Softw Syst Model (2018) 17:551-572
https://doi.org/10.1007/s10270-016-0551-z

@ CrossMark

SPECIAL SECTION PAPER

Toward an execution system for self-healing workflows

in cyber-physical systems

Ronny Seiger! - Steffen Huber? - Thomas Schlegel®

Received: 15 October 2015 / Revised: 30 March 2016 / Accepted: 12 July 2016 / Published online: 3 August 2016

© Springer-Verlag Berlin Heidelberg 2016

Abstract Cyber-physical systems (CPS) represent a new
class of information system that also takes real-world data
and effects into account. Software-controlled sensors, actu-
ators and smart objects enable a close coupling of the cyber
and physical worlds. Introducing processes into CPS to auto-
mate repetitive tasks promises advantages regarding resource
utilization and flexibility of control systems for smart spaces.
However, process execution systems face new challenges
when being adapted for process execution in CPS: the auto-
mated processing of sensor events and data, the dynamic
invocation of services, the integration of human interaction,
and the synchronization of the cyber and physical worlds.
Current workflow engines fulfill these requirements only to
a certain degree. In this work, we present PROtEUS—an
integrated system for process execution in CPS. PROtEUS
integrates components for event processing, data routing,
dynamic service selection and human interaction on the
modeling and execution level. It is the basis for executing
self-healing model-based workflows in CPS. We demonstrate
the applicability of PROtEUS within two case studies from

Communicated by Dr. Selmin Nurcan.

B Ronny Seiger
ronny.seiger @tu-dresden.de

Steffen Huber
steffen.huber @tu-dresden.de

Thomas Schlegel

thomas.schlegel @hs-karlsruhe.de

Software Technology Group, Technische Universitit Dresden,
Dresden, Germany

Software Engineering of Ubiquitous Systems Group,
Technische Universitit Dresden, Dresden, Germany

Institute of Ubiquitous Mobility Systems, Karlsruhe
University of Applied Sciences, Karlsruhe, Germany

the Smart Home domain and discuss its feasibility for intro-
ducing workflows into cyber-physical systems.

Keywords Process execution - Cyber-physical systems -
Workflow system - Internet of things - System architecture -
Middleware - Event processing

1 Introduction

Cyber-physical systems (CPS) represent an emerging type of
distributed system that integrates a multitude of sensors, actu-
ators and software applications into large networks of inter-
connected components and things (Internet of things) [3]. A
closed feedback loop (MAPE-K) exists between local sensing
(Monitor) and processing on embedded systems (Analyze),
computing on local or remote cloud-based servers (Plan),
and controlling local actuators and applications (Execute),
which are able to have an impact on the physical world [26].
That way, the virtual (cyber) and the real world (physical) are
interwoven to a new degree [28]. The trend toward ever more
intelligent environments (Smart Spaces) shows the increas-
ing importance of CPS throughout all areas of life [10].
Processes have been widely used for describing the flow
of activities and work in order to facilitate the automation of
repetitive tasks. They can be regarded as high-level programs
consisting of method calls and additional logic defining the
flow of data and activations between the components of a
system. The introduction of processes into CPS carries a
great potential for automating tasks and creating intelligent
environments of interconnected ubiquitous devices saving
resources and assisting users with their everyday activities.
However, cyber-physical systems also add new requirements
to process-aware information systems that current work-
flow engines are not able completely fulfill. Among others,

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s10270-016-0551-z&domain=pdf

552

R. Seiger et al.

an increased level of automation in CPS requires: (1) the
automated reaction to of sensor events from the physical
world; (2) processing of data; (3) the dynamic resource
allocation of devices with varying availability and capabil-
ities; (4) the integration of users through various modern
end-user devices and modalities; and (5) the synchroniza-
tion of the cyber and physical world in case of inconsistent
process execution states. Current process execution systems
have been designed with a strong focus on Web-based work-
flows involving Web services, high-level human activities
and organizational processes [43]. From another perspective,
processes can be considered as a more formal abstraction of
hardware-related programs regarding only a closed set of
homogeneous resources [13]. These approaches leave a gap
between hardware-related process execution and high-level
interactive workflows involving humans, which is the rea-
son for the only partial fulfillment of the CPS requirements
(1)—(5) by state-of-the-art process management systems.

In this paper, we present an integrated process execution
system for cyber-physical systems (PROtEUS) intended to
bridge the aforementioned gap. Our research focuses on the
designing a comprehensive execution system that integrates
established components and modeling concepts to cope with
the specific requirements for process execution predominant
in CPS (1)-(5). PROtEUS introduces processes into cyber-
physical environments (CPS Workflows) by incorporating a
model-based execution engine, a complex event processing
engine, a service platform and a dynamic services caller, as
well as bidirectional communication channels for interact-
ing with users. The combination of these components on
the modeling and execution level yields an increased level of
process-based automation in CPS with respect to the process-
ing of events, orchestrating data flow, finding and invoking
services dynamically, and ubiquitous human access. Based
on these concepts, we propose a mechanism to implement
self-healing workflows for CPS using the MAPE-K feed-
back loop [18] executed by PROtEUS to synchronize the
process execution states of the virtual and physical worlds
and therefore ensure Cyber-physical Consistency.

The paper is structured as follows: Section 2 presents two
exemplary scenario processes in the Smart Home domain.
Section 3 describes the goals and challenges in process exe-
cution for CPS derived from related research and use cases
that we address with this work. Section 4 introduces the basic
modeling concepts and system architecture for an integrated
process execution system and its proof-of-concept imple-
mentation in the form of PROtEUS. Section 5 proposes
a synchronization mechanism for virtual and real-world
processes based on PROtEUS and the MAPE-K feedback
loop. Section 6 shows the practical application of PROtEUS
for process execution in the scenario processes. Section 7 dis-
cusses our approach and results in detail. Section 8§ presents
related research with respect to the requirements for process

@ Springer

execution in CPS. Section 9 concludes the paper and shows
starting points for future work.

This paper is an extended version of the contribution [46]
published as part of the proceedings of the BPMDS 2015
working conference. The challenges for process execution
in CPS are more focused on the specific properties of CPS
and used as a guideline for structuring each section of the
paper. In addition, the descriptions of the basic concepts are
extended to also include the underlying concepts on the mod-
eling level. The paper is extended by a second application
scenario and case study to illustrate the newly introduced
requirement of synchronizing the cyber world and physical
world. Applying the basic concepts of PROtEUS, we present
an approach for detecting inconsistencies between the virtual
process state and the actual physical process execution, and
for restoring cyber-physical consistency. The case study sec-
tion is extended by a more detailed demonstration of using
PROtEUS for process execution. The discussion section is
extended with a more detailed evaluation of how PROtEUS
meets the requirements for process execution in CPS. The
related work section is restructured and contains a more thor-
ough discussion and comparison with related approaches.

2 Scenarios

A typical application domain for CPS is the domestic envi-
ronment [51]. Smart Homes are equipped with a multitude
of sensors for measuring physical properties or more com-
plex data, e.g., with the help of cameras, microphones or
infrared sensors. Actuators controlling household applica-
tions enable the manipulation of the physical world by means
of software. These applications can either be running on
local computers and embedded systems (e. g., WiFi routers,
Smart TVs and service robots) or they can be executed in the
form of cloud services. Stationary and mobile devices pro-
vide access to CPS components for interaction and control.
Ambient assisted living (AAL) employs this Smart Home
technology to support elderly people in living a more self-
determined life. In the following, we present two typical
processes as extensions of the use cases presented in [47]
in the AAL domain. Using processes in the AAL and Smart
Home domains may help with the automatic provision of
assistance for people as well as an increase in comfort and
saving of resources. To illustrate these different purposes,
we present a process for automated health support (assis-
tance) and for home automation (energy saving)—both also
increasing the user’s comfort.

2.1 Scenario 1: Health monitoring

Alice is a 73-year-old woman living alone in her AAL-
enabled apartment. She is wearing a fitness tracker, which

Toward an execution system for self-healing workflows in cyber-physical systems 553

senses movement, heart rate, blood pressure and sleep-
ing states. The fitness tracker’s data can be accessed and
processed by the Smart Home. When Alice gets up from the
kitchen table, she suddenly faints due to postural hypotension
(sudden drop in blood pressure). The Smart Home detects
that Alice’s health might be in a critical condition and asks
Alice if something is wrong. After a defined time without
response, an emergency call is placed automatically. Upon
the paramedics’ arrival at the apartment, the door is unlocked
by the medics to provide Alice with medical assistance.

2.2 Scenario 2: Home automation

Saving resources is one of the main goals of using Smart
Home technology. By switching on the light and turning
on the heating automatically only in the presence of its
inhabitants, the Smart Home is able contribute to increasing
the users’ comfort and also to reducing energy consump-
tion. Parts of Alice’s morning routine can be supported by
a process-based home automation system: Alice has set her
alarm clock to waking up around 7 a.m.. Her fitness tracker
analyzes her sleeping phases and sends an event to the Smart
Home control system when it is around 7 a.m. and she is not
in REM sleep anymore. This triggers the light to be slowly
switched on in her bedroom and the alarm clock to play her
favorite tune to wake up. After that, the heating is turned on
in her bathroom. That way, everything is prepared for Alice
to get up and proceed with her morning routine.

3 Goals and challenges

From related work [10,28,38,55,65] and from the Smart
Home scenarios in Sect. 2, we identified and focus on several
requirements for a process execution environment operating
within CPS. These challenges are predominant specifically
for the automation of processes in cyber-physical domains.
However, this list of challenges is not comprehensive as
we only aim at supporting people in loosely coupled, very
dynamic cyber-physical environments, e. g., Smart Homes.

C1 event abstraction and processing: CPS consist of
loosely coupled devices that usually communicate on an
event-driven basis. A multitude of sensors, actuators and
other software entities produces constant streams of event
data from within the CPS [55]. In order to reflect this property
of event-based communication in processes, events have to
be abstracted on different levels of granularity and introduced
as first-class entities in process definitions. The modeling and
processing of events ranging from single event sources up to
a large number of heterogeneous events have to be supported
to cope with the complexity of modeling the reactions to a
combination of events from a multitude of sources.

The integration of events into process control flow facil-
itates the connection between the physical and the cyber
world. In our application scenarios, a health warning event
triggers a process that eventually leads to an automatic emer-
gency call, a door unlocking process is triggered when the
paramedics’ arrival is detected, and a wake-up event is trig-
gered in the morning. The main challenge for high-level
event detection is the processing of a multitude of data from
physical and virtual sensors. This comprises homogenizing
low-level sensor readings and defining patterns within these
data streams that lead to higher-order events, which are con-
tained in the high-level process description [55].

C2 automated data flow: The main goal of introducing
processes into CPS is to increase the automation of repetitive
tasks. Besides automating the control flow among services,
actuators and other entities involved in process execution
(e.g., humans), the flow of data also has to be automated to
reach an increased level of autonomy in CPS. This requires
more sophisticated means for formalizing the flow of simple
and complex typed data inside processes in order to automat-
ically process data in high-level process steps and pass data
between them (e. g., to evaluate Alice’s response) [5].

C3 dynamic service invocation: Heterogeneous compo-
nents (e. g., actuators, services and applications) are used as
process resources for the execution of tasks within CPS. In the
scenarios, in-house services are called to switch on the light,
turn on the heating and ask for Alice’s well-being on a tablet
device. After the timeout related to Alice’s answer, an exter-
nal Web service placing an emergency call is invoked and
the door unlocking subprocess controls the local door lock
actuator. The main challenge for integrating these CPS com-
ponents and services as process resources originates from
the dynamic nature of CPS, i..e, the varying availability of
components at runtime. At design time (i. e., during process
modeling), the required CPS components or services that
can execute a specific task may be unknown [24]. Even at
runtime (i.e., during process execution), the availability of
process resources and their capabilities may vary depend-
ing on various context factors [10]. Therefore, an abstraction
from concrete component instances to a type and capability-
based resource allocation is needed to separate the concerns
of modeling task behavior and dynamic allocation of process
resources.

