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Abstract It is fundamental to understand users’ intentions
to support them when operating a computer system with a
dynamically varying set of functions, e.g., within an in-car
infotainment system. The system needs to have sufficient
information about its own and the user’s context to pre-
dict those intentions. Although the development of current
in-car infotainment systems is already model-based, explic-
itly gathering and modeling contextual information and user
intentions is currently not supported. However, manually
creating software that understands the current context and
predicts user intentions is complex, error-prone and expen-
sive. Model-based development can help in overcoming these
issues. In this paper, we present an approach for modeling
a user’s intention based on Bayesian networks. We sup-
port developers of in-car infotainment systems by providing
means to model possible user intentions according to the cur-
rent context. We further allow modeling of user preferences
and show how the modeled intentions may change during
run-time as a result of the user’s behavior. We demonstrate
feasibility of our approach using an industrial case study of

Communicated by Dr. Jordi Cabot and Alexander Egyed.

< Daniel Liiddecke
daniel.lueddecke @volkswagen.de

Christoph Seidl
c.seidl @tu-braunschweig.de

Jens Schneider
jens.schneider5 @volkswagen.de

Ina Schaefer
i.schaefer @tu-braunschweig.de

1 Volkswagen AG, Letterbox 011/17770, 38440 Wolfsburg,
Germany

Technische Universidt Braunschweig, 38106 Braunschweig,
Germany

an intention-aware in-car infotainment system. Finally, we
show how modeling of contextual information and modeling
user intentions can be combined by using model transforma-
tion.

Keywords Context-aware - Intention-aware - Modeling -
Infotainment

1 Introduction

Computer systems aim to help people by achieving certain
goals in their daily routine. However, with the growing com-
plexity of these systems, the number of available functions
becomes less comprehensible. One option to counter this
effect is to support users in finding suitable functions. By
predicting the users’ next actions, their infentions may be
employed to suggest suitable functions. Predicting user inten-
tions may also improve the usability of a computer system
when using the system is not the primary task in certain situ-
ations. For example, in a car, the primary task for the driver is
to operate the vehicle, whereas using the in-car infotainment
system to control the music is a secondary task. An in-car
infotainment system that is aware of the user’s intentions
aims to predict a user’s next interaction steps to minimize
the required interaction between the user and the system. For
instance, if the system can predict the next song the driver
wants to listen to, or the next navigation destination the driver
wants to go to, it may recommend those to the driver. The
driver can confirm this recommendation by a single inter-
action. To the best of our knowledge, there are currently
no approaches that attempt to apply model-based software
development for intention-aware in-car infotainment sys-
tems. In this paper, we present an approach for modeling
user intentions by Bayesian networks, which allows the sys-
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tem to react differently depending on the users’ intentions in
a particular situation.

For the purpose of illustrating challenges for modeling
user intentions and to demonstrate our approach for modeling
intention-aware systems, we provide a running example of an
intention-aware in-car infotainment system that is an excerpt
of the industrial example of our case study: the music library
of an in-car infotainment system includes information on
the genre of every track within the library. Furthermore, the
system is capable of playing music of a certain genre. For
the running example, we assume there are only three genres
within the system: pop, rock and jazz music.

In addition, the car is equipped with a seat occupancy
detection, which may be used to determine whether a seat
is in use. Hence, the system is able to detect whether the
driver is alone or with passengers in the car. Furthermore,
the car is equipped with a driver drowsiness detection, which
calculates an estimated drowsiness of the driver in percent
based on steering wheel movements.

For the running example, we assume that drivers tend to
listen to different music genres when they are alone in the car
and when there are additional passengers. Furthermore, it is
an established theory that people tend to listen to different
music genres when they are awake and when they are drowsy
(e.g., they are listening to “stimulating music while driving”
when they are tired [20]). The exemplary intention-aware in-
car infotainment system recommends a specific genre with
respect to the user’s current situation (being alone or with
somebody in the car, being drowsy or awake).

Modeling user intentions with respect to a user’s current
situation is challenging, as users act differently in the same
situation. Hence, the model needs to adapt itself to a specific
user. In addition, describing “the current situation” can be
very complex as a situation is made up by a wide variety of
individual facts. Hence, a software designer has to deal with
numerous influences that describe the current situation when
modeling user intentions.

This paper and its work is mostly based on our results pre-
viously presented in [15] and [17]. We present an approach
based on Bayesian networks to model user intentions as syn-
thesis of various combined influences. We demonstrate how
to apply our approach manually but also provide a proce-
dure to create the model automatically by processing learning
data. In addition, we show how to create an integrated process
of modeling contextual information as shown in [15] and
modeling of user intentions as presented in [17].

This paper is structured as follows: Sect. 2 provides back-
ground information on context-aware systems, intention-
aware systems and Bayesian networks. Section 3 defines
requirements for modeling intention-aware in-car infotain-
ment systems. Section 4 briefly summarizes our previously
presented results on modeling context-aware systems with an
ontology-based approach. Section 5 presents our approach of
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modeling user intentions with Bayesian networks to recom-
mend suitable system functions. Section 6 describes how the
model may be created automatically by processing learning
data. Section 7 demonstrates the feasibility of our approach
by applying it to an industrial example of an intention-
aware in-car infotainment system. Section 8 presents an
optimized process of integrated and flexible modeling con-
textual information and user intentions. Section 9 discusses
related approaches before Sect. 10 concludes the paper with
a summary and an outlook to future work.

