
Softw Syst Model (2018) 17:205–231
https://doi.org/10.1007/s10270-016-0538-9

THEME SECTION PAPER

Toward a well-founded theory for multi-level conceptual modeling

Victorio A. Carvalho1,2 · João Paulo A. Almeida1

Received: 15 February 2015 / Revised: 23 March 2016 / Accepted: 12 May 2016 / Published online: 30 June 2016
© Springer-Verlag Berlin Heidelberg 2016

Abstract Multi-level conceptual modeling addresses the
representation of subject domains dealing explicitly with
multiple classification levels. Despite the recent advances
in multi-level modeling techniques, we believe that the lit-
erature in multi-level conceptual modeling would benefit
from a theory that: (1) formally characterizes the nature of
classification levels and (2) precisely defines the structural
relations that may occur between elements of different clas-
sification levels. This work aims to fill this gap by proposing
an axiomatic theory that can be considered a reference top-
level ontology for types in multi-level conceptual modeling.
The theory provides the modeler with basic concepts and
patterns to articulate domains that require multiple levels of
classification as well as to inform the development of well-
founded languages for multi-level conceptual modeling. The
whole theory is founded on a basic instantiation relation
and characterizes the concepts of individuals and types, with
types organized in levels related by instantiation. Further, it
includes intra-level structural relations that are used to define
expressive multi-level models and cross-level relations that
allow us to account for and incorporate the different notions
of power type in the literature.

Communicated by Prof. Colin Atkinson, Thomas Kühne, and Juan de
Lara.

B João Paulo A. Almeida
jpalmeida@ieee.org

Victorio A. Carvalho
victorio@ifes.edu.br

1 Ontology and Conceptual Modeling Research Group
(NEMO), Federal University of Espírito Santo (UFES),
Vitória, ES, Brazil

2 Research Group in Applied Informatics, Informatics
Department, Federal Institute of Espírito Santo (IFES),
Colatina, ES, Brazil

Keywords Multi-level modeling · Conceptual modeling ·
Power types · Clabjects · Ontology

1 Introduction

Conceptual modeling is the activity of formally describing
some aspects of the physical and social world around us for
the purposes of understanding and communication [33]. It is
generally considered a fundamental activity in information
systems engineering [40], in which a given subject domain is
described independently of specific implementation choices
[21]. The main artifact of this activity is a conceptual model,
i.e., a specification aiming at representing a conceptualiza-
tion of the subject domain of interest. Conceptual models
are often used as a basis for the construction and evolu-
tion of information systems, which justifies the interest in
the activity of conceptual modeling from the perspective of
information systems engineering [40].

Given the scope and purpose of conceptual modeling,
suitable techniques for this endeavor should be based on
abstractions with consideration for human cognition and
common sense [19,21].With this respect, there is ample psy-
chological evidence to support the hypothesis that humans
conceive of the physical and social world using some notion
of “categories” and use categorization or classification strate-
gies since a pre-language age of 3–4months (see [21], pp.
114–118). Thus, it is no surprise that a vast majority of con-
ceptual modeling techniques are based on notions such as
“class” and “type,” and that subject matter experts often refer
to “kinds,” “categories” and “sorts” in their accounts of a sub-
ject domain.

In several subject domains, the categorization scheme
itself is part of the subject matter, and thus, experts make use
of categories of categories in their accounts. For instance,

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10270-016-0538-9&domain=pdf


206 V. A. Carvalho, J. P. A. Almeida

considering the software development domain [17], project
managers often need to plan according to the types of tasks to
be executed during the software development project (e.g.,
“requirements specification,” “coding”). Theymay also need
to classify those types of tasks giving rise to types of types of
tasks. In this case, “requirements specification” and “coding”
could be considered as examples of “technical task types,” as
opposed to “management task types.” Finally, during project
development, they need to track the execution of individual
tasks (e.g., specifying the requirements of the system X).
Thus, to describe the conceptualization underlying the soft-
ware development domain, one needs to represent entities of
different (but nonetheless related) classification levels, such
as tasks (specific individual occurrences), types of tasks and
types of types of tasks.Other examples of multiple classifica-
tion levels come from domains such as that of organizational
roles (or professional positions) [43], biological taxonomy
[31] and artifact types (e.g., product types) [36].

The need to support the representation of subject domains
dealing with multiple classification levels has given rise to
what has been referred to as multi-level modeling [6,36].
Techniques for multi-level conceptual modeling must pro-
vide modeling concepts to deal with types in various classifi-
cation levels and the relations that may occur between those
types.

The power type pattern [9,39] is an example of an early
approach for multi-level modeling and is used to model sit-
uations in which the instances of a type (the power type)
are specializations of a lower-level type (the base type).
Odell [39] illustrated the power type pattern with an example
considering a type “Tree Species” having instances such as
“Sugar Maple,” “Apricot,” “American Elm” and “Saguaro.”
Since all instances of “Tree Species” specialize “Tree,” “Tree
Species” is a power type of “Tree.”

While some prominent approaches for multi-level mod-
eling are based on the notion of power type, there is no
consensus about the exact definition of a power type. For
example, based on the concept of power set, Cardelli [9]
coined the notion of power type to characterize a type that
captures the common structure of all types that specialize a
specific type (the base type). According to the definition of
Cardelli, the base type itself and any other type whose all
instances are instances of the base type are instances of the
power type. In contrast, Odell defined power type simply as a
type whose instances are subtypes of another type (the base
type), excluding the base type from the set of instances of the
power type. Different from Cardelli, Odell admits the exis-
tence of specializations of the base type that are not instances
of the power type.1

1 This discussion is extended in this paper in Sect. 4, where we show
how the definitions are related to each other and how they can be given
different uses.

In addition to the lack of consensus concerning the defi-
nition of power type, most multi-level modeling approaches
based on this notion lack a formal account for it (e.g., the
UML support to model power types [41] and the metamod-
eling framework proposed in [17]). Further, most of these
approaches represent the relation between a power type and a
base type as a regular association with no specialized seman-
tics.

Other prominent approaches for multi-level modeling
(such as [5,36]) propose to treat the instantiation between
arbitrary adjacent levels uniformly [2], i.e., they defend that
the instantiation relations between specific individuals and
their types should also be applied to the instantiation relation
occurring between types of adjacent classification levels. To
meet this challenge, it is necessary to admit the existence of
entities, which are, simultaneously, type (class) and instance
(object) [2]. The authors have coined the term “clabject” to
emphasize this dual facet of classes in a generalized multi-
level scheme.

Despite the recent advances in multi-level modeling tech-
niques, we believe that the literature would benefit from a
theory that: (1) formally characterizes the nature of clas-
sification levels and (2) precisely defines the relations that
may occur between elements of different classification lev-
els. Such a theory should be useful to guide the development
of well-founded languages for multi-level conceptual mod-
eling and to provide the modeler with basic concepts and
patterns to conceptualize domains that require multiple lev-
els of classification.

This work aims to fill this gap by proposing a theory for
multi-level conceptual modeling named MLT. This theory is
founded on a basic instantiation relation and characterizes
the concepts of individuals and types, with types organized
in levels related by instantiation.MLT accounts for the notion
of power typewith two contributions: (1) it clarifies and posi-
tions conflicting definitions of power type and (2) it defines
new structural relations for variants of the power type pattern
enriching the expressivity ofmulti-levelmodeling primitives.
The basic entities in the theory and all proposed relations
between entities are formally defined through axiomatiza-
tion in first-order logic.

The resulting theory can be considered a reference top-
level ontology for types in multi-level conceptual modeling.
Although we do not propose a language for multi-level con-
ceptual modeling, we explore patterns that emerge from the
application of the theory as well as modeling constraints to
ensure that multi-level models respect the theory axioms.
Since our focus is on conceptual modeling (and not lan-
guage engineering or language metamodeling) we focus our
account on what is called “ontological instantiation” in [3]
and we are thus unconcerned with “linguistic instantiation.”

This paper is further organized as follows. Section 2
presents the basic entities in MLT. Section 3 discusses intra-

123



Toward a well-founded theory for multi-level conceptual modeling 207

level relations including specialization and a novel relation
we call subordination. Section 4 discusses cross-level rela-
tions which are the basis to incorporate the notion of power
type and its variations. Section 5 illustrates the application
of the theory to the domain of biological taxonomy. Sec-
tion 6discusses theMLTaccounts for attributes, relationships
and dynamic classification and presents some remarks on the
identity conditions of types. Section 7 discusses relatedwork,
and Sect. 8 presents conclusions and future steps.

2 MLT foundations: basic types and the
instantiation relation

The notions of type and individual are central for our multi-
level modeling theory. Types are predicative entities that can
possibly be applied to a multitude of entities (including types
themselves). Particular entities, which are not types, are con-
sidered individuals.

Each type is characterized by an intension, which is used
to judge whether the type applies to an entity (e.g., whether
something is a Person, aDog, a Chair) (it is also called princi-
ple of application in [21]). If the intension of a type t applies
to an entity e, then it is said that e is an instance of t.Thus, the
instance of relation (or instantiation relation2) maps a type to
the entities that fall under the type. The set of instances of a
type is called the extension of the type [23]. We assume that
the theory is only concerned with types with non-trivially
false intensions, i.e., with types that have possible instances
in the scope of the conceptualization being considered.

MLT is formalized in first-order logic, quantifying over all
possible individuals and types. The instantiation relation is
formally represented by a binary predicate iof(e,t) that holds
if an entity e is instance of an entity t (denoting a type). For
instance, the proposition iof(Vitória,City) denotes the fact
that “Vitória” is an instance of the type “City.”3

We build up the theory defining the conditions for entities
to be considered individuals, with the constant “Individual”
in Axiom A1. An entity is an instance of “Individual” iff it
does not possibly play the role of type in instantiation rela-
tions.

∀x iof (x, Individual) ↔ �y iof (y, x) (A1)

We consider that two types are equal iff the sets of all their
possible instances are the same (see Axiom A2). Note that

2 We are aware that certain approaches such as RM-ODP distinguish
the terms instantiation and instance, but this distinction is not required
here, and hence, we use the terms interchangeably.
3 For the sake of clarity in the presentation, we focus in this section
on types that apply necessarily to their instances (the so-called rigid
types [21]). A treatment of dynamic classification (and non-rigidity) is
deferred to Sect. 6.2.

this definition of equality only applies to elements which are
not individuals, hence the “guard” conditions on the left-hand
side of the implication.

∀t1, t2 (¬iof (t1, Individual) ∧ ¬iof (t2, Individual))

→ ((t1 = t2) ↔ (∀e iof (e, t1) ↔ iof (e, t2))) (A2)

As a multi-level modeling theory, we deal with types that
have individuals as instances as well as with types whose
extension is composed of other types. In order to accommo-
date these varieties of types, the notion of type order is used.
Types whose instances are individuals are called first-order
types. Types whose instances are first-order types are called
second-order types. Those types whose extensions are com-
posed of second-order types are called third-order types, and
so on. We use the term higher-order type to refer to types
with order higher than one.