C4 ubiquitous human access: Sensor readings may be
error-prone, resulting in the detection of false or ambiguous
high-level events. Due to the close coupling of events and
process control flow, we also need to account for falsely trig-
gered processes. User interactions are needed for performing
manual tasks, reacting to errors and providing data in case
of uncertainty. In the scenario, user interaction is requested
asking for Alice’s feedback after the detection of a health
warning event. Regarding the current trends of interactive

@ Springer

554

R. Seiger et al.

devices becoming more and more ubiquitous and integrated
into daily lives as envisioned by Mark Weiser [61], ubiquitous
process control and context-adaptive selection of appropriate
modalities for human interaction with and within processes as
well as their process model integration are important require-
ments [10,38].

CS5 synchronization of worlds and self-healing: Proc-
esses in CPS have the capability to influence real-world
properties by calling actuator functionality. However, the
success of an actuator call is usually evaluated based on the
response of the actuator’s software/server. Despite malfunc-
tions (e. g., a broken light bulb) or inaccuracies concerning
physical properties (e. ., rotation angle of the heating valve),
the software may report the successful execution of the oper-
ation, which leads to inconsistent states of the virtual process
(success) and the real-world process (failure). The process
execution environment has to be able to detect these incon-
sistencies and perform compensation actions to synchronize
both worlds [65].

The execution of processes in cyber-physical systems
poses new requirements for process-aware information sys-
tems (PAIS) as they have to be able to handle novel properties
introduced by CPS [10,28,38]. The aim of this work is
to develop a process execution system integrating various
existing components and technologies for achieving the
goals mentioned above thereby introducing the concept of
processes into CPS. The main challenges are posed by the
combination of the concepts and properties of low-level sen-
sors and actuators as key elements of CPS with formalized
high-level workflows. On the other hand, users also need
to be considered as part of the automated processes involv-
ing sensors and actuators. PROtEUS is designed to bridge
this gap between hardware-related automatic processes and
human-centered workflows, which is prevalent in current
process/workflow systems. An additional goal is the synchro-
nization of the virtual state of the process execution with the
physical effects of real-world process activities. The aspect of
achieving real-time process execution is an important factor
for CPS [28] but out of scope of this work. The list of chal-
lenges is not exhaustive for CPS, but it represents common
requirements for PAIS operating in cyber-physical environ-
ments.

4 Basic system architecture and modeling concepts

The process execution system for cyber-physical systems
PROtEUS consists of several components designed to meet
the challenges CPS pose for automated process execution
as identified in Sect. 3. It is designed in alignment with
the reference architecture for workflow management sys-
tems proposed by the WEMC [22]. The core of PROtEUS

@ Springer

Management Client Interactive Client

WebSocket Server PROtEUS
/ \
Process Manager | | Human Task Handler |
l l
Process Engine
i
Service Platform
| Service I Service
CEP Engine
A
|
: | Service Invoker :
R P N /' T \ T
Service |Service | ISensor | |Sensor | | Sensorl

Fig. 1 Overview of the process execution system’s (PROtEUS) archi-
tecture

consists of a component-based meta-model describing the
structure of process models and a process engine respon-
sible for instantiating these models and executing actual
process instances [47]. Access to the engine’s process con-
trol functionality is achieved by the process manager. A
complex event processing (CEP) engine is able to process
large amounts of external sensor data and trigger high-level
events within process instances. PROtEUS also offers a ser-
vice platform for deploying and calling services during the
execution of processes as well as an external service invoker.
A semantic access layer component provides external ser-
vices for finding and invoking process resources dynamically
based on their semantic descriptions [24]. Human interac-
tions are enabled by a human task handler sending interaction
requests to interactive clients. The bidirectional communica-
tion with the process execution system from remote clients
for monitoring, interaction and control purposes is enabled
by a WebSocket server. The overall systems architecture is
depicted in Fig. 1. The interfaces between the cyber world and
the physical world are represented by the software-controlled
sensors and actuators of the CPS. The following sections
explain the individual components and their interactions in
more detail.

4.1 Core process engine and process manager

The meta-model is designed with regard to the properties
of CPS [47]. In general, it follows a component-oriented
view on process elements. Processes and process steps can be
composed hierarchically, and ports describe their input and

Toward an execution system for self-healing workflows in cyber-physical systems 555

output with regard to control and typed data flow. Transitions
between these ports allow for modeling the concrete data and
control flow between process activities. The following sec-
tions explain the CPS specific extensions and elements of
this meta-model and their semiformal execution semantics as
UML communication diagrams with respect the challenges
in more detail.

The core of the process execution environment is a
Petri net-based Process Engine. We decided to use a self-
developed process engine in order to extend the modeling
concepts and achieve a better integration of all components
necessary for executing CPS processes with respect to the
challenges. Petri nets provide the necessary formalisms to
model and verify the control flow and behavior of work-
flows within distributed systems [57]. According to Baheti
and Gill [3], Petri nets are suitable for verifying at least the
software-related parts of CPS to prove safety features, which
is why we decided to also base the implementation of the
process engine on Petri nets. The verification of the physical
aspects of processes in CPS goes beyond the classical Petri
net approaches and needs further research.

The engine instantiates a process model and walks through
the process description based on the YAWL [58]-compatible
process meta-model described in [47]. Through subtype
polymorphism, the process engine is able to call a specific
execution method according to the type process step to be
executed. There exist special types for control flow logic
(e.g., for splits, joins and loops), data flow logic (e.g., for
mapping, replication and (de-)composition) and the invoca-
tion of various types of services. Through specializations of
an atomic or a composite process step, the meta-model can
easily be extended to support a wide range of further process
elements. Figure 9 shows the graphical representation of a
process according to Scenario 1 presented in Sect. 2, which
was created using the PROtEUS process model editor [47].

The Process Manager component is responsible for man-
aging process models and process instances. The manager
enables upload, parametrization and deployment of process
models in the execution system as well the control of process
instances. Furthermore, the manager provides access to mon-
itoring information about processes and the states of process
instances, which can be queried by clients.

4.2 Event abstraction and processing

An important and central part of PROtEUS is the complex
event processing (CEP) engine. As CPS are characterized by
being highly event-driven (cf. Sect. 3), the process execution
environment has to be able to process data from sensors and
other sources of events. A CEP engine allows for processing
of large amounts of data streams and recognizing patterns
within this data [29]. Upon its start, the CEP engine sub-
scribes and listens to a configurable set of event sources.
The process meta-model includes a special class of process
step—TriggeredEvent—allowing the definition of high-level
events within a process. In order to define a specific pattern
within the stream of low-level sensors events, which will
lead to the triggering of a high-level event, an EPL statement
(Event Processing Language [29]) can be specified as part of
the high-level event’s attributes. When executing a process
instance, the process engine will call the execution method
specific to the TriggeredEvent process step, which registers
a listener for the EPL pattern at the CEP engine. The CEP
engine then analyzes the incoming stream of low-level events
looking for registered patterns. Upon recognizing a pattern,
the corresponding listeners are informed and the high-level
events are activated within the process instance, which con-
tinues with the execution (cf. Fig. 2). New sources and types
of events can be added to the CEP engine at runtime via sen-
sor specific adapters/wrappers. The EPL pattern has to be
defined by the process modeler.

Figure 3 shows the special meta-model class for defin-
ing high-level events and the communication between the
process engine and the CEP engine during the execution
of a process instance. After starting the process (1), a lis-
tener for the given EPL statement is registered with the CEP
engine (2). The CEP engine triggers a high-level event if
Alice’s average blood pressure drops below 100 mmHg (sys-
tolic) and 60 mmHg (diastolic) over a period of 180 s (cf.
EPL in Fig. 3). Sensors built in the fitness tracker measure
her vital signs and publish the respective events to the CEP
engine (3.1-3.3). Upon the detection of the EPL pattern,
the CEP engine informs the process engine through the lis-
tener (4). The process engine then activates the high-level
event HealthAlarm in the process and continues with the

Event Cloud (Sensor Events)

TriggeredEvent

[5] hame: HealthAlarm E
type: HealthAlarmEvent
resource: FitnessTracker
EPL: select * from

PersonStatus(name="Alice").
win:time(180sec) where
avg(bp_sys)<100 AND
avg(bp_dias)<60

activation

CEP Engine
EPL Listener

Fig. 2 Complex event processing applied in PROtEUS

@ Springer

556

R. Seiger et al.

Process
Process Engine L.Sxecute B ,
name: Process
type: HealthMonitoringProcess
resource: SmartHome
4. pattern detected TriggeredEvent HumanTask
CEP Engine 2. register ™[] name: HealthAlarm [E—] name: AskWellBeing
listener (EPL) type: HealthAlarmEvent type: HumanTaskRequest
resource: FitnessTracker resource: Resident
3.1 6}5/3.2 Lvent \&event EPL: select * from .
PersonStatus(name="Alice').

BP- BP- BP- win:time(180sec) where
avg(bp_sys)<100 AND
Sensor Sensor Sensor avg(bp_dias)<60
instanceOf
v
ProcessStep TriggeredEvent
+ name <t—— + EPL : String
+ type
+ resource

Fig. 3 Communication between process engine and CEP engine during execution

execution (5), i.e., it activates the subsequent HumanTask
process step.

4.3 Automated data flow

Automating the processing and routing of data flow among
process steps, services, sensor and actuators as well as
humans requires more formal descriptions of data and
input/output of processes and services than it is possible
to model with current state-of-the-art workflow languages
(e.g. BPMN or BPEL). The process meta-model applied for
modeling PROtEUS processes enables the definition of typed
input and output data ports for every process step. These types
comprise simple atomic data types (e.g. Integer, Boolean,
String) and more complex self-defined types including lists,
sets and combinations of simple types. The input and output

data defined on the process level will be transformed auto-
matically to input/output parameter for the specific service
calls corresponding to the process step subclass or presented
as input/output forms to the user. The process modeler is
also able to describe mappings of specific (sub) data types to
data of subsequent process steps. In addition, special process
steps allow various data-related operations to be performed
in their ingoing/outgoing data (e.g., duplication, assembly
or disassembly of complex data). More complex binary data
can be integrated into processes by its resource identifier on
local or remote storage.

Figure 4a shows the process meta-model elements used
to define typed data ports for process steps and mappings
between data types. In Fig. 4b, the flow and mapping of
process data to input data of a REST service call (specializa-
tion of ProcessStep class) and the remapping of the service

(a) ProcessStep 0% DataPort (b)
+ name
\ RESTInvoke
? 1 \J%r:ivitchomight
:\tk‘ Roomlllumination
K _ DataType R rVi % DataduplicationStep
RESTInvoke DataDuplication i metholn) -t]:yagze Databuplication
0. q ta rget resource:
DataMapping

Fig. 4 a Meta-model classes for data flow modeling. b Data flow on process and service level

@ Springer

Toward an execution system for self-healing workflows in cyber-physical systems

557

response are presented. This mapping is done automatically
based on meta-data in the process model and the corre-
sponding attributes of the service parameters in the XML
or JSON-based service description. The subsequent process
step of type DataduplicationStep copies the ingoing data to
all outgoing data ports.

4.4 Dynamic service invocation

With Web servers and pervasive services also being inte-
grated into embedded systems, it becomes possible to trans-
parently network more and more heterogeneous devices,
Web-based applications and things with each other. To encap-
sulate functionality and provide standardized and unified
interfaces for heterogeneous resources, we follow the widely
used service-based approach for controlling actuators and
actively invoking remote functionality from within a process.
To realize this, we provide two ways for invoking service
methods. First, if process resources are known and sta-
tic at design time, we encourage direct service allocation
using the respective resource identifiers within subclasses
of the process steps specific to the service to be called.
This includes specializations for various service protocols
and platforms (e.g., SOAP, REST or OSGi [2] services).
The meta-model enables the extension of these types to
support further protocols and services. Second, in case of
dynamic or context-sensitive services, their dynamic dis-
covery and invocation are supported using semantic queries
in combination with the Semantic Access Layer (SAL)
middleware [24]. Process modelers provide the seman-
tic queries specifying the required service capabilities as
well as context constraints per process task (cf. Fig. 5).
The semantic queries are evaluated by the SAL on its
internal knowledge base, which contains domain-specific

information about sensors, actuators and context. The SAL’s
reply contains the identifiers of the process resources
matching the capabilities and constraints defined in the
query [24].

