
Softw Syst Model (2019) 18:157–189
https://doi.org/10.1007/s10270-017-0583-z

THEME SECTION PAPER

Transactional execution of hierarchical reconfigurations
in cyber-physical systems

Christian Heinzemann1 · Steffen Becker2 · Andreas Volk3

Received: 15 March 2016 / Revised: 18 December 2016 / Accepted: 10 January 2017 / Published online: 1 February 2017
© Springer-Verlag Berlin Heidelberg 2017

Abstract Cyber-physical systems reconfigure the structure
of their software architecture, e.g., to avoid hazardous situa-
tions and to optimize operational conditions like their energy
consumption. These reconfigurations have to be safe so that
the systems protect their users or environment against harm-
ful conditions or events while changing their structure. As
software architectures are typically built on components,
reconfiguration actions need to take into account the com-
ponent structure. This structure should support vertical com-
position to enable hierarchically encapsulated components.
While many reconfiguration approaches for cyber-physical
and embedded real-time systems allow the use of hierarchi-
cally embedded components, i.e., vertical composition, none
of them offers a modeling and verification solution to take
hierarchical composition, i.e., encapsulation, into account
thus limiting reuse and compositional verification. In this
paper, we present an extension to our existing modeling
language, MechatronicUML, to enable safe hierarchical
reconfigurations. The three extensions are (a) an adapted
variant of the 2-phase-commit protocol to initiate recon-
figurations that maintain component encapsulation, (b) the

Communicated by Dr. ’ F. Ciccozzi, J. Carlson, P. Pelliccione, and M.
Tivoli.

B Christian Heinzemann
christian.heinzemann@de.bosch.com

Steffen Becker
steffen.becker@informatik.tu-chemnitz.de

Andreas Volk
andreas.volk@bosch-softtec.com

1 Robert Bosch GmbH, Corporate Research, Renningen,
Germany

2 Technical University Chemnitz, Chemnitz, Germany

3 Bosch SoftTec GmbH, Hildesheim, Germany

integration of feedback controllers during reconfiguration,
and (c) a verification approachbasedon (timed)model check-
ing for instances of our model. We illustrate our approach on
a case study in the area of smart railway systems by show-
ing two different use cases of our approach. We show that
using our approach the systems can be easily designed to
reconfigure safely.

Keywords CPS · Safe reconfiguration · Correctness-by-
construction ·Runtime reconfiguration ·Component model ·
Reconfiguration behavior · Feedback controller exchange ·
Transactions · Atomicity · Consistency · Isolation · Timed
model checking

1 Introduction

Cyber-physical systems (CPSs) are systems that operate in
physical environments in real time but are driven by software.
Examples of CPSs include smart cars, smart railway systems,
or smart grids. As such systems interact with humans, they
have to be safe. Safety is not easy to achieve as the con-
crete physical conditions these systems operate in are often
highly dynamic and unknown at design time. Despite these
environmental characteristics, CPSs shall operate at near-
optimal conditions (e.g., with minimum use of resources)
while never entering hazardous situations. One (technical)
approach to achieve these objectives is to safely adapt the
systems behavior tomatch its current environment by restruc-
turing the systems software architecture.

This software architecture typically consists of software
components and their connections. These components encap-
sulate their implementation to gain better maintainability,
reusability, and analyzability. They can be composed either
horizontally, e.g., components on the same hierarchy level

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10270-017-0583-z&domain=pdf

158 C. Heinzemann et al.

cooperate via messages to provide some functionality, or
vertically, i.e., components embed reused components as
children [1]. Particularly, the latter composition type requires
that reconfiguration actions take into account this encapsu-
lation. Hence, reconfiguration requests need to propagate
recursively through the software components vertical hier-
archy using properly defined component interfaces.

The focus of this paper is on the design of correct recon-
figurations and their safe execution in real-time CPS that are
composed of hierarchical components. Hence, reconfigura-
tions in such systems have to fulfill three essential properties:
First, they have to respect real-time properties (i.e., respect
tight deadlines). Second, they have to execute according to
ACI properties [2]: atomicity, i.e., either all or no recon-
figurations throughout the vertical component composition
have to execute; consistency, i.e., while and after executing a
reconfiguration the system has to be in a consistent state; and
isolation, i.e., reconfigurations need to be mutually exclusive
so that one reconfiguration cannot interferewith another lead-
ing to invalid configurations. Third, a reconfiguration has to
respect the continuous nature of the physical environment
where discrete changes cannot be implemented. For exam-
ple, we cannot stop the control system of the car for executing
a reconfiguration while the car is still moving.

While many reconfiguration approaches for embedded,
real-time systems take horizontal composition into account,
most of them do not offer a comprehensive modeling and
verification solution to take hierarchical composition, i.e.,
encapsulation, into account. As a consequence they lose the
advantages of hierarchical compositions, i.e., reusing com-
ponents to implement composed components and scalable
hierarchical verifications. Such verification approaches ver-
ify each component separately, thereby relying on the verified
child component properties. From those approaches which
consider vertical composition [3,4], none fulfill the combi-
nationof real-time,ACIproperties, and controller component
support.

In this paper, we present an extension to our existing mod-
eling language, MechatronicUML [5,6]. Our extension
enables to specify platform-independentmodels of hierarchi-
cal reconfigurations. Thesemodels help software designers to
control all aspects of designing reconfigurations in the con-
text of a continuous physical environment which imposes
additional requirements and constraints on the system and
its timing. Our extension advances our previous article [7]
on how to implement proper reconfiguration interfaces with
ACI properties in our component model. Compared to what
we presented in [7], i.e., a verifiable reconfiguration protocol
which guarantees ACI properties and real-time constraints
by design, this paper additionally addresses the continuous
physical environment. Interaction with this environment is
performed by utilizing feedback controllers, i.e., components
that try to get a target metric of the CPS as fast and as

Fig. 1 RailCab prototype in scale 1:2.5 on the university test track

close as possible to a set value. For example, they control
the current speed of a smart vehicle and take into account
that acceleration and breaking takes a while in a real physi-
cal environment.We extended our reconfiguration actions, so
that also reconfigurations are supported that have an impact
on target values of reconfigured feedback controller compo-
nents.

We illustrate our novel approach on a proof-of-concept
case study in the area of smart railway systems. However, our
example system, called a RailCab,1 is a real-world research
prototype of such a smart train (cf. Fig. 1) that has been built
at the University of Paderborn. In our case study, we inten-
tionally focus on a slice of the software of this system to be
modeled and analyzed. In particular, we model and analyze
the reconfigurations of its drive control logic. This logic may
be requested to enter convoy mode by adapting the speed
controller to rely on external speed information and the dis-
tance to the train ahead instead of a manually defined target
speed. TheRailCab’s software is also a case study for a recon-
figuration which impacts a controller’s set value (i.e., the
target speed). For both use cases, we show their realization
in our model and we demonstrate the model’s correctness
via (timed) model checking. Throughout the remainder of
this paper, we will use the RailCab case study as a running
example to illustrate our concepts. Therefore, it is described
in the course of the paper, without having a dedicated section.

The paper is structured as follows. Section2 introduces the
MechatronicUML design method that is the basis for our
contributions. Section3 gives an overview on our approach
to extendMechatronicUML. The following sections detail
this approach. Section4 introduces reconfiguration con-
trollers, Sect. 5 our reconfiguration protocol, and Sect. 6 our
declarativemodeling concepts to ease the task of the software

1 http://www.railcab.de.

123

http://www.railcab.de

Transactional execution of hierarchical reconfigurations in cyber-physical systems 159

architect. Section7 explains how the declarative specifica-
tion is translated by a model transformation into the system’s
implementationwhich is then verified as illustrated in Sect. 8.
Section9 contains remarks on our proof-of-concept tool sup-
port. Section10 lists remaining assumptions and limitations
of our approach. After a review of related work in Sect. 11,
we conclude and outline future work.

2 MechatronicUML component model

MechatronicUML [5,8] is a domain-specific modeling
language (DSML) for specifying the software of a CPS.
MechatronicUML specifically targets the specification of
(i) a component-based software architecture, (ii) the real-time
behavior of the components, and (iii) the reconfiguration of
the software architecture at run time. MechatronicUML
distinguishes between platform-independent models (PIM)
and platform-specificmodels (PSM) as defined by themodel-
driven architecture approach [9]. In this paper, we focus on
the PIM level.

In this section,we introduce the basic parts of theMecha-
tronicUML component model [8,10] that are required for
the contribution of this paper and refer to the given literature
for a complete definition. The MechatronicUML compo-
nent model enables to specify a component-based software
architecture including the reconfiguration of the software
architecture at run time.

In the remainder of this section, we first review the spec-
ification of components (Sect. 2.1) and their instantiation to
component instances (Sect. 2.2). Thereafter, we describe the
specification of reconfigurations of the software architec-
ture based on component story diagrams (Sect. 2.3) and the
definition of architectural constraints (Sect. 2.4). Along with
the component model, we also introduce the main parts of
the RailCab model that we will use as a running example
throughout the remainder of this paper.

2.1 Components

“A [..] component is a software element that conforms to a
component model and can be independently deployed and
composed without modification according to a composition
standard.” [11, p. 7] In accordance with UML [12], com-
ponents are either implemented directly or assembled from
other components, thereby forming a hierarchy of compo-
nents. We refer to the former as atomic components and to
the latter as structured components. In both cases, the inter-
nals of a component are hidden from the outside world. This
is denoted as component encapsulation [1]. Access to the
capabilities or data of a component is only allowed via its
ports.

Figure2 shows a slightly simplified version of the struc-
tured component RailCabDriveControl that implements the
driving functionality of the RailCab. For a full version of the
example, we refer to [10]. The behavior of RailCabDriveCon-
trol is definedby the concurrent executionof the six embedded
components. All of the referenced components are atomic
components except the VelocityController, which we show in
detail in Fig. 3.

TheMechatronicUML component model distinguishes
atomic components and ports based on their purpose and the
information they process or exchange. We introduce these
kinds of atomic components and ports based on our running
example in the following.

The embedded components ConvoyCoordination, Mem-

berControl, and OperationStrategy are discrete atomic com-
ponents. Discrete atomic components define the discrete,
event-based real-time behavior of the system. As a result,
a discrete component operates on time-discrete values and
implements message-based communication. In our example,
ConvoyCoordination andMemberControl implement the behav-
ior of a RailCab being a coordinator or member of a convoy,
respectively. The behavior of discrete components is defined
by hierarchical state machines called real-time statecharts
(RTSCs). In essence, they are UML state machines [12]
that are extended by the clock concept of UPPAAL timed
automata [13]. RTSCs are event-triggered and their opera-
tional semantics is defined by a mapping to UPPAAL timed
automata [14].

The embedded components SpeedSensor and Distance-

Sensor are continuous atomic components. Continuous com-
ponents represent the sensors, actuators, and feedback con-
trollers of the system. Thus, they operate on time-continuous
signals and their correctness depends on the physical behav-
ior of the controlled system. In our example, SpeedSensor
and DistanceSensor are sensors that measure the current
speed of the RailCab and its distance to a preceding Rail-
Cab. The behavior of continuous components is specified in
a control engineering tool such as MATLAB/Simulink.2

In our example, we use three kinds of ports for connecting
components. These are discrete ports, continuous ports, and
hybrid ports. Discrete ports send and receive asynchronous
messages and enable to implement communication proto-
cols for the interaction of different components and systems.
Therefore, they define messages that they may send and
receive including a protocol state machine specified by an
RTSC. The semantics of discrete ports is defined by the oper-
ational semantics of theRTSC, i.e., via timed automata. In our
example, the ports coordinator and member of RailCabDrive-

Control are discrete ports that implement the communication
protocol for the convoy drive. The small embedded trian-
gles indicate the communication direction. Continuous and

2 http://www.mathworks.com/products/simulink.

123

http://www.mathworks.com/products/simulink

160 C. Heinzemann et al.

member :
MemberControl [0..1]

convoy :
ConvoyCoordination [0..1]

RailCabDriveControl

ctrl :
VelocityController [1]

refSpeed

curSpeed curDist

refDist

refDist

force
strategy :

OperationStrategy [1]peer

refSpeed

speedProvider

peer

coordinatorcoordinator member member

receiver

strategySender

speedProvider

maxSpeed

dist :
DistanceSensor [0..1]

distance
sp :

SpeedSensor [1]
speed

180 180

Legend

Discrete Single Port with
Cardinality [1..1] / [0..1]

Discrete Multi Port with
Cardinality [1..*] / [0..*]

Continuous Port with
Cardinality [1..1] / [0..1]

Hybrid Port with
Cardinality [1..1]

...Discrete Component Continuous Component Hybrid Component

Fig. 2 Component type RailCabDriveControl

hybrid ports send or receive a time-continuous signal. Hybrid
ports sample the time-continuous signalwith a fixed period to
enable interaction between discrete components and continu-
ous components. In our example, the port speedof SpeedSen-
sor is a continuous port while refSpeed of OperationStrategy

is a hybrid port that enables to set the reference speed of
the VelocityController. Continuous ports connected to a circle
with an embedded sine wave such as force of ctrl in Fig. 2 are
directly connected to the digital hardware upon deployment.

Ports define a cardinality that defines the minimum and
maximum number of instances that a component may have
of that port. Ports are optional if the lower bound of the
cardinality is 0. Optional ports are visualized with unfilled
triangles such as member of RailCabDriveControl or refDist of
VelocityController. Ports with an upper bound greater than 1
are called multi-ports. They are visualized with a cascaded
border such as coordinator of RailCabDriveControl.

Figure3 shows the structured component VelocityCon-

troller. The VelocityController embeds three components. The
continuous component StandaloneDrive implements the feed-
back controller for driving alone or as a coordinator of a
convoy. It controls the speed of the RailCab only based on
the current speed received via curSpeed and a reference speed
received via refSpeed. The continuous component Convoy-

Drive implements the feedback controller for driving as a
member of a convoy. It additionally considers the distance to
the preceding RailCab for controlling the speed.

Finally, ConvoyFading is a so-called fading component.
A fading component enables to switch between continuous
component instances as part of a reconfiguration (cf. Sect. 5.2

for details) if they produce the same output signal such as
force in Fig. 3. In general, continuous component instances
must not be replaced instantaneously because this may cause
a jump in the value of the controlled variable force at themotor
that may damage it. For preventing such jumps, a fading
component implements fading functions based on cross-
fading [15] or flatness-based switching [16] for smoothing
the output signal while replacing continuous component
instances. The fading functions are implemented directly in
a control engineering tool as for continuous components.

2.2 Instantiating components to component instances

The components introduced in Sect. 2.1 are instantiated to
stateful component instances for defining a software archi-
tecture of a system.Componentsmaybe instantiatedmultiple
times in a system. In particular, each structured component
instance creates its own instances for the components that are
embedded by the component parts. Upon instantiation, the
number of port instances for each port, the number of embed-
ded component instances for each component part, and the
connector instances need to be determined. By default, all
ports and component parts are instantiated with minimum
cardinality and may not exceed the maximum cardinality
when reconfigured [10].

Each component instance has a configuration that is
defined by its currently instantiated port instances, embedded
component instances, and connector instances. The compo-
nent instance configuration (CIC) of the system [8] is defined
by the configurations of all component instances.

123

Transactional execution of hierarchical reconfigurations in cyber-physical systems 161

+ -

VelocityController

standalone_ctrl :
StandaloneDrive [0..1]

refSpeed

curSpeed

curDist

convoy_ctrl :
ConvoyDrive [0..1]

refSpeed

curSpeed

refDist

force

force

curDist

refSpeed

curSpeed

refDist

force

fade :
ConvoyFading [1]

standalone

convoy
force

Legend
Continuous Port with
Cardinality [1..1] / [0..1]... Continuous Component Fading Component+ -...

Fig. 3 Component type VelocityController

standaloneRC : RailCabDriveControl

vc1 / ctrl :
VelocityController

:refSpeed

:curSpeed

:force

os / strategy :
OperationStrategy

:refSpeed

:peer :peer

sp / sp : SpeedSensor
:speed

180 180

Legend

Discrete Port Instance Continuous Port Instance Hybrid Port Instance

...
Discrete Component
Instance

Continuous Component
Instance

Hybrid Component
Instance

Fig. 4 Component instance of component RailCabDriveControl for a RailCab driving alone

Figure4 shows the CIC of RailCabDriveControl for a Rail-
Cabdriving alone. The standaloneRC only embeds three com-
ponent instances: os of type OperationStrategy, vc1 of type
VelocityController, and sp of type SpeedSensor. Consequently,
the reference speed for theRailCab is defined solely by os and
provided to vc1. vc1 controls the force of the electric motor
only based on this reference speed and the current speed of
the RailCab provided by sp. Thus, vc1 only uses the feedback
controller implemented in StandaloneDrive (cf. Fig. 3).

In the following, we introduce a second CIC of Rail-

CabDriveControl for a RailCab driving as a convoy member.
We introduce this CIC because we use the corresponding
reconfiguration from driving alone to driving as a convoy
member as a running example throughout the remainder of
this paper. The Member shown in Fig. 5 embeds five com-
ponent instances. In addition to standaloneRC, Member has
instances mc of type MemberControl and ds of type Distance-

Sensor. mc is connected to the coordinator of the convoy via
its member port and propagates the reference speed of the
convoy to os. In addition, it sets the reference distance to
vc2. The instance vc2 of VelocityController now executes the
feedback controller implemented in ConvoyDrive and, thus,
controls the force of the electric motor based on the refer-
ence speed and the reference distance. The current distance
to the preceding RailCab is provided by the instance ds of
DistanceSensor.

