execution view reflects on the runtime behavior and
interactions of a system.

4. The code view portrays how a system’s implementation
units relate to non-software elements in its environment.

ChainTracker proposes a visualization technique for the
module and execution views of a transformation ecosystem.
It enables developers to visualize the different artifacts that
comprise an ecosystem and its execution mechanics, as well
as to use projectional code editors to simultaneously explore
its underlying transformation scripts. Let us now present a
small case study that will serve as a running example to
explore ChainTracker’s views and their aggregation in an
unified analysis environment.

3.1 Motivating example: bank to credit report

The Bank to Credit Report example is comprised by a simple
transformation chain. It takes as input a model describing
the credit card transactions conducted by the customers of
a bank. It then derives a simple report that summarizes
the overall credit status of each of the bank’s customers.
The metamodels Bank and Report capture the specifica-
tion of the source and target domains of the transformation
chain (Fig. 5). The case study is composed by one model-
to-model and one model-to-text transformation, namely
Bank2Report (Listing 1) and Report2HTML (Listing 2),
respectively.

The Bank2Report (M2M) transformation is comprised by
two matched rules and three helpers. The main purpose of
the helpers is to aggregate a customer’s total credit (Listing
1, line 25), and total balance (Listing 1, lines 28 and 31).

Report Metamodel

Person
name: String
credit: Int
balance: Int

Report
institution: String

Bank Metamodel

Customer
name: String
score: Int

Bank
name: String

Transaction
date: String
value: Int

CreditCard
number: String
expiration: String
allowance: Int

 0..n
entries

 transactions
 0...n

 1 0..n
cards
 owner

customers
 0..n

Fig. 5 Bank and report metamodels

1 module Bank2Report;
2 create OUT : Report from IN : Bank;
3
4 rule Main{
5 from
6 b: Bank!Bank
7 to
8 r: Report!Report(
9 institution <− b.name,
10 entries <− b.customers
11)
12 }
13
14 rule Customer2Person{
15 from
16 c: Bank!Customer
17 to
18 p: Report!Person(
19 name <− c.name,
20 credit <− c.getTotalCredit(),
21 balance <− c.getTotalSpent()
22)
23 }
24
25 helper context Bank!Customer def : getTotalCredit() : Integer
26 =self.cards−>collect(c|c.allowance).sum();
27
28 helper context Bank!Customer def : getTotalSpent() : Integer
29 =self.cards−>collect(c|c.getBalance()).sum();
30
31 helper context Bank!CreditCard def : getBalance() : Integer
32 =self.transactions−>collect(t|t.value).sum();

Listing 1 Bank2Report Model-to-Model Transformation

The Report2HTML (M2T) transformation generates a tex-
tual report summarizing the credit card portfolio of a bank.
The Report2HTML transformation uses an iterator that pro-
duces an HTML table with the total credit and outstanding
balance of each customer (Listing 2, lines 8–16).

123

1312 V. Guana, E. Stroulia

1 [comment encoding = UTF−8 /]
2 [module generateHTML(’http://ualberta.ssrg.report’)]
3 [template public generateHTML(aReport : Report)]
4 [comment @main/]
5 [file (’report.html’, false, ’UTF−8’)]
6 <h2> [aReport.institution/] Customer Credit Report </h2>
7 <table border=’’’’ style="with:50%">
8 [for (p : Person | entries)]
9 <tr>
10 <td>
11 <p><h4>[p.name/]</h4></p>
12 <p>Total Credit:[p.credit/]</p>
13 <p>Balance:[p.balance/]</p>
14 </td>
15 </tr>
16 [/for]
17 </table>
18 [/file]
19 [/template]

Listing 2 Report2HTML - Model-to-Text Transformation

3.2 The ChainTracker analysis environment

The ChainTracker analysis interface is divided in three main
areas: the transformation visualizations, the projectional
code editors, and the contextual tables (Fig. 6A–C, respec-
tively). Each area of the analysis environment is synchronized
with each other to provide developers with an unified and
context-aware experience. ChainTracker helps developers
to investigate how source metamodel elements and their
attributes are transformed into different intermediate meta-
models, and into final textual files. ChainTracker not only
allows developers to explore the visualizations of model-to-
model and model-to-text transformations, but also to project
their informationonto the analyzed scripts usinghighlighters.
Furthermore, if concrete model instances are provided to the
analysis environment, ChainTracker is capable of executing
transformation ecosystems, in order to include generated tex-
tual files in the traceability analysis and visualization process.
Let us briefly discuss each one of the areas of the envi-
ronment using our Bank to Credit Report example, and the
traceability-driven questions listed in Sect. 1.

3.2.1 The transformation visualizations

ChainTracker provides two different types of transformation
visualizations: the overview visualization (Fig. 7) and the
branch visualization (Fig. 8). Developers can switch between
visualization types using ChainTracker’s command menu
(Fig. 6D)

The overview visualization presents a module view of
the ecosystem under analysis. This view enables developers
to abstract the complexity of individual and isolated trans-
formation scripts, into a single picture that summarizes its
compositional structure. It follows a graph-based approach in
which blue nodes represent the source and target artifacts of a
transformation step. In the case of model-to-model transfor-
mations, blue nodes portray source and target metamodels.
In model-to-text transformations, blue nodes portray textual
templates and generated textual artifacts such as code. Edges
in this visualization diagrammatically depict dependencies
between the steps of a transformation chain. As a concrete
example, Fig. 7 portrays the overview visualization of the
Bank to Credit Report example.

The overview visualization can be used to quickly obtain
information about the order of precedence of the transforma-
tion in a complex transformation ecosystem (T1).Developers
can click on the edges of the visualization to obtain informa-
tion boxes with details about the ecosystem’s transformation
scripts, code templates, and generated textual artifacts. For
example, Fig. 7A presents information corresponding to the
transformation rules contained in the Bank2Report trans-
formation (Listing 1, line 14 and 4, respectively), Fig. 7B
portrays the templates comprised by the Report2HTML
transformation (Listing 2, line 3), and Fig. 7C presents the
list of the generated files derived after its execution, i.e.,
report.html.

Fig. 6 ChainTracker—main screen

123

End-to-end model-transformation comprehension through fine-grained traceability information 1313

Fig. 7 ChainTracker—overview visualization

Fig. 8 ChainTracker—branch visualization

In this small example, determining the high-level com-
positional structure of a transformation ecosystem is a trivial
task.However, aswepresent inSect. 7, as the number and size
of transformation scripts increases, so does the difficulty of
understanding how they operate and execute collaboratively.

ChainTracker automatically identifies the dependencies
between transformation scripts and determines its order
of precedence in the case of model-transformation chains.
The overview visualization provides quick insights on the
branching structure of a composition, by creating a graphical
representation of its major implementation units. Summariz-
ing information about the ecosystem’s high-level structure
enables developers to assess and, potentially, optimize its
overall design and correctness [77].

In order to study how well the information captured by
the metamodels of an ecosystem is used by its transforma-
tions (T2), developers can click on the nodes of the overview
visualization to determine their coverage throughout the dif-
ferent steps of a transformation chain (Fig. 7D). Coverage
metrics provide insights about howwell the information cap-
tured by a metamodel is used by the transformations of an
ecosystem. In effect, coverage information is a vital compo-
nent when reflecting about the quality of a transformation
composition, or when assessing the impact of evolutionary
changes. In ChainTracker, coverage metrics are summarized

in contextual pie charts that contain in- and out-coverage
metrics. The in-coverage metric reports the percentage of
elements in a metamodel that are effectively targeted by the
bindings defined in the transformations of an ecosystem. The
out-coverage metric represents the percentage of elements in
a metamodel used by transformation bindings to either gen-
erate textual artifacts, or to derive intermediate models in a
multistep transformation chain. This information might lead
developers to remove unused elements from ametamodel, or
to take advantage of their semantic value and include them in
the scope of a transformation. Maximizing metamodel cov-
erage makes transformations less convoluted and less error
prone, while, at the same time, freeing metamodels from
unused semantic constructs [18].

In the Bank to Credit Report case study, the out-coverage
of the Bank metamodel is 100% (Fig. 7D). This means that
all the elements of the Bank metamodel are used by the
Bank2Report transformation. Conversely, the in-coverage
metric for the same metamodel is 100% uncovered since it is
the root of the transformation chain, and no binding targets
its elements.

The branch visualization presents an execution view of
the transformation ecosystem under analysis (Fig. 8). The
goal of the branch visualization is to present information
about the fine-grained traceability links that exist throughout

123

1314 V. Guana, E. Stroulia

a transformation ecosystem. This visualization aims at por-
traying all the symbolic dependencies that individual binding
expressions establish between metamodel elements and their
properties, textual templates, and potential generated arti-
facts.

The branch visualization follows a graphical notation
inspired by parallel-coordinate visualizations for hyper-
dimensional data [78]. Parallel coordinates have been widely
used to represent the relationships betweenmultidimensional
datasets. They are commonly used to represent relation-
ships between continuous numerical variables grouped in
interdependent classes.2 In the context of transformation
ecosystems, the artifacts in each step of a transformation
chain, including the resulting files obtained after its execu-
tion, can be considered as an interdependent set of categorical
information. Indeed, each set is interconnected by means of
transformation expressions that bind their comprising ele-
ments.

The ultimate purpose of a transformation chain is to
reduce, split, merge, or augment the information provided
as input to systematically transform it, into one or multiple
output representations that conform to a textual ormetamodel
syntax. In transformation ecosystems that involve model-
to-model and model-to-text transformations, we can find at
least three semantic dimensions in the transformation pro-
cess: metamodels, textual templates, and generated textual
artifacts. The branch visualization captures each step of a
transformation composition and portrays its corresponding
artifacts in individual coordinate dimensions.

Figure 8 portrays the branch visualization of the Bank
to Credit Report case study. Each semantic dimension of
its underlying transformation chain is represented using ver-
tical lines. Depending on the nature of each transformation
step, its corresponding graphical notation contains a different
set of artifacts. In the case of model-to-model transfor-
mations, vertical lines contain blue boxes that portray the
elements of its source and target metamodels; black dots
inside these boxes represent their corresponding properties
(Fig. 8: Bank and Report metamodels). For model-to-
text transformations, vertical lines contain blue boxes that
represent individual template modules, and black dots por-
tray binding statements embedded in templates that access
the properties of a metamodel element (Fig. 8: generate-
HTML.mtl). Moreover, in the context of generated textual
artifacts, each blue box represents a generated text file,
and black dots individual lines of text generated inside
the file (Fig. 8: report.html). Indeed, blue boxes are multi-
purpose visual elements for artifacts that have hierarchical
structure, such as metamodels (that contain elements and
properties), templates (that contain template modules and

2 Multiple examples of parallel-coordinate visualizations are available
at https://syntagmatic.github.io/parallel-coordinates/.

individual binding statements), and generated textual files
(that include non-variable text snippets, and variable gen-
erated lines of text). The branch visualization combines the
multidimensional properties of parallel-coordinate visualiza-
tions, and the scalability and filtering power of hierarchical
edges [74] to visualize adjacency relations in hierarchical
data.

Figure 8 also presents the different types of edges used
to represent traceability links in a transformation ecosystem.
These includemodel-to-model transformation bindings (Fig.
8A), model-to-text transformation bindings (Fig. 8B) and
generation bindings (Fig. 8C). Model-to-model and model-
to-text bindings represent metamodel query expressions in
transformation scripts. Bindings represent all the potential
fine-grained traceability links between artifacts of the trans-
formation ecosystem. They dictate how the properties of
a metamodel element are used in order to derive a target
metamodel property (in the case of model-to-model trans-
formations) or a line of text (in the case of a model-to-text
transformation). Furthermore, generationbindings are under-
stood as the runtime dependencies between a model-to-text
transformation and a generated textual file. They represent
the dependency relationships between a template that queries
a set of metamodel properties, and the lines of text generated
after its execution.

The branch visualization can be used to grain access
to end-to-end traceability information of a transformation
chain. It can be used to identify the metamodel and bind-
ing expressions that intervene in the generation of a line of
code (T3). Furthermore, this visualization enables developers
to identify upstream and downstream metamodel dependen-
cies in isolatedor composedmodel-to-model transformations
(T4).

In order to help developers to more accurately identify
such dependencies, ChainTracker distinguishes between two
types of bindings, namely explicit and implicit bindings [28]
(Fig. 8, green and red edges, respectively). Explicit bindings
reflect on the dependency relationships caused by assignment
expressions in a transformation. Implicit bindings portray
dependency relationships given by intermediate expressions
that manipulate, constrain, or navigate the structure of a
metamodel in order to realize the intent of an assignment.
Recently, researchers such as in [21] have considered implicit
bindings as the “footprints” of a transformation expression.
In the context of ATL and Acceleo transformation technolo-
gies, these expressions are specified using OCL [79].