All service calls from within PROtEUS are executed by
the Service Invoker component. It provides access to exter-
nal Web services and the SAL via protocol specific adapters.
Adapters for communicating with the servers have to be
implemented for each new type of service. Within PROtEUS,
the functionality provided by actuators and other physical
devices or virtual applications is currently encapsulated by
one of these service types. Upon reaching a specific service
invocation process step, the process engine passes necessary
attributes from the process model (e. g., URI, method names,
parameters or the semantic query) to the service invoker.
The service invoker creates requests according to the specific
type of service. The process engine continues after the ser-
vice invoker received a response from the server and passes
the result back to the engine. Ingoing and outgoing data are
mapped automatically between the high-level process step
and the corresponding service. In the case of a semantic
query, the service invoker sends the query to the SAL via
a REST interface. Depending on the type of semantic query,
the SAL either returns sensor readings or invokes a suitable
service method. Resulting data are then transferred back to
the service invoker.

Thus far, we can call a large variety of services on remote
servers from within a process. However, there is also a need
for deploying local services only accessing in-house devices
and applications (e.g., for security reasons, only allowing
access to the door opener from the local network). For this
reason, we also integrate a Local Service Platform into the
process execution environment allowing the local opera-
tion of self-developed services. The OSGi-based platform

Process
Process Engine 1. execute =l name: Process
type: HealthMonitoringProcess
resource: SmartHome
OpenHabSemanticInvoke
%] hame: DoorUnlocking
2. call REST RESTInvoke J/v type: UnlockDoorStep
. 5. result 2l name: EmergencyCallPlacement - | .
Service Invoker type: EmergencyCallStep bas.eurL http./;l92A16841410048080
6. call SAL resource: EmergencyWebService SQ: S7EL.ECT ?func WHERE {.
T ?thing dogont:hasFunctio
11. result ASSAA ittt i ?thing rdf:type ?thingType
3. call 7. query method: PUT ?thingType rdfs:subClassO
4. result 8. service 9. call 10. result :
. i instanceOf
External Server Local Service Platform ;
REST Service SAL OSGi Service ;
1 Vi
ProcessStep Semantclinvoke
+ name + semanticQuery : String
+ type
+ resource

Fig. 5 Message flow during execution of remote and local service invocation via SAL

@ Springer

558

R. Seiger et al.

enables the deployment of bundles and services at runtime.
Furthermore, in addition to using the SAL, the integrated
service registry allows clients to search for and dynamically
invoke services at runtime. The service’s location and fur-
ther attributes used for service discovery are specified in the
process model. Figure 5 shows the flow of messages during
the invocation of a remote REST service (2-5) for placing
an emergency call, the query of the semantic access layer
SAL (6-8) by the OpenHabSemanticInvoke process step for
finding a service to open the door, and the call of the corre-
sponding local OSGi service (9-11) found by the SAL via
the service invoker.

4.5 Ubiquitous human access

The users are important factors and stakeholders within
CPS. Automated processes may require user interactions
in order to, e.g., solve manual tasks, enter data or han-
dle errors that have occurred-often in a timely manner.
Analogous to the WS-HumanTask and BPEL4People con-
cepts known from WS-BPEL [27], we introduce a special
process step called “HumanTask™ into the process meta-
model (cf. Fig. 6). When called by the process engine, the
Human Task Handler is responsible for sending interaction
requests to the interactive devices connected to the execu-
tion system. The engine waits for the human task handler
to deliver a user response according to the specific human
task before it continues with the execution. Furthermore, the
WebSocket server provides publish/subscribe access to real-
time monitoring information regarding the process execution
for arbitrary clients, as well as access to control function-
ality for PROtEUS via the Process Manager component

The communication related to human tasks is based on
a publish/subscribe mechanism using the WebSocket server,
which enables ubiquitous real-time interactions. Interactive
clients capable of handling human tasks subscribe to these
requests and can be notified in case of relevant changes.
The human task handler sends out messages containing the
description of the human task to all subscribers. On the
client side, a user interface is displayed, which presents the
human task step’s attributes and parameters. After a response
is sent back to the human task handler, the provided user
data are incorporated into the corresponding process instance
and execution continues. Figure 7 shows the message flow
between the process engine and an interactive client sub-
scribed to human tasks (0-7). With respect to the scenario
process, either a user response is received (5.1) or a time-
out is triggered automatically after a predefined period of
time (5.2). If Alice confirms her well-being, the process fin-
ishes. In case she answers negatively or a timeout is triggered,
the emergency call is placed.

4.6 Implementation

PROEUS is implemented as a Java-based prototype and
is currently employed within a Smart Home lab. As the
Eclipse Modeling Framework (EMF) [53] provides a large
set of tools for creating meta-models, models and imple-
mentations in an automated way, we based the process
meta-model and implementation of the engine on Ecore. An
integrated modeling environment realized as an Eclipse Plu-
gin based on Graphiti [9] supports the process designer with
defining processes for PROtEUS [47]. The event process-
ing engine Esper [8] is used for implementing the CEP
engine component. The model-based Smart Home middle-

HumanTask

®] name: AskWellBein

(De-)Serialized
instance

type: HumanReque:
resource: Resident

(cf. Fig. 6).
D D
_— J
ControlIcommands
Monitorin;m Ar;an Tasks
WebSocket Server |(Request/Response)
Process
Monitoring| ™ P .
Process Manager Human Task Handler
Process
Control

! instanceOf
v

ProcessStep HumanTask
+ name [<—— + Description : String
+ type
+ resource

Fig. 6 Interacting with PROtEUS via different devices and modalities

@ Springer

Toward an execution system for self-healing workflows in cyber-physical systems 559

1. execute

\

Process Engine

name: Process

type: HealthMonitoringProcess

Process

| -
TrueTransiton ” |

FalseTransition

WebSocket Server

0. Subscribe to
Human Tasks

4. publish

5.1 response
request P

Interactive Client

Human Task Handler 2. handle \resource: SmartHome
Human Tas
3. send human task| | \
request and wait - response o~ HumanTask
7. resuld

name: AskWellBeing
type: HumanRequest
resource: Resident

RESTInvoke

=] hame: EmergencyCallPlacement
type: EmergencyCallStep
resource: EmergencyWebService
server: http://health.org/emergency
method: PUT

Fig. 7 Message flow during execution of a human task

ware OpenHAB [52] is able to collect and unify sensor data
from various sensors. It serves as the main source of event
data for the CEP engine in PROtEUS and is used in combi-
nation with the DogOnt ontology by the SAL to find Smart
Home services [24]. PROtEUS’s service platform is based
on the OSGi component platform [2]. Using protocol specific
adapters, the service invoker is able to call OSGi services run-
ning on the local platform or services on remote servers. We
implemented adapters for calling SOAP, REST and XML-
RPC services; local Java classes; to invoke robot services on
ROS [40]; and to call services on the OpenHAB middleware.
To realize the WebSocket server, we use an implementation
of the Web Application Messaging Protocol (WAMP) [20].
Clients supporting the processing of human tasks and moni-
toring of processes are implemented on Android and tabletop
devices [49].

5 Toward self-healing CPS workflows
5.1 Synchronization of worlds

Traditional BPM-based implementation approaches for proc-
esses rely on service-oriented architectures to invoke Web
services running on servers and performing the desired
tasks [36]. On the client side (i.e., within the process execu-
tion system), the servers’ responses are used to evaluate the
outcome of service calls (i. e., success or failure) and proceed
with process execution. This approach of solely relying on
immediate software responses is often not sufficient enough
when taking the physical aspects of CPS into account. Addi-
tional means are required to verify the correct execution of
processes and activities that also have an effect within the
real world (cf. Sect. 3). A synchronization mechanism has to
be introduced in order to provide a consistent projection of
the process’s virtual properties and state to its corresponding
real world equivalent.

As described in Scenario 2 (cf. Sect. 2), an activity within
a CPS workflow may invoke an actuator’s functionality to
switch on the light in a specified room and therefore influ-
ence the physical world. The actuator’s control software
could report the successful execution of the operation back
to the process engine. However, current “smart” objects
are often not able to verify the actual real-world effect of
their operations. In case of the light switch, the light bulb
could be broken, which leads to an inconsistent view of
the virtual world (light is on) and the physical world (light
is off). Applying the MAPE-K loop for self-adaptive sys-
tems [18], Monitoring and Analysis of real-world data from
sensors could be used to relate the effects of process exe-
cution to changes in physical properties and therefore detect
cyber-physical inconsistencies. The Plan and Execute phases
consist of finding and executing compensation actions in
case of errors for continuing with the process execution as
intended by the process modeler. The Knowledge aspect of
the MAPE-K loop corresponds to the context of the CPS and
process knowledge in terms of goals and additional proper-
ties, which is stored and accessed in an external knowledge
base. Figure 8a illustrates the synchronization problem in
CPS workflows.

5.2 Self-healing cyber-physical workflows

PROtEUS serves as a basis for implementing the MAPE-K
loop for CPS workflows to detect and repair inconsistencies
between the physical and cyber worlds. It contains the core
components to evaluate sensor data based on predefined pat-
terns, detect divergent real-world effects, find compensating
actions and execute replacement processes or services. The
explanations of the basic system architecture and modeling
concepts in Sect. 4 account for the specific challenges of
process execution in CPS. These concepts can be applied to
implement a basic feedback loop to achieve the goal of syn-
chronizing the virtual and the real-world states of the process
instances and introduce a basic self-healing mechanism for

@ Springer

560

R. Seiger et al.

(a) Process
name: SwitchOnLight

e: HomeAutomation
resgurce: SmartHome

RESTInvoke
D name: SwitchOnLight

Cyber World

type: Roomlllumination
resource: LightActuator

method: PUT

server: hnp//’19216801/ghtsw!cj/

-

— =Synchronization- - - — — — — — — — —

Process
5] name: SwitchOnLight

e: HomeAutomation
resgurce: SmartHome

RESTInvoke

Physical World

° N 7/
Z /;:;\
=

{J

(b)

Actuators

Se}\sgrs
RESTInvoke

name: SwitchOnLight

type: Roomlllumination

resource: LightActuator

server: http://192.168.0.1/lightswitch
method: PUT

Fig. 8 a Synchronization of cyber and physical world. b Applying the MAPE-K loop to a process activity

CPS workflows. Figure 8b shows the idea of applying the
MAPE-K loop to processes on an activity level using sen-
sors and actuators in the following way:

Monitor: Attached to the particular process or activity,
an event containing an EPL statement that defines the
changes within the physical context in a certain time
frame as result of the execution has to be modeled. An
event listener for the EPL pattern is activated upon exe-
cution of the activity. From that point on, the CEP engine
will actively listen to the event data from the sensors
defined in the EPL statement.

Analyze: The CEP engine analyzes the stream of event
data from all sensors that are connected to PROtEUS. If
an EPL listener is active for a certain pattern, the corre-
sponding sensor data are evaluated by the CEP engine.
In case the pattern within the sensor, data are detected by
the CEP engine in the defined time frame, the high-level
process event is triggered, and the successful execution of
the activity can be assumed. If the time period defined in
the EPL statement is exceeded, an inconsistency between
the virtual execution and the actual physical execution of
the activity is likely to have appeared.

Plan: The detection of a cyber-physical inconsistency
requires a compensating action to be performed to resyn-
chronize the cyber and the physical world Petri nets.
Based on the semantic meaning of the activity or process
(e.g., described by its goal or intent), a semantically
equivalent and compatible process or service can be
searched in an external repository or via the semantic
access layer, or the activity/process instance could be
adapted structurally. Finding a suitable replacement or
adaptation strategy is the main goal of the planning phase.

@ Springer

However, with CPS workflows also affecting the physi-
cal world, executing rollbacks or repetitions of process
steps or service calls is not always a feasible option due
to their effects on the real world.

Execute: In the execution phase, the adapted process or
the identified compensation action/service is executed by
the basic PROtEUS system (i.e., via the process engine
or the service invoker). This could be preceded by a sim-
ulation of the effects of the execution on the CPS. Upon
execution of the adapted process or activity, the MAPE-K
loop has to be repeated in order to check the successful
execution of the compensation action and confirm cyber-
physical consistency. As a last resort for repairing the
state of a process activity in case no successful com-
pensations are found or executed, a Human Task can
be triggered to ask the user to take care of the prob-
lem. Again, this human task could be evaluated by the
MAPE-K feedback loop and the process execution could
continue automatically after the pattern in the sensor data
is recognized.

