Softw Syst Model (2018) 17:479-508
https://doi.org/10.1007/s10270-017-0585-x

@ CrossMark

THEME SECTION PAPER

Using UML/MARTE to support performance tuning
and stress testing in real-time systems

Stefano Di Alesio!® - Sagar Sen!

Received: 7 July 2015 / Revised: 12 August 2016 / Accepted: 19 January 2017 / Published online: 10 February 2017

© Springer-Verlag Berlin Heidelberg 2017

Abstract Real-time embedded systems (RTESs) operating
in safety-critical domains have to satisfy strict performance
requirements in terms of task deadlines, response time, and
CPU usage. Two of the main factors affecting the satisfaction
of these requirements are the configuration parameters reg-
ulating how the system interacts with hardware devices, and
the external events triggering the system tasks. In particular, it
isnecessary to carefully tune the parameters in order to ensure
a satisfactory trade-off between responsiveness and usage of
computational resources, and also to stress test the system
with worst-case inputs likely to violate the requirements.
Performance tuning and stress testing are usually manual,
time-consuming, and error-prone processes, because the sys-
tem parameters and input values range in a large domain, and
their impact over performance is hard to predict without exe-
cuting the system. In this paper, we provide an approach,
based on UML/MARTE, to support the generation of system
configurations predicted to achieve a satisfactory trade-off
between response time and CPU usage, and stress test cases
that push the system tasks to violate their deadlines. First,
we devise a conceptual model that specifies the abstractions
required for analyzing task deadlines, response time, and
CPU usage, and provide a mapping between these abstrac-
tions and UML/MARTE. Then, we prune the UML/MARTE
metamodel to only contain a purpose-specific subset of enti-

Communicated by Dr. Kai Sachs and Catalina Llado.

B Stefano Di Alesio
stefano @simula.no

Sagar Sen
sagar @simula.no

Certus Centre for Software Verification and Validation,
Simula Research Laboratory, P.O. Box 134, 1325 Lysaker,
Norway

ties needed to support performance tuning and stress testing.
The pruned version is a supertype of UML/MARTE, which
ensures that all instances of the pruned metamodel are also
instances of UML/MARTE. Finally, we cast the generation
of configurations and stress test cases as two constrained opti-
mization problems (COPs) over our conceptual model. The
input data for these COPs in automatically generated via a
model-to-text (M2T) transformation from models specified
in the pruned UML/MARTE metamodel to the Optimiza-
tion Programming Language. We validate our approach in a
safety-critical RTES from the maritime and energy domain,
showing that (1) our conceptual model can be applied in an
industrial setting with reasonable effort, and (2) the optimiza-
tion problems effectively identify configurations predicted to
minimize response time and CPU usage, and stress test cases
that maximize deadline misses. Based on our experience,
we highlight challenges and potential issues to be aware of
when using UML/MARTE to support performance tuning
and stress testing in an industrial context.

Keywords UML/MARTE - Real-time systems - Safety-
critical systems - Performance tuning - Stress testing -
Constrained optimization

1 Introduction

Failures in safety-critical systems, such as those in the
energy, transport, and healthcare domains, could result in
catastrophic consequences [1]. Therefore, the safety-related
software components of these systems are usually subject to
strict performance requirements, involving hard real time,
soft real time, and resource utilization constraints [2]. In
particular, three performance requirements that are com-
monplace in safety-critical systems concern fask deadlines,

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s10270-017-0585-x&domain=pdf
http://orcid.org/0000-0002-4627-8011

480

S. Di Alesio, S. Sen

response time, and CPU usage [3]. Specifically, task dead-
lines state that the system tasks should always terminate
before a given completion time, entailing that even a single
deadline miss severely compromises the system operational
safety. Response time requirements state that the system
should react to external inputs within a specified time.
Finally, CPU usage constraints state that the system should
always keep a given percentage of free CPU time, to avoid
that high computational load prevents the system to timely
respond to safety-critical alarms.

However, safety-critical systems are progressively relying
on real-time embedded systems (RTESs), where software
applications interact with the environment through sensors
and actuators [4]. In large and complex RTESs, the soft-
ware components often communicate with a large number
of different devices, whose interface is provided by soft-
ware drivers. In particular, one of the main goals of device
drivers is to provide a smooth data transfer between hardware
devices and software components. This is especially true in
safety-critical systems, where external data should always
be processed in brief time to guarantee a prompt reaction
to critical events [5]. Therefore, device drivers are usually
designed as concurrent applications, whose task timing has
to be configured in order to correctly operate with the spe-
cific devices connected. Nonetheless, tuning the timing of
driver tasks without violating constraints on task deadlines,
response time, and CPU usage, is complicated by two main
factors [6]. First, the drivers parameters related to tempo-
ral properties, such as task delay times, offsets, and periods,
range in a large domain of values, typically expressed in mil-
liseconds. Second, the impact specific parameter values have
over the system performance is hard to evaluate without exe-
cuting the system. This is because, in concurrent systems
where tasks depend on each other, a minimal variation in
a single task timing may trigger unpredictable interactions
between other tasks.

Furthermore, device drivers are often subject to soft-
ware safety certification, whose purpose is to assure that
the system is deemed safe for operation. Widely used safety
standards, such as IEC 61508 and IEC 26262, state that
performance testing is highly recommended for the highest
Safety Integrity Levels (SIL) [7]. In particular, these stan-
dards remark the importance of stress testing, whose goal is
to identify scenarios that exercise a system in a way to either
violate performance requirements, or be as close as possible
to doing so [8]. These worst-case scenarios are usually char-
acterized in terms of reproducible environmental conditions,
such as external events triggering the system tasks. However,
the timing of these events varies in a large domain depend-
ing on the environment state, and can never be fully predicted
prior to system execution. For this reason, stress-testing task
deadlines, response time, and CPU usage, poses challenges
similar to those of performance tuning.

@ Springer

As a consequence, it is often practice in industry to carry
out performance tuning and stress testing by relying only
on the engineers expertise and knowledge of the system.
This renders tuning drivers parameters and identifying worst-
case scenarios significantly time-consuming and error-prone
processes [9]. Nevertheless, research in this direction states
the benefits of model-based approaches performing software
performance analysis at early development stages [10]. In
particular, recent approaches integrate performance analysis
and verification in model-driven engineering (MDE) devel-
opment processes [11], applying UML/MARTE in industrial
settings [12]. However, MARTE is a very large profile, and
its effectiveness in industrial projects is subject to the avail-
ability of guidelines targeting specific needs [13].

Traditionally, performance verification has mostly been
addressed through model checking approaches [14], which
require complex formal modeling of the system that often
leads to the well-known state explosion problem [15]. To
overcome these practical limitations, approaches based on
metaheuristic search have been proposed for both identi-
fying configuration parameters likely to satisfy CPU usage
requirements [16], and to stress test task deadlines of real-
time systems [17]. However, our previous experiments [18]
suggest that complete search strategies, such as those
based on Constraint Programming (CP), can potentially
be more effective than Genetic Algorithms (GA) in find-
ing solutions closer to the global optimum, and are hence
worth investigating for performance tuning and stress test-
ing.

In this paper, we propose a methodology that combines
UML/MARTE modeling and constraint programming to
support performance tuning and stress testing of RTESs.
First, we provide a conceptual model that captures, indepen-
dently from any modeling language, the abstractions required
to support performance tuning and stress testing of task
deadlines, response time, and CPU usage. Then, we map
our conceptual model to UML/MARTE, effectively bridg-
ing the gap between the complexity of the standard and
the more focused scope of performance tuning and stress
testing. The subset of UML/MARTE mapped to out con-
ceptual model contains stereotypes and stereotype properties
extending entities in UML class, deployment, and sequence
diagrams, which are popular for modeling concurrent sys-
tems such as RTESs, and intuitive to most developers [19].
The conceptual model and its mapping to UML/MARTE
enables casting (1) performance tuning and (2) stress test-
ing as constraint optimization problems (COPs) over our
conceptual model. Specifically, the COPs aim at identify-
ing (1) scenarios characterized by tunable task parameters,
i.e., configurations, where tasks are as far as possible from
their deadlines, and exhibit low response time and CPU
usage [20], and, (2) scenarios characterized by external
events, i.e., stress test cases, where tasks are as likely as pos-

Using UML/MARTE to support performance tuning and stress testing in real-time systems 481

sible to violate their requirements on task deadlines, response
time and CPU usage [21]. We use a metamodel pruning
approach [22] on the UML/MARTE metamodel, in order to
obtain a smaller metamodel that is also a super type [23] of
UML/MARTE. This implies that all instances of the pruned
metamodel are also instances of the original UML/MARTE
metamodel and all transformations developed for the pruned
UML/MARTE metamodel, such as the mapping from our
conceptual model, are also reusable for instances of the
original metamodel [24]. This pruned metamodel forms the
basis to define a mapping between the UML/MARTE stereo-
types and stereotype properties required for our analysis,
and the Optimization Programming Language (OPL) [25], a
widely used language for specifying COPs. Specifically, OPL
separates the definition of the model logic, i.e., constants,
variables, constraints and objective functions, from the input
data. In particular, we use OPL to encapsulate the data needed
to automate the search for system configuration and stress
test cases. The mapping between the pruned UML/MARTE
and OPL is implemented through a model-to-text (M2T)
transformation in Acceleo, an open-source implementation
of the OMG MOF model-to-text language (MTL) stan-
dard. We validate our modeling approach on a RTES from
the maritime and energy domain concerning safety-critical
device drivers, showing that our modeling guidelines can
be applied in an industrial setting with reasonable over-
head. In particular, we report results from previous work
showing that the COPs enabled by our conceptual model
effectively find configurations satisfying, and stress test cases
violating the system performance requirements. Finally, we
discuss our experience on applying UML/MARTE for per-
formance tuning and stress testing, outlining challenges and
potential issues that practitioners may face in industrial con-
texts.

Contributions of this paper The contributions of this paper
build upon our previous work in the area of performance
tuning and stress testing. Specifically, we initially consid-
ered the problem of generating stress test cases characterized
by task arrival times that maximized deadline misses [26],
response time, and CPU Usage [27]. In particular, we devel-
oped an early version of the conceptual model for the
purpose of supporting stress testing of CPU usage require-
ments in RTESs [27]. Then, we compared our constraint-
based approach with metaheuristic search techniques [18],
improving the data structures of our model [21]. We illus-
trated how a combination of constraint programming and
genetic algorithms is more likely to scale to large sys-
tems [28], and we finally focused on generating system
configurations characterized by task delay times predicted
to satisfy the system performance requirements [20]. Specif-
ically, we summarize the contributions of this paper as
follows:

1. We revise the first version of our conceptual model and
its mapping to UML/MARTE [27] to include support for
both performance tuning and stress testing.

2. We prune the UML/MARTE metamodel to a smaller one
containing only 26 concepts. This pruned metamodel is a
subset, and supertype of UML/MARTE. The model type
matching ensures that all instances of the pruned version
are also valid UML/MARTE instances, and all mappings
on the pruned metamodel are also correct mappings for
the original UML/MARTE profile.

3. Wedevelop amapping between the pruned UML/MARTE
metamodel and OPL. This mapping is implemented
through a model-to-text transformation in Acceleo, and
is a significant step toward the full automation of our
approach for performance tuning and stress testing.

4. We highlight our experiences and lessons learned toward
a UML/MARTE framework for performance tuning and
stress testing. In particular, we discuss on the need of
methodologies building on UML/MARTE, and point out
potential issues in the definition of the metamodel that
could render UML/MARTE models potentially hard to
understand.

Structure of the paper This paper is structured as follows. In
Sect. 2 we introduce our motivating case study, detailing the
industrial context and the challenges posed by developing
safety-critical I/O drivers. We discuss related model-based
approaches for software performance tuning and stress test-
ing in Sect. 3. We initially present an overview of our
approach for performance tuning and stress testing in Sect. 4,
introducing our COP for the generation of configurations and
stress test cases predicted to satisfy and violate performance
requirements, respectively. We present the contributions of
the paper, detailing our modeling choices in Sect. 5 and sum-
marize past validation results in Sect. 6. Finally, we report
our experience on using UML/MARTE in an industrial con-
text, together with potential alternatives and limitations of
our approach in Sect. 7. We conclude the paper in Sect. 8.

2 Motivating case study

The main motivation behind our work originates from a case
study in the maritime and energy domain concerning a fire
and gas monitoring System (FMS) in oversea oil extraction
platforms. The FMS is developed by Kongsberg Maritime
(KM),! a leading company in the production of systems
for positioning, surveying, navigation, and automation to
merchant vessels and offshore installations. The goal of the
system is to monitor potential gas leaks, and trigger an alarm
in case a fire is detected. The system monitors and displays to

! http://www.km.kongsberg.com.

@ Springer

http://www.km.kongsberg.com

482

S. Di Alesio, S. Sen

(a) (b) (‘External Hardware) (Drivers (" Control Modules
{" —————— T ———— —— [===== ~
Sensor: s; (()) . I
Protocol:
Cvtermal Hardimare) I Sensor: s, (()) @ [n":':::efllﬁ ﬂ <: |
External Hardware l Protocol:p, i ——) Module:m, [|
(S s+A s) | I I e <,
Drivers Control Modules

(‘I)) ((I)) @ @ |:> (SW-HW Interface) (Application Logic) {" ______ 1T — — — —) A =t \l

— o — Sensor:s; ((=)] — .
shome & DDZD | =9 || | o)

—_— | @ Protocol: z.’lﬁ n..ﬂ
Human Operators |=> : Actuator: a; g A nstence:, § 1 IV] [<3 |
(Engineers) <:| | T l Fiteeettin, L‘ —_— Module:m, [|
o0 0o ~100 Drivers * ~5 kLoC ~5000 Modules * ~1 kLoC) | ~———— — - F — iamtanl Tl e — =4
-3 - . et — — ., — | — ——— —— N
[Real Time Operating System] : |:> Driver: d, 3T I
(VXWorks) | acluatonla @ Protocol: pzﬁ n...u |:> Module: m; [—7]
= Ripiecoin <: Instance: iz Ul 1 <: |
[Computing Hardware] l ________ L —— | = ”)
(Tri-core Processor) _ J & J _ J

Fig. 1 Description of the fire and gas monitoring system (FMS). a Architecture of the FMS. b An example showing three communication scenarios

in the FMS

human operators data coming from smoke/heat detectors, and
gas flow sensors. When the system receives critical data from
the hardware sensors, it automatically triggers actuators, such
as fire sprinklers and audio/visual alarms. Technicians con-
stantly monitor the system, and can also directly interact with
it, for instance to manually tune operational parameters or
control events raised by incoming data. The FMS software
architecture is shown in Fig. 1.

The software part of the system consists of drivers and
control modules. Drivers implement /O communication
between the system and the external environment, such as
hardware sensors, actuators, and human operators. Control
modules implement the application logic of the FMS, i.e.,
they process data coming from the environment and accord-
ingly decide the operations to perform. Drivers and control
modules are the main software components of the FMS,
and run on a Real-Time Operating System (RTOS), namely
VxWorks,? that is configured with a fixed-priority preemp-
tive scheduling policy, where task priorities are statically
defined as part of system design. VxWorks is installed on
a tri-core computing platform. This architectural design is
common in many industry sectors relying on embedded sys-
tems [29]. The whole FMS consists of approximately 5000
control modules and 500 sensors and actuators that com-
municate with the system through more than 100 different
drivers. Drivers and control modules have an approximate
size of 5 and 1 thousands lines of C/C++ source code (kLLoC)
each.

In typical FMS operating scenarios, drivers communicate
externally with sensors and/or actuators, and communicate
internally with control modules. To cope with the large num-
ber of external hardware devices, the system runs in parallel
several instances of each driver. Moreover, the variety of
sensors and actuators built by different vendors motivates

2 http://www.windriver.com/products/vxworks.

