
Softw Syst Model (2019) 18:691–720
https://doi.org/10.1007/s10270-017-0590-0

REGULAR PAPER

Reusable specification templates for defining dynamic
semantics of DSLs

Ulyana Tikhonova1

Received: 5 October 2016 / Revised: 25 February 2017 / Accepted: 2 March 2017 / Published online: 21 March 2017
© The Author(s) 2017. This article is published with open access at Springerlink.com

Abstract In the context of model-driven engineering, the
dynamic (execution) semantics of domain-specific languages
(DSLs) is usually not specified explicitly and stays (hard)
coded in model transformations and code generation. This
poses challenges such as learning, debugging, understand-
ing, maintaining, and updating a DSL. Facing the lack of
supporting tools for specifying the dynamic semantics of
DSLs (or programming languages in general), we propose
to specify the architecture and the detailed design of the soft-
ware that implements the DSL, rather than requirements for
the behavior expected fromDSL programs. To compose such
a specification, we use specification templates that capture
software design solutions typical for the (application) domain
of the DSL. As a result, on the one hand, our approach allows
for an explicit and clear definition of the dynamic semantics
of aDSL, supports separation of concerns and reuse of typical
design solutions. On the other hand, we do not introduce (yet
another) specification formalism, but we base our approach
on an existing formalism and apply its extensive tool support
for verification and validation to the dynamic semantics of a
DSL.

Keywords Domain-specific language ·Dynamic semantics ·
Specification template · Generic programming · Aspect-
oriented programming

Communicated by Prof. Tony Clark.

B Ulyana Tikhonova
ulyana.tihonova@gmail.com

1 Technische Universiteit Eindhoven, P.O. Box 513, 5600, MB,
Eindhoven, The Netherlands

1 Introduction and motivation

A domain-specific language (DSL) is a computer language
specialized for a specific (application) domain. The idea
of using DSLs for software development and/or software
configuration is not new, and DSLs have been known and
applied in various forms (such as subroutine libraries, frame-
works, and dedicated languages) for a long time. Recently,
DSLs became a central concept of Model Driven Engineer-
ing (MDE). In the context of MDE, a DSL determines a
class of models that can be constructed in the domain, and
model-to-model transformations and code generators assign
meaning to such models by automatically translating them
into various artifacts, such as documentation, source code,
visualizations, formal specifications.

The role of DSLs is twofold. On the one hand, a DSL cap-
tures domain knowledge,which supports its reuse via domain
notions and notation and raises the abstraction level of solv-
ing problems in a particular domain. In other words, the DSL
realizes a so-called vertical domain [24]. On the other hand,
the implementation of the DSL (such as its translation to the
source code, or via interpretation) captures software solutions
(algorithms, architecture, and techniques) that are commonly
used in the domain, which supports their reuse and, thus,
raises the efficiency of the software development process. In
thisway, theDSL realizes a so-called horizontal domain [24].

In this work we look into the definition of the dynamic
semantics of DSLs. Dynamic semantics maps each DSL
model (program) to the corresponding execution behavior.
Thus, we consider DSLs that can be used for programming,
that is, for specifying programs that can be executed. The
DSLdynamic semantics is implemented as a translation from
the DSL to the input language of a target execution platform.
From a semantics point of view, the gap bridged by this trans-
lation can be quite wide, as such a translation implements

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10270-017-0590-0&domain=pdf

692 U. Tikhonova

both the horizontal and vertical aspects of theDSL and does it
in terms of both high-level concepts of theDSL and low-level
concepts of the execution platform. By giving an explicit def-
inition of the dynamic semantics of aDSL, we aim tomanage
the complexity of the DSL translation, which in the context
ofMDE is usually (hard)coded inmodel transformations and
code generation.

Moreover, in practice a DSL implementation can include
a number of such DSL translations, targeting different exe-
cution platforms with the purpose of achieving diverse
technological goals. For example, one translation generates
C/C++ or Java source code for execution of DSL programs;
another translation targets various formalisms for verification
and formal analysis of DSL programs; and a third translation
constructs diagrams visualizing DSL programs [54]. Gener-
ally speaking, there is no guarantee that different translations
implement the DSL dynamic semantics in a coherent way.
The desire to have such translations implemented in a con-
sistent way poses a maintenance problem. We strive toward
a definition of the dynamic semantics of a DSL that provides
a common ground for different translations and in this way
facilitates their consistency.

There exist a number of approaches for defining the
dynamic semantics of general purpose languages (GPLs),
such as denotational and algebraic semantics [33,56], action
semantics [30], and structural operational semantics (SOS)
[39]. Compared to GPLs, DSLs are smaller languages: a
DSL covers a smaller set of problems and, as a consequence,
has a smaller audience of practitioners (those who use the
DSL) and/or a smaller group of developers (thosewho design
and implement the DSL). Next to the known advantages of
using such small languages [14], the main disadvantages are
determined by the costs of developing and learning a DSL.
An explicit definition of the DSL dynamic semantics can
mitigate these disadvantages by providing various practical
outcomes of having a formal specification of the dynamic
semantics of aDSL.However, the listed approaches for defin-
ing dynamic semantics are hardly suited for realizing such
goal, as they do not have practically applicable tool support.

Aiming for practical benefits of having a formal definition
of theDSL dynamic semantics, in our previouswork [51,52],
we employed a formalism that has extensive tool support.
Specifically, we defined the dynamic semantics of a real-life
industrial DSL as a translation to the Event-B formalism [2].
The Rodin platform [3] and its various plug-ins offer a wide
range of functionality that can be applied to an Event-B
specification of the DSL. For example, the DSL dynamic
semantics can be prototyped and then analyzed using auto-
matic provers and model checkers; DSL programs can be
simulated and debugged using animators and visualization
tools. We have observed that although the available tools
facilitate design and usage of the DSL, the semantic gap
between the DSL and Event-B is quite wide, since this for-

malism is not designed for specifying dynamic semantics of
DSLs (or GPLs), and the definition of the dynamic seman-
tics is kept (coded) in the DSL-to-Event-B translation (in our
case, model transformation).

To manage the wide semantic gap between a DSL and a
specification formalism, we break it down and introduce an
intermediate step (modeling layer) in such a translation. As
the intermediate layer, we use software (design) solutions
that implement the DSL, i.e., the DSL horizontal domain.
As a result, the first step of our translation (defining the
dynamic semantics of a DSL) is a mapping of DSL vertical
concepts onto its horizontal concepts. The second step of our
translation captures the DSL horizontal concepts in the form
of reusable specification templates–a library of (Event-B)
specifications, each of which formalizes a separate software
(design) solution. We implement this approach in our lan-
guage,Constelle, which allows for defining theDSLdynamic
semantics as a composition of such specification templates
and, in this way, implements the two-step translation of the
DSL to the specification formalism.

In this paper, we first reflect on the concept of the
dynamic semantics of a DSL, identify the use cases of
its definition, and set the corresponding criteria (require-
ments) for a definition of the dynamic semantics (Sect. 2.1).
The idea of reusable specification templates arises from
our decision to define the dynamic semantics as a soft-
ware solution implementing the dynamic semantics, rather
than as a set of requirements on the behavior resulting
from such an implementation. Specification templates real-
ize the generic programming paradigm [32] for (thorough
mathematical-based) formal specifications (Sect. 2.2). For
this, a specification is parameterized so that it can be further
specialized with concrete (domain) data and, in this way,
reused during construction and analysis of another speci-
fication. For using (invoking) such specification templates,
we apply the ideas of Aspect-Oriented Programming [22]
and consider each invocation of a (specialized) specification
template as a crosscutting concern constituting the resulting
definition of the DSL dynamic semantics (Sect. 2.3).

In Sect. 3 we explain our approach and develop the corre-
sponding design in the formof ametamodel of a specification
template, which realizes parametrization of (Event-B) speci-
fications, and a metamodel of the Constelle language, which
implements specialization and weaving of specification tem-
plates. In Sect. 4 we give a formal definition of Constelle by
specifying its semantics in the form of a mapping (or prac-
tically, a QVTo model transformation) of a Constelle model
to an Event-B specification. The corresponding implemen-
tation and the results that it allows to achieve are discussed
in Sect. 5. In Sect. 6 we position our approach in relation to
the existing work from two points of view: defining dynamic
semantics as a composition of (reusable) building blocks and

123

Reusable specification templates for defining dynamic semantics of DSLs 693

reuse of formal specifications. Section7 concludes the paper
and highlights directions for the future work.

2 Motivation and introduction of the proposed
approach

2.1 Dynamic semantics of a DSL and its formal
definition

The dynamic semantics of a DSL determines the behavior of
DSL programs. For this, a definition of the dynamic seman-
tics of a DSL consists of the following two components:

– A semantic domainproviding terms to define the dynamic
semantics;

– A semantic mapping mapping the DSL (metamodel or
abstract syntax) to the semantic domain.

To achieve unambiguous understanding of a DSL and to
enhance the DSL development with formal analysis and tool
support, we would like to have the definition of both these
components to be both precise and executable. Precision of
a definition is achieved by employing a formalism based on
a solid mathematical theory. Executability of a precise def-
inition is achieved by employing tools that implement this
theory.

In current practice usually at least one of the two compo-
nents is either not precise or not executable: see for example
definitions of the dynamic semantics of DSLs presented
in [49] (the semantic mapping is defined using SOS, which
is precise but not executable) and [54] (the semantic map-
ping is defined using Xtend, which is executable but not
precise). As an exception to this practice, a precise definition
can be implemented (realized) in an executable formalism:
for example, in [34] all definitions of the dynamic semantics
of a programming language are formalized using the proof
assistant Isabelle.

As an instance of software, a DSL can be explored,
designed, and described in the form of two different artifacts:

– Requirements that define expected (or intended) behavior
of DSL programs;

– Solution that defines actual implementation (or software
architecture) of the DSL.

Ideally, each possible solution refines the (predefined)
requirements (in the general meaning of the refinement
relation as properties implication). To check whether this
relation actually holds, one can apply manual and automatic
techniques–validation and verification correspondingly. For
performing automatic verification of this refinement relation,
one needs to have a formal specification of the requirements.

Manual validation involves a human who can interpret the
informal description of requirements (potential misinterpre-
tation is possible). In practice, requirements are specified
formally only if it is required by a standard of the devel-
opment process – for example, for critical or life-threatening
systems, such as railway signaling (theCENELECstandards)
or automotive systems (the ISO 26262 standard).

Classical approaches of algebraic anddenotational seman-
tics allow for formally specifying the dynamic semantics
of a programming language in the form of requirements
rather than in the form of a solution. An operational seman-
tics gives more insight in how a program is executed, but
still abstracts from implementation strategies and machine
architectures [33]. Using these formal techniques requires
scientific expertise and, thus, is not expected from an average
software engineer. At the same time, the costs of employing
scientific expertise might not be justified if a DSL is used
in a non-critical domain. Thus, the usual situation that the
dynamic semantics of a DSL is not specified formally might
be determined by the same circumstances as the common in
software development practice of not having a formal speci-
fication of requirements.

In our approach we propose to specify a DSL dynamic
semantics as a solution rather than requirements. To stress
the difference between a specification of requirements and a
specification of a solution, we illustrate our approach using a
tangible and domain-independent analogy: the LEGO Tech-
nic construction kit. LEGO Technic allows for construction
of models of moving mechanisms using LEGO pieces such
as gears, pins, axles, pneumatic systems, motors and princi-
ples of mechanical engineering to assemble them together.
An example of such LEGO Technic model is presented
in Fig. 1a.1 When considering requirements of the system
modeled by this LEGO construction (a Jeep car), one can
think about the following requirement: the car should make
a smooth left (or right) turn when the steering wheel is turned
left (or right). The construction presented in Fig. 1a is amodel
of a real-life solution: it abstracts away some implementation
details and captures the key elements of the solution, which
guarantee realization (refinement) of the requirements listed
above. The key elements of the pictured solution are bevel
gears steering system, two differentials that enable the car to
turn smoothly, etc.

In the same way as a LEGO model captures the principal
mechanical solution, a definition of a DSL implementation
captures the DSL dynamic semantics as a principal design
solution. If such a definition is precise and executable (as
introduced above), then we can use it in the following use
cases:

1 Pictures of LEGO models used in the paper are taken from the web
sites brickshelf.com and sariel.pl and from the book [25].

123

694 U. Tikhonova

Fig. 1 Example of a LEGO
Technic model and a differential
pattern. a LEGO Technic model
and the differential pattern
applied, b differential pattern, c
function of the differential
pattern

– To prototype the DSL implementation (in LEGO: let’s
construct a Jeep car);

– To validate the prototyped DSL implementation against
(informal) requirements by executing the definition (in
LEGO: does the car drive? does the steering mechanism
work as expected?);

– To check consistency of the prototyped DSL by analyz-
ing the definition (in LEGO: how two differentials are
combined in a four-wheel drive without blocking the car
from moving);

– To verify the prototypedDSL against formalized require-
ments (or other high-level properties that the DSL should
fulfill) by analyzing the definition (in LEGO: a combina-
tion of gears meshed together supports the speed and/or
friction ratio as specified in requirements);

– To simulate and debug DSL programs by executing the
definition (in LEGO: debug why the gears get loose after
10min of exploitation).

Note that all these use cases require the definition of the DSL
dynamic semantics (that is used for analysis and execution)
to be consistent with and reflecting the actual DSL imple-
mentation. Without this consistency we cannot extend the
results of analyzing and executing the definition to the actual
DSL implementation and to DSL programs being debugged.