Distinguishing between explicit and implicit bindings
enables developers to study the coarse-grained dependencies
when assessing the impact of changes in a transformation
ecosystem. Furthermore, it also helps them to consider indi-
vidual statements in complex expressions and potentially
discovers fine-grained artifacts that are indirectly bound by
navigation or constrain expressions.

123

https://syntagmatic.github.io/parallel-coordinates/

End-to-end model-transformation comprehension through fine-grained traceability information 1315

Fig. 9 ChainTracker—branch visualization filtered

In the Bank to Credit Report example, multiple implicit
bindings exist between the properties of the Customer and
Credit source elements, and the properties of thePerson tar-
get element (Fig. 8). The implicit bindings can be observed
in OCL expressions (Listing 1, lines 29 and 32) where the
properties “cards” and “transactions” are used in nested
collect statements to compute the outstanding balance of
a Customer. In Sect. 6, we present evidence on how mak-
ing aware developers of implicit bindings help them to more
accurately predict the impact of changes in transformation
compositions.

ChainTracker includes two main filtering mechanisms to
isolate elements and bindings of interest, namely element
filters and binding filters. Using element filters (Fig. 9A),
developers can select multiple metamodel elements to study
all of its dependencies. Furthermore, using binding filters
(Fig. 9B) developers can select one binding in the visualiza-
tion and isolate all of its upstream- or downstream-related
elements.

Figure 9 presents the branch visualization of the Bank to
Credit Report case study. It portrays the result of applying a
binding filter to find the symbolic origins of a generated line
of code. In this case, the developer is able to see the origins
of the generated line of code 6 in report.html. This line is
generated by the template line 12 in the generateHTML.mtl
module, by querying the property “name” of the element
Person in the Report metamodel. This property is, in turn,
derived by querying the properties “cards” and “allowance”
of theCustomer andCreditCard elements, respectively (see
Listing 1, line 29).

As metamodels and transformations grow in size and
complexity, so does the number of artifacts that need be
represented in the ecosystem’s views. As a result, our
parallel-coordinate implementations can potentially become
cluttered when dealing with extremely large ecosystems. We
have adopted a parallel-coordinate arrangement similar to the
one presented in [80]. Each categorical dimension is placed
equidistant to each other and perpendicular to the x-axis. Fur-

thermore, each category is allocated space proportional to the
number of its comprising elements. We have found that for
most of the ecosystems available in the literature, our current
rendering parameters make visualizations scalable and easy
to understand. Nevertheless, ChainTracker allows develop-
ers to manually modify the distance between dimensions in
order to increase the usability of its visualizations with larger
ecosystems. As suggested in [80], strategies such as the the-
ory of envelopes can be used to implement automatic scaling
mechanisms for parallel coordinates.We plan to include such
capabilities in future releases of the tool.

3.2.2 The ChainTracker projectional code editors

It is important tomention that none of the existing approaches
allow developers to project information obtained from their
interaction with the transformation visualizations onto trans-
formation editors. This fundamentally limits their usability
in the context of supporting developers developing and
maintaining transformation ecosystems. In [81], Myers et
al. explore how conventional human–computer interaction
(HCI) methods can help researchers to better understand the
need of developers when dealing with complex software arti-
facts. Particularly, Myers et al. have found that a key use for
code visualizations is to guide developers to the right code
to look at, instead of being an aid to understanding on their
own. Following this principle, ChainTracker enables devel-
opers to use transformation visualizations to understand their
static and dynamic characteristics, as well as to project infor-
mation they have discovered in the visualizations onto textual
editors, and vice versa.

ChainTracker offers a code-projection menu where devel-
opers can find three types of projections, namely downstream
projections, upstream projections, and single binding projec-
tions (Fig. 6D). In all cases, developers can select artifacts in
the visualizations, in order to find their original textual rep-
resentation. To understand their usage, let us briefly examine
four examples.

123

1316 V. Guana, E. Stroulia

Fig. 10 ChainTracker—binding projection menu

1. Figures 10A and 11A showcase the use of downstream
projections in order to isolate the textual representation
of the bindings associated with the Bank element of the
Bank metamodel. In this case, all the related bindings
are located in the Bank2Report (M2M) transformation
(Listing 1). Projections that affect model-to-model trans-
formation expressions are highlighted byfirst locating the
rule where each binding is located (yellow shadow), its
name (cyan), the property targeted by the binding (blue),
and its related statements (green and red for explicit and
implicit bindings, respectively).

2. Figures 10 and 11B present the result of applying down-
stream projections to obtain the textual representation
of bindings related to the Customer element of the
Bankmetamodel. A similar result will be obtained when
applying upstream projections to elements of theReport
metamodel.

3. Figures 10C and 11C present the result of applying a sin-
gle binding projection in order to isolate the expressions
that realize the binding between the “balance” prop-
erty of the Person element, and the “value” property of
the Transaction element. ChainTracker identifies proce-
dural calls as implicit bindings and helps developers to
follow their execution flow using code projections.

4. Figure 12 depicts the result of selecting a model-to-text
binding (A), and projecting it onto the textual editor (B).
In this particular case, the editor showcases the contents
of the Report2HTML (M2M) transformation (Listing
2). It highlights the binding expression that uses the
property “name” of the Person element in the Report
metamodel. This expression generates a portion of the
report table (C). It is important to mention that genera-
tion bindings can also be subject of code projections onto
generated textual files.

Fig. 11 ChainTracker—M2M binding projections

Code projections help developers to navigate the visual-
izations and map their semantics onto the expressions that
they represent. They also provide a straightforward strategy
to find unused code in transformation scripts, so they can
be refactored or deleted (T6). In this context, a portion of a
transformation script can be considered orphan if it remains
clear after projecting all of its associated bindings from the
branch visualization.

ChainTracker also includes a reverse code-projection fea-
ture. It enables developers to study templates and generated
files in their textual form, in order to find a line of interest
and investigate its precise graphical representation (Fig. 6D:
Text Selection). A more elaborated example of this feature
can be found in https://guana.github.io/chaintracker/tutorial.
html.

3.2.3 The ChainTracker contextual tables

One of the strategies that ChainTracker uses to minimize the
amount of information displayed in its visualizations is to
omit details about the names and properties of themetamodel
elements and binding expressions. However, this information
might be of high value to developers debugging complex
transformation expressions. The contextual tables present

123

https://guana.github.io/chaintracker/tutorial.html
https://guana.github.io/chaintracker/tutorial.html

End-to-end model-transformation comprehension through fine-grained traceability information 1317

Fig. 12 ChainTracker—M2T binding projections

information that reveal details not available in the visual-
izations of the environment (Figs. 9, 12C).

Developers can select a metamodel element in the visu-
alizations, and the three contextual tables will display infor-
mation about the name and type of its properties, related
upstream bindings (bindings that have as target the selected
element), and related downstreambindings (bindings that use
the selected element as the source for the creation of another
element). Developers can also select individual bindings to
obtain information about the transformation where the bind-
ing is located. When a binding of any nature is selected,
the three contextual tables will portray information regard-
ing the name of its parent script, generation module, and
bound element properties. If the selected binding is a model-
to-text binding, information regarding its location inside its
corresponding template script will be presented along with
its expression type, i.e., binding due to a simple query, con-
ditional expression, or loop expression.

4 Study design

In this section, we summarize the design of our study, includ-
ing our hypotheses, dependent and independent variables, the
characteristics of the participants, and the tasks that partici-
pants completed using Eclipse Modeling and ChainTracker
as tool treatments.

4.1 Hypotheses

In this study, we hypothesize that enabling developers to
interactively explore the execution semantics of a transforma-

tion ecosystem can significantly improve their performance
when reflecting on an ecosystem’smetamodel and generation
dependencies. In order to investigate our research questions,
we outlined two individual null hypotheses.

– H01: Developers spend an equal amount of time identi-
fying metamodel and generation dependencies in model
transformations using ChainTracker and Eclipse Model-
ing editors.

– H02: Developers provide equally correct answers identi-
fying metamodel and generation dependencies in model
transformations using ChainTracker and Eclipse Model-
ing editors.

4.2 Objects

The objects of our study are two model-based code gener-
ators developed in our research laboratory: ScreenFlow and
PhyDSL.

ScreenFlow is a design environment for mobile applica-
tion storyboards. It enables developers to quickly translate
user interface sketches into application skeletons, including
interface navigation logic. ScreenFlow consists of a textual
domain-specific language, and a linearmodel-transformation
chain that includes one model-to-model transformation,
and two model-to-text transformations written in ATL and
Acceleo, respectively (Fig. 13). ScreenFlow is designed for
novice android application developers and for rapid software
prototyping environments, such as hackathons. A complete
description and demo video of ScreenFlow can be found at
https://guana.github.io/screenflow.

PhyDSL [82,83] is a game engine and authoring environ-
ment for mobile 2D physics-based games. It consists of a
textual domain-specific language for gameplay design, and
a multibranched transformation chain that takes high-level
gameplay specifications and translates them into executable
code for mobile devices. PhyDSL’s transformation chain
includes four model-to-model transformations implemented
using ATL, and four template-based model-to-text transfor-
mations written in Acceleo (Fig. 14). PhyDSL is currently
used by the Faculty of Rehabilitation Medicine at the Uni-
versity of Alberta, the Knowledge Media Design Institute
at the University of Toronto, and the Sapporo Medical Uni-

Acceleo M2T x2
 199 LOC

 Platform
Generation

ATL-M2M
 56 LOC

Intermediate
 Metamodel

 Root
Metamodel

Java
Code

GUI
4 Elements

Mockup
10 Elements

Fig. 13 ScreenFlow’s linear model-transformation chain: 1 model-to-
model (M2M) ATL transformation comprised by 4 matched rules and 1
helper, and 2 model-to-text (M2T) Acceleo transformations containing
43 binding expressions

123

https://guana.github.io/screenflow

1318 V. Guana, E. Stroulia

308 LOC

113 LOC

1007 LOC

484 LOC

Acceleo M2M x5

 Platform
Generation

ATL M2M x4

96 LOC

73 LOC

45 LOC

29 LOC

Intermediate
Metamodels

 Root
Metamodel

Java
Code

Java
Code

Java
Code

Scoring
5 Elements

Layout
5 Elements

Dynamics
4 Elements

Java
Code

Controls
2 Elements

Game
43 Elements

Fig. 14 PhyDSL’s multibranched model-transformation chain: 4
model-to-model (M2M)ATL transformations comprised by 14matched
rules and 2 helpers, and 4model-to-text (M2T)Acceleo transformations
containing 172 binding expressions

versity in Japan, to create cost-effective mobile games for
rehabilitation therapy [84]. More information about PhyDSL
can be found at https://guana.github.io/phydsl/. The PhyDSL
and ScreenFlow source code, and corresponding Chain-
Tracker visualizations can be found at https://github.com/
guana/chaintracker-eval.

4.3 Dependent variables

Considering the hypotheses H01 and H02, our experiment
has two dependent variables on which our treatments are
compared:

– V arA: Time developers spend solving each task.
– V arB : Developers’ accuracy solving each task.

4.4 Independent variables

The four independent variables of this study are summarized
in Table 2. Variables V arCT1 and V ar E M1 represent the
tasks designed to evaluate the performance of developers
working in the context of ScreenFlow, and V arCT2 and
V ar E M2 in the context of PhyDSL, using ChainTracker
(CT) and Eclipse Modeling (EM), respectively.

4.5 Tasks

In this study, we measured the performance of developers
when asked to identify dependency relationships between
artifacts in two transformation ecosystems of different com-
plexity. In order to do so, we created a set of task templates
that aim at understanding how developers identify depen-
dency relationships at different levels of granularity, using
different tool treatments. These tasks are grouped in fivemain

Table 2 Study independent variables

Object system Tasks CT Tasks EM

Object 1: ScreenFlow V arCT1 V ar E M1

Object 2: PhyDSL V arCT2 V ar E M2

families, namely, a) determining metamodel coverage and
expression location, b) identifying metamodel dependencies
in model-to-model transformations, c) identifying meta-
model dependencies in model-to-text transformations, d)
identifying generation dependencies in model-to-text trans-
formations, and e) identifying generation dependencies in
model transformation chains (Sects. 4.5.1–4.5.5). The pro-
posed question templates can be used to replicate this study
with different object systems. “Appendix A” presents the
questionnaires that instantiate the proposed templates in the
context of PhyDSL and ScreenFlow. Let us briefly present
each family of tasks.

