
Softw Syst Model (2018) 17:1169–1195
https://doi.org/10.1007/s10270-016-0550-0

REGULAR PAPER

A model-driven development approach for context-aware systems

Imen Jaouadi1,2 · Raoudha Ben Djemaa2 · Hanêne Ben-Abdallah3

Received: 29 April 2015 / Revised: 13 June 2016 / Accepted: 15 July 2016 / Published online: 13 October 2016
© Springer-Verlag Berlin Heidelberg 2016

Abstract The widespread usage of various types of com-
puter devices with different platform characteristics created
a need for newmethods and tools to support the development
of context-aware applications capable of dynamically adapt-
ing themselves to context changes. In this paper, we present
a new model-based approach that addresses the develop-
ment of context-aware applications from both the theoretical
and practical perspectives and that supports all develop-
ment phases of context-aware systems. On the one hand, we
describe how our approach is applied to dynamically capture,
observe the change of the context and notify the system at
runtime. On the other hand, we show how our approach is
used by programmers to develop a context- aware applica-
tion.

Keywords Context modeling · Application adaptation ·
Context-aware application development · Model-driven
development

Communicated by Prof. Heinrich Hussmann.

B Imen Jaouadi
Jaouadi.Imen@fsegs.rnu.tn

Raoudha Ben Djemaa
Raoudha.Bendjemaa@isimsf.rnu.tn

Hanêne Ben-Abdallah
HBenAbdallah@kau.edu.sa

1 MIRACL Laboratory, FSEG, University of Sfax, Sfax, Tunisia

2 ISITCOM, University of Sousse, Sousse, Tunisia

3 King Abdulaziz University, Jeddah, Kingdom of Saudi Arabia

1 Introduction

The variety of computer devices and platforms, the circum-
stances of software uses, and the skills and preferences of
the end users open a vast field of opportunities and chal-
lenges in software development. Indeed, today’s software
development methods are expected to deliver software that:
(1) satisfies the various application domains’ requirements
(medical, transportation, air traffic, etc.), (2) self-adapts at
runtime to the different needs and profiles of end users
(novice, expert, disabled,minor, etc.) and (3) can be deployed
on emerging new platforms (PDA, tablet, etc.). These mul-
tiple expectations form different contexts of use. In this
paper, we define the context of use, or context for brief,
as “any information relevant to the interaction of the user
with the application, where both the user and the applica-
tion’s environment are of particular interest” [7]. This context
definition means that, depending on their contexts, users
accessing the same data/services through the same devices
may receive different outputs; the difference is due to the
users’ profiles. Systems that are capable of adapting their
interactions based on the context are called context-aware
systems [9,17].

The development of context-aware systems differs from
the development of traditional systems, and it still faces
several challenges. These latter are inherent to how the
context information is gathered, represented and exploited
to adapt the system’s interactions. Context information is
often captured using sensors from heterogeneous sources
that use different representations. Thereby, the context
information may require additional semantic and struc-
tural interpretation to be significant for the context-aware
software. In addition, because the context is dynamic,
the software must have a means to monitor the dynamic
context elements and detect their changes at runtime. Fur-

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10270-016-0550-0&domain=pdf

1170 I. Jaouadi et al.

thermore, upon each detected change, the software must
adjust its behavior in real time. Given the innumerable
contexts, developing one single version of the software
for each specific context is neither feasible nor scalable.
Instead, the software development method should account
for the context in order to deliver a context-aware applica-
tion.

Indeed, many approaches have focused on the use of
software engineering support (e.g., meta-modeling, archi-
tecture reuse, middleware) when developing context-aware
applications [1,3,9,11,13,16,18–21]. Their objective is to
enrich software engineering approaches for traditional soft-
ware to make them capable of properly accommodating
requirements inherent to different context scenarios while
generating automatically different versions of the same
application. Nonetheless, existing approaches have some
shortages: Some of them did not rely on rich context
models (e.g., [3,9]); others did not support the dynamic
changes in context elements [e.g., [1,19,20]); yet others
only offer a development methodology (e.g., [13,21])]. In
other words, none of the existing approaches provide a
comprehensive solution to context-aware application devel-
opment. Such a solution addresses the development of
context-aware applications from both the theoretical and
practical perspective and supports all of their development
phases. The herein proposed approach is one step toward
the definition of such solution. More specifically, we pro-
pose in this paper a new model-based approach for the
development of context-aware applications called Context-
Aware Application Development Approach (CAADA). To
validate this approach, firstly, we developed the frame-
work Dynamic Observation and Notification framework
for Context changes In Runtime (DONCIR), a software
framework that provides for monitoring dynamically con-
text changes and notifying the system at runtime. This
framework has the merit of defining a rich context meta-
model that represents dynamic and behavioral aspects of
the context. Besides refining the meta-model that was
initially proposed in [12], we propose in this paper a
development process to support the development stages of
context-aware adaptable applications using the framework
DONCIR.

To sum up, our herein presentedwork shows contributions
on three axes: conceptual, theoretical and practical.

On the conceptual axis, we detail a domain-independent
meta-model for describing and monitoring the context in
terms of its dynamic and behavioral aspects.

On the theoretical axis, we define the three-layered archi-
tecture of a new model-based approach for the development
of context-aware applications called Context-Aware Appli-
cation Development Approach (CAADA): context manage-
ment layer, context changemanagement layer and adaptation
management layer.

Finally, we present two practical contributions. The first
is a Java API of the framework DONCIR that is capable
of capturing the context, observing it in runtime, discov-
ering events that change it and triggering actions to adapt
appropriately the running application. The second contribu-
tion is a development process that covers all the activities
related to the context modeling and development of context-
aware applications to use our framework DONCIR. To
show the feasibility of our development process and cor-
rect functioning of our framework DONCIR, we report
on the development of an application in the healthcare
domain.

The remainder of this paper is organized as follows: Sect. 2
presents related works on context-aware application devel-
opment. Section 3 presents the architecture of CAADA.
Section 4 details the context meta-model used in DONCIR
which is overviewed in Sect. 5. Section 6 details the proposed
development process. Section 7 illustrates the feasibility of
DONCIR through the development of a healthcare applica-
tion. Finally, Sect. 7 summarizes the presented work and
outlines its extensions.

2 Related work and discussions

2.1 Related work

A lot ofwork has been done in the area of context-aware com-
puting in the past few years. This section presents a selection
of works that focus on building context-aware applications
based on models.

Seminal work was done by Dey et al. [9] in defining
an architecture for building context-aware applications. It
developed a context toolkit that enables rapid prototyping of
context-aware applications. The architecture of the context
toolkit is composed of: sensors to collect context informa-
tion; widgets to encapsulate the contextual information and
provide methods to access the information; interpreters to
transform the context information into high-level formats that
are easier to handle; and aggregators to group the context
information related to a subject or situation. This archi-
tecture is simple to implement and allows separation of
the acquisition process from the context representation and
adaptation. However, it is not based on a conform context
model for organizing the wide range of possible contexts
in a structured format, nor for writing rules about con-
texts.

WildCAT [6] is an extendable Java framework that offers
mechanisms for developing context-aware applications. It
defines a dynamic data model to represent the execution
context for several application domains, which separates dif-
ferent aspects of the execution context. In addition,WildCAT
offers an programming interface to discover, interpret and

123

A model-driven development approach for context-aware systems 1171

monitor the events occurring in an execution context and
to record every change occurring in the context model. To
support the context modeling, WildCAT defines a dynamic
context model, but it does not implement any of the men-
tioned context domains; it just provides interfaces to realize
them. Thus, WildCAT presents a programming interface, but
it does not have proposed mechanisms for the deployment
and the configuration to help programmers to use this frame-
work. Furthermore, it does not provide a means to gather
the data, and it rather provides methods to monitor the sen-
sors.