Axiom A3 characterizes “First-Order Type” (or shortly
“1stOT”), defining a first-order type as an entity whose
instances are instances of “Individual.” Analogously, A4
and A5 characterize “Second-Order Type” (or “2ndOT”) and
“Third-Order Type” (“3rdOT”). A4 defines that an entity t is
a second-order type iff all its instances are first-order types
(i.e., instances of “1stOT”), and A5 defines that an entity
t is a third-order type iff all its instances are second-order
types (i.e., instances of “2ndOT”). This scheme can be simply
extended to consider as many orders as necessary. However,
since we have not encountered examples of types in con-
ceptual modeling with order higher than three, we present
our theory here for the sake of brevity considering only first-
order, second-order and third-order types.

∀t iof (t, 1stOT)
↔ (∃y iof (y, t) ∧ (∀x iof (x, t) → iof (x, Individual))) (A3)

∀t iof (t, 2ndOT)
↔ (∃y iof (y, t) ∧ (∀t′iof(t′, t) → iof(t′, 1stOT)

))
(A4)

∀t iof (t, 3rdOT)
↔ (∃y iof (y, t) ∧ (∀t′iof(t′, t) → iof(t′, 2ndOT)

))
(A5)

Substituting t for Individual in AxiomA3 and considering
A1, one can see that “Individual” is an instance of “1stOT”
(Theorem T1). Analogously, using further Axioms A4 and
A5 we can show that “1stOT” is an instance of “2ndOT” and
“2ndOT” is an instance of “3rdOT” (see Theorems T2 and
T3).

iof(Individual, 1stOT) (T1)

iof(1stOT, 2ndOT) (T2)

iof(2ndOT, 3rdOT) (T3)

Theorem T4 states that “Individual,” “1stOT,” “2ndOT” and
“3rdOT” have no instances in common, i.e., their extensions

123



208 V. A. Carvalho, J. P. A. Almeida

are disjoint. To see why this theorem holds, we need to ana-
lyze all the possible combinations of the basic types in pairs,
starting from evaluating the possibility for an entity to be
instance of both “Individual” and “1stOT.” According to
A1, instances of “Individual” do not have instances, while
according to A3 instances of “1stOT” necessarily have some
instance. Thus, no entity can be an instance of “Individual”
and “1stOT” simultaneously. Using A1 in tandem with A4
and A5 we can conclude also that “Individual” does not have
instances in common with “2ndOT” nor with “3rdOT.” Now,
suppose an entity e, which is instance of both “1stOT” and
“2ndOT.” UsingA3 andA4, all its instances should be simul-
taneously “Individual” and “1stOT,” which is impossible,
as we have already concluded. Hence, there are no entities
which simultaneously instantiate “1stOT” and “2ndOT.” Fol-
lowing analogous reasoning and using Axioms A4 and A5
one can conclude that “2ndOT” and “3rdOT” do not have
instances in common. Finally, applying the same strategy
and using Axioms A3 in tandem with A5 one can see that
“1stOT” and “3rdOT” have no entities in common.

�x (iof (x, Individual) ∧ iof (x, 1stOT)) ∨
(iof (x, Individual) ∧ iof (x, 2ndOT))

∨ (iof (x, Individual) ∧ iof (x, 3rdOT)) ∨
(iof (x, 1stOT) ∧ iof (x, 2ndOT)) ∨ (iof (x, 1stOT)∧
iof (x, 3rdOT)) ∨ (iof (x, 2ndOT) ∧ iof (x, 3rdOT))

(T4)

Axiom A6 states that each entity in our domain of enquiry
is necessarily an instance of “Individual,” “1stOT,” “2ndOT”
or “3rdOT” (except “3rdOT” whose type is outside the scope
of the formalization). This makes the set of extensions of
“Individual,” “1stOT,” “2ndOT” and “3rdOT” a partition of
the set of entities considered in the theory (and their union
the domain of quantification).

∀x (iof (x, Individual) ∨ iof (x, 1stOT) ∨ iof (x, 2ndOT)∨
iof (x, 3rdOT) ∨ (x = 3rdOT)) (A6)

Axioms A1 to A6 prescribe a strictly stratified organiza-
tion of entities into orders. As a result, the instance of
relation in MLT is asymmetric (i.e., irreflexive and anti-
symmetric) (Theorem T5) and antitransitive (Theorem T6).
These properties of instantiation relations are consistent with
those widely accepted in the conceptual modeling commu-
nity [23,26].

�x, y (iof (x, y) ∧ iof (y, x)) (T5)

�x, y, z (iof (x, y) ∧ iof (y, z) ∧ iof (x, z)) (T6)

To see that T5 and T6 hold, one needs to observe that
the stratification prescribed by Axioms A1 to A6 guarantees

that instantiation relations hold between two elements such
that the latter is one order higher than the former. Thus, the
instances of an entity are in one order lower than it, while its
types are in one order higher.

To demonstrate the validity of T5, we follow a case-based
strategy considering all possible cases for entities in the
domain of quantification according to A6:

– First, suppose y is an instance of “Individual.” Since
instances of “Individual” do not have any possible
instance (A1), iof(x, y) is never true. Thus, T5 holds for
this case.

– Suppose y is an instance of “1stOT.” According to A3, x
must be an instance of “Individual” to make iof(x, y) true.
Since instances of “Individual” do not have any possible
instance (A1), iof(y, x) is never true. Thus, T5 holds for
this case.

– Suppose y is an instance of “2ndOT.” According to A4, x
must be an instance of “1stOT” to make iof(x, y) true. If x
is instance of “1stOT,” all its instances must be instances
of “Individual” (A3), requiring y to be an instance of
“Individual” to make iof(y,x) true. Since y cannot be
simultaneously instance of “2ndOT” and “Individual”
(T4), T5 holds. The case in which y is an instance of
“3rdOT” is analogous to this one.

– Finally, suppose that y is “3rdOT.” To see why iof(y, x)
is never true, we can consider all cases for x according
to A6. If x is an instance of “Individual,” iof(y, x) is false
(A1). If x is an instance of “1stOT,” y would have to be
an instance of “Individual” to make iof(y,x) true. How-
ever, this is not possible, as instances of “Individual” do
not have any possible instance (A1), and “3rdOT” does
(T3). If x is an instance of “2ndOT,” y would have to
be an instance of “1stOT” (A4) to make iof(y, x) true.
Being y an instance of “1stOT,” every instance of it would
be an instance of “Individual” (A3). However, since y
is “3rOT,” its instances should be instances of “2ndOT”
(A5). This is not possible, given T4. The case in which x
is an instance of “3rdOT” is analogous. If x is “3rdOT,”
y would have to be instance of “3rdOT” to make iof(y, x)
true (A5). Being y an instance of “3rdOT,” every instance
of it would be an instance of “2ndOT,” which is impos-
sible, considering that “3rdOT” and “2ndOT” have no
instances in common (T4).

To demonstrate the validity of T6, we follow a case-based
analysis similar to one we used to analyze T5.

– First, suppose z is an instance of “Individual.” Since
instances of “Individual” do not have any possible
instance (A1), iof(y, z) is never true. Thus, T6 holds for
this case.

123



Toward a well-founded theory for multi-level conceptual modeling 209

Fig. 1 Basic foundations of our multi-level modeling theory: basic types and instance of relations

– Suppose z is an instance of “1stOT.” According to A3, y
must be an instance of “Individual” to make iof(y, z) true.
Since instances of “Individual” do not have any possible
instance (A1), iof(x, y) is never true. Thus, T6 holds for
this case.

– Suppose z is an instance of “2ndOT.” According to A4,
y must be an instance of “1stOT” to make iof(y, z) true. If
y is instance of “1stOT,” x must be an instance of “Indi-
vidual” to make iof(x, y) true (A3). Being z an instance
of “2ndOT” and x an instance of “Individual,” iof(x,z)
is never true. Thus, T6 holds for this case. The case in
which z is an instance of “3rdOT” is analogous to this
one.

– Finally, suppose that z is “3rdOT”. In this case, to make
iof(y, z) true, ymust obviously be an instance of “3rdOT.”
If y is instance of “3rdOT,” x must be an instance of
“2ndOT” to make iof(x, y) true (A5). Being x an instance
of “2ndOT,” it cannot be instance of “3rdOT” (T4).
Thus, iof(x,z) is never true and T6 holds in this case.

Note that the notion of order we have used is inspired on the
ramified hierarchy introduced by Russell in his type theory
[14]. However, Russell’s main goal with the notion of order
was to prevent circularity in the hierarchy of types and hence
sets of a given order could include sets of an arbitrary lower
order. Different from Russell, in our theory a type can only
have instances at the immediately lower order, resulting in
levels of entities. This is a common feature of the instance
of relation in various techniques which adopt the so-called
strict metamodeling principle [2]. Further, stratified levels
arise from the cascaded application of the power type pattern
starting from first-order types.

Figure 1 illustrates the elements that form the basis for our
multi-level modeling theory, using a notation that is largely
inspired inUML [41].We use theUML class notation to rep-
resent the basic types of the theory (“Individual,” “1stOT,”
“2ndOT” and “3rdOT”). We use associations as usual to
represent relations between instances of the related types.
The multiplicity of the associations reflect the constraints in
the formalization. For example, each instance of “Individ-
ual” is instance of at least one instance of “1stOT,” and, on
the inverse direction, each instance of “1stOT” has at least
one instance of “Individual” in its extension. We use depen-
dencies (dashed arrows) to represent when relations hold
between the types, with labels to denote the names of the

predicates that apply. For instance, a dashed arrow labeled
iof between “Individual” and “1stOT” represents that the for-
mer is an instance of the latter (i.e., that iof(Individual,1sOT)
holds). In Fig. 1, the dashed arrows are justified by Theorems
T1–T3. The notation used to elaborate Fig. 1 is used in all
further diagrams in this paper.

3 Intra-level structural relations

In this section, we discuss the relations that occur between
types of the same order (the intra-level structural relations).
All definitions are based on the instantiation relation.

We start with the ordinary specialization between types.
Definition D1 defines that t1 specializes t2 iff all instances
of t1 are also instances of t2. Since instances of “Individual”
do not have instances (A1), D1 states that specialization only
applies to elements that are not individuals (i.e., elements
that have some possible instances). As discussed in [23,
26] specialization is a partial order relation (i.e., a reflexive,
transitive and antisymmetric relation), which is guaranteed
in MLT.

∀t1, t2 specializes (t1, t2) ↔ (∃y iof (y, t1)
∧ (∀e iof (e, t1) → iof (e, t2))) (D1)

According to D1, every type specializes itself. Since this
may be undesired in some contexts, we define the proper
specialization relation (we used the qualifier “proper” as in
“proper subset” considering that the extension of the special-
ized type is a proper subset of the extension of the general
type [23]). Definition D2 thus defines that t1 proper special-
izes t2 iff t1 specializes t2 and is different from it.