Knowledge: All of the MAPE phases described before
require access to context data and process-related knowl-
edge. The EPL patterns assume a known data model for
sensors and other event data in the monitoring phase
and require the explicit definition of changes within
the context data; the planning of compensations needs
knowledge about the process’s goal and service capa-
bilities to find and execute an alternative action. The
ontological model within the SAL’s knowledge base acts
as the central component for describing and finding suit-
able sensors and actuators from the Smart Home domain.
It will be the basis of future developments with respect to
automating and improving the Analyze and Plan phases.

Toward an execution system for self-healing workflows in cyber-physical systems 561

This MAPE-K loop can be implemented as a generic sub-
process applying the same process modeling notation and
execution engine that is used for regular processes. Regard-
ing the individual MAPE phases as repeating subprocesses
consisting of event-driven behavior and active service calls
could increase the autonomy of process management and
eventually lead to self-adaptive processes. Case study 2 in
Sect. 7 illustrates the practical application of the MAPE-K
concept for the Home Automation scenario. With the help
of the MAPE-K loop, we are able to extend the commonly
known ACID properties of transactional and distributed sys-
tems by the dimension of Real Word Consistency (ACID-R)
for the special case of workflows in CPS. A more elaborate
investigation and discussion of this concept will be part of
our future work.

6 Case studies

In order to provide a proof-of-concept evaluation of our
approach, we conducted two case studies employing a pro-
totype of PROtEUS in a Smart Home setting regarding the
scenarios presented in Sect. 2. We will discuss these case
studies and related challenges (Sect. 3; C1-C5) to evaluate
to what extend PROtEUS is able to meet the requirements
identified in previous sections. The focus of this work is on
presenting a concept and implementation of an integrating
system for process execution in CPS and showing that all
addressed challenges can be met by the concepts introduced
in previous sections.

6.1 Health monitoring

We modeled all steps from the health monitoring scenario (cf.
Sect. 2) as a process according to the meta-model. Processes
can be modeled with the help of the Graphiti-based PRO-
tEUS process model editor [47]. It provides simple drag and
drop functionality to create generic processes for various
domains by domain experts. The health monitoring process
model ready to be executed by PROtEUS is shown in Fig. 9.
An active instance of the HealthMonitoringProcess listens
for a HealthAlarmEvent in the HealthAlarm process step.
The EPL pattern modeled in this high-level event (cf. EPL
Statement in Fig. 2) defines the activation of the event when
Alice’s average blood pressure drops below 100/60 mmHg
for at least 180s, which indicates postural hypotension.
Analyzing the sensor readings from the fitness tracker, the
CEP engine triggers the high-level process event when the
pattern appears within the sensor data (C1). The subse-
quent process step is activated and a HumanTask request
is sent out to a tablet device asking for the resident’s well-
being (C4). The IF process step defines that if the response
data received are positive (C2), the process terminates; in

case of a negative response or the activation of a timeout
(defined as a special type of port), a REST service placing
an emergency call is being invoked (C3). Afterward, a sub-
process of type SecureOpeningProcess is instantiated. An
EPL statement for sensing the physical world by means of a
fingerprint scanner is modeled within a high-level event. The
event is activated when a person having the active role of a
“medic” is authenticated successfully at the main entrance
door (C1). This leads to the dynamic lookup and invoca-
tion of a service capable of unlocking the door. The SAL
finds a local OSGi service within the Smart Home to trig-
ger the unlocking of the door (C3) and the process instance
terminates.

Figure 10 shows the finished health monitoring process
in the execution perspective of the PROtEUS environment.
Here, the execution trace and state variables as well as port
values can be viewed by domain experts for all process ele-
ments. To make the process execution more accessible to
non-expert users, a mobile app enabling a simplified process
management (cf. Fig. 11a) and handling of human tasks
(cf. Fig. 11b) is also available (C4). The process manage-
ment view lists available and running processes and provides
detailed information for every process (instance) upon selec-
tion. The human task view notifies the user automatically
about new requests and displays a simple dynamic user
interface presenting ingoing data and forms for providing
outgoing data as well as additional information.

6.2 Home automation

The home automation process described in Sect. 2 is shown
in Fig. 12. After instantiation of the MorningRoutineProcess,
an event listener for the EPL statement defined in the WakeUp
event is registered at the CEP engine. According to the event
pattern, the event is triggered when the evaluation of sensor
data from Alice’s fitness tracker by the CEP engine indicates
that she is not in REM sleep and the current time is between
6.30a.m. and 7.30a.m. (C1). Following the two services—
one REST-based service for switching on the light and one
SOAP-based service for playing the alarm tune—are called in
parallel (C3). The process activity responsible for illuminat-
ing the room is annotated with the MAPE-K loop symbol,
which indicates that the process engine has to execute addi-
tional steps to ensure cyber-physical consistency (C5) by
means of the MAPE-K loop (cf. Sect. 5). This subprocess
is executed in the following way, illustrated by the sequence
chart in Fig. 13:

e Monitor: The process activity SwitchOnLight is ext-
ended with a high-level event that contains an EPL
(EPLI) statement defining an increase in the luminance
level in the bedroom within 5 s as effect of executing the
activity:

@ Springer

562 R. Seiger et al.

File Edit View Navigate Search Project Run Window Help
SIS IR IR RO N

of (Gl ol | S =& 100% - Quick Access ‘ | & lava

= B newDiagram ' SimpleOrTest - asegrser 2= newDiagram newDiagram.... ' SimpleOrTest I newDiagram66 I Scenario §3 | () Scenario
e v
=3 Process
name: Process TrueTransition =
) type: HealthMonitoringProcess
“® dlagrams. resource: SmartHome Process i
2~ newDia (= Connections ©

™ 9 name: Process
type: SecureOpeningProcess
resource: SmartDoor TrueTransition

g TriggeredEvent |

Transition

= T FalseTransttion
name: HealthAlarm
type: HealthAlarmEvent

RESTInvoke

FalseTransition

1) name: EmergencyCallPlacement (OpenHabSemanticlnvok:

2= SimpleOrT resource: FitnessTracker type: EmergencyCallStep ; —
b B ests * L 1 resource: EmergencyWebService name: PersonAuthentic [220bje
server: http://health.org/emergend| type: AuthenticationEvent type: UnlockDoorStep (= Types.
e PuT resource: SmartDoor
T EPL: baseuri: http://192.168. & Ports &
J g 1 Start Data Port
Start Control Port
End Data Port
(= Stacked
@] Error Log [T Properties 83 [2 Problems M =08
R
Main Goal: L
[7] Cyber-Physical MapeProld: Mape..ess: -
EPLS.ent: select * from PersonStatus(name="Alice’) win:time(180sec) where avg(bp_sys)<100 AND avg(bp_dias)<60
Type: HealthAlarmEvent Resource: | FitnessTracker Description:
Name: HealthAlarm : _oRHXoGpwEESIUMzUFuebg

2 s R

Fig. 9 Health monitoring process from Scenario 1 (cf. Sect. 2.1) in PROtEUS editor

File Edit View Navigate Search Project Run Window Help

M R B AR O Y QU (SR P e S B s | S Rt e | B oo e ey -
Quick Access | % | & Java &2 Graphiti (35 Debug
45 Debug 52 % ¥ = O ®=Variables 53 % points L+tB v=08
4 () <terminated>SimpleOrTest.diagram [Vicci Process] Name Value
acf <t=rmina!.ed>Sim:IeOrTest.diagram. . @ state executed
. P <t ¢ cess (v : DMJA) 4 & startDataPorts
= e ess (_dvl i i d DMJA) | 4 @ start2 |
4P 2erm|nat.ed>9roiessTop2 (_AVJPcl.llnSEe.Schv;cO[?MJA) @ id _mgFbkMi6EeSKccvjcODMIA
B e essTop2 (_my. : DMJA) @ state active
a P 2erm|nat'ed>Pro(essTopl (_nRNUM»dEe.SK((\ch[?MJA) @ TypelnstanceName IntLeft
= ProcessTopl (_nRNL DMJA) @ value 1
i ¥ (38XawMi
4 & cterminated>If (- ' DMIA) 4@ stat3
B e (_SBXguhi ODMJA) % id _m3SaoMi6EeSKccvjcODMIA
> i ?’T°P (. VjIDMIA) & state active
> o <termi e (_BeBTKMiSEeS DMIA) & TypelnstanceName IntRight
) i OrMiddle (EeSKeeyjcODMIA) © value 0
> o (_F DMIA) » @ startControlPorts
» @ <terminated>OrBottom (_8xnO0Mi4EeSKccvjcODMJA) » @ endControlPorts
b @ i P iddle2 (_EIEFAM! jcODMJA)
b P i P 2 (_t i jcODMJA)
« »
) newDiagra) SimpleOrTe egrse Diagram newD eOrTest @ Scenario 53 () SimpleOrTest Service $ SimpleOrTest », =g
Process %2 Palette b
) name: Process TrueTransttion > [k select
type: HealthMonitoringProcess LE Marquee
resource: SmartHome Process —
(> Connections ©
name: Process e
igg /FalseTransition type: SecureOpeningProcess (= Objects @
h / resource: SmartDoor
%) name: HealthAlarm HumanTask RESTInvoke
type: HealthAlarmEvent %) name: EmergencyCallPlacement g pent icinvoke|
resource: FitnessTracker type: EmergencyCallStep ~ .
EPL: resource: Resident resource: EmergencyWebService name: Person-Aut'hentlc name: DoorUnlockin
server: http://health.org/emergend type: AuthenticationEvent type: UnlockDoorStep
method: PUT resource: SmartDoor
i EPL: baseuri: http://192.168.
B Console §3 | Tasks #E-my=0

No consoles to display at this time.

Fig. 10 Health monitoring process from Scenario 1 (cf. Sect. 2.1) in PROtEUS executor

@ Springer

Toward an execution system for self-healing workflows in cyber-physical systems 563

A smarces oW FINSHED ISTANCES.
Al Processes Active Processes

ShopForFoodProcess

Type: Shopping

CoffeeMakerProcess.

Type: FoodPreparation

CurrentWeatherProcess

Type: VinwalSensor

SwitchOnLightProcess

Type: HomeC

RobotNavigationProcess

Type: RobotDrive

Stat | CoffeeMakerProcess

Type: FoodPreparation

Start ShopForFoodProcess
Type: Shopping

Stat | CoffeeMakerProcess
Type: FoodPreparation

Start

Start

(b)

Start

Start

Start

Q Search

®

end_0

Say no if you dont need any help - otherwise the ambulance is
called

Cancel No Yes

Fig. 11 Mobile app for a managing processes and b handling human tasks in the Smart Home domain

Process

name: Process2
type: MorningRoutineProcess F‘

resource: SmartHome hame: SwitchORLight

TriggeredEvent
method: PUT
name: WakeUp

RESTInvoke

type: Roomlllumination
resource: LightActuator
server: http://192.168.0.1/lightswitch

OSGlInvoke

5] name: TurnOnHeating
type: TemperatureControl

type: SleepMonitoringEvent

resource: FitnessTracker

EPL: select * from
PersonStatus(name="Alice')
where currentTime>6:30 AND
currentTime<7:30 AND
sleepingPhase!="REM'

SOAPInvoke

%] name: PlayAlarm
type: MusicPlaying
resource: AlarmClock

method: ring
wsdl: alarm
config: -

server: http://192.168.0.

resource: HeatingControl
service: http://192.168.0.3
method: activate
parameter: Bathroom
bundle: eu.vicci.sh.heating

Fig. 12 Home automation process from Scenario 2 (cf. Sect. 2.2)

SELECT * from Light(Room = ‘Bedroom’).win:time(5 s)
where avg(value) < 10

This pattern leads to the triggering of the event if there is
no increase in the room’s lighting over 10 lux within the
next 5 s, which indicates that there is a malfunction of the
light switch and the room is still dark. A listener for the
EPL pattern is registered in parallel to the execution of
the SwitchOnLight activity and data from the bedroom’s
light sensor are then analyzed.