In the same context, [3] proposed a framework called
Java Context-Awareness Framework (JCAF) based on the
Java language. JCAF is a service-oriented, event-based
infrastructure suitable for the development of context-aware
applications. It is based on the following component: context
clients, context service, access control, monitor and context
actuator. The context clients are the context-aware appli-
cations using the JCAF infrastructure through subscribing
or requesting context information or by subscribing to an
entity listener. The context service is responsible for han-
dling a specific context. The access to a context service
is controlled through the access control component, which
ensures correct authentication of client requests. A moni-
tor is responsible for the communication with sensors to
acquire context information. A context actuator is designed
to work together with one or more actuators to change the
context. JCAF models the context through the following
classes: Entity, Context, Relationship and ContextItem. It is
extendable and it supports adaptation in runtime based on
events. However, the context representation of JCAF does
not provide the ability to define other abstractions over than
simple context information. In addition, JCAF aids technol-
ogy expert, but it certainly does not assist novice users; it does
not offer mechanisms for the development or the configura-
tion to help programmers to use JCAF. Furthermore, JCAF
supports various sensors for monitoring locations and base
classes for describing relevant entities used in context-aware
applications. However, it is very hard to extend it with new
computational resources to cope with an increased number
of sensors.

Costa [5] proposes an architecture based on the Event–
Control–Action and composed of three components, namely
the context processor, the controller and the action per-
former. The context processor component gathers context
information from the user’s environment, performs context
reasoning and generates context and situation events. The
controller component observes events from context proces-
sors, monitors conditions rules and triggers actions on action
performer when the condition is satisfied. To support this
architecture, [5] proposes a context model based on three
foundational concepts:Entity,Context andContext Situation.
This approach does not consider reusing existing application

models and context models to be developed from scratch as
a new separate model. In addition, the used context meta-
model does not offer important concepts to describe the
dynamic aspect of the context such as focus, temporal con-
straints and the associations types that are defined by the
work reviewed in [12]. Furthermore, this work proposes
only a design methodology for structuring context-aware
applications that is based on the service-oriented archi-
tectural style; in particular, it does suggest any concrete
implementation.

Vieira et al. [21] propose a framework named CEMan-
TIKA to support domain-independent context modeling
and context-aware system design. CEManTIKA is com-
posed of context source, context manager and context con-
sumers. Each context source provides a specific context
element. The context manager controls the activities related
to context acquisition, processing, dissemination and stor-
age. In addition, it manages the context sources used by
the context-aware system. The context consumers change
their behavior according to the condition related to the
context. This approach is based on a generic context meta-
model which models the structural and behavioral aspects
of the context. However, this meta-model does not model
the relationships among the entities and the histories of
context information. In addition, CEManTIKA proposes
only guidelines to support the design of context-aware sys-
tems; [21] does not propose any implementation or code for
development.

The conceptual framework named TriPlet proposed in
[13] supports the adaptation of user interfaces of interac-
tive systems. It is structured in three core components: a
Context-Aware Meta-model (CAM), a Context-Aware Ref-
erence Framework (CARF) and a Context-aware Design
Space (CADS). CAM defines concepts required to imple-
ment and run a context-aware application. CARF is a
reference framework created to list the most relevant con-
cepts for implementing and executing context-aware appli-
cations. It can be used either before the implementa-
tion phase as an extensive catalogue to guide developers
in taking design decisions, or after the implementation
phase to analyze and evaluate the concepts that were
considered, which helps to identify underexplored areas
for future extensions. The Context-aware Design Space
(CADS) component analyzes, compares and evaluates cov-
erage levels of the application’s user interfaces through a
set of well-defined criteria. CADS supports stakeholders
in the phases of implementation, analysis and evaluation
of adaptive and adaptable applications. Similar the afore-
mentioned two approaches, this approach is limited to
offering only a methodology for building applications, with
no proposed implementation, code, nor development or
configuration mechanisms to help programmers to develop
applications.

123

1172 I. Jaouadi et al.

2.2 Synthesis and motivation

In order to characterize and compare the works related to our
proposal, we use a set of criteria. Some of these criteria are
inspired from theworks reviewed in the previous section, and
others have been identified based on the requirements of our
problem.

• Context model: The datamodel used to represent the con-
text is examined in terms of the following criteria:

– Domain independence: The context model should be
as generic as possible to widen its applicability in
different application domains.

– Expressive power: It must be rich enough to represent
all relevant aspects of the context. In particular, we
focus on the following subcriteria:

• Dynamics: It allows to represent the dynamic aspects
of the context.

• Behavioral and structural information: It should
allow to model the structural and behavioral aspect
of the context.

• Architecture: To support the building of context-aware
applications, an approach should support the following
elements:

– Context collection: It gathers the context information
from different data sources attached to the applica-
tion.

– Context interpretation: It transforms the context
information collected from data sources into signifi-
cant format easier to handle.

– Behavior specification: It specifies the different appli-
cation behaviors in terms of context information
changes.

– Context control: It observes the dynamic elements
of the context and detects changes that occur in the
context.

– Application adaptation: It adapts the application to
the constantly change in the context.

– Separation of context management and adaptation:
This separation of concerns provides for reusability
and extendibility of the approach.

• Validation of the architecture: To validate the proposed
architecture, an approach should provide for:

– Detailed development process: The approach must
propose a development process with tools to support
the development stages of context-aware applica-
tions.

– Rapid development and configuration of applica-
tions: The approach should offer easy-to-use mech-

anisms for the development and configuration of
applications. These mechanisms should not require
much programming and configuration efforts. Sub-
sequently, the development and configuration time
should be reduced with respect to the time required
to develop an application without the approach of
context-aware development.

– Support for implementation: The approachmust exist
concretely as a usable implementation.

Table 1 synthesizes our analysis of the aforementioned
approaches in terms of the above criteria.

Based on the summary provided in Table 1, we can
conclude that no single approach addresses all the issues
identified in our criteria. Although the examined approaches
took into account, to some extent, some issues related to
the creation of context-aware applications, they also present
a number of limits and constraints. Indeed, most of the
proposed work either did not use/propose rich context mod-
els [3,6,9], or they did not offer solutions to integrate
the behavioral aspects of context modeling. In addition,
those approaches supporting the dynamic, structural and
behavioral aspects of the context have only proposedmethod-
ologies for designing context-aware applications [5,13,21];
the exceptions are [3,6] who implemented their framework.
Moreover,weobserved that no approachhas been reported on
the development of context-aware application that combines
an integrated support on context modeling, an architecture
that supports all the features of a context-aware application
and a support for implementation.

As we present in the following sections, we address the
above- mentioned limits through the proposition of Context-
Aware Application Development Approach (CAADA), a
model-driven approach for context-aware application devel-
opment.

3 Overview of CAADA

As depicted in Fig. 1, the CAADA approach is based on
an architecture consisting of three layers, namely context
management, context change management and adaptation
management.

The context management layer captures the contextual
data of the application from the context sources based on
a context model. In addition, this layer can detect and ana-
lyze context changes in the real time. To do so, we use
two types of software modules: Context Providers and Con-
trollers. The Context Providers collect context information
from different heterogeneous sources and reformulate it to
a structure understandable by the system of context-aware
application. The Controllers monitor the context informa-
tion sent by theContext Providers. To detect context changes

123

A model-driven development approach for context-aware systems 1173

Table 1 Comparison of CAA development approaches

Criteria Approaches

Context Toolkit [9] Wildcat [6] JCAF [3] Costa et al. [5] CEManTIKA [21] TriPlet [13]

Context model

Domain independence + − + + + +

Expressive power

Dynamics − + − + + +

Behavioral and
structural information

− − − + + +

Architecture

Context collection + + + + + −
Interpretation context + − − − + −
Behavior specification + − − − + −
Context control − + + + + −
Application adaptation − + + + + −
Separation of context
management and adaptation

+ + − + + +

Validation of the architecture

Detailed development
process

− + − + + −

Rapid development
and configuration of
applications

− − − − − −

Support for
implementation

− + + − − −

Fig. 1 Overview of CAADA
approach

123

1174 I. Jaouadi et al.

Fig. 2 Context meta-model of DONCIR

and notify the system, our approach uses the paradigm ON
Event if Condition do Action (ECA): When an event occurs,
the condition is evaluated and, if verified, the action is trig-
gered. When the context change management identifies the
context change type, it sends the necessary reactions in
response to the adaptation management Layer. This layer,
on the one hand, identifies the type of adaptation required
according to the reactions defined by the context change
management and, on the other hand, it realizes this adap-
tation.