2 Background

In this section, we provide background information on com-
puter systems that adapt to their users’ current situation—
context-aware systems—and systems that recognize their
users’ intentions in the current situation—intention-aware
systems. Furthermore, we present foundations of Bayesian
networks, which serve as basis of our approach.

2.1 Context-aware and intention-aware systems

Context-aware systems take the current situation of their
users—their context' —into account when interacting with
them. Context-aware systems process low-level data (e.g.,
sensor data) for a particular situation and react to it by (pos-
sibly) altering their behavior [6,26]. Low-level data for an
in-car infotainment system can be separated into three main
categories according to the origin: driver, car and environ-
ment [24,27]. As shown in [15], it is possible to abstractly
model different situations using an ontology-based approach
by connecting low-level input data to abstract situations (e.g.,
rain and sun sensor can be used to create the situations good
weather and bad weather during run-time of the system). In
this paper, we refer to information that describes the current
situation as contextual information.

Intention-aware systems aim to reduce the interaction
between the computer system and its user by attempting to
predict which action the user will take next. With this knowl-
edge, the computer system can assist users in achieving their
goals, e.g., by automating actions such as starting certain
applications. However, there is still a lack of support to model
intention-aware in-car infotainment systems.

2.2 Ontology-based modeling of context-aware systems

Ontologies can be used to model real-world concepts and
their relations [6,26] among each other. During run-time,
the implicit knowledge modeled in ontologies can be made

explicit in a process called reasoning. A common language

I A detailed discussion of the term context can be found in [7].
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for ontologies is OWL [19] which was used in our previously
presented approach [15] for modeling context-aware systems
as well as the rule-based extension called SWRL [12].

Figure 1 shows a simple exemplary ontology that can
be used to classify a cabin acoustic level. Real-world con-
cepts such as the vehicle’s speed, the engine’s revolutions
per minute (RPM) and the cabin’s acoustic level are mod-
eled as classes of the ontology. An individual of the class
RPM is automatically assigned as a member of any of
the subclass NormalRPM or HighRPM according to the
value of its property rpmvValue. SWRL rules can be
used to classify an individual as a member of the class
CabinAcousticLevel. The following SWRL rule clas-
sifies a CabinAcousticLevel as HighLevel:

IF there is an individual of the class CabinAcoustic
Level (named c)

AND there is an individual of the class HighRPM
(named r)

AND there is an individual of the class Speed
(named s)

AND the data property speedValue of s is greater
than 60

THEN c belongs to the class HighLevel.

Detailed information on how to use ontologies to model
contextual information and its relations can be found in [15].

2.3 Bayesian networks

Within this paper, we use the following definition of Bayesian
networks:

“Bayes[ian] Networks are directed acyclic graphs in which
the nodes represent propositions (or variables), the arcs sig-
nify the existence of direct causal influence between the
linked propositions, and the strength of these influences are
qualified by conditional probabilities [...] [21].” For an eas-
ier reading, we use the term node’s value when we mean
the value of a node’s variable. We also maintain the more
common notation of edges instead of arcs. In addition to the
direct causal influence denoted by edges between nodes, each
individual node needs conditional probabilities which reveal

(NormalRPM)  (_HighRPM )

rpomValue only int[<3000] rpmValue only int[>=3000]

() ¢

B,C 0.2 0.8
- E F
B, C 0.4 0.6
B, C 0.1 0.9
B, C 0.7 0.3

Fig. 2 Example of a Bayesian network with a CPT for the node E

how probable a certain value of the node is with respect to
the values of its parent nodes. These conditional probabilities
are given in conditional probability tables (CPTs).

Figure 2 shows a Bayesian network with six exemplary
boolean variables, represented by the nodes A to F, with var-
ious dependencies. For example, the value of node E depends
on the values of node B and C. The CPT for node E denotes
probabilities of the variable E with respect to the values of
variables B and C.

Bayesian networks allow different basic types of infer-
ence support [4]: predictive support (also known as top-down
reasoning) and diagnostic support (also known as bottom-up
reasoning). In this paper, we employ predictive support that
allows reasoning about a node’s probability by considering
the probabilities of the node’s parents. For the example in
Fig. 2, if given a probability for node A and probability dis-
tributions for nodes B, C and E, predictive support allows
to calculate the probability of the node F using the Bayes’
Theorem [3]:
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remValue only int[<3000] X rpmValue only int[>=3000]

Fig. 3 Example of classifying a cabin acoustic level supplemented by annotations to enable handling of multiple sources with different reliabili-

ties. [15]

P(FIE) = P(E|F)P(F)

P(E)
Hence, a Bayesian network supports calculating probabilities
for nodes that are not observed during run-time by con-
sidering dependencies on this node. This allows inferring
knowledge of a fact that is not explicitly but implicitly given
by the dependency.

3 Requirements

In this section, we outline five major requirements for
intention-aware systems that need to be addressed by an
approach for modeling user intentions. The requirements
were collected during interviews with experts of the in-car
infotainment domain. We illustrate all requirements by using
the running example presented in Sect. 1.