Analyze: The CEP engine processes data from all con-
nected sensors. As the light sensor sends only values
below the 10 lux threshold after the invocation of the
light control service, an inconsistency between the ser-
vice response (success) and the real-world state can be
assumed. As the result of this inconsistency, the planning
phase is initiated.

Plan: In the planing phase, a compensating action or
adaptation of the process is computed. Our current
approach of finding a suitable compensation is based on
the semantics of the process activity and its goal. An
additional Type attribute describes the domain-specific

meaning of the process (here: Roomlllumination), which
is used for finding a replacement process of similar type.
The semantic access layer is queried in order to identify a
compensation for the failed process activity, i.e., to find
a service and therefore a device capable of illuminating
the room. This requires additional context information to
be taken into consideration—the opening of the window
blinds is only suitable if there is already daylight shin-
ing in from the outside at around 7 a.m., i.e., in summer
time. The result of this query is passed back to the process
engine: call the window shutter service by executing the
OpenWindowShutter process in the bedroom.

Execute: The compensating process is executed and the
MAPE-K loop isrepeated to verify the successful lighting
of the bedroom.

Knowledge: The realization of this scenario relies par-
tially on the explicit modeling of knowledge (e.g., in
the EPL patterns and process descriptions) and on the
information contained in the knowledge base of the SAL,
which includes a domain ontology (DogOnt for the Smart

@ Springer

564

R. Seiger et al.

Cyber World Physical World
Process CEP SAL Light Light Shutter
Engine Engine Switch Sensor Opener
[| T I I T
RESTInvoke | | | ia |
E name: SwitchOnlLight | | | |
type: Roomlllumination | | | |
resource: LightActuator | | | |
server: http://192.168.0.1/lightswitch | | | |
method: PUT
Execute		
———————+——Switch on light——		
K ————— - — — Success—— — — — T— — —		
LRegister EPLIpTL : : :		
41 _		
	Mdnitor	
5		
Analyse ; & I		
K< #P-Timeout		I
Find compensation Context : :		
Plan		
K< — -Open window shutter— — Ex	ecute I	
: : Open window shutter: tlj		
<< ———— -	l—— ———— —— — — Success— — —l— — — — — — 4 ————=	
FRegister EPL2		
250		
! 283	l	
I 28I5	I I	
k< -Success—		
	L	
T | | | | |

Fig. 13 Sequence chart for the MAPE-K loop in Scenario 2

Home domain [24]) describing capabilities of actuators
and sensors.

Again, the process activity that opens the window blinds
is extended with a high-level event containing the following
EPL (EPL2) pattern:

SELECT * from Light(Room = ‘Bedroom’).win:time(20s)
where avg(value) < 10

The CEP engine evaluates the event stream from the light
sensor with respect to the new pattern. As the opening of
the window blinds usually takes longer than switching on
the lights, sensor data will be analyzed for a longer period
of time. The event stream for the second process activity in
Fig. 13 shows an increase in the luminance levels, which
indicates that the activity has been executed successfully
and that cyber-physical consistency has been restored. The
process execution then continues with the automated morn-
ing routine. On receiving the confirmation of completion
for both service invocation process steps, the AND join is
activated and the following process step calls the heating

@ Springer

control in order to turn on the heating in the bathroom. This
step again could be marked as CPS process activity requir-
ing the MAPE-K loop to be executed in order to ensure
cyber-physical consistency (e.g., based on the increase in
temperature over a certain period of time).

7 Discussion

After a demonstration of the concepts for basic process
execution in CPS and of the self-healing capabilities of PRO-
tEUS by means of two case studies. This section discusses
advantages and disadvantages of the concepts applied in
PROtEUS to meet the identified challenges for executing
processes in cyber-physical systems.

7.1 Event abstraction and processing

The CEP engine integrated into PROtEUS allows for an effi-
cient processing of large amounts of low-level sensor events

Toward an execution system for self-healing workflows in cyber-physical systems 565

(up to 50,000 events\s) from various sources [17]. High-level
event abstractions in process models are necessary in order
to cope with the number of possible event sources within
CPS. EPL statements provide expressive semantics to define
temporal and logical dependencies—and even basic forms of
computations—among subsets of low-level events that will
lead to the activation of high-level events [29]. As event-
driven architectures are the predominant paradigm within
CPS, the ability to process and react to simple and com-
plex events is an important requirement for process-enabled
systems controlling CPS. The meta-model supports the defin-
ition of events and their properties in the form of a specialized
process step class containing a description of an event pat-
tern. As this concept can be applied in a generalized way,
other types of process meta-models (e.g. BPMN [5], BPEL
or YAWL) can be extended to support this form of event
abstraction, too. Introducing a new type of event into the
process meta-model or annotating existing events with an
EPL statement is sufficient to define an interface for con-
necting a CEP engine to the corresponding process engine.
Upon reaching a high-level event defined in a process, the
engine creates a listener, which will be notified if the low-
level event pattern is detected. In this way, hardware-related
sensing and high-level processes can be connected.

As the EPL pattern enables the scalable processing of
event data on different levels of granularity—e. g., for a sin-
gle sensor, but also for a complex combination of sensors
or even on the level of event types—the complexity of the
process model can be reduced significantly [17]. The for-
malism focuses on the type of event rather than on the
corresponding device instance, which enables a more flexi-
ble coupling of devices at runtime as not all the event source
have to be known at modeling time. Compared to related
approaches [32] that treat individual sensors as individual
resources, our approach is more suitable for CPS with a high
number and fluctuating availability of resources. However,
sensor data have to be unified before being injected into the
CEP, which employs its own event data model. The semantic
description of sensor data provides remedy to this issue as
it facilitates the modeling of EPL conditions and correlates
event streams. As long as PROtEUS is able to convert event
data into its data format, arbitrary event sources can be used
and added-even at runtime. Nevertheless, the precision of
high-level event recognition—and thus, the recognition of the
current context—from low-level sensor data depends on the
accuracy of the EPL pattern provided by the process modeler.

7.2 Automated data flow

The process meta-model provides means for formalizing the
flow of data between process steps via data ports for ingoing
and outgoing data. As these ports are typed and annotated
with additional information, we can automatically map data

between the low-level services called from a process step
(input and output parameters) and the corresponding high-
level process steps based on these meta-data. This increases
the level of automation for processes in CPS as there is no
need for additional manual interaction to orchestrate the data
flow. We achieve more sophisticated ways of expressing data
flow with the introduction of specialized types of process
steps for mapping, (de)construction and replication of com-
plex process data types as well as data mapping mechanisms
among subtypes of complex data. Due to the model-based
description of ingoing and outgoing data, we can also offer
suitable interaction modalities to the user for providing syn-
tactically correct human task data. However, we currently do
not support any form of semantic validation of user input.

7.3 Dynamic service invocation

With the a service-based approach for actively invoking
functionality in PROtEUS, a wide range of devices and appli-
cations can be called from within a process instance. The
service invoker supports several standardized as well as pro-
prietary service protocols by implementing corresponding
adapters (cf. Fig. 4) and, therefore, acts as a middleware
enabling a homogeneous view on CPS components. The
process meta-model allows for an easy extension of the sup-
ported service types via subinheritance. Loading the service
parameters from a standardized interface definition (e.g., a
WSDL file for SOAP services) facilitates the semiautomatic
modeling of a service call and its parameters as well as a
direct linking to the corresponding process ports. A draw-
back of following a service-oriented approach for actuators
is that their functionality has to be encapsulated in a service
deployed on a server. This can introduce an overhead with
respect to the effort for implementing and running the service
as well as an increased response time. Therefore, we provide a
service platform for deploying local services based on OSGi,
which also yields a basic level of security as not all services
should be accessible on remote cloud servers (e. g., the door
opener). The local deployment restricts access to clients from
within the local network only. Further protocols may govern
access to ensure security, but this is out of scope of this work.

In order to cope with the dynamic availability of CPS
components, we provide two concepts for allowing dynamic
discovery and invocation of CPS components. First, the ser-
vice invoker is able to forward semantic queries to the SAL
to find resources capable of executing the current task in the
defined context at runtime. The SAL includes a semantic
knowledge base providing a homogeneous view on capabil-
ities and properties of CPS components that can be used to
allocate and invoke suitable IoT services. However, this type
of dynamic service invocation introduces an overhead due to
the query processing. As this delay may increase with the size
of the domain knowledge base, direct service calls should be

@ Springer

566

R. Seiger et al.

preferred in case of known and static resources [24]. Sec-
ond, the integrated OSGi service platform provides a local
lookup functionality for registered services based on process
parameters. These mechanisms increase PROtEUS’s capa-
bility of handling the varying availability of CPS resources
for statically modeled process steps. Complementary to that,
concepts for increasing the flexibility of processes by means
of process adaptations may also be introduced into PROtEUS
to handle variability [15].

7.4 Ubiquitous human access

The human task handler allows for publish/subscribe real-
time access to interact with processes in the form of
high-level human tasks. Clients capable of providing inter-
actions receive requests for human tasks, which specify the
required action, data and type of interaction in the form of
serialized process step instances. Responses only have to
include the data necessary for the process instance to con-
tinue. This leaves the processing of ingoing and outgoing
task data to the client, which is completely implementa-
tion agnostic. Arbitrary applications and devices can be
used for handling human tasks sent by PROtEUS to receive
and respond to human task requests and provide data in
case of errors as well as access monitoring information.
This allows for developing and connecting modern inter-
active devices and ubiquitous applications to PROtEUS to
offer (possibly generated) context-dependent, multimodal
user interfaces for process interaction and reaction to process-
related events [45].

Upon state changes in the process engine, monitoring mes-
sages are published to all subscribers, which allows for (near)
real-time monitoring of process instances. In addition, the
process manager and WebSocket server enable the control
of the execution environment, i.e., the control of process
instances. Hence, users are provided with extensive means for
interacting with CPS processes through various interactive
clients. A timeout mechanism for process steps is integrated
into PROtEUS to handle unpredictable and safety-critical
behavior (e.g., errors, missing responses or missing data).
We implemented a management system for PROtEUS on
a mobile Android tablet and a tabletop device [49]. Sim-
plified and easy to understand user interfaces will increase
the user experience and provide access to complex backend
systems (e.g., process management systems) even for non-
expert users.

7.5 Synchronization of worlds and self-healing
As shown in Case Study 2 (cf. Sect. 6.2), PROtEUS provides
the basic components for implementing a first working pro-

totype of using additional sensor data to detect and repair
inconsistencies between the execution of the virtual process

@ Springer

instance and the state of the actual physical world as part of
a MAPE-K loop subprocess. Using EPL statements as pat-
terns/event conditions in the Analyze phase is a solution for
the direct evaluation of event streams in correlation with the
real-world effects of process execution. However, the addi-
tional consideration of more comprehensive contextual data
and historical data also requires more sophisticated means
of persisting and correlating events, e.g., in databases and
ontologies, as well as more advanced formalisms for defining
event and context conditions, e. g., based on logic or graphs.
The Plan phase can also be enhanced by various related
approaches considering more advanced planning algorithms
and adaptive workflows [12,15,37,42,47]. A completely
process-driven approach of implementing the MAPE-K feed-
back loop may lead to an increase in autonomy in process
management due to the capability of self-adaptation of
processes to unanticipated situations and errors as well as
to emergent behavior.

7.6 Summary of discussion

The PROtEUS process execution system integrates various
components for handling the specific properties of processes
within CPS beyond the state of the art. PROtEUS discusses
a model-driven architecture of a CPS control system based
on processes, services and events, which consists of estab-
lished concepts and components. Specialized solutions lack
the capability of handling the identified set of CPS proper-
ties: event abstraction and processing, automated data flow,
dynamic service invocation, ubiquitous human access, and
the synchronization of worlds and self-healing regarding
cyber-physical consistency (ACID-R). The case studies dis-
cussed in the previous section show that PROtEUS and the
underlying process meta-model meet these requirements as a
proof of concept and, therefore, provide a basis for the execu-
tion of interactive and dynamic processes in CPS. PROtEUS
is able to bridge the gap between hardware-related processes
and high-level human-centered workflows by integrating
low-level sensor events and data as well as interactions and
human tasks into model-based processes. The discussion in
this section shows that by using PROtEUS, an increase in
autonomy for the execution of processes in dynamic cyber-
physical environments can be reached.