2.2 Reusable specification templates

Whendefining aDSLdynamic semantics as a design solution
rather than requirements, we target a semantic domain that
is sufficiently rich to model the programming language (or
environment, or system, or platform) inwhichDSLprograms
are executed. Thus, this semantic domain represents concepts
that are commonly used in software development practice
(rather than in a particular DSL). In our LEGO analogy this
means that the same semantic domain of plastic LEGOpieces
(which model real-life details: gears, axles, pneumatic sys-
tems, etc.) is used to construct mechanisms (i.e.,DSLs) from
various domains - from cars and trucks, to robotic arms. This
is different to the definition of the dynamic semantics of a
DSL (or mechanisms) in the form of requirements: then we
target the semantic domains that are (substantially) differ-

ent from each other. For example, for cars we would model
concepts of speed and acceleration; and for robotic arms we
wouldmodel concepts of gripping, spinning, and positioning.

On the one hand, this kind of semantic domain is low
level and results in an increasing complexity of a semantic
mapping that bridges the semantic gap between a DSL and
the semantic domain. On the other hand, the commonality
of the semantic domain makes it possible to reuse. When
constructing LEGO mechanisms, one does not need to rein-
vent the wheel. There is a set of custommechanical solutions
(built of LEGO pieces), patterns, and principles that one can
reuse for constructing linkages, transmissions, suspensions,
pneumatic devices, etc. For example, a collection of such
patterns is provided in the book by P.Kmieć [25]. Note that
these mechanical solutions are not restricted to LEGO con-
structions, but are rather distilled and explained in terms of
LEGO (Fig. 1c). The same idea can be applied to defining a
DSL dynamic semantics via introduction of reusable speci-
fication templates.

Specification templates are introduced for the reuse of
common (successful) design solutions, which appear when
constructing (defining or prototyping) DSL implementations
(solutions). In our work, we concentrate on reusable spec-
ification templates for defining the dynamic semantics of
DSLs. However, further research can be performed (or has
been performed - see related work in Sect. 6) to investigate
the possibility to apply a similar approach for defining other
aspects of DSLs: abstract syntax (metamodel), concrete syn-
tax (grammar), or static semantics (type system).

Reusable specification templates realize the well-known
approach of generic programming [32]. In generic program-
ming, many concrete implementations of the same algorithm
are captured in the form of a generic algorithm via abstract-
ing from the concrete data types appearing in the algorithm.
Such abstraction is expressed as requirements on the param-
eters of a generic algorithm. For example, Listing 1.1 (lines
1–4) depicts a generic algorithm implemented as a C++ func-
tion template for calculating the larger of two objects, a
and b. The only parameter of this generic algorithm is the
data type Type. From the source code, we can infer that
the requirements on this parameter are as follows: this type
should support copying of an object value and the operator

123

Reusable specification templates for defining dynamic semantics of DSLs 695

1 template <typename Type>
2 Type max(Type a , Type b) {
3 return a > b ? a : b;
4 }
5 . . .
6 int z = max<int>(x, y) ;

Listing 1.1 Example of a C++ template and its invocation

greater-than (>). 2 Line 6 of Listing 1.1 demonstrates how
this template can be (re)used: for this, the type parameter
is specified (int) and the resulting specialized template is
invoked as a usual C++ function (in the example,we calculate
it for the variables x and y).

Similar to a source code template, a specification template
is a piece of specification code parameterized for reuse via
abstracting from the concrete data types and/or data. Unlike
a template written in a programming language, a specifica-
tion template is written in a formalism that is based on a
solid mathematical theory. Therefore, we identify the fol-
lowing key features that characterize reusable specification
templates.

– A specification template is a specification where some
specification elements are considered as template param-
eters, and thus can be substituted by other elements of the
same nature.

– Requirements on template parameters are specified explic-
itly as a part of the specification template.

– A specification template can be reused together with the
results of its verification, such as: proof of the specifica-
tion consistency and/or proof of some properties holding
for this specification.

– After specializing a specification template, it can be
invoked as a building block for constructing another
(composite) specification. The verification results of the
specification template hold after composing the template
with other parts of the composite specification.

A framework that allows for composing a design solution
using specification templates is based on a specification for-
malism, its tool support (verification and validation tools),
and on a front-end that wraps the formal methods. The
ingredients of such a framework should fulfill the following
requirements.

– The specification formalism provides the possibility to
parameterize specifications. Such parametrization allows

2 Note that in some programming languages it is possible to specify
such requirements explicitly, for example, as an interface that should
be realized by the type parameter.

for specialization of a specification into another one with
possibility to reuse its verification results.

– The specification formalism provides the possibility to
compose specifications in such away, that the constituent
specifications hold their verification results after being
composed together.

– The front-endprovides a language that allows for describ-
ing a design by configuring the parametrization and
composition of reusable specification templates. More-
over, the front-end supports feedback from the formal
methods tools to the language level.

The first two requirements are fulfilled by the Event-B for-
malism and the techniques of generic instantiation and shared
event composition. The third requirement is partially con-
tributed by this paper: the Constelle language.

2.3 Specification templates for composing DSL
semantics

We aim to use specification templates as the semantic
domain, and Constelle as the language for defining a seman-
tic mapping (from a DSL to the semantic domain). In the
classical approaches of denotational semantics or operational
semantics [33], a semantic mapping is defined as a set of so-
called semantic functions each of which gives a meaning to a
separate construct (statement) of the language being defined.
A meaning of a language construct determines how this con-
struct changes the state of the program being executed. In
other words, the semantics of each of the language con-
structs is defined separately and independently from other
language constructs in terms of changes to the program
state. This style of a semantic mapping can be character-
ized as a one-to-many relation (from DSL constructs to state
changes).

However, our decision to define aDSL dynamic semantics
as a solution (or implementation, as described in Sect. 2.1)
leads to the following situation. In a solution, multiple DSL
constructs (statements) can be implemented via the same
specification template invocation, and oneDSL construct can
be implemented by multiple specification template invoca-
tions. In this case, themeaning of aDSL construct determines
how multiple template invocations change the state of the
program being executed. For example in our LEGO alle-
gory (in Fig. 1a), two different ‘DSL constructs’: driving
and turning - are implemented by the following common
set of mechanical templates: the differential pattern (invoked
twice) and the drive-train. The state of the car is changed
via interaction of these template invocations. This style of
a semantic mapping can be characterized as a many-to-
many relation (from invocations of specification templates
to state changes). As a consequence, when defining a seman-
tic mapping we may face the problem of scattering and

123

696 U. Tikhonova

1 void Point :: moveBy (int dx, int dy) {
2 x = x + dx; y = y + dy;
3 display . update () ;
4 log(MOVE_BY, this , dx, dy) ;
5 }
6

7 void Point :: setColor (int c) {
8 color = c;
9 display . update () ;

10 log(SET_COLOR, this , c) ;
11 }

Listing 1.2 Example of a C++ code with different aspects

tangling: the definition of a DSL construct is scattered
over multiple invocations of specification templates, and
an invocation of a specification template participates in the
definitions of multiple DSL constructs (and, thus, tangles
them).

The problem of scattering and tangling of software code
are considered and managed by aspect-oriented program-
ming (AOP) [22]. The AOP technique allows for modular-
ization of aspects that crosscut a system’s basic functionality.
Examples of such aspects are synchronization,memoryman-
agement, localization, logging, etc. For example, in the C++
code depicted in Listing 1.2 the basic functionality of updat-
ing the point’s state (lines 2 and 8) is crosscut by the aspect
of notifying the display about the new point’s state (lines 3
and 9) and by the aspect of logging (lines 4 and 10). Accord-
ing to the AOP paradigm, these aspects can be extracted into
separate (explicit) modules and then weaved into the basic
functionality.

We use the AOP approach to express how a DSL dynamic
semantics is composed of specification templates. We con-
sider (specialized) specification templates as aspects and
weave them together to form the functionality (behavior) of
DSL constructs. In other words, the DSL semantic is defined
as theweaving of aspects each ofwhich is a specialized speci-
fication template. The major difference of our approach from
the classical AOP is that we define the DSL semantic map-
ping only in terms of aspects, i.e., the basic functionality is
a composition of aspects.

Moreover, comparing to the classical AOP realized in pro-
gramming languages, aspects in our approach are formal
specifications. Thus, the compatibility of aspects composed
together can be analyzed using tools that support the specifi-
cation formalism. An example of the compatibility of aspects
is demonstrated in our LEGO example in Fig. 1a. Here two
differential patterns are composed together into a 4 × 4
vehicle’s drive-train. To ensure compatibility of these two
template invocations, the front and rear differentials must
be oriented in opposite directions so that the front and rear
wheels rotate in the same direction.

3 The Constelle language

In this section, we develop a (meta)model of reusable specifi-
cation templates and a metamodel of the Constelle language.
Constelle allows for configuring the parametrization and the
composition of specification templates when applying them
for defining the dynamic semantics of a DSL. As a carrier
formalism to express specification templates we have chosen
Event-B, which is both precise and executable.

3.1 The Event-B formalism

Event-B is an evolution of the B method, both introduced by
Abrial [1,2]. Event-B employs set theory and first-order logic
for specifying software and/or hardware behavior. The Rodin
platform [3] and its plug-ins provide various tool support for
the formalism: one can create and edit Event-B specifica-
tions, verify their consistency using automatic or interactive
provers, animate and model check Event-B specifications.
Thus, Event-B and Rodin allow for formal modeling and
development of correct-by-construction hardware and soft-
ware systems.

An Event-B specification consists of contexts and
machines. For example, Fig. 2 shows the Event-B contexts
and machines of two specification templates that we use as
examples in this paper: Queue and Request.

An Event-B context describes the static part of a sys-
tem: sets, constants, and axioms. A machine uses (‘sees’)
the context to specify the behavior of a system via a state-
based formalism. Variables of the machine define the state
space. Events, which change values of these variables, define
transitions between the states. An event consists of guards
(‘where’-section) and actions (‘then’-section), and can have
parameters (‘any’-section). An event can occur onlywhen its
guards are true, and as a result of the event its actions are exe-
cuted. Parameters represent existentially quantified variables
local to the event, i.e., used in its guards and actions. The
properties of the system are specified as invariants, which
should hold for all reachable states. The properties can be
verified via proving automatically generated proof obliga-
tions and can be debugged (examined) via animation (i.e.,
execution) of the Event-B machine.

Figure2c shows the Event-B specification of a well-
known abstract data type, a queue. In this specification, the
collection of elements is modeled as a partial function queue
from natural numbers to ElementType (see invariant inv1),
where ElementType is a set of all possible elements that can
be stored in the queue (see the Event-B context in Fig. 2a).
The possible operations on the collection are specified as the
events enqueue and dequeue. In the enqueue event, a new
pair index �→ element is added to the collection (see the
action act2) if the index is bigger than any other index used
in the queue (see the guard grd3). In the dequeue event, a

123

Reusable specification templates for defining dynamic semantics of DSLs 697

Fig. 2 Event-B code of two
specification templates: queue
and request. a Event-B context
for the Queue specification
template, b Event-B context for
the Request specification
template, c Event-B machine for
the Queue specification
template, d Event-B machine for
the Request specification
template

CONTEXT template queue context
SETS

ElementType

END

CONTEXT template request context
SETS

ElementType

END

MACHINE template queue machine
SEES template queue context
VARIABLES

queue
INVARIANTS
inv1 : queue ∈ N → ElementType

EVENTS
Initialisation
begin

act1 : queue := ∅

end
Event enqueue =

any element, index
where
grd1 : element ∈ ElementType
grd2 : index ∈ N

grd3 : queue = ∅ ⇒
(∀i·i ∈ dom(queue) ⇒ index > i)

then
act2 : queue := queue ∪ {index → element}

end
Event dequeue =

any element, index
where
grd4 : index → element ∈ queue
grd5 : ∀i·i ∈ dom(queue) ⇒ index ≤ i
then
act3 : queue := queue \ {index → element}

end
END

MACHINE template request machine
SEES template request context
VARIABLES

request body
INVARIANTS
inv1 : request body ∈ P(ElementType)
EVENTS
Initialisation
begin

act1 : request body := ∅

end
Event request =

any elements
where
grd1 : elements ∈ P(ElementType)
grd2 : request body = ∅

then
act2 : request body := elements

end
Event process =

any element
where
grd3 : element ∈ request body
then
act3 : request body :=

request body \ {element}
end

END

(a) (b)

(d)(c)

pair index �→ element is removed from the collection (see
the action act3) if the index is smaller than any other index
used in the queue (see the guard grd5). In this way, the First-
In-First-Out (FIFO) property of the data structure is realized.

The attractive simplicity of Event-B is enhanced by the
following techniques that support scalability and reuse of
Event-B specifications [4].

– Generic instantiation allows for replacing sets and con-
stants in an Event-B machine by new sets and constants
that conform to the corresponding properties (axioms) of
the former ones;

– Shared event composition allows for the composition of
Event-Bmachines via their events (with no common vari-
ables allowed in the constituent machines).

We discuss these techniques in more detail in Sect. 4.

3.2 Metamodel of a specification template

To consider Event-B code as a specification template, we
need (1) a mechanism to parameterize it into a generic tem-
plate and (2) a mechanism to invoke this template when
defining the dynamic semantics of a DSL. To keep the
approach universal, we separate these mechanisms from a
concrete carrier formalism (in our case, from Event-B). For
this, we introduce the concept of template interface that
supports the mechanisms of parametrization and invocation,
independently from the concrete specification formalism. A
specification template connects a template interface and the
specification code that implements this interface.

In the metamodel depicted in Fig. 3, concepts related to
the template interface are shown on the left; concepts of the
formalism (Event-B) are shown on the right; and concepts

123

698 U. Tikhonova

of the specification template that connect these two parts
are shown in the middle. Figure4 shows the metamodel of
an Event-B specification. This is a subset of the metamodel
provided by the EMF framework for Event-B, one of Rodin
plug-ins [48].