@ Springer

the need for having several types of drivers. Indeed, each
FMS driver implements a specific communication protocol,
and hence communicates only with sensors and actuators
that implement the same protocol. Figure 1b shows an a
example of three communication scenarios in the FMS, rep-
resented by a dashed rectangle. In the scenario at the top,
the instance i1 of driver dj, which implements the proto-
col pi, communicates with the sensors s; and s and the
control modules m; and m5. In the scenario at the center,
the instance i» of d; communicates with the sensor s3, the
actuator a, and the modules m and m,. In the scenario at
the bottom, the instance i3 that runs the driver d, communi-
cates with the actuator a; and the module m3. Note that, in
each scenario, the driver implements the same communica-
tion protocol of the sensors and actuators involved. The key
entities of the FMS which are relevant to our study are shown
in Fig. 2.

Drivers constitute the most critical part of the FMS.
Indeed, one of the main complexity factors in drivers is
that they are meant to bridge the timing discrepancies
between hardware devices and software controller mod-
ules. Hence, their design typically consists of concurrent
tasks that communicate asynchronously to smooth the data
transfer between hardware and software components. There-
fore, drivers are subject to strict requirements to ensure that
their flexibility does not come at the cost of performance.
Specifically, in each FMS driver (1) no task should miss
its deadline, (2) the response time should be <1s, and (3)
the CPU usage should be below 20%. Note that the FMS
is a hard real-time system, for which missing even a sin-
gle deadline severely threatens the system safety. For this
reason, the FMS cannot have fault tolerance and reconfigu-
ration mechanisms with respect to these requirements, as it
often happens in firm and soft-real-time systems [30]. The
constraints on task deadlines, response time, and CPU usage

http://www.windriver.com/products/vxworks

Using UML/MARTE to support performance tuning and stress testing in real-time systems

483

+scenarioComponent

CommunicationScenario

+scenarioModule

4
HardwareComponent

+externalCommuncation

+scenarioDriver

q =
1 +internalCommunication

+componentProtocol: CommunicationProtocol | 1..*

/\ /\

1

Driverlnstance

ControlModule

Driver «enumeration»

+driverProtocol: CommunicationProtocol

CommunicationProtocol

Fig. 2 A class diagram representing the key entities in the fire and gas monitoring system (FMS)

are stated in the FMS Requirements Specification Docu-
ment.

Three important context factors in the FMS case study
influence the definition of our approach to generate system
configurations and stress test cases.

1. Different instances of a given driver are independent, in
the sense that they do not communicate with one another
and do not share memory.

2. The purpose of the constraint on CPU usage is to enable
engineers to estimate the number of driver instances of
a given monitoring application that can be deployed on
a CPU. These constraints express bounds on the amount
of CPU time required by one driver instance. Therefore,
in this paper we focus on individual driver instances. The
independence of the drivers (first factor above) is the key
for being able to localize CPU usage analysis to individ-
ual instances in a sound manner.

3. The drivers are not memory-bound, i.e., task deadlines,
response time, and CPU usage, are not significantly
affected by activities such as disk I/O and garbage collec-
tion. To ensure this, KM engineers over-approximates the
maximum memory required for each driver instance by
multiplying the number of hardware devices connected to
the driver instance and the maximum size of data sent by
each device. Execution profiles indicate that the drivers
are extremely unlikely to exceed this limit during their
lifetime.

Drivers in the FMS share the same design pattern, where
periodic and aperiodic tasks communicate asynchronously
through buffers. There exist two major types of driver imple-
mentations, one with four aperiodic tasks (Sect. 2.1), and
another with a singular task consisting of four activities in an

infinite loop (Sect. 2.2).3 However, regardless of the imple-
mentation, all the drivers have to satisfy the same perfor-
mance requirements. Nonetheless, the real-time properties
determining whether or not the performance requirements
are satisfied at runtime closely depend on the implementa-
tion used.

2.1 Implementation 1: Data transfer with one singular
task and four activities

The first implementation of the FMS drivers consists of three
tasks communicating through three buffers. More precisely,
in this implementation a generic driver consists of:

— Three communication buffers, namely BoxIn, Queue, and
BoxOut. These buffers serve as temporary storage loca-
tions for the data transiting from the hardware devices to
the control modules. Moreover, the buffers have a fixed
capacity, and are accessed by software tasks with mutual
exclusion, i.e., no two task can simultaneously access a
buffer. BoxIn and BoxOut contain formatted data coming
from the external hardware and going toward the control
modules, respectively. Queue contains a priority-ordered
list of commands extracted from incoming data, that have
to be forwarded to the control modules.

— Two periodic tasks, namely PullData and PushData.
These tasks are periodically activated by a scan signal,
and transfer data from the hardware sensors, and to the
control modules respectively.

— One singular task, namely IODispatch, enclosing four
activities in an infinite loop. The activities read from

3 Note that the scheduling theory defines as singular a task which is

executed only once during the system execution, and an activity as a
sequence of operations that a task executes.

@ Springer

484

S. Di Alesio, S. Sen

(@) (b)

Periodic Task Resource Resource Singular Task Resource Periodic Task

[PullData] [BoxIn| |Queue| [I0Dispatch| [BoxOut] [PushDatal

Periodic Task iodic Tasks iodic Tasks

Periodic Task

|PuIIData| [Boxin] |IOBR| [loaw] jaueue] |IOQR| [loBW] [BoxOut] [PushData|

1
1.scan I Control Modules
’| | | I (Application Logic)
2.write I (I .
4| B=Bn
|
| rite ~5000 Modules * ~1 kLoC

External Hardware
(Sensors + Actuators) 5. read

PPIP

~500 devices

Fig. 3 Two implementations of the typical operating scenario of
drivers in the fire and gas monitoring system (FMS), consisting of a
unidirectional data transfer between external hardware sensors and con-
trol modules. a Implementation 1 consisting of two periodic tasks, an

BoxlIn, temporarily store data in the priority Queue, and
finally write it in BoxQOut.

The activities that read BoxIn and write Queue are sep-
arated by the activities that read Queue and write BoxQOut
by a delay time. The delay typically corresponds to a sleep
call in the drivers source code, which ensures that the control
modules receive data from the sensors at a slow enough rate
so that the FMS can process it. Note that /ODispatch is exe-
cuted only once, in particular when the system starts, and its
behavior is determined by the delay time between activities
at each loop iteration.

Figure 3a shows how tasks in the first driver implementa-
tion collaborate in the typical scenario, that is a unidirectional
data transfer between hardware sensors and control mod-
ules. (1) PullData periodically receives data from sensors
or human operators, formats the data in an appropriate
command form, and (2) writes it in the buffer BoxIn. (3)
10Dispatch reads the data from the buffer, extracts the com-
mands from the data, and (4) stores them in the priority
Queue. After a given delay time, (5) IODispatch reads the
highest priority command and (6) writes it to BoxOut. When
the periodic scan signal (7) activates PushData, the task
(8) reads the commands from BoxOut and finally (9) sends
them to the control modules for processing. As mentioned
above, this asynchronous design is necessary for drivers to
smooth the data transfer between external devices and control
devices. However, the data transfer functionality is subject
to strict performance requirements in terms of task dead-
lines, response time, and CPU Usage. Specifically, (1) each
of the six tasks that implement a driver has to finish before
its deadline, typically in the range of milliseconds. Consider
for instance a scenario where PushData is blocked on Box-

@ Springer

1 .scan | | |
2.write' I I

Control Modules
(Application Logic)
—

~5000 Modules * ~1 kLoC

| 3.check |
5.trigger

7.check

! 13.send

aperiodic task enclosed in an infinite loop, and three buffers. b Imple-
mentation 2 consisting of two periodic tasks, four aperiodic tasks, and
three buffers

Out by IODispatch, and thus is late in alerting the control
modules that a fire has been detected. In this case, the sys-
tem will fail to timely activate the alarm and the sprinklers,
with potential severe consequences. These task deadlines are
hard real-time constraints that have to be met to ensure that
the system safely reacts in case of fire. However, the FMS is
also subject to soft-real-time constraints such as (2) response
times. Indeed, the interval of time between an execution of
PullData and the execution of PushData that sends the com-
mands to the control modules has to be bounded. Consider
for instance a scenario in which some data in Boxln is not
promptly emptied. If too much time passes after that data
is collected by the external hardware, the new data coming
from the same sensor will arrive when the old data has still
not been processed. Therefore, the FMS will perform the
commands corresponding to the first chunk of data when the
environment state has already changed. This behavior pre-
vents the system from reacting promptly to external changes.
Finally, driver instances are independent from each other, and
thus concurrently executed in the same hardware platform.
For this reason, (3) each driver instance must not exceed a
given threshold of CPU usage. For example, if a fire and
gas monitor is starved of CPU time due to computational
overload, it can have a delayed or miss response to a fire
or gas leak with potentially serious consequence. The main
variables determining whether or not these requirements are
satisfied at runtime are the delay times between the first and
the last two activities of IODispatch. Indeed, if the delay
times are too short, /ODispatch is continuously running and
keeps the CPU busy, eventually exceeding the given thresh-
old on CPU usage. On the other hand, if the delay times are
too large, pullData may fill up BoxIn, and be blocked waiting
for IODispatch to empty the buffer. As a result, pullData is

Using UML/MARTE to support performance tuning and stress testing in real-time systems 485

not able to terminate before its next scan signal arrives, miss-
ing its deadline. These scenarios can arise because the delay
times determine the arrival time of the activities in /ODis-
patch, which in turn can preempt or be preempted by other
tasks. However, the delay times of the /ODispatch iterations
are tunable parameters that engineers can set when configur-
ing the drivers. Therefore, in order to generate configurations
that satisfy task deadlines, response time, and CPU usage in
the I/0O drivers, we need a strategy to search for all the possi-
ble delay times between activities. In particular, the objective
of the search is finding scenarios that are predicted to satisfy
the requirements above, possibly exhibiting minimal com-
pletion time for tasks, response time, and CPU usage.

2.2 Implementation 2: Data transfer with four aperiodic
tasks

There also exists a second implementation of the FMS
drivers, where the functionality of IODispatch is realized
by two aperiodic tasks, namely IOBoxRead ((IOBR) and
10QueueRead ((IOQR), and two triggered tasks, namely
10BoxWrite (IOBW) and I0QueueWrite (IOQW). In par-
ticular, IOBoxRead and 10QueueRead are activated by the
check signal fired by the RTOS when BoxIn and Queue
are full and need to be emptied. Furthermore, /OBoxWrite
and 10QueueWrite are activated by a trigger signal from
I0BoxRead and 10QueueRead respectively, when they fin-
ish reading from the BoxIn and Queue buffers.

Figure 3b shows how tasks in the second driver imple-
mentation collaborate in the scenario of a unidirectional
data transfer between hardware sensors and control mod-
ules. (1)PullData periodically receives data from sensors or
human operators, formats the data in an appropriate com-
mand form, and (2) writes it in the buffer BoxIn. (3) When
BoxIn is almost full, the check signal activates IOBoxRead
that (4) reads the data from the buffer and (5) triggers
10QueueWrite. IOQueueWrite extracts the commands from
the data, and (6) stores them in the priority Queue. When
Queue reaches a critical capacity, (7) the check signal
activates /OQueueRead that (8) reads the highest priority
commands and (9) triggers IOBoxWrite which in turn (10)
writes the commands to BoxOut. When the periodic scan
signal (11) activates PushData, the task (12) reads the com-
mands from BoxOut and finally (13) forwards them to the
control modules for processing.

There exists a fundamental difference between the first
drivers implementation described in Sect. 2.1, and this second
one. In the former, the main variables determining whether or
not the driver performance requirements are satisfied at run-
time are the delay times that separate the second and third
activities of IODispatch at each loop iteration. In this sec-
ond implementation, the performance requirements of the
drivers mostly depend on the arrival times of the check sig-

nal, which are not tunable parameters, but rather depend on
the state of the three buffers. In turn, the buffers state depends
on data sent by the hardware sensors via PullData, which is
determined by unpredictable environmental conditions. The
arrival times also vary across different system executions, as
a consequence of the impossibility to predict the data com-
ing from the sensors. Therefore, in order to generate stress
test cases likely to violate requirements on task deadlines,
response time, and CPU usage, we need a strategy to search
for all the possible task arrival times. In particular, the objec-
tive of the search is finding scenarios that are predicted to
violate the requirements above, or be as close as possible to
doing so.

3 Related work

Traditionally, real-time embedded systems have been
approached with scheduling analysis methodologies based
on real-time theory [31], which assumes restrictive condi-
tions on the target system and execution platform [32]. On
the other hand, recent work stated the benefits of model-
based approaches where software performance analysis is
carried out starting from early development stages [10].
For this reason, these approaches traditionally belong to the
field of model-driven engineering (MDE). The idea behind
these approaches is to analyze the schedulability of RTESs
in a system model that captures the properties of real-time
tasks, such as periods, WCET, priorities, and dependencies.
This provides the flexibility to incorporate specific domain
assumptions and to analyze a range of possible scenarios,
including the worst cases [33]. Indeed, opposite to the-
orems from the real-time scheduling theory, model-based
approaches can better adapt to large and complex RTESs
where interdependent aperiodic tasks run on multi-core pro-
Cessors.

In general, model-based approaches for performance and
scheduling analysis are based on the explicit modeling of
time and concurrency aspects of the target RTES [34]. Exam-
ples of such approaches include queuing networks [35],
stochastic Petri nets [36] and automata networks [37].
Recently, there has been a growing interest in developing
standardized languages to enhance the adoption of perfor-
mance analysis concepts and techniques in the industry [38].
The most notable these languages is the UML profile for
Modeling and Analysis of Real-Time Embedded Systems
(UML/MARTE or MARTE), that extends UML with mod-
eling abstractions supporting the definition of quantitative
analysis methodologies for RTESs. However, UML/MARTE
is alarge profile that accounts for a variety of aspects in quan-
titative analysis of RTESs, and does not include guidelines
on what abstractions are needed for a particular analysis [13].

@ Springer

486

S. Di Alesio, S. Sen

For this reason, in this paper, we identify a subset of
UML/MARTE required for performance tuning and stress
testing, along with guidelines on how to apply the entities
in such subset. In particular, we provide a conceptual model
capturing the timing and concurrency abstractions needed
for the generation of tunable performance-related parameters
and stress test cases. Then, we provide a mapping from this
conceptual model to a pruned version of UML/MARTE. We
obtain the pruned metamodel using a pruning algorithm [22]
that ensures type conformance [23] of the pruned metamodel
with UML/MARTE. In particular, devising a conceptual
model to tailor UML profiles for a specific methodology has
been successfully used in the past, especially in the field
of performance engineering and testing. Examples include
methodologies for deadlocks detection based on the prede-
cessor of UML/MARTE, the UML profile for Schedulability,
Performance, and Time (UML/SPT or SPT) [39], and for
early scheduling analysis to design RTESs in such a way that
they comply to their timing constraints [40]. However, to the
best of our knowledge, we are not aware of the use in such
methodologies of a pruned UML/MARTE metamodel.

In the field of model-driven software verification, model
checking (MC) has been successfully used to verify per-
formance properties expressed in a model [41]. In these
approaches, properties typically represent conditions that
should never hold in the system at any given time. These
properties are formulated as reachability queries of a faulty
state in a finite state machine (FSM), and model checkers
verify if there exists a path from the initial state of the FSM
to this faulty state. MC is mostly used in software verifi-
cation to compare a model with its specification, e.g., to
check the absence of deadline misses in a FSM modeling
task executions. In particular, real-time model checkers, e.g.,
UPPAAL [42], are commonly used for the evaluation of
time-related properties. We identify three main differences
between our work and MC approaches used in the context of
performance analysis and testing. First, MC approaches are
mostly used for verification, i.e., to check if a given set of
real-time tasks satisfy some property of interest. Even though
our approach can also be used for a loose design-time verifi-
cation, the focus of this article is on performance tuning and
stress testing. For this reason, our approach is complemen-
tary, and not alternative, to MC approaches. Second, software
testing approaches that use MC for test case generation cast
the performance property to be checked as a boolean reacha-
bility property over a FSM, in a way that a particular scenario
either violates the property or does not. On the other hand, the
search approaches used in this article for performance and
stress test cases generation are based upon the optimization
of a quantitative objective function that expresses the extent
to which a given scenario violates the performance require-
ment. Third, to adapt model checkers for checking different
properties of real-time applications, the target system FSM

@ Springer

has to be modeled in such a way that the target property can
be formulated as a reachability query. For example, consider
the problem of verifying whether the CPU usage of a sys-
tem exceeds a given threshold. This problem is solved by
augmenting the system FSM with an idle state that keeps
track of the CPU time used by the tasks [33]. In this way, the
error states are the ones in the FSM that can be reached only
when the CPU usage threshold is violated. On the other hand,
the approach in this article is based upon the optimization
of objective functions representing the performance require-
ments to be satisfied by the parameters, and violated by the
test cases. This means that, to adapt our approach to generate
values for tunable performance-related parameters and stress
test cases concerning performance requirements other than
those we consider, one only needs to formulate new objective
functions.