8 Related work

Cyber-physical systems research relates to a multitude of
new and established research fields. The challenges for
process execution in CPS identified in Sect. 3 have each been
addressed to some extent by various related research. We will
discuss related approaches with respect to the challenges in
the following sections.

Toward an execution system for self-healing workflows in cyber-physical systems 567

8.1 Event abstraction and processing

Barros et al. conducted an intensive investigation of the
expressivity and semantics of BPMN and BPEL with respect
to the concept of events [4]. Their results show that both
process languages only support a limited set of common
patterns for complex events in business processes. In partic-
ular, the integration of context events, inter-event relations
and the simultaneous consumption of multiple events is very
limited in BPMN and BPEL, which is why we decided to
include more sophisticated event abstractions and processing
concepts. Current process execution environments focus on
executing high-level service-based business processes and,
therefore, are only able to handle certain amounts of abstract
events. Sungur et al. propose a meta-model extension for
BPMN to support the modeling and processing of wireless
sensor networks [54]. This approach still comes with signif-
icant modeling costs and limited scalability, which limits its
suitability for large-scale CPS. In [44], Schiefer et al. present
a framework for defining event-triggered rules for sensing
and responding to business situations. In [56], Tuysuz et al.
discuss a framework for interactive mobile workflows also
integrating sensor and user events as well as Web services.
This approach enables event-based behavior in workflows
on a basic level. As we focus on executing workflows in
event-driven CPS, we need more elaborate methods for the
integration and processing of a large number of sensors and
events from various sources. Therefore, we integrate the con-
cept of events and CEP on different abstraction levels into
the process execution environment.

Biilow et al. and Hermosillo et al. propose approaches for
using CEP to monitor business process execution based on
information from heterogeneous event logs [11,23]. These
works do not consider external sensor data, but will be
interesting for our future work with respect to the integra-
tion of process log data into PROtEUS. Wombacher [64]
discusses an approach for correlating sensor and workflow
data for observing the physical effects of business process
activities and dealing with uncertainties in sensor events.
We primarily focus on using sensor data as is for situa-
tion and context recognition in order to generate high-level
events within processes. However, the integration of Wom-
bacher’s approach will be a part of our future work to also
compensate for defective sensor readings. In [32] and [19],
the authors propose extensions to BPMN and BPEL to
model additional event sources with a special focus on Inter-
net of things devices and sensors. While these approaches
are first steps toward the integration of real-world physi-
cal data into business processes, using these extension is
very costly considering the modeling complexity for a large
number of sensors as every event source has to be consid-
ered individually. We decided to apply CEP mechanisms
based on the definition of EPL patterns to enable the integra-

tion of low-level events into processes on arbitrary levels of
granularity—from single-sensor instances to large networks
of virtual and physical event sources. In analogy to the work
of Baumgral} et al. [5], we use annotated process activities
to define the EPL patterns to be evaluated by a CEP engine.

8.2 Automated data flow

Closely related to the handling of events is the formalization,
abstraction and automated processing of data in processes.
In contrast to the limited possibilities of formalizing the flow
of data in current workflow languages (e.g., BPMN [63]),
we see a strong need for expressing complex flows of
typed data within high-level processes inside CPS. Advanced
mechanisms enabling the composition of and operation on
complex data for formalizing high-level process data flow are
described by Montagnat et al. [33]. We use these approaches
for the handling of data flow between the tasks of high-level
CPS processes and mapping to low-level service invocations
in amore sophisticated way and to integrate data from sensors
and others sources into processes. The workflow language
YAWL [58] allows for the definition of typed input and out-
put data within various scopes of tasks of a workflow. We
extend this data modeling by mappings, (de)compositions
and replications of high-level data to access and distribute
data on the process level. On the other hand, it is not feasible
to define events and data flow for every low-level sensor and
actuator of a CPS in a high-level process model. In contrast
to workflow languages only enabling the modeling of single
data instances, we use queries and pattern matching for the
processing of larger amounts low-level CPS data.

8.3 Dynamic service invocation

Various service-based approaches for integrating hetero-
geneous dynamic resources into workflows including the
aspects of service description [7,50], discovery [34], compo-
sition [39,50] and dynamic assignment of resources [7,25]
already exist. We also apply a service-based approach for the
integration of actuators and software components into our
process execution environment. In [35], the authors propose
a workflow system supporting long-running transactions for
handling the fluctuation of available resources during process
execution. As this work addresses an important issue for
CPS—the dynamics of components—we incorporate concepts
from it into our own execution system in combination with the
semantic access layer concept described in [24]. PROtEUS
enables the dynamic assignment of resources and services at
runtime with the help of additional process annotations and
semantic requests that are used for querying local or external
service registries and knowledge bases.

@ Springer

568

R. Seiger et al.

8.4 Ubiquitous human access

In current process execution systems, the aspect of human
interaction within processes and the access to suitable user
interfaces is often realized through Web-based client or
desktop applications. BPEL4People and WS-HumanTask [1]
provide a framework for integrating user interactions into
processes on a formal level. An approach for the introduction
of implicit interaction into pervasive workflows is pre-
sented in [21]. Regarding service-based business processes,
Web-based applications are often sufficient for providing
necessary data and conducting high-level tasks. However,
the increased focus on the users in CPS requires more
sophisticated means for context-aware interactions within
processes and with the process execution than it is possible
with current BPM systems. Our aim is to provide ubiqui-
tous access via multimodal user interfaces to enable real-time
interactions and monitoring of processes from arbitrary inter-
active clients, independent of type, location or modality. As
described in [56] and [35], this kind of ubiquitous access
to workflows is of increasing importance for future human-
centered information systems to increase the user experience
and usability. Chakraborty and Hui propose an approach
for enabling pervasive access to business processes using
multiple devices and communication channels as well as
considering additional context factors [14]. Adapting this
approach, we transfer the concepts of automated generation
of dialogs for human—process interactions based on model
information to PROtEUS. As the development of new inter-
action techniques made significant progress in recent years,
we aim at also supporting more modern interactive devices
and additional modalities (e. g., audio and touch-based inter-
actions), which can be selected automatically based on the
users’ current context.

8.5 Synchronization of worlds and self-healing

CPS workflow systems require a close coupling of physi-
cal context data and processes in order to link the effects
of process execution to changes in the digital and physical
world. In [65], Wombacher discusses ways to correlate phys-
ical objects and business workflows based on sensor data and
changes within workflow states. He points out that the syn-
chronization between process state changes and sensor data
changes is an interesting challenge for CPS-like systems, but
he does not provide a solution for this problem. Baumgrafl
et al. propose an event-driven process execution and moni-
toring system in [6] to relate event sources and processes. A
workflow management system that uses situation recognition
techniques based on sensor data from production machines is
proposed by Wieland et al. in [62]. In order to adapt processes
in case of the detection of errors and failures, process tem-
plates are executed as subworkflows depending of the specific

@ Springer

type of error situations. We will investigate the application of
approaches for situation recognition to enhance the Analyze
phase for PROtEUS and also study the use of templates for
adapting processes in case of errors. However, defining tem-
plates for a large number of possible error cases seems not to
be feasible, which is why we could benefit from declarative
modeling approaches at this point [41]. Abstracting from sen-
sor data to context information in a broader sense, Herzberg
et al. propose an event processing platform correlating exter-
nal context information with business process events. This
platform will be helpful to enrich our context models with
additional external information and therefore improve the
Monitor and Analyze phases within our implementation of
the MAPE-K loop. In [60] Weidlich et al. discuss an approach
for optimizing event patterns for process monitoring by using
process model knowledge and event processing, which can
be applied to automatically adapt the EPL patterns in succes-
sive MAPE-K iterations for CPS activities.

A more comprehensive framework for integrating IoT
resources into process-aware information systems is pro-
posed by Dar et al. [16]. It enables the integration of events
from IoT devices on a single device granularity as well as the
dynamic service replacement and message-based distributed
execution. While this approach fulfills some of the iden-
tified requirements for CPS process execution, large-scale
event processing, human interactions and the maintenance
of cyber-physical consistency are possible only to a lim-
ited degree. The SmartPM system by Marella et al. is able
to adapt to faulty process instances based on models of
expected reality and physical reality and recover from a
potential gap between these two worlds [31]. In particular,
the adaptation algorithms are worth investigating and inte-
grating into our MAPE-K loop approach for achieving a more
generally applicable solution for self-healing processes. The
combination with PROtEUS’s event processing mechanisms
may provide a more powerful integration and processing of
heterogeneous cyber-physical event sources within business
processes for CPS.

8.6 Summary of related work

With respect to established workflow engines, YAWL’s
engine—as an example of a widely used process engine
in academia—also follows a Petri net-based approach for
executing processes [59]. An example of a modern cloud-
based process engine is the Cloud Process Execution Engine
(CPEE) [30]. In order to meet all the challenges identified
in Sect. 3, substantial extensions to both engines and addi-
tional components are necessary. We therefore decided to use
a self-developed engine connecting all components and addi-
tions for executing CPS workflows as the core component of
PROEUS.

Toward an execution system for self-healing workflows in cyber-physical systems 569

Looking at related work, we find that several aspects have
already been solved in order to be applied within the context
of process execution in cyber-physical systems. We inte-
grate these existing solutions and components into our own
process execution system. However, the combination of the
identified CPS requirements (e.g., the high-level process-
ing of events and data as part of the process execution, the
integration of dynamic components, the handling of user
interactions and the synchronization between the cyber and
physical world) has not been addressed in a satisfying way
by state-of-the-art process execution environments. Existing
engines are only able to fulfill subsets of the requirements
identified in Sect. 3. There is a considerable gap between
hardware-oriented processes and human-focused workflows
as well as between virtual world process execution and real-
world process execution. The previous sections presented
how PROtEUS addresses these issues by enabling a closer
integration of humans and things into a process-aware infor-
mation system for cyber-physical systems, which facilitates
a tighter coupling of the digital world and physical world and
allows for self-healing workflow execution based on MAPE-
K feedback loops.

9 Conclusion

In this paper, we presented PROtEUS—an integrated system
for process specification and execution in cyber-physical
systems. The execution of processes in CPS poses new
challenges that cannot be completely handled by current
workflow engines. In particular, the data-centric and event-
driven nature of CPS resulting from the combination of
various low-level sensors, actuators, things and software
components requires process execution systems that are
able to integrate a heterogeneous set of resources on an
active and reactive basis. For CPS, there is a need to han-
dle the dynamics of resource constraint, loosely coupled
devices as well as to support user interactions. Therefore,
we developed a comprehensive process execution environ-
ment consisting of a core engine for executing model-based
processes, a complex event processing engine for the inte-
gration and processing of low-level sensor data and a service
invoker for calling on-site or external services. Services
can be deployed on a local platform and found at runtime
by means of an integrated registry or an external seman-
tic knowledge base. Remote access for clients is provided
through a WebSocket server enabling remote procedure calls
and publish/subscribe access for process control, high-level
process interaction and monitoring purposes. Processes are
based on a component-based meta-model that allows for
the composition of process steps and the definition of con-
trol and data flow. By combining these existing components
into an integrated execution environment, we are able to

cope with the challenges of using processes for controlling
cyber-physical systems beyond the state of the art. The gap
between hardware-related sensing and actuating in processes
and human interactions in abstract workflows is reduced by
PROtEUS. With PROtEUS being the base system, MAPE-
K feedback loops can be implemented for processes and
process activities to detect inconsistencies and restore consis-
tency between virtual world process execution and real-world
process execution by means of additional sensor information
and process adaptations.

Regarding future work, we will conduct more comprehen-
sive performance studies in order to evaluate the feasibility
of our prototype within smart environments. To optimize the
usage of available resources and reduce availability issues
caused by a centralized approach, we will decentralize parts
of the process execution system within a peer—super-peer net-
work. The distribution of the process engine and management
components across a hierarchical overlay network structure
as described in [48] allows for creating scalable and resource-
efficient process execution systems that can be applied to
large-scale systems of systems (e.g., Smart Factories and
Smart Cities). We will also introduce more sophisticated
semantics for describing properties and relations of processes
and resources as well as role-based inference mechanisms
for assigning resources [50], finding services and reconfigur-
ing processes at runtime. More sophisticated context models
and adaptation mechanisms will help improving the imple-
mentation of the MAPE-K control loop, which will also be
applied to check consistency and conformance during dis-
tributed process execution on peers. Finally, the linking and
correlation of real-world sensor data, process event logs and
MAPE-K loops will probably open up interesting new areas
in the field of process monitoring extending existing concepts
toward Cyber-physical Process Mining.