We distinguish two possible template interfaces: struc-
tural interface and semantic interface. For parametrization
of Event-B code into a generic template, a structural interface
defines a collection of template parameters that can be sub-
stituted by concrete data when specializing the template. As
these parameters do not change their values during the execu-
tion of a composed system, we name them static parameters.
In our LEGO example depicted in Fig. 1b, the static parame-
ters are the sizes of the gears used in the differential: after the
sizes are chosen and the corresponding gears are assembled
into the mechanism, they are not changed any more (during
driving).

The Queue specification template depicted in Fig. 2c
is generic with respect to the type of elements stored
in the queue. Thus, the corresponding structural interface
includes one static parameter: ElementType (see List-
ing 1.3, structural interface template_basic). In the
metamodel depicted in Fig. 3, we distinguish three possible
static parameters: Constant, Type, and Relation. We note that
the completeness of such a classification with respect to var-
ious specification formalisms and metamodeling languages
requires further investigation. Therefore, we leave a possi-
bility to extend our metamodel by adding new kinds of static
parameters.

For invocation of the behavior specified in the template,
a semantic interface provides a set of signatures: Opera-
tionswithDynamicParameters in Fig. 3.Dynamic parameters
allow for transferring data to and from the template behavior.
In our LEGO example depicted in Fig. 1b, the red and green
axles are dynamic parameters: they connect the differential
with other parts of a system and transfer the rotation to (the
green axle) and from (the red axles) the differential.

The behavior specified in theQueue specification template
can be invoked via operationsenqueue and dequeue. The
data that are transferred into and from these operations are
an element that should be added to or has been removed
from the queue. Thus, the corresponding semantic interface
consists of two operations: enqueue and dequeue, with
elements as their dynamic parameters (see Listing 1.3,
semantic interface template_queue).

Not all elements of the specification template should
appear in the template interface. Some elements are encap-
sulated in order to hide details of the template design. For
example, the index parameters of the events enqueue and
dequeue, which are used for determining a position of the
element being added/removed, are specific to the way the
queue is modeled (a partial function from natural numbers to
ElementType). Therefore, we encapsulate index and do not

1 structural interface template_basic {
2 types ElementType
3 }
4

5 semantic interface template_queue uses template_basic {
6 operation enqueue (element)
7 operation dequeue (element)
8 }
9

10 semantic interface template_request uses template_basic {
11 operation request (elements)
12 operation process (element)
13 }

Listing 1.3 Structural and semantic interfaces of the specification tem-
plates Queue and Request

add it to the dynamic parameters of the semantic interface.
The same applies to the Initialisation event of the Event-B
specification.

Finally, a SpecificationTemplate stores a collection of
SpecificationElements, each of which references an EventB-
NamedCommentedElement (see the metamodel depicted in
Fig. 3). An EventBNamedCommentedElement can be an
Event-B variable, an event, a parameter, etc. (according to
the Event-Bmetamodel in Fig. 4). All these specification ele-
ments constitute the template, and therefore, are explicitly
referenced in it.

A specification element can be either public (Public-
Element) or private (PrivateElement), see Fig. 3. A pub-
lic element links an element of the template interface
(InterfaceElement) with an element of the Event-B code that
implements this interface element. When the specification
template is applied, this Event-B element is substituted by
another element of the same kind according to the spe-
cialization and invocation of the interface element. For
example, the enqueue operation of the semantic inter-
face template_queue (Listing 1.3) is linked to the event
enqueueof theEvent-Bmachine template_queue_machine
(Fig. 2c); and theElementType type of the structural inter-
face template_basic is linked to the set ElementType of
the Event-B context template_queue_context. The elements
of the Event-B specification which do not appear in the tem-
plate interface, are referenced through PrivateElements. For
example, the index parameters of the events enqueue and
dequeue are not included in the template interface, and thus,
are referenced through the corresponding objects of the class
PrivateElement.

As an Event-B specification is organized as a context for
the static part and a machine for the dynamic part, it is natu-
ral to split a specification template into a StructuralTemplate
linking a structural interface and an Event-B context, and a
SemanticTemplate linking a semantic interface and anEvent-
B machine. Theoretically, the right part of the metamodel

123

Reusable specification templates for defining dynamic semantics of DSLs 699

Fig. 3 Metamodel of a specification template

Fig. 4 Metamodel of an Event-B specification

depicted in Fig. 3 can be replaced by concepts of another
specification formalism, with a necessary adjustment of the
middle part.

3.3 Design of the Constelle language

To use specification templates for defining the dynamic
semantics of a DSL, we develop the Constelle language.

123

700 U. Tikhonova

Fig. 5 An industrial robot and
a DSL program that controls it. a
Robotic arm, b a DSL program

1 task Demo {
2 arm action (turnr ight , 6 0) ;
3 arm action (movedown , 1 0) ;
4 hand action (grab) ,
5 arm action (moveup , 1 0) ;
6 hand action (r o t a t e l e f t , 1 80) ;
7 arm action (t u r n l e f t , 6 0) ;
8 arm action (movedown , 1 0) ;
9 hand action (r e l e a s e) ;

10 }
(a) (b)

Constelle applies the ideas of generic programming and
aspect-oriented programming described in Sect. 2.3.Namely,
in Constelle the dynamic semantics of a DSL is defined as
a composition of aspects, each of which is a specification
template specialized by substituting its (static) parameters
with the DSL constructs. The semantics of Constelle maps
such a definition to the corresponding (Event-B) specifica-
tion of the dynamic semantics of the DSL by substituting
and composing the specification templates. Such substitu-
tion and composition raise certain proof obligations in the
resulting specification. We discuss the Constelle-to-Event-B
mapping and how the corresponding proof obligations can
be identified and discharged in Sect. 4.

To realize our approach, we need to have a library of spec-
ification templates, which we can use in a definition. This
library can exist beforehand or can be created and extended
during the process of designing theDSL. The purpose of such
a library is to collect and store the knowledge and expertise
of designing and developing a DSL (for a concrete domain
or for a general broad usage).

In this section, we explain and design the Constelle lan-
guage through the following example: we consider a DSL
for controlling an industrial robot and define (a subset of)
its dynamic semantics in Constelle using a library of two
specification templates, Queue and Request. The industrial
robot and an example of a DSL program for controlling it
are depicted in Fig. 5. The specification templates Queue and
Request were introduced in Sect. 3.1.

The industrial robot consists of two major mechanical
parts: a hand, responsible for manipulating objects, and an
arm, responsible for moving the hand to a certain position.
Our example DSL allows for programming tasks for such a
robot using a set of actions that can be performed by these
parts, such as: actions turn left, turn right, move
up, move down performed by the arm; and actions grab,
release, rotate left, rotate right performed
by the hand. The DSL program in Listing 5b specifies the
task Demo that should be executed by the robotic arm.While
some actions in a task should be performed in a certain order,
some other actions can be performed in parallel, as the arm

and the hand can operate independently. For example, in lines
5–7 in Listing 5b, the actionsmove up and turn left of
the arm can be performed in parallel with the action rotate
left of the hand.However, the actionrelease of the hand
should be performed only after the action move down of
the arm.

The dynamic semantics of the example DSL realizes
the parallel execution of mutually independent actions of
the robot parts, and the sequential execution of mutually
dependent actions. In Constelle we define these two types
of execution in two separate semantic modules. First we
define the parallel (independent) execution of actions in
the semantic module Robotic Arm Parallel using
the specification templates Queue and Request. Then we
define the sequential execution of actions in the semantic
module Robotic Arm Sequential using the module
Robotic Arm Parallel and other specification tem-
plates.

In other words, in Constelle the dynamic semantics of a
DSL is split into separate semantic modules, each of which
encapsulates a behavioral aspect and/or certain design deci-
sion(s) and hides it from the rest of the semantics definition.
Each of these semantic modules is split into smaller semantic
modules – and so on till we arrive at the library of speci-
fication templates, which have the corresponding (Event-B)
implementations. Thus, a definition is structured as a directed
acyclic graph (DAG) of semantic modules, where the edges
represent the relation ‘composed of’ and the graph sinks rep-
resent specification templates from the library. Such a design
allows for a scalable, modular, and formalism-independent
definition of the dynamic semantics of a DSL.

Table1 introduces the semantic module Robotic Arm
Parallel, and shows how this semantic module is com-
posed of the specification templates Queue and Request.
The semantic interface of Robotic Arm Parallel is
shown in the leftmost column of the table. The other
columns show invocations of the specification templates:
driver1 and driver2 both invoke the Queue template,
and distributor invokes the Request template. The rows
of the table show different elements of the corresponding

123

Reusable specification templates for defining dynamic semantics of DSLs 701

Table 1 Semantic module Robotic Arm Parallel

Robotic Arm Parallel driver1 : Queue driver2 : Queue distributor : Request

taskStm request
• task • elements
armActionStm enqueue process
• action • element • element
handActionStm enqueue process
• action • element • element
executeArm dequeue
• action • element
executeHand dequeue
• action • element

Actions ElementType
ArmActions ElementType
HandActions ElementType

semantic interfaces: operations (non-shaded rows) and their
parameters (shaded rows). The intersections of the rows
and the columns show the mapping of the elements of the
semantic module to the elements of the constituent template
invocations. The bottom part of the table shows the mapping
of the structural interfaces used in these semantic interfaces.
Below we explain this Constelle definition in detail.

As we stated in Sect. 1, the main idea behind our approach
is to define the dynamic semantics of a DSL as a two-
steps semantic mapping: first, from the DSL constructs to
an intermediate semantic domain; second, from the inter-
mediate semantic domain to the target execution platform.
The choice of such an intermediate semantic domain is not
arbitrary: it is formed by the typical (design) solutions that
are used for handling the target execution platform (in other
words, by concepts of the horizontal domain of the DSL, as
discussed in Sect. 1). For example, a robotic arm is typically
controlled via the drivers of its parts. In our semantics defi-
nition, we represent such drivers as queues to emphasize that
the drivers have buffers for storing actions that should be exe-
cuted. The third aspect of the Robotic Arm Parallel
is a distributor, responsible for assigning actions to the
drivers.

A Constelle table, such as Table1, represents a mapping
from the DSL (vertical) concepts, depicted in the leftmost
column, to the intermediate semantic domain (i.e., the DSL
horizontal concepts), depicted in the other columns. For the
example DSL we distinguish the following DSL concepts:
the task statement, two types of action statements, and two
types of action executions (by the arm and by the hand).
In other words, we separate the concept of an action state-
ment in a DSL program from the concept of the resulting
execution of the action by the robotic arm. These (verti-

cal) concepts appear in the semantic interface of Robotic
Arm Parallel (leftmost column in Table1) as the oper-
ations taskStm, armActionStm, handActionStm,
executeArm, and executeHand.

The operationtaskStm is a starting point of an execution
and is responsible for initializing a task. We define this oper-
ation as the request operation of the Request template
(the right column in Table1). The elements parameter
of the request operation corresponds to the task that is
requested for the execution (parameter task in the left col-
umn). According to the Event-B specification of the Request
template depicted in Fig. 2d, this means that the task is saved
in the internal variable request_body; and a new task can be
requested only after the current task is processed (see grd2
in Fig. 2d).

After initializing a task, we process it action by action
(or statement by statement) using the process operation
of the Request template. Each action is assigned for execu-
tion to the hand or to the arm – depending on the type of the
action. Thus, the operations armActionStm and hand-
ActionStm are composed of the enqueue operation of
the corresponding driver and the process operation of
the distributor. Moreover, the action that is processed
in the distributor is the same action that is queued
in a driver. This is depicted by putting the parameters
element of enqueue and process in the same row
as the parameter action of armActionStm or hand-
ActionStm.

An execution of an action corresponds to the dequeuing
of this action. Therefore, the operations executeArm and
executeHand are defined as the operations dequeue of
the template invocations driver1 and driver2 corre-
spondingly.

123

702 U. Tikhonova

Table 2 Semantic module Robotic Arm Sequential

Robotic Arm Sequential core : Robotic Arm Parallel sequential : Partial Order

taskStm taskStm NewPartialOrder
• task • task • poset
• order • order
armActionStm armActionStm GetMaximalElement
• action • action • maximal
handActionStm handActionStm GetMaximalElement
• action • action • maximal
executeArm executeArm RemoveElement
• action • action • element
executeHand executeHand RemoveElement
• action • action • element

Actions Actions PosetElement
ArmActions ArmActions
HandActions HandActions

Finally, we specialize static parameters of the invoked
specification templates. For this, we use the following con-
structs of the example DSL. The set Actions contains all
the predefined actions of the DSL. As actions can be per-
formed either by the arm or by the hand, the set Actions is
partitioned by the sets ArmActions and HandActions:

Actions = ArmActions ∪ HandActions,

ArmActions ∩ HandActions = ∅

The substitution of the static parameters is depicted in the
bottom rows of Table1. Namely, the Actions type substi-
tutes the ElementType of the Request template (the right
column in Table1). This means that the request_body of the
Request specification (depicted in Fig. 2d) becomes a subset
of Actions. Moreover, the task parameter of the task-
Stm operation is a subset of Actions too:

task ∈ P(Actions)

The ArmActions type substitutes the ElementType of
the driver1. The HandActions type substitutes the
ElementType of the driver2. These mean that only the
actions of the corresponding type are stored in the queues:
ArmActions are stored indriver1:Queue, andHand-
Actions are stored in driver2:Queue (see guard grd1
in Fig. 2c).