4.5.1 Determining metamodel coverage and expression
location

The goal of this family of tasks is to investigate how devel-
opers identify the major components of a transformation
ecosystem, and measure their performance when inferring
its high-level compositional structure. Tasks in this family
use the following templates:

– Are there any unused elements in the [metamodel-name]
metamodel? if so which ones?

– What transformation rule contains the binding expression
[query-expression]?

– What transformation script contains the [rule-name]
rule?

– What files does the [template-name] template generate?

4.5.2 Identifying metamodel dependencies in M2M
transformations

This set of tasks requires developers to identify the dependen-
cies that exist between the source and target metamodels of a
single model-to-model transformation. This family of tasks
is divided in two categories, namely element- and property-
level dependency tasks.

More often than not, property-level dependencies are
localized in nontrivial binding expressions that realize the
intent of a transformation script, these include metamodel
navigation statements or procedural calls to helpers. Tasks
in this family are also distinguished by the direction of the
dependencies that need to be identified. While some tasks
require developers to identify upstream dependencies, other

123

https://guana.github.io/phydsl/
https://github.com/guana/chaintracker-eval
https://github.com/guana/chaintracker-eval

End-to-end model-transformation comprehension through fine-grained traceability information 1319

tasks investigate their performance identifying downstream
dependencies. Tasks in this family are specified using the
following templates:

– What metamodel elements are used in the creation of
the [metamodel-name ! element-name] element? (element
upstream dependencies)

– What metamodel elements are created using the
[metamodel-name ! element-name] element? (element
downstream dependencies)

– What metamodel elements are created using the property
[property-name] of the [metamodel-name ! element-
name] element? (property downstream dependencies)

4.5.3 Identifying metamodel dependencies in M2T
transformations

This family of tasks investigates how developers identify
upstream dependencies in model-to-text transformations.
Concretely, they ask developers to determine the meta-
model elements required for the execution of one or multiple
bindings expressions in a model-to-text transformation. Fur-
thermore, they ask developers to evaluate whether such
elements have upstream dependencies in model-to-model
transformations that are potentially linked in previous steps
of a transformation chain. Tasks in this family follow the
template:

– Considering the entire transformation chain, what meta-
model elements does the template line [line-number] in
[template-name] depend on?

4.5.4 Identifying generation dependencies in M2T
transformations

This set of questions requires developers to identify depen-
dencies between generated textual artifacts, e.g., code, and
their originatingmodel-to-text transformations.They are pre-
sented to the participants using the following template:

– What template lines in [template-name] are used in
the generation of line [line-number] in [generated-file-
name]?

4.5.5 Identifying generation dependencies in MTCs

This collection of tasks investigate how developers identify
the dependencies of a generated textual artifact in a holistic
fashion. They ask developers to determine all the metamodel
elements and properties that intervene in the generation of
one or multiple lines in a generated textual artifact. They are
also divided in two categories namely, element- and property-

level dependency tasks. The tasks in this family use the
following templates:

– Considering the entire transformation chain, what meta-
model elements does the generation of line [line-number]
in [generated-file-name] depend on?

– Considering the entire transformation chain, what meta-
model properties does the generation of line [line-
number] in [generated-file-name] depend on?

4.6 Detailed hypotheses

Taking into account our two high-level null hypotheses and
our two object systems, this study tries to reject four detailed
hypothesis:

H0V arA1 : Ṽ arACT1 = Ṽ arA E E1

H0V arA2 : Ṽ arACT2 = Ṽ arA E E2

H0V arB1 : Ṽ arBCT1 = Ṽ arB E E1

H0V arB2 : Ṽ arBCT2 = Ṽ arB E E2

Hypotheses H0V arA1 and H0V arA2 compare the median
time spent by developers solving the proposed tasks in sin-
gle and multibranched transformation chains, respectively
(i.e., developers spend an equal amount of time solving
questions using ChainTracker and Eclipse editors for sin-
gle and multibranched transformation chains). Moreover,
hypotheses H0V arB1 and H0V arB2 compare the median
accuracy (in terms of task solution correctness) of develop-
ers solving the proposed tasks on single and multibranched
transformation chains, respectively (i.e., developers provide
equally correct answers using ChainTracker than they do
using Eclipse editors for single and multibranched transfor-
mation chains).

4.7 Participants

This study involved 25 software engineers with an average
of 7.5 years of software development experience. All partici-
pants were enrolled in a professional masters programwhich
includes an intensive course on software engineering automa-
tion using model-transformation languages. The participants
had an average of 6 months of training in rule- and template-
based model-transformation languages. Their training also
included Eclipse Modeling as their main development envi-
ronment for model transformations. All of the participants
reported having used Eclipse in their professional develop-
ment practice, and Eclipse Modeling in the context of their
graduate course inmodel-transformation technologies. None
of the participants had experiencewithmodel-transformation
technologies in an industrial setting. Furthermore, none of
the participants had previous knowledge of the case studies

123

1320 V. Guana, E. Stroulia

used in this study. Our pool of participants is representative
of a community in which developers have only introductory
training on model-transformation technologies, yet con-
siderable experience in the general software engineering
field.

4.8 Data analysis

Given the sample size and the non-normal distribution of the
data collected in this study,we adopted aMann–Whitney “U”
nonparametric test to investigate our hypothesis propositions.
TheMann–Whitney compares themedianof the observations
for datasets with pronounced outliers. This makes the test a
suitable analysis tool for small unpaired datasetswith skewed
distributions. All of our hypotheses were evaluated using a
two-tailed version of test. In this study, we consider an alpha
level with a p value lower than 5%; thus, we consider an
acceptable probability of 0.05 for Type-I error, i.e., rejecting
the null hypothesis when it is true.

5 Protocol

The protocol of the study was divided in three sessions con-
ducted in the course of oneweek (Fig. 15). Session 1 (training
session) involved an introductory tutorial on the features of
ChainTracker. Sessions 2 and 3 involved two independent
working sessions in which 25 participants solved the tasks
assigned for the object systems of the study.

5.1 Training

The training session was structured in two 60 minute parts
divided by a 15 minute break. The first half of the session
involved a tutorial on the use of ChainTracker. The second
half consisted of a laboratory workshop that provided hands
on experience with the analysis environment.

The 25 participants received a presentation that intro-
duced a case study of similar complexity to the one used
in Sect. 3.1. The case study was used to explore the features
of ChainTracker and the graphical notation of its visualiza-
tions. Additionally, participants completed a worksheet with
questions conforming to the templates described in Sect. 4.5.
Two research assistants helped participants to solve questions
as they completed the guide. The training material and case

study can be found at https://guana.github.io/chaintracker/
tutorial.html.

At the end of the first session, the 25 participants were
randomly divided in two groups of 15 and 10 participants,
namely, Group A and B, respectively. Group A was assigned
to the working session A, and Group B to the working ses-
sion B.

5.2 Working sessions

Participants assigned to Group A were randomly divided in
two subgroups of 7 and 8 participants, namely Group A1
and A2, respectively. Similarly, participants in Group Bwere
randomly divided in two subgroups of 5 participants, namely
Group B1 and B2.

Each subgroup was assigned to individual computer lab-
oratories with virtual machines containing ChainTracker
and Eclipse Modeling with ATL and Acceleo plug-ins.
Participants in Working Sessions A and B were assigned
ScreenFlow and PhyDSL as their case studies, respec-
tively.

At the beginning of each session, participants received
a 15-minute presentation on the major components of their
corresponding case studies. This presentation included 10
minutes of questions and final setup.All participants received
a printed copy of themetamodels that comprise their assigned
case study. Finally, the participants in Groups A1 and B1
were instructed to solve 25 tasks using ChainTracker, and
participants in Groups A2 and B2 using Eclipse Modeling
(“Appendix A”).

Both working sessions had a maximum time restriction
of 2.5 hours. Each computer laboratory was supervised by
a research assistant who was available to answer high-level
questions about both Eclipse andChainTracker, aswell as the
setup of the virtual machines. At the end of both working ses-
sions, participants were rewarded with a gift card equivalent
to $25CAD for their time.

5.3 Data collection

The working sessions were instrumented with a survey
application developed by our research team https://www.
github.com/guana/surveygen. Each participant logged into
the survey application using a unique ID assigned before the
beginning of the session. The application presents one task

Group B1: 5 Participants - ChainTracker

Group B2: 5 Participants - Eclipse Modeling

Session 3: Working Session B (Day 3)

Group A1: 7 Participants - ChainTracker

Group A2: 8 Participants - Eclipse Modeling

Session 2: Working Session A (Day 2)
Session 1: Training

25 Participants
(Day 1)

Fig. 15 Study protocol: Session 1—Training, Session 2—Working Session A, and Session 3—Working Session B

123

https://guana.github.io/chaintracker/tutorial.html
https://guana.github.io/chaintracker/tutorial.html
https://www.github.com/guana/surveygen
https://www.github.com/guana/surveygen

End-to-end model-transformation comprehension through fine-grained traceability information 1321

at the time until all tasks in the questionnaire are answered.
The application does not allow participants to skip tasks.
Furthermore, it does not allow participants to return to a task
once it has been completed. Our survey application measures
the total time spent by the participant in each task. The total
time is calculated as the time between a task is presented
to the participant, and the time a valid answer is submit-
ted.

The survey application is capable of presenting three types
of questions, namely, multiple choice questions, list-based
questions, and multiple selection questions. Each type cap-
tures the participant’s answers using different mechanisms.
Multiple choice questions receive one answer from a pre-
defined set of options. List-based questions receive one or
multiple open-ended answers, and multiple selection ques-
tions receive one ormultiple answers from a predefined set of
options. Our survey application stores the results of a session
in a remote server using a REST API.

It is important to mention that tasks in each questionnaire
were organized to make the experience of the participants
engaging and balanced throughout the entire session. Sim-
ilar tasks (i.e., tasks belonging in the same family) were
distributed throughout the questionnaires, in almost regu-
lar intervals, and their level of difficulty was considered to
avoid having collections of consecutive task with dispro-
portionate complexity level. We categorized the difficulty
of the each task in three increasing levels: easy, medium,
and hard based on our observations during the prelimi-
nary pilot studies. The questionnaires took this classification
into account, and they do not present more than two hard
questions or more than three medium questions, one after
the other. Since participants only use one tool treatment
throughout the course of the study, counterbalancing was
not sought.

In order to quantify the developers’ accuracy for each
task, we designed a point-based scoring mechanism similar
to the one used [85] and [86]. Each task in the question-
naire is scored individually. For multiple choice questions,
each participant is given a single point if the selected
answer is correct. In the case of multiple selection ques-
tions, one point is given for each correct option selected.
Furthermore, half a point is taken for every incorrect option
selected, as well as for every correct option missed. Simi-
larly, for list-based questions one point is given for correct
answers, and half a point is taken for incorrect or missed
options.

6 Results

In this section, we present the results of our study. We use
summary tables to present the performance of developers in
each family of tasks (“Appendix B”).

6.1 Determining metamodel coverage and expression
location

The goal of this family of tasks is to investigate the perfor-
mance of developers identifying the major components of a
transformation ecosystem, and the high-level compositional
structure of its underlying transformations. Concretely, these
tasks require developers a) to identify the files generated by
a given model-to-text transformation, b) to locate individual
binding expressions in the transformations of an ecosystem,
and c) to evaluate the coverage of an ecosystem’s metamod-
els. Tables 5 and 6 (“Appendix A”) summarize the results for
this family of tasks.

When identifying the files generated by a given model-
to-text transformation in ScreenFlow (Q9 and Q10, Table 5),
developers were on average 63% more efficient with Eclipse
thanwith ChainTracker. This effect is less pronounced (22%)
in the case of developers working on PhyDSL (Q9 and Q10,
Table 6). However, there is no substantial difference regard-
ing the accuracy of both groups of developers.

When asked to isolate individual binding expressions in
ScreenFlow (Q1 and Q2, Table 5), developers supported by
Eclipse were on average 29%more efficient than those using
ChainTracker. In the context of PhyDSL, no performance
difference was observed. Furthermore, there is no difference
regarding the accuracy of developers in the ecosystems under
study.

Finally, for the tasks of metamodel coverage assessment,
developers using ChainTracker were on average 46% more
efficient and 72% more accurate that those using Eclipse
in ScreenFlow (Q17 and Q18, Table 5). On cursory exam-
ination, developers using Eclipse seem to be more efficient
assessing metamodel coverage in PhyDSL (Q17 and Q18,
Table 6). However, considering their lower accuracy, we
believe this group of developers only submitted partial
answers. Indeed, participants using ChainTracker were on
average 200%more accurate assessing the coverage of meta-
models in PhyDSL.