∀t1, t2 properSpecializes (t1, t2)
↔ (specializes (t1, t2) ∧ t1 	= t2) (D2)

Insofar as the instances of a type are defined by its inten-
sion, the proper specialization relation reflects the fact that
the intension of the specializing type keeps the constraints
stated by the intension of the specialized type and adds some
other constraint(s) to it. To put it more formally, consider two
types, t and t ′. If t ′ proper specializes t , this means that the
intension of t ′ is given by the conjunction of the intension
of t and a predicate that captures the additional constraints
defined by t ′ with respect to t . Further, since we consider

123



210 V. A. Carvalho, J. P. A. Almeida

Fig. 2 Intra-level structural relations: specializations and proper specializations

Fig. 3 Using the theory to model a domain

there is no relevant type without possible instances, the resul-
tant intension of t ′ cannot be a trivially false predicate. For
example, consider that “Man” is a type that applies to every
instance of “Person” of the male gender. Assuming this,
the intension of “Man” is given by the conjunction between
the intension of “Person” and a predicate that captures the
property of being male. Thus, in this case, “Man”proper spe-
cializes “Person.”

Figure 2 augments Fig. 1 by including the representation
of specialization and proper specialization relations. Note
that the axioms and definitions presented thus far guarantee
that these relations may only hold between types of the same
order, which is reflected in the diagram.

Substituting t2 for “Individual” in definition D1 and com-
paring the right-hand side of the resultant proposition with
the right-hand side of Axiom A3, we conclude that an entity
is instance of “1stOT” iff it specializes “Individual” (The-
orem T7). Analogously, it follows from D1 and A4 that an
entity is instance of “2ndOT” iff it specializes “1stOT” (The-
orem T8). Finally, from D1 and A5 one can see that every
instance of “3rdOT” specializes “2ndOT” (Theorem T9).
Therefore, an important consequence of the theory presented
so far is that any instance of a higher-order type (any instance
of “1stOT,” “2ndOT,” and “3rdOT”) specializes the basic type
at an immediately lower order.

∀t iof (t, 1stOT) ↔ specializes (t, Individual) (T7)

∀t iof (t, 2ndOT) ↔ specializes (t, 1stOT) (T8)

∀t iof (t, 3rdOT) ↔ specializes (t, 2ndOT) (T9)

This leads to a basic pattern in the theory: every type that
is not a basic type (e.g., a domain type) is an instance of

one of the basic higher-order types (“1stOT,” “2ndOT” and
“3rdOT”), and, at the same time specializes the basic type
at the immediately lower level (respectively, “Individual,”
“1stOT,” “2ndOT”). For example, consider the enterprise
domain, in which we may need a type to capture the concept
of “Employee.” The type “Employee” classifies individu-
als (e.g., John or Mary), i.e., every instance of “Employee”
is also instance of “Individual.” Thus, by Axiom A3, we
have that “Employee” is instance of “1stOT” and, consider-
ing T7, “Employee” specializes “Individual.” In fact, since
“Employee” and “Individual” are different types, we can
say that “Employee” proper specializes “Individual.” This
basic pattern is illustrated in Fig. 3. In order to preserve the
intuition in the representation, we used the traditional UML
notation to represent specializations (in this case to represent
the fact that the proposition properSpecializes(Employee,
Individual) holds). We have used the instance specification
notation to represent an individual (John), while keeping
the use of dashed arrows to show instantiation. The theory
basic types are shaded to differentiate them from domain
elements.

MLT supports also specializations and instantiations
occurring between domain elements. For instance, supposing
we need to classify the employees according to their highest
academic degrees we can consider types such as “PhDEm-
ployee” and “BachelorEmployee” to classify, respectively,
employees having PhDand bachelor degrees. These types are
proper specializations of “Employee” since their instances
are also instances of “Employee.” Thus, by the transitivity
of specialization, they also specialize “Individual” and, con-
sidering Theorem T7, they are instances of “1stOT.”

123



Toward a well-founded theory for multi-level conceptual modeling 211

Fig. 4 Instantiations and specializations between domain elements

Further, we may consider a second-order type called
“EmployeeAcademicDegreeType” that has as instances the
types that specialize “Employee” according to the academic
degree (e.g “PhDEmployee” and “BachelorEmployee”).
More formally, “EmployeeAcademicDegreeType” is a type
applied to types that have the intension given by the con-
junction of the intension of “Employee” and a predicate that
captures the property of having a specific highest academic
degree. For example, the intension of “PhDEmployee” is
given by the conjunction of the intension of “Employee”
and a predicate that captures the property of having a
PhD academic degree; thus, “PhDEmployee” is instance of
“EmployeeAcademicDegreeType.”Again applying the basic
pattern, “EmployeeAcademicDegreeType” is an instance of
“2ndOT” (since its instances are instances of “1stOT”) and
specializes “1stOT” (see A4 and T8).

Figure 4 augments Fig. 3 adding the discussed enti-
ties and relations. In order to increase the readability of
the diagram, we use dashed rectangles to group elements
that have a common link to another element and draw
only one arrow between the border of the rectangle and
the other element. For example, instead of representing
two iof links between “EmployeeAcademicDegreeType”
and its instances, we group its instances in a dashed rec-
tangle and draw one iof link between such rectangle and
“EmployeeAcademicDegreeType.” Moreover, we omitted
the representation of some relations that are implied by
the represented relations. For example, although we do not
represent that “PhDEmployee” proper specializes “Individ-
ual” it can be inferred by the fact that it proper specializes
“Employee” which, in turn, proper specializes “Individual.”

Consider now an extension of the example in Fig. 4
in which we introduce a second second-order type called
“EmployeeRoleType” beside “EmployeeAcademicDegree
Type.” The instances of “EmployeeRoleType” are special-
izations of “Employee” according to the role they play

(e.g., “Programmer” and “ResearchManager”). Consider fur-
ther that, in order to reflect required qualifications in the
domain, all instances of “EmployeeRoleType” must spe-
cialize instances of “EmployeeAcademicDegreeType.” In
other words, the intension of each instance of “Employ-
eeRoleType” is given by the conjunction of the intension
of an instance of “EmployeeAcademicDegreeType” and
an additional constraint capturing the role their instances
must play. For example, we may consider that “Program-
mer” specializes “BachelorEmployee” and “ResearchMan-
ager”specializes “PhDEmployee.” To allow modelers to
capture this kind of relations between higher-order types that
implies specializations between their instances,MLT defines
the notion of subordination.

We call subordination the relations that occur between two
higher-order types t1 and t2 when t1 applies to types that
have the intension given by the conjunction of the intension
of an instance of t2 and a predicate that captures a constraint
following some classification criteria. Therefore, D3 defines
that t1 is subordinate to t2 iff every instance of t1 special-
izes an instance of t2. Subordination is a relation between
types, and thus, D3 excludes the possibility of subordina-
tion involving instances of “Individual” (i.e., entities with no
possible instances).

∀t1, t2 isSubordinateTo (t1, t2)
↔ (∃x iof (x, t1) ∧ (∀t3 iof (t3, t1)

→ (∃t4 iof (t4, t2) ∧ properSpecializes (t3, t4)))) (D3)

Since subordination implies specializations between the
instances of the involved types at one order lower, and spe-
cializations can only be established between types at the
same order, subordination can only hold between higher-
order types of equal order (see Fig. 5).

Figure 6 illustrates the augmented example, showing
that “EmployeeRoleType” is subordinate to “EmployeeA-

123



212 V. A. Carvalho, J. P. A. Almeida

Fig. 5 Intra-level structural relations: subordination

Fig. 6 An example of subordination relation

cademicDegreeType.” Note that subordination between two
higher-order types implies specialization between their
instances but should be clearly distinguished from a spe-
cialization between the higher-order types (in the example,
“EmployeeRoleType” does not specialize “EmployeeAcad-
emicDegreeType”). Moreover, as we show later in Sect. 5,
the use of subordination relationsbetweenhigher-order types
plays a fundamental role on the specification of taxonomies
of types in one order lower.

Table 1 summarizes the characteristics of the defined intra-
level structural relations.

4 Cross-level structural relations

This section defines the relations that occur between types
of adjacent levels (the so-called cross-level structural rela-
tions). These relations support our analysis of the notions of
power type in the literature, as well as their full incorporation
in the theory.

4.1 The power type of relation

The use of power types is one of themost common techniques
for multi-level modeling. A seminal theory for the notion of
power type was proposed by Cardelli [9]. According to [9],
the sameway specializations are intuitively analogous to sub-

sets, power types can be intuitively understood as powersets.
The powerset of a set A is the set whose elements are all
possible subsets of A including the empty set and A itself.
Thus, “if A is a type, then Power(A) is the type whose ele-
ments are all the subtypes of A” (including A) [9]. Following
Cardelli’s definition, definition D4 defines that iff a type t1
is power type of a type t2 all instances of t1 are specializa-
tions of t2 and all possible specializations of t2 are instances
of t1. In this case, t2 is said the base type of t1. Analyzing
it in terms of the intension of the involved types, iff a type
t1 is power type of a type t2 the intension of t1 defines that
its instances are applicable to instances of t2 but t1 does
not define a classification criteria. Thus, the extension of t1
is composed by all specializations of t2, including t2 itself.
Further, D4 guarantees that entities without instances (indi-
viduals) are not considered power types of other entities.

∀t1, t2 isPowertypeOf (t1, t2)
↔ (∃x iof (x, t1) ∧ (∀t3 iof (t3, t1)

↔ specializes (t3, t2))) (D4)

Recall that “Individual” is an instance of “1stOT” (Theorem
T1) and that all the types that specialize “Individual” are
also instances of “1stOT” (Theorem T7). Thus, it follows
from the definition of power type (D4) that “1stOT” is power
type of “Individual” (Theorem T10). Analogously, “2ndOT”

123



Toward a well-founded theory for multi-level conceptual modeling 213

Table 1 Intra-level structural relations characteristics

Name Meaning Domain and range Properties

Specialization
specializes(t1,t2)

The intension of t1 adds some
classification criteria to the one of t2 or
both types have the same intension
(t2 = t1), i.e., every instance of t1 is
also an instance of t2

Types of the same order
(instances of 1stOT, 2ndOT
or 3rdOT)

Reflexive, antisymmetric
and transitive

Proper specialization
properSpecializes(t1,t2)

The intension of t1 adds some
classification criteria to the one of t2,
i.e., every instance of t1 is also an
instance of t2 and there at least one
instance of t2 that is not instance of t1

Types of the same order
(instances of 1stOT, 2ndOT
or 3rdOT)

Irreflexive, antisymmetric
and transitive

Subordination
isSubordinateTo(t1,t2)

The intension of each instance of t1 adds
some classification criteria to the
intension of some instance of t2, i.e.,
every instance of t1 proper specializes
some instance of t2

Higher-order types of the same
order (instances of 2ndOT or
3rdOT)

Irreflexive, antisymmetric
and transitive

is power type of “1stOT” (Theorem T11), and “3rdOT” is
power type of “2ndOT” (Theorem T12).

isPowertypeOf (1stOT, Individual) (T10)

isPowertypeOf (2ndOT, 1stOT) (T11)

isPowertypeOf (3rdOT, 2ndOT) (T12)

It is interesting to note that, to be a power type, a typemust
have an intension that defines that all its instances are special-
izations of the base type and, conversely, all specializations
of the base type are instances of the power type (see D4).
Thus, it is possible to conclude that each type has at most
one power type (Theorem T13) and that each type is power
type of, at most, one other type (TheoremT14). This suggests
a concrete syntactic constraint for a multi-level model: Only
one higher-order type can be linked to a base type through
the is power type of relation.