Note that, when MC approaches verify that a given
property does not hold in a model, they also provide coun-
terexamples similar to the scenarios that are the focus of
this article. However, MC faces limitations when it comes
to generating best- or worst-case scenarios with respect to
time-related properties such as task deadlines, response time
and CPU usage. (1) Model checking requires complex formal
modeling of the system, which often leads to the well-known
state explosion problem that has not been solved in the gen-
eral case [15]. (2) For stress-testing purposes, engineers are
also interested in deadline near-misses, i.e., those scenarios
where tasks are predicted to be close to missing a deadline.
Indeed, since model checking approaches are based on esti-
mates for the task execution times, even such scenarios have
to be tested because they can lead to deadline misses dur-
ing execution. (3) Model checkers usually do not provide a
usable result prior to termination. However, for practical use,
performance tuning and stress testing have to be performed
within a time budget. Therefore, to be effective, the gener-
ation of scenarios has to produce an usable output within
the time budget, which is not the case if MC does not ter-
minate soon enough. To the best of our knowledge, we are
not aware of model checking approaches targeted at verify-
ing task deadlines, response time, and CPU usage properties
that overcome these three issues. This aspect motivated us in
investigating alternatives to generate best- or worst-case sce-
narios that characterize configurations and stress test cases,
such as search strategies based on constraint programming.

4 Approach overview

The approach presented in this paper builds upon our pre-
vious work [27] for deriving test cases exercising the CPU
usage requirements of RTESs running on multi-core plat-
forms. Specifically, the approach we extended the approach
to both (1) derive configurations characterized by task delay

Using UML/MARTE to support performance tuning and stress testing in real-time systems

487

(UML/MARTE Modeling

INPUT
Design and Platform Models

Timing and concurrency information on the
RTES software tasks and computing platform

Model-to-Text Transformation

——

'~

Performance Tuning

Optimization Problem

Stress Testing

Optimization Problem

Find task delay times that maximize the
satisfaction of performance requirements

2

Find task arrival times that maximize the
violation of performance requirements

-

Constraint Programming

(CP)

Solutions lOUTPUT]

Task delay times likely to satisfy
performance requirements

\

o}

—

Solutions
Task arrival times likely to violate
performance requirements

OUTPUT

Fig. 4 Our UML/MARTE approach to support performance tuning and stress testing in RTES

times that maximize the satisfaction of requirements on task
deadlines, response time, and CPU usage, and (2) derive
stress test cases characterized by task arrival times that
maximize the violation of requirements on task deadlines,
response time, and CPU usage. The approach combines
UML/MARTE modeling, to capture the timing and con-
currency aspects of the system design and platform, and
automated search based on constraint programming, to gen-
erate configurations and stress test cases. An overview of
the approach is shown in Fig. 4, where we highlight with
a gear icon the automated steps. In the following, Sect. 4.1
introduces the UML/MARTE modeling part of the approach,
which is detailed in Sect. 5. Section 4.2 describes the auto-
mated search to generate configurations in terms of tunable
parameters and stress test cases, which is part of previous
work [20,21].

4.1 Modeling timing and concurrency abstractions in
UML/MARTE

The approach we propose builds upon a conceptual model
that captures abstractions of the RTESs timing and concur-
rency aspects, which enable the performance analysis for the
generation of configurations and stress test cases. In partic-
ular, entities in the conceptual model capture abstractions
of the software application, e.g., tasks with their priorities,
periods, dependencies, and abstractions of the computing
platform, e.g., processing cores and scheduling policies. To

simplify the application of the conceptual model in model-
driven engineering approaches, the entities are mapped to
UML/MARTE stereotypes and stereotype properties that
apply to class, sequence, and deployment diagrams. In this
way, software design and platform models stereotyped with
UML/MARTE effectively organize the input data for our
approach in the UML standard. In order to further sim-
plify the process, we use a metamodel pruning technique
on the UML/MARTE metamodel [22]. This pruning sig-
nificantly reduces the number of concepts, leaving in the
metamodel only those which are relevant for effectively using
UML/MARTE to support performance tuning and stress test-
ing. In particular, pruning UML/MARTE allows to specify a
model-to-text transformation from the pruned UML/MARTE
metamodel to OPL data files, which specify the input data for
the automated search of configurations and stress test cases.

4.2 Generating system configurations and stress test
cases with constrained optimization

Starting from design and platform models stereotyped in
UML/MARTE, our approach uses automated search to gen-
erate configurations characterized by delay times, and stress
test cases characterized by task arrival times. Specifically, we
cast the generation of configurations and stress test cases as
optimization problems over the abstractions characterizing
design and platform models. The goal of these optimization
problems is to find task delay and arrival times that minimize

@ Springer

488

S. Di Alesio, S. Sen

and maximize the satisfaction of performance requirements
on task deadlines, response time and CPU usage. The opti-
mization problems are solved with a search strategy based
on constraint programming, which is inspired by work in
the area of constraint-based scheduling [43]. These problems
model the system design, real-time properties, executing plat-
form, and performance requirements. Specifically, we cast
the search for delay times that characterize best-case sched-
ules and for task arrival times that characterize worst-case
schedules, as the constraint optimization problem (COPs)
M and M/, respectively [20,21].

Casting these problems as COPs is subject to the following
assumptions.

1. The RTOS scheduler checks the running tasks for poten-
tial preemptions at regular and fixed intervals of time,
referred to as time quanta. Therefore, each time value in
our problem is expressed as a multiple of a time quantum.
Accordingly to the specification of the RTOS executing
the FMS, we consider the length of ten milliseconds for
time quanta.

2. The interval of time in which the scheduler switches
context between tasks is negligible compared to a time
quantum, and hence negligible with respect to the tasks
execution time.

3. The RTOS overhead for managing tasks in negligible
with respect to their execution and interarrival times.
This assumption allows us to consider, for scheduling
purposes, a task j = [ay, a2, . .. a,] with priority p con-
sisting of n activities a; as a sequence [ji, ja, ... ju] of
n tasks with priority p, where the duration of j; is equal
to the duration of a;, and where j; triggers j;+1. In this
case, each task j; inherits the dependencies and triggering
relationships of the corresponding activity a; [20].

We found these three assumptions to be commonplace in
the context of RTESs, as the scheduling rate of operating
systems varies in the range of few milliseconds, while the
time needed for context switching is usually in the order of
nanoseconds [44]. These assumptions allow us to consider
time as discrete in our analysis, and model the COPs as Inte-
ger Programs (IPs) over finite domains.

M aims at minimizing the objective functions, and per-
forms a multi-objective search. This is because the system
configurations should achieve an optimal trade-off between
conflicting requirements such as response times and CPU
usage, where ideally all the requirements are far from being
violated. On the other hand, M’ aims at maximizing objec-
tive functions expressed in terms of task deadlines, response
time, and CPU usage. The model is used to perform repeated
single-objective searches, each time with a different objec-
tive. This is because even a single violation on either task
deadlines, response time, and CPU usage compromises the

@ Springer

Constrained Optimization Problem (COP)

Static Properties of Tasks Performance Requirement
(Constants) (Objective Function)

Dynamic Properties of Tasks OS Scheduler Behaviour
(Variables) (Constraints)

Fig. 5 Architectural overview of the constraint optimization models
M and M’

system safety. Even though M and M’ are substantially
different in scope, they syntactically differ only in the defi-
nition of delay times as variables, in the number of objective
criteria, and in the optimization goal of the search (maxi-
mizing/minimizing). This fact shows that casting scheduling
analysis of RTESs as a COP is a flexible approach that can
be easily tailored to support activities in different phases of
software development, such as stress testing and performance
tuning. Note that, being these two different and independent
activities, M and M’ are solved separately.

The models are specified in OPL, and are solved with the
IMB ILOG CPLEX CP OPTIMIZER,* one of the leading
CP solvers available in the market. Figures 5 and 6 show
the architecture of M and M’ and an excerpt of their OPL
implementation, respectively. In particular, the COPs archi-
tecture reflects the key idea behind our formulation, which
relies on the following four main points.

1. We model the system design, which is static and known
prior to the analysis, as a set of constants (lines 1-26 in
Fig. 6). The system design consists of the tasks of the real-
time application, their dependencies, offsets, periods,
Worst-Case Execution Times (WCETS), deadlines, and
priorities. In particular, dependencies relations between
tasks are defined symmetric, i.e., if a task j; depends on
another task jp, then also j» depends on j;. Moreover,
RTESs task execution times depend on the system inputs,
and can be estimated through WCET analysis techniques.
Note that, in the literature, a task WCET is defined as the
maximum time that the task executes, and hence keeps the
CPU busy [45]. This definition does not take into account
the time that the task has been preempted by other tasks
or the time the task is blocked waiting for computational
resources, because in these cases the task in not using the
CPU.

2. We model the system properties that depend on runtime
behavior, and those that are configurable parameters, as
a set of variables (lines 29—44 in Fig. 6). This is because,
in general, it is hard to predict how external inputs and
timing parameters affect the tasks execution, and hence
an appropriate search strategy is needed to identify such

4 http://www.ibm.com/software/.

http://www.ibm.com/software/

Using UML/MARTE to support performance tuning and stress testing in real-time systems 489

/* I. Constants x/

1
2
3l // T: Observation Interval (range of time quanta)
4 int tq = ...;

sirange T = 0..tqg-1;

6

5

8

9

// c: Number of Processor Cores
int ¢ = ...;

10 // Task: Definition of task and task properties
11| tuple Task {

12 key string id; int priority; int deadline;

13 int period; int min_interarrival time;

14] int max_interarrival time; int min_delay time;
15 int max delay time; int duration; }

17| // Depends: Definition of Task Dependencies
18| tuple Depends { Task jl; Task j2; }

20(// Triggers: Definition of Task Triggerings
21| tuple Triggers { Task jl; Task j2; }

23 // J,DS,TS: Task Set, Dependencies, and Triggerings
24| {Task} J = ...;

{Depends} DS with jl in J, j2 in J = ...;
{Triggers} TS with jl in J, j2 in J = ...;

(SIS
S G

29| /* II.a Independent Variables =/

30 dvar int task_executions[J] in X[j];
31| dvar int delay_time[J, K[Jj]l] in D[Jj];
32| dvar int arrival time[J, K[Jj]] in T;
33| dvar int activel[J, K[j], P[]j]l] in T;

36| /* II.b Dependent Variables */
37| dexpr int start[j in J, k in K[]j]] =

38 active[<j, k,0>];

39| dexpr int end[j in J, k in K[Jj]] =

40 active[<j, k, j.duration-1>] + 1;

41| dexpr int execution_deadline[j in j, k in K[j]] =
2 arrival _time[j, k] + j.deadline;

43| dexpr int deadline miss[j in J, k in K[j]] =

44 end[]j, k] - execution_deadline[]j, k];

47| /* III.a Well-formedness Constraints */

48| forall(j in J, k in K[j], p in P[]j])

49 wfcl: end[j, k] >= start[]j, k] + j.duration;
50| wfc2: active[j, k, p]l] <= activel[j, k, p-1] - 1

52| /* III.b Temporal Ordering Constraints */
53| forall(ts in TS, k in K[ts.jl])
54 tocl: arrival_time[ts.j2, k] = end[ts.jl, k];

5711 /* IV. Objective Functions */

59| // f_dm: Deadline Misses Function
60| dexpr float £ dm =
61 sum(j in J, k in K[]j]) 2~deadline_miss[j, k];

63| // f_rt: Response Time Function

64| dexpr int £ rt =

65 max(j in J, k in K[]j]) end[]j, k] -

66| min(j in J, k in K[]j]) arrival time[j, k];

68| // f£_cu: CPU Usage Function
69| dexpr float £ cu =
70 (sum(t in T) (load[t] > 0)) / tg;

73| /* V. Optimization directives (alternatives) x*/

75| // M: Performance Tuning Model
76| minimize staticLex(f_dm, f rt, £ _cu);

78| // M’ : Stress Testing Model
79| maximize f£f_dm; // maximize £ rt; // maximize f_ cu;

Fig. 6 Excerpt of the OPL implementation of M and M’

inputs and parameter values [28, XXXX]. The main real-
time properties depending on runtime behavior are the
number of task executions, the arrival times of aperi-
odic tasks, and the specific runtime schedule of the tasks.
The configurable properties we consider in our constraint
model are instead the delay times between task activities.
The real-time properties in these two categories represent
the main output variables of the constraint models, and
are used to support stress testing and performance tuning.

. We model the RTOS scheduler as a set of constraints

among such constants and variables (lines 47-54 in
Fig. 6). Indeed, the RTOS scheduler periodically checks
for triggering signals of tasks and determines whether
tasks are ready to be executed or need to be preempted.
In practice, constraints specify mathematical relations
between variables and constants, and are divided into five
major subsets:

(a) Well-formedness constraints (WFC) specifying rela-
tions among variables directly following from their
definition (lines 47-50 in Fig. 6).

(b) Temporal ordering constraints (TOC) capturing the
dependency and triggering relationships between
tasks (lines 52-54 in Fig. 6).

(c) Multi-core constraints (MC) capturing the specifica-
tion of the number of cores of the computing platform.

(d) Preemptive scheduling constraints (PSC) stating that
each task should be preempted when a higher priority
task is ready to be executed and no cores are available.

(e) Scheduling efficiency constraints (SEC) ensuring that
the scheduler avoids unnecessary context switching,
and executes tasks as soon as enough resources are
available.

. We model the performance requirements to be satisfied

during performance tuning, or violated during stress test-
ing, i.e., task deadline misses, response time, or CPU
usage, as objective functions (lines 57-70 in Fig. 6).
These functions are expressed in terms of the constants
and variables of the constraint model, and drive the search
toward best-case task delay times in the case of perfor-
mance tuning (lines 75-76 in Fig. 6), or worst-case task
arrival times in the case of stress testing (lines 78—79 in
Fig. 6). Note that these functions are minimized, in case
of performance tuning (lines 75-76 in Fig. 6), and maxi-
mized, in case of stress testing (lines 78—79 in Fig. 6) in
separate executions of M and M/, respectively.

5 Supporting performance tuning and stress

testing with UML/MARTE modeling

Even though UML has been used for long time to model
real-time embedded systems [46], it is not flexible enough

@ Springer

490

S. Di Alesio, S. Sen

to be effectively applied in large and complex applica-
tions. However, UML defines an extension mechanism in
the form of profiles, which tailor the language to a specific
domain by providing modeling concepts that characterize
that domain. In the context of RTESs, the UML profile for
Modeling and Analysis of Real-time Embedded Systems
(UML/MARTE [47]) is the most acknowledged and used by
practitioners. UML/MARTE is an OMG standard released
in 2011 to replace its predecessor, the UML profile for
schedulability, Performance, and Time (UML/SPT) aligned
with UML v1.x. UML/MARTE defines a large number of
abstractions which support the definition of methodologies
for performance analysis and verification. Except for few
examples, the profile specification does not detail how to
identify the relevant stereotypes and stereotype properties
for a given kind of analysis. This renders effectively apply-
ing UML/MARTE in large and complex industrial systems
a challenging task, which needs to be supported by the defi-
nition of modeling guidelines [13].

In this section, we propose a conceptual model that
captures, independently from any modeling language, the
abstractions required to support performance tuning and
stress testing in RTESs (Sect. 5.1). To simplify the appli-
cation of our conceptual model in model-driven engineering
(MDE) approaches, we propose a mapping of our concep-
tual model to UML/MARTE (Sect. 5.2). Note that we define
the abstractions needed to support stress test cases in two
steps, i.e., first defining a conceptual model, and then its
mapping to UML/MARTE. This formalization approach is
similar to that used in UML/MARTE, where concepts related
to RTES are first defined in a domain model, and then
formalized as stereotypes and stereotype properties. After
defining the mapping to UML/MARTE, we apply model-
pruning techniques (Sect. 5.3) in order to obtain a simplified
and more manageable metamodel, which is a supertype of
UML/MARTE and hence is still aligned to model-driven
engineering standards. Starting from this pruned metamodel,
we define a mapping between the entities in UML/MARTE
required for our analysis and the Optimization Programming
Language (OPL) (Sect. 5.4), which encapsulates the data
needed to automate the search for system configuration and
stress test cases.