In the resulting semantics of the example DSL, actions of
the arm and the hand are executed independently from each
other in order of arrival to a corresponding queue. More-
over, according to the way actions are processed, the order
of actions within a task does not matter. However, the order
of requesting tasks does matter, as a new task cannot be ini-

tialized until all the actions of the current task are sent to the
queues.3

Table2 defines the semantic module Robotic Arm
Sequential. In this module, we use the same names
of operations and parameters (the leftmost column in
Table2) as we used in the semantic module Robotic
Arm Parallel. The semantic module Robotic Arm
Sequential is composed of the semantic module
Robotic Arm Parallel (the second column of the
table) and the template Partial Order (the rightmost column).
The latter imposes a partial order on the actions forming a
task.4 This aspect restricts processing of actions to the max-
imal elements of the order and removes the executed actions
from the order. For the sake of brevity, we do not discuss the
details of this table here.

3.4 Metamodel of the Constelle language

The metamodel that allows for such a Constelle definition as
described above is presented in Fig. 6: the part depicted on
the left duplicates (the subset of) themetamodel of a template
interface from Fig. 3, and the part depicted on the right shows
concepts related to the definition of DSL semantic modules
using specification templates (i.e., their semantic interfaces).

To implement both the specialization and the invocation
of specification templates, we use substitution of the inter-
face elements of constituent semantic interfaces with the
interface elements of the composite semantic interface. This

3 The complete Event-B specification of the semantic module
Robotic Arm Parallel is given in ‘Appendix 2’.
4 The Event-B specification of the partial order template is given in
‘Appendix 1.’

123

Reusable specification templates for defining dynamic semantics of DSLs 703

Fig. 6 Metamodel of the
Constelle language

means that in a Constelle table, an interface element from
the leftmost column substitutes all interface elements sit-
uated in the same row in other columns. This mechanism
is realized through InterfaceElementSubstitutions (Fig. 6, on
the bottom), each of which substitutes a formal interface ele-
ment of the invoked (constituent) semantic interface with an
actual interface element of the semantic module (i.e., com-
posite semantic interface).

This applies to all interface elements introduced earlier:
static parameters (that are used in the semantic interfaces),
operations, and dynamic parameters. By substituting static
parameters we specialize the templates with the DSL con-
structs and synchronize them with respect to the data types.
By substituting operations we invoke these templates and
weave them together in the aspect-oriented style (as it was
discussed in Sect. 2.3). By substituting dynamic parameters
we realize transferring of data between the templates. As
mentioned earlier, all these substitutions raise certain proof
obligations in the resulting formal specification. In Sect. 5.2,
we discuss how such proof obligations can be identified and
discharged.

4 Semantics of the Constelle language

In the Constelle language, the dynamic semantics of a DSL is
defined using specification templates. Such templates are col-
lected in a library, which facilitates reusing design solutions.
As a carrier of such design solutions, i.e., as an imple-

Fig. 7 T-diagrams of the Constelle semantics definition

mentation formalism for our specification templates, we use
Event-B. This means that Constelle realizes a semantic map-
ping of the DSL to the semantic domain of Event-B. In Fig. 7
this process is represented as the leftmost T-diagram (the
notation known from the compiler theory [5]): the semantic
mapping of the DSL to Event-B is realized in Constelle.

In Constelle, the dynamic semantics of a DSL is defined
as a composition of specialized specification templates. The
engine of the Constelle language realizes code substitution in
the templates and composes the resulting specifications into
the whole Event-B specification of the DSL dynamic seman-
tics. The semantics of Constelle defines such a translation
from a composition of specialized specification templates
to the corresponding Event-B code. In Fig. 7, the definition
of the Constelle semantics is represented as the middle T-
diagram: the semantic mapping of Constelle to Event-B.

To benefit from a semantics definition in practice and to
implement the use cases discussed in Sect. 2.1, we aim to
have the semantic mapping from Constelle to Event-B both
precise and executable. Precision of the semantic mapping
from Constelle to Event-B is achieved through the employ-

123

704 U. Tikhonova

ment of two Event-B techniques: generic instantiation and
shared event composition–introduced briefly in Sect. 3.1 and
depicted as Event-B∗ in Fig. 7. These techniques are theoret-
ically solid [4] and allow for the reuse of verification results
of the specification templates in a specification of the DSL
dynamic semantics generated from its Constelle definition.
In this way, the requirements for a specification formalism
listed in Sect. 2.2 are satisfied.

Executability of the semantic mapping from Constelle
to Event-B (according to our definition of executability
given in Sect. 2.1) is achieved through its implementation
using the MDE technique of model-to-model transfor-
mation. Namely, we implement the Event-B∗ techniques
in a Constelle-to-Event-B transformation using the QVTo
(Query/View/Transformation-Operational) model transfor-
mation language [35]. In Fig. 7 this implementation is
represented as the triangle on the bottom of the middle T-
diagram.

The semantic mapping from a DSL to Event-B realized
in Constelle (leftmost T-diagram in Fig. 7) combined with
the semantic mapping from Constelle to Event-B results
in a semantic mapping from the DSL to Event-B realized
in Event-B. This mapping is represented as the rightmost
T-diagram in Fig. 7. In the resulting semantics definition,
both the semantic mapping and semantic domain are pre-
cise and executable, thus fulfilling our requirement as stated
in Sect. 2.1.

In this section, we define the semantic mapping from
Constelle (as defined in its metamodel in Fig. 6) to Event-
B in terms of the Event-B∗ techniques. The definition of
the Constelle semantic mapping follows its actual imple-
mentation, the Constelle-to-Event-B transformation coded
in QVTo. In what follows we give an informal descrip-
tion of the Constelle semantic mapping using set theory
and functions, aligned with the concepts and notation of the
QVTo language. Namely, we define the Constelle-to-Event-
B semantic mapping as a set of functions, capturing QVTo
model transformations, and defined in terms of the meta-
models introduced above: the Event-B metamodel (Fig. 4),
the metamodel of a specification template (Fig. 3), and the
Constelle metamodel (Fig. 6). Each class in these metamod-
els is viewed as a set of objects that instantiate this class,
and as such is used in the definitions of the QVTo func-
tions. The approach of describing anddesigningQVTomodel
transformations using set theory and functions is elaborated
in [53]. Below we explain this approach as we apply it to
the Constelle-to-Event-B transformation. Note that as we
use set theory and functions, we do not discuss some trivial
details, such as formal applicability or constraints that should
be fulfilled. This is done for the sake of brevity. However,
the actual Constelle-to-Event-B transformation performs all
necessary checks and identifies the required proof obliga-
tions.

4.1 Model transformations from Constelle to Event-B

The model transformation Constelle-to-Event-B transforms
(maps, translates) a Constelle definition of the DSL dynamic
semantics to a corresponding Event-B specification of this
DSL dynamic semantics. For this, the transformation con-
sumes a Constelle model (instance of the Constelle meta-
model) and a library of specification templates invoked in
this Constelle model. As in Constelle the dynamic semantics
of a DSL is defined through a DAG of semantic modules (see
Sect. 3.3), the transformation produces an Event-B specifica-
tion that consists of multiple Event-B machines: an Event-B
machine for each semantic module of the definition. Each of
these resulting Event-B machines is wrapped into a specifi-
cation template. This is done for the sake of uniformity (of
semantic modules and semantic templates) and for the possi-
bility to construct new specification templates from existing
ones using Constelle.

Consequently,wedescribe theConstelle-to-Event-B trans-
formation by the following function:5

Constelle-to-Event-B :
P(SemanticTemplate) → SemanticDefinition

→ P(SemanticTemplate) (1)

Here the transformation applies a library (a set) of Semantic-
Templates to a SemanticDefinition of a DSL; and gener-
ates as an output a collection of SemanticTemplates that
implement all semantic modules of the input semantic
definition.

As described in Sect. 3.4, each semantic module of a
Constelle model substitutes static parameters of the invoked
specification templates with the static parameters repre-
senting the DSL constructs–such as the types Actions,
ArmActions, and HandActions in the example DSL
described in Sect. 3.3. For the sake of simplicity, we assume
that all semantic modules of a Constelle model use the same
structural interface, which introduces all necessary DSL con-
structs (types, relations, and constants). To ensure that the
resulting Event-B machines specify the DSL semantics in
terms of these concepts, we assume that this structural inter-
face is implemented in an Event-B context wrapped in the
corresponding structural template. We treat such a struc-
tural template as a global constant (or environment) of the
Constelle-to-Event-B transformation and, therefore, do not
include it in the function definitions discussed in this section.

Transformation (1) can be implemented using the follow-
ing (sub-)transformation that considers a single Semantic-
Module of a semantic definition and results in a single

5 All concepts used in the formulas of this section correspond to the
similarly named classes depicted in Figs. 4, 3 and 6 (such as Semantic-
Template and SemanticDefinition).

123

Reusable specification templates for defining dynamic semantics of DSLs 705

SemanticTemplate correspondingly:

ExpandDefinition :
P(SemanticTemplate) → SemanticModule

→ SemanticTemplate (2)

To transform all semantic modules of a semantic definition
using their dependencies on (invocations of) each other, we
apply transformation (2) to the nodes of the DAGof semantic
modules starting from the sinks toward the sources. In this
way we ensure that when a semantic module is to be trans-
formed, all its aspects (invocations of SemanticInterfaces,
see Fig. 6) have the corresponding implementations in the
form of semantic templates.

The transformation ExpandDefinition realizes the two
mechanismsof the specification templates approachdescribed
in Sect. 3.2: substitution of parameters of a generic template,
and invocation (composition) of specialized templates. These
mechanisms are implemented as two (separate) steps: Sub-
stitute and Compose–which are connected into a chain of
model transformations:

ExpandDefinition(lib)(module) = Compose(module)(
{Substitute(a, t) | a ∈ module.aspects ∧ t ∈ lib

∧ t .implements = a.invokes}
) (3)

We discuss the details of the function application of
Substitute and Compose [i.e., arguments of the mappings
appearing in formula (3)] and their signatures in the follow-
ing sections.

4.2 Substitution

Substitution of parameters in an invoked semantic template
is the first step of the transformation ExpandDefinition. It
takes a SemanticTemplate from the library and performs its
TemplateInvocation by transforming it into a new Semantic-
Template, which uses (i.e., implements) the semantic inter-
face of the semantic module (being composed) instead of
the semantic interface of the template (being invoked). The
Substitute transformation can be described by the following
function:

Substitute : TemplateInvocation → SemanticTemplate

→ SemanticTemplate (4)

Correspondingly, the transformation ExpandDefinition
(3) applies Substitute (4) to all aspects of its input seman-
tic module: Substitute(a, t) for a ∈ module.aspects [see the
second line of formula (3)]. For this, ExpandDefinition finds
a corresponding template (t) in the library, i.e., the template
that implements the semantic interface invoked in the aspect
(a): t ∈ lib∧ t .implements = a.invokes. Note that in our for-
mulas we use the dot notation (common in object-oriented

languages) to represent an associated object: for example,
a.invokes represents an object of the class SemanticInterface
(according to the metamodel in Fig. 6).

The Substitute transformation realizes three objectives:

– Specialization of the template parameters with the DSL
constructs using InterfaceElementSubstitutions of
StaticParameters (as described in Sect. 3.4);

– Preparation for further composition of the template by
assigning new identifiers to its Operations and Dynamic-
Parameters–according to InterfaceElementSubstitutions
of these elements with elements of the target (composite)
specification;

– Encapsulation of the specification elements that do not
implement any interface elements (PrivateElements, as
described in Sect. 3.2) through extending their identifiers
with a proper namespace identifier (to avoid possible
name conflict in the target specification)–using as the
namespace the aspect that invokes this template.

All the listed objectives of substitution are realized by
renaming Event-B elements in the specification code using
the generic instantiation technique. For this, the transfor-
mation Substitute (4) performs three steps: an auxiliary
transformation that configures renaming; generic instantia-
tion, and an auxiliary transformation that wraps the resulting
Event-B machine into the corresponding semantic template.
We discuss these steps in the next three sub-subsections.
Configuration of renaming is generated in a transforma-
tion ComposeRenaming. This transformation applies a set
of InterfaceElementSubstitutions and a namespace extension
(String) to a set of SpecificationElements (of a semantic
template). The result of the transformation, EventBNamed-
CommentedElement �→ String, is a partial function of
renamings for the Event-B elements of the specification. The
transformation is described by the following function:

ComposeRenaming :
P(InterfaceElementSubstitution) × String

→ P(SpecificationElement)

→ (EventBNamedCommentedElement �→ String)

(5)

The transformation ComposeRenaming realizes the three
substitution objectives listed above. For this, the transforma-
tion is implemented in the following way:

ComposeRenaming(substset, nmspc)(specset) =
{s.eventbElement �→ x .actual.name |
s ∈ specset ∩ PublicElement ∧ x ∈ substset ∧ x .formal

= s.implements} ∪
{s.eventbElement �→ nmspc + s.eventbElement.name |
s ∈ specset ∩ PrivateElement}

(6)

123

706 U. Tikhonova

In other words, the ComposeRenaming transformation con-
siders separately public and private specification elements.
For the former, it finds an interface element substitution
(x) that substitutes the interface element implemented by
this specification element (x .formal = s.implements); and
uses the name of the target interface element for renam-
ing (x .actual.name). For the private specification elements,
the transformation simply extends their names with the
namespace: s.eventbElement �→ nmspc+ s.eventbElement.
name.