3.1 R1: Confidences

A system is required to deliver a confidence for every possible
user intention to determine a system function to recommend
to users. In addition, confidences are useful to measure how
accurate prediction for a certain user intention is with respect
to the current input data. Hence, defining or calculating the
confidence for every possible user intention should be pos-
sible during modeling the system. In the running example,
every music genre users may want to listen to needs a confi-
dence, so that the system can decide which music it should

play.
3.2 R2: Multiplicity

A system needs to be able to detect that users may have more
than one intention at a certain time. Hence, the designer of the
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in-car infotainment system should be able to express multiple
user intentions at a time during modeling of the system. In
the running example, users may want to listen to multiple
genres, e.g., by mixing rock and pop music.

3.3 R3: Context-awareness

A system is required to take the context into account as inten-
tions of users may depend on the current situation. Hence, an
approach for modeling intention-aware in-car infotainment
systems should allow modeling context-aware decision mak-
ing. In the running example, the decision which music the
system should play depends on the drowsiness of the driver.
From a system’s point of view, a drowsy driver is a contextual
information.

3.4 R4: Adaption

A system needs to be able to adapt during run-time in accor-
dance with individual users as it is not appropriate to model
different systems for every possible user. Developers need to
be able to model how this adaption to individual users should
change the overall system behavior. In the running example,
it may occur that individual users of the system want to lis-
ten to different music when they are drowsy (e.g., one user
prefers rock and another one prefers pop), so that the system
needs to adapt to individual users.

3.5 R5: Obliviousness

A system needs to be able to quickly forget what it had
previously learned if a user’s preferences change. This is
particularly relevant to avoid disturbing users with recom-
mendations based on wrong user intentions. In the running
example, a user’s taste of music may change over time so that
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the system has to discard previous knowledge about a user’s
taste quickly.

4 Modeling contextual information

In this section, we briefly summarize our previously pre-
sented results of modeling contextual information with an
ontology-based approach [15].

Ontologies can help developers to aggregate and abstract
certain sensor information to high-level contextual informa-
tion such as a situation description. Ontologies can also help
to capture the great diversity of sensor information (e.g.,
in terms of update rates). At the same time, ontologies are
comprehensible and feature a high degree of extensibility.
However, ontologies lack the option to model unreliability
of certain values. As presented in [15], we solved this issue
by combining ontologies with Fuzzy Logic, which is a com-
mon technology for modeling uncertainty in context-aware
systems [6]. By adding annotations to classes of an ontology,
the implementation of our approach is able to collect live data
from multiple sources with different reliabilities during run-
time and to reason about the current situation of the driver.
In addition, annotations are used to provide supplemental
semantics for certain elements of ontologies, e.g., we use
annotations to specify from which source certain informa-
tion can be received during run-time, or how their confidence
should be calculated.

Figure 3 shows an example of an ontology that was cre-
ated to model the cabin acoustic level of a car with respect
to the current speed of the car and the engine’s RPM. By
annotating a class of this ontology with exchangeType
= Exchange_In, the modeler declares this class as input
class (cf. classes Speed and RPM). Other annotations on
these classes are used to define the source of this informa-
tion during run-time (sourceName), the type of the source
(sourceType), and how to deal with multiple sources
offering the same information (e.g., a speed information com-
ing from an incremental rotary encoder or the vehicle’s GPS
sensor). Information that represents a result of the model of
contextual information is annotated as output classes. This
information is used in the next step of modeling user inten-
tions as an input (cf. Sect. 5).

S Modeling user intentions

In this section, we explain our approach for modeling an in-
car infotainment system that is able to recognize its users’
intentions based on Bayesian networks. It helps software
designers in modeling intentions a user may have in a cer-
tain situation by following three steps: (1) modeling input,
(2) modeling output and (3) modeling the relations between

input and output. Figure 4 illustrates the results of this proce-
dure for the running example. Our approach targets software
designers who aim to create an intention-aware in-car info-
tainment system. However, its concepts are of a general
nature so that it may also apply to software systems outside
of the domain of in-car infotainment systems.

5.1 Modeling input

The first step in designing an intention-aware in-car infotain-
ment system is to model all relevant input to the system. In
this step, the software designer is not required to be aware
of the origin of the input data as it is modeled on an abstract
level. As described earlier, the input for an intention-aware
in-car infotainment system is the current context of driver,
vehicle and environment. Hence, the software designer has
to know what contextual information is available within the
system. However, defecting the current context is not part
of a Bayesian network. The current context is detected in
preceding software components, e.g., by using ontologies
as described in [15]. Each input to the system (e.g., each
contextual information) has to be modeled as a node in the
Bayesian network. With respect to the running example, the
current context is a drowsy driver or a non-drowsy driver, and
adriver riding alone or riding with somebody. The drowsy or
non-drowsy driver context is modeled using a Boolean node
called drowsiness. The context describing whether the driver
is currently riding alone or riding with somebody is modeled
using a Boolean node called alonelnCar. Figure 4 depicts
this contextual information as nodes.

5.2 Modeling output

The second step in designing an intention-aware in-car info-
tainment system is to model the desired output of the model.
As a system should determine which intentions a user may
have in certain situations, the output of the model is a set
of possible user intentions. Again, each output of the system
(e.g., each kind of user intentions) has to be modeled as a
node of the Bayesian network. Following the running exam-
ple, the system contains one kind of user intention—genre,
with the possible values pop, rock and jazz. Figure 4 illus-
trates this user intention as node. So far, all possible values
have to be modeled within the user intention model. Hence,
the modeler should try to cover as a much user intentions as
possible and he or she should add values like Other to cover
unknown values during run-time.