The adaptation aims to change one or more aspects of
the interactive system according to the context in which end
users are located.

To validate this approach, we have developed a software
framework called DONCIR that observes the execution con-
text of an application and detects events that can trigger
adaptation in runtime. DONCIR uses a rich generic and rich
context meta-model that represents the static and dynamic
aspects of the context (see Sect. 4).Also, to help and guide the
programmer to develop their application as part of framework
DONCIR, we define a development process with configura-
tion and design tools (see Sects. 5, 6).

4 Context meta-model

A meta-model enables a semiautomatic generation of an
application, reducing development efforts and facilitating the

reuse. Our meta-model (Fig. 2) conforms to the MOF lan-
guage [14] which is a standard that specifies the syntax and
structure of all meta-models used. In this paper, an overview
of the context meta-model is done, and for a more detailed
discussion about the expressive power of themeta-model and
its validation, interested readers can refer to [12].

• Context: The context class is the container of the elements
of context model. Its aggregation association defines the
containment relationships with the rest of the elements.

• ContextPrimitive: The ContextPrimitive class is an
abstract class that represents the superclass of Contex-
tEntity and ContextProperty classes. Each ContextPrim-
itive is described by a name and can be composed of
properties. The ContextPrimitives are linked by associ-
ations. The ContextEntity class describes any physical
or conceptual object, from which context information is
captured, for example: doctor, room, patient and device.
The ContextProperty class describes the properties of a
ContextEntity. Each ContextProperty is described by a
name and a dataType.

• ContextProvider: This class is useful to describe the
provider of properties of ContextEntity. The provider-
Name attribute describes the provider of context, which
can be a sensor or database to search for information on
the user profile. The className attribute describes the
name of the class responsible to capture context infor-
mation.

123

A model-driven development approach for context-aware systems 1175

• ContextPropertyHistoric and HistoricDescription:
Applications canmake use of not just the current context,
but also the past contexts to adapt their behavior for better
interacting with users. Thus, we store contexts continu-
ously, as they occur, in a database. Since all context events
have a well-determined structure, it is relatively simple
to automatically develop schemas for storing them into a
database. The ContextPropertyHistoric class represents
the values of ContextProperty which can take them dur-
ing its lifetime. Each history of the context information
is described by two attributes calledHistoricDescription.
This latter is a simple couple (DescriptionName, descrip-
tionDataType). The DescriptionName attribute is an
enumeration formed by TimeStamp and Value attributes.
The TimeStamp attribute indicates the time during which
the value is stored in ContextRepository, whereas the
value of ContextPropertyHistoric is indicated by the
“value” attribute. The data type of each attribute is rep-
resented by the attribute descriptionDataType.

• ContextAssociation: It is used to describe the relationship
between two entities or two properties and the rela-
tionship that link ContextEntity to its properties. These
types of relationships are represented by the refersTo-
Primitif association. Each association is described by a
name. Associations are classified into two groups: The
StaticAssociation represents relationships which remain
fixed throughout the life of ContextEntity, such as date
of birth. The DynamicAssociation represents all associ-
ations that are not static. They are classified into four
groups: The SensedAsssoiation represents information
obtained through sensor such as doctor location. The
DerivedAssociation describes the values derived from
other associations. For example: The patient’s age is
derived from the patient’s birth date and the current date.
The room number that the doctor is going to visit is
deducted from the location of the doctor. The ProfiledAs-
sociation represents the information extracted from the
user profile such as the patient’s date of birth. While
the UserDefined represents the values provided by the
user through a dialogue interface such as mood or moti-
vation of a person which allows the system to make
decisions. A DynamicAssociation can depend on other
associations. This is indicated in the diagram by the
reflexive relationship dependAssociations. In addition,
a dynamic association can be defined by temporal con-
straints. A TemporalConstraint is described by a value
and unit (TimeUnit) used to represent this value. There are
two groups of TemporalConstraint. The TemporalRela-
tiveInterval class is used to define a time interval based
on the current time. The TemporalFixedInterval class is
used to explicitly define the interval time. The startTime
attribute describes start time and endTime describes the
end time.

• Focus: A context-aware application is composed of sev-
eral Focuses. In Zimmermann et al. [21,23], the authors
show that the context cannot be considered in an iso-
lated manner, but always connected to a focus. A focus
is determined by the focusName. For example, a user
can interact with the application to look for trains depart
list. If a focus is active, it triggers one or more condi-
tions.

• Conditions: It is the superclass of the AtomicCondition
and theCompositeCondition class. TheAtomicCondition
class represents the atomic Conditions, while Compos-
iteCondition class represents the composed conditions.
Each condition is defined by a name and a value calcula-
ble. Each condition represented by the AtomicCondition
class is defined by two operands called operandA and
operandB and one of the following operators (and, or,>,
<, =, <>). An operand is represented by the abstract
class Operand; it can be a numeric variable (Numeri-
cOperand), or a string (StringOperand) or a context
element (ContextElement). A composed condition con-
sists of several operators (compositeOperator) and one
or more atomic condition represented by atomicCondi-
tion relationship. Example of composed condition is:
((Noise-Level=’high’) and (doctor-Experience>2) and
(Time=’Morning’)).

• Rule: A rule specifies a procedure to be executed when
the conditions of active focus are met. It activates the
execution of an adaptation. A rule is described by the
RuleExpression attribute that describes the expression of
the rule. The callMethod attribute describes the function
to be performed to realize the adaptation enabled by the
rule.

Besides its genericity (i.e., all modeled concepts are domain
independent) and conformity toMOF[14], ourmeta-model is
richer than the proposed meta-models: Firstly, it represents
the context structural aspect with these concepts: Contex-
tEntity, ContextProperty and ContextAssociation. Secondly,
it provides for representing the context dynamic aspect
with DynamicAsssociation, TemporalConstraint and Con-
textPropertyHistoric concepts. Thirdly, it provides the spec-
ification of the behavioral aspect of the context with Focus,
Condition and Rule concepts.

5 Overview of DONCIR’s implementation

To validate our approach CAADA, we have implemented the
framework DONCIR. This framework is based on the para-
digmEvent ConditionAction. So, to describe the functioning
process of DONCIR, it is necessary first to define types of
event that can be trigged in the context-aware application.

123

1176 I. Jaouadi et al.

5.1 Event types in DONCIR

Each change occurring in context element is represented by
an event namedContextEvent. Each event is identified by old-
Value, newValue and an Event source (an object that indicates
the origin of the event). In addition, the dynamic change of
context in runtime can change the properties and the condi-
tions values. Our framework should consider these changes.
It provides a JAVA interface, named ContextChangedLis-
tener, as the superclass of ContextValueListener and Condi-
tionListener interfaces. The change in ContextProperty value
is triggeredby thepropertyValueChangedmethodof theCon-
textValueListener interface. The ConditionListener interface
describes the methods used to manipulate events triggered
when changing a condition value. The conditionoccurred
method is invoked if a condition is changed value to true. The
conditionRemoved method is called if a condition changed
value to false. To deal with these events in our implementa-
tion, we used the EventListener class. It is a java interface
that inherits from the superclass java.lang.Object. In fact,
a class which wants to listen to contexts elements change
will be able to register with the model as EventListener. In
addition, the class must have methods to add and to remove
listener, and methods to signal a change usually have the
prefix “fire” in the name. Listening 1 shows theContextProp-
erty class that is registered as EventListener and indicates the

change in property value by the fireContextValueChanged()
method.