For example, when we apply this function to the aspect
driver1 of the semantic module Robotic Arm
Parallel defined in Table1, we use interface element sub-
stitutions depicted in the table lines to substitute (i.e., rename)
elements from the second column with elements from the
leftmost column.As a namespace extensionwe use the aspect
name, i.e., ’driver1.’ And the input set of specification ele-
ments is taken from the specification template Queue. As a
result we get the renaming function depicted in Fig. 8a.
Generic instantiation is introduced by Abrial et al. [4] and
is developed in detail by Silva and Butler [45]. Generic
instantiation realizes reuse of an Event-B specification by
considering it as a generic model and instantiating it into
a more specific model. For this, the context of an Event-
B specification C(s, c) is considered as its parametrization.
The sets s and the constants c introduced in the context
play the role of parameters of the generic model; and the
axioms A(s, c) capture their properties, i.e., requirements on
the parameters. An instantiation of such a specification uses
an Event-B context D(ds, dc) with more specific sets ds
and constants dc, featuringmore specific properties captured
in the axioms DA(ds, dc). An instantiation of the generic
Event-B machine is performed by replacing its parameters s
and c with the instance elements ds and dc. Moreover, the
variables, events, and parameters of the generic machine can
be renamed in the instantiated machine.

In practice, generic instantiation is implemented by syn-
tactically replacing generic elements with instance elements
(sets, constants, variables, events, and their parameters), or
renaming generic elements into instance elements. For exam-
ple, Fig. 8c shows an Event-B machine instantiated from the
Queue template (depicted in Fig. 2c) using the renaming con-
figuration depicted in Fig. 8a.

According to [45], the resulting instantiated machine is
correct by construction if the following conditions hold.

– The requirements on the parameters of the generic spec-
ifications hold for its instantiation. This means that the
properties A(ds, dc) of the generic specification can be
derived from the properties DA(ds, dc) of the specific
(instantiated) specification.

– Each set (in the generic specification) must be replaced
by a set or by a valid type expression (in the instantiated

specification), and each constant must be replaced by a
constant.

In our approach we ensure these requirement by providing
a proper implementation of the structural interface used in
the Constelle definition (an Event-B context wrapped in a
structural template, as discussed earlier in this section) and
stating generic properties A(ds, dc) as theorems that need
to be proved. An example of such Event-B context for our
robotic armDSL is depicted inFig. 8b.As theQueue template
does not contain axioms (see Fig. 2a), we do not need to prove
any generic properties.

To apply (call) generic instantiation in our definition of
the semantics of Constelle, we represent it as the following
function:

GenericInstantiation :
Machine → (EventBNamedCommentedElement

�→ String) → Machine (7)

Here a Machine is instantiated using a partial function
of renaming Event-B elements (EventBNamedCommented-
Element �→ String), and as a result a new (instantiated)
Machine is generated.
The substitution transformation (4) is defined as a function
composition of the transformations ComposeRenaming (5)
and GenericInstantiation (7), and an auxiliary transformation
ReconstructInstantiatedTemplate (discussed further):

Substitute(inv)(tmpl) =
ComposeRenaming(inv.elementsSubstitution, inv.name)

(tmpl.elements ∪ tmpl.uses.elements)
◦ GenericInstantiation(tmpl.eventbmachine)
◦ ReconstructInstantiatedTemplate(substset, tmpl)

(8)

Here the renaming configuration is generated for elements
of both semantic template (tmpl.elements) and of its static
template (tmpl.uses.elements). The resulting renaming is
applied directly (◦) to instantiate the Event-B machine of
the template (tmpl.eventbmachine). The output of Generic-
Instantiation is translated into the output of Substitute
using the auxiliary transformation ReconstructInstantiated-
Template described by the following function:

ReconstructInstantiatedTemplate :
P(InterfaceElementSubstitution)
× SemanticTemplate
→ Machine → SemanticTemplate

(9)

The transformation ReconstructInstantiatedTemplate
(9) generates a SemanticTemplate that wraps the newly

123

Reusable specification templates for defining dynamic semantics of DSLs 707

Fig. 8 Substitution of the
Queue template for the arm
aspect. a Renaming function, b
Event-B context that implements
structural interface of the
example, c fragment of the
instantiated Event-B machine

ElementType → ’ArmActions’,
queue → ’driver1 queue’,
enqueue → ’armActionStm’,

element → ’action’,
index → ’driver1 index’,

dequeue → ’executeArm’,
element → ’action’,
index → ’driver1 index’

MACHINE driver1 queue machine
SEES dsl context
VARIABLES

driver1 queue
INVARIANTS
inv1 : driver1 queue ∈ N → ArmActions

EVENTS
Initialisation
begin

act1 : driver1 queue := ∅

end
Event armActionStm =

any action, driver1 index
where
grd1 : action ∈ ArmActions
grd2 : driver1 index ∈ N

grd3 : driver1 queue = ∅ ⇒
(∀i·i ∈ dom(driver1 queue) ⇒ driver1 index > i)
then
act2 : driver1 queue :=

driver1 queue ∪ {driver1 index → action}
end

Event executeArm =
...

CONTEXT dsl context
SETS

Actions, ArmActions, HandActions
AXIOMS
axm1 : partition(Actions,

ArmActions,HandActions)
END

(a)

(b)

(c)

generated (instantiated) Event-BMachine. For this, the trans-
formation takes the original template (tmpl) and traces back
its specification elements to the Event-B elements of the
machine through the set of interface element substitutions
(substset) that have been applied to the original template.

4.3 Composition

Composition of the substituted semantic templates is the
second step of the transformation ExpandDefinition. It is
described by the following function:

Compose : SemanticInterface

→ P(SemanticTemplate) → SemanticTemplate (10)

This transformation composes a set of SemanticTemplates,
each of which implements the same (shared) Semantic-
Interface, into a single SemanticTemplate. Correspondingly,
the transformation ExpandDefinition applies Compose to its
input semantic module (as it is a semantic interface itself)
and to the semantic templates resulting from the substitution
of the module aspects (see Formula (2)).

An Event-B machine of the resulting semantic template
is composed of the Event-B machines of the input semantic
templates using shared event composition.We present shared
event composition and how it is used for composing specifi-
cation (semantic) templates in the next two sub-subsections.

Shared event (de)composition supports modularity of an
Event-B specification by structuring it as a collection of inde-
pendent sub-components interacting with each other [46].
Each sub-component is specified in a separate constituent
Event-B machine, which does not share its state (i.e., its
variables) with the constituent machines of other sub-
components. The sub-components interact with each other
by sharing (synchronizing) events of the corresponding con-
stituent machines. The synchronization of events is defined
in a composition configuration. The synchronized events can
exchange data via shared parameters. Thismechanism is sim-
ilar to the exchange of messages between synchronized input
and output channels in Communicating Sequential Processes
(CSP) [18].

Figure9 shows an example of a machine composed for the
semanticmoduleRobotic Arm Parallel according to
its definition in Table1. This machine is composed of three
machines: two instances of template_queue_machine (intro-
duced in Fig. 2c)–for the aspects driver1 and
driver2,–and one instance of template_request_
machine (introduced in Fig. 2d)–for the aspect
distributor.

The resulting composite machine is constructed as fol-
lows. The composite machine sees the contexts of all
constituent specifications. In the example, all constituent
machines see the same context, dsl_context that implements
the structural interface of the Constelle definition. The list of
variables of the composite machine is a concatenation of (not

123

708 U. Tikhonova

Fig. 9 Fragment of the
composite Event-B machine

MACHINE robotic arm parallel
SEES dsl context
VARIABLES

driver1 queue, driver2 queue, distributor request body
INVARIANTS
driver1 inv1 : driver1 queue ∈ N → ArmActions

driver2 inv1 : driver2 queue ∈ N → HandActions

distributor inv1 : distributor request body ∈ P(Actions)
EVENTS

...
Event taskStm =

any task
where
distributor grd1 : task ∈ P(Actions)
distributor grd2 : distributor request body = ∅

then
distributor act2 : distributor request body := task

end
Event armActionStm =

any action, driver1 index
where
driver1 grd1 : action ∈ ArmActions
driver1 grd2 : driver1 index ∈ N

driver1 grd3 : driver1 queue = ∅ ⇒ (∀i·i ∈ dom(driver1 queue) ⇒ driver1 index > i)
distributor grd3 : action ∈ distributor request body
then
driver1 act2 : driver1 queue := driver1 queue ∪ {driver1 index → action}
distributor act3 : distributor request body := distributor request body \ {action}

end
...

overlapping) lists of variables of the constituent machines:
arm_queue, hand_queue, and task_request_body. Possible
overlapping of variables, i.e., name conflicts, are avoided via
namespace extension performed during generic instantiation
of the constituent machines (see Sect. 4.2).

The invariants of the composite machine are a conjunc-
tion of the invariants of the constituent machines. The not
synchronized (i.e., not interacting) events are copied from
the constituent machines without modifications: for exam-
ple, taskStm in Fig. 9. Each set of synchronized events is
composed into one composite event (such as armActionStm
in Fig. 9) by conjuncting guards of the constituent events and
concatenating actions of the constituent events. The param-
eters of a composite event are a union of the parameters of
the constituent events with respect to shared (overlapping)
parameters, such as action in armActionStm.

According to [46], the resulting composed machine is
correct by construction. In other words, the results of
proving consistency, feasibility, and well-definedness of
the constituent machines directly extend to the composite
machine. However, this important theoretical outcome does
not exclude possible incompatibility of constituentmachines.
For example, a shared parameter might have different (and
incomparable) types in different constituent machines. Such

a situation is possible, as constituent machines are gen-
erated as instantiations of other machines according to a
Constelle definition. Thus, the corresponding (compatibility)
checks should be performed for a Constelle definition. In our
approach we delegate such checking to the Event-B tool sup-
port, Rodin. It identifies such incompatibilities as syntactical
and type errors in the resulting composite machine.

To apply shared event composition in our definition of the
Constelle semantics, we represent it as the following func-
tion:

SharedEventComposition :
P(Machine) → P(P(Event)
×P(P(Parameter))) → Machine

(11)

Here a set of constituent Machines is composed into a
new (composite) Machine using a configuration of type
P(P(Event) × P(P(Parameter))). A configuration is formed
as a set of composite events of the resulting machine. Each
of these composite events is composed of a pair consisting
of a set of synchronized events P(Event) coming from dif-
ferent constituent machines and of sets of sets of parameters
P(P(Parameter)) shared by these events. Thus, an element
of type P(Parameter) represents overlapping parameters of

123

Reusable specification templates for defining dynamic semantics of DSLs 709

constituent events that form a single (shared) parameter in
the resulting composite event.

For example, the machine depicted in Fig. 9 is computed
from the machines driver1_queue, driver2_queue, and dis-
tributor_request using the following configuration (here we
use prefixes of the form ‘machine_name/’ to show from
which constituent machine each event or parameter is taken):

{
({distributor_request/taskStm},∅),(

{driver1_queue/armActionStm,

distributor_request/armActionStm},
{{driver1_queue/action, distributor_request/action}}

)
,(

{driver2_queue/handActionStm,

distributor_request/handActionStm},
{{driver2_queue/action, distributor_request/action}}

)
,

...
}

(12)

Composition of semantic templates uses shared event com-
position in the following way:

Compose(module)(tmplts) =
SharedEventComposition(
{t .eventbmachine | t ∈ tmplts})(config)

◦ ReconstructComposedTemplate(module)
where config ={ (

{x .eventbElement | x .implements = op ∧
x ∈ t .elements ∧ t ∈ tmplts},{{x .eventbElement | x .implements = dp ∧
x ∈ t.elements ∧ t ∈ tmplts}

| dp ∈ op.signature
})

| op ∈ module.interface
}

(13)

Here the resulting machine is composed of the machines
of the input semantic templates (tmplts). The configuration
of the composition (config) is derived from the interface
of the semantic module (module). Namely, for each oper-
ation of the interface (op ∈ module.interface) we select
from different templates (t ∈ tmplts) specification ele-
ments (x ∈ t .elements) that implement these operations
(x .implements = op). Event-B elements of these specifi-
cation elements (x .eventbElement) determine which events
should be synchronized (i.e., composed). The configura-
tion of sharing Event-B parameters is derived in the same
way for each dynamic parameter of the operation (dp ∈
op.signature).

The resulting composite Event-B machine is wrapped
into a semantic template using an auxiliary transformation

ReconstructComposedTemplate:

ReconstructComposedTemplate :
SemanticInterface → Machine → SemanticTemplate

(14)

To wrap all Event-B elements of the composite Machine,
this transformation generates specification elements of the
resulting SemanticTemplate based on the SemanticInterface
that this machine implements.

5 Implementation and results

Using theMDE techniques, we implemented our approach as
a set of tools for creating specification templates and applying
them to define the dynamic semantics of a DSL. Our imple-
mentation is a proof of concept of the approach presented
in this paper. It allows for achieving the practical benefits
of having a formal specification of the DSL dynamic seman-
tics, as identified and discussed in Sect. 2.1. In this sectionwe
give an overview of our implementation (Sect. 5.1), discuss
its results (Sect. 5.2), identify the functionality that ismissing
to make the approach mature enough for the practical usage,
and present our vision on the potentials of our approach and
possible candidates for specification templates (Sect. 5.3).

5.1 Implementation of the approach

An overview of our implementation is presented in Fig. 10.
Its key components (on the top) are Constelle, which
comprises the metamodels presented in Sects. 3.2 and 3.4,
and the Constelle-to-Event-B model transformation, which
is implemented according to the definition presented in
Sect. 4. The library (in the middle) includes both semantic
interfaces (library.constellecore) and specification templates
(impl.templateslibrary), which implement these semantic
interfaces in the form of Event-B code (library.eventb on
the right). The dynamic semantics of a DSL is defined in
Constelle as a composition of the semantic interfaces, which
are specialized using the DSL constructs introduced by the
DSL metamodel (dsl.ecore on the left). The execution of
the Constelle-to-Event-B model transformation (on the bot-
tom)uses this definition to automatically generate anEvent-B
specification from each concrete DSL model.