∀p, t isPowertypeOf (p, t) → �p′ (p 	= p′)

∧ isPowertypeOf
(
p′, t

)
(T13)

∀p, t isPowertypeOf (p, t) → �t′
(
t 	= t′

) ∧
isPowertypeOf

(
p, t′

)
(T14)

Theorem T13 can be proved as follows: (1) supposing two
higher-order types, p and p′, are power type of t , according
to D4, both p and p′ should have as only instances all pos-
sible specializations of t ; (2) thus, applying Axiom A2, we
conclude that p is equal to p′ (p = p′). Analogously, Theo-
rem T14 can be proved as follows: (1) supposing p is power
type of t, according to D4, p should have as only instances
all the specializations of t ; (2) if we also consider a type t ′
such that p is power type of t’, then p should have as only
instances all the specializations of t ′; thus, t = t ′.

In his accounts for the notion of power type [9], Cardelli
proved that if a type t2 specializes a type t1, then the power
type of t2 specializes the power type of t1. Since our defini-
tion for isPowertypeOf relation follows Cardelli’s definition,
we verified that this property is entailed by our theory. Theo-
rem T15 formalizes this property. This may be used to check
the syntax of power type hierarchies and also to generate the
power type hierarchy corresponding to the base type hierar-
chy.

∀t1, t2, t3, t4 (specializes (t2, t1) ∧ isPowertypeOf (t4, t2)

∧ isPowertypeOf (t3, t1)) → specializes (t4, t3) (T15)

T15 can be proved as follows: (1) considering that t3 is
power type of t1 by definition D4 we conclude that t1 and
all its specializations are instance of t3; (2) considering the
transitivity of specialization and that t2 specializes t1, we
have that all specializations of t2 also specialize t1, and thus,
all specializations of t2 are instance of t3; (3) considering that
t4 is power type of t2 by D4 we conclude that all instances
of t4 are specializations of t2; (4) thus, by (2) and (3) we
conclude that all instances of t4 are also instances of t3, i.e.,
t4 specializes t3.

Given the power type of definition (D4), if p1 is power
type of t1 we conclude that p1 is one order higher than t1,
i.e., if t1 is a first-order type (iof(t1,1stOT)) then p1 is a
secondorder type (iof(p1,2ndOT)), if t1is a second-order type
(iof(t1,2ndOT)) p1 is a third-order type (iof(p1,3rdOT)) and
so on. Furthermore, since instances of “Individual” are not
types, they cannot participate in isPowertypeOf relations as
power type nor as base type. Figure 7 augments Fig. 1 by
including the representation of isPowertypeOf relations.

Since the power type of a base type is a type whose inten-
sion defines that its instances classify instances of the base
type, for each first-order type f it is always possible to define

123



214 V. A. Carvalho, J. P. A. Almeida

Fig. 7 Cross-level relations: isPowertypeOf

Fig. 8 An example of isPowertypeOf relation

a second-order type s such that s is power type of f and for
each second-order type s it is possible to define a third-order
type t such that t is power type of s.While the theory neces-
sitates the existence of the power type of any type (except
the power types of third-order types, which are outside the
scope of the theory), the decision on whether to represent the
power type of a particular type is a modeling decision. When
the power type is not relevant for the domain being modeled
it is often omitted from the model.

To illustrate the use of the power type of relation,
we augment the example of Fig. 6 in Fig. 8 introducing
“EmployeeType,” which is power type of “Employee.” Con-
sequently, all types that specialize “Employee” are instances
of “EmployeeType.” Since the instances of “Employ-
eeType” are first-order types, “EmployeeType” is an instance
of “2ndOT” and specializes “1stOT.” Further, since all
instances of “EmployeeRoleType” are also instances of
“EmployeeType,” it follows that “EmployeeRoleType” spe-
cializes “EmployeeType.” Analogously, “EmployeeAcad-
emicDegree
Type” specializes “EmployeeType.”

Although the definition of power type we adopted here is
compliant with the one proposed by Cardelli [9], there are
other definitions to this term in software engineering litera-

ture which have had great influence in practice, for example
those definitions in [23,39].

4.2 The categorization relation

In [39], Odell stated that a power type is a type whose
instances are subtypes of another type. It is important to
notice that Odell’s definition is less strict than Cardelli’s [9]
definition. Cardelli follows the power set concept stating that
all the specializations of the base type are instances of the
power type. Odell’s definition, in turn, does not comply with
that restriction. Thus, as pointed out by [23], the relation
defined by Odell is misnamed power type since, in fact, it
denotes a subset of the power set.

Inspired by Odell’s definition [39], we defined the cate-
gorization relation (Definition D5): A type t1 categorizes a
type t2 iff all instances of t1 are properSpecializations of
t2. Further, D5 guarantees that categorization relations only
apply to elements that are not individuals (i.e., elements that
have instances).

∀t1, t2 categorizes (t1, t2) ↔ (∃x iof (x, t1)
∧ (∀t3 iof (t3, t1) → properSpecializes (t3, t2))) (D5)

123



Toward a well-founded theory for multi-level conceptual modeling 215

Fig. 9 Cross-Level relations: categorizes

The categorization relation occurs between a higher-order
type t1 and a base type t2 when the intension of t1 defines
that their instances specialize t2 according to a specific clas-
sification criteria. Thus, the instances of t1 specialize t2 but
t2 is not an instance of t1 and there may be other types that
specializes t2 according to other classification criteria and,
thus, are not instances of t1. Categorization relations only
occur between types of adjacent levels (see Fig. 9).

Recall that, if a type t ′ proper specializes a type t , the
intension of t ′ is given by the conjunction of the intension
of t and a predicate that captures the additional constraints
defined by t ′ with respect to t . Extending this reasoning, if
a higher-order type h categorizes t , the intension of h estab-
lishes some criteria to define the additional constraint that is
introduced to the intension of t to compose the intension of
its instances. Thus, every type t ′ whose intension extends the
intension of t following the established criteria is considered
an instance of h.

In our previous example, “EmployeeAcademicDegree
Type” uses the employees’ academic degree as criteria to
classify employees. Putting it more precisely, the intension
of “EmployeeAcademicDegreeType” defines that, to be con-
sidered an instance of it, a type must have its intension given
by the conjunction of the intension of “Employee” and a
constraint that captures the property of having a specific aca-
demic degree. Therefore, “EmployeeAcademicDegreeType”
categorizes “Employee.”

Still considering the previous example, the intension of
“PhDEmployee” is given by the conjunction of the intension
of “Employee” and a predicate that captures the property of
having a PhDdegree. Thus, “PhDEmployee” is an instance of
“EmployeeAcademicDegreeType.” Analogously, since the
instances of “EmployeeRoleType” specialize “Employee”
according to roles the employees are hired to play and
the academic degrees they have, “EmployeeRoleType” also
categorizes “Employee,” having instances such as “Program-
mer” and “Research Manager.”

Note that, if a type t1 is subordinate to t2 and t2 categorizes
a type t3, considering the definitions of subordination (D3)
and categorization (D5) we conclude that all instances of t1
proper specialize some instance of t2 and that all instances
of t2 proper specialize t3. Applying the proper specializa-
tion definition (D2), it follows that all instances of t1 proper
specialize t3 and, thus, t1 categorizes t3. This idea is formal-
ized in Theorem T16. This theorem can be used to check the

completeness of models.

∀t1, t2, t3 (isSubordinateTo (t1, t2) ∧ categorizes (t2, t3))

→ categorizes (t1, t3) (T16)

Further, considering the definitions of power type (D4),
categorization (D5) and proper specialization (D2) we con-
clude that if a type t2 is power type of a type t1 and a type t3
categorizes the same base type t1 then all instances of t3 are
also instances of the power type t2 and, thus, t3 proper spe-
cializes t2. This idea is formalized in Theorem T17. Again,
this theorem can be used to check the completeness of mod-
els: amodelwould be incomplete if it omits the specialization
between a type that categorizes a base type and this base
type’s power type.

∀t1, t2, t3 (isPowertypeOf (t2, t1) ∧ categorizes (t3, t1))

→ properSpecializes (t3, t2) (T17)

Thus, considering our previous example, both “Employ-
eeAcademicDegreeType” and “EmployeeRoleType” cate-
gorize “Employee” and proper specialize “EmployeeType.”

In some cases, one needs more expressiveness in the
description of the relation between higher-order type and
categorized type. For instance, suppose that our company
considers that each employee must play at least one role,
i.e., in addition to the fact that “EmployeeRoleType” cate-
gorizes “Employee” the instances of “EmployeeRoleType”
must completely classify the instances of “Employee.” In
order to accommodate this expressiveness we define a varia-
tion of categorization relation called complete categorization
(see Definition D6). Thus, we are able to state that “Employ-
eeRoleType”completely categorizes “Employee.”

∀t1, t2 completelyCategorizes (t1, t2)

↔ (categorizes (t1, t2) ∧ (∀e iof (e, t2)
→ ∃t3 (iof (e, t3) ∧ iof (t3, t1)))) (D6)

We also define a variation of categorization relation, called
disjoint categorization, to accommodate the cases in which
each instance of the base type is instance of at most one
instance of the higher-order type. Thus, according to D7, a
type t1 disjointlyCategorizes t2 iff t1 categorizes t2 and every
instance of t2 is instance of, at most, an instance of t1.

123



216 V. A. Carvalho, J. P. A. Almeida

Fig. 10 An example of domain modeling applying categorization and subordination relations

∀t1, t2 disjointlyCategorizes (t1, t2)↔(categorizes (t1, t2)

∧∀e, t3, t4 ((iof (t3, t1) ∧ iof (t4, t1)

∧ iof (e, t3) ∧ iof (e, t4)) → t3 = t4)) (D7)

In our example,we could consider that each employee falls
under one classification according to his higher academic
degree. Thus, “EmployeeAcademicDegreeType” simulta-
neously disjointlyCategorizes and completelyCategorizes
“Employee,” i.e., each instance of “Employee” is instance
of one and only one instance of “EmployeeAcademicDe-
greeType.” In this case we say that “EmployeeAcademicDe-
greeType” partitions “Employee” (see Fig. 10). D8 formally
defines the partitioning relation.