5.1 A conceptual model for performance tuning and
stress testing

Recall from Sect. 2 that the goal of our approach is finding
scenarios for RTESs tasks as likely as possible to sat-
isfy/violate task deadlines, response time, and CPU usage
constraints. Therefore, our conceptual model is based upon
abstractions defined in the real-time scheduling theory, such
as tasks, activities, and scheduling policies [48]. Figure 7
shows an overview of the conceptual model we propose,

@ Springer

whose entities are explained below. Classes in the concep-
tual model are partitioned into the Application and Platform
packages.

— Application The software part of a RTES is an embedded
application, which consists of several parallel software
tasks, and is allocated to a computing platform.

— Activity Recall from Sect. 2 that the scheduling the-
ory defines an activity as a sequence of operations in a
task, and that task activities within a task are sequen-
tially executed. Each activity a has an estimated
duration or worst-case execution time (WCET), and
starts executing after a given release time. Consecu-
tive activities within a task are separated by a delay
time, whose bounds are specified by minimum and
maximum values (minDelay and maxDelay). Activi-
ties can trigger other activities: For example, each
activity in a task triggers the following one, thus
defining a temporal ordering. This is because after
the last statement in an activity is executed, the pro-
gram control flow executes the first statement in the
following activity. Activities can also trigger other
tasks: for example, upon meeting certain conditions,
an activity can spawn a new task to perform addi-
tional operations. Moreover, activities in a task can
also depend on each other by sharing computational
resources which are generally used for communica-
tion.

— DataDependency Activities can depend on each other
because they communicate in a synchronous or asyn-
chronous way.

— Buffer Asynchronous communication between two
activities can use a buffer, whose access is protected
by semaphores, and hence is blocking. This means
that at most one activity can access a buffer at any
time. Note that, in this article, we only consider the
case where tasks are communicating asynchronously
through buffers.

— Task RTES software consists of a set of parallel tasks
that have to complete before a given deadline. Each
task also has a priority that determines the relative
importance of a task with respect to other tasks,
so that the scheduler executes higher priority tasks
before lower priority tasks. Periodic tasks are trig-
gered by timed events handled by the global clock,
and are invoked at regular intervals. Therefore, their
arrival times are fixed, and equal to multiples of
one interval, called period, which is counted start-
ing from an offset. Periodic tasks are commonly
used to send and receive data at regular interval of
times, e.g., PushData and PullData in Fig. 3a, b.
On the other hand, the arrival times for aperiodic

Using UML/MARTE to support performance tuning and stress testing in real-time systems

491

Platform

«enumeration»
SchedulingPolicy

Scheduler

ProcessingUnit

+policy: SchedulingPolicy +nbCores: int
1 +executes 0.1 1
+schedules
|
Application
+depends +triggers
o] [is 14, 1.
DataDependency f==========~ Activity Task Finggers
0.” +minDelay: int +deadline: int

+maxDelay: intf[7 = 1 ||+priority: int

+duration: int - +finisl

+release: int +belongs Hansh)
+resume()

1.1 és[eep()
AsynchronousDependency | I SynchronousDependency | +start()
+t
‘IR +triggers +‘.‘rllgi?gr()
+uses +uses 4& Z> 0.*
0.1 0.* | |
0.1 | Buffer "TriggeredTask" AperiodicTask PeriodicTask
+access() +minla: int +offset: int

+maxla: int +period: int

Fig. 7 Conceptual model representing the key abstractions to support performance tuning and stress testing in real-time embedded systems

tasks are bound by minimum and maximum inter-
arrival times (minla and maxla), which indicate the
minimum and maximum time intervals between two
consecutive arrivals of the event triggering the task.
Aperiodic tasks are instead used to process asyn-
chronous events/communications, e.g., /ODispatch
in Fig. 3b. Finally, the arrival time of triggered tasks
is determined by particular activities, which launch
the task upon finishing their execution. During its
lifetime, a task can perform the following operations.

e Trigger Communicates to the scheduler that the

precedes the execution of the first activity of each

task.

e Finish Completes execution. This operation is
performed after the last activity in a task has com-

pleted.

e Wait Temporarily stops execution in order to
synchronize with another task, or to acquire a
resource. Note that each buffer access within an

activity implies an implicit wait by its task.

e Sleep Temporarily stops execution for a given
amount of time. Note that a sleep call for a given

task is ready to start a new execution in response
to a triggering event. The origin of the event
depends on the type of the task. For periodic tasks,
the event comes from an internal clock, for ape-
riodic tasks the event comes from the external
environment or the RTOS, and for triggered tasks
the event comes from another task.

Start Begins execution after having been assigned
to a CPU core by the scheduler. This operation

time ¢ at the beginning (end) of an activity corre-
sponds to a release (delay) for that activity equal
tot.

Resume Communicates to the scheduler that the
task is ready to resume execution after a previous
wait or sleep operation.

The state machine in Fig. 8 shows the lifecycle of
a task, where the operations determine transitions
between states. Tasks start in the idle state, and only

@ Springer

492

S. Di Alesio, S. Sen

Start

blocked

Resume Wait
Resume, _ Sleep
= TP

Fig. 8 The state machine representing a task lifecycle. Events trigger-
ing a task determine a transition from the idle state to the ready state

consume CPU time in the running state. Indeed, in our
model, activities within tasks release the CPU when
preempted by the RTOS scheduler, so that the CPU
can be used by another activity belonging to a higher
priority task. Note that, as it is common in embedded
systems intended to run continuously, there is no final
state.

— Platform A computing platform consists of the hardware
and lower-level software parts of a RTES, i.e., a process-
ing unit, and a real-time scheduler.

— ProcessingUnit A processing unit represents the CPU
of the computing platform. Each CPU has a number
of processor cores (nbCores), specifying the maxi-
mum number of tasks that can be executed in parallel.
As explained in Sect. 2, we do not consider RAM,
disk memory, or cache in our conceptual model. This
is because, given the context factors of this article,
the impact memory has over task deadlines, response
time, and CPU usage is negligible.

— Scheduler The scheduler implements a given schedul-
ing policy (SchedulingPolicy), which defines the rules
to handle concurrency and execution order among
tasks. Even though several policies are commonly
used in RTESs, in this article we only consider the
fixed-priority preemptive scheduling policy used by
the FMS.

Note that, in our conceptual model, both tasks and activi-
ties are active objects, and hence are represented with double
bars on the sides.’

5.2 Mapping the conceptual model to UML/MARTE
To enable effective industrial use, every approach in software
engineering has to be capable of seamless integration in the

companies development cycle. In the last years, model-driven

> In UML, active objects model entities owning a process or thread,
and that can initiate flow control activity.

@ Springer

engineering (MDE) has risen as a way to handle software
complexity through the systematic use of models during
development [49]. In the context of RTESs, reasoning about
performance requirements such as deadline misses, response
time, and CPU usage requires the explicit modeling of time,
which is one of the key characteristics of UML/MARTE. For
this reason, we provide a mapping between the abstractions
in our conceptual model and UML/MARTE stereotypes and
stereotype properties. This mapping shows the feasibility of
extracting the abstractions required to support the generation
of system configurations and stress test cases from a standard
modeling language, such as UML.

5.2.1 Mapping conceptual entities to UML

Some of the abstractions in our conceptual model are already
defined in UML. In particular, each active object in a
sequence diagram can be associated to a lifeline. In this
way, activity and behavior execution specifications represent,
depending on the level of abstraction, the activities in our
conceptual model. Similarly, occurrence specifications rep-
resent sending and receiving of messages, and therefore can
be used to describe the synchronous and asynchronous com-
munication defined in our conceptual model. Figure 9 shows
a sequence diagram capturing the data transfer scenario of
the fire and gas monitoring system described in Sect. 2.1.
The driver tasks are active objects, while the buffers are pas-
sive objects. Each activity within a task is depicted using an
execution specification, i.e., as a box on the task lifeline that
shows the interval of time that the task performs the activ-
ity. Therefore, pullData has two activities, ioDispatch has
four, and pushData has three. Note that the order of activa-
tions on a task lifeline implies the temporal ordering between
activities of that task. In sequence diagrams, a synchronous
message between two activities is shown using an arrow with
a filled head, while an asynchronous message is shown by
an arrow with an open head. Synchronous communication is
blocking and does not necessarily require a buffer, because
the sending activity must wait until the receiving activity
is ready to receive the message. On the other hand, asyn-
chronous communication typically uses buffers. Recall from
Sect. 2 that in the FMS, and hence in Fig. 9, all communi-
cations are asynchronous and use buffers. Figure 10 shows a
sequence diagram capturing the FMS data transfer scenario
described in Sect. 2.2. In this case, ioDispatch is replaced
by the four tasks ioBoxRead, ioQueueWrite, ioQueueRead,
and ioBoxWrite. Note that the triggering relations between
tasks are modeled by create messages, i.e., by UML Message
objects whose messageSort property has value create. This
is because each triggered task is instantiated and launched by
its triggering task. Note that, to reduce the total number of
objects in the diagrams, only few representative stereotype
properties are shown.

Using UML/MARTE to support performance tuning and stress testing in real-time systems 493

/] mteractionDataTransferScenario 1

£ ioDispatch:IODispatch

«SaSharedResource»

«SaStep»
] boxOut:BoxOut

«SaStep»
£ pushData:PushData

selfDelay = ((best=(10,ms), worst=(60,ms))

«SaStep» «SaSharedResource» «SaSharedResource»
£ puliData:PullData - boxin:Boxin queue:Queue
1: scanPull
3
2.1: write =
execTime = ((value=(50,ms))
1.1; read
= 2.1: write
deadline = ((value=(300,ms)) -

interOcct = ((value=(1000,ms))
priority = ((value=200))

readyT = ((value=0,ms))

3.1: read

2.2: sleep

4.1: write

-~
3: scanPush

4.1: read

5.1: send

Fig. 9 Sequence diagram modeling the data transfer scenario described in Fig. 3a

5.2.2 Mapping conceptual entities to UML/MARTE

Even though UML sequence diagrams can already cap-
ture several abstractions of real-time applications, a number
of concepts defined in our conceptual model do not have
appropriate counterparts in pure UML. Specifically, the
schedulability abstractions, and the timing and concurrency
attributes of our conceptual model, are captured by enti-
ties defined in UML/MARTE. In particular, UML/MARTE
defines a Generic Quantitative Analysis Modeling (GQAM)
package, which is intended to provide a generic frame-
work for collecting information required for performance
and schedulability analysis. The domain model of this pack-
age includes two key abstractions that closely resemble tasks
and activities in our conceptual model, namely Scenario and
Step, respectively. A step is defined in the domain model of
GQAM as a unit of execution, while a scenario is defined a
sequence of steps. Note that, in particular, a Step is a Sce-

nario, entailing that steps can be defined at different level
of abstractions and can possibly be refined into sub-steps.
Therefore, a Task in our conceptual model can be repre-
sented by a Step that contains other sub-steps, and an Activity
can be represented as an atomic Step that is not detailed
by other sub-steps. Scenario and Step are represented in
GQAM by the stereotypes «GaScenario», and its specializa-
tion «GaStep», respectively. However, entities in the GQAM
package are refined in the schedulability analysis modeling
(SAM) package, which defines abstractions for schedulable
resources, such as tasks, activities, and buffers. In particular,
SAM defines the stereotype «SaStep» as a specialization of
«GaStep» which includes details on scheduling abstractions
such as offset and deadlines. Therefore, we map both Task
and Activity to «SaStep».

Note that «SaStep» can be applied to a wide set of
behavior-related elements in the UML metamodel, and in
particular, to elements in sequence diagrams. In particular,

@ Springer

S. Di Alesio, S. Sen

494

[

7 pear:ii’zL

ysnguess ||

m:LoL

SuMmxogorRIMmKegol [
«dayses»

[

* *

7
7
7
7
7
peswDID
7
7
7
7
7
7
7
7
7
7
7
7

[2nanb] = saypaseys
((swoo1)=3s10m ‘(sw'0g)=3s3q) = 1230423u!

((sw'pz)=anjeA) = aupeap
a

ejequsng:eiegusnd = noxoganoxoq =
«dajses» «22IN0SIYPIILYSeS»

[]
-
|
|
|
|
|
|
|
|
|
|
|

;

peas:l'g

q¢ "S14 Ul PaqLIOSIP OLIBUIIS I9Jsuel) elep oy} Surjopowt weideip oouanbag (1 31

;
[
[L
<
@
4
_
A
|
_
_
;
M
4
_

«dajses>

PEaYIN2ND OJ:peY2NND0I ; 7

ananp:ananb m

«3)IN0SIYPIRYSES»

7
7
aum:Lg :

uu_.;uavso_ﬂu_.%aSc_ m
«dajses»

.:
|

[urxoq] = saypaieys
((sw'ooT)=3s10m ‘(sw’0g)=153q) = (320123l

((sw'sz)=anjea) = aulpeap

A —
g peasiLy ﬂ
[ﬁuzxxxﬁum £]
f
i qum:Lz

Al I f a
k k ; ningueds ;|

«dajsess = ; ; -ou...oouxvu.c.ﬂnmn E «dajses» 8

ZoueudsRsueIL BIRqUONRINY []

pringer

A

Using UML/MARTE to support performance tuning and stress testing in real-time systems 495

«SaStep» inherits from both «TimeModels: : TimedProcessing»,

which extends the UML metaclasses Behavior, Message,
Actions, and «GRM::Resource», which extends NamedEle-
ment. In UML/MARTE, Step also includes a list of measures
that are widely used for analyzing of real-time properties of
embedded systems. We map attributes of tasks and activi-
ties in our conceptual model to the stereotype properties of
«SaStep» representing those measures.

Specifically, we map interOccTime, the time interval
between two successive occurrences of scenarios, to period,
minimum, and maximum interarrival times of task. Note that
interOccTime is a stereotype property of type NFP_Duration,
a composite type that is generalized by NFP_Real. In addi-
tion to the inherited value type attribute, which represents
a floating point, NFP_Duration also defines two additional
NFP_Real attributes, namely best and worst. These values
semantically represent the smallest and greatest values for
NFP_Duration, in case the value attribute has no fixed value.
This design of NFP_Duration allows to specify time dura-
tions either as a range, or as a fixed value. Therefore, we
map the period of periodic tasks, which is fixed, to interOcc-
Time.value, and minla and maxla to interOccTime.worst, and
interOccTime.best, respectively.® This is because, intuitively,
the worst case with respect to RTESs performance occurs
when tasks arrive at high rate, hence with small interarrival
times. We map the activities minDelay and maxDelay to self-
Delay.best and selfDelay.worst, respectively. This is because
one can configure shorter task delays, and hence a more reac-
tive system, only when the CPU usage is not constrained to
avoid overtaking the system processor cores. We also map
both the periodic tasks offset and the activities release time to
readyT.value. This is because, in scheduling theory, the off-
set models the time a periodic task waits after its triggering
event, while the release models the time an activity waits after
its preceding one. Finally, we map the duration of activities,
i.e., their worst-case execution time, to execTime.value, the
deadline of tasks to deadline.value, and their priority to the
NFP_Integer attribute priority. In UML/MARTE, duration
values are expressed using floating points, encapsulated in
the NFP_Real type. However, we base our analysis for per-
formance tuning and stress testing on discrete time values
(Sect. 4.2). In the IEEE 754 single-precision binary floating-
point format, which is the most commonly used standard to
encode floating points, integers in the interval [224, 2%4] can
be represented without loss of precision [50]. Previous exper-
iments with search-based strategies for performance analysis
and testing have been successfully validated with time values
in the range of 10% [17]. Therefore, the interval above is large

6 UML/MARTE does not specify whether best corresponds to the mini-
mum time and worst to the maximum, or vice versa. Hence, this decision
is left to the modelers applying UML/MARTE, and can be taken arbi-
trarily depending on context factors of the target system.

enough to assume that, for our purposes, integer values can
be type-safely expressed as floating points.