Our tool set (denoted as Constelle workbench in Fig. 10)
supports (automatic) creation of specification templates on
the basis of Event-B specifications, editing of a Constelle
definition in the form of the table notation (introduced in
Sect. 3.3), and automatic generation of the corresponding
Event-B specifications. Figure11 shows the semantic mod-
ule Robotic Arm Parallel in the table editor of the
Constelle language.

To implement the Constelle workbench, we employed the
followingMDE techniques provided in the Eclipse platform:
Ecore metamodeling tools (EMF), the QVTomodel transfor-

123

710 U. Tikhonova

Fig. 10 The architecture of the
Constelle implementation

Fig. 11 Screen shot of the Constelle table editor

mation language, and the Sirius graphical editor generator.6

Our QVTo model transformation is aligned with the defini-
tion of the semantics ofConstelle given inSect. 4 according to
the methodology described in [53]. As the reference imple-
mentation of the Event-B∗ techniques, we used the Rodin
plug-ins for generic instantiation7 and for shared event com-
position.8

6 https://eclipse.org/sirius/.
7 https://sourceforge.net/projects/gen-inst/.
8 http://wiki.event-b.org/index.php/Parallel_Composition_using_
Event-B.

5.2 Results

The Constelle DSL combined with the tool support of the
Event-B formalism, Rodin, implement the use cases listed in
Sect. 2.1:

– We can prototype a DSL implementation using Constelle
(and generate the corresponding Event-B specifications);

– We can check the applicability and the compatibility of
invoked specification templates by ensuring syntactic and
logical correctness of the generated Event-B specifica-

123

https://eclipse.org/sirius/
https://sourceforge.net/projects/gen-inst/
http://wiki.event-b.org/index.php/Parallel_Composition_using_Event-B
http://wiki.event-b.org/index.php/Parallel_Composition_using_Event-B

Reusable specification templates for defining dynamic semantics of DSLs 711

Table 3 Relative characteristics
of specification templates versus
semantic modules

Metric Specification templates Semantic modules

Queue Request Partial Robotic Arm Robotic Arm
Order Parallel Sequential

Lines of code 21 15 33 51 82

Number of proof obligations 5 0 12 10 26

of those can be ignored 0% 0% 0% 100% 100%

tions (the logical correctness of an Event-B specification
is defined in the form of proof obligations [2]);

– We can verify that the prototyped DSL fulfills certain
properties by analyzing the generated Event-B specifica-
tions using (automatic) provers and/or model checkers of
Rodin (for example, using the AtelierB prover9);

– We can validate the prototyped DSL implementation
against (informal) requirements by executing the gener-
ated Event-B specifications (for example, using the ProB
animator10);

– We can wrap the animation of the generated Event-
B specifications in a domain-specific visualization (for
example, using BMotion Studio as presented in [51]).

Note that in the listed use cases Constelle plays a role only
in prototyping the DSL implementation and creating the cor-
responding specification of the dynamic semantics. All types
of the analysis are carried out by the back-end formalism:
from the syntactic analysis of the generated Event-B code to
model checking. As a result, to benefit from having a defini-
tion of the DSL dynamic semantics, one needs to be able to
work with the back-end formalism. To mitigate the potential
difficulties of employing two different languages (Constelle
and the back-end formalism), we rely on techniques that
allow for optimizing the verification of the resulting Event-
B specification by reusing proof obligations that are already
discharged for the invoked specification templates.
Proof obligations determine what should be proved for an
Event-B specification in order to ensure that the specified
(system) design is consistent, feasible, and complete (i.e.,
logically correct). In Rodin, a set of proof obligations is gen-
erated automatically for each Event-B specification. Proof
obligations can be discharged (i.e., proved) using automatic
and interactive provers. Generic instantiation and shared
event composition support reuse of proof obligations that are
already discharged for a generic and/or constituent Event-B
machine [44].

For example, Table3 shows the relative metrics of the
Event-B machines implementing the specification templates
vs. theEvent-Bmachines generated for the semanticmodules
(composed of these specification templates): lines of Event-

9 http://www.atelierb.eu/en/atelier-b-tools/.
10 http://www3.hhu.de/stups/prob/.

B code and number of proof obligations. The bottom line of
the table shows the proportion of the proof obligations that do
not need to be discharged for the semantic modules, as they
already have been discharged for the invoked specification
templates.

5.3 Future work

An inverse mapping from compilation and/or analysis results
provided by the back-end tools (back) to the concepts and
constructs used in a Constelle definition will complement
our implementation of Constelle, supporting a DSL devel-
oper who does not know the back-end formalism and the
specifics of its tools support. Such a mapping will facilitate
interpreting the feedback provided by the Rodin tooling in
terms of the definition of the dynamic semantics of a DSL.
The resulting set of Constelle mappings (to and from Event-
B) will become a mature and self-contained workbench that
supports the complete process of developing andmaintaining
the dynamic semantics of a DSL. We consider investigation
of the feasibility and construction of such an inversemapping
as the future work.
Multiple back-end formalisms and platforms can be poten-
tially used in our approach. This fact is depicted in Fig. 10
(on the right) as multiple components representing the Rodin
platform. For example, for each specification template (i.e.,
for each semantic interface) of our library we can assign
the corresponding C-code that implements it. A Constelle-
to-C code generator would compose these implementations
for a definition of the DSL dynamic semantics in Constelle
and, thus, construct the corresponding implementation of the
DSL in C. In order to be able to use C-code as a back-end
formalism, we need to answer the following questions: how
to compose fragments of C-code according to a Constelle
model; and more particularly, whether the order in which
code fragments are composed keeps the dynamic semantics
unchanged in the resulting program.

An example of another back-end platform is presented
in [51].ThereweuseBMotionStudio [26] to create a domain-
specific visualization of the Event-B specifications of the
DSL. The visualization mimics the graphical notation of the
DSL and runs on top of the animation of an Event-B specifi-
cation. As a result, the animation can be performed by DSL
engineers who are not familiar with the notation of Event-

123

http://www.atelierb.eu/en/atelier-b-tools/
http://www3.hhu.de/stups/prob/

712 U. Tikhonova

B. The results of this work can potentially be generalized
by identifying and collecting visualization templates. If each
of the semantic interfaces in our library is coupled with a
corresponding visualization template, then a Constelle-to-
BMotionStudio transformation would (semi-)automatically
generate a domain-specific visualization for an arbitraryDSL
based on its dynamic semantics definition in Constelle.

In this way, Constelle and a library of specification tem-
plates can serve as a common semantic domain, which is used
as a (common) source of semantic mappings targeting vari-
ous execution platforms. As a result, the consistency between
different DSL translations is handled within these semantic
mappings and can be reused for different DSLs.
The potential candidates for specification templates can be
found using various methods and empirics. First of all, these
can be well-known software design patterns and architecture
styles [15], such as Observer and Blackboard patterns, multi-
layered and peer-to-peer architectures, etc. Another source of
established software development practice is peer-reviewed
source code libraries, such as the Boost libraries of C++
code.11 For example, such components as Boost Flyweight
and Boost Graph Library can be investigated as candidates
for specification templates.

Following our idea that specification templates capture
a DSL horizontal domain, candidates for specification tem-
plates can be derived from constructs of horizontal DSLs.
For example, the Reo language [6] uses a common set of
primitive communication channels, typical for concurrent
applications: synchronous, lossy, buffered, etc. These can be
added to our library of specification templates.

6 Related work

The concepts of templates and/or patterns have been applied
to various components of DSLs in order to facilitate reuse
of their design. The existing work includes studies on
metamodel templates (such as [7] and [42]); composi-
tion and reuse of concrete syntax (both for textual [29]
and graphical notations [38]); and reuse of definitions of
the dynamic semantics. For specifying reusable fragments
(building blocks) of dynamic semantics and/or weaving/-
composing them together, some of the studies use informal
(or semiformal) notations: transformation languages (such
as Epsilon Object Language, EOL, in [29]), UML activity
diagrams (in [43]), and UML state and sequence diagrams
(in [23]).

There exist a number of formal notations that allow for
modular definition of the dynamic semantics of general pur-
pose programming languages (GPLs) using (existing or to
be established) libraries of reusable modules. For example,

11 www.boost.org.

TinkerType [27], Modular SOS (MSOS) [31], DynSem [55],
K framework [41] achieve an AOP-like modularity for term
reduction (rewriting or inference) rules. The latter two for-
mal notations allow for the automatic generation of an AST
(abstract syntax tree) interpreter, which can be used as a ref-
erence implementation of the programming language or for
formal analysis of the specified dynamic semantics.

In our approachwe aim for a precise and executable defini-
tion of the dynamic semantics of aDSL that captures software
solutions rather than requirements. For this, we employ a for-
malism that has a solid theory and extensive tools support, but
is not specifically designed for defining the dynamic seman-
tics of GPLs or DSLs. In Sect. 6.1 we discuss in detail the
existing work that uses various formal methods for defining
reusable (intermediate) building blocks for composing the
dynamic semantics of DSLs. In the relation to the concept
of specification templates, in Sect. 6.2 we look into existing
techniques for reusing formal specifications of software sys-
tems.

Note that here we do not consider reuse of a DSL and its
formal analysis via embedding this DSL into another DSL,
as it is done by Ratiu et al. [40]. In their work, the reuse of
the semantic mapping of a DSL to a verification formalism
is achieved through the clear separation of the DSL concepts
from its environment, rather than through the composition
of the embedded DSL (sub-language) with the hosting DSL
(which realizes its environment).

6.1 Reusable building blocks for specifying dynamic
semantics of DSLs

In [11] Dagand et al. propose Filet-o-Fish (FoF) as a seman-
tic language for composing a DSL out of semantically rich
building blocks. Technically, FoF is a ‘safe abstraction of C
embedded in a functional language’ (in their case, Haskell).
For this, Haskell functions wrap various string concatena-
tions that can generate fragments of C-code. As a result, FoF
abstracts from the details of the C syntax and provides build-
ing blocks for specifying the dynamic semantics of a DSL.
Such building blocks are invoked and composed together in
the form of (higher-order) functions using the standard com-
binators of Haskell (such as folding for traversing an abstract
syntax tree, AST). Thus, in FoF the dynamic semantics of
a DSL is defined as a Haskell program using available code
generators.On the onehand, theFoF-to-Ccompiler generates
the correspondingC-code fromsuch adefinition.On theother
hand, various techniques and tools for Haskell allow for val-
idation (for example, random testing) and verification (i.e.,
proofs of correctness) of the definition of the DSL dynamic
semantics at the level of this definition. Unfortunately, the
authors do not discuss the nature of their building blocks.
Therefore, it is not clear if we can use FoF to introduce and
to invoke the building blocks proposed in our approach: soft-

123

www.boost.org

Reusable specification templates for defining dynamic semantics of DSLs 713

ware design solutions commonly used in the implementation
of DSLs.

In [10] Chen et al. propose semantic units as an inter-
mediate common language for defining dynamic semantics
of DS(M)Ls. Semantic units capture the formal operational
semantics for a set of basic models of computations. These
can be either basic behavioral categories, such as finite state
machine (FSM), timed automaton (TA), and hybrid automa-
ton (HA); or basic component interaction categories, such
as synchronous data flow (SDF), communicating sequen-
tial process (CSP) and process networks (PN). The semantic
units are specified using the Abstract State Machines (ASM)
formalism. The dynamic semantics of a DSL is defined as a
model transformation between the metamodel (abstract syn-
tax) of the DSL and the metamodel that captures the syntax
of the ASM abstract data model of a selected semantic unit.
The authors call such a technique semantic anchoring. Com-
paring to our semantic templates, semantic units are general
purpose computation models, rather than specific software
solutions forming the horizontal domain of a DSL or a fam-
ily of DSLs.

In [9] Chen et al. develop a method for the composi-
tion of semantic units. In the same way as in our approach,
the dynamic semantics of a DSL is built hierarchically as
a composition of primary semantic units and newly derived
semantic units (composed of the primary ones). To specify
such a composition the authors use the composition mecha-
nisms of the ASM formalism, such as invocations of primary
ASM specifications and adding new (ad-hoc) constraints. As
a result, the interaction of constituent semantic units and
the mapping between their data structures are tangled over
the ASM code. In our approach we overcome this issue by
using the table notation for composing specification tem-
plates when defining the dynamic semantics of a DSL.

Mannadiar and Vangheluwe [28] in their position paper
elaborate on the work by Chen et al. and describe an idea of
a semantic template–a combination of a metamodel template
(i.e., a parametrized metamodel fragment) with its semantic
anchoring (i.e., its model transformation to the ASM formal-
ism). The authors propose to define a DSL as a combination
of such semantic templates, thus automatically constructing
the DSL metamodel and the dynamic semantics specifica-
tion. However, there is no follow-up work and/or proof of
concept for the proposed approach.

In [47] Simko extends the approach of semantic anchor-
ing to denotational specification of the dynamic semantics
of cyber-physical systems (CPS) modeling languages. The
author identifies the following semantic units, typical for
the CPS domain: differential algebraic equations, difference
equations, and finite state machines. Comparing to the FOR-
MULA formalism used in this work, Event-B does not allow
for expressing differential algebraic and difference equa-
tions. Our approach is based on providing an operational

specification of the dynamic semantics of DSLs. In particu-
lar, we specify a DSL dynamic semantics as a solution rather
than requirements (as discussed in Sect. 2.1).