∀t1, t2 partitions (t1, t2) ↔ (completelyCategorizes (t1, t2)

∧ disjointlyCategorizes (t1, t2)) (D8)

The intension of a higher-order type which partitions a base
type defines that its instances must apply to instances of the
base type and also define a classification criteria such that
each instance of the base types is classified by one and only
one instance of the higher-order type.

Although the definition that Odell gave to the notion of
power type is aligned with the relation we call categorizes,
all examples of use provided in [39] exhibit relations that
should be classified as partitions according to our theory.
Henderson-Sellers [23], following those examples of use,
provided a set theoretic formalization for the notion we call
here partitions.

Since all power type-based relations (power type of, cate-
gorization, complete categorization, disjoint categorization
and partitioning) define that the instances of their domains

are specializations/proper specializations of their ranges,
both their domains and their ranges are types. Further, their
domains must be a type in one order higher than their range.
Thus, only higher-order types may play the role of domain of
those power type-based relations. Since complete categoriza-
tion, disjoint categorization and partitioning imply the more
general categorization relation, only the former are repre-
sented in Fig. 10 for simplicity.

A consequence of the partitions definition is that, if two
types t1 and t2 both partitions the same type t3 then it is not
possible for t1 to specialize t2. This is captured in Theorem
T18. Again, this theorem suggests a clear syntactic constraint
for a multi-level modeling language in the presence of more
than one partition of the same base type.

∀t1, t2, t3 (partitions (t1, t3) ∧ partitions (t2, t3))

→ ¬properSpecializes (t1, t2) (T18)

T18 can be proved as follows: (1) Using the definition of
partitions (D8), we conclude that the instances of t1 form
a disjoint and complete partition of t3. (2) Supposing t1
proper specializes t2, using the definition of proper special-
ization (D2) we conclude that all instances of t1 must also
be instances of t2 and t2 must have at least one additional
instance that is not an instance of t1. (3) Consider that t4 is
the type that is instance of t2 and is not an instance of t1.
Since t2 also partitions t3, then t4 must specialize t3. (4)
However, the instances of t2 that are also instances of t1
already completely and disjoint classify the instances of t3.
Thus, t4 does not have possible instances, and thus is not
a valid type according to our theory. Therefore, there is no

123



Toward a well-founded theory for multi-level conceptual modeling 217

Table 2 Cross-level structural relations characteristics

Name Meaning Domain and range

Instantiation iof(e,t) The intension of t applies to e Elements of adjacent levels

Power type of isPowertypeOf(t1,t2) The intension of t1 defines that its instances apply to instances
of t2 but do not define a classification criteria. Thus, the
extension of t1 is composed by all specializations of t2,
including t2itself

Types of adjacent levels
(2ndOT→1stOT or 3rdOT→2ndOT)

Categorization categorizes(t1,t2) The intension of t1 defines that its instances apply to instances
of t2 according a specific classification criteria. Thus, the
extension of t1 is composed by the proper specializations of
t2 that follows the specified classification criteria

Types of adjacent levels
(2ndOT→1stOT or 3rdOT→2ndOT)

Complete categorization
completelyCategorizes(t1,t2)

A variation of categorization in which the classification criteria
defined by the intension of t1 guarantees that each instance of
t2 is instance of at least one instance of t1

Types of adjacent levels
(2ndOT→1stOT or 3rdOT→2ndOT)

Disjoint categorization
disjointlyCategorizes(t1,t2)

A variation of categorization in which the classification criteria
defined by the intension of t1 guarantees that each instance of
t2 is instance of at most one instance of t1

Types of adjacent levels
(2ndOT→1stOT or 3rdOT→2ndOT)

Partitioning partitions(t1,t2) A variation of categorization in which the classification criteria
defined by the intension of t1 guarantees that each instance of
t2 is instance of exactly one instance of t1

Types of adjacent levels
(2ndOT→1stOT or 3rdOT→2ndOT)

hypothesis in which t1 partitions t3, t2 partitions t3 and t1
specializes t2.

Table 2 summarizes some information about the cross-
level relations. All these relations are irreflexive, antisym-
metric and intransitive.

5 Applying the theory to taxonomical structures

The previous section presented general implications of our
theory for multi-level modeling. In this section, we consider
a representative application scenario in order to illustrate the
theory expressiveness. We consider the biological taxonomy
for living beings [31], which is one of themost mature exam-
ples of taxonomical hierarchies. The biological taxonomy for
living beings classifies living beings according to biological
taxa in seven or more ranks, e.g., kingdom, phylum, class,
order, genus, species and breed.

According to our theory every domain type is an instance
of one of the basic higher-order types (“1stOT,” “2ndOT” and
“3rdOT”), and specializes the basic type at the immediately
lower level (respectively, “Individual,” “1stOT,” “2ndOT”).
Applying this pattern, we identify that (1) “LivingBeing” is
an instance of “1stOT” and specializes “Individual” (since its
instances are particular living beings), (2) “BiologicalTaxon”
and its specializations are instances of “2ndOT” and special-
izes “1stOT” (its instances are the first-order types which
classify living beings, e.g., the “Animalia” kingdom and the
“Homo sapiens” species4) and (3) “BiologicalRank” spe-

4 Note that in biology there is a long and involved debate on the onto-
logical status of taxa such as species [15]. One of the interpretations is

cializes “2ndOT” and instantiates “3rdOT” (its instances are
second-order types which classify taxa, e.g., the “Species”
taxon). Figure 11 shows a model for this domain using the
basic pattern.

Each “LivingBeing” is instance of one instance of each
“Biological Rank,” i.e., each living being is instance of one
kingdom, onephylum, and soon.Therefore,we conclude that
each one of the seven instances of “BiologicalRank” parti-
tions “LivingBeing.” Further, the instances of “Biological
Rank” (specializations of “Biological Taxon”) obey a subor-
dination chain such that every instance of “Phylum” proper
specializes one instance of “Kingdom,” every instance of
“Class” proper specializes one instance of “Phylum,” and so
on. Thus, according to our theory, each instance of “Biolog-
ical Rank” is subordinate to another instance of “Biological
Rank,” forming a chain of subordination (except “Kingdom”
which is the top of the chain). Since all instances of “Biolog-
ical Rank” specialize “BiologicalTaxon” and each instance
of “BiologicalTaxon” is instance of exactly one instance of
“Biological Rank” (e.g., “Animal” is instance of “Kingdom,”
“Collie” is instance of “Breed” etc.) according to our theory,
“Biological Rank” partitions “BiologicalTaxon.” Figure 12
illustrates how the notions in the theory can be employed;
one instance of each represented biological rank is shown.

This example of application shows the expressiveness of
our theory. We have explored the entities and relations to

Footnote 4 continued
that biological taxa (e.g., the “Homo sapiens” species, the “Canis Lupus
Familiaris” species) represents a group of animals rather than a kind or
type of animal. We stay clear of this debate and represent species (and
other taxa) as the type that is instantiated by all members of that group
(and only by them) (e.g., “Human” and “Dog”).

123



218 V. A. Carvalho, J. P. A. Almeida

Fig. 11 Applying our theory basic pattern to the biological taxonomy for living beings

Fig. 12 Using our theory to describe the structural relations that exist in biological taxonomy (relations between the notions of biological rank,
biological taxon and living being)

fully describe the structural arrangement of the biological
taxonomy for living beings.

The pattern to classify domain types as instantiations and
specializations of the theory basic types permitted us to iden-
tify the level of each involved concept. Using the notion of

partitioning relation we were able to (1) express how the
instances of biological rank apply to living beings and (2) to
understand the relation between biological rank and biolog-
ical taxon. The notion of subordination relation was central

123



Toward a well-founded theory for multi-level conceptual modeling 219

for understanding how the instances of biological rank are
related to each other.

Finally, it allowed us to notice that the shape of tree that the
biological taxonomy for living beings exhibits is explained
by the combination of two characteristics, namely (1) the
partitions relations that all instances of “BiologicalRank”
have with “LivingBeing” and (2) the chain of subordination
that the instances of “BiologicalRank” forms.

6 Accounting for attributes, relationships and
dynamic classification

6.1 Attributes and relationships

As we have discussed so far, types capture common features
of the entities that are considered their instances. If we say
that “John” is an instance of the types “Person” and “Man,”
this is because there are certain characteristics that he shares
with other instances of “Person” (such as having a brain,
being a biped mammal) and with other instances of “Man”
(such as having a Y chromosome). These common features
are referred to in the intension of the types and are often not
explicitly represented in conceptual models. Different from
these common features, features that may vary across dif-
ferent instances of a type or even across different points in
time, are often captured using the notions of attributes and
relationships (both which trace back in the conceptual mod-
eling literature to Chen’s work on the Entity Relationship
model [13]). Examples of attributes are a person’s height
and weight, a mobile phone’s screen size and a computer’s
storage capacity. Examples of relationships include a mar-
riage between husband and wife, an employment between a
person and an organization, the friendship between persons
in a social network, etc. This section extends our account to
include these ubiquitous notions in conceptual modeling.

In order to account for attributes in MLT, we extend our
domain of quantification (which thus far included only types
and individuals) to cover also attributes and their possible
values in different possible worlds. In order to keep our for-
malization simple despite this additional sorts of elements in
the domain of quantification, the axioms defined in this sec-
tion are formalized inmany-sortedfirst-order logic, assuming
four disjoint sets: a set “E” of individuals and types, a set “A”
of attributes, a set “V” of values that can be assigned to the
attributes and a set “W” of possible worlds. TheMLT axioms
described in the previous sections can be understood in the
light of this strategy as quantifying always over the set “E”
(composed by individuals and types).

To represent the relation between types and attributes, we
define a ternary predicate typeHasAttribute (t, a, at) that holds
if a type t has an attribute a of type at. For example, the
proposition typeHasAttribute (MobilePhone, serialNumber,

String) denotes that “serialNumber” is an attribute defined
for the type “MobilePhone” having “String” as the type of
its assignable values. Therefore, each instance of “Mobile-
Phone” may assign instances of “String” to the attribute
“serialNumber”.5

We consider that attributes are dependent on types. To
capture this notion, Axiom A7 states that for each attribute a
there must be some entity t which has a. Further, A7 states
that each attribute has a unique type at for its values.

∀a : A (∃ t : E, ∃ !at : E (typeHasAttribute (t, a, at))) (A7)

To allow the representation of the values assigned to an
attribute we define the predicate hasValue(e,a,v,w) that holds
if an entity e assigns a value v to the attribute a in a worldw.
In order to cater for “multivalued” attributes, values assigned
by entities to attributes are considered sets of entities. There-
fore, the sort “V” of possible values of attributes is, indeed,
the powerset of the sort of entities “E” (V = P(E)). For
instance, the proposition hasValue(MyPhone, SerialNumber,
{“1234”}, w1) states that a specific instance of “Mobile-
Phone,” named “MyPhone,” has the unitary set {“1234”}
assigned to the attribute “SerialNumber” in a world “w1.”