2.3 Specifying reconfigurations

In our approach, we distinguish between functional behavior
and reconfiguration behavior [17,18]. The functional behav-
ior is defined as the behavior that is executed by the current
CIC. The reconfiguration behavior defines possible modifi-
cations of the CIC that may be executed at run time. During

123

162 C. Heinzemann et al.

Member : RailCabDriveControl

mc / member :
MemberControl

vc2 / ctrl :
VelocityController

:refSpeed

:curSpeed :curDist

:refDist

:refDist

:force

os / strategy :
OperationStrategy:peer

:refSpeed

:speedProvider

:peer

:member :member

:maxSpeed

ds / dist :
DistanceSensor

:distance
sp / sp :

SpeedSensor
:speed

180 180

Legend

Discrete Port Instance Continuous Port Instance Hybrid Port Instance

...
Discrete Component
Instance

Continuous Component
Instance

Hybrid Component
Instance

Fig. 5 Component instance of component RailCabDriveControl for a RailCab driving as a convoy member

a reconfiguration, the system switches from one functional
behavior to another functional behavior [18].

We specify reconfigurations using component story dia-
grams (CSDs, [19]). Each component can contain a set of
CSDs that define possible reconfigurations of the compo-
nent. The allowedmodifications are the addition and removal
of embedded component instances, of ports, and of con-
nectors. Essentially, CSDs are UML activity diagrams [12]
where each action describes a step of the reconfiguration.
The semantics of the actions is formally defined based on
graph transformations [20]. By construction, CSDs ensure
that component instances remain syntactically correct after
applying a reconfiguration because a CSD can only be exe-
cuted if its modifications do not violate the cardinalities of
ports and component parts.

For the specification of the graph transformation, CSDs
use a short-hand notation that depicts left-hand side and
right-hand side of the graph transformation in a single, anno-
tated graph (cf. Fig. 6). Unmodified elements are depicted
in black without further annotations. Created elements are
depicted in green and carry the annotation «create», while
deleted elements are depicted in red and carry the annotation
«destroy». All variables and links of the actions are typed
by the components, ports, and connectors that are defined by
the component model. Each action contains exactly one this

component variable. At run time, the this variable is auto-
matically bound to the component instance that invoked the
CSD on itself [19].

Figure6 shows the CSD becomeMember of the component
RailCabDriveControl. The CSD reconfigures an instance of
RailCabDriveControl of a RailCab driving alone (cf. Fig. 4) to
an instance of a RailCab driving as a member of a convoy
(cf. Fig. 5).

The CSD has two actions. In the first action, we match
the embedded component instances of typesOperationStategy

andVelocityController.We invoke a reconfiguration applyMem-

berStrategy on os that creates the maxSpeed port instance.
The invocation of the CSD is directly attached to the cor-
responding component variable. In addition, we invoke the
reconfiguration switchToConvoy on vc that reconfigures the
feedback controllers for driving as a convoy member. We
introduce thisCSD inmore detail below. In the second action,
we create an instance of MemberControl. In addition, we cre-
ate an instance of DistanceSensor and connect it to vc by
an assembly connector instance. Finally, we create a port
instance of member on this and connect all port instances of
mc.

In this paper, we define a method that explicitly restricts
reconfigurations such that they respect component encapsu-
lation. In particular, we forbid that a CSD directly creates or
destroys port instances of its embedded component instances.
Such port instances may only be created by the embedded
component instance itself. Therefore, a corresponding CSD
that creates the port instance needs to be invoked on the
embedded component instance as shown in Fig. 6. Since we
need to create these port instances before connecting them,

123

Transactional execution of hierarchical reconfigurations in cyber-physical systems 163

Reconfigure Embedded Component Instances

Create MemberControl and Sensor, Connect Ports

RailCabDriveControl::becomeMember()

mc / member :
MemberControl

this

vc
:curDist

:refDist

:refDist

os
:speedProvider

:member

:member

:maxSpeed

ds / dist :
DistanceSensor

:distance

«create»

«create»

«create»

«create»

«create»

«create»

«create»

this

os / strategy :
OperationStrategy

applyMemberStrategy()

vc / ctrl : VelocityController

switchToConvoy()

Fig. 6 Component story diagram specifying the reconfiguration becomeMember of RailCabDriveControl

we need to call the corresponding CSDs before creating the
connector.

In contrast to discrete components, we cannot instanta-
neously replace feedback controllers because this may cause
a discontinuity in the controlled value. This discontinuity,
in turn, may damage the physical system because, in our
example, the force being set to the electric motor would
be too high. As a solution, we need to fade smoothly from
the outputs of the destroyed continuous component to the
outputs of the created continuous component. This, in turn,
requires transferring the internal state that is contained in
the control algorithm. Therefore, we need to wait until the
feedback controller in the created continuous component has
correctly initialized, based on the current values and the ref-
erence value. The fading to the outputs of the new continuous
component is then performed by a fading function [15,16]
that is executed by the fading component f shown in Fig. 7.
The main design challenges for the control engineer when

developing such fading functions are guaranteeing stability
of the control algorithms and finishing in time.

In CSDs, we use controller exchange actions for spec-
ifying the replacement of continuous components. As an
example, Fig. 7 shows the CSD switchToConvoy of the Veloci-

tyController component that is invoked by becomeMember. In
essence, the CSD replaces the instance of StandaloneDrive by
an instance of ConvoyDrive. In our example, initializing the
ConvoyDrive and executing the fading function takes 150ms
to 180ms.

2.4 Defining architectural constraints

An architectural constraint defines a condition on the config-
urations of a (structured) component instance [21]. Architec-
tural constraints may be defined as invariants or conditions.
An invariant needs to evaluate to true for any configuration of
the component, whereas a conditionmay evaluate to false for

123

164 C. Heinzemann et al.

Perform fading to convoy controller

VelocityController::switchToConvoy()

+ -

+ -

this

sd / standalone_ctrl :
StandaloneDrive

:refSpeed
:curSpeed

:curDist

cd / convoy_ctrl :
ConvoyDrive

:refSpeed

:curSpeed

:refDist

:force

:force

:curDist

:refSpeed

:curSpeed

:refDist

f / fade :
ConvoyFading

fadeToConvoy()
[150 ms; 180 ms]

:standalone

:convoy

«destroy»

«create»

«create»«create»

«create»

«create»

«create»

«destroy»

«destroy»

«destroy»

«create»

«create»

Fig. 7 Component story diagram specifying the reconfiguration switchToConvoy of VelocityController

some configurations. Invariants enable to define valid config-
urations of a component, which we exploit for verifying the
correctness of the reconfiguration behavior in Sect. 8. Condi-
tions enable to restrict the applicability of reconfigurations.

In the MechatronicUML component model, we use
component story decision diagrams (component SDDs, [22])
for modeling architectural constraints. They are, in essence,
a syntactically restricted form of CSDs that always return
a Boolean value. Therefore, we omit a detailed description
of component SDDs in this paper and refer to our technical
report [22].

3 Overview of our approach

Reconfigurations in a hierarchical component model often
require the reconfiguration of several components that are
located on different levels inside the hierarchy. As an exam-
ple, the reconfiguration of a structured component instance
may require the upfront reconfiguration of one or more of its
children as it has been shown in Fig. 6. In this example, creat-
ing the instance mc of MemberControl requires reconfiguring
the instances of OperationStrategy and VelocityController first.
Then, the port instances created by these reconfigurations are
connected by RailCabDriveControl. In general, we distinguish
two use cases for such reconfigurations.

In Use Case 1, an embedded component instance, in
the following referred to as child, detects a situation that
requires a reconfiguration that it cannot handle solely by
itself. In our example in Fig. 2, the OperationStrategy com-
ponent negotiates that the RailCab enters a convoy, but it
does not know how to do this itself. Thus, it needs to send

a request to the embedding structured component instance
of type RailCabDriveControl to handle that situation and to
execute the necessary reconfiguration. We will refer to the
embedding structured component instance as parent in the
following.

In Use Case 2, a structured component instance executes
a reconfiguration that requires the reconfiguration of one or
more of its children. In our example, becoming amember of a
convoy requires a reconfiguration of the RailCabDriveControl

(cf. Fig. 5). Executing this reconfiguration, however, requires
that the OperationStrategy changes its port instances and that
the VelocityController switches to the ConvoyDrive component
instance. Therefore, RailCabDriveControl needs to trigger the
corresponding reconfigurations on its children.

For both use cases, executing such reconfigurations safely
demands that all component instances, which need to recon-
figure, perform their reconfiguration in a coordinated way.
The necessary conditions for executing a hierarchical recon-
figuration safely are given by the ACI properties (atomicity,
consistency, and isolation) of database systems [2,23], a cor-
rect timing, and, if necessary, correct fading functions. A
correct timing demands that if a (hard) deadline for execut-
ing a reconfiguration exists, the system shall only start the
reconfiguration if it is able to finish it before the deadline.
Therefore, the deadline puts an upper bound on the max-
imum duration that the reconfiguration may take. Fading
functions are integrated as “black box” into the execution
of a reconfiguration as explained in Sect. 5 such that we
only need to consider its timing properties for the specifi-
cation and analysis of the behavior of the reconfiguration
controller. As a result, we need to consider ACI properties
plus timing, referred to as ACI-T properties, for the remain-

123

Transactional execution of hierarchical reconfigurations in cyber-physical systems 165

Specify Architectural
Invariants
(Sect. 2.4)

Specify
Reconfiguration Rules

(Sect. 2.3)

Specify Declarative
Reconfiguration Model

(Sect. 6)

ACI-T
properties
fulfilled

ACI-T properties not fulfilled

S4S2S1

Verify Behavior for
ACI-T Properties

(Sect. 8) S5

reconfiguration
behavior

component
model

Generate Operational
Behavior Specification

(Sect. 7) S3

tcafetrapetsssecorp conditional execution

Legend

Fig. 8 Process for specifying reconfiguration behavior (cf. [24])

der of this paper. If a reconfiguration is executed accord-
ing to ACI-T properties, we denote this as transactional
execution.

For realizing transactional execution of reconfigurations,
we adapt the 2-phase-commit protocol for distributed data-
base systems [2, ch. 7] to the domain of CPS. To this end, we
focus on structured components in this paper. In accordance
with the 2-phase-commit protocol, a structured component
instance asks all children that are required to reconfigure
whether they can execute the required reconfiguration before
starting the reconfiguration. Only if all children confirm and
if the reconfiguration can be finished in time, the reconfigu-
ration is started and the children are notified to execute their
reconfiguration.

In contrast to related approaches, we may not start to
reconfigure optimistically and roll back to a preexisting
configuration if the reconfiguration fails as, for example,
proposed for reliable reconfiguration of Fractal components
in [23]. This is for two reasons: First, the systemmight come
into an inconsistent state that causes it to malfunction if a
reconfiguration is only executed partially. Second, it is not
guaranteed that returning to the configuration before recon-
figuration has started is even possible and safe.

Figure8 summarizes our process for specifying recon-
figurations based on our variant of the 2-phase-commit
protocol [24]. In the first Step S1, the developer specifies the
reconfiguration rules using CSDs as introduced in Sect. 2.3.
Thereafter, the developer creates a declarative, table-based
specification of hierarchical reconfigurations in Step S2.
These tables define in which situation which CSD is to be
executed, but they relieve the developer from specifying how
the reconfiguration is carried out [7]. In addition, these tables
define timing requirements that formalize our notion of a
correct timingmentioned above.Then,we automatically gen-
erate an operational behavior specification based on RTSCs
from the declarative table-based specification in Step S3. The
operational behavior specification additionally specifies how
reconfigurations are executed based on the 2-phase-commit
protocol. In Step S4, the developer specifies architectural
invariants (cf. Sect. 2.4) that define the set of valid config-
urations for instances of a component. In Step S5, we use the

architectural invariants as well as the generated operational
behavior specification for verifying at design time that the
reconfiguration specification fulfills ACI-T properties. With
respect to timing, we verify the necessary conditions for a
correct execution w.r.t. the timing requirements that are con-
tained in our declarative specification. In Sect. 4 and 5, we
describe the foundations of our modeling approach. In the
subsequent sections, we then describe the introducedmethod
steps.

4 MechatronicUML reconfiguration controller

In the MechatronicUML component model as introduced
in Sect. 2, a developer defines a set of CSDs that specify
the possible reconfigurations of a component. This does not
enable to specify in which situation which reconfiguration is
to be executed. In addition, CSDs offer no means for exe-
cuting a reconfiguration hierarchically according to ACI-T
properties while preserving component encapsulation.

As a solution, we syntactically extend each reconfigurable
component with a dedicated reconfiguration controller that
is inspired by the reconfiguration controller of the Fractal
component model [25,26]. While these controllers might
be specified by developers manually, we aim at generating
them as described in Sect. 7. Our reconfiguration controller
as shown in Fig. 9 introduces two syntactic elements, namely
a manager and an executor. The executor is responsible for
executing reconfigurations respecting hierarchy and ACI-T
properties based on the 2-phase-commit protocol. The man-
ager decides which reconfiguration is executed in which
situation, which is not supported by the Fractal recon-
figuration controller. By using a dedicated reconfiguration
controller, we retain separation of concerns between func-
tional behavior and reconfiguration behavior as advised by
McKinley et al. [17].

In addition, we introduce two new port types called recon-
figuration message ports, short RM ports, and reconfiguration

execution ports, short RE ports. A component uses its RM
ports for sending information in situations that may require
a reconfiguration to its parent. Consequently, RM ports are

123

166 C. Heinzemann et al.

RailCabDriveControl

RM

reconfMsg

Manager ExecutorRM

RRM

parent

embeddedCI

executor

events RRE
embeddedCI

RE

reconfExec
RE

parent

component part compartment

reconfiguration controller compartment

component name compartment

Fig. 9 Reconfiguration controller of a structured component (cf. [7])

standaloneRC : RailCabDriveControl

RM

:reconfMsg

: Manager : ExecutorRM

RM

:parent

:embeddedCI

:executor

:events
:embeddedCI

RE

:reconfExec
RE

:parent

RM RERE

vc1 / ctrl :
VelocityController

:refSpeed

:curSpeed

:force

os / strategy :
OperationStrategy

:refSpeed

:peer :peer

sp / sp : SpeedSensor
:speed

180 180

RM RE

RM RE

:reconfMsg

:reconfMsg :reconfExec

:reconfExec

RM RE RM / RE Port Inst.

...
Elem. of Reconf.
Controller

Legend

Discrete Port Instance Continuous Port Instance Hybrid Port Instance

...
Discrete Component
Instance

Continuous Component
Instance

Hybrid Component
Instance

Fig. 10 Component instance RailCabDriveControl with reconfiguration controller

used for bottom-up information passing and to provide the
necessary message flow for realizing Use Case 1. A com-
ponent uses its RE port for offering reconfigurations to its
parent. The parent may trigger a reconfiguration on a child
by sending a message to the RE port of that child. Thus, RE
ports are primarily used for top-down reconfiguration initia-
tion and to provide the necessary message flow for realizing
Use Case 2.

RM ports and RE ports are essentially discrete ports with
an extended interface specification (cf. Sect. 6) that enables to
execute reconfigurations across different levels of hierarchy
without violating component encapsulation. This interface
specification enables to generate the protocol state machine
forRMports andREports (cf. Sect. 7). Since they are discrete
ports, they have the same operational semantics as discrete
ports (cf. Sect. 2.1).

For enabling message flow across different levels of hier-
archy at run time, we connect the manager (and executor) to
the parent and all embedded component instances using the

RM ports (or RE ports). Figure10 illustrates these connec-
tions for an instance of the RailCabDriveControl component
for driving alone.

As shown in Fig. 9, the manager specifies two RM ports
named parent and embeddedCI. The RM port parent imple-
ments the RM port of the structured component and is used
for sending messages to the parent. The RM multi-port
embeddedCI connects the manager to the RM port instances
of the embedded component instances for receiving their
messages. At run time, one subport instance of this port
exists for each child of the structured component instance
as shown in Fig. 10. Since standaloneRC has three embedded
component instances, the embeddedCI port of the manager
contains three subport instances. The executor is connected
to the parent and the embedded component instances in the
same fashion.

Since the reconfiguration controller has the same struc-
ture for any structured component and introduces additional
visual complexity, we typically use the short-hand notation

123

Transactional execution of hierarchical reconfigurations in cyber-physical systems 167

RailCabDriveControl

component part compartment

RM

reconfExec
RE

reconfMsg

Fig. 11 Short-hand notation for reconfigurable components

shown in Fig. 11 for visualizing reconfigurable structured
components [7].

For executing the reconfiguration at run time, the struc-
tured component needs to maintain a model@run.time [27]
of its own architecture. For deployment, a platform-specific
realization of the system needs to be implemented, i.e., by
using a generator for a specific platform. This realization
has to be a valid refinement of the platform-independent
model, i.e., conformance of the timing specifications has
to be verified. As this realization will execute on a dis-
tributed hardware platform later, the model@run.time needs
to be maintained in a distributed fashion as well. This is
facilitated by component encapsulation because encapsula-
tion imposes that a component may only have information
about itself and about its direct children. As a consequence,
each structured component only needs to maintain a small,
local part of the model@run.time that contains informa-
tion about its own instantiated ports, about its instantiated
child components including their ports, and about the assem-
bly and delegation connectors that connect the children. A
discussion regarding the encoding and the management of
the model@run.time, however, is beyond the scope of this
paper. For more information on this subject, we refer to our
paper [28] and the thesis [10, chap. 6]. There, we present an
approach inMATLAB/Simulink for a distributed encoding of
the model@run.time for an embedded system. The approach
utilizes control signals for activating and deactivating com-
ponent instances, port instance, and connector instances.

5 Executing reconfigurations

Using our reconfiguration controller, we can execute recon-
figurations with respect to hierarchy considering our two
use cases. As mentioned above, we provide a variant of
the 2-phase-commit protocol [2, ch. 7]. The 2-phase-commit
protocol starts with a voting phase. In the voting phase, a
structured component instance queries all of its children,
which are required to participate in the reconfiguration,
whether they actually can reconfigure. The children then
evaluate concurrentlywhether they can execute the requested
reconfiguration or not. In case a child component is able to
reconfigure itself in case a reconfiguration command would
be issued by the component’s parent until a certain deadline

determined by the component itself, it sends a positive vote
including its deadline to its parent. Only if all queried chil-
dren reply with a positive vote, the structured component can
execute the reconfiguration in the execution phase. If at least
one children responds with a negative vote, the reconfigura-
tion is aborted.