5.3 Modeling relations between input and output
The third step in designing an intention-aware in-car info-

tainment system is to model which user intention (output)
a user may have in which situation (input). This includes
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(1) creating edges between nodes to express dependencies
between them and (2) defining probability distributions for
each intention a user may have for each possible combina-
tion of relevant input data. As there is no formal difference
between an input and an output node, the software designer
is also allowed to create edges between user intention nodes.
This allows expressing that one user intention intensifies
another user intention.

With respect to the running example, there are depen-
dencies between the nodes drowsiness and genre as well as
between alonelnCar and genre. As drowsiness and aloneln-
Car each have two possible values and genre has three
possible values, the software designer needs to specify 12
(2-2-3 = 12) probabilities. Figure 4 illustrates these probabil-
ities in a CPT. Defining probability distribution can become
a very hard task with an increasing amount of input data or
an increasing amount of possible values for both input and
output. Furthermore, even domain experts do not necessar-
ily know how exactly probabilities are distributed. Section 6
demonstrates how to remedy this problem by learning the
probability distribution from collected data.

After defining the input, the output and the relation
between the two, the model of an intention-aware in-car info-
tainment system is complete. At this point, the system of the
running example is able to decide which music genre the
driver wants to listen to based on whether the driver is drowsy
or awake and whether the driver is alone in the car or with
somebody.

6 Learning user intentions

In this section, we outline how structures of the model of an
intention-aware in-car infotainment system and probability
distributions for the desired user intentions can be learned
automatically. We further show how the created model of
user intentions may adapt during run-time to maximize the
success rate of intention recognition. In addition, we report
on experiences with manually modeling user intentions as
well as automatically learning structure and probability dis-
tributions.

6.1 Learning structure and probability distributions

With a growing set of possible input values for the intention-
aware in-car infotainment system, modeling the structure
of the system can become a very complex task. As we are
using standard Bayesian networks as basis for modeling, we
can also use standard search algorithms to find the structure
of a model such as K2 [8] or CB [25]. However, learning
the structure of a Bayesian network requires an appropriate
data set that represents dependencies between input data and
desired user intentions well enough. Based on these data sets,
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drowsiness
{drowsy, awake}

aloneInCar
{alone, not alone}

Q pop rock jazz
drowsy, | g9 0.7 0.1

genre alone

pop, rock, jazz .
{ } drowsy, 05 04 01

not alone

Contextual Information

awake, | 9 g3 05

alone

awake,
QUser Intention not alone 04 0105

Fig. 4 Bayesian network as model of the running example with man-
ually created structure and probability distribution

a search algorithm attempts to find significant dependencies
between the different values. As a result, the structure of the
Bayesian network is built based on these dependencies. An
exemplary data set that automatically generates the structure
of the model for the running example is shown in Table 1.

The same data set is used to extract the probability distribu-
tion for each desired user intention by employing estimators
such as BMAEstimator.> Fig. 5 shows the result of learn-
ing structure by using K2 and probability distributions by
BMAEstimator for the data of the running example. The
learned structure resembles the manually created structure
exactly. The probability distribution is slightly different from
the manually modeled distribution. However, the order of
recommended music genres is the same compared to the
manually modeled distribution for each situation.

6.2 Adapting the model during run-time

Intentions of users may change while using the in-car info-
tainment system and multiple different users may utilize the
same system. In consequence, it may be necessary to adapt
the intention recognition to the user’s behavior. We propose
to achieve this by adding data to the learning data set trig-
gered by a user interaction. We distinguish between positive
learning, which adds data to the data set, and negative learn-
ing, which removes data from the data set.

With respect to the running example, positive learning
may happen when users select a specific music genre. The
selected genre as well as the current situation (drowsiness and
alonelnCar) are then added to the data set. After relearning
structure and/or probability distribution, the system is able to
take this specific user interaction into account when deciding
which music genre the driver wants to listen to. A negative

2 BMA (Bayes Mean Averaged) estimator as implemented in Weka.
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Table 1 Exemplary data set for the running example

drowsiness alonelnCar genre
drowsy alone pop
drowsy alone pop
drowsy alone rock
drowsy alone rock
drowsy alone rock
drowsy alone rock
drowsy alone rock
drowsy alone rock
drowsy alone rock
drowsy alone jazz
drowsy notAlone pop
drowsy notAlone pop
drowsy notAlone pop
drowsy notAlone pop
drowsy notAlone pop
drowsy notAlone rock
drowsy notAlone rock
drowsy notAlone rock
drowsy notAlone rock
drowsy notAlone jazz
awake alone pop
awake alone pop
awake alone rock
awake alone rock
awake alone rock
awake alone jazz
awake alone jazz
awake alone jazz
awake alone jazz
awake alone jazz
awake notAlone pop
awake notAlone pop
awake notAlone pop
awake notAlone pop
awake notAlone rock
awake notAlone jazz
awake notAlone jazz
awake notAlone jazz
awake notAlone jazz
awake notAlone jazz

learning may happen, when users skip a set of songs that
belong to a certain genre. After identifying all the data of
the data set that match the current situation and the skipped
genre, the identified data (or a subset of it) can be removed
from the data set. After relearning structure and/or probabil-
ity distribution, the system will not recommend the skipped
music genre in the same situation.