Listening 1 : Extract of ContextProperty class of framework DONCIR

public class ContextProperty extends ContextPrimitif
{protected ContextEntity entity;
protected DataType dataType;

protected ContextProvider provider;
protectedObject value;
protected boolean contextValueListener=false;
public final EventListenerList listeners=new EventListenerList();

public void addContextValueListener(ContextValueListener listener)
{listeners.add(ContextValueListener.class, listener);
contextValueListener=true;

}
public void removeContextValueListener(ContextValueListener listener)
{listeners.remove(ContextValueListener.class, listener);
contextValueListener=false;
}

public void fireContextValueChanged(Object oldValue, Object newValue)
{ContextEvent event=null;
if(! Equals (oldValue ,newValue))
{getProvider().getClassName().setValueChanged(true);
for(ContextValueListener listener: getContextValueListner())
{ event=new ContextEvent(oldValue, newValue, this);
listener.propertyValueChanged(event);
}}

}

5.2 Functioning process of DONCIR

Figure 3 illustrates the operating principle of DONCIR.
As soon as the user opens the application and selects its

target (step 1) (for example, a doctor wants to review radiol-
ogy and pharmacy result), the context Generator manipulates
the XML File of the context model and generates at the

Fig. 3 Overview of DONCIR

123

A model-driven development approach for context-aware systems 1177

end a context instance of the application launched by the
user (step 2). When the context generator completes its task,
the context Manager searches the context elements that may
change during the execution of the application based on the
instance created by the ContextGenerator (step 3), and it
associates it with a specific controller (step 4). From this

moment, the Controllers (propertyController, dependence
controller) monitor the dynamic context elements. They
examine the property value of ContextProvider specific to
each ContextProperty (step 5) and compare it with the previ-
ous situation. When a context change occurs, the controller
triggers a ContextValueChanged event to the ContextExecu-
tor (step 6). This latter asks the ContextManager to activate
all conditionController (step 7) possible to change their val-
ues in this situation. If a condition has changed a value, the
ConditionController sends a conditionOccurred or a condi-
tionRemoved event to the ContextExecutor (step 9) to take
the necessary actions. This latter sends the equivalent rules
to the current context to the AdaptationProducer (step 10) to
adapt the application and to make it consistent with the new
context.

In the following sections, we detail each element of our
approach and we describe how it functions.

5.2.1 The context generator

This component generates automatically the context model
description, as an instance of context containing the func-
tional elements and the descriptive elements of the context
model based on a XML file. The structure of this file cor-
responds to the structure of the context model (see Sect. 4).
This generator is based on Xquery language [22].

XQuery is a declarative programming language that can be
used to extract information from an XML document in much
the same way as SQL extracts information from a relational
database. We used Saxon as an Xquery processor because it
is free.

Listening 2 describes the extractProvider function.

Listening 2 : extractProvider method

public ContextProvider extractProvider(ContextMeta-modelPackage.ContextEntity
ce,String chemin, String namep)
{XQuery xq=new XQuery(ContextModelFileName);
ContextMeta-modelPackage.ContextProvider p=null;
String query="for $a in (doc
('contextModel.xml')/ContextAwareApplication/ContextEntity[@name='"+
ce.getName()+"']/"+chemin+"/ContextProperty[@name='"+namep+"']/ContextProvider)
return (text{$a/@providerName}, text{' '},text{$a/@className},text{'
'})";
try
{//write return of executequery inFile
BufferedReader bp=new BufferedReader(new FileReader(xq.executeXquery(query)));
String sp="";
//read file using StringTokenizer

if(!(sp=bp.readLine()).equals(" ")){
StringTokenizer ssp=new StringTokenizer(sp," ");
//read nameProvider

String nameProvider=ssp.nextToken();
//read nameClass of provider
String nameClass=ssp.nextToken();
// create new instance of contextProvider
try {
p=new ContextMeta-modelPackage.ContextProvider(nameProvider,
(ContextProviderPackage.ClassProvider) Class.forName(nameClass).newInstance());
} …….

It (Listening 2) creates and returns a contextProvider
instance from XML file providing as parameters names of
ContextEntity and contextProperty of this contextProvider
and its path in the XML file. A contextProvider instance is
described by providerName and className. To describe the
className of a provider, we have used the principle of reflec-
tion in Java; it allows loading a class, creating an instance and
accessing its methods without knowing the class in advance.
The static method Class forName (String name) allows to
load a class whose full name is specified. Finally, the newIn-
stance ()method creates a new instance of the class by calling
the constructor with no parameters.

Each context instance created by the Context Generator
will be used by the Context Manager.

5.2.2 The context manager

The Context Manager is a process whose purpose is to know
the dynamic context elements as observed by the controllers.
The operation principle of the context meta-model is based
on the context meta-model structure as explained by the
graph shown in Fig. 4. Each entity is related to its prop-
erties and other entities through dynamic associations. In
addition, each property may be related to other properties.
The dynamic associations are several types, and a property
can be an operand of a condition.

123

1178 I. Jaouadi et al.

Fig. 4 A graph that
summarizes the context
meta-model

Fig. 5 The development process stages

To know the dynamic context elements, the ContextMan-
ager must follow these steps. Firstly, it gets the context
entities list of the application in runtime. Secondly, for each
entity, it searches all dynamic associations that come out.
Thirdly, for each association, he looks the context element
type of the association end. If the context element type is a
ContextProperty, it adds ContextValueListener to the current
property (CP) to listen for events when the value of property
changes. Then, if the dynamic association (DA) output of CP
was dependent on other associations, in this case, the change
of the property value depends on changing the association’s
properties which depend on this change. Hence, it controls
the change of these properties value by activating the depen-
dence controller. Otherwise, theManager adds a new proper-
tyController on the property according to the time constraint
used to represent the temporal aspect of dynamic associa-

tions. Finally, if ContextProperty is composed of other prop-
erties, the manager must repeat the previous steps for each
subproperty.

The next section describes the operations performed by
the controllers when they are launched in work by the Con-
textManager.

5.2.3 Controllers

Some context elements change rapidly. Consequently, this
type of context elements must be continuously monitored so
that it can detect changes and trigger adaptations. To do so,
we use the modules called ContextController. A controller
searches for and selects context sources and it observes con-
text changes sensed by the selected context sources. Each
ContextController must be able to assess the context to sig-

123

A model-driven development approach for context-aware systems 1179

Fig. 6 Mechanism of transformation based on MDA approach

nal events to contextExecutor. As such, we distinguish three
types of controllers:

• propertyController: A process that controls Context
Property value changes. When the propertyController is
activated by the ContextManager, the ContextProvider
provides each time the new context property value to
propertyController. It is the propertyController which
detects changes by comparing the current value with the
previous value and it reports the ContextExecutor of a
trigger of a new propertyValueChanged event type.

• DependenceController: A process that controls a prop-
erty p1 which in turn depends on the property p2. Each
time the dependenceController of p1 detects a change in
p2, it gets the new value of p1 from its context provider.
For example, a roomNumber depends on the user loca-
tion. Each time when the value of the user’s location is
changed, theDependeceController created for the room-
Number property requests the new value of the property
roomNumber from the RoomNumberProvider class.

• ConditionController: A process in charge of control-
ling a specific condition. Each time where it will be
activated by the ContextManager, it evaluates the con-
dition value by comparing it with the old value. If the
value of the condition is changed, a new ContextEvent
of ConditionOccurred or conditionRemoved type will be
created.

5.2.4 ContextExectuor

The ContextExecutor allows the system to react when a con-
text event is generated. In our work, we have introduced two
types of events: (1) Events generated when a property value
is changed (valueChangedEvent), and (2) Events generated
if a condition changes value.

Fig. 7 XML-meta-model

A change of ContextProperty value is signaled by Prop-
ertyController sending a Value Changed event. This event
will trigger the execution of the propertyvaluechanged
function by the Context Executor. The change of a prop-
erty value can generate the change of condition value.
In the light of this idea, the Context Executor should
search all conditions of the focus activated by the user
and one of their operands is formed by Context Property
triggering this event. Then it asks the manager to acti-
vate controllers of all these conditions. If any of these
conditions become true or false, a conditionRemoved or
conditionOccurred event type is triggered. Every Time the
Context Executor receives the conditionOccurred event, it
retrieves rules that are triggered by the conditions eval-
uated to be true and sends these rules to Adaptation
Producer.