For executing a reconfiguration in the execution phase
of our 2-phase-commit protocol, we need to distinguish
between purely discrete reconfigurations and reconfigura-
tions that involve continuous components. In the former
case, all affected children need to be quiescent as explained
in Sect. 5.3 and, therefore, we may reconfigure the system
bottom-up in a single pass as explained in Sect. 5.1. We
refer to this as single-phase execution. If the reconfiguration
replaces continuous components, we need to execute fading
functions (cf. Sect. 2.1). These fading functions require that
all port instances of the destroyed and created continuous
component instance are properly connected. This requires
splitting the execution phase into three subphases. We refer
to this as three-phase execution as explained in Sect. 5.2. In
general, single-phase execution is faster and requires less
messages to be exchanged between the executor of a struc-
tured component instance and the executors of the children.
Therefore, single-phase execution should be preferred when-
ever possible.

5.1 Single-phase execution

Using single-phase execution, the reconfiguration of a struc-
tured component instance is performed in a single, bottom-up
pass over the component hierarchy. Thatmeans, we start with
the children that are nested at the deepest level of the hierar-
chy. The reconfiguration of a structured component instance
is then executed after the concurrent execution of the recon-
figurations of all children. In the following, we describe the
message flow and responsibilities in our reconfiguration con-
troller for realizing the two use cases mentioned above with
our 2-phase-commit protocol and single-phase execution.

Figure12 illustrates Use Case 1 (i.e., a reconfiguration
triggered by a child component) for an instance dc of
RailCabDriveControl (cf. Fig. 10). First, the OperationStrategy

component instance sends a message via its RM port to the
Manager, requesting the reconfiguration for becoming a con-
voy member. Then, the Manager decides whether to execute
the reconfiguration and, if so, triggers the executor. The
executor initiates the 2-phase-commit protocol and collects
the votes of the children as outlined above. In our example,
the instances of VelocityController and OperationStrategy are
affected by the reconfiguration. If at least one child sends
a negative vote, the reconfiguration will be aborted. If a
child sends a positive vote, it provides a commit time bound.
The commit time bound denotes how long after the end of
the voting the child can assure to execute the reconfigu-

123

168 C. Heinzemann et al.

standaloneRC : RailCabDriveControl

RM : Manager : ExecutorRM

RM

:parent

:embeddedCI

:executor

:events RE
:embeddedCI

RE RE

:parent

os / strategy :
OperationStrategy

RM:reconfMsg

vc1 / ctrl :
VelocityController

RE :reconfExec

1. Send
message

2. Decide & Plan 3. Trigger Reconfiguration
4. Init 2PC
9. Execute

10. Report Result

11. Report
Result

5. Query Votes
7. Query Execution

6. Receive Votes
8. Receive Finished

:reconfMsg :reconfExec

Fading Component
Instance

+ -...

RM RE RM / RE Port Inst.

...
Elem. of Reconf.
Controller

Legend

Discrete Port Instance

...
Hybrid Component
Instance

Fig. 12 Use Case 1: Reconfiguration after child request (cf. [7])

ration successfully. After that time, the child is no longer
bound to its vote (cf. Sect. 6.4). If all children have voted, the
executor computes the minimum of all commit time bounds
provided by the children. This time is relevant as after pass-
ing the minimum commit time bound, the component that
replied with that time bound can no longer be assumed to
successfully complete a reconfiguration command. Having
the minimum commit time bound, the executor can decide
whether a reconfiguration is feasible or not. In case the max-
imum time for executing the reconfiguration is less than the
minimum commit time bound, the executor knows for sure
that the reconfiguration is feasible in the available time and
therefore commands all children to execute their reconfigu-
rations. We provide details on the computation of these time
values in Sect. 8.2. After all children have finished, the execu-
tor performs the reconfiguration of the structured component
instance itself and reports the result to the manager. Since
the reconfiguration originated from a request of a child, the
result is reported to that child, i.e., OperationStrategy in our
case study.

Figure13 illustrates Use Case 2 in the same fashion.
Continuing our example, we consider the VelocityController

instance and assume that it is triggered by its parent for
switching into member mode. The VelocityController receives
the message via its RE port. The message is propagated
to the manager which decides upon the request. The man-
ager then reports the decision to the executor. If the manager
has decided not to execute the reconfiguration, the executor
immediately sends a negative vote to the parent. If the man-
ager has decided to execute the reconfiguration, the executor

initiates the 2-phase-commit as in Use Case 1. After it has
collected the votes of the children, it checks whether the
reconfiguration can be executed in time using the commit
time bounds of the children. Then, it sends the resulting vote
to the parent. After sending the vote, the executor waits for
the answer of the parent, but no longer than the commit time.
If the parent decides to execute (or abort), the executor com-
mands the execution (or abortion) of the reconfiguration on
the children. After all children have finished, the executor
performs the reconfiguration of the structured component
and reports to its parent that the reconfiguration has been
finished.

The use cases for reconfiguration are designed such that
they propagate recursively to all children. If a structured com-
ponent reconfigures based onUse Case 1 and invokes a child,
that child reconfigures based on Use Case 2. If the child is
a structured component instance itself and needs to invoke
reconfigurations of its children as well, Use Case 2 propa-
gates recursively. For an atomic component, only Use Case 2
may occur.

5.2 Three-phase execution

Single-phase execution of reconfigurations as described in
the previous section cannot be applied if the reconfiguration
involves replacing continuous components due to the issue of
the discontinuities in the controlled variable. In addition, in
order to execute fading functions, we need to respect the
correct order of instantiating and deleting components as
detailed below. As a solution to this problem, we split the

123

Transactional execution of hierarchical reconfigurations in cyber-physical systems 169

vc1 : VelocityController

RM : Manager : ExecutorRM

RM

:parent

:embeddedCI

:executor

:events RE
:embeddedCI

RE RE

:parent

:reconfExec

1. Receive Message
9. Receive commit

2. Propagate
Message3. Decide & Plan

4. Report Decision
6. Query Votes
9. Query Execution

7. Receive Votes
10. Receive Finished

5. Init 2PC
11. Execute

8. Send Vote
12. Report Finished

f / fade :
ConvoyFading

RE

:reconfMsg
:reconfExec

+ -

Fading Component
Instance

+ -...

RM RE RM / RE Port Inst.

...
Elem. of Reconf.
Controller

Legend

Discrete Port Instance

...
Hybrid Component
Instance

Fig. 13 Use Case 2: Reconfiguration as part of 2-phase-commit (cf. [7])

esahPecnatsnI
Parent

:RailCabDriveControl

:VelocityController

Setup Fading Teardown

Fig. 14 Illustration of three-phase execution

execution phase of our 2-phase-commit protocol into three
subphases if the reconfiguration replaces continuous com-
ponents. These subphases are setup, fading, and teardown.
Each of these subphases executes part of the reconfiguration.

Figure14 illustrates how these subphases are executed in
a structured component instance. A filled bar denotes that
the instance is currently executing reconfiguration behavior,
while an unfilled bar denotes that the instance is idle. The
arrows denote the points in time where the parent triggers
the child to start the corresponding phase (downwards arrow)
and when the child execution returns (upwards arrow). The
actual part of the reconfiguration that needs to be executed
in each phase can be derived automatically from the CSDs.

In our case study, we needed to consider the reconfig-
uration for becoming a convoy member that requires the
VelocityController to switch from the StandaloneDrive to the
ConvoyDrive feedback controller (cf. Fig. 6).

Figure15 shows an intermediate CIC that would occur if
we executed this reconfiguration according to single-phase
execution. In particular, this CIC occurs when rc1 queries vc1
to execute its reconfiguration. As a result, vc1 contains an
instance of ConvoyDrive and it currently executes the fadeTo-

Convoy fading function in the fading component. At this point
in time, both continuous component instances are executed

in parallel. However, the ConvoyDrive instance will not prop-
erly work because the input ports refDist and curDist have no
defined values. The reason is that these port instances are del-
egated by vc1 and need to be connected in rc1 before starting
to execute the fading function. In particular, we need to create
instances of the SpeedSensor and the MemberControl in rc1

prior to executing the fading function. This issue is solved by
the setup and teardown phases as detailed in the following
Sects. 5.2.1 to 5.2.3. The voting phase of the 2-phase-commit
is executed as for single-phase execution (cf. Sect. 5.1) and
will not be described here.

5.2.1 Setup

The three-phase execution starts with the setup phase.
The setup phase (hierarchically) reconfigures a component
instance such that all preconditions for executing the fading
functions are established. Therefore, it changes the soft-
ware architecture of the CPS, but it does not yet change the
exhibited behavior of the CPS. The setup phase is executed
bottom-up as shown in Fig. 14, i.e., a component first triggers
its children concurrently and executes its own setup behavior
after all children are finished.

In the setup phase, each component instance that is
affected by the reconfiguration creates all discrete, contin-
uous, and hybrid port instances as specified by the recon-
figuration rule. In addition, structured component instances
create all embedded component instances and all connec-
tor instances between continuous and hybrid port instances.
Discrete component instances and ports are kept in a sus-
pended mode, i.e., their RTSCs are not being executed and
their clocks do not yet progress. All hybrid port instances

123

170 C. Heinzemann et al.

rc1 : RailCabDriveControl

vc1 : VelocityController

:curDist

:refDist

+ -

sd / standalone_ctrl :
StandaloneDrive

:refSpeed
:curSpeed

:curDist

cd / convoy_ctrl :
ConvoyDrive

:refSpeed

:curSpeed

:refDist

:force

:force

:curDist

:refSpeed

:curSpeed

:refDist

f / fade :
ConvoyFading

fadeToConvoy()

:standalone

:convoy
:force :force

RM

:reconfExec
RE

:reconfMsg

RM

:reconfExec
RE

:reconfMsg

vc1 / ctrl :
VelocityController

:refSpeed

:curSpeed

:force

os / strategy :
OperationStrategy

:refSpeed

:peer :peer

sp / sp : SpeedSensor
:speed

180 180

Fading Component
Instance

+ -...

RM RE RM / RE Port Inst.

Legend

Discrete Port Instance Continuous Port Instance Hybrid Port Instance

...
Discrete Component
Instance

Continuous Component
Instance

Hybrid Component
Instance

Fig. 15 Problems when replacing continuous component instances using single-phase execution

that have been created during setup already emit their default
value though. All affected fading components still forward
the unmodified value of the continuous component that is to
be replaced.

Figure16 shows component instances of RailCabDrive-

Control and VelocityController after performing the setup phase
for the reconfiguration becomeMember shown in Fig. 6.

Since the setup phase is executed bottom-up, the execution
starts at vc1. vc1 creates an instance of ConvoyDrive including
the port instances refDist and curDist. In addition, it delegates
all in-ports to the corresponding port instances of the new
component instance cd. Finally, it creates the port convoy at
the fading component including the assembly instance. As a
result, vc1 contains all necessary component instances, port
instances, and connector instances for executing the fading
function.

After vc1 finished, rc1 executes its setup phase. According
to the CSD in Fig. 6, rc1 creates instances of DistanceSensor
and MemberControl. Since MemberControl is a discrete com-

ponent, the instancemc remains suspended andonly emits the
default reference distance via its hybrid refDist port instance.
In addition, rc1 creates the port instance member, but it does
not yet create the corresponding delegation instance. Finally,
rc1 creates the assembly connector instances between the
continuous and hybrid port instances for connectingDistance-
Sensor and MemberControl to vc1.

As it can be inferred from Fig. 16, all in-ports of vc1 are
properly connected. Thus, the fading function can now be
executed and provide a meaningful result. Up to now, the
behavior of rc1 and vc1 has not been changed because vc1 still
emits the force value of sd and because the discrete connector
instances in rc1 have not yet been modified and MemberCon-

trol is still suspended.

5.2.2 Fading

In the fading phase,we execute all fading functions in parallel
as shown in Fig. 14. Thus, the behavior of the CPS changes,

123

Transactional execution of hierarchical reconfigurations in cyber-physical systems 171

rc1 : RailCabDriveControl

vc1 : VelocityController

+ -

sd / standalone_ctrl :
StandaloneDrive

:refSpeed
:curSpeed

:curDist

cd / convoy_ctrl :
ConvoyDrive

:refSpeed

:curSpeed

:refDist

:force

:force

:curDist

:refSpeed

:curSpeed

:refDist

f / fade :
ConvoyFading

fadeToConvoy()

:standalone

:convoy
:force :force

RM

:reconfExec
RE

:reconfMsg

RM

:reconfExec
RE

:reconfMsg
mc / member :

MemberControl

vc1 / ctrl :
VelocityController

:refSpeed

:curSpeed :curDist

:refDist

:refDist

:force

os / strategy :
OperationStrategy:peer

:refSpeed

:speedProvider

:peer

:member :member

:maxSpeed

ds / dist :
DistanceSensor

:distance
sp / sp :

SpeedSensor
:speed

180 180

Fading Component
Instance

+ -...

RM RE RM / RE Port Inst.

Legend

Discrete Port Instance Continuous Port Instance Hybrid Port Instance

...
Discrete Component
Instance

Continuous Component
Instance

Hybrid Component
Instance

Fig. 16 RailCabDriveControl after executing the setup phase for the reconfiguration becomeMember

but its software architecture does not change. The duration
of the fading phase is defined by the maximum duration of
all involved fading functions.

5.2.3 Teardown

The execution of the reconfiguration finishes with the tear-
down phase. In this phase, both the behavior and the software
architecture of the CPS change. The teardown phase is exe-
cuted top-down as shown in Fig. 14, i.e., a component first
executes its own teardown behavior before it triggers its chil-
dren in parallel.

In the teardownphase,wedestroy all component instances,
port instances, and connector instances as specified by the
reconfiguration rule. Furthermore, we activate all discrete
component instances and port instances that were created in
the setup phase including the connector instances between
discrete port instances. The fading components now forward
the unmodified value of the continuous component instance
that has been created.

Continuing our example in Fig. 16, we now destroy the
StandaloneDrive instance including all of its port instances
and adjacent connector instances. In rc1, we create the del-
egation connector instance that delegates the port instance
member of mc to the corresponding port instance of rc1.

123

172 C. Heinzemann et al.

Finally, we create the assembly connector instance between
speedProvider of mc and maxSpeed of os. The result is,
as expected, equivalent to the component instance Member

shown in Fig. 5.

5.3 Quiescence

Component instances and port instances may not be deleted
at any point in time. In particular, they may not be deleted if
they currently perform a computation or if they are engaged
in executing a communication protocol that is required for
the safe operation of the system. Quiescence [18,29] defines
whether it is safe to delete a component instance or one of
its port instances at a certain point of time. Then, executing a
reconfiguration safely demands that all affected component
instances are quiescent.

As an example, consider a member RailCab that leaves
a convoy. As a consequence, the RailCab will destroy its
instance of MemberControl and it will switch back to the Stan-
daloneDrive feedback controller. However, the RailCab may
not perform this reconfiguration if it is still driving closely
behind another RailCab. If it performs the reconfiguration, it
will not be notified about braking maneuvers of the convoy
and, thus, a crash is likely to occur.

In our approach, a structured component instance is qui-
escent with respect to a particular reconfiguration if and only
if all children that are affected by this reconfiguration are
quiescent. For continuous atomic component instances, the
fading functions define how they may be safely replaced.
For discrete atomic component instances, we currently leave
it to the developer to specify the behavior for checking
whether the component instance is quiescent. In any case,
the check for quiescence is executed as part of the voting
phase of the 2-phase-commit protocol. A preliminary con-
cept for quiescence of discrete atomic component instances
inMechatronicUML is introduced by Schubert et al. [30]
but out of scope for this paper.

6 Declarative specification

Providing correct reconfiguration manager and executor
component realizations in MechatronicUML is a manual
cumbersome, labor-intensive, and error-prone task. There-
fore, we introduce a declarative specification of the behavior
of the reconfiguration controller based on tables in our
approach. This declarative specification relieves the devel-
oper from manually providing correct reconfiguration man-
ager and executor components (as theywill be generated from
the declarative specification) and make him more produc-
tive. These tables extend theMechatronicUML component
model by additional syntactical elements that are tailored to
the 2-phase-commit protocol.

Developers need to specify one table for each RM port
and for each RE port of a reconfigurable component. This
table enhances the interface of the port, i.e., which messages
the port may send or receive, with timing constraints for the
messages that are relevant for executing the 2-phase-commit
protocol. In addition, developers need to specify one table
for the manager and one table for the executor of each recon-
figurable structured component. The entries in these tables
define conditions that express when to execute which recon-
figuration, but they do not specify how the conditions are
checked and how reconfigurations are executed according to
the 2-phase-commit protocol.

The timing constraints that are contained in our declara-
tive, table-based specification are requirements for an execu-
tion of the reconfiguration behavior on a hardware platform.
For a CPS, these requirements originate from three sources.
First, they originate from conditions that are imposed by
the physical environment. As an example, consider a con-
voy build-up at a switch. In this case, the reconfigurations
for becoming a coordinator or member, respectively, need
to be finished before approaching the switch too closely.
Second, timing requirements are defined by the functional
safety specification. In case of a hardware failure, a reconfig-
uration that implements a self-healing operation needs to be
finished within a particular time in order to prevent a hazard.
This particular time may be obtained by performing a timed
hazard analysis [31]. Third, timing requirements originate
from the quiescence criteria. The component instances that
are affected by a reconfiguration need to remain quiescent
throughout the reconfiguration (cf. Sect. 5.3). As a result, the
reconfiguration needs to be finished before the component
instance needs to execute some non-quiescent behavior that
is necessary for safely operating the system.

In the following, we provide details regarding our declar-
ative, table-based specifications of manager and executor as
well as of the interfaces ofRMports andREports in Sects. 6.1
to 6.3.