In [36,37] Pedro et al. propose a compositional and incre-
mental approach for prototyping DS(M)Ls, where they focus
on reuse of metamodel fragments (which they call domain
concepts) together with the model transformations that cap-
ture the dynamic semantics of these fragments. A domain
concept is a brick that represents a basic idea that can appear
in one or several DS(M)Ls. A domain concept is defined as
a metamodel, a set of the metamodel elements that can be
parameterized (i.e., replaced by effective parameters), and
a model transformation to a formal executable language (in
their case, to concurrent object-oriented Petri nets, CO-OPN)
that captures the dynamic semantics of this domain concept.
The definition of a DS(M)L consists of the metamodel com-
position and the transformation composition. Themetamodel
composition is an iterative replacement of formal parame-
ters of some domain concept with elements (i.e., classes,
attributes) of anothermetamodel. In thisway, various domain
concepts can be composed with each other or with specific
constructs of the DS(M)L being defined. The corresponding
replacement of parameters (i.e., instantiation) takes place in
the model transformation of the original domain concept.
Moreover, the instantiated transformation is extended with
additional transformation rules that capture a more precise
and more specific semantics of the DS(M)L. As a result, the
transformation language (in their case, ATL) serves as amain
formalism for specifying the dynamic semantics of a DSL.
Moreover, different from Constelle, this approach does not
provide any formal theory behind the instantiation and com-
position of dynamic semantics of constituent building blocks
(in their terms, domain concepts).

A formal theory for composition of the dynamic seman-
tics out of constituent building blocks can allow for reuse of
verification results obtained for these building blocks. This
important result is the main focus of product lines of pro-
gramming languages [12] andmodular monadic meta-theory
(3MT) [13] by Delaware et al. These approaches allow for
reuse of proofs implemented in the Coq proof assistant for
various language features in the denotational semantics of a
(functional) programming language composed out of these
features. In Constelle we employ Event-B generic instantia-
tion and shared event composition to achieve reuse of proof
obligations.

6.2 Composition and reuse of formal specifications

The idea of applying the principles of AOP to the formal
specification of software systems appeared shortly after the
introduction of AOP. In [21] Kellomaki and Mikkonen not
only propose the gradual introduction of aspects of collec-
tive behavior in a specification of reactive distributed system,

123

714 U. Tikhonova

but also describe how such aspects can be stored as generic
templates, allowing for reuse of both design and verification
effort.

Kellomaki and Mikkonen use the DisCo specification
language and in their later studies introduce the Oscid spec-
ification language [19], an experimental variant of DisCo.
An aspect is defined as a superposition step, which refines
an existing specification by introducing new state variables,
invariants, and actions. Comparing to Event-B, the super-
position mechanism resembles shared event composition,
rather than the Event-B refinement. Particularly, superposi-
tion preserves safety properties by construction. To be able to
archive and reuse such a superposition step, the authors turn
it into a template by introducing template parameters and
specifying what behavior these parameters should realize. In
Constelle only static parameters (of a structural interface) can
be used for instantiating a template. In contrast, Kellomaki
and Mikkonen include actions into their template parame-
ters and specify these actions. As a result, an instantiated
template (an aspect) can be imposed (applied) only if the
original specification realizes certain behavior.

Using templates of superposition steps, one can design
a distributed system adding new aspects to it one-by-one,
forming a specification branch. In [20] Kellomaki extends
this approach with the possibility to merge (compose) spec-
ification branches together. Comparing to the table notation
of Constelle, both DisCo and Oscid use the ’…’ symbol as a
weaver notation: to indicatewhere the old code appears in the
new specification. In [16] the Oscid specification language
is applied for specifying and instantiating two (OOP) design
patterns: Observer and Memento. Unfortunately, there is no
follow-up work.

We base our method on the Event-B techniques of generic
instantiation and shared event composition. In [45] Silva and
Butler propose to instantiate chains of refinements of Event-
B machines. Refinement is an Event-B (formal) technique
that allows for gradual introduction of details in an Event-B
specification. A chain of refinements is a sequence of Event-
B machines, where each next machine is a refinement of a
previous one. This technique (potentially) allows for extend-
ing our method to the templates of chains of refinements and,
thus, for the reuse of a system design specified on differ-
ent levels of abstraction (from an overview of the required
behavior to the implementation details).

In [17] Hoang et al. propose a concept of the Event-B
pattern, which is similar to the superposition step of Kel-
lomaki and Mikkonen. An Event-B pattern is a (generic
and/or reusable) refinement step that introduces new details
to the abstract machine of the pattern. An application of
the pattern (i.e., of the instantiated refinement step) requires
syntactical matching the abstract machine of the pattern
with the Event-B machine under construction. The authors
identify the following patterns of communication protocols:

Single Message Communication, Request/Confirm/Reject,
and Asynchronous Multiple Message Communication (with
or without Repetition). Comparing to the approach of Kel-
lomaki andMikkonen (and to Constelle), an Event-B pattern
does not have an explicit description of template parameters,
asHoang et al. use purely the Event-B notation. The syntactic
matching of the pattern is semiautomated. This makes it hard
to reuse patterns in other formalisms, and to capture design of
a specification (i.e., of a system under specification) in terms
of pattern applications (as it is done in Constelle tables).

The ancestor of the Event-B formalism, the B method is
used in [8] to specify (OOP) design patterns and to realize dif-
ferent reuse mechanisms for them. Particularly, instantiation
of a design pattern is implemented in B by the inclusion of
the machine specifying the design pattern and by redefining
(in essence, renaming) its variables. Composition of multiple
designpatterns is achieved through the invocation of the oper-
ations of different patterns in a new (composite) operation
and/or linking ormerging the variables of the patterns. Exten-
sion of a design pattern is realized using the B refinement
mechanism. This study shows that, in principle the design
patterns-based approach can be realized in formal methods
throughproper code conventions, in the samewayas it is done
in software development for general purpose programming
languages. The practice shows that this approach requires
discipline and good understanding of a chosen formalism.

7 Conclusion

In this work, we developed and demonstrated a new method
for defining the dynamic semantics of DSLs. The key point
of our method is an intermediate semantic domain that splits
the semantic mapping from a DSL to an execution platform
(or a specification formalism) into two steps. As such an
intermediate semantic domain we use software design solu-
tions that are typically used in the DSL implementation, i.e.,
concepts that form the horizontal domain of the DSL. Thus,
we define the dynamic semantics of a DSL as a mapping
from the language constructs (forming the vertical domain
of the DSL) to the horizontal concepts. In this way, we do
not propose a (yet another) intermediate language, universal
for defining dynamic semantics of all possible DSLs, but we
rather propose an intermediate step in the definition of the
dynamic semantics of a DSL and support this step with the
corresponding expressive means.

To capture the mapping from the DSL constructs to the
intermediate semantic domain, we use the notation of a table:
the DSL vertical domain is represented in the table rows, the
DSL horizontal domain is represented in the table columns,
and the mapping is represented in their intersections. The
second step of the semantic mapping, from the intermediate

123

Reusable specification templates for defining dynamic semantics of DSLs 715

semantic domain to the specification formalism, is realized
through specification templates.

We implemented this method in the form of the Constelle
language and employed the Event-B formalism as a carrier
for specifying behavior. Constelle applies ideas of generic
programming and aspect-oriented programming to the world
of formal methods and provides a front-end that wraps
the formalism. Specifically, the Constelle-to-Event-B model
transformation automatically generates the corresponding
Event-B specifications from a Constelle model. From this
point of view, the approach of specification templates and the
Constelle language are not restricted to the scope of dynamic
semantics of DSLs and can facilitate application of formal
methods in software development process.

The proposed method requires further evaluation. In par-
ticular, the following research questions should be addressed
in future work. How to identify specification templates and
how reusable are these specification templates across various
application domains? What is the scope of Constelle, i.e.,
what kind of DSLs can be defined using Constelle and spec-
ification templates? How scalable is the proposed approach,
i.e., whether the benefits of applying it to a real (industrial-
size) DSL are worth the effort?

As the first step, we have designed and performed a vali-
dation study on applying Constelle for defining the dynamic
semantics of another DSL by a third party. The validation
study gives valuable insights into pragmatics of the proposed
approach and confirms that defining the dynamic semantics
of a DSL is beneficial and certain design solutions can be

reused in the form of specification templates. The details of
the study setup and the analysis of its results can be found in
our PhD dissertation [50].

Acknowledgements This work would not have been possible with-
out guidance, reviews, and thorough discussions of our supervisor Tim
Willemse (TU/e). We thank our colleagues from the COREF project
(ASMLandTU/e) and especially the project leaderMarkvandenBrand.
We would also like to show our gratitude to Marc Hamilton (Altran) for
sharing very interesting insights into the world of DSL engineering.

Open Access This article is distributed under the terms of the Creative
Commons Attribution 4.0 International License (http://creativecomm
ons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided you give appropriate credit
to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made.

Appendix 1: Event-B specification of the partial
order template

See Figs. 12 and 13.

CONTEXT template partialorder context
SETS

PosetElement

END

Fig. 12 Event-B context for the partial order specification template

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

716 U. Tikhonova

Fig. 13 Event-B machine for
the partial order specification
template

MACHINE template partialorder machine
SEES template partialorder context
VARIABLES

posetBody, posetOrder
INVARIANTS
inv1 : posetBody ⊆ PosetElement

inv2 : posetOrder ∈ posetBody ↔ posetBody

inv3 : ∀x, y ·x → y ∈ posetOrder ⇒ x = y

inv4 : ∀x, y ·x → y ∈ posetOrder ⇒ y → x /∈ posetOrder

inv5 : ∀a, b, c·a → b ∈ posetOrder ∧ b → c ∈ posetOrder ⇒ a → c ∈ posetOrder

EVENTS
Initialisation
begin

act1 : posetBody := ∅

act2 : posetOrder := ∅

end
Event NewPartialOrder =

any poset, order
where
grd1 : poset ⊆ PosetElement
grd2 : order ∈ poset ↔ poset
grd3 : ∀x, y ·x → y ∈ order ⇒ x = y
grd4 : ∀x, y ·x → y ∈ order ⇒ y → x /∈ order
grd5 : ∀a, b, c·a → b ∈ order ∧ b → c ∈ order ⇒ a → c ∈ order
then
act1 : posetBody := poset
act2 : posetOrder := order

end
Event GetMaximalElement =

any maximal
where
grd1 : maximal ∈ posetBody
grd2 : ∀x·x ∈ posetBody ∧ x = maximal ⇒ maximal → x /∈ posetOrder
then

skip
end

Event RemoveElement =
any element, elementRelations
where
grd1 : element ∈ PosetElement
grd2 : elementRelations = {x, y ·x → y ∈ posetOrder ∧ (x = element ∨ y = element)|x → y}
then
act1 : posetBody := posetBody \ {element}
act2 : posetOrder := posetOrder \ elementRelations

end
END

123

Reusable specification templates for defining dynamic semantics of DSLs 717

Appendix 2:Event-B specification generated for the
semantic module Robotic Arm Parallel

See Figs. 14 and 15.

CONTEXT roboticarm structure context
SETS

Actions
CONSTANTS

HandActions

ArmActions

TURN LEFT

TURN RIGHT

MOV E UP

MOV E DOWN

GRAB

RELEASE

ROTATE LEFT

ROTATE RIGHT

AXIOMS
axm1 : partition(Actions,ArmActions,HandActions)
axm2 : partition(ArmActions, {TURN LEFT}, {MOV E UP},

{TURN RIGHT}, {MOV E DOWN})
axm3 : partition(HandActions, {GRAB}, {RELEASE},

{ROTATE LEFT}, {ROTATE RIGHT})
END

Fig. 14 Event-B context for the robotic arm DSL

123

718 U. Tikhonova

Fig. 15 Event-B machine for
the semantic module robotic
arm parallel (page 1)

MACHINE RoboticArmParallel machine
SEES roboticarm structure context
VARIABLES

driver1 queue, driver2 queue, distributor request body
INVARIANTS
distributor inv1 : distributor request body ∈ P(Actions)
driver2 inv1 : driver2 queue ∈ N→ HandActions

driver1 inv1 : driver1 queue ∈ N→ ArmActions

EVENTS
Initialisation
begin

driver1 act1 : driver1 queue := ∅
driver2 act1 : driver2 queue := ∅
distributor act1 : distributor request body := ∅

end
Event taskStm =

any task
where
distributor grd1 : task ∈ P(Actions)
distributor grd2 : distributor request body = ∅
then
distributor act1 : distributor request body := task

end
Event handActionStm =

any driver2 index, action
where
distributor grd1 : action ∈ distributor request body
driver2 grd1 : action ∈ HandActions
driver2 grd2 : driver2 index ∈ N
driver2 grd3 : driver2 queue = ∅⇒ (∀i·i ∈ dom(driver2 queue) ⇒ driver2 index > i)
driver2 grd4 : {driver2 index → action} ∈ N→ HandActions
driver2 grd5 : driver2 index /∈ dom(driver2 queue)
then
distributor act1 : distributor request body := distributor request body \ {action}
driver2 act1 : driver2 queue := driver2 queue ∪ {driver2 index → action}

end
Event armActionStm =

any driver1 index, action
where
distributor grd1 : action ∈ distributor request body
driver1 grd1 : action ∈ ArmActions
driver1 grd2 : driver1 index ∈ N
driver1 grd3 : driver1 queue = ∅⇒ (∀i·i ∈ dom(driver1 queue) ⇒ driver1 index > i)
driver1 grd4 : {driver1 index → action} ∈ N→ ArmActions
driver1 grd5 : driver1 index /∈ dom(driver1 queue)
then
distributor act1 : distributor request body := distributor request body \ {action}
driver1 act1 : driver1 queue := driver1 queue ∪ {driver1 index → action}

end
Event executeArm =

any driver1 index, action
where
driver1 grd1 : driver1 index → action ∈ driver1 queue
driver1 grd2 : ∀i·i ∈ dom(driver1 queue) ⇒ driver1 index ≤ i

then
driver1 act1 : driver1 queue := driver1 queue \ {driver1 index → action}

end
Event executeHand =

any driver2 index, action
where
driver2 grd1 : driver2 index → action ∈ driver2 queue
driver2 grd2 : ∀i·i ∈ dom(driver2 queue) ⇒ driver2 index ≤ i
then
driver2 act1 : driver2 queue := driver2 queue \ {driver2 index → action}

end
END

123

Reusable specification templates for defining dynamic semantics of DSLs 719

References

1. Abrial, J.-R.: The B-book: Assigning Programs toMeanings. Cam-
bridge University Press, Cambridge (1996)

2. Abrial, J.-R.: Modeling in Event-B: System and Software Engi-
neering, vol. 1. Cambridge Univ Press, Cambridge (2010)

3. Abrial, J.-R., Butler, M., Hallerstede, S., Hoang, T.S., Mehta, F.,
Voisin, L.: Rodin: an open toolset for modelling and reasoning in
event-B. Int. J. Softw. Tools Technol. Transf. (STTT) 12(6), 447–
466 (2010)