There is no statistically significant evidence to reject any
of our hypothesis propositions for developers completing this
family of tasks.

6.2 Identifying metamodel dependencies in M2M
transformations

This set of tasks investigates the performance of develop-
ers identifying the upstream and downstream dependencies
between a collection of metamodels, in the context of indi-
vidual model-to-model transformations. The results for this
family of tasks are divided in two levels of granularity,
namely identifying element-level dependencies (Tables 7, 8),
and identifying property-level dependencies (Tables 9, 10,
“Appendix A”).

123

1322 V. Guana, E. Stroulia

ChainTracker improved the accuracyof developers assess-
ing element-level dependencies in the context of individ-
ual model-to-model transformations (Q3, Q4, Q11, and
Q12, Tables 7, 10). Developers using ChainTracker were
on average 83% more accurate, and 48% more efficient
than those using Eclipse, in both ecosystems under analy-
sis.

Considering our accuracy-related hypotheses, we can
reject H0V arB1 (Q11: p = 0.0310, and Q12: p =
0.0006), and H0V arB2 (Q11: p = 0.0310, Q4: 0.0072,
Q3: p = 0.0065, and Q12: p = 0.0065) for develop-
ers identifying element-level dependencies. We can also
reject our efficiency-related hypothesis H0V arA1 (Q11:
p = 0.0021, Q4: p = 0.0139, and Q12: p = 0.0012)
in the case of developers working on ScreenFlow. Indeed,
participants using ChainTracker were on average 36%
faster than those supported by Eclipse in PhyDSL. How-
ever, there is not statistically significant evidence to reject
H0V arA2.

Finally, participants using ChainTracker were signifi-
cantly more accurate than those using Eclipse when deter-
mining property-level dependencies (Q23 and Q13, Tables
9, 10), almost 9 times more accurate in fact. We have sta-
tistically significant evidence to reject our accuracy-related
hypotheses, namely H0V arB1 (Q23: p = 0.0046 and Q13:
p = 0.0491) and H0V arB2 (Q23 p = 0.0412 and Q13 p =
0.0393) for developers identifying property-level dependen-
cies.

6.3 Identifying metamodel dependencies in M2T
transformations

This family of tasks requires developers to identify the
metamodel elements consumed by one, or multiple, binding
expressions in a model-to-text transformation, and to evalu-
ate whether these elements have upstream dependencies in
a model-transformation chain. Tables 11 and 12 (“Appendix
A”) summarize the relevant results.

In the context of ScreenFlow, developers using Chain-
Tracker were on average 55% more accurate than those
using Eclipse (Q5, Q15, and Q22, Table 11). In the case
of PhyDSL, the ChainTracker advantage is even more pro-
nounced. Developers using ChainTracker were 90% more
accurate than those using Eclipse (Table 12).

We found statistically significant evidence to reject our
accuracy-related hypotheses H0V arB1 (Q5: p = 0.0119
and Q22: p = 0.0025), and H0V arB2 (Q5: p = 0.0072,
Q15: p = 0.0097 and Q22: p = 0.0117) for devel-
opers identifying metamodel dependencies in model-to-
text transformations. There is no significant difference in
the efficiency of developers completing this family of
tasks.

6.4 Identifying generation dependencies in M2T
transformations

This set of tasks requires developers to identify dependen-
cies between individual lines of text, e.g., code, and their
originating model-to-text transformations. Tables 13 and 14
(“Appendix A”) summarize the relevant results.

For this family of tasks, developers using ChainTracker
were on average 19% more efficient and 94% more accurate
than those using Eclipse (Q6, Q16, and Q25). Although this
difference is statistically significant for Q25 in ScreenFlow,
and Q6 in PhyDSL, there is no significant evidence to reject
any of our hypothesis propositions for developers completing
this family of tasks.

6.5 Identifying generation dependencies in MTCs

This collection of tasks investigates how developers identify
the upstreamdependencies of a generated textual artifact, i.e.,
the metamodel elements needed for the generation of one or
multiple lines of code. It is important to mention that this
family of tasks inquires about the metamodel dependencies
throughout an entire transformation chain. The performance
measurements for this family of tasks are also divided in
two levels of granularity, namely identifying element-level
dependencies (Tables 15, 16), and identifying property-level
dependencies (Tables 17, 18, “Appendix A”).

When identifying element-level dependencies in Screen-
Flow, developers using ChainTracker were on average 62%
more accurate than developers using Eclipse. This effect is
significantly more pronounced in PhyDSL where develop-
ers were 100% more accurate (Q7, Q8, Q19, Q20, and Q21,
Tables 15, 16). This observation is statistically significant for
all the tasks under consideration.

In ScreenFlow, developers using ChainTracker were 66%
more efficient than those using Eclipse. This finding is statis-
tically significant for all tasks in the ScreenFlow ecosystem.
In PhyDSL, we observed that even though the median time
spent by developers in these tasks is lower for developers
using ChainTracker, the difference is significant only in Q8.

We found statistically significant evidence to reject our
accuracy-related hypotheses, namely H0V arB1 (Q7: p =
0.0032, Q8: p = 0.0073, Q19: p = 0.0443, Q20: p =
0.0007, and Q21: p = 0.0007), and H0V arB2 (Q7: p =
0.0094, Q8: p = 0.0072, Q19: p = 0.0066, Q20: p =
0.0055, and Q21: p = 0.0055) for developers identify-
ing end-to-end element-level dependencies. Furthermore, we
can reject our efficiency-related hypothesis H0V arA1 (Q7:
p = 0.0093, Q8 p = 0.0012, Q19: p = 0.0037, Q20:
p = 0.0003, and Q21: p = 0.0003).

As we mentioned in Sect. 3, identifying end-to-end
property-level dependencies in a transformation chain
requires developers to find all the metamodel element prop-

123

End-to-end model-transformation comprehension through fine-grained traceability information 1323

erties that are explicitly or implicitly used in the generation of
a given line of code. When tracing property-level dependen-
cies, ChainTracker developers were on average 68% more
accurate than those using Eclipse in both ecosystems under
study (Q14, and Q24, Tables 17 and 18).

Similar to element-level dependencies, we observed that
identifying end-to-end property-level dependencies, in both
linear andmultibranched transformation chains is a challeng-
ing task. In this context, participants using Eclipse obtained
a median accuracy score of 0.5 and 1.0 for tasks with max-
imum attainable scores of 8.0 (Q14 in ScreenFlow) and 4.0
(Q14 in PhyDSL), respectively.

Indeed, we can reject our accuracy-related hypotheses,
namely H0V arB1 (Q14: p = 0.0090, and Q24: p =
0.04871), and H0V arB1 (Q14: p = 0.0066 and Q24: p =
0.0248) for developers identifying end-to-end property-level
dependencies.

With respect to our efficiency-related hypothesis, we
found statistically significant evidence that ChainTracker
outperforms Eclipse Modeling in helping developers ana-
lyzing end-to-end property-level dependencies. However, we
believe that most of the time, observations cannot be fairly
analyzed considering that most developers using Eclipse
were highly inaccurate.We require further analysis and addi-
tional empirical information to validate our hypotheses for
developers completing this type of tasks.

7 Discussion

7.1 Determining metamodel coverage and expression
location

Developers using ChainTracker performed less effi-
ciently than developers using Eclipse in locating indi-
vidual binding expressions across the ecosystems under
study. At the same time, ChainTracker developers were
considerably more accurate and more efficient when
determining the coverage of their metamodels. None of
these results, however, are statistically significant.

Tasks Q1 and Q2 require developers to isolate individual
binding expressions in the ecosystems under study. Fur-
thermore, Tasks Q9 and Q10 require developers to identify
the files generated by a given model-to-text transformation
(Tables 3, 4). We noticed that developers using Eclipse relied
on the pattern-matching features of the environment to com-
plete these tasks. As shown in Tables 5 and 6, this strategy
proved very effective. Eclipse developers are between 24%
and 51% more efficient than those supported by Chain-
Tracker in Q1 and Q2, and between 22% and 63% more

efficient in Q9 and Q10. As ChainTracker does not offer
pattern-matching capabilities, developers had to manually
explore the transformations of the ecosystems to complete
the aforementioned tasks.

Tasks Q17 and Q18 require developers to determine the
coverage of two metamodels in their respective ecosystems,
namelyMockup andGUI for ScreenFlow, and PhyDSL and
Dynamics for PhyDSL (Tables 3, 4). Eclipse developers had
to manually explore all the upstream and downstream bind-
ings that operate on each metamodel to evaluate its coverage.
In ScreenFlow, they had to examine 56 lines of code, corre-
sponding to its single model-to-model transformation (Fig.
13). In PhyDSL, they had to study a total of 243 lines of
code, corresponding to its four model-to-model transforma-
tions (Fig. 14). Moreover, theMockup andGUImetamodels
of ScreenFlow have a total of 14 metamodel elements, and
the PhyDSL and Dynamics metamodels of PhyDSL have
47 elements. Indeed, manually examining large transforma-
tion codebases, looking for the usage of dozens ofmetamodel
elements, is a daunting, if not impossible, task.

Participants usingChainTrackerwere not required toman-
ually study transformation codebases to identify uncovered
metamodel elements. Coverage information is presented in
the overview visualization using pie charts that summarize
the in- and out-coverage metrics for all of the metamodels
of an ecosystem. Furthermore, using ChainTracker’s branch
visualization, developers were able to identify metamodel
elements that have no bindings attached to them, which
makes uncovered elements easy to identify (Fig. 8). This
information can be effectively used to precisely remove
unused metamodel elements and properties, and to identify
portions of code that are never executed.

7.2 Identifying metamodel dependencies in M2M
transformations

7.2.1 Element-level dependencies

Developers using ChainTracker are significantly
more accurate and more efficient than those using
Eclipse at identifying element-level dependencies in
model-to-model transformations. In effect, identifying
downstream dependencies is significantly more difficult
to developers, than pinpointing their upstream counter-
parts.

We believe thatmost of the positive impact that ChainTracker
had on the accuracy of developers stems from the usability
of its branch visualization, which presents a unified view of
the traceability links contained in the transformations of an
ecosystem.

123

1324 V. Guana, E. Stroulia

Identifying downstream dependencies (Q4 and Q12) in
rule-based transformations is fundamentally more difficult
than identifying upstream dependencies (Q2 andQ11, Tables
3, 4). To complete both sets of tasks, developers need to
examine the transformations and interpret their execution
semantics. In order to identify upstreamdependencies, devel-
opers only need to examine the binding expressions located
in the matched rule corresponding to the element of interest.
These expressions determine the metamodel elements that
are used for its creation. In contrast, developers looking for
an element’s downstream dependencies require to pinpoint
all the binding expressions located in potentially multiple
transformation rules, used to create an undetermined number
of target elements. In both cases, developers need to consider
all the implicit and explicit expressions that use the element
of interest to either constrain their execution, or gain access
to other metamodel elements.

ChainTracker interactive filtering capabilities proved
effective in isolating information corresponding to individual
metamodel elements, and their related binding expressions.
This enabled developers to analyze the downstream and
upstream dependencies despite of the size of the visual-
izations. Furthermore, ChainTracker enables developers to
quickly identify implicit and explicit bindings in complex
OCL expressions. Our empirical observations revealed that
the automatic reasoning of model transformations, and the
quick access to fine-grained traceability links, enabled devel-
opers to identify dependency relationships in amore efficient
and accurate manner. As shown in Tables 7 and 8, developers
using Eclipse had a very low accuracy in tasks that included
the analysis of expressions with multiple implicit bindings
(Q4, and Q12).

7.2.2 Property-level dependencies

Identifying property-level dependencies in model-to-
model transformation is particularly difficult due to the
large search spaces that need to be explored to complete
this task. ChainTracker developers were significantly
more accurate in identifying property-level dependen-
cies than participants using Eclipse. This phenomenon
is more pronounced as the complexity of the ecosystem
increases.

Similarly to tasks that require developers to identify down-
stream element dependencies, identifying property-level
dependencies requires developers to manually interpret the
binding expressions of all the transformations in an ecosys-
tem.Weobserved thatEclipse users used its pattern-matching
capabilities to find all the expressions that used a property of
interest. This strategy is somehow effective in the case of

properties with very distinctive names, such as in the case of
“fromScreen” in Q23 (Table 3). However, for properties with
common names, such as “value” or “name” (Q23 and Q13
in Table 4) the text-based search approach proved ineffective.