6.1 Interface specification of RM ports

AnRMport is a special kind of discrete port that is solely used
for communication between the managers of reconfigurable
components. Its interface is defined by a table with four
columns where each interface entry corresponds to one row
in the table. The first column defines the message types that
maybe sent to the parent. The second columngives additional
information on the semantics of the message using a type.
We distinguish two types of messages: info messages and
requests. An info message is only provided for information
and does not necessarily require a reconfiguration. A request
is sent in situationswhere a reconfiguration is necessary from
the perspective of the sending component andwhere it cannot
solve the situation itself. In case of a request, the developer

123

Transactional execution of hierarchical reconfigurations in cyber-physical systems 173

Table 1 RM port specification
of the RailCabDriveControl
component (cf. [7])

Message type Type Expected
response time

Description

1 drivingAtHighSpeed Info — RailCab travels at high speed.

2 drivingAtNormalSpeed Info — RailCab travels at normal speed.

3 distanceSensorFailure Request 200 ms Distance sensor is broken.

of a component may specify an expected response time in
the third column. It defines the point in time where the com-
ponent needs the information whether a reconfiguration has
been executed by the parent. The fourth column optionally
contains a human readable description of the reported situa-
tion for a developer.

Table1 shows the RM port specification for the RM port
of the RailCabDriveControl component from our case study
as introduced in Fig. 10. It contains three entries. First, the
RailCabDriveControl informs its parent about its speed profile
using the messages drivingAtHighSpeed and drivingAtNormal-

Speed of type info. This informationmay be used to adapt the
sensing of obstacles depending on the speed. If the speed is
high, obstacles need to be sensed in larger distances to brake
early enough. In addition,RailCabDriveControl sends a request
positionSensorFailure, which denotes that the distance sensor
is broken. This request triggers a self-healing operation (cf.
[31]) and needs to be finished in 200ms for guaranteeing the
convoy safety.

6.2 Manager specification

As for the interfaces of the reconfiguration ports, specifying
the reconfiguration manager component in Mechatron-
icUML manually is a task we want to avoid effort-wise.
Therefore, the behavior of a manager is specified declara-
tively using a table with eight columns in our approach (cf.
Table2). We refer to each row of the table as an entry of the
manager specification. The entries of the manager specifi-
cation define how the manager needs to react if it receives
a particular message. In our approach, the manager only
reacts to messages that it receives from the children or from
the executor. We did not yet include dedicated monitoring
capabilities for structured components in our approach. The
manager specification needs to define at least one entry for
eachmessage that themanagermay receive from the children
or from the executor.

In the manager specification, the first column contains a
message type that the manager may receive either from a
child or from the executor. The second and third columns
define whether the manager treats the message or whether
it propagates the message to its parent. A message that is
received from the executor always needs to be treated. We
allow, however, that the manager operates as a sink with
respect to messages sent by a child by neither treating nor

propagating them. We do not allow treating and propagating
a message at the same time because that may lead to conflict-
ing reconfiguration decisions on different levels of hierarchy
in the component model. All messages that are specified as
propagated in the manager specification need to appear in
the interface specification of the RM port parent of the cor-
responding reconfigurable component.

If the specification defines that a message is treated, the
developer must specify a reconfiguration rule to be executed
by the executor in the fourth column. Whether a reconfigu-
ration may be executed at run time depends on (1) whether it
is allowed to execute the reconfiguration (column Structural

Condition) and (2) whether it is useful to execute the recon-
figuration (column Invoke Planner). Only if both conditions
evaluate to true during run time, the manager will trigger
the executor to execute the reconfiguration. We explain these
conditions in more detail in the following.

For each entry of the manager specification, the devel-
oper needs to define a structural condition. The structural
condition specifies a condition on the embedded component
instances that must be fulfilled for executing the reconfig-
uration. If a message appears in more than one entry, the
entries associated to thismessagemust have pairwise disjunct
structural conditions. Currently, we only support specify-
ing structural conditions based on component SDDs (cf.
Sect. 2.4). It is only allowed to execute a reconfiguration if
the structural condition is fulfilled. If the execution of the
reconfiguration shall not be restricted, true may be used as a
structural condition as for Entries 4, 5, and 6.

Second, we account for the usage of a planner component
in our manager specification. The planner component will
contain executable logic, which decides whether it is useful
to execute the reconfiguration based on the goals of the sys-
tem [32]. Although we have not explicitly added a planner
component to our approach, yet, we enable the developer to
specify whether to invoke such a planner component or not.
A planner component may only be invoked if the message
is treated. If a planner component is invoked, the developer
needs to provide the maximum time that the planner compo-
nent may run in the eighth column of the table. If no planner
component shall be invoked, it is always considered to be
useful to execute the reconfiguration if it is requested.

Table2 shows the manager specification of the RailCab-

DriveControl component of our case study in Fig. 10. The
messages in Entries 1 to 3 are sent by the child Opera-

123

174 C. Heinzemann et al.

Table 2 Manager specification of the RailCabDriveControl component (cf. [7])

Message type Treat Propagate to
parent

Reconfiguration rule Structural
condition

Invoke
planner

Time for
planning

1 becomeCoordinator Yes No becomeCoordinator() isStandalone() Yes 20 ms

2 newMember Yes No addConvoyMember() isCoordinator() No —

3 becomeMember Yes No becomeMember() isStandalone() Yes 20 ms

4 distanceSensorFailure No Yes — true No —

5 drivingAtHighSpeed No Yes — true No —

6 drivingAtNormalSpeed No Yes — true No —

tionStrategy that negotiates with other RailCabs whether to
form a convoy. These messages are treated and not prop-
agated. Therefore, we specify a reconfiguration rule that is
contained in the executor specification (cf. Sect. 6.3) for each
of them. Each of the reconfigurations specifies a structural
condition. A RailCab may only become member of a con-
voy, if it is not yet engaged in a convoy.We specify this by an
architectural constraint that checks whether ConvoyCoordina-
tion and MemberControl are both not instantiated. The same
condition needs to be fulfilled for becoming a coordinator of a
convoy. New members can only be added if RailCab already
is the coordinator of a convoy, thus, having an instance of
ConvoyCoordination. In addition, we foresee invoking a plan-
ner before building a convoy. For both reconfigurations, we
permit the planner to run for 20ms.

The messages in Entries 6 to 8 are sent by the Velocity-

Controller. These messages are propagated to the parent and
not treated. Consequently, we neither specify a reconfigura-
tion rule nor one of the three conditions for executing the
reconfiguration.

6.3 Executor specification

The behavior of an executor is specified declaratively using
a table with two columns. Again, we refer to each row of the
table as an entry of the executor specification. Each entry of
the executor specification contains a reference to a reconfig-
uration rule. In our approach, we use CSDs as introduced
in Sect. 2.3 for specifying reconfiguration rules. The sec-
ond column defines the maximumworst-case execution time
(WCET, [33]) that is acceptable for executing the reconfigu-
ration rule on a platform. Please note that this is not the actual
WCET of the CSD on a particular platform but a requirement
on the maximumWCET of the platform-specific system. For
CSDs, worst-case execution time bounds can be computed
in terms of elementary operations [34]. Translating these
bounds to real platforms is a matter of refinement, i.e., to
show that the execution time for the calculated amount of
elementary operations on the real platform is lower than the
maximum WCET.

Table 3 Executor specification of the RailCabDriveControl compo-
nent (cf. [7])

Reconfiguration rule WCET

1 becomeCoordinatorQ() 50 ms

2 addConvoyMemberQ() 10 ms

3 becomeMemberQ() 50 ms

Table3 shows the executor specification of the compo-
nent RailCabDriveControl (cf. Fig. 10). RailCabDriveControl

supports three reconfiguration rules. The first one creates the
necessary components, ports, and connectors for operating
as a convoy coordinator. If the component already operates as
a coordinator, the second reconfiguration rule adds another
member to the convoy. The third reconfiguration rule creates
the necessary components, ports, and connectors for operat-
ing as a convoy member as specified by the CSD in Fig. 6.

6.4 Interface specification of RE ports

An RE port is a special kind of discrete port that is solely
used for communication between the executors of reconfig-
urable components. Its interface is defined by a table with
five columns. The first column defines a message type that it
accepts from its parent. The second column contains a human
readable description of the effect of sending a corresponding
message to the component. The remaining columns contain
time values that define timing requirements toward the exe-
cution of the 2-phase-commit protocol.

The third column contains the time for decision. This time
value provides an upper bound for the time that the compo-
nent needs for deriving a decision whether it may execute
a reconfiguration or not. The fourth column contains a tim-
ing specification that defines an upper bound on how long
the component needs for executing the reconfiguration that
is associated with this message in the manager specifica-
tion. If the reconfiguration may be executed according to
single-phase execution, the time for execution is a single
value. If the reconfigurationneeds to be executed according to
three-phase execution, then the timing specification contains

123

Transactional execution of hierarchical reconfigurations in cyber-physical systems 175

Table 4 RE port specification of the VelocityController component

Message type Description Time for
decision

Time for execution Minimum commit
time

1 switchToConvoy The VelocityController operates as a
convoy member and considers the
distance to the preceding RailCab.

20 ms Setup: 10 ms
Fading: 50 ms
Teardown: 5 ms

200 ms

2 switchToStandalone The VelocityController operates as
standalone or coordinator RailCab and
will control speed solely based on a
reference speed.

20 ms Setup: 10 ms
Fading: 50 ms
Teardown: 5 ms

200 ms

separate time values for setup, fading, and teardown.Weneed
to provide distinct time values for each phase for correctly
computing how much time a hierarchical reconfiguration
needs for being executed after deploying the component as
explained below. Finally, the fifth column provides the min-
imum commit time that defines a lower bound on how long
the component’s decision on the execution of the reconfigu-
ration can be considered valid (cf. Sec. 5, where this commit
time bound is used during the voting phase).

Table4 shows the interface specification of the RE port
reconfExec of the VelocityController component in Fig. 10. The
component offers two reconfigurations to its parent that cor-
respond to the two entries in the table. The first one uses the
message type switchToConvoy. Sending this message to the
RE port of VelocityController triggers the switch to the Con-

voyDrive feedback controller. Since this reconfiguration needs
to be executed based on three-phase execution, the time for
execution defines execution times for each phase. The second
entry uses the message type switchToStandalone that causes
the VelocityController to switch back to the StandaloneDrive

feedback controller.

7 Generate operational behavior

The declarative, table-based specification of the reconfigura-
tion controller introduced in the previous section cannot be
verified or implemented directly. In order to verify or imple-
ment the reconfiguration behavior, we need a formal and
operational behavior specification that additionally specifies
how reconfigurations are executed according to the 2-phase-
commit protocol. Therefore, we automatically generate a
RTSC for both manager and executor, because RTSCs are
formal and operational.

Using RTSCs for specifying the operational behavior of
manager and executor enables to reuse the existing tool chain
forMechatronicUML. That includes model checking sup-
port [14,35], WCET analyses [34], export to simulation
environments as MATLAB/Simulink [28] or Modelica [36],
and code generation [37].

We define the generation of the operational behavior spec-
ification based on generation templates for the RTSCs of
manager and executor [7]. The generation templates define
the 2-phase-commit protocol implementation as outlined in
Sect. 5 and contain placeholders for the entries of the tables
of our declarative, table-based reconfiguration specification
introduced in Sect. 6. The placeholders are automatically
filled by the information given in each row of the tables.
By using the generation templates and an automatic gen-
eration process, we relieve the developer from specifying a
large and complicated behavior specification for the 2-phase-
commit protocol by himself. Our generator generates the
2-phase-commit behavior automatically from the declarative
specification described in Sect. 6. Creating this specification
is much less manual work than creating the declarative spec-
ification.

To convey an idea about the effort savings, we report
here how many modeling elements are automatically gen-
erated for our example. For the manager RTSC given in
Sect. 7.1 our generator relieves the developer from model-
ing 18 states and 30 transitions plus 2 states and 8 transitions
for each entry of the manager specification. For the executor
RTSC given in Sect. 7.2, our generator automates the effort
to model another of 71 states and 102 transitions manually
plus 1 state and 4 transitions for each entry in the RE port
specification, 2 states and 5 transitions for each reconfigura-
tion rule assuming single-phase execution, and 6 states and
7 transition for each reconfiguration assuming three-phase
execution. In our case study with the RailCab system this
actually relieves the developer from modeling more than 50
states and more than 90 transitions inside the reconfigura-
tion component. Note that in addition to saving the effort of
modeling these states and transitions, our generator also does
not make introduce the mistakes a human would introduce
when modeling manually leading to more reduced overall
effort.

7.1 Manager specification

Figure17 shows the generation template for the manager
RTSC. The RTSC template is complex and provides many

123

176 C. Heinzemann et al.

Manager

Manager_Main

2

3

ch: reply[boolean], parentReply[boolean], executed[boolean], executeReconf, syncX;
parent

internal behavior

embeddedCI 4

1executor

variable: boolean request;

variable: int reconfiguration, int[] blockedReconfigurations;

variable: boolean request, boolean result;
operation: boolean invokePlanner(int reconfiguration), boolean isBlocked(int reconfiguration),

boolean checkStructuralConditionX();

variable: boolean executor_request;

Idle
entry/ {request := false;} AwaitReplysyncX? / x()

{request := true;}

success parentReply[true]! /
failed parentReply[false]! /

Propagated
U [request] /

[not request] /

occupied parentReply[false]! /

Idle
entry/

{executor_request = false;}

ExecuteReconf

executeReconf? / executeReconf(reconfiguration)

Request

x syncX! / {executor_request := true;}

executeReconf? /
confirmRequest(reconfiguration)WaitForConfirm reply[false]? /

declineRequest()
failed /

Finished success
executed[true]! /

failed executed[false]! /
[executor_request] reply[false]? /

U

[not executor_request] /

[executor_request] reply[true]? /

Idle
entry/ {request := false;}

syncX? /
{result := checkStructuralConditionX();
reconfiguration := R.id; request := true;}

[request] reply[true]! /

CheckX

[result == true] / {result := invokePlanner(reconfiguration);}

U

Fail [request] reply[false]! /
U

Success
U

[result == false] /

[not request] /

Plan
U

[not request] /

[result == false] /
Execute

executed[false]? /

executed[true]? /[result == true] executeReconf! /
[timeForPlanning; timeForPlanning]

EmbeddedCI_Main

subport 1

Idle
entry/ {request := false;

propagate := false;}

AwaitReply

x /
{request := true; reset: c_req;

propagate := true;}

reply[true]? / success()
reply[false]? / failed()

ReceivedMsgX
c_req ≤ β

[not request] /
variable: boolean request, boolean propagate;

clock: c_req;

DeliverMsg

[request && not propagate] /

UsyncX! /

[c_req ≥ β] / occupied()

AwaitParentReply
parentReply[true]? / success()

parentReply[false]? / failed()
[request && propagate] /

adaptation 2

= x.expectedResponseTime – y.executionTime

Legend:
Generated only once and are used by all reconfiguration rules
Generated for each reconfiguration message X that is propagated to the parent
Generated for each reconfiguration message X that is treated.
Generated additionally for each reconfiguration message X that is request from child.
Generated for each reconfiguration message X that is received from child or executor.
Generated additionally for each reconfiguration message X that invokes planning.

Fig. 17 Generation template for the manager RTSC (cf. [7])

123

Transactional execution of hierarchical reconfigurations in cyber-physical systems 177

variation points that depend on themanager specification. By
using our generation template, however, we hide the com-
plexity of the RTSC from the developer who can reuse the
template for all of his reconfigurable structured components
without understanding its internals.

In the RTSC, all black states and transitions form the gen-
eral frame of the RTSC. They are always present and will
only be generated once for every manager RTSC. The col-
ored parts are variable and are generated based on the entries
of the manager specification. The green parts are generated
of each entry of the manager specification. They are used to
handle an incoming message. If the message is a request, we
additionally generate the purple parts for the corresponding
entry. The brown parts are generated for each message that
is treated. They specify the behavior for checking whether
to execute the reconfiguration. If the message is propagated
to the parent, we generate the blue parts. The yellow and
pink parts provide the functionality for invoking a planner
and checking whether a reconfiguration is blocked if this is
specified by the corresponding manager specification entry.

The resulting manager RTSC consists of one state Man-

ager_Main with four or five regions. The region parent

implements theRMport parent of themanager that is used for
communicating with the parent. The region executor imple-
ments the executor port for communicating with the executor.
The region internal behavior specifies the behavior of deciding
whether to executewhich reconfiguration. The region embed-

dedCI implements the behavior of themulti-port embeddedCI

that is used for communicating with the children. The RTSC
follows the standard structure of a multi-port RTSC [5], i.e.,
it contains one region adaptation and one region subport. At
run time, behavior defined by the subport region is executed
in separate threads for each instance of the multi-port. The
adaptation region is only executed once and coordinates the
behavior of the different instances.

The information flow through themanager RTSC depends
on the use cases. In the following, we only give a coarse
description of the information flow and refer to [10] for a
detailed technical description. In Use Case 1 as shown in
Fig. 12, messages sent by the children are received by the
embeddedCI port of the manager and are processed by the
subport region (transition from Idle to ReceivedMsgX). If the
message is treated, the subport triggers the internal behavior

via syncX which decides whether to execute a reconfigu-
ration by checking the structural condition and optionally
invoking the planning. Then, the internal behavior triggers
the executor region via executeReconf, which in turn sends a
message to the executor to trigger the reconfiguration (tran-
sition from Idle to ExecuteReconf). Then, the executor region
waits until the executor reports the result of the reconfigura-
tion (either success or failed). The result is first propagated to
the internal behavior via executed and finally to the subport via
reply. Finally, the subport reports the result to the child that

requested the reconfiguration (transitions from AwaitReply to
Idle).

If the manager specification defines that the received mes-
sage is to be propagated to the parent, the subport triggers the
parent region directly. In case of a request, the region parent

waits for the answer of the parent component and reports this
answer back to the subport.

In Use Case 2 as shown in Fig. 13, the executor prop-
agates the messages that it received via its RE port to the
manager. The manager RTSC receives this message in the
executor region (transition from Idle to Request). Then, the
executorRTSC triggers the internal behavior and the execution
proceeds as for Use Case 1.