We consider that, a type t has an attribute a of type at, iff
all instances of t have (at all possible worlds) a set of values v
for a respecting attribute type at (i.e., all elements composing
the set of values v must be instances of at). This definition
is captured by D9. Axiom A8 defines that any entity that has
a value for an attribute a, must be an instance of a type that
has the attribute a. Further, we consider that the scope of an
attribute is limited to a specific type and its specializations.
Thus, if two different types t and t ′ have a common attribute
a it means that there is a type t ′′ such that t ′′ has the attribute
a and both t and t ′ specializes t” (see Axiom A9).

∀t : E, a : A (typeHasAttribute (t, a, at)

↔ (¬iof (t, Individual) ∧ ¬iof (at, Individual)

∧∀e : E (iof (e, t) → ∀w : W, ∃!v :
V

(
hasValue (e, a, v,w) ∧ ∀e′ :

E(e′ ∈ v → iof(e′, at))
))))

(D9)

∀e : E, a : A, v : V,w : W (hasValue (e, a, v,w)

→ ∃ t, at : E (iof(e, t) ∧ typeHasAttribute (t, a, at)))

(A8)

∀t, t′, at : E, a : A((typeHasAttribute(t, a, at)
∧ typeHasAttribute(t′, a, at))
→ ∃ t′′ : E(typeHasAttribute(t′′, a, at)
∧ speciallizes(t, t′′) ∧ specializes(t′, t′′))) (A9)

5 Datatypes such as String and Integer can be considered first-order
types whose instances (e.g., the integer value “1” and the string “xyz”)
are “abstract entities” (see [21], p. 327).

123



220 V. A. Carvalho, J. P. A. Almeida

Fig. 13 Illustrating the account for attributes

As a consequence of the definitions and axioms present
so far, if a type t ′ specializes t , then t ′ has all attributes of t,
capturing the semantics of inheritance (see Theorem T19).
Theorem T19 can be proved as follows: (1) considering that
t defines an attribute a, by A9 we infer that all instances of
t must assign values to a; (2) Since t ′ specializes t , by the
specialization definition we conclude that all instances of t ′
are also instances of t , and thus, all instances of t ′ must assign
values to a; (3) Therefore, by D9we conclude that t ′ also has
the attribute a. Another consequence that follows from the
definitions and axioms defined so far is that given an attribute
a there exists one topmost type t that defines a, i.e., there is
a type t that has a such that any other type t ′ that has the
attribute a specializes t (see T20).

∀t, t′, at : E, a : A((typeHasAttribute(t, a, at)
∧ specializes(t′, t)) → typeHasAttribute(t′, a, at)) (T19)

∀a : A, ∃ !t, at : T(typeHasAttribute(t, a, at)
∧∀ t′ : T(typeHasAttribute(t′, a, at)) →
specializes(t′, t))) (T20)

The use of sets as values to the attributes allows the repre-
sentation of multivalued attributes (by setting as the attribute
value a set with more than one element) and the represen-
tation of optional attributes by allowing attributes to have a
null set as value.DefinitionsD10 andD11 capture the notions
of mandatory and monovalued attributes in order to express
constraints on the multiplicities of attributes. An attribute a
is mandatory iff in every possible world, the values assigned
to it are not empty sets. An attribute a is monovalued iff in
every possible world, the values assigned to it by all entities
are sets containing at most one value. Therefore, in order to
express, for example, that each instance of “MobilePhone”
has one and only one “serialNumber,” besides defining that
typeHasAttribute (MobilePhone, SerialNumber, String) one
should also state that isMandatoryAttribute(SerialNumber)
and isMonoValuedAttribute(SerialNumber).

∀a : A(isMandatoryAttribute (a)

↔ ∀e : E, v : V,w : W(hasValue(e, a, v,w)

→ ∃e′ : E(e′ ∈ v))) (D10)

∀a : A(isMonoValuedAttribute (a)

↔ ∀e : E, v : V,w : W (hasValue (e, a, v,w)

→ ∀e′, e′′ : E((e′ ∈ v ∧ e′′ ∈ v) → e′ = e′′)
)
) (D11)

In the case of multi-level modeling, attributes defined in
higher-order types can be given a value for types. We assume
that attributes defined in one order capture properties of ele-
ments of the immediately lower order and, thus, may have
values assigned to them in one order lower. In other words,
attributes defined in first-order types have values assigned
for individuals, attributes defined in second-order types have
values assigned for first-order types and so on.

Figure 13 illustrates the concepts presented so far. To cap-
ture that each instance of “MobilePhone” must have an IMEI
number, a screen of a specific size and a specific storage
capacity the “MobilePhone” type defines three mandatory
and monovalued attributes, namely “imei,” “screenSize”
and “storageCapacity.” Therefore, assuming that all these
attributes have values of type “String” we may state that
typeHasAttribute(MobilePhone, Imei, String), typeHasAt-
tribute(MobilePhone, ScreenSize, String), and typeHasAt-
tribute(MobilePhone, StorageCapacity, String) hold.

In Fig. 13, “MyMobile” is an instance of “MobilePhone”
(i.e., iof(MyMobile, MobilePhone) holds) having “12345”
as its IMEI number, a “4-inch” screen and “16 GB” of
storage capacity (in Fig. 13 we represented the assignment
of values to attributes by adding, after the attribute name,
an equality “=” followed by the valued assigned to the
attribute; attributes are considered by default mandatory and
monovalued). Assuming that Fig. 13 illustrates the state of
affairs of a worldw1,wemay state that hasValue(MyMobile,
Imei, {“12345”}, w1), hasValue(MyMobile, ScreenSize,{“4
inches”}, w1) and hasValue(MyMobile, StorageCapacity,
{“16 GB”}, w1) hold.

Further, considering that each instance of “MobilePhone”
must be classified by one instance of “MobilePhone

123



Toward a well-founded theory for multi-level conceptual modeling 221

Fig. 14 Illustrating the notion of regularity attributes

Model,” we define a type “MobilePhoneModel” that par-
titions “MobilePhone” (i.e., partitions(MobilePhoneModel,
MobilePhone) holds). To capture the official launch date
of each mobile phone model, we define that “Mobile-
PhoneModel” has an attribute named “launchDate” (type-
HasAttribute(MobilePhoneModel, LaunchDate, String)). In
Fig. 13 “IPhone5” is an instance of “MobilePhoneModel”
launched on “21 Sept., 2012” (i.e., hasValue(IPhone5,
LaunchDate, {“21 Sept., 2012”}, w1) holds).

All attributes introduced in the example so far only have
effects at the immediately lower level, complying thus to
what has been called “shallow instantiation” [6]. However, a
key characteristic of an account for attributes in a multi-level
theory is that attributes defined in higher-order types (such as
second- and third-order types) may affect the intension of the
instances of these higher-order types. In other words, some
attributes of a higher-order type aim at capturing regularities
over instances of its instances, constraining the set of possible
instances of its instances. Following [22] we classify these
attributes as regularity attributes.

Definition D12 formalizes the notion of regularity
attributes as attributes that affect the intension of the
instances of the types that have it, i.e., two instances hav-
ing different values assigned to a regularity attribute must
have different instances. Therefore, recalling that in MLT
two types are the same if they have the exact same possi-
ble instances, D12 defines that, an attribute a is a regularity
attribute iff every different value for a results in a different
type.6 Further, since regularity attributes affect the intension
of instances of a type, they are necessarily defined by higher-
order types. This constraint is reflected in D12.

6 A more comprehensive definition would acknowledge that differ-
ences in various regularity attributes simultaneously may cancel each
other’s effects on the intension; thus, we could add a ceteris paribus
clause to definition D12, which would then state that an attribute a is a
regularity attribute iff different values for a with all other things equal
would result in a different type.

∀a : A(regularityAttribute(a)
↔ (∀t, at : E(typeHasAttribute(t, a, at)
→ (iof(t, 2ndOT) ∨ iof(t, 3rdOT)))

∧∀t, t′ : E,v,v′ : V,w:W((hasValue(t,a,v,w)

∧ hasValue(t′, a,v′,w) ∧ v 	= v′) → t 	= t′))) (D12)

Figure 14 extends Fig. 13 adding to “MobilePhoneModel”
the attributes “instancesScreenSize,” “instancesMinStorage-
Capacity” and “instancesMaxStorageCapacity.” All these
attributes effectively serve as parameters in the intension
of the instances of “MobilePhoneModel,” i.e., the values
assigned to these attributes influence the selection of the
possible instances of instances of “MobilePhoneModel.”
Therefore, they are considered regularity attributes. For
example, by assigning the value “4 inches” to the attribute
“instancesScreenSize” of “IPhone5”we are representing that
every instance of “IPhone5” must have 4-inch screens. Anal-
ogously, by assigning the values “16 GB” and “32 GB,”
respectively, to the attributes “instancesMinStorageCapac-
ity” and “instancesMaxStorageCapacity” of “IPhone5” we
are representing that every instance of “IPhone5” must have
storage capacity between 16 and 32 GB. Therefore, having
a 4-inch screen and storage capacity between 16 and 32 GB
are parts of the intension of “IPhone5.”

The influence of the regularity attributes of higher-order
types over the intension of its instances may be reflected
as constraints over the possible values for attributes of the
base type. For example, the fact that “instancesScreenSize”
is a regularity attribute of “MobilePhoneModel” is reflected
by the fact that an instance of “MobilePhoneModel” must
have as instances mobile phones having a specific “screen-
Size.” Therefore, the fact that “IPhone5” has the value “4
inches” assigned to the regularity attribute “instancesScreen-
Size” implies that every instance of “IPhone5” must have
the value “4 inches” assigned to the attribute “screenSize.”
Analogously, the values assigned to the regularity attributes

123



222 V. A. Carvalho, J. P. A. Almeida

Fig. 15 Illustrating a scenario in which relations in one order capture regularities over instances of types in one order lower

“instancesMinStorageCapacity” and “instancesMaxStorage-
Capacity” of “MobilePhoneModel” constrain the possible
values the instances of a specific (instance of) “Mobile-
PhoneModel” may have. For example, the values “16GB”
and “32 GB,” respectively, assigned to “instancesMin-
StorageCapacity” and “instancesMaxStorageCapacity” of
“IPhone5” imply that its instancesmust have a value between
16 and 32 GB assigned to the “storageCapacity” attribute. To
emphasize the relations between the regularity attributes of
“MobilePhoneModel” and the attributes of “MobilePhone”
and the constraints over their values, in Fig. 14 we placed
the related attributes in colored boxes that are linked to each
other. Note that this is not meant as a modeling language
construct, and our sole intention here is to draw attention to
these relations involving regularity attributes.