5.2.5 Adaptation producer

The Adaptation Producer is responsible for executing rules
to take place when a condition change occurs. Each rule is
defined by the callMethod attributewhich describes the name
of the function to execute to adapt the system.TheAdaptation
Producer calls the functionwhose nameequals to callMethod
and executes its code. All the adaptation functions arewritten
by the programmer during the development and are registered
in the AdaptationFunctions class.

In this paper, we will execute the code of the functions
developed by the programmer and we will not be interested
in the way in which the adaptation will be done because
our framework is generic and can be used by all application
types and the implementation is different depending on the
type of the application, e.g., interactive applications and web
services.

123

1180 I. Jaouadi et al.

6 The development process in the context of
DONCIR

In this section, we will present how developers can quickly
build a context-aware application using the frameworkDON-
CIR by following our development process. This process

meets the requirements defined in the related work: detailed
development process and rapid development of applications.
Indeed, all steps in this process are detailed and guided
by easy-to-use tools. Figure 5 illustrates the phases that
a programming engineer must follow when developing a
context-aware application using our framework DONCIR.

Fig. 8 A construction example of context model edited with EMF editor of eclipse

Fig. 9 The extract functionality
of AM3 perspective

123

A model-driven development approach for context-aware systems 1181

6.1 The context model transformation process

In our current implementation, developers of context-aware
applications need to write a configuration file for describ-
ing context elements and the behavior of application. The
file would be conforming to the context meta-model of
DONCIR. Hence, we must provide a mechanism to auto-
matically generate this file. This mechanism must simplify
the developer’s tasks and assumes the validity of the file.
The first step in our approach (step1) shows the transforma-
tion process of context model to XML file. The methodology
used in this step is supported by the model-driven architec-
ture MDA [15]. This approach consists of using a set of
models that can be interpreted or processed by a machine.
In order to a machine can interpret or transform a model,
it is necessary that the model is defined in language that is
understood by it. The language used to describe the mod-
els is called meta-model. The definition meta-models of a
system models are very different. To manage this diversity,
the MDA recommends using a common language called
meta-meta-model to describe all the meta-models involved
in the description of a system model [4]. Figure 6 describes
the transformation mechanism of context model to XML
model.

The execution engine takes as input: the contextmodel, the
context meta-model, the XML meta-model, transformations
rules to map the source meta-model to the target meta-
model. It produces in output an XML model. The context
meta-model is already described in Sect. 4. In the following
section, we will detail the different inputs of the transforma-
tion engine.

6.1.1 XML meta-model

Figure 7 shows the XML meta-model. Each node (Node
class) has a name (name attribute) and a value (value
attribute)). A node can be an attribute (Attribute class), or
any element (Element class) or root (Root class). An element
has children (reference children) which are the nodes.

In theory, having on hand the source and target meta-
models, we can write directly at this stage a transformation
as an ATL code.

6.1.2 Transformation rules

The definition of transformation rules describes the corre-
spondence between the source model elements and those of
the target model. To implement our transformation rules, we
have chosen theATL language [2] because it is simple aswell
as flexible, and it allows hybrid rule expressions (declarative
and imperative rules). Root rule is the main rule of our ATL
code (Listening 3).

Listening 3: Root rule

1 rule Root
2 {
3 from
4 p:ContextMetamodel!Context
5 to
6 root:XML!Root(
7 name<-'Context')
8 do
9 {
10 for(e in p.entities)
11 { thisModule.Entities (e,root);}
12
13 for(e in p.focuses)
14 { thisModule.Focus (e,root) ;}
15 }

16 }

Listening 4 : rule Entities

1 rule Entities(e:ContextMetamodel!ContextEntity, host:XML!Element)
2 {
3 to
4 element:XML!Element(
5 name <-'ContextEntity',
6 children <- Sequence{})
7 do
8 {
9 thisModule.Attribute('name',e.name,element);

10
11 (e.properties->notEmpty())
12 { for(i in e.properties)
13 { thisModule.Properties(i,element);}
14 }
15 (e.associations->notEmpty())
16 { for(i in e.associations)
17 {thisModule.getAssociations(i,element);}
18 }
19 host.children <- thisModule.add(host.children , element);
20 }
21 }}

This rule aims to create the root element in theXMLmodel
(line 6) from the Context element (line 4). The key word
from (line 3) indicates the type of the element that will be
used as input for the implementation of this rule. This rule
will be executed once for each element of type Context of
source model. In the imperative block of this rule (do {} in
line 8), we explicitly call the Entities rule (line 12), which
is invoked by each “ContextEntity” or “Context” element of
context model, and Focus rule (line 15), which is invoked
each time the context element is composed of elements of
Focus type (ligne14). Listening 4 presents the ATL syntax to
deduct the XML element ’ContextEntity’.

Listening 5 : The Attribute rule

1 rule Attribute(nameAttribute:String, valueAttribute: String, element :XML!Element)
2 {
3 to
4 a: XML!Attribute(
5 name <- nameAttribute,
6 value <- valueAttribute)
7 do
8 {
9 element.children <- thisModule.add(element.children,a);

10 }
11 }

123

1182 I. Jaouadi et al.

The Attribute rule (Listening 5) creates an attribute whose
name and value are given in parameter for this rule (line 1).
This rule uses a helper add (line9) for adding the attribute
created at the children list end (children) of the input para-
meter XML element (line 1). The syntax of the helper add is
defined by the code ATL in Listening 6.

Listening 6 : The helper Add

1 helper def: add(list: Sequence(XML!Element),
2 element:XML!Element): Sequence(XML!Element)=
3 if (element.oclIsUndefined()) then list
4 else list -> append(element)
5 endif ;

Helper Add is a method that has the role to add an element
(line 2) entered into parameter at the end of a list (list line 1),
using the operator ATL append (line 9).

In order to execute these rules by the transformation
engine and generate a file, we also need a context model.

6.1.3 Context model

In this phase, designers develop a single model which
addresses the possible contexts of CAA, the focuses to iden-
tify all the objects that have to be manipulated to perform
including rules and conditions. The model must be con-
forming to the meta-model (Fig. 2). Therefore, the designer
needs to ensure that the context model defined is precise
and coherent. The eclipse allows using the Eclipse Model-
ing Framework plug-in [10] to easily create a meta-model
conforming to the meta-model by instantiating the root ele-
ment and then creating the elements it contain. Themodeling
editor restricts the designer from defining an invalid model
and supports the validation of the context model. Figure 8
shows a construction example of context model conforming
to meta-model edited with EMF editor of eclipse.

Figure 8 shows that the constructionof a conformandvalid
context model is very easy and that it does not require much
effort by the developer thanks to our development process.

In contrast, as cited in related work, none of the existing
approaches proposed a tool to quickly design context model
while ensuring its validity and its compliance with meta-
model.

At this stage, we have in hand: a source and a target meta-
models, rules of transformation and an example of context
model. Sowecan execute theATL transformation.This trans-
formation provides a target model in the XMI form [14],
which conforms to the target met-model.

The ATL tool is supplied with a plug-in of global business
models. This module, known by the acronym AM3 (ATLAS
MegaModel Management), offers among others the func-
tionality to extract a model to an XML file. Indeed, the ATL
transformation cannot directly generate an XML file, but the
extractor is thus used to directly transform an XML model
into an XML file. Figure 9 shows the Extract functionality
of AM3.

Similarly to the previous step, as shown in Fig. 9, the
generation of an XML file from the XMLmodel is very easy
and takes only a few seconds to be done by the developer. This
generated XML file will be used as input to the second step
(step 2 in Fig. 5) of our process to develop a context-aware
application.

6.2 Generating provider Java classes

Step2 consists of creating Java classes that inherit the Con-
textProvider class of our framework DONCIR based on the
XML file generated. These classes can capture context infor-
mation of each context model property.