If several requests reach the manager at the same time, for
example, from different children, we need to serialize these
messages to ensure isolation of the reconfiguration opera-
tions. This is achieved by the internal behavior that ensures
that only one message is treated at a time.

7.2 Executor specification

Figure18 shows an excerpt of the generation template for
the executor RTSC. The RTSC template is also complex and
provides many variation points that depend on the executor
specification. By using our generation template, however,
we hide the complexity of the RTSC from the developer who
can reuse the template for all of his reconfigurable structured
components without understanding its internals.

As for the manager RTSC, all black states and transitions
form the general frame of the RTSC, while the colored parts
are variable and are generated based on the entries of the
executor specification. The purple parts are generated for
any reconfiguration that can be executed by the executor.
They compute the children that are affected by the reconfig-
uration and initialize the data structures for keeping track of
the reconfiguration progress. The green parts are generated
additionally for reconfigurations that are executed based on
single-phase execution. In particular, they invoke the CSDs
that perform the reconfiguration. The blue parts are gener-
ated additionally for reconfigurations that are executed based
on three-phase execution. They invoke the partial reconfigu-
rations for each of the three phases and wait for the start of
the next phase.

As part of this paper, we only show a small excerpt of
the executor RTSC. A full version with a detailed technical
description can be found in [10]. The excerpt shown in Fig. 18
shows the parts of the executor RTSC that are responsible
for controlling the execution of the 2-phase-commit proto-
col. Thus, the information flow is the same for Use Case 1
and Use Case 2. At first, the internal behavior is triggered
via startExecution to initialize the 2-phase-commit protocol
in response to the message received from the manager (not
shown in the excerpt). Then, we store whether the recon-

123

178 C. Heinzemann et al.

embeddedCI 4

embeddedCI_Main
adaptation

subport

2

1

variable: AffectedComponents ac, int executionTime, int minCommitTime;

variable: int commitTime, int timeForDecision, int timeForExecution, int timeForSetup, int timeForFading, int timeForTeardown;
clock: c2;

Idle

[finished]
finished2PC! /

PrepareYinit2PC[Y.id]? /

[finished]
finished2PC! /

Abort

Execute_SinglePhase

Vote

Report
U

WaitForParent votingComplete[TwoPCResult]! /
{tmpCommitTime := minCommitTime;}

[singlePhase] performReconf?/

doAbort?/

Execute_ThreePhase [not singlePhase] performSetup?/
[finished]

finished2PC! /

internal behavior 3
operation: Y1();

Idle

[reconfiguration == Y1.id || ...]
startExecution? / {singlePhase := true;}

Start
U

Waitinit2PC[reconfiguration]! /

Execute
finished2PC? /

U
[twoPCResult == false] finish[false]! /

Report
U

[singlePhase && twoPCResult && reconfiguration == Y1.id] /
{Y1()}

finish[true]! /

LocalExecuteY2

Setup localFinish! / WaitFading
{Y2_setup();} localFading? /

{Y2_fading();}

operation: Y2_setup(), Y2_fading(), Y2_teardown();

[not singlePhase] /

Fading

WaitTeardown

localFinish! /

Teardown localTeardown? /
{Y2_teardown();}Finish localFinish! /finished2PC? /

[reconfiguration == Y2.id]
localSetup? /

[reconfiguration == Y2.id || ...]
startExecution? / {singlePhase := false;}

Fig. 18 Excerpt of the generation template for the executor RTSC

figuration is executed based on single-phase execution or
three-phase execution and start the 2-phase-commit protocol.
The actual 2-phase-commit protocol is handled by the adapta-
tion region of the embeddedCI multi-port RTSC. It computes
the affected children (state PrepareY), coordinates the vot-
ing phase (state Vote) by querying and receiving the votes
from the affected children, and performs the execution (states
Execute_SinglePhase, Execute_ThreePhase, Abort). The nec-
essary communication with the children is handled by the
subport region.

The internal behavior executes the reconfiguration of the
structured component. For single-phase execution, the recon-
figuration Y1 is invoked as an effect of the transition from
Execute to Report after the children have finished their recon-
figurations. For three-phase execution, the partial reconfigu-
rations in each phase are executed inside the LocalExecuteY2

state based on the order shown in Fig. 14.

8 Verification

In order to guarantee that the reconfiguration behavior of
the structured component is correct and, thus, safe, we need
to verify the specified reconfiguration behavior of a struc-
tured component. We need to ensure that it fulfills all of
the ACI-T properties of the 2-phase-commit protocol. In our
approach, formal verification is enabled by the operational
behavior specifications for manager and executor in terms of
RTSCs.

For formally verifying the 2-phase-commit protocol with
respect to the ACI-T properties, we need to verify the follow-
ing properties. We present the properties here in an informal

fashion to improve read and understandability.When we ver-
ified them, we had to formalize them first as we will explain
below:

1. If the executor decides to execute (abort), then all affected
children execute (abort) (Atomicity).

2. The reconfiguration rules cannot produce an inconsistent
CIC (Consistency).

3. The executor will execute no other reconfiguration than
the one requested by the manager (Consistency).

4. At any time, at most one reconfiguration is executed
(Isolation).

5. The RTSCs of manager and executor are free from dead-
locks (Timing).

6. Each reconfiguration is executable (Timing).

Properties 1, 3, and 4 can already be guaranteed by the
correctness of the generation templates given in Sect. 7.
Therefore, they do not need to be verified again for a particu-
lar structured component. The correctness of the generation
templates with respect to formalizations of these three prop-
erties has been verified using UPPAAL [7].

Property 2 specifies that reconfigurations may not pro-
duce an inconsistent CIC. A CIC may be either syntactically
inconsistent or semantically inconsistent. A CIC is syntacti-
cally inconsistent if it violates the conditions for syntactical
correctness that we introduced in Sect. 2.2. In our approach,
the CSDs provable guarantee that CICs remain syntactically
consistent after a reconfiguration due to syntactic restrictions.
Thus, no further check is necessary. A CIC is semantically
inconsistent if the instantiated component instances, port
instances, and connector instances do not constitute a desired

123

Transactional execution of hierarchical reconfigurations in cyber-physical systems 179

functional behavior. In the worst case, the component may
even be unsafe. In our case study, we considered a RailCab
that drives as part of a convoy as amember butwhich does not
have an instance of MemberControl (cf. Fig. 15) although it
switched the controller. Such situations cannot be prevented
by syntactic rules but need to be verified for each structured
component as we describe in Sect. 8.1.

Finally, Properties 5 and 6 specify the conditions for a cor-
rect timing specification. In a platform-independent model,
we can formally verify whether the timing requirements
provided in our declarative, table-based specification are sat-
isfiable in principle. If they are satisfiable, there may exist
a hardware platform that enables to execute the reconfigu-
ration behavior without violating the timing requirements.
After deriving a platform-specific model that includes a plat-
form model and a deployment of components to hardware
nodes [38], we may already check at design time whether the
execution of the reconfigurations on the hardware platform
fulfills the imposed requirements. We describe the verifica-
tion of the timing specification including a formalization of
Properties 5 and 6 in Sect. 8.2.

In combination, both verification steps and the verified
generation templates enable to formally verify the reconfig-
uration behavior of our components completely with respect
to the ACI-T properties. The only part of the reconfiguration
behavior that cannot be formally verified using model check-
ing is given by the implementations of the fading functions.
Their correctness needs to be assessed via testing, e.g., using
simulation-based testing in MatLab [16,28].

8.1 Consistency

We ensure consistency by verifying that the reconfiguration
behavior cannot produce a semantically inconsistent CIC.
However, it is not possible to automatically derive from
the component model which CICs are semantically incon-
sistent and which are not. Therefore, a developer needs
to provide this information explicitly. In the following,
we introduce three possibilities for specifying semantically
inconsistent CICs. These are forbidden CICs (Sect. 8.1.1),
architectural invariants (Sect. 8.1.2) and properties in tem-
poral logic (Sect. 8.1.3). For each of these, we describe an
approach for formal verification. However, we did not eval-
uate this aspect as part of our case study. This is subject to
future work.

8.1.1 Forbidden CICs

A forbidden CIC is a particular CIC or part of a CIC that may
never occur for a given component. As an example, consider
the CIC in Fig. 19 that defines an excerpt of an instance incon-
sistent of the component RailCabDriveControl. It specifies the
situationwhere both,MemberControl andConvoyCoordination,

inconsistent : RailCabDriveControl

cc / convoy :
ConvoyCoordination

/curPos

ps / pos : PositionSensor

/position
mc / member :

MemberControl

Fig. 19 Example of a forbidden CIC

are instantiated. In our example, we only allow RailCabs to
be either the coordinator or a member but not both at the
same time. Therefore, we consider this CIC as semantically
inconsistent and, thus, as forbidden.

For verifying that a forbidden CIC may not occur, we
perform a reachability analysis [39] on the CSDs. In this
approach, we compute all possible configurations of a com-
ponent starting from the initial configurations. Then, wemay
check whether the forbidden CIC occurs in any of these con-
figurations.

8.1.2 Architectural invariants

Our componentmodel enables to specify architectural invari-
ants based on component SDDs as described in Sect. 2.4. Any
CIC that violates an architectural invariant is considered as
semantically inconsistent. As an example, an architectural
invariant may define that having an instance of the Mem-

berControl component inside RailCabDriveControl implies that
VelocityController embeds an instance of the ConvoyDrive

component (cf. Figs 2 and 3). Component SDDs are more
expressive than forbidden CICs because they enable specify-
ing conditional constraints and support quantification based
on first-order logic.

Component SDDs may be verified by a reachability anal-
ysis [39] on the CSDs. This is facilitated by translating the
component SDDs to equivalent CSDs [40]. Then, the SDD
is fulfilled if and only if the resulting story diagram can be
executed successfully on each configuration of the compo-
nent. In the reachability analysis, we check whether there
exists a configuration to which the CSD resulting from the
component SDD cannot be matched.

8.1.3 Properties in temporal logic

Temporal logic constraints based on CTL and LTL [41]
enable to specify constraints on the evolution of a CIC. In our
example, we want to specify that a RailCab may not directly
switch from being coordinator to being member. Such prop-
erties may be expressed by graph-based variants of CTL and

123

180 C. Heinzemann et al.

LTL such as quantified CTL (QCTL, [42]), graph-based LTL
(GLTL, [43]), or first-order TCTL (FO-TCTL, [44]). As an
example, we might want to verify that a coordinator RailCab
always needs to return to the configuration for driving alone
(cf. Fig. 4) before it may become member of a convoy. This
could be formalized in GLTL as:
G ((coordinator ⇒ (¬ member U

standalone)) U (member ∨
G ¬ member))

where coordinator, standalone, and member are graph
patterns representing the (partial) CICs of RailCabDrive-

Control operating as a coordinator, standalone RailCab, or
member.

Verifying such properties requires a graph-based model
checking, for example, based on GROOVE [43]. Apply-
ing GROOVE on CSDs requires translating the component
model and CSDs into a typed graph transformation sys-
tem [20]. Then, the component model defines the type graph
and the initial configuration of the structured component
defines the initial graph. In addition, the CSDs are translated
to typed graph transformation rules based on the type graph.

8.2 Timing

We ensure a correct timing specification by applying timed
model checking [13] on the RTSCs of manager and executor
that are contained in the platform-independent component
model. If the model checking encounters a deadlock or
a reconfiguration rule that cannot be executed, the timing
requirements in our declarative, table-based specification are
not satisfiable. If the timing requirements are satisfiable, then
there may exist a platform on which the reconfiguration con-
trollers can be executed. Thus, we only check the necessary
conditions for correct execution on themodel level. Ensuring
that the reconfiguration controllers are indeed executable on
a given platformneeds to be checked in a later refinement step
toward a platform-specific model or implementation. This is,
however, beyond the scope of this paper and we refer to [10]
for more information.

In order to achieve an efficient and scalable verification
approach, we verify the timing requirements separately for

each structured component. This is enabled by using stubs
for the parent component as well as the children. These
stubs formalize the behavior that is allowed by the inter-
face specifications of the RM and RE ports of the children
and that is necessary for a correct vertical integration of the
component with respect to timing. This enables a scalable
assume/guarantee style [41, Chap.12] verification where the
verification of the structured component assumes that the
children adhere to their interface specification. That a com-
ponent cannot violate its interface specification is guaranteed
by the generation templates and the timing verification of the
children.

For applying timed model checking, we need to trans-
late the RTSCs of manager and executor into a network of
timed automata as illustrated in Fig. 20. Its their properties
we want to guarantee and, therefore, verify. In particular, we
obtain one timed automaton for each region of the manager
RTSC and of the executor RTSC. In addition, we need one
automaton that defines the behavior of the connector between
manager and executor. Finally, we add two parent stubs for
the parent component and two child stubs for each embed-
ded component part whichwe assume to operate according to
their specifications. The number of child stubs is equal to the
number of timed automata that are generated for the subport
RTSCs of the embeddedCI ports of manager and executor (cf.
Sect. 7). The arrows illustrate the information flow between
the timed automata that results from the synchronizations
used in the RTSCs and the messages being sent.

Figure21 shows an executor child stub that was generated
based on the RE port specification of ConvoyCoordination for
verifying the correct timingof RailCabDriveControl in our case
study.

The behavior of the executor child stub is as follows.
It waits in Idle for being triggered by RailCabDriveControl

for executing a reconfiguration. In this case, only AddCon-

voyMemberAtPos may be triggered by RailCabDriveControl.
This corresponds to the channel childAddConvoyMemberAtPos

and the executor child stub switches to ReceivedAddCon-

voyMemberAtPos. As part of the transition, the executor child
stub non-deterministically chooses whether it will commit

Coordinator : RailCabDriveControl

RM
: Manager

RM

parent

embeddedCI

executor events

connector...

...

internalBehavior

manager
parent stub

manager
child stubs

: Executor RE RE

parent

embeddedCI...

...
executor
child stubs

internalBehavior

executor
parent stub

Fig. 20 Sketch of the generated Uppaal model

123

Transactional execution of hierarchical reconfigurations in cyber-physical systems 181

Idle c_child <= timeForDecisioni: int[0,1]
ReceivedAddConvoyMemberAtPos Committed

ExecuteSendMessage
c_child <= timeForExecution

childAddConvoyMemberAtPos[id]?

msgChildCommit[id]!

msgChildAbort[id]!

msgChildAbort[id]?
msgChildExecute[id]?

msgChildFinished[id]?

doCommit == true &&
c_child >= timeForDecision

doCommit == false &&
c_child >= timeForDecision

c_child >= timeForExecution
c_child = 0

c_child = 0, doCommit = i,
timeForDecision = 5,

timeForExecution = 20,
minCommitTime = 500 tmpChildCommitTime =

minCommitTime,
c_child = 0

childMsgAvailable[id] = truechildMsgAvailable[id] = false

c_child <= minCommitTime

Fig. 21 Child stub representing ConvoyCoordination for the verification of RailCabDriveControl

or abort the request. The result is stored in doCommit. In
addition, we assign the time values for the timeForDecision,
the timeForExecution, and the minCommitTime that are con-
tained in theREport interface specification to the eponymous
variables. The child stub now waits in ReceivedAddCon-

voyMemberAtPos until the timeForDecision has expired. Then,
it either synchronizes via msgChildAbort and returns to Idle

or synchronizes via msgChildCommit and switches to Com-

mitted. In Committed, the invariant ensures that the executor
child stub will only rest in the Committed state until the
minCommitTime expires. As a result, a deadlock occurs if Rail-
CabDriveControl does not send a decision whether to execute
or abort the reconfiguration in time. Based on the decision by
RailCabDriveControl, the executor child stub switches either
to Idle (abort) or to Execute (execute). In Execute, the execu-
tor child stub rests as long as the timeForExecution has not
expired. Then, it switches to SendMessage to check whether
RailCabDriveControl may accept the result message, which is
then sent at the transition from SendMessage to Idle.

We provide a specification of parent stubs and manager
child stubs on our Web site.3 The resulting timed automata
may then be verified usingUPPAAL [45]. Therefore,we need
to formalize the timing-related properties mentioned above.
First, we need to check that the model contains no deadlock,
which is formalized in Uppaal as:

ϕ = A[] not deadlock
Second, we need to check that each reconfiguration is exe-
cutable, which is formalized as:∀i∈recon f I Ds : ϕi = E<>
(Executor.internal_behavior.Report &&

executor_reconf == i)
That means we obtain one property for each reconfiguration
in the executor specification that we identify by an ID. For
each reconfiguration, we check whether we can reach the
report state in the internal behavior region of the executor

3 https://trac.cs.upb.de/mechatronicuml/wiki/PaperCBSE2013.

RTSC (cf. Fig. 18). Reaching this state indicates a successful
execution of the corresponding reconfiguration.

9 Implementation

Our proof-of-concept implementation covers the modeling
extensions to MechatronicUML (Sect. 4), the table-based
declarative specification of the reconfiguration controller
(Sect. 6), and the generation of the operational behavior spec-
ification (Sect. 7). We integrated our implementation into the
MechatronicUML Tool Suite4 [46].

We extended the meta-model of the MechatronicUML
Tool Suite for being able to add reconfiguration controllers
to structured components and for creating the declarative
specifications. Themeta-model has been developed using the
EclipseModeling Framework (EMF, [47]). The static seman-
tics has been completely encoded in the meta-model using
the Object Constraint Language (OCL, [48]). Based on the
meta-models, we extended the diagram editors such that they
support the specification of reconfigurable components. In
addition, we implemented a generator that enables to gener-
ate RTSCs for manager and executor based on the generation
templates given in Sect. 7. The generator has been imple-
mented in QVT Operational [49]. In addition, we support
to convert a non-reconfigurable component into a reconfig-
urable component for user’s convenience.

Finally, we modeled the full version of the RailCab exam-
ple that we use in this paper in theMechatronicUML Tool
Suite. A detailed description of the example can be found in
[10]. Instructions for downloading the MechatronicUML
Tool Suite including the example can be found on our Web
site.5

4 https://trac.cs.upb.de/mechatronicuml.
5 https://trac.cs.upb.de/mechatronicuml/wiki/PaperSEAMS2015.