We map our notion of buffer to the «SaSharedResource»
stereotype, which is meant to represent entities shared among
tasks or activities and regulated by exclusive access. Finally,
the abstractions related to the computing platform in our con-
ceptual model are not captured in sequence diagrams, but
are rather be represented using UML/MARTE stereotypes
applied to entities in class and deployment diagrams, such as
Class and Node. Specifically, the Generic Resource Model-
ing (GRM) package defines the stereotypes «Scheduler» and
«SchedulingPolicy», which are mapped to the corresponding
entities in our conceptual model. Finally, we map processing
units to the «HwProcessor» stereotype from the Hardware
Resource Modeling (HRM) Package, and their number of
cores to the stereotype property nbCores. Note that it is pos-
sible in general to have more than one «HwProcessor» in
a model. However, in our approach, only one entity, which
represents the processor executing the computing platform,
should be stereotyped as «HwProcessor». Table 1 summa-
rizes the mapping between entities in our conceptual model
and stereotypes in UML/MARTE. In the table, we report the
preferred UML metaclass each stereotype should extend, and
the type for each stereotype property.

In addition to the mapping above, we also point out a set
of associations between UML/MARTE stereotypes that are
semantically related to associations between entities of our
conceptual model (Table 2). Note that not all of these associ-
ations encapsulate data needed to enable the definition of our
constrained optimization problem for performance tuning
and stress testing. However, the semantic analogies between
associations in UML/MARTE and associations in our con-
ceptual model reinforce our mapping. For example, «SaStep»
defines the parentStep and steps associations, which corre-
spond to the association belongs between the classes Task and
Activity of our conceptual model. In a similar way, sharedRes
models an activity using a shared resource with exclusive
access, similar to the relationship uses between the classes
Activity and Buffer in our conceptual model.

5.3 Pruning the UML/MARTE metamodel

UML and UML/MARTE are undeniably complex standards
containing a large number of entities which account for
a wide range of modeling needs. For example, UML 2.0
defines over 200 metaclasses and nearly 600 properties, while
UML/MARTE in addition contains over 150 stereotypes and
500 stereotype properties that extend the UML metamodel.
However, in practice, one only needs a subset of all the
entities in UML and UML/MARTE in order to address a
specific modeling need. In Sect. 5.2 we argue that, in order
to conveniently represent a model for performance tuning
and stress testing, we only need the four UML/MARTE

@ Springer

496

S. Di Alesio, S. Sen

Table 1 Mapping of the entities in our conceptual model to UML/MARTE. PeriodicTask, AperiodicTask and TriggeredTask do not appear in the

mapping because they inherit the stereotypes from their superclass Task

Conceptual model

UML/MARTE

Class/attribute Stereotype/stereotype property Extended metaclass/type Sub-profile

Application

Task «SaStep» Lifeline MARTE_AnalysisModel::SAM
Task: :deadline SaStep::deadline.value * NFP_Real MARTE_AnalysisModel::SAM
Task::priority SaStep::priority NFP_Integer MARTE_AnalysisModel::SAM
PeriodicTask::offset SasStep::readyT value *° NFP_Real MARTE_AnalysisModel::SAM
PeriodicTask::period SaStep::interOccT.value *¢ NFP_Real MARTE_AnalysisModel::SAM
AperiodicTask::maxla SaStep::interOccT.best *¢ NFP_Real MARTE_AnalysisModel::SAM
AperiodicTask::minla SaStep::interOccT.worst *¢ NFP_Real MARTE_AnalysisModel::SAM

Activity

Activity: :minDelay
Activity::maxDelay
Activity: :duration
Activity::release
Buffer

Platform
Scheduler
Scheduler: :policy
SchedulingPolicy

ProcessingUnit

«SaStep»
SaStep::selfDelay.best ?
SaStep::selfDelay.worst

SaStep::execTime.value *°

SaStep::readyT.value *P

«SaSharedResource»

«Scheduler»
Scheduler::schedPolicy
«SchedPolicyKind»

«HwProcessor»

ExecutionSpecification
NFP_Real

MARTE_AnalysisModel::SAM
MARTE_AnalysisModel::SAM

NFP_Real MARTE_AnalysisModel::SAM
NFP_Real MARTE_AnalysisModel::SAM
NFP_Real MARTE_AnalysisModel::SAM
Lifeline MARTE_AnalysisModel::SAM
Class/Node 4 MARTE_Foundations::GRM
SchedPolicyKind MARTE_Foundations::GRM
Enumeration MARTE_ Library::GRM_ Basic-
Types
Class/Node 4 MARTE_DesignModel::HRM::

ProcessingUnit::nbCores HwProcessor::nbCores

HwLogical::HwComputing

MARTE_DesignModel::HRM::
HwLogical::HwComputing

NFP_Integer

4 We assume that stereotype properties of type NFP_Real can represent integers in the interval [—22*, 224] without loss of precision.
b Periodic task offsets and activity release times are both mapped to SaStep::readyT.value, because they both represent the time a task or activity

waits after its arrival before starting to execute.

¢ SaStep can in general have more than one interOccT and execTime attribute, but in our approach we only need one. This is because each of such
attributes is used to represent the period, interarrival time, or duration of a Task, and each Task only has one period, interarrival time, and duration.
4 Both Class and Node can be stereotyped by Scheduler and HwProcessor. The choice depends on the level of modeling abstraction at which one

wants to represent the computing platform

stereotypes «SaStep», «SaSharedResource», «Scheduler»,
and «HwProcessor». Therefore, we prune the unnecessary
concepts in UML/MARTE, leaving only the four stereotypes
above, along with their dependent stereotypes.

However, pruning the UML/MARTE profile is a challeng-
ing task which is complicated by the fact that UML/MARTE
is formally defined as a profile extending UML, rather
than a stand-alone metamodel. The semantics of the con-
cepts introduced in UML/MARTE are defined externally in
the profile domain models, which are in turn expressed as
partially connected metamodels with textual descriptions.
This means that pruning UML/MARTE outputs a meta-
model that does not include semantic description of its
elements, and hence has to be complemented with appro-
priate semantics. However, the main goal of our metamodel
pruning is to identify a minimal subset of the UML/MARTE
stereotypes that contains the abstractions needed to apply

@ Springer

our methodology for performance tuning and stress testing.
Therefore, rather then defining a completely new semantics,
we adopt that in the UML/MARTE specification [47]. Note
that, while this semantics enables a sound definition of a
pruned UML/MARTE metamodel for performance tuning
and stress testing, only the stereotypes and stereotype prop-
erties in Table 1 are strictly needed to represent the input data
for our OPL model.

We base our pruning on the Eclipse Modeling Frame-
work (EMF)” implementation of the UML/MARTE stan-
dard, where both stereotypes and classes are EClass entities
defined in the Ecore metamodel.® For instance, in EMF, all
instances of stereotype «SaStep» are instances of the EClass
SaStep. Using the EMF implementation of UML/MARTE

7 http://www.eclipse.org/modeling/emf/.
8 The semantics of Ecore is aligned to that of UML and UML/MARTE.

http://www.eclipse.org/modeling/emf/

Using UML/MARTE to support performance tuning and stress testing in real-time systems 497

Table 2 Relevant associations of the UML/MARTE stereotypes mapped to our conceptual model

Stereotype Relevant associations Inherited from Notes
«SaStep» parentStep: GaStep [1..*] «GaStep» — «GaScenario» The «GaStep»(s) of which this «SaStep» is a
refinement. When applied to activities, it is the task
which the activity belongs to
steps: GaStep [1..¥] «GaStep» — «GaScenario» The «GaStep»(s) that compose this «SaStep». When
applied to tasks, it is the set of activities that the
task consists of
sharedRes: SaSharedResource The set of «SaSharedResource»(s) that this «SaStep»
[*] shares with other «SaStep»(s). It represent the set
of buffers that tasks or activities communicate with
«SaSharedResource» scheduler: Scheduler [0..1] «MutualExclusionResource» The Scheduler that implements the protection
protocol, usually the same that schedules the tasks
«Scheduler» host: ComputingResource The computing resource («<HwProcessor») on which

[0..1]

protectedSharedResources:
MutualExclusionResource
[0..%]

processingUnits:
ProcessingResources [0..%]

the scheduler runs. Typically the same computing
resource whose access the scheduler controls

The mutually exclusive access resources
(«SaSharedResource») whose access is regulated
by this «Scheduler». It represents the list of buffers
of the target system

The computing resource («HwProcessor») whose
access is regulated by this «Scheduler». Typically
the same computing resource on which the
scheduler runs

The arrows (—) indicate chains of generalizations. For example, «SaStep» is generalized by «GaStep», which in turn is generalized by «GaScenario»

allows us to prune pure EMF models, without the issue of
separately handling profiles whose semantics is externally
defined. While this choice restricts the generality of our meta-
model pruning, we argue that EMF implementation is the de
facto reference implementation of the Essential Meta-Object
Facility (EMOF), which is the reference metametamodel of
OMG metamodels.

Metamodel pruning is performed by an algorithm defined
in our previous work [22] that outputs an effective subset
metamodel of a possibly large input metamodel. The output
metamodel preserves a set of required types and properties,
given as input to the algorithm, and all its dependencies,
which are computed by the algorithm. Every other type and
property is pruned. In the type-theoretic sense, the resulting
effective metamodel is a supertype of the large input meta-
model.

The principle behind pruning is to preserve a set of
required types Tieq and required properties Preq, and prune
the rest in a metamodel. In previous work [22], we present
a set of rules that, given a metamodel MM and an initial set
of required types and properties, determine a set of required
types Treq and required properties Preq. The initial set may
come from various sources, such as manual specification, or a
static analysis of model transformations to reveal used types.
For example, a rule in the set may add all super classes of a
required class into Tieq. Similarly, if a class is in Treq Or is a
required class, then each of its properties with a multiplicity
lower bound greater than zero is added to Preq. Apart from

rules, there are options which allow a better control of the
algorithm. For example, one of such options states that if a
class is in Tieq, then all of its subclasses are added into Tieq.
This optional rule may be applicable under certain circum-
stances, giving the user freedom in deciding the extent to
which the MM is pruned. The rules are executed on elements
of MM where the specified conditions match, until no rule can
be executed any longer. The algorithm always terminates for
a finite metamodel, because the rules do not remove elements
from the sets Tieq and Preq. Once the algorithm computes Tieq
and Pregq, it finally removes the remaining types and proper-
ties from MM to output the effective metamodel MM,. In
Fig. 11, we present a pruned version of the UML/MARTE
metamodel, which is a sufficient subset of UML/MARTE
for performance tuning and stress testing of RTESs. This
effective metamodel contains 26 classes and 64 associated
properties.

MM , has a number of noteworthy characteristics. In par-
ticular, using model typing [23], it is possible to verify that
MM, is a supertype of the input metamodel MM. Model
type conformance (or substitutability) has been adapted and
extended to model types based on Bruce and Vanderwaart
notion of type group matching [51]. The matching relation
between two metamodels, denoted < #, defines a function
of the set of classes the metamodels contain according to the
following definition [23]. A Metamodel M’ matches another
metamodel M, denoted M’ < # M, iff for each class C in
M, there is one and only one corresponding class or sub-

@ Springer

S. Di Alesio, S. Sen

SALY Jo Sunse) ssans pue Juruny aoueuriojrad 105 [opouwreiow FLYVIAN/TINN Pounid [T S

daiswwodes H
puIAd10dPaYds : Adljodpayds = G
1S0Hd9X3eS H

A_w 10
byinosaybunndworim
dbun MH [b3.1N0SaYU0NBIUNWWOIMS H 1soHdax3en H woq

Ipapyuonedunwwo) H A_M

10ss2301dMH H poinosaywodabessapy

daises H daiswwoden

vl

daisen H
1004 P10

pdanosaybunndwo) H
umo:_, 0

puIIAd1|0dpays : Adljodpayds =

J9npayds H
npayds g poJnosayuondesaiums | [paanosaypaseyses H to

_ __ _

AV H_c:m:_mmwuo“..o AWW AV AV AV olreuadsen
) Aw

93inosaymy H a24nosayms [| $2anosayuoisnpxgjemniy H

1oiney3q

poanosaybuissadold H MHP3UM
_ pbesnadinosay]| puissadoidpawil H

AR % v

abesnqgnsg

uesjoogy : [ed160Ts! & [q-p
. <1
punainieNawl] : aunyeu & awagpawrl H
I

498

?24nosay H

adApoD H

o H

pringer

Qs

Using UML/MARTE to support performance tuning and stress testing in real-time systems 499

1l tg = 100;

2

3sle = 2;

4

51T = {

6 #<id:"jO", priority:0, deadline:30, period:15,
min_delay:0, max_delay:0,

7 min_interarrival_ time:-1, max_interarrival_time
:-1, duration:5>#,

8 #<id:"jl1", priority:1, deadline:25, period:-1,
min_delay:1, max_delay:1,

9 min_interarrival time:15, max_interarrival_time

:100, duration:4>#,

10 #<id:"j2", priority:2, deadline:20, period:-1,
min_delay:0, max_delay:2,

11 min_interarrival_time:10, max_interarrival_time
:20, duration:4>#,

12| };

14 DS = {<<"3FO">, <"J1">>, <<"j1">, <"JO">>};

16| TS = {};

Fig. 12 Example of an OPL data file for a dual-core system with three
tasks, one dependency, and no triggering relations

class C’ in M’ such that every property p and operation op
in M.C matches in M'.C’, respectively, with a property p’
and an operation op’ with parameters of the same type as in
M .C. This notion of type conformance implies that all oper-
ations written for MM, are also valid for MM. In our case,
the pruned UML/MARTE metamodel is a supertype of the
Ecore UML/MARTE metamodel, implying that all mappings
and transformations defined on the pruned UML/MARTE
are also well defined for models instances of the full Ecore
UML/MARTE metamodel.

5.4 Mapping the pruned UML/MARTE metamodel to
OPL

Recall from Sect. 4.2 that the ultimate goal of our approach is
to support the generation of system configurations character-
ized by task delay times, and stress test cases characterized
by arrival times of aperiodic tasks. In order to do so, we
devise two constrained optimization problems (COPs) over
the abstractions defined in our conceptual model. The COPs
differ only for the definition of the independent variables
of the search, i.e., task deadlines or aperiodic task arrival
times, and for the optimization directive, i.e., minimization
or maximization. The constraint models are specified in the
Optimization Programming Language (OPL), a widely used
modeling language to specify optimization problems. One of
the key features of OPL is the separation of the model logic,
i.e., the definition of constants, variables, constraints, and
objective functions, from the data, i.e., the constant values.
While the model logic is part of previous work [21,28], in this
paper we focus on the definition of the model data file. Indeed,
to foster adoption within model-driven engineering develop-
ment processes, we propose a mapping between stereotypes

and stereotype properties in the pruned UML/MARTE meta-
model and entities in the OPL data specification format.
Figure 12 reports an example OPL file with an observation
interval of 100 time quanta (¢ = 100), modeling a set J of 3
tasks, jo, j1, and j running on a dual-core platform (¢ = 2).
Jjo is periodic with period 15 time quanta, j; is aperiodic
with interarrival time between 15 and 100 time quanta, and
Jj2 is also aperiodic with interarrival time between 10 and 20
time quanta. Note that the minimum and maximum interar-
rival times of periodic tasks, and the period of aperiodic tasks
are set to — 1. Furthermore, jy and j; share a computational
resource with exclusive access, since the set DS of depen-
dency relationships contains the symmetric tuples (jo, j1)
and (j1, jo). There are no triggering relations, as the set 7S
is empty. Note that the five building blocks of the OPL data
file in Fig. 12 are (1) the specification of the number of time
quanta in the observation interval (line 1) (2) the specifica-
tion of the number of cores (line 3), (3) the specification of
the software tasks (lines 5-12), (4) the specification of the
dependency (line 14), (5) and triggering relations (line 16).
These properties are defined at the lines 4, 8, 24, 25, and 26
in the excerpt of the OPL implementation of the constraint
models (Fig. 6).