7.3 Identifying metamodel dependencies in M2T
transformations

Developers using ChainTracker were significantly
more accurate than those using Eclipse in identify-
ing upstream metamodel dependencies in model-to-text
transformations. This effect is more pronounced in
PhyDSL, which suggests that the complexity of these
tasks, and the usefulness of ChainTracker, increases in
multibranched transformation chains.

Developers using Eclipse appeared to be more efficient than
those using ChainTracker when addressing Q5, Q15, and
Q22. However, they were much less accurate. Due to the
small set of participants in each working session, we are
unable to isolate developers that useEclipse and that obtained
high accuracy scores, in order to make a fair statistical anal-
ysis of our time-dependent hypotheses.

It is important to note that developers using ChainTracker
obtained a perfect accuracy score for all task in this fam-
ily. Conversely, Eclipse developers had a sparse accuracy
distribution (Table 11). This suggests that Eclipse develop-
ers struggle to identify upstream dependencies in multistep
transformation chains, even when these are due to simple
binding expressions, e.g., Q15 in ScreenFlow.

As a concrete example of the challenges that developers
face completing this family of tasks, let us briefly exploreQ15
in the context of PhyDSL (Table 4). This task requires devel-
opers to find the element dependencies of the expressions
located in line 110 of the generateScoring.mtl transforma-
tion (Fig. 16A). Furthermore, developers need to determine
whether there are additional metamodel dependencies due
to potential upstream model-to-model transformations in
PhyDSL (Fig. 17B).

Figure 18 presents the ChainTracker visualization, rele-
vant to task Q15 for PhyDSL. Line 110 in generateScor-
ing.mtl uses two attributes corresponding to two elements

Fig. 16 PhyDSL—generateScoring.mtl M2T

123

End-to-end model-transformation comprehension through fine-grained traceability information 1325

Fig. 17 PhyDSL—Effect2Action and solveBool() M2M
rules

Fig. 18 PhyDSL—Task Q15 ChainTracker Visualization

in the Scoring metamodel, namely Action and Collision-
Rule (Fig. 18A). This line generates a portion of code that
implements the scoring mechanisms of the video games
generated by PhyDSL. The Action element is created by
the Effect2Action rule (Fig. 17). This rule uses the
solveBool() helper to complete its transformation intent.
As shown in Fig. 18B, the Action element has multiple
implicit dependencies given by binding expressions that
include procedural calls, and metamodel navigation state-
ments. Due to the complexity of the binding expressions,
manually locating the usage of the metamodel of interest,
and interpreting their corresponding dependency relation-
ships are a challenging task.

Our observations during the study suggest that Chain-
Tracker’s branch visualization, and its code-projection capa-
bilities, enabled developers to gain end-to-end traceability
information, and toquicklyfilter upstreammetamodel depen-
dencies in both ecosystems under analysis.

7.4 Identifying generation dependencies in M2T
transformations

We observed that participants using Eclipse use the Acceleo
Profiler [61] in order to find generation dependencies in
the model-to-text transformations under study. The Acceleo
Profiler enables developers to debug model-to-text transfor-
mations, and to identify the binding expressions responsible
for the generation of a particular line of code. On the other
hand, ChainTracker developers were able to select portions
of generated code and obtain their corresponding generation
dependencies using its reverse code projection capabili-
ties. The projections not only highlighted the model-to-text
bindings that originated the selected portions of code, but
provided quick access to the metamodel elements and prop-
erties, used for their generation.

ChainTracker developers were on average 19%more effi-
cient identifying generation dependencies in model-to-text
transformations. We believe this is because reverse code
projections do not require to interactively execute trans-
formations to study their bindings. Instead, they offer a
self-contained view that can be studied as a whole, regardless
of the complexity of the transformations under analysis, or
the number of steps required for their execution. Our obser-
vations during the study suggest that interactive traceability
visualizations are as useful as off-the-shelf transformation
debuggers to identify generation dependencies in model-to-
text transformations.

7.5 Identifying generation dependencies in MTCs

ChainTracker developers were significantly more
accurate and more efficient at identifying end-to-end
generation dependencies. Fifty percent of Eclipse devel-
opers obtained accuracy scores below their observed
medians, which in most cases was 50% less of the max-
imum attainable score.

ChainTracker provides a significant advantage in the accu-
racy of developers interpreting binding expressions in both
model-to-model and model-to-text transformations. The
average median difference with respect to the accuracy
of developers is more pronounced for those working on
PhyDSL. Our results suggest that the benefits of using trace-
ability visualization techniques are magnified in scenarios
where the ecosystems are composed in nontrivial transfor-
mation chains. It is important to mention that all developers
usingChainTracker had a perfect accuracy scorewhen identi-
fying element-level generation dependencies (Tables 15, 16),
and property-level generation dependencies (Tables 17, 18).

123

1326 V. Guana, E. Stroulia

We believe that the effectiveness of developers using
ChainTracker to identify multistep generation dependencies
is due to the quick access that they have to implicit and
explicit binding information. We found that not only the
branch visualization is highly useful to developers, but also
the active use of editors that allow the projective interactions
between graphical representations and transformation code-
bases.

8 Threats to validity

Construct validity (Do we measure what is intended?)
In this study, we measured the performance of develop-
ers identifying dependency relationships in model-to-model
and model-to-text transformations. We compared two tools
namely, ChainTracker and Eclipse Modeling. We used two
model-based code generators of different complexity to
investigate the effect of their size on the usability of Chain-
Tracker. Moreover, we understand developers’ performance
in terms of the time they take completing each task and their
solution correctness.

We have developed an in-house survey application that
presents participants with tasks that reflect on their abil-
ity to identify metamodel and generation dependencies at
different levels of granularity, and between different arti-
facts of a transformation ecosystem. Our survey application
has been extensively tested and did not present any fail-
ures during the execution of the study. Furthermore, we have
carefully instantiated our question templates in the context
of the two case studies under consideration. The correct-
ness of each expected solution has been validated by three
model-transformation expertswith 6, 1, and 2years of experi-
ence inmodel-transformation technologies, respectively. The
questions were designed in an iterative fashion, looking for
representative tasks of different complexity inside each of
the case studies.

An early version of the protocol used for this empiri-
cal study was presented in the 1st International Workshop
on Human Factors in Modeling collocated at the MODELS
conference in 2015 [87]. The protocol of the study and the
proposed task templates were discussed and reformulated
based on feedback gained in informal meetings with industry
and academic practitioners.We choseEclipseModeling as an
industry baseline given that it is the official, andmost popular,
development environment for both ATL and Acceleo tech-
nologies. None of the alternative traceability visualization
and collection frameworks reviewed in Sect. 2 are available
to the public. We do not see any significant threats to the
construct validity of this study.

Internal validity (Are there unknown factors which might
affect the outcome of the experiments?) The limited num-

ber of participants and their heterogeneous expertise on
model-driven development technologies are concern for the
internal validity of the study. However, this study was con-
ducted with a pool of participants with a broad industrial
development experience, and an intensive 6-month course in
model transformation technologies. Considering that model-
transformation languages are a fairly new technology and
are yet to be adopted by the software engineering commu-
nity at large, our pool of participants is representative of most
model-driven engineering practitioners.

We are aware that the learning curve of ChainTracker and
Eclipse Modeling may impact the developers performance.
In order to minimize the impact of this threat to validity, we
included an introductory tutorial in the training session of
our protocol (Sect. 5.1). The first half of the training session
involved a tutorial on the use of ChainTracker. The second
half consisted of a laboratory workshop that provided hands
on experience with the analysis environment. The training
session was structured in two 60-minute parts divided by a
15-minute break. Our protocol did not include an introduc-
tory tutorial on Eclipse Modeling. In effect, all participants
received 6 months of training in Eclipse Modeling as a part
of their graduate course, which included by weekly hands on
tutorials. Furthermore, all participants reported having used
Eclipse as a development environment in professional and
academic settings.

Participants were not allowed to return to a task once it
was completed. This strategy might fail to account for the
exploratory nature of model-transformation comprehension.
Developers might want to review previously answered ques-
tions based on understanding gained throughout the course
of the working sessions. Limiting our survey application to
a strictly linear answering mechanism was motivated by our
desire to precisely measure the efficiency of developers solv-
ing individual tasks. We minimize this threat to validity in
two ways. First, each of our working sessions includes a
15-minute presentation that explores the metamodels and
transformations of their corresponding case studies. Addi-
tionally, a 10-minute window was allocated to allow further
discussion on the implementation details of each ecosys-
tem. Second, our questionnaires minimize the overlapping
between segments of code that need to be analyzed through-
out each session.More sophisticatedmechanisms are needed
to allow a more flexible answering strategy, thus increasing
the generality of our results. However, the strategy used in
this paper is realistic in the context of state-of-the-art pro-
gram comprehension studies, that measure the efficiency of
developers using linear questionnaires, such as in [88,89] and
[90].

Our survey application presents three types of questions,
namely, multiple choice questions, list-based questions, and
multiple selection questions. We are aware that multiple
choice and multiple selection questions may provide hints

123

End-to-end model-transformation comprehension through fine-grained traceability information 1327

to participants, guiding them to investigate specific artifacts,
thus reducing the precision of our performance measure-
ments. In order to minimize this threat to validity, multiple
choice and multiple selection questions presented a com-
prehensive list of artifacts needed to be considered in each
task at hand. As a concrete example, tasks with the general
form “what metamodel elements are used in the creation of
the [metamodel-name ! element-name] element” included
all of the metamodel elements found in the corresponding
ecosystem under analysis. This effectively avoids drawing
the attentionof participants to specific artifacts, aswell as nar-
rowing their search to specific segments of code. An example
of how this is presented to developers can be found here:
https://github.com/guana/chaintracker-eval.

Concretely, 22 out of 25 questions in both question-
naires are multiple choice or multiple selection questions.
The remaining 3 questions are list based, which receive
one or multiple open-ended answers. List-based questions
were used in tasks that require developers identifying bind-
ings in model-to-text transformations. All multiple choice
and multiple selection questions in the ScreenFlow ques-
tionnaire included a comprehensive list of their potential
answers, i.e., metamodel elements and properties, transfor-
mation rules, and generated files. In the case of the PhyDSL,
20 questions provide all possible answers. The remaining 2
questions (which require the selection of metamodel element
properties) provide a reduced, yet large number of answer
possibilities. We do not believe that the nature of our type
questions provided significant hints to developers during the
completion of our study.

The study was divided in three sessions that took place
over the span of a week. Our protocol was designed to min-
imize the fatigue of developers and allowed them to review
the trainingmaterial in between sessions.We believe this can
potentially increase the developers’ familiarity with the pro-
posed families of tasks. Finally, during the last two years,
we have iterated over ChainTracker’s graphic user inter-
face. We have conducted informal focus groups in order
to make its features accessible and intuitive for develop-
ers. We have integrated the lessons learned in the tool demo
sessions where ChainTracker has been showcased, i.e., the
International Conference on SoftwareMaintenance and Evo-
lution (ICSME) in 2014 [27], the InternationalConference on
Model Driven Engineering Languages and Systems in 2015
[29], and the IBM Technology Showcase in 2015.

External validity (To what extend is it possible to generalize
the findings?) The case studies of our study are two model-
based code generators implemented using ATL, a rule-based
model-to-model transformation language, and Acceleo, a
template-based model-to-text transformation technology.
Therefore, any conclusions drawn from this study cannot be
fully generalized to the performance of developers solving

software engineering tasks on other model-transformation
technologies. However, both Acceleo and ATL are widely
adopted by academic and industry practitioners.More impor-
tantly, both languages are aligned to theOMG’sQuery/View/-
Transformation (QVT) standard for model-to-model trans-
formations [91], and the Model to Text Transformation
Language (MOF) standard formodel-to-text transformations
[92], respectively. Therefore, the observations of this study
can potentially be generalized to developers completing the
same set of tasks, in ecosystems of similar size and complex-
ity, and built using languages that comply with the same set
of standards.

The case studies used in this study were developed in a
research environment.We cannot claim that the results in this
study can be generalized to industrial ecosystems. However,
both case studies have been used in real software construc-
tion scenarios. Furthermore they both have being through
development cycles that included platform and metamodel
evolution scenarios, in order to meet the requirements of dif-
ferent clients. Considering the scope of our research, and the
limited availability of industrial transformation ecosystems,
we believe that the results of this study provide substantial
insights on howdevelopers trace and pinpointmetamodel and
generation dependencies between the artifacts of a transfor-
mation ecosystem.

Even though the case studies considered in this study are
model-transformation chains, the structure of the question-
naires included tasks that investigated the performance of
developers dealing with single transformation steps of both
model-to-model andmodel-to-text nature. Indeed, the results
of this study can be generalized to the performance of devel-
opers dealing with transformations used in isolation, as well
as in nontrivial transformation chains.