123

https://trac.cs.upb.de/mechatronicuml/wiki/PaperCBSE2013
https://trac.cs.upb.de/mechatronicuml
https://trac.cs.upb.de/mechatronicuml/wiki/PaperSEAMS2015

182 C. Heinzemann et al.

At present, our proof-of-concept implementation is lim-
ited in the following ways. The generation templates do not
support input and output parameters of CSDs. The concept
for verifying consistency introduced in Sect. 8.1 has not yet
been implemented. The generation of stubs for the parent
and the children as described in Sect. 8.2 has not yet been
automatized, and the translation of the generated RTSCs for
manager and executor to UPPAAL is not yet fully covered
by the current implementation [14]. However, the manually
derived UPPAAL model for the RailCab case study can be
found on our Web site 6 to allow for reproducibility.

10 Assumptions and limitations

Our approach for the transactional execution of reconfigura-
tion is based on the assumption that any reconfiguration that
has been started can be finished successfully. In particular,
we assume that no hardware failures occur while executing
a reconfiguration.

Our method has two limitations. First, all monitoring has
to be performed by atomic components that accumulate the
monitoringdata andprovide accumulateddata to themanager
of the parent component. Second,wemayonly trigger atmost
one reconfiguration on each child of a structured component
instancewhen executing a CSD for the structured component
instance.

Finally, our evaluation is limited in the sense that we only
conducted a case study on an excerpt of a research prototype
system up to the platform-independent modeling level. The
RailCab model used as a running example has not yet been
executed on an embedded hardware platform.

11 Related work

Our concept for hierarchical execution of reconfigura-
tions in component-based systems relates to three research
areas. First, we discuss related works regarding architecture
description languages (ADLs) that support the specification
of self-adaptive systems in Sect. 11.1. Thereafter, we discuss
relatedworks based on the autonomic computing architecture
MAPE-K [50] in Sect. 11.2. Finally, we relate our approach
to software component models that support either runtime
reconfiguration or real-time systems or both in Sect. 11.3.
For all of the approaches, we discuss whether they support
reconfigurations in a hierarchical component model while
preserving component encapsulation and respecting ACI-T
properties.

6 https://trac.cs.upb.de/mechatronicuml/wiki/PaperCBSE2013.

11.1 ADLs for self-adaptive systems

ADLs specify software architectures based on components
and connectors, although the term component is less strictly
defined as for component models. Bradbury et al. [51] sur-
veyADLs that enable runtime reconfiguration of the software
architecture. They classify these ADLs into three categories:
graph-based (e.g., CHAM, Hirsch et al.), process algebra-
based (e.g., Dynamic Wright, Darwin), and formal-logic-
based (GeReL). Graph-based approaches define an initial
configuration that is modified by graph rewriting rules as
in MechatronicUML. Process algebra-based approaches
specify processes for each configuration using a process
algebra. At run time, components switch between processes
to execute reconfigurations. Formal-logic-based approaches
declaratively specify component behavior based on first-
order logic.We refer to [10] for references and a detailed dis-
cussion of thementioned approaches.Besides the approaches
surveyed by Bradbury et al., two more recent approaches
in this direction exist, namely by Kacem et al. [52] (graph-
based) and Bartels and Kleine [53] (process algebra-based).
All of the mentioned approaches do not support real-time
constraints for functional or reconfiguration behavior. Most
approaches discussed above (except Darwin and GeReL)
do not support structured components and GeReL is the
only one that can guarantee atomicity and isolation for
the execution of reconfigurations. None of the approaches
supports real-time constraints or the exchange of feedback
controllers.

11.2 Reconfiguration approaches based on MAPE-K

The MAPE-K reference architecture [50] defines autonomic
managers that execute a self-adaptation control loop for exe-
cuting runtime reconfigurations. The control loop monitors
the system, analyzes whether a reconfiguration is neces-
sary, plans when to execute the reconfiguration, and finally
executes it. It may be extended by a knowledge source for
improving adaptation decisions. To this end, our approach
currently supports the analysis and execution parts. The
monitoring is performed inside the atomic components and
the planning is not necessary because reconfigurations will
always be triggered instantaneously.

There exist several approaches that implement or refine
the MAPE-K reference architecture. The Rainbow frame-
work [54] provides an implementation of the reference archi-
tecture MAPE-K that targets business information systems.
Their concept defines an adaptation manager and an adap-
tation executor that closely correspond to the manager and
executor in our approach. The framework by de Oliveira et
al. [55] uses several autonomic managers for adapting cloud
applications in a coordinated fashion. Their autonomic man-
agers have a similar purpose as our reconfiguration controller

123

https://trac.cs.upb.de/mechatronicuml/wiki/PaperCBSE2013

Transactional execution of hierarchical reconfigurations in cyber-physical systems 183

but are horizontally composed. The approach by Edwards
et al. [56] uses meta-level components for implementing a
self-adaptation control loop similar to MAPE-K based on a
hierarchical component model. The meta-level components
fulfill a similar purpose as our reconfiguration controller.
Similarly, Vromant et al. [57] connect several MAPE control
loops that are located on the same hierarchy level following
a master-slave pattern. All of these approaches do not explic-
itly connect meta-level components or MAPE control loops,
respectively, on different hierarchy levels such that hierarchi-
cal execution is not supported and ACI-T properties cannot
be guaranteed. EUREMA [58] supports the specification of
multiple self-adaptation feedback loops based on MAPE-K
in a single system. Feedback loops on different architectural
levels may be connected and coordinated. Weyns et al. [59]
discuss different design patterns for connecting multiple
MAPE feedback loops in a system. With respect to their pat-
tern, our approach is based on the hierarchical control pattern.
In contrast to our approach, the approaches do not support
ACI-T properties except that EUREMA satisfies isolation of
adaptations.

11.3 Software component models

The surveys by Lau [60] and Crnković et al. [61] review
various component models. They distinguish between gen-
eral purpose component models as, for example, EJB [62],
and specialized component models for particular domains.
The latter usually address business information systems
or embedded real-time systems. In this section, we focus
primarily on component models for embedded real-time sys-
tems (Sect. 11.3.1) and on component models that support
runtime reconfiguration (Sect. 11.3.2).

11.3.1 Component models for embedded real-time systems

Hošek et al. [63] surveyed component models for embedded
real-time systems. Only few of which support runtime recon-
figuration including SOFA-HI [64], ProCom [65], MyCCM-
HI [66], BlueArX [67], and AUTOSAR7 [68]. All of these
componentmodels are restricted tomode changes [69]where
a component instance moves from one configuration to
another one. In contrast, CSDs of MechatronicUML pro-
vide a more powerful and flexible specification of reconfigu-
rations including control flow. Of the mentioned approaches,
only SOFA-HI and ProCom support hierarchical reconfigu-
rations and support some of the ACI-T properties.

The approach by Hang et al. [70] implements a com-
posable mode change operator based on the ProCom [65].
Similar to our approach, they use dedicated reconfiguration

7 http://www.autosar.org.

components that are hierarchically connected. Reconfigu-
ration requests may traverse the hierarchy bottom-up or
top-down. They adopted our approach for executing recon-
figuration based on single-phase execution and use our
verification approach introduced in Sect. 8.2. Therefore, they
support ACI properties but they do not provide explicit real-
time properties regarding the execution of reconfigurations
in their specification.

Pop et al. [4] introduce a mode change operation of
embedded real-time systems based on SOFA-HI [64]. In
their approach, each mode of a component instance corre-
sponds to a configuration. They also separate functional and
reconfiguration behavior and enable mode changes across
different levels of hierarchy. Their approach ensures consis-
tency and isolation but they cannot ensure atomicity if a child
is currently not able to reconfigure and they do not provide a
formal verification support for checking for a correct timing
of reconfigurations.

CompoSE [71] defines a hierarchical component model
for modeling embedded systems. Components specify con-
figurations based on combinations of ports and embedded
component instances similar to modes. At run time, a com-
ponent may switch between configurations. Their approach
supports isolation as well as the verification of consistency
and timing properties. Atomicity is not explicitly supported.

The DEECo component model [72] provides non-hierar-
chical components for soft real-time systems based on
ensembles. Components declaratively specify conditions for
being part of an ensemble and a shared runtime framework
automatically constructs and dissolves ensembles based on
these conditions. De Nicola et al. [73] present a textual lan-
guage named SCEL that enables to express these conditions
as policies including the necessary modifications of the soft-
ware architecture for establishing the ensemble. In contrast
to our approach, they neither support hierarchy nor ACI-T
properties.

The fault-tolerant component model by de Lemos et
al. [74] partitions component behavior into normal and
abnormal (exception) behavior. We follow the same idea
by separating normal behavior and reconfiguration behavior.
Their approach provides horizontal propagation of excep-
tions, but not propagation to parent components. With a
similar objective, Strunk and Knight [75] provide a depend-
able reconfiguration approach for hard real-time systems
where a systemmoves from one configuration to another one
with degraded functionality in case of a failure. The approach,
however, does not support hierarchy or timing properties, but
it ensures by formal proofs that any reconfiguration can be
executed successfully.

All of the approachesmentioned have in common that they
do not consider the particularities of exchanging feedback
controllers. Consequently, none of them supports a mecha-

123

http://www.autosar.org

184 C. Heinzemann et al.

nism for three-phase execution of reconfigurations enabling
safe reconfigurations involving feedback controllers.

Other component models for embedded real-time systems
like Koala [76], Robocop [77], SaveCCM [78], Rubus [79],
COMDES-II [80], PECOS [81], Flex-eWare [82], and
CHESS [83] provide the ability to specify real-time behavior
on a low level of abstraction including formal analysis. The
EAST-ADL2 [84] architecture description language for the
development of automotive systems provides the ability to
specify a hierarchical component architecture with a focus
on the integration of feedback controllers and it supports
the specification and formal analysis of component behav-
iors [85]. However, all of these approaches have in common
that they do not enable the specification and analysis of run
time reconfiguration.

11.3.2 Further component models supporting
reconfiguration

A main inspiration for our reconfiguration approach was
the Fractal component model [23,25]. Fractal supports the
definition of hierarchical components including runtime
reconfiguration of structured components. Each component
consists of a membrane and a content area. The content
area embeds other components,while themembrane contains
so-called controllers that enable introspection and reconfigu-
ration. Their concept extends each reconfigurable component
with a reconfiguration interface and a reconfiguration execu-
tor for executing reconfiguration scripts. We have adopted
the concept of a reconfiguration executor and extended the
remote reconfiguration invocation [26]. In contrast to our
approach, Fractal starts reconfigurations optimistically and
performs a roll-back in case that the reconfiguration is
not possible. Therefore, Fractal achieves ACI properties as
well, but does consider neither timing of reconfigurations
nor the verification of functional behavior and reconfigura-
tions.

Zhang et al. [86] provide an approach for safe adapta-
tion of component-based systems. Their approach uses one
central adaptation manager that orchestrates the adaptation
process, and several agents that are attached to the com-
ponents and perform their modification. If an adaptation
cannot be finished successfully, they perform a roll-back to
the previous configuration. Therefore, their approach guar-
antees ACI properties for the execution of reconfigurations
but considers neither hierarchical components nor real-time
properties. The approach by Boyer et al. [87] also follows a
roll-back approach for achieving reliable reconfiguration, but
their approach neither treats hierarchy nor achieves any of the
ACI-T properties. The SOFA 2.0 component model [88] uses
component controllers similar to Fractal and to our approach,
calledmicrocomponents, that enables hierarchical reconfigu-

rations. However, they do not address transactional execution
of reconfigurations.

12 Conclusions

In this paper, we introduced our comprehensive solu-
tion for safe reconfigurations of encapsulated hierarchical
component-based CPS. Our solution is able to guaranteeACI
and real-time properties. In addition, it also addresses the
continuous nature of the physical system environment by
incorporating feedback controller components. Our recon-
figuration protocol is based on an adaption of the 2-phase-
commit protocol [2, ch. 7]. In our approach, we syntactically
extend the components of the MechatronicUML compo-
nent model by a dedicated reconfiguration controller that
executes the 2-phase-commit protocol. The reconfigura-
tion controller enables to execute reconfigurations across
different levels of hierarchy without violating component
encapsulation. Our approach significantly reduces the com-
plexity of specifying such hierarchical reconfigurations by
providing a rather simple declarative specification based on
tables that enables to automatically generate an implemen-
tation of the 2-phase-commit protocol. We extended the
existing 2-phase-commit protocol such that it can execute
reconfigurations in a CPS including the exchange of feed-
back controllers according to ACI-T properties. While our
2-phase-commit protocol specification guarantees atomic-
ity and isolation offhand, we define a verification approach
for guaranteeing consistency and a correct timing of recon-
figurations. Therefore, we can ensure the correctness and,
thus, the safety of the reconfigurations. We demonstrated the
effectiveness of our approach by specifying the full hier-
archical reconfiguration behavior for the RailCab system,
which we used as case study. This smart railway system
that employs runtime reconfigurations allowed us to show
that our approach actually allows the effective and efficient
modeling and verification of a selected part of a complex,
real-world CPS prototype system. In particular, we gener-
ated the 2-phase-commit protocol implementation for the
reconfiguration behavior and verified the resulting models.
We found that this saved the developer from creating more
than 50 states and 90 transitions. In addition, we can guar-
antee that the reconfiguration behavior which the developer
specified in a high-level declarativemodel is correct and safe.
Hence, we conclude from our case study that our modeling
and verification approach is suited for CPS.

The contribution of this paper enables software engineers
of CPS to cope with the additional complexity that is intro-
ducedby adding self-adaptive behavior in the formof runtime
reconfigurations to their systems. In particular, self-adaptive
behavior adds more sources for errors that may occur at run
time and hardens to predict the behavior of the system. How-

123

Transactional execution of hierarchical reconfigurations in cyber-physical systems 185

ever, self-adaptive behavior is the basis for self-healing [89]
and self-optimization [90] that enable to improve safety,
availability, and (resource) efficiency of the system.With our
contribution, we support software engineers in coping with
this additional complexity such that they may safely unleash
the full potential of self-adaptive behavior when developing
the next generation of CPS.

In future works, we plan to extend our approach in sev-
eral ways. First, our approach currently only covers reactive
reconfigurations based on fixed rules, i.e., we always exe-
cute the same reconfiguration rule under the same condition.
The approach should be extended by an interface to a knowl-
edge component as advised by MAPE-K [50] for improving
reconfiguration decisions and enabling proactive reconfigu-
rations rather than only reactive reconfigurations supported
so far. This also enables to provide several reconfigura-
tion rules for a situation where the system can adjust the
decision which rule to execute based on experience from
past decisions. As a second extension, an explicit consider-
ation of functional safety concerns is necessary, e.g., based
on considering self-healing operations in reaction to hard-
ware failures. In addition, a runtime risk manager [91] may
reevaluate safety concerns during run time in order to forbid
reconfigurations that are unsafe under particular environ-
mental circumstances. As a third extension, we plan to add
explicit monitoring support to MechatronicUML, e.g.,
using a framework likeKieker.8 In particular, this should also
enable to specify additional monitoring in the reconfigura-
tion controller of a structured component, e.g., formonitoring
information entering the structured component. In any case,
the decision about executing a reconfiguration is made based
on monitoring data that may be incomplete or inconsistent,
e.g., due to false assumptions, unpredictable phenomena
in the environment, or even imprecise and inaccurate sen-
sors [92]. Therefore, we want to investigate whether the
reconfiguration behavior in our approach may be improved
by explicitly addressing uncertainty during the development.
Fourth, our reconfiguration approach needs to be extended by
an approach for quiescence [18,29] of discrete atomic com-
ponent instances. In particular, this approach should support
the developers at design time in specifying when a discrete
atomic component instance is quiescent and it should pro-
vide automatic checks at run time. Finally, we plan to further
evaluate our approach in an industrial context.

Acknowledgements The work presented in this paper has been con-
ducted at the time that the authors spent at the University of Paderborn
and the Fraunhofer Institute for Mechatronic Systems Design (IEM)
in Paderborn. At the time of conducting the research, they have been
funded by these institutions.

8 http://kieker-monitoring.net.