By construction, the data specified in OPL has the same
semantics as the stereotypes and stereotype properties in the
pruned version of the UML/MARTE metamodel. Table 3
shows the mapping between stereotypes and stereotype
properties in the pruned metamodel to the OPL elements
defining the COPs data. Such mapping forms the basis of
the UML/MARTE to OPL model transformation, that we
describe hereby.

We transform UML/MARTE models to OPL using
Acceleo,” an open-source implementation of the OMG MOF
Model to Text Language (MTL) standard that allows to nav-
igate Ecore models and generate code based on one or more
templates. In the rest of this section, we describe the model
transformation that generates the five building blocks of OPL
data files. In particular, we first describe the generation of the
number of time quanta and cores of the executing platform
(Sect. 5.4.1), then we describe how OPL tasks are extracted
from a UML/MARTE model (Sect. 5.4.2), and finally we
present the templates generating the dependency and trig-
gering sets (Sects. 5.4.3, 5.4.4).

5.4.1 Generating the number of time quanta and the
number of cores

Recall from Sect. 4 that the number of time quanta in the
OPL model is a parameter of the search, which is not speci-
fied in UML. Therefore, we generate for it a placeholder with

adummy value N. Note that, in practice, the user would need

9 https://eclipse.org/acceleo.

@ Springer

https://eclipse.org/acceleo/

500

S. Di Alesio, S. Sen

Table 3 Mapping of the identified stereotypes and tagged values of UML/MARTE to elements in OPL

Stereotype/tagged value OPL element Note

Application

«SaStep» J Each task or activity is modeled as a task in the task set
SaStep::deadline.value deadline

SaStep::priority priority

SaStep::readyT.value offset

SaStep::interOccT.value period Set to —1 if not specified, i.e., if the task is aperiodic

SaStep::interOccT.best max_interarrival_time

SaStep::interOccT.worst min_interarrival_time

SaStep::selfDelay.best min_delay
SaStep::selfDelay.worst min_delay
SaStep::exceTime.value duration
«SaSharedResource» DS

Platform

«Scheduler» MC, PC, SEC constraints
«SchedPolicyKind» MC, PC, SEC constraints
«HwProcessor» c

HwProcessor::nbCores c

Set to —1 if not specified, i.e., if the task is periodic

Set to —1 if not specified, i.e., if the task is periodic

Set equal to max_delay if the task delay is constant, i.e., not part of the
configuration

Set equal to max_delay if the task delay is constant, i.e., not part of the
configuration

The dependent tasks of a task j are the tasks that share at least one end
of the sharedRes association with j

The scheduler and the scheduling policy are captured by the Multi-core
(MC), Preemption (PC), and Scheduling Efficiency (SEC) constraints of
the model [21]. Note that, in this article, we only consider fixed-priority
preemptive scheduling policies

The processing platform and its number of cores are captured together
as a constant integer value

Note that the triggering set 7S in OPL is not explicitly mapped from MARTE elements, because is derived from standard UML Message objects

1| [template public generateOpl (aModel: Model)]

2 tg = N;

3 c = [aModel.getOwnedMembers () —>selectByType
(HwProcessor) .nbCores.toString () /];

[/template]

IS

Fig. 13 Acceleo template that generates the number of time quanta
and processor cores

to manually specify this value. We navigate to the object of
type HwProcessor in the container Model to extract the num-
ber of cores, as shown in Fig. 13. This is done invoking the
getOwnedMembers method on the input Model, and specifi-
cally requiring via selectByType the HwProcessor member.

5.4.2 Generating the task set

We generate the task set J and the tasks j € J using
the template in Fig. 14. We navigate through every SaStep
object in the Model to extract the tasks properties. In par-
ticular, we generate the task id from the name of the
base_NamedElement of the SaStep (line 2), and the task pri-
ority from the corresponding SaStep property (line 3).

Note that the other task proprieties, such as deadlines and
periods, are mapped to values of type NFP_Real, which are

@ Springer

[template public generateJobs (aSaStep : SaStep)]
#<id: " [aSaStep.base_NamedElement.name/]",
priority: [aSaStep.priority/],
deadline: [extract (’value’, aSaStep.deadline/],
period: [extract ('value’,6 aSaStep.interOccT->

asOrderedSet () —>at (1)) /1,

[R R S

6| min_interarrival time: [extract ('best’,6 aSaStep.
interOccT->asOrderedSet () ->at (1)) /],

7 max_interarrival_time: [extract ('worst’,6 aSaStep.
interOccT->asOrderedSet () ->at (1)) /1,

8 duration: [extract ('value’,6 aSaStep.execTime->
asOrderedSet ()—>at (1)) /1>#

9| [/template]

11| [query public extract (property: String, line:String
) :String = invoke(’'no.certus.simula.sosym.mt.
main.Utility’,’extract (java.lang.String, java.
ang.String)’, Sequence{property, line}) /]

Fig. 14 Acceleo template that generates the task set

specified as expressions in the UML/MARTE Value Specifi-
cation Language (VSL). These expressions are persisted as
String objects, which have to be parsed. Given the limited
support for string matching in Acceleo, we implemented an
ad hoc regular expression parser in Java, which is defined
externally to the template and called through an Acceleo
query (line 11). The regular expression matches the following
pattern:

Using UML/MARTE to support performance tuning and stress testing in real-time systems 501

1| [template public generateDS (aSaStep : SaStep)]
2 [for (aSaSharedResource : SaSharedResource |
aSaStep.sharedRes—->asOrderedSet ())
separator(’\n’)]
3 <<"[aSaStep.base_NamedElement.name/]", "[
aSaSharedResource.base_Lifeline.name
/1">>,

4 <<"[aSaSharedResource.base_Lifeline.name
/1", " [aSaStep.base_NamedElement .name
/1" >>

5 [/for]

6| [/template]

Fig. 15 Acceleo template that generates the task dependency set

" ("+property+")=\\(([0-9]*), ([a-zA-z]*)\\)"

In the pattern, the parameter property is specified in the
Acceleo template as the first argument of the extract func-
tion, while the second group of regular expressions after the
equals sign matches the value of the property. For example,
to extract the value of a task deadline, we match the reg-
ular expression on the property value of SaStep::deadline.
Also note that, in UML/MARTE, SaStep::interOccT and
SaStep::execTime are two properties whose multiplicity is
zero or more. However, in our guidelines, we specify that
only one of these attributes is needed for each SaStep
(Sect. 5.2). Therefore, when extracting values from these
two stereotype properties, we only retrieve the first value
by invoking the OrderedSet:at method with argument 1
(lines 5-8).

5.4.3 Generating the task dependency set

The dependency relations between tasks are extracted by nav-
igating through each SaStep object in the Model, as shown in
Fig. 15. Recall from Sect. 5.2 that we capture the task depen-
dencies through the property SaStep::sharedRes, which has
type SaSharedResource, and that the dependency relation
between tasks is symmetric. As shown in Fig. 12, a depen-
dency set in OPL is a set of tuples indexed by the tasks id,
which in particular contains couples of symmetric tuples.
Note that, since the SaStep::sharedRes property potentially
contains more than one SaSharedResource, we have to iterate
through the set with a for loop.

5.4.4 Generating the task triggering set

Recall from Sect. 5.2 that we capture the triggering relations
between tasks through UML Message objects whose mes-
sageSort property has value create. Therefore, the triggering
set is obtained by navigating through such Message objects.
The name of the task that sends or receives a message is stored
in MessageOccurrenceSpecification objects with the same
name as the Message object. In UML, every MessageOccur-
renceSpecification is stored together with Message objects in

I| [template public generateTS (aMS : Message)]

[for (aM : MessageOccurrenceSpecification | aMS
.interaction.ownedElement—->selectByType (
MessageOccurrenceSpecification)) separator
(’\n’)]1

3 [if aMS.messageSort.equals ("create") && aM.

name = aMS.receiveEvent.name]
<<"[aM.covered.name/]",
[/if]
[/for]

(%)

®© 9 o w s

[for (aM : MessageOccurrenceSpecification | aMS
.interaction.ownedElement->selectByType (
MessageOccurrenceSpecification)) separator
(“\n’)1

9 [if aMS.messageSort.equals ("create") && aM.

name = aMS.sendEvent.name]

10 "[aM.covered.name/]">>

11 [/for]

[/template]

IS

Fig. 16 Acceleo template that generates the task triggering set

an Interaction. For this reason, we extract the triggering and
triggered task names from the sendEvent and receiveEvent
properties of MessageOccurrenceSpecification, respectively.
Unfortunately, there is no direct way in Acceleo to navigate
directly from a Message to the related MessageOccurrence-
Specification, and hence, we performed this navigation with
two separate for loops shown in Fig. 16.

6 Industrial validation

The work reported in this paper originates from the inter-
action over the years with Kongsberg Maritime (KM). KM
faces important challenges when developing the software
components of their real-time systems. Through regular
meetings with KM engineers, we first identified the need
for a model-based testing approach defining the abstractions
required for performance analysis [27]. Then, we focused
on the problem of generating stress test cases violating
performance requirements. casting it as an optimization prob-
lem over a mathematical model of the tasks preemptive
scheduling policy. To prepare for industrial adoption, we ini-
tially evaluated our methodology in five publicly available
case studies of several RTES domains [18]. This prelimi-
nary evaluation showed encouraging results when comparing
constraint programming with a state-of-the-art optimization
strategy based on genetic algorithms [17]. Then we provided
a constrained optimization problem (COP) to automate the
generation of stress test cases, and successfully evaluated it
KM fire and gas monitoring system (FMS) [21]. Finally, we
provided a second version of our COP to automate the gen-
eration of system configurations characterized by task delay
times, and performed a second successful validation in the
FMS [20]. The rest of this section briefly summarizes the
experimental results from previous papers, adding further

@ Springer

502

S. Di Alesio, S. Sen

insight on the benefits of applying UML/MARTE to support
performance tuning and stress testing in RTES.

In previous validation we investigate whether a frame-
work combining UML/MARTE modeling with constrained
programming can effectively be used for performance test-
ing in an industrial context. Therefore, answer three research
questions.

1. RQI—Overhead Can the input data to our approach, i.e.,
the values for the constants in the constraint model, be
provided with reasonable effort in an industrial setting?

2. RQ2.1—Practical usefulness for performance tuning
Can engineers use the output of our first analysis, i.e.,
the values for the delay time variables in the constraint
model, to derive configurations that satisfy the system
performance requirements?

3. RQ2.2—Practical usefulness for stress testing Can engi-
neers use the output of our second analysis, i.e., the
values for the arrival times in the constraint model, to
derive stress test cases that violate the system perfor-
mance requirements?

RQ1: Overhead Given the definition of our approach, all the
information required for performance tuning and stress test-
ing is captured by the conceptual model in Fig. 7, and in
particular by its quantitative elements. To gather this infor-
mation, we started by building UML sequence diagrams
for the I/O drivers in KM, using the design documents and
reverse engineering the implementation of the drivers. The
resulting sequence diagrams were iteratively validated and
refined together with KM engineers. Our industry collabo-
ration confirmed the common belief that sequence diagrams
are among the preferred methods for industrial practition-
ers to visualize concurrent software [27]. The timing and
concurrency data captured by our conceptual model was
obtained from certification design documents (task architec-
ture and periods), drivers source code (priority and offsets),
and performance profiling logs (minimum and maximum
interarrival times, and estimates for the WCET of tasks).
A total of 25 man-hours of effort spanned across 8 days
were spent to obtain the final version of the sequence dia-
grams stereotyped with UML/MARTE. This was considered
worthwhile by KM, because safety-critical I/O drivers are
regularly certified and have long life time. The comput-
ing platform information, such as the number of processor
cores and the scheduling policy, was extracted from con-
figuration and hardware design documents. Note that the
provided mapping to UML/MARTE allows any modeling
development environment that complies to the model-driven
architecture to use the input notation we provided. Further-
more, the pruned UML/MARTE metamodel and its mapping
to OPL constitute important steps toward the fully automa-
tion of our framework, enabling the unassisted generation

@ Springer

4/10 solutions in the frontier (20/71 in total) with
Fcy < 0.2, no deadline misses, and Fpy <100

CPU Usage vs. Response Time
0.45

- Time: 00:27:25
940 FCU: 0.18
. Fpu: 0.5161
0.35 Fpr: 45
:.f, 0.30
3
2 .
S oas o
L]
0.20
®©
0.15
L)
L]
0.10

0 25 50 75 100 125
Response Time

Fig. 17 Pareto-optimal frontier of Fcy and Frr [20]

of data characterizing system configurations and stress test
cases starting from UML/MARTE sequence diagrams.

RQ?2.1: Practical usefulness for performance tuning Recall
from Sect. 2 that we characterize system configurations by
delay times between activities in the /ODispatch task of the
FMS drivers. Therefore, such delay times are the main vari-
ables in our constraint model for performance tuning. We
performed an experiment with the FMS drivers driving the
search with a lexicographic multi-objective criteria [52]. In
lexicographic ordering, the first criterion is considered as the
most important one, and any improvement of the criterion
is worth any loss on the other criteria. The second crite-
rion is the second most important one, for the improvement
of which only losses on the first criterion are not allowed.
The last criterion is the least important one. Using multi-
objective optimization allows us to identify a Pareto-efficient
frontier of solutions achieving an optimal trade-off between
the search criteria ¢ [53]. We run our model for six times,
one for each of the permutations of Fpy (deadline misses),
Frr (response time), and Fcy (CPU Usage). Experimental
results [28] show an opposing trend between response time,
and CPU usage, as confirmed by previous research [54].
Specifically, low CPU usage leads to high response time,
while low response time is usually only possible with high
CPU Usage.

Figure 17 shows the Pareto-optimal frontier of Fcy and
Frr, whose solutions are highlighted with a solid bullet
(o). The circle () highlights the first solution found in
the frontier that satisfies all the requirements, for which
we report the computation time and the objective values.
The two lines orthogonal to the x and y-axes represent the

Using UML/MARTE to support performance tuning and stress testing in real-time systems 503

(a) (b) ()
Fom— 55/81 incumb. w/ deadline misses Frr—18/19 incumb. w/ response time > 1s Fcy—16/20 incumb. w/ CPU usage > 20%
8 125 0.35
7 |
! T 120 002.: | |
5 —— 115 o time: 00:04:46
4 } 110 i Feu: 0.206666667
3 time: 00:03:05 105 0.15 T
2 Fom: 1.691120625 time: 00:02:38 0.1
1 ‘ 100 Fo-: 101 0.05
‘ RT-
0 95 0
00:00:00 01:48:00 03:36:00 05:24:00 00:00:00 01:48:00 03:36:00 05:24:00 00:00:00 01:48:00 03:36:00 05:24:00

Fig. 18 Objective values of Fpm, Frr, and Fey over time, where we highlighted the time when the first incumbent predicted to violate a
performance requirement was found [21]. a Fpy value over time., b Frr value over time, ¢ Fcy value over time

maximum threshold on Frr and Fcy, respectively. Over
the six runs, the search found 71 solutions, 20 of which
satisfying the performance requirements. 10 solutions out
of the total 71 are in the frontier, and 4 out of the 10
satisfy the performance requirements. The first of such
solutions was found in approximately 27 minutes. By def-
inition, the solutions in the frontier do not Pareto-dominate
each other, entailing that for each solution in the frontier
there does not exist any other solution with a lower CPU
usage and a lower response time. Therefore, the solutions
in the Pareto frontier achieve an optimal trade-off between
CPU usage and response, and can be used by engineers
to derive drivers configurations that are as likely as possi-
ble to exhibit low CPU usage, task deadlines, and response
time.

RQ2.2: Practical usefulness for stress testing Similar to the
case of performance tuning, the main goal of evaluating our
approach for stress testing is to investigate whether engineers
can use the solutions of our COP to derive stress test cases
for task deadlines, response time, and CPU usage. We per-
formed an experiment with the FMS drivers running our OPL
model for three times, once for each performance require-
ment. Figure 18 shows the feasible solutions with the best
objective value that were found within five hours. Consistent
with the terminology used in integer programming, we refer
to these solutions as incumbents [55]. In each graph, the x-
axis reports the incumbent computation times in the format
hh:mm:ss, and the y-axis reports the corresponding objective
value.