aloneInCar
{alone, not alone}

drowsiness
{drowsy, awake}

pop rock jazz
drowsy, | 999 0.666  0.112
genre alone
{pop, rock, jazz} drowsy,
| 0.485  0.393  0.122
not alone
awake, | (009 0285 0.506
alone
awake, | ag9 0143 0.468
not alone

Fig. 5 Bayesian network as model of the running example with learned
structure and probability distribution

Modifying the data set by adding and removing data has
multiple challenges: adding data over a longer period of time
will increase the size of the data set dramatically. Structure
and distribution learning will take more time and the effect
of adding new data to the data set will decrease. While a new
data against a data set with two entries makes up a weight
of a 1/3, a new data against a data set with 100 entries only
makes up a weight of 1/101. Removing data over a longer
period of time may lead to a very small amount of data in
the data set. Consequently, the decisions determined by such
models may be unreliable. Hence, we recommend to add and
remove data from the data set in a balanced way (e.g., just
add a new date when removing another at the same time
and vise versa), so that the amount of data in the data set
will not change dramatically. Another possibility would be
to use a ring buffer so that older user interactions would be
overwritten by newer ones. This would address the potential
issue of permanently increasing memory demand as well as
the requirement R5 (Obliviousness). However, our approach
did not yet implement such a feature.

6.3 Experiences with learning models

Our experiences show that automatically learning the struc-
ture of the model does not always lead to the desired results.
Depending on the data set that is used for learning, it may hap-
pen that weak dependencies (dependencies that just appear
in a small subset of the data set) are not represented in
the structure of a manually learned model. However, weak
dependencies are important when trying to recognize user
intentions. Hence, we recommend to manually create the
model’s structure or, if it was created automatically, perform
a review by domain experts. On the other hand, we have
made positive experiences with learning probability distri-
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butions after the structure had already been learned. Even
adapting and relearning them during run-time seems to be a
stable way of adapting to specific users and their intentions
in certain situations.

7 Case study

In this section, we demonstrate that our approach based
on Bayesian networks is suitable for modeling user inten-
tions in an intention-aware systems. For this purpose, we
present a case study on an industrial intention-aware in-
car infotainment system called INIS (INtention-aware in-car
Infotainment System) that was developed within Volkswa-
gen Group Research and is currently in development stage.
First, we describe the basic idea behind INIS and the user
intentions /NIS can recognize as well as the contextual infor-
mation the system utilizes. We further show how INIS was
modeled using our approach. Finally, we assess suitability of
our approach with regard to the requirements posed in Sect. 3
based on the results of the case study.

7.1 Description

INIS was created by domain experts of intention-aware in-car
infotainment systems at Volkswagen Group Research. They
defined that INIS is able to recognize three different kinds
of user intentions: the music genre the driver wants to listen
to, a phone contact the driver wants to call, and a Point of
Interest (POI) the driver wants to drive to. To predict these
user intentions, the domain experts defined different types of
contextual information that describe the current situation of
the driver: information on weather, type of the current day
(weekend or not), the current time of the day, the kind of
passenger in the car (in addition to the driver), the fuel level
of the car, the destination of the driver and the car’s current
position. The domain experts also stated that the decision for
a certain music genre is dependent on the weather, the type
of the current day, the time of the current day and on the
passenger in the car. Furthermore, they stated that the POI
used as the driver’s destination is dependent on the car’s cur-
rent position, the driving direction and the current fuel level.
Finally, they defined that, if the driver makes a phone call,
the recipient of the call depends on the number of passengers
in the car, the driving direction, the car’s current position and
the POI used as destination. In addition, the domain experts
created a list of rules that express user behavior tendencies:

e Users tend to listen to pop music on the weekend.

e Users tend to listen to rock music on a weekday’s morn-
ing.

e Users tend to search for a gas station when they are
driving home, are near home and the fuel level is low.
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e Users tend to search for a parking possibility when they
are driving to work and are near work.

e Users tend to call their first phone favorite when they are
alone in the car, driving home and are not looking for a
gas station.

e Users tend to call their second phone favorite when chil-
dren are in the car and the car is near the workplace.

As not all of the contextual information used by INIS is
based on simple sensor values, it is aggregated in a upstream
software component that was modeled using ontologies as
described in [15], called context aggregation in the following.
Hence, it is not the focus of the case study to determine how
the system detects this contextual information (i.e., how the
system gathers information about the passenger). Instead, the
case study will show that if there is knowledge about depen-
dencies between contextual information and a certain user
intention, our approach is suitable to model this knowledge
to be used in an intention-aware in-car infotainment system.

We use Java Bayes® to manually create the structure of
our models. We further use Weka* to automatically learn
probability distributions. In addition, we have implemented
several software components to integrate Bayesian networks
in our existing model-based software architecture and to get
predictions for user intentions during run-time.

7.2 Methods

To show that INIS can be modeled using our approach, we
created a Bayesian network that includes all user intentions
that INIS can recognize as well as all available contextual
information. The three kinds of user intentions were mod-
eled by creating three user intention nodes in the Bayesian
network:

1. Music Genre can take a different value for each sup-
ported music genre: Blues, Classical, Country,
Disco,HipHop,Jazz,Metal, Pop,Rock,Reggae.

2. POI Search can take three different values repre-
senting points of interest the driver wants to drive to:
Parking, GasStation, None.