Eclipse Acceleo is a code generation tool with Eclipse.
It enables the design of code generation modules from one
or more models. In our case, we generate Java classes based
on the XML file generated in previous step and a little pro-
gram written with markup language provided by Acceleo
(Listening 7).

123

A model-driven development approach for context-aware systems 1183

In this step, the developer only needs to configure the
execution of the template by selecting the sourcemodel (con-
textModel.xml) and the placement where the generated Java
classes will be stored. This step is very easy and quick to
realize and does not require any effort by the developer.

6.3 The development of an application

In this step, the programmer must develop their applica-
tion and define the getValue() methods in all classes of
ClassProvider type. In each method, the developer must
specify how to capture the value of each context property
from the context source.

7 Experimental study of DONCIR

To demonstrate the feasibility of DONCIR, we have consid-
ered an application in the healthcare domain as a scenario
of use. For this application, we provide a high-level descrip-
tion of the application intended to implement the scenario
and the development process following the frameworkDON-
CIR.The development process includes the contextmodeling
activities.

7.1 Overview of the case study

In a hospital, every doctormust have amobile that allows him
to enter and to receive important information of the patient
in a automated manner. Doctors work in dynamic environ-
ment. The context depends on the location of the doctor (e.g.,
patient room, RAI room, operating room), the time (morn-
ing and evening), the ambient conditions of doctor location
(light level: bright or dark, the noise level (low or high) and
the device used by the doctor. A doctor can review labora-
tory and pharmacy results and submit new laboratory and
pharmacy orders.

In a hospital, there are two groups of doctors: The expert
doctors have more experience with mobile technology and
they have high tolerance toward using new applications,
while the novice doctors have less experience with mobile
technology. Thus, they have a difficulty reading small fonts
and hearing sound low. Consequently, in normal conditions,
it wants to receive information via headset and set the ring
tone volume of device to high. An expert doctor has nei-
ther difficulty in reading nor hearing problem. So, in normal
conditions, they want to receive information via text. We
identify a number of adaptation scenarios to validate our
approach. Some of these scenarios represent a particular
adaptation of the application based on change in context of
execution.

123

1184 I. Jaouadi et al.

7.2 Application of our development process

The first step of our development process is to develop a
context model of our case study and transform it into an
XML file.

7.2.1 Transformation of context model to an XML file

In this step, we begin by describing the contextual elements
of the case study by identifying its entities and its proprieties.
Afterward, we analyze the type of each association that links

two context elements to describe the acquisition mode of
context element. Figure 10 represents the different entities,
proprieties and associations types of our case study.

In the next step, we identify a number of adaptation sce-
narios to validate our approach. Some of these scenarios
represent a particular adaptation of the application based
on change in context of execution. Table 2 shows examples
of conditions and adaptation rules to trigger for the focus
“Review laboratory and pharmacy result.” For example, if it
is night time, and the noise level is low in a patient room, a
doctor (expert or novice) who is in this room must always

Fig. 10 Graph illustrates the context model of our case study

Table 2 Examples of conditions and rules adaptations of running example

Adaptation scenario no Condition name Conditions Rules

Scenario
number 1

Cond1 (Doctor category= ’novice’) and (Doctor
location= ‘patient’s room’) and (Light
level= ‘bright’) and (Noise level= ‘low’)

Display font size=Large Display
brightness=Normal Ring tone volume=high
Receive information via headset

Scenario
number 2

Cond2 (Doctor category= ‘novice‘) and (Doctor
location= ‘patient’s room’) and (Light
level= ‘bright’) and (Noise level= ‘high’)

Display font size=Large Display
brightness=Normal Ring tone
volume=vibration Receive information via text

Scenario
number 3

Cond3 (Doctor category= ‘expert‘) and (Doctor
location= ‘patient’s room’) and (Light
level= ‘bright’) and (Noise level= ‘low’)

Display font size=Normal Display
brightness=Normal Ring tone
volume=medium Receive information via text

Scenario
number 4

Cond4 (Doctor category= ‘expert‘)and (Doctor
location=“patient’s room’) and (Light
level= ‘dark’) and (Noise level= ‘low’)

Display font size= Large Display
brightness=high Ring tone volume=silent
Receive information via text

Scenario
number 5

Cond5 (Doctor category= ‘novice‘) and (Doctor
location= ‘patient’s room’) and (Light
level= ‘dark’) and (Noise level= ‘low’)

Display font size=Large Display
brightness=high Ring tone volume=silent
Receive information via headset

Scenario
number 6

(Doctor category= ‘novice‘) and (Doctor
location= ‘doctors room’) and (Light
level= ‘dark’) and (Noise level= ‘low’)

Display font size=Large Display
brightness=high Ring tone volume=high
Receive information via headset

123

A model-driven development approach for context-aware systems 1185

Fig. 11 Context model of study case edited with EMF

have silent ring tone volume and must receive information
via text to not disturb the patient (scenarios 4 and 5).

After specifying the different context elements, we can
easily design our context model with the EMF eclipse Editor.
Figure 11 shows the context model of our study case.

In fact, the goal of this step is to build a conform con-
text model that complies with the meta-model of DONCIR
by following its development process. The reliability of this
model is ensured by the EMF tool of eclipse with which we
have built our model. Moreover, this step is rapidly guided
by our building tool and it does not require much effort from
the programmer.

After the construction of the context model with the edi-
tor EMF, we must transform it into an XML file. For that,
we must execute the rules of transformations defined in
Sect. 6.1.2. Figure 12 shows the configuration that we per-
formed to transform the context model of case study in an
XML file.

This transformation (Fig. 12) provides a target model in
XMI format that conforms to the XML meta-model. Figure
13 shows an extract of the generated file during the execution
of this transformation.

We then transform the generated XMI file into an XML
file using the extractor of AM3 perspective of Eclipse (see
Fig. 14).

7.2.2 Generating provider java classes

In this stage, we need only configure the execution of the
template by choosing the source model (contextModel.xml)
and the location where the java classes generated will be
saved. Figure 15 shows the configuration performed by the
developer of our case study and the executing result of our
configuration.

7.2.3 Development of the case study application

In this step, we only develop a prototype of the case study.
In our work, we construct a simple graphical application that
replaces the real application and we use it to test the good
functioning of the main components of DONCIR namely
ContextGenerator, ContextManager, Controllers, Contex-
tExecutor and AdaptationProducer. We will not go into the
technical details of the implementation of the necessary sen-
sors for our case study (noise sensor, position sensor, light
sensor). Themain objective of our proposition is to detect the
change of the context in runtime and not the development of
sensors. In this application, we will manually enter the infor-
mation about the doctor’s location, the noise level and the
bright level. Figure 16 shows the main interface of our pro-
totype. In this prototype, the launch of the application by the

123

1186 I. Jaouadi et al.

user is replaced by the “ run Genarator ” button. The launch
of the focus chosen by the user is replaced by the “ start ”
button.

Then, the programmermust define thegetValue ()methods
in all provider java class. In each method, the developer must
specify how to capture the value of each context property
from the context provider. For example, Listening 8 presents
the definition of the getValue () method of the PatientName-
Provider class. This method is used to provide the name of
the patient visited by the doctor. This information depends
on the roomNumber where the doctor is.

We have presented in this section how a developer can
quickly build the application of our case study in our frame-
work DONCIR by following our development process using
easy configuration and design mechanisms. In the next sec-
tion, we describe the feasibility of DONCIR by testing it on
the prototype developer for the proposed case study.
7.3 Applying the framework DONCIR to the case study

In this section, we present the use of DONCIR into prac-
tice to test the proper operation of its main components:
ContextGenerator, ContextManager, ContextExecutor and
AdaptationProducer by applying it to application of our case
study illustrated with some examples of adaptation scenario.
Wewill display all the results of our test in the console. Thus,
we will display the console in the frame of our prototype to
show the functioning of DONCIR in runtime.