Since software testing has to accommodate time and bud-
getconstraints, we investigated the trade-off between the time
needed to generate test cases, and their power for revealing
violations of performance requirements, recording the com-
putation times of the first incumbents predicted to violate
the three performance requirements as expressed in Sect. 2.
The run optimizing Fpy is shown in Fig. 18a. The solver
found 55 out of a total of 81 incumbents with at least one
deadline miss in their schedule; the first of such solutions
was found after three minutes. The solution yielding the best

value for Fpy produced a schedule where the PushData task
missed its deadline by 10 ms in three executions over T'. Fig-
ure 18b shows the results for the run optimizing Frr. The
solver found 18 out of 19 incumbents with response time
higher than 1s; the first of such solutions was found after
two minutes. The best solution with respect to Frt produced
a schedule where the response time of the system was 1.2
seconds. Finally, the solutions found by optimizing Fcy are
shown in Fig. 18c. The solver found 16 out of 20 incum-
bents with CPU usage above 20%; the first of such solutions
was found after four minutes. The solution with the highest
value for Fcy produced a schedule where the CPU usage
of the system was 32%. For each objective function, the
solver was able to find, within a few minutes, solutions that
are candidates to stress test the system as they may lead to
requirements violations. Note that these solutions can be used
to start testing the system while the search continues, because
the highest the objective value, the more likely the solutions
are to push the system to violating its performance require-
ments.

7 Toward a UML/MARTE framework for
performance tuning and stress testing:
challenges, experiences and lessons learned

Several recent studies report that applying model-driven
engineering (MDE) methodologies in industrial contexts is
a task complicated by several factors [56]. This is especially
true when it comes to applying UML, which is one of the
cornerstones of several processes implementing the model-
driven architecture. Over the years, an increasing number
of practitioners and researchers have raised the concern that
the UML flexibility in catering a wide range of modeling
notations comes at the cost of the standard being too large
and hence hard to use in practice [57]. Similar concerns
have also been raised on UML/MARTE [58], which, despite
being introduced in 2007, still faces a severe lack of training
material. In this regard, the single notable exception is rep-

@ Springer

504

S. Di Alesio, S. Sen

resented by the recent work of Selic and Gérard [59], which
complements the UML/MARTE specification with practical
guidelines. Note that, even though this specification is not tar-
geted at end users, it is still one of the few sources available
containing examples on how to use the modeling notation
provided in UML/MARTE. This means that, when applying
the profile, practitioners often face the problem of not having
a clearly defined starting point, because there is no general
high-level methodology on how to use UML/MARTE in par-
ticular contexts. Therefore, work in this direction is left to
researchers, who have to define generic methodologies and
frameworks for specific needs, similar to that introduced in
this article with respect to performance tuning and stress test-
ing.

The lack of training material on UML/MARTE is unfor-
tunately not mitigated by adequate tool support. While
integrated development environments (IDEs) for program-
ming have evolved into highly dependable, configurable,
and flexible frameworks, modeling tools are still very far
from that level of usability. Only three tools officially sup-
port UML/MARTE modeling according to OMG,'” namely
Magic Draw,'! IBM Rational Software Architect (RSA),'?
and Papyrus.!3 Our experience in using these tools reflects
that of recent empirical studies raising concerns on their
user-friendliness [60]. In particular, while we found Papyrus
to be the tool with the better support of UML/MARTE, it
still requires the user to be familiar with the UML/MARTE
metamodel. Furthermore, as already reported in the liter-
ature [61], we found the dependability of Papyrus to be
questionable. However, the alternative UML/MARTE imple-
mentations, i.e., those for Magic Draw and RSA, are aligned
with old tool versions, and do not seem to be actively
maintained.

Furthermore, the small amount of significant reported
evidence on the benefits of applying UML/MARTE consid-
erably hinders the industrial adoption of the profile. This
aspect, combined with the small amount of training material
available and the lack of proper tool support, makes practi-
tioners see applying UML/MARTE as an investment with a
high cost, and potentially low returns. To effectively model
and analyze RTESs, defining customized domain-specific
languages (DSLs) from scratch, with ad hoc notation and
semantics, is seen as such an easier alternative, that is worth
the cost of dropping the alignment with widely recognized
standards such as UML. While for better tool support a sig-
nificant conjunct effort from the community, vendors, and
organizations is needed, in this article we attempt at mitigat-

10 http://www.omgmarte.org/node/31.
T http://www.nomagic.com/products/magicdraw.
12 http://www.ibm.com/developerworks/.

13 http://eclipse.org/papyrus/.

@ Springer

ing the lack of methodologies on how to use UML/MARTE,
and reported industrial applications.

7.1 Issues encountered and potential modeling
alternatives

Currently, engineers in Kongsberg Maritime spend several
days simulating the behavior of the FMS and monitoring
its performance requirements. We expect that, by follow-
ing the systematic strategy proposed in this paper, they can
both (1) properly configure the delay times in the FMS I/O
drivers, and (2) stress test them under the worst operating
conditions, so that no safety risks are posed by violating
performance requirements at runtime. While engineers in
KM acknowledged the usefulness of our approach, we can-
not report results on whether the identified configurations
and stress test cases lead to actual satisfactions or viola-
tions of performance requirements at runtime. Even though
this is a clear threat to the validity of our industrial valida-
tion, we argue that the work presented in this article is a
basis to exploit in future work, both to further assess the
applicability of UML/MARTE in industrial contexts, and
to define UML/MARTE-compliant DSLs via the proposed
pruned metamodel.

An important issue we faced concerns the way values
of type NFP_Duration are specified within UML/MARTE.
Recall from Sect. 5 that we use values of the NFP_Duration
supertype NFP_Real to represent the real-time properties
related to software tasks (Table 1). In particular, values
of type NFP_Real are specified according to the Value
Specification Language (VSL), which is also defined in
the UML/MARTE specification. In VSL, the value of a
NFP_Real is represented by tuple expressions of the form
(v, u), where v represents the value and u represents the unit,
e.g., (10, ms). In particular, NFP_Duration contains several
attributes of type NFP_Real, such as best, worst and value,
which we use in the mapping of our conceptual model to
UML/MARTE. The values of the NFP_Duration attributes
should be specified in such a way that the values are explicitly
linked to the attributed they refer to. For example, the expres-
sion (best = (15, ms), value = (20, ms), worst = (25, ms))
represents an NFP_Duration whose best, value, and worst
attributes are 15, 20, and 25 ms, respectively. However,
VSL allows label-less expressions where tuples (v, u) are
not explicitly linked to their attributes. For example, an
NFP_Duration can also be specified with the expression
[(15, ms), (20, ms), (25, ms)]. In this label-less expression,
it is hard to relate NFP_Real values to their attributes,
because UML/MARTE does not specify a default order for
such attributes. Note that, along with several others, this is
still an open issue which will hopefully be fixed in the next

http://www.omgmarte.org/node/31
http://www.nomagic.com/products/magicdraw
http://www.ibm.com/developerworks/
http://eclipse.org/papyrus/

Using UML/MARTE to support performance tuning and stress testing in real-time systems 505

iteration of the speciﬁcation.14 Therefore, we recommend
to avoid label-less expressions for subtypes of NFP_Real,
because they can often lead to confusion. This also impor-
tant in order to ensure that the model-to-text transformation
from UML/MARTE to OPL is able to correctly parse VSL
expressions.

We also noted that a number of semantic inconsisten-
cies with UML, also reported by others [56], can render
models potentially hard to understand. Consider for instance
the stereotype «HwProcessor» from the Hardware Resource
Modeling package, which we use to model the processing
unit of the RTES hardware platform. This stereotype is typ-
ically used on a UML Class, which represents a hardware
component in a class diagram. However, an association of
an «HwProcessor» class with another class which is not
stereotyped is potentially ambiguous. This is because UML
is typically used to model software, and, without any stereo-
type applied, an UML class models a software entity by
default. For this reason, an association between a class mod-
eling a hardware component and a traditional class modeling
a software entity should be given a specific meaning, such
as the deployment of the software to its hardware platform.
As it is often the case when devising methodologies to apply
UML/MARTE, these potential inconsistencies are addressed
in the modeling guidelines we propose (Sect. 5.2).

Furthermore, we found that there exist several abstractions
in UML/MARTE that could possibly be mapped to the con-
cepts presented in our conceptual model. The most notable
example in this respect is the stereotype «RtFeature» from the
High-Level Application Modeling (HLAM) package, which
is used to annotate UML elements with real-time properties,
which are in turn specified in UML comments stereotyped
«RtSpecification». While HLAM does not provide the same
support as the SAM package for schedulability analysis,
«RtSpecification» allows to model arrival patterns for real-
time events, such as triggering of tasks, at a finer-grained
level than «SaStep». In particular, the attribute occKind
of «RtSpecification» allows to specify events arrival pat-
terns through the type ArrivalPattern, including periodic
and aperiodic events. This means that, to achieve a more
powerful description of events arrival patterns, we could
have used the stereotypes «RtFeature» and «RtSpecification»
alongside «SaStep». Even though it is possible in UML to
apply multiple stereotypes to the same entity, we deemed
this to be potentially confusing for practitioners using our
UML/MARTE approach. In addition, recall from Sect. 4 that,
to effectively generate configurations and stress test cases,
we only need the tasks period, and bounds for interarrival
times. These properties can be easily represented through the
value, best, and worst attributes of the interOccT property of
«SaStep», as shown in Table 1.

14 http://issues.omg.org/issues/spec/ MARTE.

7.2 Limitations, generalizability, and scalability of our
approach

The approach presented in this article originates from the
interaction with Kongsberg Maritime over the years, and
hence draws on context factors (Sect. 4) that need to be
ascertained prior to successful application. While we have
found these factors to be commonplace in many industry
sectors relying on RTESs, it is likely that there are more
complex scenarios for which our methodology would have
to be extended. For example, in this article we only consider
a fixed-priority preemptive scheduling policy. However, the
stereotype «Scheduler», which we use to model the RTOS
scheduler, allows the specification of scheduling policies
other than fixed priority. Extending the approach to consider
different policies would require the definition of a set of con-
straints in the COP which would be used in place of those
modeling the preemptive scheduler behavior (Sect. 4.2). Note
that the other constraints of the COP would not need to be
modified.

In our methodology, we do not consider constraints on
memory and network usage. This is because, in the FMS, the
only computational resource contented by tasks which is also
constrained by performance requirements is the CPU. There-
fore, we do not provide guidelines on modeling abstractions
concerning memory or network, such as RAM, hard drives,
or buses. In order to do so, we would have to first analyze how
memory and network usage affect the way tasks are sched-
uled. This would lead to extending our conceptual model in
order to include concepts related to memory network usage,
which would in turn be mapped to entities in UML/MARTE
such as «<kHW_RAM », «<HW_Drive», and «HW_Bus». These
entities, and their relative attributes, would have to be mapped
to constant values in the OPL model, which would in
turn be used to define additional constraints in our COP.
While this work would undeniably require a considerable
effort, we argue that the building blocks of our methodol-
ogy, namely the conceptual model and the COP, could be
extended without the need of being overhauled. In particu-
lar, the conceptual model would contain additional entities,
but adding them would not require modifying the existing
entities and associations. In a similar way, the COP would
contain additional constants, variables, and constraints which
could be added without the need of modifying the existing
ones.

We also note that the scenarios presented in Sect. 2 are
characterized by a relatively small number of tasks and inter-
actions. In practice, more complex behavioral scenarios are
represented across different sequence diagrams, which nest
and cross-reference UML Interaction entities. In order to suc-
cessfully generate the COPs data for these large scenarios,
we would have to retrieve values for the stereotype properties
across different interactions. This would require modify-

@ Springer

http://issues.omg.org/issues/spec/MARTE

506

S. Di Alesio, S. Sen

ing the model-to-text transformation from UML/MARTE to
OPL data files (Sect. 5.4) by adding the capability to navigate
nested interactions.

Recall from Sect. 4 that the ultimate goal of the approach
presented in this paper is to support the generation of config-
urations and stress test cases in RTESs. For this purpose,
UML/MARTE is used to conveniently organize the input
data for the COP in a standard notation. However, it may be
argued whether the approach we propose can effectively be
used in contexts where UML models require a high degree
of formalization, for example including rules specified in
the Object Constraint Language (OCL). In this article, we
do not propose guidelines on particular OCL constraints
to use in order to ensure well-formedness with respect to
our modeling guidelines, and full compliance to UML and
UML/MARTE. This is because, provided that the input
data for the COP is consistently represented in the stereo-
type properties in Table 1, our approach is able to generate
configurations and stress test cases regardless of the full con-
formance of the input models to OMG standards.

Finally, it may also be argued whether the inherent com-
plexity of performance tuning and stress testing in large and
complex RTESs effectively limits the practical effectiveness
of our approach. Indeed, it is likely not possible to exhaus-
tively assess whether a target RTES meets its performance
requirement by tuning performance-related parameters or
identifying worst-case scenarios. However, previous work in
the field shows that doing so is arguably a useful technique
to gain confidence in mitigating the risks associated with
improper system configurations and unforeseen task interac-
tions [17,54].

8 Conclusions and future work

Performance tuning and stress testing in safety-critical Real-
Time Embedded Systems (RTESs) are tasks complicated by
several context factors. In particular, the software compo-
nents of complex RTESs often communicate with a large
number of external devices via software drivers smooth-
ing the data transfer between the hardware and software
components of the system. Drivers are usually designed as
concurrent applications, whose tasks timing can be config-
ured to correctly operate with the specific devices connected.
Nonetheless, safety-critical device drivers are often subject
to requirements on task deadlines, response time, and CPU
usage, which render tuning their timing properties a chal-
lenging task, often performed manually based on engineers
expertise. The satisfaction of these requirements not only
depends on configurable parameters that regulate the tasks
timing, but also on unpredictable environmental conditions
that trigger the system tasks at runtime. Therefore, it is both
necessary to carefully tune the performance-related param-

@ Springer

eters, and to stress test the system to ensure appropriate
responses with respect to external outputs.

In this paper, we presented a methodology, based on
UML/MARTE, that models RTESs to support the genera-
tion of configurations and stress test cases characterized by
RTESs timing properties. In particular, the key idea behind
our work is to (1) identify scenarios where tasks are as far
as possible from their deadlines, and exhibit low response
time and CPU usage (performance tuning), and (2) identify
scenarios where tasks are as close as possible from their dead-
lines, and exhibit high response time and CPU usage (stress
testing). Such scenarios are determined by the way tasks are
scheduled to execute at runtime, which in turn depend on the
value of timing parameters, and external events triggering
the system tasks. Therefore, we enable the definition and the
implementation in model-driven engineering development
processes of a constrained optimization problem (COP) that
finds combinations of timing properties maximizing the sat-
isfaction/violation of performance requirements on deadline
misses, response time, and CPU usage. Specifically, we first
abstract the problem of generating system configurations and
stress test cases by devising a conceptual model that cap-
tures, independently from any modeling notations, the key
entities needed for our analysis. Then, we map our concep-
tual model to stereotypes and stereotype properties in the
standard UML/MARTE profile for modeling and analyzing
the performance of RTESs. We prune from such metamodel
the entities that are not needed for our analysis, obtaining
a significantly smaller metamodel. The pruned metamodel
enables the definition of a mapping between UML/MARTE
and the Optimization Programming Language (OPL), which
is used to define the data for the COP that generates system
configurations and stress test cases. The mapping between
UML/MARTE and OPL is implemented as a model-to-text
transformation in Acceleo, an open-source implementation
of OMG MOF model-to-text language (MTL) standard.

We validate our approach on a RTES from the maritime
and energy domain concerning safety-critical device drivers,
showing that our approach can be applied with reasonable
overhead in an industrial setting, and is able to effectively
identify Pareto-optimal delay times with respect to CPU
usage and response time in less than half hour, and sce-
narios predicted to violate performance requirements in a
few minutes. While we note that our methodology draws
on context factors (Sect. 4) that need to be ascertained
prior to successful application, we have found the factors
to be commonplace in many industry sectors relying on
RTESs. Furthermore, we argue that the model transformation
between the UML/MARTE entities required for our analy-
sis and the OPL constructs encapsulating the COP data is a
significant step toward the full automation of our approach.
Achieving this full automation would require building a
framework which encapsulates both the model transforma-

Using UML/MARTE to support performance tuning and stress testing in real-time systems

507

tion from UML/MARTE to OPL, and the resolution of the
constraint model via ILOG CPLEX CP Optimizer. These
two steps currently have to be performed separately. Never-
theless, we envision that future work on implementing such
a framework is not prone to facing significant technology
limitations, due to the open-source nature of Acceleo and the
interoperability of ILOG CPLEX CP Optimizer with several
languages, such as C++ and Java.