References

1. Szyperski, C., Gruntz, D.,Murer, S.: Component Software-Beyond
Object-Oriented Programming, 2nd edn. Addison-Wesley, Boston
(2002)

2. Bernstein, P.A., Hadzilacos, V., Goodman, N.: Concurrency Con-
trol and Recovery in Database Systems. Addison Wesley, Boston
(1987)

3. Hang, Y., Carlson, J., Hansson, H.: Towards mode switch handling
in component-based multi-mode systems, In: Proceedings of the
15th ACM SIGSOFT Symposium on Component Based Software
Engineering,CBSE’12, pp. 183–188.ACM,NewYork,NY (2012).
doi:10.1145/2304736.2304766

4. Pop, T., Plášil, F., Outly, M., Malohlava, M., Bureš, T.: Prop-
erty networks allowing oracle-based mode-change propagation in
hierarchical components, In: Proceedings of the 15th ACM SIG-
SOFT Symposium on Component Based Software Engineering,
CBSE’12, pp. 93–102. ACM, New York, NY (2012). doi:10.1145/
2304736.2304753

5. Eckardt, T., Heinzemann, C., Henkler, S., Hirsch, M., Priesterjahn,
C., Schäfer, W.: Modeling and verifying dynamic communication
structures based on graph transformations. Comput. Sci. Res. Dev.
28(1), 3–22 (2013). doi:10.1007/s00450-011-0184-y

6. Becker, S., Dziwok, S., Gerking, C., Heinzemann, C., Schäfer, W.,
Meyer, M., Pohlmann, U.: The MechatronicUMLmethod: Model-
driven software engineering of self-adaptive mechatronic systems,
In: Companion Proceedings of the 36th International Conference
on Software Engineering, ICSE Companion 2014, pp. 614–615.
ACM, New York, NY (2014). doi:10.1145/2591062.2591142

7. Heinzemann, C., Becker, S.: Executing reconfigurations in hier-
archical component architectures, In: Proceedings of the 16th
international ACM Sigsoft symposium on Component based soft-
ware engineering, CBSE ’13, pp. 3–12. ACM, New York, NY
(2013). doi:10.1145/2465449.2465452

8. Becker, S., Dziwok, S., Gerking, C., Heinzemann, C., Thiele, S.,
Schäfer, W., Meyer, M., Pohlmann, U., Priesterjahn, C., Tichy, M.:
The MechatronicUML design method –process and language for
platform-independent modeling, Tech. Rep. tr-ri-14-337, Software
Engineering Group, Heinz Nixdorf Institute, University of Pader-
born, version 0.4 (2014)

9. Group, O.M.: Model Driven Architecture (MDA) – MDA Guide
rev. 2.0, document – ormsc/14-06-01 (2014). http://www.omg.org/
cgi-bin/doc?ormsc/14-06-01

10. Heinzemann, C.: Verification and simulation of self-adaptive
mechatronic systems, Ph.D. thesis, University of Paderborn (2015)

11. Heineman, G.T., Councill, W.T. (eds.): Component-Based Soft-
ware Engineering: Putting the Pieces Together. Addison-Wesley
Longman Publishing Co. Inc, Boston (2001)

12. Group, O.M.: Unified Modeling Language (UML) 2.4.1 Super-
structure Specification, document formal/2011-08-06 (2011)

13. Bengtsson, J., Yi, W.: Timed automata: Semantics, algorithms and
tools, In: Desel, J., Reisig, W. Rozenberg, G. (Eds.) Lectures on
Concurrency and Petri Nets, Vol. 3098 of Lecture Notes in Com-
puter Science, pp. 87–124. Springer, Heidelberg (2004). doi:10.
1007/978-3-540-27755-2_3

14. Gerking, C., Dziwok, S., Heinzemann, C., Schäfer, W.: Domain-
specific model checking for cyber-physical systems, In: 12th
Workshop on Model-Driven Engineering, Verification and Vali-
dation (MoDeVVa 2015), Ottawa (2015)

15. Burmester, S.,Giese,H.,Oberschelp,O.:HybridUMLcomponents
for the design of complex self-optimizingmechatronic systems, In:
Braz, J. Araújo, H. Vieira, A. Encarnação, B. (Eds.) Informatics
in Control, Automation and Robotics I, pp. 281–288. Springer,
Netherlands (2006). doi:10.1007/1-4020-4543-3_34

123

http://kieker-monitoring.net
http://dx.doi.org/10.1145/2304736.2304766
http://dx.doi.org/10.1145/2304736.2304753
http://dx.doi.org/10.1145/2304736.2304753
http://dx.doi.org/10.1007/s00450-011-0184-y
http://dx.doi.org/10.1145/2591062.2591142
http://dx.doi.org/10.1145/2465449.2465452
http://www.omg.org/cgi-bin/doc?ormsc/14-06-01
http://www.omg.org/cgi-bin/doc?ormsc/14-06-01
http://dx.doi.org/10.1007/978-3-540-27755-2_3
http://dx.doi.org/10.1007/978-3-540-27755-2_3
http://dx.doi.org/10.1007/1-4020-4543-3_34

186 C. Heinzemann et al.

16. Osmic, S.,Münch, E., Trächtler,A.,Henkler, S., Schäfer,W.,Giese,
H., Hirsch, M.: Safe online-reconfiguration of self-optimizing
mechatronic systems, In:Gausemeier, J., Rammig, F.J., Schäfer,W.
(Eds.) Selbstoptimierende mechatronische Systeme: Die Zukunft
gestalten. 7. Internationales Heinz Nixdorf Symposium für indus-
trielle Informationstechnik, pp. 411–426. (2008)

17. McKinley, P.K., Sadjadi, S.M., Kasten, E.P., Cheng, B.H.C.: Com-
posing adaptive software. Computer 37(7), 56–64 (2004). doi:10.
1109/mc.2004.48

18. Zhang, J., Cheng, B.H.C.: Model-based development of dynami-
cally adaptive software, In: Proceedings of the 28th international
Conference on Software Engineering, ICSE ’06, pp. 371–380.
ACM, New York, NY (2006). doi:10.1145/1134285.1134337

19. Tichy, M., Henkler, S., Holtmann, J., Oberthür, S.: Component
story diagrams: A transformation language for component struc-
tures in mechatronic systems, In: Postproceedings of the 4th
Workshop on Object-oriented Modeling of Embedded Real-Time
Systems (OMER 4), pp. 27–39 (2008)

20. Ehrig, H., Ehrig, K., Prange, U., Taentzer, G.: Fundamentals
of Algebraic Graph Transformation, Monographs in Theoret-
ical Computer Science. Springer, Berlin (2006). doi:10.1007/
3-540-31188-2

21. Garlan, D., Monroe, R.T., Wile, D.: Acme: architectural descrip-
tion of component-based systems. In: Leavens, G.T., Sitaraman,
M. (eds.) Foundations of Component-Based Systems, pp. 47–67.
Cambridge University Press, New York, NY (2000)

22. Heinzemann, C.: Component story decision diagrams, Tech. Rep.
tr-ri-14-335, Software EngineeringGroup,HeinzNixdorf Institute,
University of Paderborn (2014)

23. Léger, M., Ledoux, T., Coupaye, T.: Reliable dynamic reconfigu-
rations in a reflective component model, In: Grunske, L., Reussner,
R., Plášil, F. (Eds.) Component-Based Software Engineering, Vol.
6092 of Lecture Notes in Computer Science, pp. 74–92. Springer,
Heidelberg (2010). doi:10.1007/978-3-642-13238-4_5

24. Heinzemann, C., Sudmann, O., Schäfer, W., Tichy, M.: A
discipline-spanning development process for self-adaptive mecha-
tronic systems, in: Proceedings of the 2013 International Confer-
ence on Software and System Process, ICSSP 2013, pp. 36–45.
ACM, New York, NY (2013). doi:10.1145/2486046.2486055

25. Bruneton, E., Coupaye, T., Leclercq, M., Quéma, V., Stefani, J.-B.:
The FRACTAL component model and its support in Java. Softw.
Pract. Exp. 36(11—-12), 1257–1284 (2006). doi:10.1002/spe.767

26. Bennour, B., Henrio, L., Rivera, M.: A reconfiguration framework
for distributed components, In: Proceedings of the 2009ESEC/FSE
Workshop on Software Integration andEvolution@Runtime, SIN-
TER ’09, pp. 49–56. ACM, New York, NY (2009). doi:10.1145/
1596495.1596509

27. Blair, G., Bencomo, N., France, R.B.: Models@ run.time. Com-
puter 42(10), 22–27 (2009). doi:10.1109/mc.2009.326

28. Heinzemann, C., Rieke, J., Schäfer, W.: Simulating self-adaptive
component-based systems usingMATLAB/Simulink, In: IEEE 7th
International Conference on Self-Adaptive and Self-Organizing
Systems, SASO ’13, IEEE Computer Society, pp. 71–80. (2013).
doi:10.1109/SASO.2013.17

29. Kramer, J.,Magee, J.:Analysing dynamic change in software archi-
tectures: A case study, in: Proceedings of the Fourth International
Conference on Configurable Distributed Systems, CDS ’98, IEEE
Computer Society, pp. 91–100. (1998). doi:10.1109/CDS.1998.
675762

30. Schubert, D.,Gerking,C.,Heinzemann,C.: Towards safe execution
of reconfigurations in cyber-physical systems, In: Proceedings of
the 19th International ACM Sigsoft Symposium on Component
Based Software Engineering, CBSE ’16 (2016)

31. Priesterjahn, C., Steenken, D., Tichy, M.: Timed hazard analysis
of self-healing systems, In: Cámara, J., de Lemos, R., Ghezzi, C.,
Lopes, A. (Eds.) Assurances for Self-Adaptive Systems, Lecture

Notes in Computer Science, vol. 7740, pp. 112–151. Springer, Hei-
delberg (2013). doi:10.1007/978-3-642-36249-1_5

32. Ziegert, S.,Wehrheim,H.: Temporal plans for software architecture
reconfiguration. Comput. Sci. Res. Dev. 30, 1–18 (2014). doi:10.
1007/s00450-014-0259-7

33. Wilhelm, R., Engblom, J., Ermedahl, A., Holsti, N., Thesing, S.,
Whalley, D., Bernat, G., Ferdinand, C., Heckmann, R., Mitra, T.,
Mueller, F., Puaut, I., Puschner, P., Staschulat, J., Stenström, P.:
The worst-case execution-time problem–overview of methods and
survey of tools. ACM Trans. Embed. Comput. Syst. (TECS) 7(3),
36:1–36:53 (2008). doi:10.1145/1347375.1347389

34. Burmester, S., Giese, H., Seibel, A., Tichy, M.: Worst-case execu-
tion time optimization of story patterns for hard real-time systems,
In: Proceedings of the 3rd International Fujaba Days 2005, pp.
71–78 (2005)

35. Heinzemann, C., Brenner, C., Dziwok, S., Schäfer, W.: Automata-
based refinement checking for real-time systems.Comput. Sci. Res.
Dev. 30(3–4), 255–283 (2015). doi:10.1007/s00450-014-0257-9

36. Pohlmann, U., Holtmann, J., Meyer, M., Gerking, C.: Generating
Modelica models from software specifications for the simulation
of cyber-physical systems, In: Proceedings of the 40th Euromicro
Conference on Software Engineering and Advanced Applications,
SEAA ’14, IEEE Computer Society, pp. 191–198 (2014). doi:10.
1109/SEAA.2014.18

37. Burmester, S., Giese, H., Schäfer, W.: Model-driven architecture
for hard real-time systems: From platform independent models to
code, In: Hartman, A., Kreische, D. (Eds.) Proceedings of the Euro-
pean Conference onModel Driven Architecture – Foundations and
Applications (ECMDA-FA ’05). Lecture Notes in Computer Sci-
ence, vol. 3748, pp. 25–40. Springer, Heidelberg (2005). doi:10.
1007/11581741_4

38. Pohlmann, U., Meyer, M., Dann, A., Brink, C.: Viewpoints and
views in hardware platformmodeling for safe deployment, In: Pro-
ceedings of the 2nd Workshop on View-Based, Aspect-Oriented
and Orthographic Software Modelling, VAO ’14, pp. 23:23–23:30.
ACM, New York, NY (2014). doi:10.1145/2631675.2631682

39. Heinzemann, C., Suck, J., Eckardt, T.: Reachability analysis on
timed graph transformation systems, Electron. Commun. EASST
32

40. Ahmadian, A.S., Aydogan, C., Braun, D., Bustamante, L.G., Gerk-
ing, C., Issiz, S., Kopecki, L., Prescher, P.: Developer Documenta-
tion of the Project Group SafeBots I. Project group. University of
Paderborn, Paderborn (2011)

41. Clarke, E.M., Grumberg, O., Peled, D.A.: Model Checking. MIT
Press, Cambridge (2000)

42. Rensink, A.: Model checking quantified computation tree logic,
In: Baier, C., Hermanns, H. (Eds.) CONCUR 2006 – Concurrency
Theory, Lecture Notes in Computer Science, vol. 4137, pp. 110–
125. Springer, Heidelberg (2006). doi:10.1007/11817949_8

43. Rensink, A.: Explicit state model checking for graph grammars,
In: Degano, P., Nicola, R., Meseguer, J., (Eds.) Concurrency,
Graphs and Models, Lecture Notes in Computer Science, vol.
5065, pp. 114–132. Springer, Heidelberg (2008). doi:10.1007/
978-3-540-68679-8_8

44. Suck, J., Heinzemann, C., Schäfer, W.: Formalizing model check-
ing on timedgraph transformation systems,Tech.Rep. tr-ri-11-316,
Software Engineering Group, Heinz Nixdorf Institute, University
of Paderborn, Paderborn (2011)

45. Behrmann,G., David,A., Larsen,K.G., Pettersson, P., Yi,W.,Hen-
driks, M.: Uppaal 4.0, In: Proceedings of the 3rd International
Conference on the Quantitative Evaluation of Systems, QEST
2006, IEEE Computer Society, pp. 125–126. Los Alamitos, CA
(2006). doi:10.1109/QEST.2006.59

46. Dziwok, S., Gerking, C., Becker, S., Thiele, S., Heinzemann, C.,
Pohlmann, U.: A tool suite for the model-driven software engineer-
ing of cyber-physical systems, In: Proceedings of the 22nd ACM

123

http://dx.doi.org/10.1109/mc.2004.48
http://dx.doi.org/10.1109/mc.2004.48
http://dx.doi.org/10.1145/1134285.1134337
http://dx.doi.org/10.1007/3-540-31188-2
http://dx.doi.org/10.1007/3-540-31188-2
http://dx.doi.org/10.1007/978-3-642-13238-4_5
http://dx.doi.org/10.1145/2486046.2486055
http://dx.doi.org/10.1002/spe.767
http://dx.doi.org/10.1145/1596495.1596509
http://dx.doi.org/10.1145/1596495.1596509
http://dx.doi.org/10.1109/mc.2009.326
http://dx.doi.org/10.1109/SASO.2013.17
http://dx.doi.org/10.1109/CDS.1998.675762
http://dx.doi.org/10.1109/CDS.1998.675762
http://dx.doi.org/10.1007/978-3-642-36249-1_5
http://dx.doi.org/10.1007/s00450-014-0259-7
http://dx.doi.org/10.1007/s00450-014-0259-7
http://dx.doi.org/10.1145/1347375.1347389
http://dx.doi.org/10.1007/s00450-014-0257-9
http://dx.doi.org/10.1109/SEAA.2014.18
http://dx.doi.org/10.1109/SEAA.2014.18
http://dx.doi.org/10.1007/11581741_4
http://dx.doi.org/10.1007/11581741_4
http://dx.doi.org/10.1145/2631675.2631682
http://dx.doi.org/10.1007/11817949_8
http://dx.doi.org/10.1007/978-3-540-68679-8_8
http://dx.doi.org/10.1007/978-3-540-68679-8_8
http://dx.doi.org/10.1109/QEST.2006.59

Transactional execution of hierarchical reconfigurations in cyber-physical systems 187

SIGSOFT International Symposium on Foundations of Software
Engineering, FSE2014, pp. 715–718.ACM,NewYork,NY(2014).
doi:10.1145/2635868.2661665

47. Steinberg, D., Budinsky, F., Paternostro, M., Merks, E.: EMF:
Eclipse Modeling Framework. The Eclipse Series, 2nd edn.
Addison-Wesley, Boston (2008)

48. Group, O.M.: Object Constraint Language (OCL) 2.3.1, document
formal/2012-01-01 (2012). http://www.omg.org/spec/OCL/2.3.1/

49. Group, O.M.: Query/View/Transformation (QVT) 1.1, document
formal/2011-01-01 (2011). http://www.omg.org/spec/QVT/1.1/

50. IBM. An architectural blueprint for autonomic computing, Auto-
nomic Computing White Paper, IBM (2006)

51. Bradbury, J.S., Cordy, J.R., Dingel, J., Wermelinger, M.: A survey
of self-management in dynamic software architecture specifica-
tions, In: Proceedings of the 1st ACM SIGSOFT Workshop on
Self-managed Systems, WOSS ’04, pp. 28–33. ACM, New York,
NY (2004). doi:10.1145/1075405.1075411

52. Kallel, S., Kacem, M.H., Jmaiel, M.: Modeling and enforcing
invariants of dynamic software architectures. Softw. Syst. Model.
11(1), 127–149 (2012). doi:10.1007/s10270-010-0162-z

53. Bartels, B., Kleine, M.: A CSP-based framework for the speci-
fication, verification, and implementation of adaptive systems, In:
Proceedings of the 6th International Symposium on Software Engi-
neering for Adaptive and Self-Managing Systems, SEAMS ’11,
pp. 158–167. ACM, New York, NY (2011). doi:10.1145/1988008.
1988030

54. Cheng, S.-W., Garlan, D., Schmerl, B.: Evaluating the effective-
ness of the Rainbow self-adaptive system, In: ICSE Workshop on
Software Engineering for Adaptive and Self-Managing Systems,
SEAMS ’09, IEEEComputer Society, pp. 132 –141 (2009). doi:10.
1109/seams.2009.5069082

55. De Oliveira, F. A., Ledoux, T., Sharrock, R.: A framework for
the coordination of multiple autonomic managers in cloud envi-
ronments, In: IEEE 7th International Conference on Self-Adaptive
and Self-Organizing Systems, SASO’13, IEEE Computer Society,
pp. 179–188 (2013). doi:10.1109/saso.2013.27

56. Edwards, G., Garcia, J., Tajalli, H., Popescu, D., Medvidović,
N., Sukhatme, G., Petrus, B.: Architecture-driven self-adaptation
and self-management in robotics systems, In: ICSE Workshop on
Software Engineering for Adaptive and Self-Managing Systems,
SEAMS ’09, IEEEComputer Society, pp. 142 –151 (2009). doi:10.
1109/seams.2009.5069083

57. Vromant, P., Weyns, D., Malek, S., Andersson, J.: On interacting
control loops in self-adaptive systems, In: Proceedings of the 6th
International Symposium on Software Engineering for Adaptive
and Self-Managing Systems, SEAMS ’11, pp. 202–207. ACM,
New York, NY (2011). doi:10.1145/1988008.1988037

58. Vogel, T., Giese, H.: Model-driven engineering of self-adaptive
softwarewith EUREMA.ACMTrans. Auton.Adapt. Syst. (TAAS)
8(4), 18:1–18:33 (2014). doi:10.1145/2555612

59. Weyns, D., Schmerl, B., Grassi, V., Malek, S., Mirandola, R., Pre-
hofer, C., Wuttke, J., Andersson, J., Giese, H., Göschka, K. M.:
On patterns for decentralized control in self-adaptive systems, In:
de Lemos, R., Giese, H., Müller, H. A., Shaw, M. (Eds.) Software
Engineering for Self-Adaptive Systems II, Lecture Notes in Com-
puter Science, vol. 7475, pp. 76–107. Springer, Heidelberg (2013).
doi:10.1007/978-3-642-35813-5_4