9 Conclusions and future work

In this paper, we present an empirical study that investi-
gates the performance of developers when reflecting on the
execution semantics of model-to-model and model-to-text
transformations. We measured the accuracy and efficiency
of developers when identifying metamodel and generation
dependencies between transformation artifacts using Chain-
Tracker, our traceability collection and analysis environment
for model transformations, and we compared their perfor-
mance against that of developers using Eclipse Modeling.

Thehypothesismotivatingourworkhas been that enabling
developers to interactively explore the execution semantics of
a transformation ecosystem can significantly improve devel-
opers’ performancewhen reflecting on an ecosystem’s design
and evolution. ChainTracker was designed, based on this
hypothesis, as a traceability collection and analysis environ-
ment to enable developers to explore the static and dynamic

123

https://github.com/guana/chaintracker-eval

1328 V. Guana, E. Stroulia

aspects of model-to-model, and model-to-text transforma-
tions. ChainTracker provides transformation visualizations,
projectional code editors, and contextual tables. Each area of
the analysis environment is synchronizedwith each other and
provides interactive features that in conjunction help devel-
opers to reflect about the ecosystem execution. ChainTracker
combines static and dynamic analysis strategies to gather
fine-grained traceability information, including dependency
relationships caused by both explicit and implicit binding
expressions.

To evaluate ChainTracker’s usefulness in supporting
developers, we designed a collection of tasks that aim
at understanding how developers reflect on the execution
semantics of a transformation ecosystem. These tasks were
grouped in five main families, namely, a) determining meta-
model coverage and expression location, b) identifyingmeta-
model dependencies in model-to-model transformations,
c) identifying metamodel dependencies in model-to-text
transformations, d) identifying generation dependencies in
model-to-text transformations, and e) identifying generation
dependencies inmodel-transformation chains.Regarding our
two main research questions, let us briefly summarize our
findings.

RQ1:Do developers using ChainTracker identify metamodel
and generation dependencies in transformation ecosystems
more accurately and efficiently than those using Eclipse Mod-
eling?

We found that developers using ChainTracker had sta-
tistically significantly higher performance identifying meta-
model dependencies inmodel-to-model transformations than
those supported by Eclipse Modeling. Developers using
ChainTracker were more accurate determining how trans-
formation bindings create implicit and explicit dependency
relationships at both metamodel element, and property levels
of granularity.

Due to the lack of pattern-matching capabilities in Chain-
Tracker, developers performed worse in finding individual
transformation expressions. We believe supporting this type
of tasks is very useful to developers detecting and removing
duplicate bindings, i.e., code clones, as well as identi-
fying transformation-refactoring opportunities. Indeed, our
future work includes extending ChainTracker with pattern-
matching capabilities to efficiently support developers locat-
ing bindings of interest in large transformation scripts.

We found that the performance of Eclipse developers was
much worse for tasks that require identifying downstream
metamodel element dependencies, than upstream dependen-
cies, in model-to-model transformations. This is mostly due
to the large code spaces that need to be manually ana-
lyzed if not supported by automatic reasoning tools. The
impact of ChainTracker on the performance of developers
was significantly higher when they were required to analyze

model-transformation chains, and to determine end-to-end
metamodel dependencies caused by the interdependent exe-
cution ofmodel-to-model andmodel-to-text transformations.

Manually examining large transformation codebases,
looking for the usage of dozens of metamodel elements, is
a daunting if not impossible task. Developers were unable
to accurately determine the coverage of metamodels in non-
trivial transformation ecosystems using Eclipse Modeling.
ChainTracker developers performed better, even if not at a
statistically significantly level.

Our empirical observations suggest that interactive trace-
ability visualizations are as useful as runtime transformation
debuggers, to identify generation dependencies in model-
to-text transformations. In the case of model-transformation
chains, developers using ChainTracker were able to iden-
tify element- and property-level generation dependencies in
transformation chains more efficiently and more accurately
than developers using Eclipse. It is important to mention that
developers using Eclipse performed very poorly identify-
inggenerationdependencies inmodel-transformation chains.
Most of them obtained accuracy scores below the observed
medians for this type of task, which overall was less than
50% of the maximum attainable score.

RQ2: Do the size and complexity of transformation ecosys-
tems affect the effectiveness of ChainTracker in helping
developers identifying their metamodel and generation
dependencies?

We found that for all the families of tasks evaluated in this
study, their complexity is considerably exacerbated by the
size of the transformations, and the number of metamodel
elements in an ecosystem. Particularly, for families of tasks
that require the evaluation of model-transformation chains,
the impact of ChainTracker on the performance of developers
was positively more pronounced in the case of PhyDSL, a
multibranched transformation chain.

Webelieve that the overall higher performance of develop-
ers using ChainTracker is due to the support that it provides
identifying implicit and explicit bindings in complex OCL
expressions. Considering thatmost developers are used to the
execution semantics of imperative programming languages,
ChainTracker considerably lowers the cognitive challenges
that they face when getting used to declarative programming
semantics. In effect, the active use of editors that allow two-
way interactions between visualizations and transformation
codebases proved effective to study information correspond-
ing to metamodel and generation dependencies.

In this study, we gained important insights about the
performance of developers using ChainTracker and Eclipse
Modeling. However, more research is needed in order to
understand how developers use the different features of
ChainTracker. We plan to use eye-tracking technology to
investigate which are the most valuable features of Chain-

123

End-to-end model-transformation comprehension through fine-grained traceability information 1329

Tracker. Particularly, we want to study the role that the
contextual tables on the resolution of complex software engi-
neering tasks.

Our future research agenda also includes an empirical
study to emulate metamodel and platform evolution sce-
narios. We want to investigate how developers complete
traceability-driven questions to fix, synchronize, and opti-
mize the design of evolving transformation ecosystems using
ChainTracker. Furthermore, with the advance of scalable
of model-driven engineering, i.e., BigMDE [93], and the
emerging fields of parallel model transformation execution,
we believe ChainTracker can be extended with additional
views to help developers study the performance of complex
transformation ecosystems, as well as their physical runtime
allocation.

Acknowledgements This work was supported by The Killam Trust,
NSERC (the Discovery and the IRC program), the GRAND NCE and
IBMCanada. The development of PhyDSL was supported by the AGE-
WELLNCE.Wewould like to thankKelseyGaboriau andVinaNguyen
for their support during the development of ChainTracker. We would
also like to thank Kelly Garces for her generous help during the execu-
tion of this study.

Appendix A: Questionnaires

See Tables 3 and 4.

Table 3 Session A: ScreenFlow Questionnaire

N. Question

Q1 What ATL script contains the “Trigger2Button” rule?

Q2 In Mockup2GUI.atl, what transformation rule contains the
binding expression isMain<-
mockscreen.main.toString().endsWith
(“true”)?

Q3 What metamodel elements are used in the creation of the
GUI!Application element?

Q4 What metamodel elements are created using the
Mockup!TriggerSection element?

Q5 Considering the entire transformation chain, what
metamodel elements does the template line 24 in
generateControlles.mtl depend on?

Q6 What template lines in generateControlles.mtl are used in
the generation of line 21 in PlayerActivity.java?

Table 3 continued

N. Question

Q7 Considering the entire transformation chain, what
metamodel elements does the generation of line 4 in
login.xml depend on?

Q8 Considering the entire transformation chain, what
metamodel elements does the generation of line 34 in
AndroidManifest.xml depend on?

Q9 What files does the generateControllers.mtl template
generate?

Q10 What files does the generateViews.mtl template generate?

Q11 What metamodel elements are used in the creation of the
GUI!Screen element?

Q12 What metamodel elements are created using the
Mockup!ScreenSection element?

Q13 What metamodel elements are created using the property
“name” of the Mockup!Screen element?

Q14 Considering the entire transformation chain, what
metamodel properties does the generation of line 17 in
login_activity.xml depend on?

Q15 Considering the entire transformation chain, what
metamodel elements does the template line 19 in
generateViews.mtl depend on?

Q16 What template lines in generateControllers.mtl are used in
the generation of line 37 in LoginActivity.java?

Q17 Are there any unused elements in the Mockup metamodel?
If so, which ones?

Q18 Are there any unused elements in the GUI metamodel?

Q19 Considering the entire transformation chain, what
metamodel elements does the generation of line 14 in
AndroidManifest.xml depend on?

Q20 Considering the entire transformation chain, what
metamodel elements does the generation of line 38 in
LoginActivity.java depend on?

Q21 Considering the entire transformation chain, what
metamodel elements does the generation of line 14 in
login_activity.xml depend on?

Q22 Considering the entire transformation chain, what
metamodel elements does the template lines 41–44 in
generateControllers.mtl depend on?

Q23 What metamodel elements are created using the property
“fromScreen” of the Mockup!Transition element?

Q24 Considering the entire transformation chain, what
metamodel properties does the generation of line 8 in
login_activity.xml depend on?

Q25 What template lines in generateViews.mtl are used in the
generation of line 27 in AndroidManifest.java?

123

1330 V. Guana, E. Stroulia

Table 4 Session B: PhyDSL Questionnaire

N. Question

Q1 What ATL script contains the “Effect2Action” rule?

Q2 In Game2Layout.atl, what transformation rule contains the
binding expression isBall<-r.actor
Definition.first().isBall.boolean.
solveBool()?

Q3 What metamodel elements are used in the creation of the
Scoring!TouchRule element?

Q4 What metamodel elements are created using the
PhyDSL!Coordinate element?

Q5 Considering the entire transformation chain, what
metamodel elements does the template line 148 in
generateDynamics.mtl depend on?

Q6 What template lines in generateScoring.mtl are used in the
generation of line 102 in ScoringManager.java?

Q7 Considering the entire transformation chain, what
metamodel elements does the generation of line 100 in
ScoringManager.java depend on?

Q8 Considering the entire transformation chain, what
metamodel elements does the generation of line 220 in
DrawingHelper.java depend on?

Q9 What files does the generateLayout.mtl template generate?

Q10 What files does the generateGraphics.mtl template
generate?

Q11 What metamodel elements are used in the creation of the
Scoring!CollisionRule element?

Q12 What metamodel elements are created using the
PhyDSL!Ends element?

Q13 What metamodel elements are created using the property
“name” of the PhyDSL!Actor element?

Q14 Considering the entire transformation chain, what
metamodel properties does the generation of line 76 in
ScoringManager.java depend on?

Q15 Considering the entire transformation chain, what
metamodel elements does the template line 110 in
generateScoring.mtl depend on?

Q16 What template lines in generateLayout.mtl are used in the
generation of line 264 in PhysicsView.java?

Q17 Are there any unused elements in the PhyDSL metamodel?
If so, which ones?

Q18 Are there any unused elements in the Dynamics
metamodel? If so, which ones?

Q19 Considering the entire transformation chain, what
metamodel elements does the generation of line 141 in
MainActivity.java depend on?

Table 4 continued

N. Question

Q20 Considering the entire transformation chain, what
metamodel elements does the generation of line 29 in
ControlManager.java depend on?

Q21 Considering the entire transformation chain, what
metamodel elements does the generation of line 281 in
PhysicsView.java depend on?

Q22 Considering the entire transformation chain, what
metamodel elements does the template lines 104–108 in
generateControls.mtl depend on?

Q23 What metamodel elements are created using the property
“value” of the PhyDSL!BooleanType element?

Q24 Considering the entire transformation chain, what
metamodel properties does the generation of line 18 in
ControlManager.java depend on?

Q25 What template lines in generateControls.mtl are used in the
generation of line 99 in ControlManager.java?

Appendix B: Result tables

See Tables 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, and 18.

Result summary tables are divided in twomain areas.
The first area presents the p values corresponding to
the statistical evaluation of our hypotheses. We present
individual p values for each of the dependent variables
under consideration, namely the time and accuracy of
developers completing a task. The second area com-
pares the mean, standard deviation (SD), and median of
the dependent variables across treatments. Furthermore,
summary tables include the maximum attainable score
for each task, and two box and whisker diagrams that
portray the distribution of the recorded measurements
for both variables under consideration. In all diagrams,
green boxes portray the distribution ofmeasurements for
participants using ChainTracker (CT), and purple boxes
for participants using Eclipse (EC).