7.3.1 Testing the functioning of the ContextGenerator

In our prototype, the launch of the application by the user
is replaced by the “run Generator” button. In fact, for the
framework DONCIR, the click on this button allows the
“Context Generator” tomanipulate the XMLfile named con-

textModel.xml automatically generated (see Sect. 7.2.1) to
create a context instance of the application already running.
The console in Fig. 17 shows the results displayed during the
activation of the ContextGenerator.

Figure 17 shows the correct functioning of the Con-
textGenerator that succeeds to generate the instances of the
context model of our case study. This is the role of the Con-
textGenerator (see Sect. 5.2.1).

7.3.2 Testing the functioning of the ContextManager

The context will be activated if the user chooses its focus. In
the case of our prototype, the selection of a choice from the
combo box “focus” and the click on the button “start,” at first,
allows the launchof the interface of the focus requested by the
user such as “review laboratory results and radiology.” After-
ward, it activates the “Context Manager.” Figure 18 shows
the results displayed in the console during the activation of
the ContextManager.

The principal role of the ContextManager is to find the
dynamic context elements and assign to each one a spe-
cific controller (see Sect. 5.2.2). Figure 18 validates the
functioning of the ContextManger of DONCIR, which suc-
ceeded to assign and activate a controller to each dynamic
context element such as location, longitude and doctor cate-
gory.

7.3.3 Testing the functioning of the controllers

Figure 19 describes the results appearing in the console
after the activation of the controllers by the contextManager.

123

A model-driven development approach for context-aware systems 1187

Fig. 12 ATL transformation configuration of context model of our case study

It illustrates that the controller succeeded in observing the
change of the context by asking every time the new value of
context property from its context provider. The console dis-
played the new values captured from the contextProviders by
the controllers such as longitude, altitude and noise level.

Moreover, the controller is responsible for the detection
of a context change when a property value changes and it
signals a value- changed event. Figure 20 shows that when
we changed the longitude value from0 to 1500, automatically
a changed value event was displayed in the console.

To sum up, Figs. 19 and 20 illustrate sample tests to show
the correct functioning of the controllers of DONCIR which
succeeds automatically to observe and detect the change of
the context in runtime.

7.3.4 Testing the functioning of the ContextExecutor

The role of the ContextExecutor is to react when a con-
troller reported that a contextElement changed. In this case,

it searches all conditions depending on the context change,
and if any of these conditions becomes true, it retrieves the
rules it trigger and its send them to AdaptationProducer. To
show a test of the good functioning of ContextExecutor, we
will change the values of context elements describing two
adaptation scenarios.

Figure 21 describes the following scenario of our case
study: Novice Doctor Location (1200, 300, 500) that coin-
cides in our example with roomPatient Number 100 of the
patient “Rocky.” The noise level is low and the light level is
dark.

We observe that the change of room number causes
the change of roomType and patientID since the patient
properties depend on the room number. Also the “Room
type” depends on the “roomNumber.” Thus, the change of
context property value causes the activation of conditions
controllers which depend on these properties: For example,
the change of lightLevel causes the activation of controllers

123

1188 I. Jaouadi et al.

Fig. 13 Extract of the generated target XML model during the execution of the ATL transformation

Fig. 14 Extract of XMl file described in the context model of our case study

123

A model-driven development approach for context-aware systems 1189

Fig. 15 Configuration for the generation of context providers’ java classes

Fig. 16 Main interface of the prototype of the case study application

for the conditions Cond1, Cond2, Cond3, cond4, Cond5 and
cond6.

Then, the condition Controllers calculate the new val-
ues of these conditions and compare them with the old
values. If a condition changes its value to true, it will
trigger a conditionOccurred event. Figure 22 shows that
the scenario described in Fig. 21 causes the value change

of cond5 (see Table 2) and consequently the trigger of
conditionOccurred event. Thus, this figure validates the
functioning of ConditionControllers. When the contextEx-
ecutor receives the conditionOccurred event triggered by the
cond5, it will retrieve rules that are activated by this condi-
tion and send them to the Adaptation Producer. In the next
section, we will test its functioning when receiving these
rules.

7.3.5 Testing the functioning of the adaptation producer

Figure 23 shows that the rules corresponding to the Cond5
are displayed in the console. If we change theDoctor location
to (2000, 500, 1000), a location that resembles to “room doc-
tor,” the adaptation rules accordingly are changed. The ring
volume becomes “high”; since it is not a patient room, there
is no need to reduce the volume to not disturb the patient.
Figure 24 describes this scenario.

123

1190 I. Jaouadi et al.

Fig. 17 Test the functioning of the ContextGenerator

Fig. 18 Test the functioning of the ContextManager

123

A model-driven development approach for context-aware systems 1191

Fig. 19 Test the activation of contextProviders by the controllers

Fig. 20 Validation of the context value changed detection functioning by the controller in runtime

123

1192 I. Jaouadi et al.

Fig. 21 The search and the activation of condition controllers by the contextExecutor

Fig. 22 Validation of condition controllers functioning

123

A model-driven development approach for context-aware systems 1193

Fig. 23 Validation of adaptation scenario no

Fig. 24 Validation of adaptation scenario no 6

123

1194 I. Jaouadi et al.

8 Conclusion

In this paper, we proposed CAADA, an approach for context-
aware application development based on models and ECA
paradigm. To validate our approach, we proposed a software
framework called DONCIR that can dynamically capture,
observe context changes and notify the system in runtime to
perform the necessary adaptations. We have described the
operating principle of DONCIR which is based on four com-
ponents: ContextGenerator, Context Manager, Controllers
and Context Executor. We presented the JAVA interface of
our framework. This framework is based on generic and rich
context meta-model.

To help developers use our framework DONCIR, we
presented a model-driven approach strictly based on the par-
adigm MDA that provides the capability to automatically
generateXMLfile descriptive of contextmodel. The usage of
this approach enables the developer to define a context model
using a comprehensive visual representation. Furthermore,
it supports the context model validity and conformity to our
meta-model.Otherwise,weproposed a transformationmodel
to code based on meta-model XML and XML file generated
to create java classes responsible for capturing and providing
context element values. All these steps are performed in the
same eclipse plug-in and using configuration mechanisms
to reduce programmer effort and to help him to develop its
application. We illustrated the feasibility of DONCIR in run-
time through a set of testing scenarios on a case study in the
healthcare domain. The design results showed that DONCIR
is easy use for context-aware application development. The
herein presented testing results allowed us to show the fea-
sibility of all functionalities of DONCIR, namely automatic
generation of an instance of the context from the XML file,
context capturing, control of dynamic context elements, and
context change detection and triggering adaptation rules.

Our work has the following merits: a rich, domain-
independent MOF compliant context meta-model that pro-
vides the specification of all context-relevant aspects (struc-
tural, dynamic, behavioral); the framework DONCIR includ-
ing its runtime infrastructure and its programming model
which provides observing the context and adapting the appli-
cation to context changes in runtime; an comprehensive
application development process guided by mechanisms that
support the rapidity of the development task and that do not
require much programming and configuration efforts.

In conclusion, CAADA is original in the sense that com-
bines a generic and rich context meta-model, a full and rapid
process development and a support of implementation.

In our ongoing research and development efforts, we plan
to further apply this approach in the development of large-
scale context-aware applications in different application
domains. This will delimit the relevance of our framework
in other areas and validate its genericity and reuse advan-

tages. We also plan to offer reliable solutions for testing the
effectiveness of our approach using complex conditions and
information deduced from the context history.