3. Calling Contact can take four different values rep-
resenting three favorite contacts® the driver saved in
the in-car infotainment system and the fact that the
driver does not want to call any contact: Favoritel,
Favorite2, Favorite3, None.

3 http://www.cs.cmu.edu/~javabayes/Home/.

4 http://www.cs.waikato.ac.nz/ml/weka/.

5 As our approach currently requires the modeler to know possible
user intentions during modeling time, the system is not able to predict

a probability for a certain telephone number but for a certain contact
from favorites.
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Input to INIS is contextual information that is created dur-
ing context aggregation. Hence, contextual information is not
just low-level sensor data but a high-level situation descrip-
tion. Contextual information was modeled by creating the
following seven contextual information nodes:

1. Weather can take the values Good and Bad. These val-
ues are set by context aggregation during run-time. Our
model is oblivious to which low-level data is used to cre-
ate this high-level data. However, it is most likely based
on values for rain intensity, sun intensity or temperature.

2. Day Type cantake the values Weekday and Weekend
according to the current day of the week.

3. Day Time can take the values Morning, Noon,
Afternoonand Night with respect to the current time
of the day. Again, which time will actually create which
value is not known to the model at this point.

4. Passenger can take the values None, Children,
Friends and Other.

5. Driving To can take the values Home, Work and
Other.

6. Fuel Level can take the values Low, Medium and
High.

7. Near To can take the values Home, Work and Other.

In addition to modeling contextual information and user
intentions, we modeled dependencies between those two by
creating connections between corresponding nodes. The user
intention Genre is dependent on the contextual information
Weather,Day Type,Day Time and Passenger. The
user intention POI Search is dependent on the contextual
information Driving To, Fuel Level and Near To.
Finally, the user intention Calling Contact is depen-
dent on the contextual information Passenger, Driving
To,Near To andtheuserintention POI Search.Inorder
to create the probability distributions of the user intention
nodes, we employed the previously modeled structure and a
dataset® representing the rules of user behavior tendencies
for all user intention nodes. Using the BMAEstimator, we
created our final model of INIS. During run-time, we cal-
culate probabilities for the defined user intentions. For the
purpose of retrieving probabilities, we created several soft-
ware components to execute the following tasks:

1. Collect contextual information at the software compo-
nent doing context aggregation.

2. Set collected values in the Bayesian network as observed
values.

6 The dataset was stored using the Attribute-Relation File Format
(ARFF) (http://www.cs.waikato.ac.nz/ml/weka/arff.html).

3. Query the nodes of interest at the Bayesian network to get
probability distributions for the appropriate user inten-
tions.

7.3 Results and discussion

Figure 6 shows the structure of the model resulting from
the case study. Dependencies between contextual informa-
tion and user intentions of interest could be modeled using
the implementation of our approach based on standard tools.
As probability distributions for a node grow rapidly with an
increasing amount of parent nodes and possible node val-
ues, we have to omit the CPTs for the user intention nodes.
With this model, it is possible to determine user intentions
within INIS. In order to assess suitability of our approach,
we examine the results of the case study with regard to the
requirements posed in Sect. 3:

7.3.1 RI1: Confidences

Confidences for user intentions are guaranteed as we are
using Bayesian networks. The system is able to calculate
confidences for each and every user intention based on
the probability distributions given or learned for all user
intentions. However, our case study shows that defining prob-
ability distributions manually is a process that does not scale
very well with a growing set of input data. For example, man-
ually creating CPTs for the user intention of the case study
would have 2 -2 -4 -4 - 10 = 640 cells. Hence, we strongly
recommend learning probability distributions by using esti-
mators as described in Sect. 6.

7.3.2 R2: Multiplicity

During run-time, confidence values are added to every
modeled user intention. For example, during run-time, the
system’s output may be: the user wants to listen to rock to
50% and to pop to 45 % (all other genres may share the
remaining percentage). Having this distribution, the system
may create a playlist as a mixture of both genres. Hence,
multiplicity can be achieved by modeling multiple user inten-
tions.

7.3.3 R3: Context-awareness

User intentions can be modeled to be dependent on the cur-
rent situation of driver, vehicle and environment. Contextual
data can be used as input to decide how probable a certain
user intention is in the current situation. In addition, we have
shown in previous work how to enable software designers
of an intention-aware in-car infotainment system to abstract
from raw sensor data by using aggregated context data that
was modeled using ontologies [15].

@ Springer
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Fig. 6 Structure of a Bayesian Day Type Day Time
network as model of INIS ‘Weather {Weekday, {Morning, Noon,
{Good, Bad} Weekend } Afternoon, Night}
Passenger
{None, Children,
Friends, Other}
Genre
{Blues, Classical, Country,
Disco, HipHop, Jazz,
Metal, Pop, Rock, Reggae} Calling Contact
Near To {Favorite 1,
{Home, Work, Favorite 2,
Other} Favorite 3, None}
Fuel Level POI Search Driving To
{Low, Medium, {Parking, {Home, Work,
High} Gas, None} Other}

7.3.4 R4: Adaption

Adapting the model during run-time can be achieved by
relearning the model’s parameters. Relearning can take place
at two different layers: first, relearning the structure of
the model relearns dependencies between input (contextual
information) and output (user intentions). Second, learn-
ing probability distributions of user intentions relearns user
intentions for a certain situation. Our experiences show that
relearning the latter is a good opportunity to adapt the prede-
fined intention-aware system to a user’s individual behavior.
However, learning the structure of the model may lead to
unintended behavior of the system. Hence, we recommend
to only adapt the probability distribution and to keep the
model structure during run-time.