4. Abrial, J.-R., Hallerstede, S.: Refinement, decomposition, and
instantiation of discrete models: application to event-B. Fundam.
Inform. 77(1–2), 1–28 (2007)

5. Aho, A., Sethi, R., Ullman, J.: Compilers: Principles, Techniques,
and Tools. Addison-Wesley, Amsterdam (1986)

6. Arbab, F.: Proper Protocol. Springer, Berlin (2016)
7. Berg, H., Møller-Pedersen, B.: Type-safe symmetric composition

of metamodels using templates. Syst. Anal. Model. Theory Pract.
7744, 160–178 (2013)

8. Blazy, S., Gervais, F., Laleau, R.: Reuse of specification patterns
with the B method. In: ZB 2003: Formal Specification and Devel-
opment in Z and B, volume 2651 of Lecture Notes in Computer
Science, pp. 40–57. Springer, Berlin (2003)

9. Chen, K., Porter, J., Sztipanovits, J., Neema, S.: Compositional
specification of behavioral semantics for domain-specificmodeling
languages. Int. J. Semant. Comput. 3, 31–56 (2009)

10. Chen, K., Sztipanovits, J., Abdelwalhed, S., Jackson, E.: Semantic
anchoring with model transformations. European Conference on
Model Driven Architecture—Foundations and Applications, pp.
115–129 (2005)

11. Dagand, P.-E., Baumann, A., Roscoe, T.: Filet-o-fish: practical and
dependable domain-specific languages for OS development. In:
Proceedings of the 5th Workshop on Programming Languages and
Operating Systems, PLOS ’09, pp. 5:1–5:5. ACM (2009)

12. Delaware, B., Cook,W.R., Batory, D.S.: Product lines of theorems.
In: Proceedings of the 26thAnnualACMSIGPLANConference on
Object-Oriented Programming, Systems, Languages, and Applica-
tions, OOPSLA, pp. 595–608 (2011)

13. Delaware, B. Keuchel, S., Schrijvers, T., Oliveira, B.C. d.S.:
Modular monadic meta-theory. In: ACM SIGPLAN International
Conference on Functional Programming, ICFP’13, pp. 319–330
(2013)

14. Deursen, A.V., Klint, P., Visser, J.: domain-specific languages: an
annotated bibliography. ACM Sigplan Not. 35, 26–36 (2000)

15. Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Patterns:
Elements of Reusable Object-Oriented Software. AddisonWesley,
Amsterdam (1994)

16. Helin, J., Kellomäki, P.,Mikkonen, T.: Patterns of collective behav-
ior in Ocsid. In: Taibi, T. (eds.) Design Pattern Formalization
Techniques. IGI Publishing, Hershey, pp. 73–93

17. Hoang, T.S., Fürst, A., Abrial, J.: Event-b patterns and their tool
support. Softw. Syst. Model. 12(2), 229–244 (2013)

18. Hoare, C.A.R.: Communicating Sequential Processes. Prentice-
Hall, Upper Saddle River (1985)

19. Kellomäki, P.: A formal basis for aspect-oriented specificationwith
superposition. In: The FOALWorkshop on Foundations of Aspect-
Oriented Languages, pp. 27–32 (2002)

20. Kellomäki, P.: Composing distributed systems from reusable
aspects of behavior. In: Distributed Computing Systems Work-
shops, IEEE Press, pp. 481–486 (2002)

21. Kellomäki, P., Mikkonen, T.: Design templates for collective
behavior. In: ECOOP 14th European Conference on Object-
Oriented Programming, pp. 277–295 (2000)

22. Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C., Lopes, C.V.,
Loingtier, J., Irwin, J.: Aspect-oriented programming. In: ECOOP,
Springer-Verlag LNCS, pp. 220–242 (1997)

23. Kienzle, J., Al Abed, W., Klein, J.: Aspect-oriented multi-view
modeling. In: Proceedings of the 8th ACM International Confer-
ence on Aspect-oriented Software Development, AOSD ’09, pp.
87–98 (2009)

24. Kleppe, A.: Software Language Engineering: Creating Domain-
Specific Languages using Metamodels. Addison-Wesley, Boston
(2008)

25. Kmieć, P.: The Unofficial LEGO Technic Builder’s Guide. No
Starch Press, San Francisco (2013)

26. Ladenberger, L., Bendisposto, J., Leuschel, M.: Visualising event-
B models with B-motion studio. In: Formal Methods for Industrial
Critical Systems, FMICS 2009, pp. 202–204 (2009)

27. Levin, M.Y., Pierce, B.C.: Tinkertype: a language for playing with
formal systems. J. Funct. Program. 13(2), 295–316 (2003)

28. Mannadiar, R., Vangheluwe, H.: Domain-specific Engineering of
Domain-specific Languages. In: Proceedings of the 10thWorkshop
on Domain-Specific Modeling, DSM ’10, pp. 11:1–11:6. ACM
(2010)

29. Meyers,B.,Cicchetti,A.,Guerra, E., deLara, J.:Composing textual
modelling languages in practice. In: Proceedings of the 6th Interna-
tional Workshop on Multi-Paradigm Modeling, MPM@MoDELS
2012, Innsbruck, Austria, pp. 31–36 (2012)

30. Mosses, P.: Theory and practice of action semantics. In: Penczek,
W., Zalas, A. (eds.) Mathematical Foundations of Computer Sci-
ence 1996, vol. 1113 of Lecture Notes in Computer Science, pp.
37–61. Springer, Berlin (1996)

31. Mosses, P.: Modular structural operational semantics. J. Log.
Algebr. Progr. 60–61, 195–228 (2004)

32. Musser, D., Stepanov, A.A.: Generic programming. In: Gianni,
P.M. (ed.) Symbolic and Algebraic Computation: ISSAC 88, pp.
13–25. Springer, Berlin (1988)

33. Nielson, H.R., Nielson, F.: Semantics with Applications: A Formal
Introduction. Wiley, London (1992)

34. Nipkow,T.,Klein,G.: Concrete Semantics. Springer, Berlin (2014)
35. OMG. Meta Object Facility (MOF) 2.0 Query/View/Transforma-

tion Specification, February 2015. Version 1.2. (2015)
36. Pedro, L.: A systematic language engineering approach for pro-

totyping domain specific modelling languages. Ph.D. Dissertation
(2009)

37. Pedro, L., Amaral, V., Buchs, D.: Foundations for a domain spe-
cific modeling language prototyping environment: a compositional
approach. In: Proceedings of the 8th OOPSLA ACM-SIGPLAN
WorkshoponDomain-SpecificModeling (DSM), pp. 20–27 (2008)

38. Pedro, L., Risoldi, M., Buchs, D., Barroca, B., Amaral, V.: Com-
posing visual syntax for domain specific languages. In: Human-
Computer Interaction. Novel Interaction Methods and Techniques,
13th International Conference, HCI International 2009, San Diego,
Proceedings, Part II, pp. 889–898 (2009)

39. Plotkin, G.D.: A structural approach to operational semantics. J.
Log. Algebr. Progr. 60–61, 17–139 (2004)

40. Ratiu, D., Voelter, M., Molotnikov, Z., Schaetz, B.: Implementing
modular domain specific languages and analyses. In: Proceedings
of the Workshop on Model-Driven Engineering, Verification and
Validation, pp 35–40 (2012)

41. Rosu,G., Serbanuta, T.: An overview of theK semantic framework.
J. Log. Algebr. Progr. 79(6), 397–434 (2010)

42. Schäfer, C. Kuhn, T., Trapp, M.: A pattern-based approach to DSL
development. In: Proceedings of the Compilation of the Co-located
Workshops on DSM’11, TMC’11, AGERE!’11, AOOPES’11,
NEAT’11, and VMIL’11, SPLASH ’11 Workshops, pp. 39–46.
ACM (2011)

43. Scheidgen, M., Fischer, J.: Human comprehensible and machine
processable specifications of operational semantics. In: Model

123

720 U. Tikhonova

Driven Architecture- Foundations and Applications, vol. 4530 of
Lecture Notes in Computer Science, pp. 157–171. Springer, Berlin
(2007)

44. Silva, R.: Supporting Development of Event-B Models. Ph.D. the-
sis, University of Southampton (2012)

45. Silva, R., Butler, M.: Supporting reuse of event-B developments
through generic instantiation. In: Breitman, K., Cavalcanti, A.
(eds.) 11th International Conference on Formal EngineeringMeth-
ods, ICFEM, vol. 5885 of Lecture Notes in Computer Science, pp.
466–484. Springer, Berlin (2009)

46. Silva, R., Butler, M.: Shared event composition/decomposition in
event-B. In:Aichernig,B.K., deBoer, F.S., Bonsangue,M.M. (eds.)
Formal Methods for Components and Objects (FMCO), pp. 122–
141. Springer, Berlin (2010)

47. Simko, G.: Formal semantic specification of domain-specific
modeling languages for cyber-physical systems. Ph.d. disserta-
tion. Chapter 6: Reusable Semantic Units for Formalizing the
Denotational Semantics of CPS Modeling Languages, pp. 59–75.
Vanderbilt University (2014)

48. Snook, C., Fritz, F., Illisaov, A.: An EMF framework for event-B.
In: Workshop on Tool Building in Formal Methods—ABZ Con-
ference (2010)

49. Stappers, F.P.M., Weber, S., Reniers, M.A., Andova, S., Nagy, I.:
Formalizing a domain specific language using SOS: an industrial
case study. In: Software Language Engineering—4th International
Conference, SLE 2011, Braga, Portugal, July 3-4, 2011, Revised
Selected Papers, pp. 223–242 (2011)

50. Tikhonova, U.: Engineering the dynamic semantics of domain spe-
cific languages. Ph.d. dissertation

51. Tikhonova, U., Manders, M., Boudewijns, R.: Visualization of for-
mal specifications for understanding and debugging an industrial
DSL. In: Human Oriented Formal Methods (HOFM), STAFWork-
shops, pp. 179–195 (2016)

52. Tikhonova, U., Manders, M., van den Brand, M.G.J., Andova, S.,
Verhoeff, T.: Applying model transformation and event-b for spec-
ifying an industrial DSL. In: Boulanger, F., Famelis, M., Ratiu, D.
(eds.) Proceedings of the 10th International Workshop on Model
Driven Engineering, Verification and Validation, pp. 41–50 (2013)

53. Tikhonova, U., Willemse, T.: Designing and describing QVTo
model transformations. In: ICSOFT-EA 2015—Proceedings of the
10th International Conference on Software Engineering andAppli-
cations, Colmar, Alsace, France, pp. 401–406 (2015)

54. van Amstel, M., van den Brand, M., Engelen, L.: An exercise in
iterative domain-specific language design. In: Proceedings of the
Joint ERCIMWorkshop on Software Evolution (EVOL) and Inter-
national Workshop on Principles of Software Evolution (IWPSE),
IWPSE-EVOL ’10, pp. 48–57. ACM, New York (2010)

55. Vergu, V. A., Neron, P., Visser, E.: DynSem: a DSL for dynamic
semantics specification. In: 26th International Conference on
Rewriting Techniques and Applications, RTA, pp. 365–378 (2015)

56. Watt, D. A., Muffy, T.: Programming language syntax and seman-
tics. Prentice Hall International Series in Computer Science (1991)

Ulyana Tikhonova is finaliz-
ing her Ph.D. study at the
Model-Driven Software Engi-
neering group of Eindhoven
University of Technology. Her
research project was carried out
in close collaboration with soft-
ware engineers of ASML who
develop and apply DSLs for con-
trolling lithography machines.
Before joining TU/e Ulyana
graduated from St. Petersburg
State Polytechnical University
and had been working in a num-
ber of companies as a software

developer. Her research area is software engineering, with the focus
on model-driven engineering, domain-specific languages, and human-
oriented formal methods. Ulyana is motivated to transfer research
results from the academic world to the everyday practice of software
engineers working in industry.

123

	Reusable specification templates for defining dynamic semantics of DSLs
	Abstract
	1 Introduction and motivation
	2 Motivation and introduction of the proposed approach
	2.1 Dynamic semantics of a DSL and its formal definition
	2.2 Reusable specification templates
	2.3 Specification templates for composing DSL semantics

	3 The Constelle language
	3.1 The Event-B formalism
	3.2 Metamodel of a specification template
	3.3 Design of the Constelle language
	3.4 Metamodel of the Constelle language

	4 Semantics of the Constelle language
	4.1 Model transformations from Constelle to Event-B
	4.2 Substitution
	4.3 Composition

	5 Implementation and results
	5.1 Implementation of the approach
	5.2 Results
	5.3 Future work

	6 Related work
	6.1 Reusable building blocks for specifying dynamic semantics of DSLs
	6.2 Composition and reuse of formal specifications

	7 Conclusion
	Acknowledgements
	Appendix 1: Event-B specification of the partial order template
	Appendix 2:Event-B specification generated for the semantic module Robotic Arm Parallel
	References