A mechanism to express the relations between regularity
attributes defined by types in one order and attributes of types
in one order lower is a desirable feature of multi-level mod-
eling languages. Indeed, some potency-based approaches to
multi-level modeling include some support for the repre-
sentation of regularity attributes. For example, in Melanie
[1] the notions of durability and mutability are used to
capture situations inwhich the regularity attribute of a higher-
order type t directly influences the possible values that
instances of instances of t may assign to an attribute (such
as the relation between the attribute “instancesScreenSize”
of “MobilePhoneModel” and the attribute “screenSize” of
“MobilePhone” illustrated in Fig. 14). For further discussion
considering the relation between MLT and clabject and deep
instantiation-based approaches see the related work section.

To account for basic relations in our theory, we follow
a strategy similar to the one adopted by OWL [49], Telos
[34] and Ecore [47]: We represent a binary relation between
two types t1 and t2 as an attribute defined in t1 with type t2
(actually representing an association end connected to t2).
This treatment allows the reuse of the notions of manda-
tory, monovalued and regularity attributes. These can be
applied on both association ends when necessary, giving rise

to two opposing attributes each one defined in each of the
related types having the other type as the type of the attribute
(again similarly to Ecore and OWL). For example, consider
the scenario illustrated in Fig. 15. According to Fig. 15,
each instance of “MobilePhone” must have an instance of
“Processor” installed in it (“installedProcessor”) and each
instance of “Processor” may be “installed in,” at most, one
instance of “MobilePhone.” Thus, (1) “MobilePhone” has
a mandatory and mono-valued attribute called “installed-
Processor” having “Processor” as type (formally, type-
HasAtribute(MobilePhone, installedProcessor, Processor),
isMandatoryAttribute(installedProcessor) and isMonoVal-
uedAttribute(installedProcessor)) and (2) “Processor” has a
mono-valued attribute called “installedIn” having “Mobile-
Phone” as type (formally, typeHasAtribute(Processor,
installedIn, MobilePhone) and isMonoValuedAttribute
(installedIn)).

Following the same approach, we could represent the rela-
tion between “MobilePhoneModel” and “ProcessorModel”
depicted in Fig. 15. To capture that each (instance of)
“MobilePhoneModel” is compatible with one (instance of)
“ProcessorModel” we could define in “MobilePhoneModel”
a mandatory mono-valued attribute called “compatible
ProcessorModel” having “ProcessorModel” as type (for-
mally, typeHasAtribute(MobilePhoneModel, compatible
ProcessorModel, ProcessorModel)). Moreover, we could
capture the fact that each (instance of) “ProcessorModel”
may be compatible with some (instance of) “Mobile-
PhoneModel” by defining in “ProcessorModel” an attribute
called “compatiblePhoneModels” having “MobilePhone
Model” as type (formally, typeHasAtribute(ProcessorModel,
compatiblePhoneModels, MobilePhoneModel).

Whenever opposite attributes are defined,weneed to relate
the two attributes in order to constrain that whenever an
instance of one type refers to an instance of the other type
through an attribute, the reference in the opposite direction
also holds. For example, we need to constrain that when-
ever an instance e of “MobilePhone” refers to an instance

123



Toward a well-founded theory for multi-level conceptual modeling 223

e′ of “Processor” through the attribute “installedProcessor”
then e′ refers to e through the attribute “installedIn.” In
this case, we say that the attributes “installedProcessor” and
“installedIn” are opposite attributes. The refers to predicate
is formally defined in D13, while D14 formally defines the
is opposite predicate. D13 states that an entity e refers to
an entity e′ through attribute a (in a world w), iff the value
of e for a (in w) is a set that includes e′. D14, in its turn,
states that two attributes a and a’ are opposite iff when-
ever an entity e refers to an entity e′ through the attribute
a, e’ refers to e through a’ and vice versa. In the exam-
ple below, isOpposite(installedIn, installedProcessor) and
isOpposite(compatiblePhoneModels, compatibleProcessor-
Model) hold.

∀e, e′ : E, a : A,w : W(refersTo(e, e′, a,w)
↔ ∀ v : V(hasValue(e, a, v,w) → (e′ ∈ v))) (D13)

∀a, a′ : A(isOpposite(a, a′) ↔ ∀e, e′ : E,w : W
(refersTo(e, e′, a,w) ↔ referTo(e′, e, a′,w))) (D14)

To see how the notion of regularity attribute is applicable
to the attributes capturing relations between types, consider
that instances of a (instance of) “MobilePhoneModel” may
have installed on them only instances of the (instance of)
“ProcessorModel” compatible with it. In this case, the inten-
sion of an instance of “MobilePhoneModel” is affected by the
value assigned to its “compatibleProcessorModel” attribute.
For example, in Fig. 15 since the “IPhone5” has “A6” as
“compatibleProcessorModel” instances of “IPhone5” must
have processors of type “A6” installed on them. There-
fore, the attribute “compatibleProcessorModel” of the type
“MobilePhoneModel” is a regularity attribute that constrains
the possible values for the attribute “installedProcessor”
of the type “MobilePhone.” Conversely, and following
analogous reasoning, we can conclude that the attribute
“compatiblePhoneModel” of the type “ProcessorModel” is
a regularity attribute that constrains the possible values for
the attribute “installedIn” of the type “Processor.”

This simple treatment of relations as attributes can be
extended with a notion of relations as object-like entities
[20]. This notion was already discussed by Chen [13], where
he observes that “some people may view something (e.g., a
marriage) as a relationship” (i.e., as a tuple that relates two
entities), “while other people may view it as an entity” (i.e.,
as something that have its own life). Subscribing Chen’s intu-
ition and aiming to explain the very nature of relationships,
Guarino and Guizzardi presented in [20] an ontological the-
ory of relationships as object-like entities. Following such
theory, the relations can be reified giving rise to the so-called
relator types.

Following [20], MLT supports the representation of rela-
tor types as regular types. The formalization that we propose

for attributes can also be used to establish the link between
relata and relators. Further, the relator-based approach [20]
can be used to address n-ary relationships when necessary.
An example of the use of relator types in multi-level mod-
eling with MLT can be seen in [10] (including examples of
types of relator types in the organizational structure domain).

6.2 Dynamic classification

TheMLT formalization in Sect. 2 assumed for simplification
that entities instantiate types necessarily, effectively deal-
ing with rigid types in a static classification setting. In this
section, we lift that restriction and discuss how dynamic clas-
sification can be addressed in MLT, accounting thus also for
non-rigid types. Dynamic classification is key to concep-
tual modeling and in particular to ontology-based conceptual
modeling [21]. Supporting dynamic classification allows the
use of MLT as a basis for these kinds of conceptual models
(e.g., see [12] and [10]).

By addressing dynamic classification, we want to support
the notion that both individuals and types can change quali-
tatively keeping their identity. Consider for example, a hier-
archy of second-order types in which the second-order type
“Species” is specialized according to conservation status into
“Not Threatened,” “Endangered” and “Extinct.” Making the
types “Not Threatened,” “Endangered” and “Extinct” anti-
rigid allows us to capture the fact that a particular species (say
“Giant Panda”) can change types. Ontological implications
of this approach to the nature of types are discussed in [22].

Our strategy to formalize this notion is based on the use of
aworld-indexed instance of relation, represented by a ternary
predicate iof(e,t,w) that holds if an entity e is instance of an
entity t (denoting a type) in a worldw. Consider for example
that “John” is an instance of “Student” at world “w1” but not
at “w2,” when he has graduated. In this case, we can state
that iof(John,Student,w1) and ¬io f (John,Student,w2).

This modification to the instantiation predicate requires
us to adjust some axioms of MLT accordingly. Axiom A1
was modified to express that, to be considered an instance
of “Individual,” an entity must have no possible instance in
any admissible world (see Axiom A1′). Further, two types
are considered the same iff they have the same instances
in all possible worlds (see Axiom A2′). Thus, two types
whose extensions are contingently equal are not considered
the same. For example, it allows us to capture that, although
there is a possible world in which all instances of “Person”
are also instances of “Student,” “Student” and “Person” are
different types since an (instance of) “Person” is not neces-
sarily an (instance of) “Student.”

∀x,w (iof (x, Individual,w)

↔ ∀w′ (world
(
w′) → ¬∃y (

iof
(
y, x,w′)))) (A1′)

123



224 V. A. Carvalho, J. P. A. Almeida

∀t, t′,w((¬iof (t, Individual,w) ∧ ¬iof
(
t′, Individual,w

))

→ ((
t = t′

) ↔ ∀x,w′ (iof
(
x, t,w′) ↔ iof

(
x, t′,w′))))

(A2′)

The characterizations of the other basic types must also be
adjusted to consider possible worlds. Thus, Axiom A3′ char-
acterizes “First-Order Type” (or shortly “1stOT”), defining
a first-order type as an entity with at least one instance in a
possible world and whose instances in all possible worlds are
instances of “Individual.” Analogously, A4′ and A5′ charac-
terize “Second-Order Type” (or “2ndOT”) and “Third-Order
Type” (“3rdOT”). Additionally, Axiom A6′ adjusts A6 to
state that, for all possible worlds, each entity in our domain
of enquiry is either an instance of “Individual,” “1stOT,’
“2ndOT” or “3rdOT” (except “3rdOT” whose type is out-
side the scope of the formalization).

∀t,w (
iof (t, 1stOT,w) ↔ (∃y,w′ (iof

(
y, t,w′))

∧∀x,w′′(iof(x, t,w′′) → iof(x, Individual,w′′))
))

(A3′)

∀t,w (
iof (t, 2ndOT,w) ↔ (∃y,w′ (iof

(
y, t,w′))

∧∀t′,w′′(iof(t′, t,w′′) → iof(t′, 1stOT,w′′))
))

(A4′)

∀t,w(iof (t, 3rdOT,w) ↔ (∃y,w′ (iof
(
y, t,w′)

∧∀t′,w′′(iof(t′, t,w′′) → iof(t′, 2ndOT,w′′))
))

(A5′)

∀w, x((world (w) ∧ ¬world (x))

→ (iof (x, Individual,w) ∨ iof (x, 1stOT,w)

∨ iof (x, 2ndOT,w) ∨ iof (x, 3rdOT,w)

∨ (x = 3rdOT))) (A6′)

Since Axiom A1′ defines that to be an instance of “Indi-
vidual” in a world w an entity x must not have instances in
any world, we can conclude that if an entity x is an instance
of “Individual” in any world it is an instance of “Individ-
ual” in all possible worlds, i.e., instances of “Individual” are
necessarily instances of it. Thus, “Individual” is a rigid type.
Analogously, using Axioms A3′ to A5′ we conclude that
“1stOT,” “2ndOT” and “ 3rdOT” are also rigid types, i.e., the
basic types of MLT are all rigid.

Concerning the intra- and the cross-level structural rela-
tions of MLT, they express properties that are not contingent
to the involved types. Consider, for example, the specializa-
tion relation between t1 and t2: a type t1 specializes a type t2
iff in all possible worlds all instances of t1 are also instances
of t2 (see definition D1’). We can observe that, by definition,
it is not admissible for t1 to specialize t2 in a world w and
not specialize it in another world w′. Thus, in contrast to the
instantiation relation, the specialization relation is not world-
indexed. The same reasoning applies to all other intra- and

cross-level structural relations of MLT, namely proper spe-
cialization, subordination, power type of and categorization.
Therefore, the definitions of these relations in the formaliza-
tion that accounts for dynamic classification are most similar
to the ones presented in Sects. 4 and 5, with minor adjust-
ments concerning the quantification of possible worlds (see
Definitions D1′, D2′, D3′, D4′, D5′, D6′, D7′ and D8′).