123

End-to-end model-transformation comprehension through fine-grained traceability information 1331

Table 5 Session A (ScreenFlow)—results: determining metamodel coverage and expression location

Bold values indicate best median performance
*Statistical significant value

123

1332 V. Guana, E. Stroulia

Table 6 Session B (PhyDSL)—results: determining metamodel coverage and expression location

Bold values indicate best median performance

123

End-to-end model-transformation comprehension through fine-grained traceability information 1333

Table 7 Session A (ScreenFlow)—results: identifying metamodel dependencies in M2M transformations (element level)

Bold values indicate best median performance
*Statistical significant value

123

1334 V. Guana, E. Stroulia

Table 8 Session B (PhyDSL)—results: identifying metamodel dependencies in M2M transformations (element level)

Bold values indicate best median performance
*Statistical significant value

123

End-to-end model-transformation comprehension through fine-grained traceability information 1335

Table 9 Session A (ScreenFlow)—results: identifying metamodel dependencies in single M2M transformations (property level)

Bold values indicate best median performance
*Statistical significant value

Table 10 Session B (PhyDSL)—results: identifying metamodel dependencies in M2M transformations (property level)

Bold values indicate best median performance
*Statistical significant value

123

1336 V. Guana, E. Stroulia

Table 11 Session A (ScreenFlow)—results: identifying metamodel dependencies in M2T transformations

Bold values indicate best median performance
*Statistical significant value

123

End-to-end model-transformation comprehension through fine-grained traceability information 1337

Table 12 Session B (PhyDSL)—results: identifying metamodel dependencies in M2T transformations

Bold values indicate best median performance
*Statistical significant value

123

1338 V. Guana, E. Stroulia

Table 13 Session A (ScreenFlow)—results: identifying generation dependencies in M2T transformations

Bold values indicate best median performance
*Statistical significant value

123

End-to-end model-transformation comprehension through fine-grained traceability information 1339

Table 14 Session B (PhyDSL)—results: identifying generation dependencies in M2T transformations

Bold values indicate best median performance
*Statistical significant value

Table 15 Session A
(ScreenFlow)—results:
identifying generation
dependencies in MTCs (element
level)

Bold values indicate best median performance
*Statistical significant value

123

1340 V. Guana, E. Stroulia

Table 16 Session B
(PhyDSL)—results: identifying
generation dependencies in
MTCs (element level)

Bold values indicate best median performance
*Statistical significant value

Table 17 Session A (ScreenFlow)—results: identifying generation dependencies in MTCs (property level)

Bold values indicate best median performance
*Statistical significant value

123

End-to-end model-transformation comprehension through fine-grained traceability information 1341

Table 18 Session B (PhyDSL)—results: identifying generation dependencies in MTCs (property level)

Bold values indicate best median performance
*Statistical significant value

123

1342 V. Guana, E. Stroulia

References

1. Czarnecki, K.: Generative programming: methods, techniques, and
applications tutorial abstract. In: Software Reuse: Methods, Tech-
niques, and Tools, pp. 477–503 (2002)

2. Hemel, Z., Kats, L.C., Visser, E.: Code generation by model trans-
formation, pp. 183–198 (2008)

3. Vara, J.M., Vela, B., Cavero, J.M., Marcos, E.: Model transforma-
tion for object-relational database development. In: Proceedings
of the 2007 ACM Symposium on Applied Computing. ACM, pp.
1012–1019 (2007)

4. Vara, J.M., Marcos, E.: A framework for model-driven devel-
opment of information systems: technical decisions and lessons
learned. J. Syst. Softw. 85(10), 2368–2384 (2012)

5. Csertán, G., Huszerl, G., Majzik, I., Pap, Z., Pataricza, A., Varró,
D.: VIATRA-visual automated transformations for formal verifi-
cation and validation of UML models. In: Automated Software
Engineering, 2002. Proceedings. ASE 2002. 17th IEEE Interna-
tional Conference on. IEEE, pp. 267–270 (2002)

6. Cariou, E., Ballagny, C., Feugas, A., Barbier, F.: Contracts for
model execution verification. In: European Conference on Mod-
elling Foundations and Applications, pp. 3–18. Springer, Berlin
(2011)

7. Selim, G.M., Wang, S., Cordy, J.R., Dingel, J.: Model transforma-
tions for migrating legacy deployment models in the automotive
industry. Softw. Syst. Model. 14(1), 365–381 (2015)

8. Kavimandan, A., Gokhale, A.: Applying model transformations
to optimizing real-time QOS configurations in DRE systems. In:
International Conference on the Quality of Software Architectures,
pp. 18–35. Springer, Berlin (2009)

9. France,R.,Rumpe,B.:Model-drivendevelopment of complex soft-
ware: a research roadmap. In: 2007Future ofSoftwareEngineering.
IEEE Computer Society, pp. 37–54 (2007)

10. Hutchinson, J., Whittle, J., Rouncefield, M., Kristoffersen, S.:
Empirical assessment of MDE in industry. In: Proceedings of the
33rd International Conference on Software Engineering, ACM, pp.
471–480 (2011)

11. Di Ruscio, D., Iovino, L., Pierantonio, A.: Evolutionary together-
ness: how to manage coupled evolution in metamodeling ecosys-
tems. In: International Conference on Graph Transformation, pp.
20–37. Springer, Berlin (2012)

12. Walderhaug, S., Stav, E., Johansen, U., Olsen, G.K.: Traceability
in model-driven software development. In: Designing Software-
Intensive Systems: Methods and Principle, pp. 133–159 (2008)

13. Von Knethen, A., Grund, M.: Quatrace: a tool environment for
(semi-) automatic impact analysis based on traces. In: Software
Maintenance, 2003. ICSM2003. Proceedings of International Con-
ference on. IEEE, pp. 246–255 (2003)

14. Winkler, S., Pilgrim, J.: A survey of traceability in requirements
engineering and model-driven development. Softw. Syst. Model.
9(4), 529–565 (2010)

15. Amar, B., Leblanc,H., Coulette, B.:A traceability engine dedicated
to model transformation for software engineering. In: ECMDA
Traceability Workshop (ECMDA-TW), pp. 7–16 (2008)

16. Correa, A., Werner, C.: Applying refactoring techniques to
UML/OCL models. In: << UML>> 2004-The Unified Model-
ing Language. Modelling Languages and Applications. Springer,
Berlin, pp. 173–187 (2004)

17. Ermel, C., Ehrig, H., Ehrig, K.: Refactoring of model transforma-
tions. In: Electronic Communications of the EASST, vol. 18 (2009)

18. Wang, J., Kim, S.-K., Carrington, D.: Verifying metamodel cov-
erage of model transformations. In: Software Engineering Confer-
ence, 2006, Australian. IEEE, p. 10 (2006)

19. Wang, J., Kim, S., Carrington, D.: Automatic generation of test
models for model transformations. In: 19th Australian Confer-

ence on Software Engineering (ASWEC2008). IEEE, pp. 432–440
(2008)

20. Finot,O.,Mottu, J.-M., Sunyé,G.,Degueule, T.:Usingmeta-model
coverage to qualify test oracles. In: Analysis of Model Transfor-
mations, pp. 1613–0073 (2013)

21. Burgueno, L.: TestingM2M/M2T/T2M transformations. In:Model
Driven Engineering Languages and Systems (MODELS), 2015
ACM/IEEE 18th International Conference on (Student Competi-
tion) (2015)

22. Van Amstel, M.F., Van Den Brand, M.G.: Model transformation
analysis: staying ahead of the maintenance nightmare, pp. 108–
122 (2011)

23. Kleppe, A.: First european workshop on composition of model
transformations-cmt 2006. In: Technical Report TR-CTIT-06-34
(2006)

24. Kemerer, C.F.: Now the learning curve affects case tool adoption.
IEEE Softw. 9(3), 23–28 (1992)

25. Hardgrave, B.C., Davis, F.D., Riemenschneider, C.K.: Investi-
gating determinants of software developers’ intentions to follow
methodologies. J. Manag. Inf. Syst. 20(1), 123–151 (2003)

26. Whittle, J., Hutchinson, J., Rouncefield, M., Burden, H., Heldal,
R.: Industrial adoption of model-driven engineering: are the tools
really the problem? In: Model-Driven Engineering Languages and
Systems, pp. 1–17. Springer, Berlin (2013)

27. Guana, V., Gaboriau, K., Stroulia, E.: Chaintracker: towards a
comprehensive tool for building code-generation environments.
In: Proceedings of the 2014 International Conference on Software
Maintenance and Evolution (ICSME). IEEE Press (2014)

28. Guana, V., Stroulia, E.: Chaintracker, a model-transformation trace
analysis tool for code-generation environments. In: Theory and
Practice of Model Transformations, pp. 146–153. Springer, Berlin
(2014)

29. Guana, V., Stroulia, E.: Reflecting onmodel-based code generators
using traceability information. In: ACM/IEEE 18th International
Conference onModel Driven Engineering Languages and Systems
(MODELS) (2015)

30. Warmer, J., Kleppe, A.: The Object Constraint Language: Get-
ting Your Models Ready for MDA. Addison-Wesley Professional,
Reading (2003)

31. Jouault, F., Kurtev, I.: Transforming models with ATL. In: Satellite
Events at the MoDELS 2005 Conference, pp. 128–138. Springer,
Berlin

32. Musset, J., Juliot, É., Lacrampe, S., Piers, W., Brun, C., Goubet,
L., Lussaud, Y., Allilaire, F.: Acceleo User Guide (2006)

33. Bragança, A., Machado, R.J.: Transformation patterns for multi-
staged model driven software development. In: Software Product
Line Conference, 2008. SPLC’08, 12th International. IEEE, pp.
329–338 (2008)

34. Czarnecki, K., Helsen, S.: Classification of model transformation
approaches. In: Proceedings of the 2nd OOPSLA Workshop on
Generative Techniques in the Context of the Model Driven Archi-
tecture, vol. 45, no. 3. Citeseer, pp. 1–17 (2003)

35. Van Deursen, A., Visser, E., Warmer, J.: Model-driven software
evolution: a research agenda. In: Proceedings 1st International
Workshop onModel-Driven Software Evolution, pp. 41–49 (2007)

36. Bennett, K., Rajlich, V.: Software maintenance and evolution: a
roadmap. In: Proceedings of the Conference on the Future of Soft-
ware Engineering. ACM, pp. 73–87 (2000)

37. Di Ruscio, D., Iovino, L., Pierantonio, A.: A methodological
approach for the coupled evolution of metamodels and atl transfor-
mations. In: International Conference on Theory and Practice of
Model Transformations, pp. 60–75. Springer, Berlin (2013)

38. Di Rocco, J., Di Ruscio, D., Iovino, L., Pierantonio, A.: Dealing
with the coupled evolution of metamodels and model-to-text trans-
formations. In: Alfonso Pierantonio (co-chair) Universita degli

123

End-to-end model-transformation comprehension through fine-grained traceability information 1343

Studi dellâĂŹAquila (Italy) Bernhard Schätz (co-chair) fortiss
GmbH (Germany), p. 22 (2014)

39. Group, O.M.: A proposal for anMDA foundationmodel. Needham
ormsc/05-04-01 ed (2005)

40. Aizenbud-Reshef, N., Nolan, B.T., Rubin, J., Shaham-Gafni, Y.:
Model traceability. IBM Syst. J. 45(3), 515–526 (2006)

41. Galvao, I., Goknil, A.: Survey of traceability approaches in model-
driven engineering. In: Enterprise Distributed Object Computing
Conference, 2007. EDOC 2007. 11th IEEE International. IEEE,
pp. 313–313 (2007)

42. Santiago, I., Jiménez, A., Vara, J.M., De Castro, V., Bollati, V.A.,
Marcos, E.: Model-driven engineering as a new landscape for
traceability management: a systematic literature review. Inf. Softw.
Technol. 54(12), 1340–1356 (2012)

43. Falleri, J., Huchard, M., Nebut, C. et al.: Towards a traceability
framework for model transformations in kermeta (2006)

44. Jouault, F.: Loosely coupled traceability for atl. In: Proceedings of
theEuropeanConference onModelDrivenArchitecture (ECMDA)
Workshop on Traceability, Nuremberg, Germany, vol. 91. Citeseer
(2005)

45. von Pilgrim, J., Vanhooff, B., Schulz-Gerlach, I., Berbers, Y.:
Constructing and visualizing transformation chains. In: Model
Driven Architecture–Foundations and Applications. Springer,
Berlin (2008)

46. Matragkas, N.D., Kolovos, D.S., Paige, R.F., Zolotas, A.: A
traceability-driven approach to model transformation testing. In:
AMT@MoDELS (2013)

47. Santiago, I., Vara, J.M., de Castro, M.V., Marcos, E.: Towards the
effective use of traceability in model-driven engineering projects.
In: Conceptual Modeling, pp. 429–437. Springer, Berlin (2013)