References

10.

11.

12.

13.

14.

15.

16.

. Henzinger, T.A., Sifakis, J.: The embedded systems design chal-

lenge. In: FM 2006: Formal Methods, pp. 1-15. Springer, Berlin
(2006)

Lee,E.A., Seshia, S.A.: Introduction to embedded systems, a cyber-
physical systems approach (2011). http://LeeSeshia.org

Lala, J.H., Harper, R.E.: Architectural principles for safety-critical
real-time applications. Proc. IEEE 82(1), 25-40 (1994)

Kopetz, H.: Real-Time Systems: Design Principles for Distributed
Embedded Applications. Springer, Berlin (2011)

Storey, N.R.: Safety Critical Computer Systems. Addison-Wesley
Longman Publishing Co. Inc., Redwood City (1996)

Gomaa, H.: Designing concurrent, distributed, and real-time appli-
cations with UML. In: Proceedings of the 28th International
Conference on Software Engineering. ACM, pp. 1059-1060 (2006)
Bell, R.: Introduction to IEC 61508. In: Proceedings of the 10th
Australian Workshop on Safety Critical Systems and Software-
Volume 55, pp. 3-12. Australian Computer Society, Inc., Dar-
linghurst (2006)

Beizer, B.: Software Testing Techniques, 2nd edn. Van Nostrand
Reinhold, New York (1990)

Woodside, M., Franks, G., Petriu, D.C.: The future of software per-
formance engineering. In: Future of Software Engineering, 2007.
FOSE’07. IEEE, pp. 171-187 (2007)

Balsamo, S., Marco, A.D., Inverardi, P., Simeoni, M.: Model-based
performance prediction in software development: a survey. IEEE
Trans. Softw. Eng. 30(5), 295-310 (2004)

Demathieu, S., Thomas, F., André, C., Gérard, S., Terrier, F.: First
experiments using the UML profile for MARTE. In: 2008 11th
IEEE International Symposium on Object Oriented Real-Time Dis-
tributed Computing (ISORC), pp. 50-57 (2008)

Ali, S., Briand, L.C., Hemmati, H.: Modeling robustness behavior
using aspect-oriented modeling to support robustness testing of
industrial systems. Softw. Syst. Model. 11(4), 633-670 (2012)
Igbal, M., Ali, S., Yue, T., Briand, L.: Experiences of applying
UML/MARTE on three industrial projects. In: Model Driven Engi-
neering Languages and Systems, pp. 642-658. Springer, Berlin
(2012)

David, A., Illum, J., Larsen, K.G., Skou, A.: Model-based frame-
work for schedulability analysis using UPPAAL 4.1. Model-based
Des. Embed. Syst. 1(1), 93-119 (2009)

Clarke, E.M., Klieber, W., Novacek, M., Zuliani, P.: Model check-
ing and the state explosion problem. In: Tools for Practical Software
Verification, pp. 1-30. Springer, Berlin (2012)

Nejati, S., Adedjouma, M., Briand, L.C., Hellebaut, J., Begey, J.,
Clement, Y.: Minimizing CPU time shortage risks in integrated
embedded software. In: 2013 IEEE/ACM 28th International Con-
ference on Automated Software Engineering (ASE), pp. 529-539
(2013)

Briand, L.C., Labiche, Y., Shousha, M.: Using genetic algorithms
for early schedulability analysis and stress testing in real-time sys-
tems. Genet. Program. Evolvable Mach. 7(2), 145-170 (2006)

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

Di Alesio, S., Nejati, S., Briand, L., Gotlieb, A.: Stress testing
of task deadlines: a constraint programming approach. In: IEEE
24th International Symposium on Software Reliability Engineering
(ISSRE), pp. 158-167 (2013)

Harel, D., Marelly, R.: Specifying and executing behavioral
requirements: the play-in/play-out approach. Software and Sys-
tems Modeling 2(2), 82-107 (2003)

Di Alesio, S.: Optimal performance tuning in real-time systems
using multi-objective constrained optimization. In: 22nd Inter-
national Conference on Principles and Practice of Constraint
Programming (CP 2016) (2016)

Di Alesio, S., Nejati, S., Briand, L., Gotlieb, A.: Worst-case
scheduling of software tasks—a constraint optimization model to
support performance testing. In: Principles and Practice of Con-
straint Programming (CP 2014) (2014)

Sen, S., Moha, N., Baudry, B., Jézéquel, J.-M.: Meta-model prun-
ing. In: Model Driven Engineering Languages and Systems, pp.
32-46. Springer, Berlin (2009)

Steel, J., Jézéquel, J.-M.: On model typing. Softw. Syst. Model.
6(4), 401-413 (2007)

Sen, S., Moha, N., Mahé, V., Barais, O., Baudry, B., Jézéquel, J.-
M.: Reusable model transformations. Softw. Syst. Model. 11(1),
111-125 (2012)

Van Hentenryck, P.: The OPL optimization programming language.
MIT Press, Cambridge (1999)

Di Alesio, S., Gotlieb, A., Nejati, S., Briand, L.: Testing deadline
misses for real-time systems using constraint optimization tech-
niques. In: 2012 IEEE Fifth International Conference on Software
Testing, Verification and Validation (ICST), pp. 764-769 (2012)
Nejati, S., Di Alesio, S., Sabetzadeh, M., Briand, L.: Modeling
and analysis of CPU usage in safety-critical embedded systems to
support stress testing. In: Model Driven Engineering Languages
and Systems, pp. 759-775, Springer, Berlin (2012)

Di Alesio, S., Briand, L., Nejati, S., Gotlieb, A.: Combining genetic
algorithms and constraint programming to support stress testing of
task deadlines. ACM Trans Soft Eng Methodol. 25, 4:1-4:37
Buttazzo, G.C.: Hard real-time computing systems: predictable
scheduling algorithms and applications, vol. 24. Springer, Berlin
(2011)

Shin, K.G., Ramanathan, P.: Real-time computing: a new disci-
pline of computer science and engineering. Proc. IEEE 82(1), 6-24
(1994)

Tindell, K., Clark, J.: Holistic schedulability analysis for distributed
hard real-time systems. Microprocess. Microprogram. 40(2), 117-
134 (1994)

Baker, T.P.: An analysis of fixed-priority schedulability on a mul-
tiprocessor. Real Time Syst. 32(1-2), 49-71 (2006)

Mikucionis, M., Larsen, K.G., Rasmussen, J.I., Nielsen, B., Skou,
A., Palm, S.U., Pedersen, J.S., Hougaard, P.: Schedulability anal-
ysis using UPPAAL: Herschel-Planck case study. In: Leveraging
Applications of Formal Methods, Verification, and Validation, pp.
175-190. Springer, Berlin (2010)

Di Marco, V.C.A., Inverardi, P.: Model-Based Software Perfor-
mance Analysis. Springer, Berlin (2011)

Lazowska, E.D., Zahorjan, J., Graham, G.S., Sevcik, K.C.: Quan-
titative System Performance: Computer System Analysis Using
Queueing Network Models. Prentice-Hall Inc., Englewood Clifts
(1984)

Kartson, D., Balbo, G., Donatelli, S., Franceschinis, G., Conte,
G.: Modelling with Generalized Stochastic Petri Nets. Wiley, New
York (1994)

Plateau, B., Atif, K.: Stochastic automata network of modeling par-
allel systems. IEEE Trans. Softw. Eng. 17(10), 1093-1108 (1991)
Petriu, D.C.: Software model-based performance analysis. In:
Babau, J.P., Blay-Fornarino, M., Champeau, J., Robert, S., Sabetta,
A. (eds.) Model Driven Engineering for distributed Real-Time

@ Springer

http://LeeSeshia.org

508

S. Di Alesio, S. Sen

39.

40.

41.

42.

43.

44,

45.

46.

47.

48.

49.

50.

S1.

52.

53.

54.

55.

56.

57.

58.

59.

Systems: MARTE Modelling, Model Transformations and Their
Usages. ISTE Ltd and Wiley, New York (2010)

Shousha, M., Briand, L., Labiche, Y.: A UML/SPT model analysis
methodology for concurrent systems based on genetic algorithms.
In: Model Driven Engineering Languages and Systems, pp. 475—
489. Springer, Berlin (2008)

Mraidha, C., Tucci-Piergiovanni, S., Gerard, S.: Optimum: a marte-
based methodology for schedulability analysis at early design
stages. ACM SIGSOFT Softw. Eng. Notes 36(1), 1-8 (2011)
Alur, R., Courcoubetis, C., Dill, D.: Model-checking for real-time
systems. In: Proceedings, Fifth Annual IEEE Symposium on Logic
in Computer Science, 1990. LICS’90, pp. 414425 (1990)
Behrmann, G., David, A., Larsen, K.G.: A tutorial on UPPAAL. In:
Formal methods for the design of real-time systems, pp. 200-236.
Springer, Berlin (2004)

Baptiste, P., Le Pape, C., Nuijten, W.: Constraint-Based Schedul-
ing: Applying Constraint Programming to Scheduling Problems,
vol. 39. Springer, Berlin (2001)

Singh, A.: Identifying Malicious Code Through Reverse Engineer-
ing. Springer, Berlin (2009)

Wilhelm, R., Engblom, J., Ermedahl, A., Holsti, N., Thesing, S.,
Whalley, D., Bernat, G., Ferdinand, C., Heckmann, R., Mitra, T.,
et al.: The worst-case execution-time problemoverview of methods
and survey of tools. ACM Trans. Embed. Comput. Syst. (TECS)
7(3), 36 (2008)

Selic, B.: Using UML for modeling complex real-time systems. In:
Mueller, F., Bestavros, A. (eds.) Languages, Compilers, and Tools
for Embedded Systems, pp. 250-260. Springer, Berlin (1998)
OMG: UML profile for MARTE: modeling and analysis of real-
time embedded systems. OMG, Technical Report OMG Document
Number: formal/2011-06-02 (2011)

Sprunt, B., Sha, L., Lehoczky, J.: Aperiodic task scheduling for
hard-real-time systems. Real Time Syst. 1(1), 27-60 (1989)
Schmidt, D.C.: Model-driven engineering. IEEE Comput. Soc.
39(2), 25 (2006)

Committee, I.S. et al.: 754-2008 IEEE standard for floating-point
arithmetic. IEEE Computer Society Std (2008)

Bruce, K., Vanderwaart, J.: Semantics-driven language design-
statically type-safe virtual types in object-oriented languages.
Electron. Notes Theor. Comput. Sci. 20(1), 1-26 (2004)

Hwang, C.-L., Masud, A.S.M.: Multiple objective decision
making-methods and applications: a state-of-the-art survey. Lec-
ture Notes in Economics and Mathematical Systems, vol. 164
(1979)

Pardalos, P., Migdalas, A., Pitsoulis, L.: Pareto Optimality, Game
Theory and Equilibria, vol. 17. Springer, New York (2008)
Nejati, S., Briand, L.C.: Identifying optimal trade-offs between
CPU time usage and temporal constraints using search. In: Pro-
ceedings of the 2014 International Symposium on Software Testing
and Analysis, pp. 351-361. ACM (2014)

Atamtiirk, A., Savelsbergh, M.W.: Integer-programming software
systems. Ann. Oper. Res. 140(1), 67-124 (2005)

Igbal, M.Z., Ali, S., Yue, T., Briand, L.: Applying UML/MARTE on
industrial projects: challenges, experiences, and guidelines. Softw.
Syst. Model. 14(4), 1367-1385 (2015)

Grossman, M., Aronson, J.E., McCarthy, R.V.: Does UML make
the grade? Insights from the software development community. Inf.
Softw. Technol. 47(6), 383-397 (2005)

Espinoza, H., Richter, K., Gérard, S.: Evaluating MARTE in an
industry-driven environment: TIMMO’s challenges for AUTOSAR
timing modeling. Modeling and Analysis of Real-Time and Embed-
ded Systems with the MARTE UML Profile (2008)

Selic, B., Gérard, S.: Modeling and Analysis of Real-Time and
Embedded Systems with UML and MARTE: Developing Cyber-
Physical Systems. Elsevier, Amsterdam (2013)

@ Springer

60.

61.

Safdar, S.A., Igbal, M.Z., Khan, M.U.: Empirical evaluation of
UML modeling tools—a controlled experiment. In: Taentzer, G.,
Bordeleau, F. (eds.) Modelling Foundations and Applications.
Springer, Berlin, pp. 33—44 (2015)

Middleton, S.E., Servin, A., Zlatev, Z., Nasser, B., Papay, J.,
Boniface, M.: Experiences using the UML profile for MARTE to
stochastically model post-production interactive applications. In:
eChallenges, 2010, pp. 1-8 (2010)

Dr. Stefano Di Alesio is a
Postdoctoral Fellow in the Soft-
ware Engineering Department at
Simula Research Laboratory. He
received his Ph.D. (Computer
Science, March 2015) from the
University of Luxembourg. His
research interests revolve around
developing efficient, effective,
and scalable methodologies to
support verification and valida-
tion of large industrial software
systems. While carrying out his
research, Dr. Di Alesio built
expertise in the areas of model-

driven, search-based, and reverse software engineering. He has pub-
lished papers on these topics on widely recognized conferences and
journals, including MODELS, ISSRE, ACM TOSEM, SANER and
ASE. Dr. Di Alesio has also been a reviewer of several acknowledged
software engineering journals, such as RESS, SoSyM, and EMSE.

Dr. Sagar Sen is a research sci-
entist at Simula Research Labo-
ratory and visiting scientist at the
Cancer Registry of Norway. Dr.
Sen’s interests are in verification
and validation (V&V) of socio-
technical systems. His research
is based on industrial cases from
the Norwegian Customs and the
Cancer Registry of Norway. He
has published scientific articles
spanning subjects such as testing
data-intensive systems, testing
self-adaptive systems, domain-
specific modelling, graph trans-

formations, social/human computing, gamification, and applications of
lightweight formal methods in software engineering. He supervises sev-
eral masters students and a Ph.D. student. Dr. Sen co-founded Sweetzpot
ASin2015 to develop sensors and cyber-physical systems for endurance
sports. He holds a M.Sc. (2006) in Computer Science from McGill Uni-
versity, Canada and a Ph.D. (2010) from Université de Rennes 1 while
conducting research in INRIA, Rennes, in France. He has been a postdoc
at INRIA Sophia-Antipolis and Ecole des Mines, Nantes.

	Using UML/MARTE to support performance tuning and stress testing in real-time systems
	Abstract
	1 Introduction
	2 Motivating case study
	2.1 Implementation 1: Data transfer with one singular task and four activities
	2.2 Implementation 2: Data transfer with four aperiodic tasks

	3 Related work
	4 Approach overview
	4.1 Modeling timing and concurrency abstractions in UML/MARTE
	4.2 Generating system configurations and stress test cases with constrained optimization

	5 Supporting performance tuning and stress testing with UML/MARTE modeling
	5.1 A conceptual model for performance tuning and stress testing
	5.2 Mapping the conceptual model to UML/MARTE
	5.2.1 Mapping conceptual entities to UML
	5.2.2 Mapping conceptual entities to UML/MARTE

	5.3 Pruning the UML/MARTE metamodel
	5.4 Mapping the pruned UML/MARTE metamodel to OPL
	5.4.1 Generating the number of time quanta and the number of cores
	5.4.2 Generating the task set
	5.4.3 Generating the task dependency set
	5.4.4 Generating the task triggering set

	6 Industrial validation
	7 Toward a UML/MARTE framework for performance tuning and stress testing: challenges, experiences and lessons learned
	7.1 Issues encountered and potential modeling alternatives
	7.2 Limitations, generalizability, and scalability of our approach

	8 Conclusions and future work
	References