7.3.5 R5: Obliviousness

Forgetting previously learned user intentions if the user’s
behavior changes is possible by adapting the probability
distributions of the present user intentions. However, our
experiences show that recognizing a change of the user’s
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behavior often takes too long and, hence, confuses or even
frustrates users because the system may disturb them with
wrong user intentions. Hence, obliviousness cannot yet be
achieved completely using our approach.

With respect to our posed requirements, our approach of
modeling intention-aware in-car infotainment systems can
be assessed as suitable. However, some requirements are sat-
isfied only partially and need to be addressed further in future
work. In particular, adapting the structure of the model during
relearning needs additional investigations (R4). Furthermore,
obliviousness (R5) needs more attention in future work.

With the case study, we have shown that modeling an
intention-aware in-car infotainment system, which is defined
by domain experts in a non-formal way, using Bayesian net-
works is possible. We further expect definite benefits when
adapting the Bayesian network during run-time with respect
to the user’s interaction. For example, if users start to listen to
Jazz music at night on multiple occasions, our system is able
to learn this behavior and recommend this music to the user
in a similar situation. However, we do not yet have experi-
ences with such long-term usage of our system. For example,
we do not yet know how often users have to listen to a certain
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genre at a certain time until the system starts recognizing it as
an explicit intention so that the genre can be recommended
to users.

8 Modeling processes

In this section, we have a holistic view of our two approaches
of modeling contextual information using ontologies [15]
which are subsequently used to model user intentions with
Bayesian networks [17]. We identified drawbacks during our
testing and operation of intention-aware in-car infotainment
systems such as INIS and others, with regard to the integra-
tion of modeling contextual information and the modeling
of user intentions, and to the flexibility of the used modeling
technology. Although the current implementation of those
systems is running correctly, stable, and with sufficient per-
formance [16], we experienced drawbacks stemming from
the process of modeling intention-aware systems. This sec-
tion explains the three biggest drawbacks in detail and shows
how to overcome these drawbacks by modeling the system
as a whole.

8.1 Drawback I: no integrated modeling process

Our two approaches of modeling contextual information and
of modeling user intentions share a certain set of information:
contextual information, which is modeled using ontologies,
and which is represented by input nodes of a Bayesian net-
work and the thereby modeled user intentions. However,
so far, there is no connection between modeling contextual
information and modeling user intentions. People model-
ing user intentions currently need to know which contextual
information is available within the system which can be used
during the modeling of user intentions. This process can be
extensive (e.g., the modeler has to look up the name for a spe-
cific contextual information if her or she does not know how a
contextual information is named) and even error-prone (e.g.,
if the modeler fails to write the name of a needed contextual
information correctly).

8.2 Drawback II: inflexible modeling of contextual
information

Modeling contextual information and its relations is done
by creating ontologies that translate real-world concepts
and relations into a machine-readable format. However, we
identify the drawback that our presented approach [15] is
inflexible with respect to exchanging the knowledge store
technology for contextual information. Hence, it is very
reasonable to us to support other knowledge storage tech-
nologies than ontologies.

8.3 Drawback III: inflexible modeling of user intentions

Modeling user intentions with Bayesian networks as pre-
sented in [17] works well for certain use cases. However,
we were confronted with user behavior that does not seem
to be well-predictable by using Bayesian Networks, but by
using different pattern-detecting technologies (e.g., Neural
Networks, Decision Trees, or a technology mix). Hence, we
identify the drawback of our presented approach of not being
able to deal with other technologies than Bayesian networks.
In addition, our approach does not support multiple tech-
nologies in parallel during run-time, which is necessary to
support different use cases at the same time.

8.4 Solution: flexible and integrated modeling process

The following section presents our solution to all of the draw-
backs mentioned before. Figure 7 shows our proposal of
an integrative and flexible process of modeling context and
intention-aware systems to decouple the two main tasks of
modeling contextual information and user intentions.’

We propose to use an intermediate model called System
Model and use model transformation to transform from and to
existing models. Ontologies or any other knowledge storage
technology can be transformed to templates of system models
that contain all possible contextual information (e.g., classes
that were defined as an output class in an ontology). It is
also important to allow using more than one model as input
for this step to cover the case of a model being split into
multiple sub-models for the purpose of parallel modeling by
more than one modeler.

Next, the modeler refines this system model template by
defining which modeling technologies of user intentions will
be used (e.g., Bayesian networks or neural networks) and
which user intentions will be detected by these technolo-
gies. Also, the modeler adds which contextual information
is needed for a certain user intention detected by a certain
modeling technology. We call this step mapping of contextual
information, user intentions and used technology. As a result,
the modeler receives the final system model. This final sys-
tem model can be transformed to templates of each and every
user intention modeling technology. For example, the final
system model can be transformed to a Bayesian network that
contains nodes for every user intention that was defined in the
system model to be detected by the Bayesian network, and
nodes for each contextual information that is needed to detect
these user intentions. Templates of user intention models can
then be used by modelers to create the final user intention