60. Lau, K.-K., Wang, Z.: Software component models. IEEE Trans.
Softw. Eng. 33(10), 709–724 (2007). doi:10.1109/tse.2007.70726

61. Crnković, I., Sentilles, S., Vulgarakis, A., Chaudron, M.R.V.: A
classification framework for software component models. IEEE
Trans. Softw. Eng. 37(5), 593–615 (2011). doi:10.1109/tse.2010.
83

62. Oracle, JSR 345: Enterprise JavaBeansTM, Version 3.2, EJB
Core Contracts and Requirements (Apr. 2013) (2015). http://

download.oracle.com/otn-pub/jcp/ejb-3_2-fr-eval-spec/ejb-3_
2-core-fr-spec.pdf

63. Hošek, P., Pop, T., Bureš, T., Hnětynka, P., Malohlava, M.:
Comparison of component frameworks for real-time embedded
systems, In: Grunske, L., Reussner, R., Plášil, F. (Eds.) Component
Based Software Engineering, Lecture Notes in Compute Science,
vol. 6092, pp. 21–36. Springer, Heidelberg (2010). doi:10.1007/
978-3-642-13238-4_2

64. Prochazka, M., Ward, R., Tuma, P., Hnětynka, P., Adamek, J.: A
component-oriented framework for spacecraft on-board software,
In: Proceedings of DASIA 2008, DAta Systems In Aerospace,
Palma de Mallorca, European Space Agency Report Nr. SP-665,
(2008)

65. Vulgarakis, A., Suryadevara, J., Carlson, J., Seceleanu, C., Pet-
tersson, P.: Formal semantics of the ProCom real-time component
model, In: Proceedings of the 35th Euromicro Conference on Soft-
ware Engineering and Advanced Applications, SEEA ’09, IEEE
Computer Society, pp. 478–485. Los Alamitos, CA (2009). doi:10.
1109/seaa.2009.53

66. Borde, E., Feiler, P.H., Haïk, G., Pautet, L.: Model driven code
generation for critical and adaptative embedded systems. SIGBED
Rev. 6, 10:1–10:5 (2009). doi:10.1145/1851340.1851352

67. Kim, J.E., Rogalla, O., Kramer, S., Hamann, A.: Extracting,
specifying and predicting software system properties in compo-
nent based real-time embedded software development, In: 31st
International Conference on Software Engineering–Companion
Volume, IEEE Computer Society, pp. 28–38 (2009). doi:10.1109/
icse-companion.2009.5070961

68. AUTOSAR, AUTOSAR 4.1 - Guide to Modemanage-
ment, document Identification No. 440, Version 2.2.0
(2014). http://www.autosar.org/fileadmin/files/releases/4-1/
software-architecture/system-services/auxiliary/AUTOSAR_
EXP_ModemanagementGuide.pdf

69. Hirsch, D., Kramer, J., Magee, J., Uchitel, S.: Modes for software
architectures, In: Gruhn, V., Oquendo, F. (Eds.) Software Architec-
ture, Lecture Notes in Computer Science, vol. 4344, pp. 113–126.
Springer, Heidelberg (2006). doi:10.1007/11966104_9

70. Hang, Y., Hansson, H.: Handling multiple mode switch scenarios
in component-based multi-mode systems, In: Proceedings of the
20th Asia-Pacific Software Engineering Conference, APSEC’13,
IEEE Computer Society, vol. 1, pp. 404–413 (2013). doi:10.1109/
apsec.2013.61

71. Adler, R., Schaefer, I., Trapp, M., Poetzsch-Heffter, A.:
Component-based modeling and verification of dynamic adapta-
tion in safety-critical embedded systems. ACM Trans. Embed.
Comput. Syst. 10(2), 201–2039 (2010). doi:10.1145/1880050.
1880056

72. Bureš, T., Gerostathopoulos, I., Hnětynka, P., Keznikl, J., Kit, M.,
Plášil, F.: DEECo: an ensemble-based component system, In: Pro-
ceedings of the 16th International ACM Sigsoft Symposium on
Component-Based Software Engineering, CBSE ’13, pp. 81–90.
ACM, New York, NY (2013). doi:10.1145/2465449.2465462

73. De Nicola, R., Ferrari, G., Loreti, M., Pugliese, R.: A language-
based approach to autonomic computing, In: Beckert, B., Damiani,
F., de Boer, F.S., Bonsangue, M.M.: (Eds.) Formal Methods for
Components and Objects, Lecture Notes in Computer Science,
vol. 7542, pp. 25–48. Springer, Heidelberg (2013). doi:10.1007/
978-3-642-35887-6_2

74. de Lemos, R., de Castro Guerra, P.A., Rubira, C.M.Fischer: A
fault-tolerant architectural approach for dependable systems. IEEE
Softw. 23(2), 80–87 (2006). doi:10.1109/ms.2006.35

75. Strunk, E.A., Knight, J.C.: Dependability through assured recon-
figuration in embedded system software. IEEE Trans. Dependable
Secure Comput. 3(3), 172–187 (2006). doi:10.1109/tdsc.2006.33

123

http://dx.doi.org/10.1145/2635868.2661665
http://www.omg.org/spec/OCL/2.3.1/
http://www.omg.org/spec/QVT/1.1/
http://dx.doi.org/10.1145/1075405.1075411
http://dx.doi.org/10.1007/s10270-010-0162-z
http://dx.doi.org/10.1145/1988008.1988030
http://dx.doi.org/10.1145/1988008.1988030
http://dx.doi.org/10.1109/seams.2009.5069082
http://dx.doi.org/10.1109/seams.2009.5069082
http://dx.doi.org/10.1109/saso.2013.27
http://dx.doi.org/10.1109/seams.2009.5069083
http://dx.doi.org/10.1109/seams.2009.5069083
http://dx.doi.org/10.1145/1988008.1988037
http://dx.doi.org/10.1145/2555612
http://dx.doi.org/10.1007/978-3-642-35813-5_4
http://dx.doi.org/10.1109/tse.2007.70726
http://dx.doi.org/10.1109/tse.2010.83
http://dx.doi.org/10.1109/tse.2010.83
http://download.oracle.com/otn-pub/jcp/ejb-3_2-fr-eval-spec/ejb-3_2-core-fr-spec.pdf
http://download.oracle.com/otn-pub/jcp/ejb-3_2-fr-eval-spec/ejb-3_2-core-fr-spec.pdf
http://download.oracle.com/otn-pub/jcp/ejb-3_2-fr-eval-spec/ejb-3_2-core-fr-spec.pdf
http://dx.doi.org/10.1007/978-3-642-13238-4_2
http://dx.doi.org/10.1007/978-3-642-13238-4_2
http://dx.doi.org/10.1109/seaa.2009.53
http://dx.doi.org/10.1109/seaa.2009.53
http://dx.doi.org/10.1145/1851340.1851352
http://dx.doi.org/10.1109/icse-companion.2009.5070961
http://dx.doi.org/10.1109/icse-companion.2009.5070961
http://www.autosar.org/fileadmin/files/releases/4-1/software-architecture/system-services/auxiliary/AUTOSAR_EXP_ModemanagementGuide.pdf
http://www.autosar.org/fileadmin/files/releases/4-1/software-architecture/system-services/auxiliary/AUTOSAR_EXP_ModemanagementGuide.pdf
http://www.autosar.org/fileadmin/files/releases/4-1/software-architecture/system-services/auxiliary/AUTOSAR_EXP_ModemanagementGuide.pdf
http://dx.doi.org/10.1007/11966104_9
http://dx.doi.org/10.1109/apsec.2013.61
http://dx.doi.org/10.1109/apsec.2013.61
http://dx.doi.org/10.1145/1880050.1880056
http://dx.doi.org/10.1145/1880050.1880056
http://dx.doi.org/10.1145/2465449.2465462
http://dx.doi.org/10.1007/978-3-642-35887-6_2
http://dx.doi.org/10.1007/978-3-642-35887-6_2
http://dx.doi.org/10.1109/ms.2006.35
http://dx.doi.org/10.1109/tdsc.2006.33

188 C. Heinzemann et al.

76. van Ommering, R., van der Linden, F., Kramer, J., Magee, J.: The
Koala component model for consumer electronics software. Com-
puter 33(3), 78–85 (2000). doi:10.1109/2.825699

77. Maaskant, H.: A robust component model for consumer elec-
tronic products, In: Stok, P. (Ed.) Dynamic and Robust Streaming
in and between Connected Consumer-Electronic Devices, Philips
Research Book Series, vol. 3, pp. 167–192. Springer, Netherlands
(2005). doi:10.1007/1-4020-3454-7_7

78. Åkerholm, M., Carlson, J., Fredriksson, J., Hansson, H., Håkans-
son, J.,Möller, A., Pettersson, P., Tivoli,M.: The SAVE approach to
component-based development of vehicular systems. J. Syst.Softw.
80(5), 655–667 (2007). doi:10.1016/j.jss.2006.08.016

79. Hänninen, K., Mäki-Turja, J., Nolin, M., Lindberg, M., Lundbäck,
J., Lundbäck, K.-L.: The Rubus component model for resource
constrained real-time systems, In: 3rd IEEE International Sympo-
siumon Industrial EmbeddedSystems, SIES2008, IEEEComputer
Society, pp. 177–183 (2008). doi:10.1109/SIES.2008.4577697

80. Ke, X., Sierszecki, K., Angelov, C.: COMDES-II: A component-
based framework for generative development of distributed real-
time control systems, In: Proceedings of the 13th IEEE Inter-
national Conference on Embedded and Real-Time Computing
Systems and Applications, RTCSA ’07, IEEE Computer Society,
pp. 199–208 (2007). doi:10.1109/rtcsa.2007.29

81. Genssler, T., Christoph, A., Winter, M., Nierstrasz, O., Ducasse,
S., Wuyts, R., Arévalo, G., Schönhage, B., Müller, P., Stich, C.:
Components for embedded software: The PECOS approach, In:
Proceedings of the 2002 International Conference on Compilers,
Architecture, and Synthesis for Embedded Systems, CASES ’02,
pp. 19–26. ACM, New York, NY (2002). doi:10.1145/581630.
581634

82. Jan, M., Jouvray, C., Kordon, F., Kung, A., Lalande, J., Loiret, F.,
Navas, J., Pautet, L., Pulou, J., Radermacher, A., Flex-eware, L.S.:
A flexible model driven solution for designing and implementing
embedded distributed systems. Softw. Pract. Exp. 42(12), 1467–
1494 (2012). doi:10.1002/spe.1143

83. Panunzio, M., Vardanega, T.: A component-based process with
separation of concerns for the development of embedded real-time
software systems. J. Syst. Softw. 96, 105–121 (2014). doi:10.1016/
j.jss.2014.05.076

84. Cuenot, P., Frey, P., Johansson, R., Lönn, H., Papadopoulos, Y.,
Reiser, M.-O., Sandberg, A., Servat, D., Tavakoli Kolagari, R.,
Törngren, M., Weber, M.: The EAST-ADL architecture descrip-
tion language for automotive embedded software, In: Giese, H.,
Karsai, G., Lee, E., Rumpe, B., Schätz, B. (Eds.) Model-Based
Engineering of Embedded Real-Time Systems, Lecture Notes in
Computer Science, vol. 6100, pp. 297–307. Springer, Heidelberg
(2010). doi:10.1007/978-3-642-16277-0_11

85. Chen, D., Feng, L., Qureshi, T.N., Lönn, H., Hagl, F.: An archi-
tectural approach to the analysis, verification and validation of
software intensive embedded systems. Computing 95(8), 649–688
(2013). doi:10.1007/s00607-013-0314-4

86. Zhang, J., Cheng, B.H.C., Yang, Z., McKinley, P.K.: Enabling
safe dynamic component-based software adaptation, In: de Lemos,
R., Gacek, C., Romanovsky, A. (Eds.) Architecting Dependable
Systems III, Lecture Notes in Computer Science, vol. 3549, pp.
194–211. Springer, Heidelberg (2005). doi:10.1007/11556169_9

87. Boyer, F., Gruber, O., Pous, D.: Robust reconfigurations of com-
ponent assemblies, In: Proceedings of the 2013 International
Conference on Software Engineering, ICSE ’13, IEEE Computer
Society, pp. 13–22. Piscataway, NJ (2013). doi:10.1109/ICSE.
2013.6606547

88. Hnětynka, P., Bureš, T.: Advanced features of hierarchical com-
ponent models, In: Zendulka, J. (Ed.) Proceedings of the 10th
International Conference on Information System Implementation
and Modeling, ISIM’07, CEUR-WS.org. vol. 252, pp. 1–8 (2007)

89. Shaw, M.: “self-healing”: softening precision to avoid brittleness:
position paper for WOSS ’02: workshop on self-healing systems,
In: Proceedings of the first workshop on Self-healing systems,
WOSS ’02, pp. 111–114. ACM, New York, NY (2002). doi:10.
1145/582128.582152

90. Gausemeier, J., Rammig, F.-J., Schäfer, W. (Eds.) Design Method-
ology for Intelligent Technical Systems, Lecture Notes inMechan-
ical Engineering, Springer, Berlin (2014)

91. Priesterjahn, C., Heinzemann, C., Schäfer, W., Tichy, M.: Run-
time safety analysis for safe reconfiguration, In: Proceedings of
the 3. Workshop „Self-X and Autonomous Control in Engineer-
ing Applications”, 10. IEEE International Conference on Industrial
Informatics, INDIN’12, IEEE Computer Society, pp. 1092 – 1097
(2012). doi:10.1109/INDIN.2012.6300900

92. Ramirez, A.J., Jensen, A.C., Cheng, B.H.C.: A taxonomy of uncer-
tainty for dynamically adaptive systems, In: Proceedings of the
2012 ICSE Workshop on Software Engineering for Adaptive and
Self-Managing Systems, SEAMS’12, IEEE Computer Society, pp.
99 –108 (2012). doi:10.1109/seams.2012.6224396

Christian Heinzemann is a
researcher in software engineer-
ing in the Corporate Research
Department of the Robert Bosch
GmbH in Renningen, Germany.
Before, he worked as a research
assistant at the Fraunhofer Insti-
tute for Mechatronic Systems
Design (IEM) in Paderborn and
at the University of Paderborn.
He received his PhD in the year
2015 in software engineering
from the University of Pader-
born, Germany, for his work on
the verification and simulation of

self-adaptive mechatronic systems.

Steffen Becker holds the chair
for software engineering at the
University of Technology Chem-
nitz. Before, he was assistant
professor at the University of
Paderborn, department head at
the Research Centre for Infor-
matics (FZI) in Karlsruhe and
research assistant in Karlsruhe
and Oldenburg. He received his
PhD in the year 2008 in Software
Engineering from the university
of Oldenburg, Germany, for his
work on the quality prediction
of model-driven developed soft-

ware systems in the context of the five-year DFG-funded young
researchers group Palladio. He is a frequent reviewer for journals in
software engineering and a member of various program committees of
conferences in the area. In particular, he is a permanent member of
the steering committee of the International Conference on Quality of
Software Architectures (QoSA) part of the CompArch federated events
since 2005.

123

http://dx.doi.org/10.1109/2.825699
http://dx.doi.org/10.1007/1-4020-3454-7_7
http://dx.doi.org/10.1016/j.jss.2006.08.016
http://dx.doi.org/10.1109/SIES.2008.4577697
http://dx.doi.org/10.1109/rtcsa.2007.29
http://dx.doi.org/10.1145/581630.581634
http://dx.doi.org/10.1145/581630.581634
http://dx.doi.org/10.1002/spe.1143
http://dx.doi.org/10.1016/j.jss.2014.05.076
http://dx.doi.org/10.1016/j.jss.2014.05.076
http://dx.doi.org/10.1007/978-3-642-16277-0_11
http://dx.doi.org/10.1007/s00607-013-0314-4
http://dx.doi.org/10.1007/11556169_9
http://dx.doi.org/10.1109/ICSE.2013.6606547
http://dx.doi.org/10.1109/ICSE.2013.6606547
http://dx.doi.org/10.1145/582128.582152
http://dx.doi.org/10.1145/582128.582152
http://dx.doi.org/10.1109/INDIN.2012.6300900
http://dx.doi.org/10.1109/seams.2012.6224396

Transactional execution of hierarchical reconfigurations in cyber-physical systems 189

AndreasVolk is a software engi-
neer at Bosch SoftTec GmbH
in Hildesheim, Germany. He
received his master’s degree in
the year 2014 in software engi-
neering from the University of
Paderborn, Germany. During his
studies he worked on the simula-
tion of self-adaptive mechatronic
systems.

123

	Transactional execution of hierarchical reconfigurations in cyber-physical systems
	Abstract
	1 Introduction
	2 MechatronicUML component model
	2.1 Components
	2.2 Instantiating components to component instances
	2.3 Specifying reconfigurations
	2.4 Defining architectural constraints

	3 Overview of our approach
	4 MechatronicUML reconfiguration controller
	5 Executing reconfigurations
	5.1 Single-phase execution
	5.2 Three-phase execution
	5.2.1 Setup
	5.2.2 Fading
	5.2.3 Teardown

	5.3 Quiescence

	6 Declarative specification
	6.1 Interface specification of RM ports
	6.2 Manager specification
	6.3 Executor specification
	6.4 Interface specification of RE ports

	7 Generate operational behavior
	7.1 Manager specification
	7.2 Executor specification

	8 Verification
	8.1 Consistency
	8.1.1 Forbidden CICs
	8.1.2 Architectural invariants
	8.1.3 Properties in temporal logic

	8.2 Timing

	9 Implementation
	10 Assumptions and limitations
	11 Related work
	11.1 ADLs for self-adaptive systems
	11.2 Reconfiguration approaches based on MAPE-K
	11.3 Software component models
	11.3.1 Component models for embedded real-time systems
	11.3.2 Further component models supporting reconfiguration

	12 Conclusions
	Acknowledgements
	References