References

1. Achilleos, A., Yanga, K., Georgalas, N.: Context modelling and a
context-aware framework for pervasive service creation: a model-
driven approach. J. Perv. Mob. Comput. 6(2), 281–296 (2010)

2. ATLAS group LINA and INRIANantes: ATL: atlas transformation
language specification of the ATL virtual machine. Version 0.1
(2005)

3. Bardram, J.E: The Java context awareness framework (JCAF)—a
service infrastructure and programming framework for context-
aware applications. In: Proceeding of the Third International
Conference on Pervasive Computing (Pervaive’2005), pp. 98–115.
Munich (2005)

4. Bezivin, J.: Towards a precise definition of the OMG/MDA frame-
work. In: 16th Annual International Conference on Automated
Software Engineering (ASE 2001), pp. 273–280. SanDiego (2001)

5. Costa, P.D.:Architectural support for context-aware applications—
from context models to services platforms. Ph.D. Thesis, Enschede
(2007)

6. David, P.C., Ledoux, T.: WildCAT: a generic framework for
context-aware applications. In: Proceeding MPAC’05 Proceedings
of the 3rd International Workshop on Middleware for Pervasive
and Ad-hoc Computing, pp. 1–7. ACM, New York (2005)

7. Dey, A.K., Salber, D., Futakawa, M., Abowd, G.D.: An architec-
ture to support context-aware applications. GVU Technical Report
GIT-GVU-99-23. In: The 12th Annual ACM Symposium on User
Interface Software and Technology (UIST ’99) (1999)

8. Dey, A.K., Abowd, G.D.: Towards a better understanding of con-
text and context-awareness. In: TheWorkshop on TheWhat, Who,
Where, When, and How of Context-Awareness, As Part of The:
Conference on Human Factors in Computing Systems (CHI 2000).
The Hague (2000)

9. Dey,A.K., Abowd,G.D., Salber, D.: A conceptual framework and a
toolkit for supporting the rapid prototyping of context-aware appli-
cations. Hum. Comput. Interact. J. 16(2), 97–166 (2001)

10. Helming, J., Koegel, M.: What every eclipse developer should
know about EMF. Eclipse Source (2015)

11. Henricksen, K., Indulska, J.: Developing context-aware pervasive
computing applications: models and approach. J. Perv. Mob. Com-
put. 2(1), 37–64 (2006)

12. Jaouadi, I., Ben Djemaa, R., BenAbdallah, H.: A generic meta-
model for context-aware applications. In: The 23 International
Conference on Systems Engineering (ICSEng 2014), pp. 587-
59419-21. Las vegas (2014)

13. Motti, V.G., Vanderdonckt, J.: A computational framework for
context-aware adaptation of user interfaces. In: IEEE Seventh
International Conference on Research Challenges in Information
Science (RCIS), pp. 1–12. Paris (2013)

14. Object Management group: Meta object facility (MOF) specifica-
tion. OMG Document, version 1.3 (2000)

15. Object Management group: The model driven architecture. Mars
(2015)

16. Pham, H.N., Mahmoud, Q.H., Ferworn, A., Sadeghian, A.: Apply-
ing model-driven development to pervasive system engineering.
In: Proceedings of the 1st International Workshop on Software
Engineering for Pervasive Computing Applications, Systems, and
Environments (ICSE, 2007), p. 7 (2007)

17. Schilit, B.N., Adams, N., Want, R.: Context-aware computing
applications. In: Proceeding WMCSA’94 Proceedings of the 1994

123

A model-driven development approach for context-aware systems 1195

First Workshop on Mobile Computing Systems and Applications,
pp. 85–90. IEEE Computer Society, Washington, DC (1994)

18. Santos, L.O.S., Wijnen, R.P.V., Vink, P.: A service oriented mid-
dleware for context-aware applications. In: Proceeding of 5th
International Workshop on Middleware for Pervasive and Ad-hoc
Computing:Held at theACM/IFIP/USENIX8th InternationalMid-
dleware Conference, pp. 37–42. ACM, New York (2007)

19. Serral, E., Valderas, P., Pelechano, V.: A model driven develop-
ment method for developing context-aware pervasive systems. In:
Proceeding 5th International Conference, Ubiquitous Intelligence
and Computing (UIC 2008), pp. 662–676. Oslo (2008)

20. Vale, S., Hammoudi, S.: COMODE: a framework for the devel-
opment of context-aware applications in the context of MDE. In:
Fourth International Conference on Internet andWeb Applications
and Services (ICIW ’09), pp. 261–266. Venice/Mestre (2009)

21. Vieira, V., Tedesco, P., Salgado, A.C.: Designing context-sensitive
systems: an integrated approach. J. Exp. Syst. Appl. Intell. Collab.
Des. 38(2), 1119–1138 (2011)

22. MarkLogic Server: XQuery andXSLT reference guide.MarkLogic
(2015)

23. Zimmermann, A., Lorenz, A., Oppermann, R.: An operational defi-
nition of context. In:Modeling andUsingContext, 6th International
and Interdisciplinary Conference (CONTEXT 2007), Computer
Science, pp. 558–571, volume 4635. Springer, Berlin (2007)

Imen Jaouadi received her engi-
neering diploma from Sousse
University, Tunisia, in 2007.
Then she obtained her Master
Degree in Intelligent Informa-
tion system from Kairouan Uni-
versity, Tunisia, in 2010. She
worked at the University of
Monastir, Tunisia, from 2010
until 2014. Actually, she is a
Ph.D. student in laboratory Mul-
timedia, Information Systems
andAdvancedComputing (MIR-
ACL) of Sfax University. Her
research interests include soft-

ware engineering, human–computer interaction, adaptation of interac-
tive systems and context-aware systems. She has participated in several
international conferences.

Raoudha Ben Djemaa received
her Master degree in Informa-
tion system andNewTechnology
from Sfax University, Tunisia,
in 2002. She obtained her Ph.D.
in informatics from Sfax Uni-
versity, Tunisia, in April 2009.
She is actually an assistant pro-
fessor in the Higher Institute of
Computer Sciences and Tech-
nology Communication of Ham-
mam Sousse in Tunisia. She
is also a member of the labo-
ratory Multimedia, Information
Systems and Advanced Comput-

ing (MIRACL) of Sfax University, Tunisia. Her research interests
include software engineering, methodologies and approaches for adap-
tive web applications, development and approaches for adaptive web
services and finally IHM adaptation. She has participated in several
national and international conferences.

Hanêne Ben-Abdallah received
a B.S. in Computer Science and
B.S. in Mathematics from the
University of Minnesota, MPLS,
MN, a MSE and Ph.D. in Com-
puter and Information Science
from the University of Penn-
sylvania, Philadelphia, PA. She
worked at the University of Sfax,
Tunisia from 1997 until 2013.
She is now full professor at the
Faculty of Computing and Infor-
mation Technology, King Abdu-
laziz University, Jeddah, King-
dom of Saudi Arabia. She is a

member of the Mir@cl laboratory, University of Sfax. Her research
interests include software design quality and reuse techniques applied
to data warehouses, business processes and web-based applications.
She has published over 60 papers in refereed journals, international
conferences and book chapters in these research areas.

123

	A model-driven development approach for context-aware systems
	Abstract
	1 Introduction
	2 Related work and discussions
	2.1 Related work
	2.2 Synthesis and motivation

	3 Overview of CAADA
	4 Context meta-model
	5 Overview of DONCIR's implementation
	5.1 Event types in DONCIR
	5.2 Functioning process of DONCIR
	5.2.1 The context generator
	5.2.2 The context manager
	5.2.3 Controllers
	5.2.4 ContextExectuor
	5.2.5 Adaptation producer

	6 The development process in the context of DONCIR
	6.1 The context model transformation process
	6.1.1 XML meta-model
	6.1.2 Transformation rules
	6.1.3 Context model

	6.2 Generating provider Java classes
	6.3 The development of an application

	7 Experimental study of DONCIR
	7.1 Overview of the case study
	7.2 Application of our development process
	7.2.1 Transformation of context model to an XML file
	7.2.2 Generating provider java classes
	7.2.3 Development of the case study application

	7.3 Applying the framework DONCIR to the case study
	7.3.1 Testing the functioning of the ContextGenerator
	7.3.2 Testing the functioning of the ContextManager
	7.3.3 Testing the functioning of the controllers
	7.3.4 Testing the functioning of the ContextExecutor
	7.3.5 Testing the functioning of the adaptation producer

	8 Conclusion
	References