7 A rectangular box represents a task. A rectangular box with a bent
upper right corner represents a document. A rectangular box with a
bent upper right corner surrounded by a dotted line represents multiple
documents. Arrows represent the work flow.
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Manually modeling

contextual information
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Other knowl-
edge models
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I
! Automatically
generating system
. model template
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I

Final sys-
tem model

Manually modeling map-
ping of contextual in-
formation, user inten-
tions and used model

Template of
system model

Automatically gener-

Template of
Bayesian network

ating user intention
model templates

Templates of other
user intention models

network

Final other user
intention models

Manually modelling
user intentions

Fig. 7 Process of integrative modeling of contextual information and user intentions

model (e.g., the final Bayesian network). An alternative solu-
tion would be to directly transform to a template of a Bayesian
network from ontologies and other knowledge models. How-
ever, if there was any change in how the Bayesian network
template should be structured (e.g., how nodes are named), it
would involve changes in each and every model transformer
that transforms Bayesian network templates from any knowl-
edge modeling technology, making the adaption error-prone.
Hence, adding a layer between the model of knowledge and
the model of user intentions decouples this dependency. If
there was any change in how Bayesian network templates
should look like, only the transformer that transforms the
system model to the Bayesian network template needs to be
adapted.

8.5 Tool chain

As mentioned before, we use model transformation for auto-
matically creating templates of the system model and user
intention model. These transformations are currently done by
tools we developed during establishing the integrative mod-
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eling process. This was the best possibility for researching
and developing the process because we were able to quickly
adapt the tools to our needs. However, we recommend to
integrate this process in tools that are used to model future
in-car infotainment systems. For example, the transforma-
tion of models could be done by using the Model-to-Model
Transformation® SDK which is part of the Eclipse Modeling
Project.’

8.6 The system model

We have used XML as language for the system model as
it offers both human and machine readability. However, we
think that this decision might be revised in productive sys-
tems. Nevertheless, the central role of the system model
remains a very important part of our proposed process.

8 Model-to-Model Transformation Web site: https:/projects.eclipse.
org/projects/modeling. mmt.

9 Eclipse Modeling Project Website: https:/projects.eclipse.org/
projects/modeling.
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First, the system model is very crucial for the flexibil-
ity of the modeling process. The system model decouples
knowledge models, such as ontologies, from user intention
models, such as Bayesian networks. This decoupling ensures
that changes in any user intention model just requires changes
in the model transformer that transforms the system model
to a user intention model. Without the system model (e.g.,
if there were multiple model transformers for any permuta-
tion of knowledge and user intention models), such changes
would involve changes in multiple model transformers and,
hence, might result in a higher error-proneness.

Second, the system model defines the need for a certain
contextual information with respect to a certain user inten-
tion. This helps to improve the usability of user intention
models. Without the system model, user intention models
would include each and every contextual information. This
would dramatically increase the size of these models, which
can have a negative influence on both readability of the model
and performance during run-time.

9 Related work

Recognizing a user’s intentions is also used in robotics to
train robots based on human behavior [13]. Robots also
need to predict human intentions when human beings and
robots have to share an environment to avoid collisions [2]
or when robots help elderly or disabled people as an intelli-
gent wheelchair [9]. A popular approach for modeling and
learning user intentions in robotics are Hidden Markov Mod-
els (HMMs) [18]. They are well suited for representing
sequences of actions. As we need to know what intention
a user may have with respect to only the current situation,
we decided against HMMs. However, our latest experiences
show that temporal dependencies between certain facts may
also be of interest when reasoning about user intentions.

Very recently, the creation of personal assistants aims to
support their users with the right information at the right
time. Therefore, they need to understand what information
is of interest for a certain user in a certain situation. They
try to achieve this by modeling users [11]. There are also
approaches which aim to model users in social media sys-
tems [28].

In an automotive context, predicting user intentions is
needed for advanced Driver Assistance Systems (DASs) [5,
14,23]. An overview of DASs that predict human behav-
ior or intentions can be found in [10]. The prediction of
user intentions is further used to create an intelligent in-car
infotainment system that “proactively automate(s) complex
interaction tasks that are supposed to happen anyway” [22].
Also, AblaBmeier et al. presented an agent-based approach
that also uses Bayesian networks to predict the user’s next
interactions [1].

10 Conclusion

Current in-car infotainment systems are created using model-
based development. However, they do not yet take user
intentions into account. In this paper, we presented an
approach that allows a model-based development of an
intention-aware in-car infotainment system. Our approach
is based on Bayesian networks and allows modeling depen-
dencies between contextual information, which describes the
current situation of the driver and possible user intentions.
We have shown that learning probability distribution of nodes
in the Bayesian network during run-time can help in adapting
the system’s behavior to individual users.

As future work, we will investigate approaches to improve
obliviousness of the Bayesian network to reduce wrong user
intention recognition. Furthermore, we will survey whether
adapting the structure of Bayesian networks during run-time
is necessary to improve user intention prediction. We also
plan on evaluating and refining our holistic approach of
modeling contextual information and user intentions and to
supply this process with sufficient tool support.

Finally, future work needs to evaluate influences such
systems may have on the overall user experience and how
an intention-aware in-car infotainment system can still offer
possibilities to reach functions their users have never used.
By modeling contextual information and user intentions, the
work presented in this paper enables researchers, user expe-
rience designers and developers to rapidly create and adjust
intention-aware systems to do extensive user studies to eval-
uate how good the prediction of user intentions can be.
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