48. DiRocco, J.,DiRuscio,D., Iovino, L., Pierantonio,A.: Traceability
visualization in metamodel change impact detection. In: Proceed-
ings of the Second Workshop on Graphical Modeling Language
Development. ACM, pp. 51–62 (2013)

49. Di Ruscio, D., Iovino, L., Pierantonio, A.: Managing the coupled
evolution ofmetamodels and textual concrete syntax specifications.
In: Software Engineering and Advanced Applications (SEAA),
2013 39th EUROMICRO Conference on. IEEE, pp. 114–121
(2013)

50. van Amstel, M., Serebrenik, A., van den Brand, M.: Visualiz-
ing traceability in model transformation compositions. In: Pre-
Proceedings of the First Workshop on Composition and Evolution
of Model Transformations (2011)

51. Oldevik, J., Neple, T.: Traceability inmodel to text transformations.
In: 2nd ECMDA Traceability Workshop (ECMDA-TW). Citeseer,
pp. 17–26 (2006)

52. García, J., Azanza, M., Irastorza, A., Díaz, O.: Testing MOFscript
transformationswithHandyMOF. In:Theory andPractice ofModel
Transformations, pp. 42–56. Springer, Berlin (2014)

53. Olsen, G.K., Oldevik, J.: Scenarios of traceability in model
to text transformations. In: European Conference on Model
Driven Architecture-Foundations and Applications, pp. 144–156.
Springer, Berlin (2007)

54. Santiago, I., Vara, J.M., de Castro, V., Marcos, E.: Reducing the
level of complexity of working with model transformations. In:
International Conference on Evaluation of Novel Approaches to
Software Engineering, pp. 1–17. Springer, Berlin (2014)

55. Wieringa, R.: An introduction to requirements traceability (1995)
56. Almeida, J., Van Eck, P., Iacob, M.: Requirements traceability

and transformation conformance in model-driven development.
In: Enterprise Distributed Object Computing Conference, 2006.
EDOC’06. 10th IEEE International. IEEE, pp. 355–366 (2006)

57. Pinheiro, F.A.: Requirements traceability. In: Perspectives on Soft-
ware Requirements. Springer, Berlin, pp. 91–113 (2004)

58. Duan, C., Cleland-Huang, J.: Visualization and analysis in auto-
mated trace retrieval. In: 2006 First International Workshop on

Requirements Engineering Visualization (REV’06-RE’06 Work-
shop). IEEE, p. 5 (2006)

59. Card, D.N.: Designing software for producibility. J. Syst. Softw.
17(3), 219–225 (1992)

60. Cleland-Huang, J.: Toward improved traceability of non-functional
requirements. In: Proceedings of the 3rd InternationalWorkshop on
Traceability in Emerging Forms of Software Engineering. ACM,
pp. 14–19 (2005)

61. Acceleo traceability: Eclipse plug-in, http://goo.gl/eenOE3.
Accessed 14 Sept 2016

62. Atlas transformation language (atl) user guide, http://goo.gl/
KzPaze. Accessed 14 Sept 2016

63. Cleland-Huang, J., Gotel, O.C., Huffman Hayes, J., Mäder, P., Zis-
man, A.: Software traceability: trends and future directions. In:
Proceedings of the on Future of Software Engineering. ACM, pp.
55–69 (2014)

64. Cuadrado, J., Molina, J., Tortosa, M.: Rubytl: a practical, exten-
sible transformation language. In: Model Driven Architecture–
Foundations and Applications, pp. 158–172. Springer, Berlin
(2006)

65. Kolovos, D., Paige, R., Polack, F.: The epsilon transformation lan-
guage. In: Theory and Practice of Model Transformations, pp.
46–60 (2008)

66. T. project (IRISA), The Metamodeling Language Kermeta. http://
www.kermeta.org (2006)

67. Ellson, J., Gansner, E., Koutsofios, L., North, S.C., Woodhull, G.:
GraphvizâĂTopen source graph drawing tools. In: GraphDrawing,
pp. 483–484. Springer, Berlin (2002)

68. van Amstel, M.F., van den Brand, M.G., Serebrenik, A.: Trace-
ability visualization in model transformations with tracevis. In:
International Conference on Theory and Practice of Model Trans-
formations, pp. 152–159. Springer, Berlin (2012)

69. Von Pilgrim, J., Duske, K., McIntosh, P.: Eclipse GEF3D: bringing
3D to existing 2D editors. Information Visualization 8(2), 107–119
(2009)

70. Kolovos, D.S., Rose, L.M., Matragkas, N., Paige, R.F., Guerra, E.,
Cuadrado, J.S., De Lara, J., Ráth, I., Varró, D., Tisi, M. et al.: A
research roadmap towards achieving scalability in model driven
engineering. In: Proceedings of the Workshop on Scalability in
Model Driven Engineering. ACM, p. 2 (2013)

71. Wettel, R., Lanza, M.: Program comprehension through software
habitability. In: 15th IEEE International Conference on Program
Comprehension (ICPC’07). IEEE, pp. 231–240 (2007)

72. Störrle, H.: On the impact of size to the understanding of UML
diagrams. Softw. Syst. Model., pp. 1–20 (2016)

73. van Ravensteijn, W.: Visual traceability across dynamic ordered
hierarchies (2011)

74. Holten, D.: Hierarchical edge bundles: visualization of adjacency
relations in hierarchical data. IEEE Trans. Vis. Comput. Gr. 12(5),
741–748 (2006)

75. Clements, P., Garlan, D., Bass, L., Stafford, J., Nord, R., Ivers,
J., Little, R.: Documenting Software Architectures: Views and
Beyond. Pearson Education (2002)

76. Soni, D., Nord, R. L., Hofmeister, C.: Software architecture in
industrial applications. In: Software Engineering, 1995. ICSE
1995. 17th International Conference on. IEEE, pp. 196–196 (1995)

77. Kleppe, A.: First european workshop on composition of model
transformations-cmt 2006 (2006)

78. Wegman, E.J.: Hyperdimensional data analysis using parallel coor-
dinates. J. Am. Stat. Assoc. 85(411), 664–675 (1990)

79. Cariou, E.,Marvie, R., Seinturier, L., Duchien, L.: Ocl for the spec-
ification of model transformation contracts. In: OCL and Model
Driven Engineering, UML 2004 Conference Workshop, vol. 12,
pp. 69–83 (2004)

80. Inselberg, A., Dimsdale, B.: Parallel coordinates: a tool for visu-
alizing multi-dimensional geometry. In: Proceedings of the 1st

123

http://goo.gl/eenOE3
http://goo.gl/KzPaze
http://goo.gl/KzPaze
http://www.kermeta.org
http://www.kermeta.org

1344 V. Guana, E. Stroulia

conference on Visualization’90. IEEEComputer Society Press, pp.
361–378 (1990)

81. Myers, B.A., Ko, A.J., LaToza, T.D., Yoon, Y.: Programmers are
users too: Human-centered methods for improving programming
tools. Computer 49(7), 44–52 (2016)

82. Guana, V., Stroulia, E.: Phydsl: a code-generation environment for
2d physics-based games. In: 2014 IEEE Games, Entertainment,
and Media Conference (IEEE GEM) (2014)

83. Guana, V., Stroulia, E., Nguyen, V.: Building a game engine: a tale
of modern model-driven engineering

84. Tong, T., Guana, V., Jovanovic, A., Tran, F.,Mozafari, G., Chignell,
M., Stroulia, E.: Rapid deployment and evaluation of mobile seri-
ous games: a cognitive assessment case study. Procedia Comput.
Sci. 69, 96–103 (2015)

85. Ricca, F., Di Penta, M., Torchiano, M., Tonella, P., Ceccato, M.,
Visaggio, C.A.: Are fit tables really talking? In: 2008 ACM/IEEE
30th International Conference on Software Engineering. IEEE, pp.
361–370 (2008)

86. Ricca, F., Leotta, M., Reggio, G., Tiso, A., Guerrini, G., Torchiano,
M.: Using unimod for maintenance tasks: an experimental assess-
ment in the context of model driven development. In: Proceedings
of the 4th International Workshop on Modeling in Software Engi-
neering. IEEE Press, pp. 77–83 (2012)

87. Guana, V., Stroulia, E.: How do developers solve software-
engineering tasks on model-based code generators? an empirical
study design. In: First International Workshop on Human Factors
in Modeling (HuFaMo 2015). CEUR-WS, pp. 33–38 (2015)

88. Burkhardt, J.-M., Détienne, F., Wiedenbeck, S.: Object-oriented
program comprehension: effect of expertise, task and phase. Empir.
Softw. Eng. 7(2), 115–156 (2002)

89. Hermans, F., Aivaloglou, E.: Do code smells hamper novice
programming? a controlled experiment on scratch programs. In:
Program Comprehension (ICPC), 2016 IEEE 24th International
Conference on. IEEE, pp. 1–10 (2016)

90. Gravino, C., Risi, M., Scanniello, G., Tortora, G.: Do professional
developers benefit from design pattern documentation? A replica-
tion in the context of source code comprehension. In: International
Conference onModelDrivenEngineeringLanguages andSystems,
pp. 185–201. Springer, Berlin (2012)

91. OMG: MOF model to text transformation language (mofm2t), 1.0
(2008)

92. OMG: Meta object facility (mof) 2.0 query/view/transformation
(qvt) (2015)

93. Di Ruscio, D., Kolovos, D., Matragkas, N.: Scalability in model
driven engineering: Bigmde’13 workshop summary. In: Proceed-
ings of the Workshop on Scalability in Model Driven Engineering,
ACM, p. 1 (2013)

Victor Guana is a Ph.D. Candi-
date in the Department of Com-
puting Science at the University
of Alberta. His main areas of
research are model-driven engi-
neering, human aspects of soft-
ware engineering, and code anal-
ysis and verification. He received
his B.Sc. andM.Sc. degrees from
the University of Los Andes,
Colombia. In 2013, he was a
Visiting Scholar at the National
Institute of Aerospace (NIA) and
the NASA Langley Research
Center. In 2015, he became aKil-

lam Laureate.

Eleni Stroulia is a Profes-
sor with the Department of
Computing Science at the Uni-
versity of Alberta. She holds
M.Sc. and Ph.D. degrees from
Georgia Institute of Technol-
ogy. In 2009, she was awarded
the NSERC/AITF Industrial
Research Chair on Service Sys-
tems Management (w. support
from IBM). Her research
addresses industrially relevant
software-engineering problems
with automated methods. She
is an internationally recognized

expert in software design and analysis, web-based system development
and service-oriented systems. She is a member of ACM, and IEEE.

123

	End-to-end model-transformation comprehension through fine-grained traceability information
	Abstract
	1 Introduction
	2 Related work
	2.1 Extracting traceability information
	2.2 Visualizing traceability links
	2.2.1 Matrix representations
	2.2.2 Cross-reference representations
	2.2.3 Graph-based representations

	3 ChainTracker
	3.1 Motivating example: bank to credit report
	3.2 The ChainTracker analysis environment
	3.2.1 The transformation visualizations
	3.2.2 The ChainTracker projectional code editors
	3.2.3 The ChainTracker contextual tables

	4 Study design
	4.1 Hypotheses
	4.2 Objects
	4.3 Dependent variables
	4.4 Independent variables
	4.5 Tasks
	4.5.1 Determining metamodel coverage and expression location
	4.5.2 Identifying metamodel dependencies in M2M transformations
	4.5.3 Identifying metamodel dependencies in M2T transformations
	4.5.4 Identifying generation dependencies in M2T transformations
	4.5.5 Identifying generation dependencies in MTCs

	4.6 Detailed hypotheses
	4.7 Participants
	4.8 Data analysis

	5 Protocol
	5.1 Training
	5.2 Working sessions
	5.3 Data collection

	6 Results
	6.1 Determining metamodel coverage and expression location
	6.2 Identifying metamodel dependencies in M2M transformations
	6.3 Identifying metamodel dependencies in M2T transformations
	6.4 Identifying generation dependencies in M2T transformations
	6.5 Identifying generation dependencies in MTCs

	7 Discussion
	7.1 Determining metamodel coverage and expression location
	7.2 Identifying metamodel dependencies in M2M transformations
	7.2.1 Element-level dependencies
	7.2.2 Property-level dependencies

	7.3 Identifying metamodel dependencies in M2T transformations
	7.4 Identifying generation dependencies in M2T transformations
	7.5 Identifying generation dependencies in MTCs

	8 Threats to validity
	9 Conclusions and future work
	Acknowledgements
	Appendix A: Questionnaires
	Appendix B: Result tables
	References