References

1. Agrawal, A., Amend, M., Das, M., Ford, M., Keller, C., Klopp-
mann, M., Koénig, D., Leymann, F., Miiller, R., Pfau, G., et al.:
Web Services Human Task (ws-humantask). White Paper (2007)

2. Alliance, O.: Osgi Service Platform, Release 3. IOS Press, Ams-
terdam (2003)

3. Baheti, R., Gill, H.: Cyber-physical systems. Impact Control Tech-
nol. 12, 161-166 (2011)

4. Barros, A., Decker, G., Grosskopf, A.: Complex events in business
processes. In: Business Information Systems, pp. 29—40. Springer
(2007)

5. Baumgral3, A., Botezatu, M., Ciccio, C.D., Dijkman, R., Grefen,
P, Hewelt, M., Mendling, J., Meyer, A., Pourmirza, S., Hagen,
V.: Towards a methodology for the engineering of event-driven
process applications. In: Proceedings First International Workshop
on Process Engineering, pp. 1-12 (2015)

6. Baumgrass, A., Ciccio, D., Claudio, C., Dijkman, R., Hewelt, M.,
Mendling, J.J., Meyer, A.A., Pourmirza, S.S., Weske, M.M., Wong,
T.: Get controller and unicorn: event-driven process execution and
monitoring in logistics. In: CEUR Workshop Proceedings (2015)

@ Springer

570

R. Seiger et al.

7.

10.

11.

12.

13.

14.

15.

16.

18.

20.

21.

22.

Bellur, U., Narendra, N.: Towards service orientation in pervasive
computing systems. In: International Conference on Information
Technology: Coding and Computing, 2005. ITCC 2005, vol. 2, pp.
289-295 (2005). doi:10.1109/ITCC.2005.280

Bernhardt, T., Vasseur, A.: Esper: Event Stream Processing
and Correlation. In: ONJava. http://www.onjava.com/Ipt/a/6955,
OReilly (2007)

Brand, C., Gorning, M., Kaiser, T., Pasch, J., Wenz, M.: Devel-
opment of High-Quality Graphical Model Editors. Eclipse Maga-
zine (2011). http://www.eclipse.org/graphiti/documentation/files/
EclipseMagazineGra. Accessed 1 Aug 2016

Broy, M., Cengarle, M., Geisberger, E.: Cyber-physical sys-
tems: imminent challenges. In: Calinescu, R., Garlan, D. (eds.)
Large-Scale Complex IT Systems. Development, Operation and
Management. Lecture Notes in Computer Science, vol. 7539, pp.
1-28. Springer, Berlin (2012). doi:10.1007/978-3-642-34059-8_
1

Biilow, S., Backmann, M., Herzberg, N., Hille, T., Meyer, A.,
Ulm, B., Wong, T.Y., Weske, M.: Monitoring of business processes
with complex event processing. In: Business Process Management
Workshops, pp. 277-290. Springer (2013)

Burkhart, T., Loos, P.: Flexible Business Processes—Evaluation of
Current Approaches. Proc. Multikonferenz Wirtsch. 2010, 1217-
1228 (2010)

Cao, J., Jarvis, S.A., Saini, S., Nudd, G.R.: Gridflow: workflow
management for grid computing. In: Proceedings of the 3st Inter-
national Symposium on Cluster Computing and the Grid, CCGRID
’03, pp. 198-205. IEEE Computer Society, Washington, DC, USA
(2003)

Chakraborty, D., Lei, H.: Pervasive enablement of business
processes. In: Proceedings of Second IEEE Annual Conference on
Pervasive Computing and Communications, PerCom, pp. 87-97
(2004). doi:10.1109/PERCOM.2004.1276848

Dadam, P., Reichert, M.: The ADEPT project: a decade of research
and development for robust and flexible process support. Comput.
Sci. Res. Dev. 23(2), 81-97 (2009)

Dar, K., Taherkordi, A., Baraki, H., Eliassen, F., Geihs, K.: A
resource oriented integration architecture for the internet of things:
a business process perspective. Perv. Mob. Comput. 20, 145-
159 (2015). doi:10.1016/j.pmcj.2014.11.005. http://linkinghub.
elsevier.com/retrieve/pii/S1574119214001862

Dayarathna, M., Suzumura, T.B.: A performance analysis of sys-
tem S, S4, and Esper via two level benchmarking. In: Lecture Notes
in Computer Science (Including Subseries Lecture Notes in Artifi-
cial Intelligence and Lecture Notes in Bioinformatics), vol. 8054,
pp. 225-240 (2013). doi:10.1007/978-3-642-40196-1_19. http://
www.scopus.com/inward/record.url?eid=2-s2.0-84882741975&
partnerID=40&md5=853c6cc716722cc36b074bc762edc7dS

De Lemos, R., Giese, H., Miiller, H.A., Shaw, M., Andersson, J.,
Litoiu, M., Schmerl, B., Tamura, G., Villegas, N.M., Vogel, T.,
et al.: Software engineering for self-adaptive systems: a second
research roadmap. In: Software Engineering for Self-Adaptive Sys-
tems II, pp. 1-32. Springer (2013)

Domingos, D., Martins, F., Candido, C., Martinho, R.: Internet of
things aware WS-BPEL business processes: context variables and
expected exceptions. J. UCS 20(8), 1109-1129 (2014)

Fette, 1., Melnikov, A.: The Websocket Protocol (2011). https://
tools.ietf.org/html/rfc6455<UrlBlockedError.aspx. Accessed 1
Aug 2016

Giner, P., Cetina, C., Fons, J., Pelechano, V.: Implicit interaction
design for pervasive workflows. Pers. Ubiquitous Comput. 15(4),
399-408 (2011). doi:10.1007/s00779-010-0360-2

Grefen, P., de Vries, R.R.: A reference architecture for workflow
management systems. Data Knowl. Eng. 27(1), 31-57 (1998).
doi:10.1016/S0169-023X(97)00057-8. http://www.sciencedirect.
com/science/article/pii/S0169023X97000578

@ Springer

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

Hermosillo, G., Seinturier, L., Duchien, L.: Using complex event
processing for dynamic business process adaptation. In: 2010
IEEE International Conference on Services Computing, pp. 466—
473 (2010). doi:10.1109/SCC.2010.48. http://ieeexplore.ieee.org/
Ipdocs/epic03/wrapper.htm?arnumber=5557204

Huber, S., Seiger, R., Kuehnert, A., Schlegel, T.: Using seman-
tic queries to enable dynamic service invocation for processes in
the internet of things. In: 2016 IEEE International Conference on
Semantic Computing (ICSC), pp. 214-221 (2016). doi:10.1109/
ICSC.2016.75

Kalasapur, S., Kumar, M., Shirazi, B.: Dynamic service compo-
sition in pervasive computing. IEEE Trans. Parallel Distrib. Syst.
18(7), 907-918 (2007). doi:10.1109/TPDS.2007.1039

Kephart, J., Kephart, J., Chess, D., Boutilier, C., Das, R., Kephart,
J.0., Walsh, W.E.: An Architectural Blueprint for Autonomic Com-
puting. IBM, Armonk (2003)

Kloppmann, M., Koenig, D., Leymann, F., Pfau, G., Rickayzen, A.,
von Riegen, C., Schmidt, P., Trickovic, I.: WS-BPEL Extension for
People-BPEL4People. In: Joint White Paper, IBM and SAP, vol.
183, p. 184 (2005)

Lee, E.: Cyber physical systems: design challenges. In: 2008 11th
IEEE International Symposium on Object Oriented Real-Time Dis-
tributed Computing (ISORC), pp. 363-369 (2008). doi:10.1109/
ISORC.2008.25

Luckham, D.: The Power of Events, vol. 204. Addison-Wesley,
Reading (2002)

Mangler,J., Rinderle-Ma, S.: Cpee-cloud process execution engine.
In: BPM (Demos)’ 14, pp. 51-51 (2014)

Marrella, A., Mecella, M., Sardina, S.: Smartpm: an adaptive
process management system through situation calculus, indigolog,
and classical planning. In: Principles of Knowledge Representation
and Reasoning, pp. 1-10. AAAI Press, US (2014)

Meyer, S., Ruppen, A., Magerkurth, C.: Internet of things-aware
process modeling: integrating IoT devices as business process
resources. In: Lecture Notes in Computer Science (Including Sub-
series Lecture Notes in Artificial Intelligence and Lecture Notes in
Bioinformatics), vol. 7908, pp. 84-98 (2013). doi:10.1007/978-3-
642-38709-8_6

Montagnat, J., Glatard, T., Lingrand, D.: Data composition patterns
in service-based workflows. In: Workshop on Workflows in Sup-
port of Large-Scale Science, 2006. WORKS ’06, pp. 1-10 (2006).
doi:10.1109/WORKS.2006.5282350

Montagut, F., Molva, R.: Enabling pervasive execution of work-
flows. In: 2005 International Conference on Collaborative Com-
puting: Networking, Applications and Worksharing, p. 10 (2005).
doi:10.1109/COLCOM.2005.1651227

Montagut, F., Molva, R., Golega, S.T.: The pervasive workflow: a
decentralized workflow system supporting long-running transac-
tions. IEEE Trans. Syst. Man Cybern. C 38, 319-333 (2008)
Papazoglou, M.P,, Traverso, P., Dustdar, S., Leymann, F.: Service-
oriented computing: state of the art and research challenges.
Computer 40(11), 38—45 (2007)

Pesic, M., van der Aalst, W.: A declarative approach for flexible
business processes management. In: Eder, J., Dustdar, S. (eds.)
Business Process Management Workshops. Lecture Notes in Com-
puter Science, vol. 4103, pp. 169-180. Springer, Berlin (2006).
doi:10.1007/11837862_18

Poovendran, R.: Cyber-physical systems: close encounters between
two parallel worlds [point of view]. Proc. IEEE 98(8), 1363-1366
(2010)

Qian, Z., Wang, Z., Xu, T., Lu, S.: A dynamic service composition
schema for pervasive computing. J. Intell. Manuf. 23(4), 1271-
1280 (2012). doi:10.1007/s10845-010-0410-7

Quigley, M., Conley, K., Gerkey, B., Faust, J., Foote, T., Leibs, J.,
Wheeler, R.,Ng, A.Y.: Ros: an open-source robot operating system.
In: ICRA Workshop on Open Source Software, vol. 3, p. 5 (2009)

http://dx.doi.org/10.1109/ITCC.2005.280
http://www.onjava.com/lpt/a/6955
http://www.eclipse.org/graphiti/documentation/files/EclipseMagazineGra
http://www.eclipse.org/graphiti/documentation/files/EclipseMagazineGra
http://dx.doi.org/10.1007/978-3-642-34059-8_1
http://dx.doi.org/10.1007/978-3-642-34059-8_1
http://dx.doi.org/10.1109/PERCOM.2004.1276848
http://dx.doi.org/10.1016/j.pmcj.2014.11.005
http://linkinghub.elsevier.com/retrieve/pii/S1574119214001862
http://linkinghub.elsevier.com/retrieve/pii/S1574119214001862
http://dx.doi.org/10.1007/978-3-642-40196-1_19
http://www.scopus.com/inward/record.url?eid=2-s2.0-84882741975&partnerID=40&md5=853c6cc716722cc36b074bc762edc7d5
http://www.scopus.com/inward/record.url?eid=2-s2.0-84882741975&partnerID=40&md5=853c6cc716722cc36b074bc762edc7d5
http://www.scopus.com/inward/record.url?eid=2-s2.0-84882741975&partnerID=40&md5=853c6cc716722cc36b074bc762edc7d5
https://tools.ietf.org/html/rfc6455<UrlBlockedError.aspx
https://tools.ietf.org/html/rfc6455<UrlBlockedError.aspx
http://dx.doi.org/10.1007/s00779-010-0360-2
http://dx.doi.org/10.1016/S0169-023X(97)00057-8
http://www.sciencedirect.com/science/article/pii/S0169023X97000578
http://www.sciencedirect.com/science/article/pii/S0169023X97000578
http://dx.doi.org/10.1109/SCC.2010.48
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5557204
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5557204
http://dx.doi.org/10.1109/ICSC.2016.75
http://dx.doi.org/10.1109/ICSC.2016.75
http://dx.doi.org/10.1109/TPDS.2007.1039
http://dx.doi.org/10.1109/ISORC.2008.25
http://dx.doi.org/10.1109/ISORC.2008.25
http://dx.doi.org/10.1007/978-3-642-38709-8_6
http://dx.doi.org/10.1007/978-3-642-38709-8_6
http://dx.doi.org/10.1109/WORKS.2006.5282350
http://dx.doi.org/10.1109/COLCOM.2005.1651227
http://dx.doi.org/10.1007/11837862_18
http://dx.doi.org/10.1007/s10845-010-0410-7

Toward an execution system for self-healing workflows in cyber-physical systems

571

41.

42.

43.

44.

45.

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

Reijers, H.A., Slaats, T., Stahl, C.: Declarative modeling—an
academic dream or the future for bpm? In: Business Process Man-
agement, pp. 307-322. Springer (2013)

Richly, S., Schmidt, S., Assmann, U.: A semantic-BDI-based
approach to realize cooperative, reflexive workflows. In: Proceed-
ings of the World Congress on Intelligent Control and Automa-
tion (WCICA), pp. 1680-1685 (2010). doi:10.1109/WCICA.2010.
5554771

Scheer, A.W., Niittgens, M.: ARIS Architecture and Reference
Models for Business Process Management. Springer, Berlin (2000)
Schiefer, J., Rozsnyai, S., Rauscher, C., Saurer, G.: Event-driven
rules for sensing and responding to business situations. In: Proceed-
ings of the 2007 Inaugural International Conference on Distributed
Event-based Systems, DEBS "07, pp. 198-205. ACM, New York,
NY, USA (2007). doi:10.1145/1266894.1266934

Schlegel, T., Vidakovi, K., Dusch, S., Seiger, R.: Manage-
ment of interactive business processes in decentralized service
infrastructures through event processing. J. King Saud Univ.
Comput. Inf. Sci. 24(2), 137-144 (2012). doi:10.1016/j.jksuci.
2012.03.001. http://www.sciencedirect.com/science/article/pii/
S1319157812000134

Seiger, R., Huber, S., Schlegel, T.: Proteus: An integrated system
for process execution in cyber-physical systems. In: Gaaloul, K.,
Schmidt, R., Nurcan, S., Guerreiro, S., Ma, Q. (eds.) Enterprise,
Business-Process and Information Systems Modeling. Lecture
Notes in Business Information Processing, vol. 214, pp. 265-280
(2015). doi:10.1007/978-3-319-19237-6_17

Seiger, R., Keller, C., Niebling, F., Schlegel, T.: Modelling complex
and flexible processes for smart cyber-physical environments. J.
Comput. Sci. (2014). doi:10.1016/j.jocs.2014.07.001

Seiger, R., Niebling, F., Schlegel, T.: A distributed execution envi-
ronment enabling resilient processes for ubiquitous systems. In:
2014 IEEE International Conference on Pervasive Computing and
Communications Workshops (PERCOM Workshops), pp. 220-223
(2014). doi:10.1109/PerComW.2014.6815205

Seiger, R., Struwe, S., Matthes, S., Schlegel, T.: A resilient
interaction concept for process management on tabletops for cyber-
physical systems. In: Yamamoto, S. (ed.) Human Interface and
the Management of Information. Information and Knowledge in
Applications and Services. Lecture Notes in Computer Science,
vol. 8522, pp. 347-358. Springer (2014). doi:10.1007/978-3-319-
07863-2_34

Shen, J., Yang, Y., Yan, J.: A p2p based service flow system with
advanced ontology-based service profiles. Adv. Eng. Inf. 21, 221-
229 (2007)

Shi, J., Wan, J., Yan, H., Suo, H.: A survey of cyber-physical
systems. In: 2011 International Conference on Wireless Commu-
nications and Signal Processing (WCSP), pp. 1-6 (2011). doi:10.
1109/WCSP.2011.6096958

Smirek, L., Zimmermann, G., Ziegler, D.: Towards universally
usable smart homes-how can myui, urc and openhab contribute to
an adaptive user interface platform. In: IARIA Conference, Nice,
France, pp. 29-38 (2014)

Steinberg, D., Budinsky, F., Merks, E., Paternostro, M.: EMF:
Eclipse Modeling Framework. Pearson Education, New York
(2008)

Sungur, C.T., Spiess, P., Oertel, N., Kopp, O.: Extending BPMN
for wireless sensor networks. In: 2013 IEEE 15th Conference
on Business Informatics, pp. 109-116 (2013). doi:10.1109/CBL
2013.24. http://ieeexplore.ieee.org/lpdocs/epicO3/wrapper.htm?
arnumber=6642865

Talcott, C.: Cyber-physical systems and events. In: Software-
Intensive Systems and New Computing Paradigms, pp. 101-115.
Springer Berlin Heidelberg (2008)

56.

57.

58.

59.

60.

61.

62.

63.

64.

65.

Tuysuz, G., Avenoglu, B., Eren, P.: A workflow-based mobile
guidance framework for managing personal activities. In: 2013
Seventh International Conference on Next Generation Mobile
Apps, Services and Technologies (NGMAST), pp. 13-18. doi:10.
1109/NGMAST.2013.12

Van Der Aalst, W.M.: Three good reasons for using a petri-
net-based workflow management system. In: Proceedings of the
International Working Conference on Information and Process
Integration in Enterprises (IPIC96), pp. 179-201. Citeseer (1996)
Van Der Aalst, W., ter Hofstede, A.: YAWL.: yet another workflow
language. Inf. Syst. 30(4), 245-275 (2005). doi: 10.1016/].i5.2004.
02.002

Van Der Aalst, W.M., Aldred, L., Dumas, M., ter Hofstede, A.H.:
Design and implementation of the YAWL system. In: CAiSE, vol.
3084, pp. 142-159. Springer (2004)

Weidlich, M., Ziekow, H., Gal, A., Mendling, J., Weske, M.: Opti-
mizing event pattern matching using business process models.
IEEE Trans. Knowl. Data Eng. 26(11), 2759-2773 (2014)
Weiser, M.: The computer for the 21st century. Sci. Am. 265(3),
94-104 (1991)

Wieland, M., Schwarz, H., Breitenbucher, U., Leymann, F.:
Towards situation-aware adaptive workflows: Sitopta general pur-
pose situation-aware workflow management system. In: 2015 IEEE
International Conference on Pervasive Computing and Communi-
cation Workshops (PerCom Workshops), pp. 32-37. IEEE (2015)
Wohed, P., van der Aalst, W., Dumas, M., ter Hofstede, A., Russell,
N.: On the suitability of bpmn for business process modelling. In:
Dustdar, S., Fiadeiro, J., Sheth, A. (eds.) Business Process Manage-
ment. Lecture Notes in Computer Science, vol. 4102, pp. 161-176.
Springer, Berlin (2006). doi:10.1007/11841760_12

Wombacher, A.: A-posteriori detection of sensor infrastructure
errors in correlated sensor data and business workflows. In: Pro-
ceedings of the 9th International Conference on Business Process
Management. BPM’11, pp. 329-344. Springer, Berlin (2011)
Wombacher, A.: How physical objects and business workflows can
be correlated. In: Proceedings of 2011 IEEE International Con-
ference on Services Computing, SCC 2011, pp. 226-233 (2011).
doi:10.1109/SCC.2011.24

Ronny Seiger received his
Diploma in computer science
from Technische Universitit
Dresden in 2011. Since 2012,
Ronny Seiger has been a Ph.D.
student and member of the Soft-
ware Engineering of Ubiqui-
tous Systems and Software Tech-
nology groups at TU Dresden.
His research interests include
workflows and processes, Cyber-
physical Systems, Internet of
Things, robotics, distributed sys-
tems and software engineering.
His main focus is on applying

workflow technologies for automating processes in Cyber-physical sys-
tems.

@ Springer

http://dx.doi.org/10.1109/WCICA.2010.5554771
http://dx.doi.org/10.1109/WCICA.2010.5554771
http://dx.doi.org/10.1145/1266894.1266934
http://dx.doi.org/10.1016/j.jksuci.2012.03.001
http://dx.doi.org/10.1016/j.jksuci.2012.03.001
http://www.sciencedirect.com/science/article/pii/S1319157812000134
http://www.sciencedirect.com/science/article/pii/S1319157812000134
http://dx.doi.org/10.1007/978-3-319-19237-6_17
http://dx.doi.org/10.1016/j.jocs.2014.07.001
http://dx.doi.org/10.1109/PerComW.2014.6815205
http://dx.doi.org/10.1007/978-3-319-07863-2_34
http://dx.doi.org/10.1007/978-3-319-07863-2_34
http://dx.doi.org/10.1109/WCSP.2011.6096958
http://dx.doi.org/10.1109/WCSP.2011.6096958
http://dx.doi.org/10.1109/CBI.2013.24
http://dx.doi.org/10.1109/CBI.2013.24
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6642865
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6642865
http://dx.doi.org/10.1109/NGMAST.2013.12
http://dx.doi.org/10.1109/NGMAST.2013.12
http://dx.doi.org/10.1016/j.is.2004.02.002
http://dx.doi.org/10.1016/j.is.2004.02.002
http://dx.doi.org/10.1007/11841760_12
http://dx.doi.org/10.1109/SCC.2011.24

572

R. Seiger et al.

Steffen Huber is a research
assistant at the Junior Professor-
ship in Software Engineering of
Ubiquitous Systems within the
DFG Research Training Group
RoSI since November 2013. He
received his Diploma in media
computer science from Technis-
che Universitit Dresden in Octo-
ber 2013. His research inter-
ests include context-sensitive
processes, role-based modeling,
semantic technologies, Cyber-
physical Systems, Internet of
Things, and sensor data analysis.

In his Ph.D. thesis, Steffen Huber investigates role-based modeling and
execution of processes in the Internet of Things.

@ Springer

/'\\\

Thomas Schlegel is full pro-
fessor at Karlsruhe University of
Applied Sciences. His research
interests focus on ubiquitous sys-
tems with a human (HCI) and
technological (models, systems)
perspective. He is head of the
Institute of Ubiquitous Mobility
Systems (IUMS) and holds the
INIT endowed chair. As a profes-
sor in the faculty of Information
Management and Media (IMM)
he is one of the key profes-
sors in Transportation Manage-
ment responsible for Information

Technology. Before, he has been in research positions at different com-
panies, Fraunhofer society, University of Stuttgart and as a Junior
Professor at Technische Universitit Dresden. With more than 80 pub-
lications and serving as editor, reviewer and PC member in different
fields, he is strongly engaged in research as well as education with sys-
tems and process related topics since the start of his academic career.

	Toward an execution system for self-healing workflows in cyber-physical systems
	Abstract
	1 Introduction
	2 Scenarios
	2.1 Scenario 1: Health monitoring
	2.2 Scenario 2: Home automation

	3 Goals and challenges
	4 Basic system architecture and modeling concepts
	4.1 Core process engine and process manager
	4.2 Event abstraction and processing
	4.3 Automated data flow
	4.4 Dynamic service invocation
	4.5 Ubiquitous human access
	4.6 Implementation

	5 Toward self-healing CPS workflows
	5.1 Synchronization of worlds
	5.2 Self-healing cyber-physical workflows

	6 Case studies
	6.1 Health monitoring
	6.2 Home automation

	7 Discussion
	7.1 Event abstraction and processing
	7.2 Automated data flow
	7.3 Dynamic service invocation
	7.4 Ubiquitous human access
	7.5 Synchronization of worlds and self-healing
	7.6 Summary of discussion

	8 Related work
	8.1 Event abstraction and processing
	8.2 Automated data flow
	8.3 Dynamic service invocation
	8.4 Ubiquitous human access
	8.5 Synchronization of worlds and self-healing
	8.6 Summary of related work

	9 Conclusion
	References