∀t1, t2 (specializes (t1, t2) ↔ (∃y,w1 (iof (y, t1,w1))
∧∀e,w2 (iof (e, t1,w2) → iof (e, t2,w2)))) (D1′)

∀t1, t2 (properSpecializes (t1, t2)
↔ (specializes (t1, t2) ∧ ¬ (t1 = t2))) (D2′)

∀t1, t2(isSubordinateTo (t1, t2)
↔ (∃x,w1 (iof (x, t1,w1))
∧∀t3,w2 (iof (t3, t1,w2)
→ ∃t4 (iof (t4, t2,w2) ∧ properSpecializes (t3, t4)))))

(D3′)

∀t1, t2(isPowertypeOf (t1, t2)↔(∃x,w1 (iof (x, t1,w1))
∧∀t3,w2 (∀t3 iof (t3, t1,w2) ↔ specializes (t3, t2))))

(D4′)

∀t1, t2(categorizes (t1, t2) ↔ (∃x,w1 (iof (x, t1,w1))
∀t3,w2 (iof (t3, t1,w2) → properSpecializes (t3, t2))))

(D5′)

∀t1, t2(completelyCategorizes (t1, t2) ↔
(categorizes (t1, t2) ∧ ∀w, e (iof (e, t2,w) →
∃t3 (iof (e, t3,w) ∧ iof (t3, t1,w))))) (D6′)

∀t1, t2(disjointlyCategorizes (t1, t2) ↔
(categorizes (t1, t2) ∧ ∀w, e, t3, t4 ((iof (t3, t1,w) ∧ iof

(t4, t1,w) ∧ iof (e, t3,w) ∧ iof (e, t4,w)) → t3 = t4)))

(D7′)

∀t1, t2(partitions (t1, t2) ↔ (completelyCategorizes

(t1, t2) ∧ disjointlyCategorizes (t1, t2))) (D8′)

Further, all the theorems presented in the previous formaliza-
tion are also valid when considering dynamic classification.
The Theorems T1–T4 and T7–T9 presented in Sects. 2 and 3
must be properly adapted considering the use of the world-
indexed instantiation relation while the Theorems T10–T15
presented in Sect. 4 can be included in this formalization
without modification. The full formalization of MLT sup-
porting dynamic classification can be found in https://github.
com/jpalmeida/mlt-ontology.

123

https://github.com/jpalmeida/mlt-ontology
https://github.com/jpalmeida/mlt-ontology


Toward a well-founded theory for multi-level conceptual modeling 225

6.3 A note on the identity conditions of types

The notion of equality of types is central to account for both
Odell’s and Cardelli’s notions of power type. For example,
according toOdell’s notion, there is no instance of the “power
type” that is equal to the base type. Further, considering
Cardelli’s sense, (in-)equality is key to establish the unique-
ness of the power type for a given base type, as well as the
uniqueness of a base type for a given power type. So, which
notion of identity condition is adequate in the theory becomes
an important issue.

As discussed in [48], there is a spectrum of options for the
identity conditions of types, with respect to how finely they
are individuated. In an “infra-coarse” account, types with
the same extension are considered identical. This is what we
would call an “entirely extensional” approach.

In contrast, in a “medium-coarse” account, types “are
identical just in case they necessarily have the same exten-
sion” [48]. “This seems to transpose the identity conditions
for sets into an appropriately intensional key, and this is pre-
cisely how identity conditions for propertieswork in accounts
that treat them as intensions” [48]. In such accounts, inten-
sions of types are functions from possible worlds to sets of
objects therein [32]. This is one of the approaches that Bealer
[8] uses for dealing with “intensional entities.” This is what
we would call an “intensional” approach.

Finally, in a “ultra-fine” approach (also referred to as
“hyperintensional” approach [48]) types “are individuated
almost as finely as the linguistic expressions that express
them” [48]. According to “hyperintensional” approaches,
two types can be considered distinct even in cases they nec-
essarily have the same extension. For example, if we consider
two types t and t ′ such that the intension of t’ is formed by a
conjunction of the intension of t with a trivially “true” state-
ment, adopting an “ultra-fine” approach t and t ′ must be
considered two distinct types.

As discussed by Bealer [8], the medium-coarse and the
ultra-fine accounts have each their own value for the inten-
sional conception of types, with different applications. He
defends that themedium-coarse approach is ideally suited for
treating the modalities (necessity, possibility, impossibility,
contingency, etc.), and that the ultra-fine approach is valuable
for dealing with intentional matters (belief, desire, percep-
tion, decision, etc.). He discusses that the ultra-fine approach,
while ideally suitable for the treatment of intentional matters,
“has only complicated the treatment of the modalities” [8].
Given the scope of the present paper, we opt for the medium-
coarse approach. It allows us to state the impossibility of
individuals to have instances (A1) and later (in Sect. 6.2) to
deal with types that apply contingently (or non-necessarily)
to their instances (e.g., Student, Living Person).

In the formalization presented in Sect. 2, while modality
is not formally treated, our choice for the medium-coarse

account is reflected in how we stipulate the domain of quan-
tification, which includes all possible types and all their
possible instances. The fact that we quantify over all pos-
sible entities guides the interpretation of the axioms and
definitions, in which quantifiers end up having some modal
importance (even if informally). For example, Axiom A2
defines that two types are equal iff all their possible instances
coincide. In other words, A2 states two types t1 and t2 are
equal iff it is inadmissible for an entity to be an instance of
t1 and not an instance of t2 (there is no possible entity that
is an instance of t1 and not an instance of t2). Our choice
of language here (first-order logics instead of some sort of
quantified modal logics) aims at making the theory more
accessible.

In Sect. 6.2, we reify possible worlds, and thus, modal-
ity is addressed more explicitly in the formalization. Again,
here we have opted not to use some sort of modal logic to
retain the accessibility of the theory. The axiom that defines
equality (A2′) states that two types are equal iff they have
the same instances in all possible worlds, clarifying that we
take the approach that two types are the same iff they are
necessarily coextensional. Since the extension of a type is
world dependent, it makes sense to talk about the distinc-
tion between extension (in a particular world) and intension
(across worlds) [32].

7 Related work

7.1 Power type-based approaches

Two early attempts to address multi-level modeling, namely
power types [9,39] and materialization [44], raised from
the identification of patterns to represent the relationship
between a class of categories and a class of more con-
crete entities. The notion of power types was adopted in
the object-oriented model community (largely influenced by
[39]) and materialization has been developed in the database
community. Despite the different origins, power type and
materialization are based on similar conceptualizations [5]
and addressing the same concerns [17]. Both approaches
establish a relationship between two types such that the
instances of one are specializations (subtypes) of another.

Odell [39] defined the concept of power type informally
using regular associations between a class representing the
power type and a base class. This differs from our approach
because cross-layer relations between types (is power type
of, categorizes and partitions) have specialized semantics.
This allows us to prescribe rules for the domain models that
use these relations following the axioms in the theory.

Similarly to Odell [39], Gonzalez-Perez and Henderson-
Sellers [17] use an association labeled “partitions” between
a power type and a base type (called a “partitioned type” in

123



226 V. A. Carvalho, J. P. A. Almeida

their terminology). The authors illustrate their techniquewith
a diagram in which “partitions” is modeled as a one-to-many
association between “Task” and “TaskKind,” meaning that
every instance of the partitioned type (“Task”) is linked to
exactly one instance of the powertype (“TaskKind”). In the
sequel, they discuss that the “partitions association possesses
instantiation semantics,” and that, because of this, “Task” is
a special instance of “TaskKind” (the most generic kind of
task). However, if “Task” itself is an instance of “TaskKind,”
then the “partitions” association cannot be a one-to-many
association between “Task” and “TaskKind.” This is because
all instances of subtypes of “Task” are also instances of
“Task,” and thus instances of at least two “TaskKinds” (one
of which is “Task” itself). The source of the difficulty seems
to lie in that their “partitions” association is semantically
overloaded, conflating two underlying notions: (1) the fact
that “TaskKind” partitions “Task” and (2) the implied con-
sequence that instances of “Task” are instances of instances
of “TaskKind” (which in our theory is reflected in the instance
of relation between “Task” as specialization of “Individual”
and “TaskKind” as a specialization of “First-Order Type”).
The modeler is free to determine whether “Task” itself is an
instance of “TaskKind” (in which case he/she would replace
(1) with the fact that “TaskKind” is a powertype of “Task”).
Note that the elements of our theory help us to identify the
semantic overload, provide an explanation for the conceptual
issue in this power type-based approach, and offer alterna-
tives to express the modeler’s intended conceptualization.

The UML 2.4.1 specification [41] attempts to cover the
needs ofmulti-levelmodeling by including apowertype asso-
ciation that relates a classifier (power type) to a generalization
set composed by the generalizations that occur between the
base classifier and the instances of the powertype. Because of
its dependence on the generalization set construct, the pat-
tern can only be applied when specializations of the base
type are explicitly modeled (otherwise there would be no
generalization set). We consider this undesirable as it would
rule out simplemodels that are possible in our approach, e.g.,
one defining “employee type” as a powertype of “employee,”
without forcing the modeler to define specific instances for
“employee type.”While our theory necessitates the existence
of entities for any type, and hence necessitates the existence
of instances for “employee type,” it does not require these
instances to be modeled explicitly, which is the case of the
UML because of its choice to base the power type pattern in
a structure that uses generalization sets.

Further, while the complete categorization relation is sim-
ilar to the isCovering attribute of GeneralizationSets of the
UML metamodel, there is an important distinction. The
attribute isCovering refers to whether all instances of the
general classifier are instances of at least one of the specific
classifiers that are explicitly modeled in the Generalization-
Set. In contrast, completelyCategorizes is a semantic notion

that is independent of what is represented explicitly in a
model; when a higher-order type is related to a base type
through this relation, all instances of the base type will be
instances of at least one of the types that properly specialize
the base type.

A semantic mapping of UML’s isCovering attribute in
terms of our theory is simple when isCovering is true, in
which case the higher-order type p completely categorizes the
base type t . However, when isCovering is false, the seman-
tic mapping is more involved, and the model can have two
alternative interpretations: (1) p categorizes t and there are
instances of p not represented in the model (it is not possi-
ble to determine whether p completely categorizes t); or (2)
p categorizes t and all instances of p are represented, but
some instances of t do not instantiate any of the instances
of p (thus, we conclude that p does not completely catego-
rize t). The lack of expressiveness of UML to distinguish
these interpretations seems to stem from the fact that UML
conflates what we mean to capture with the categorization
relation with whether the model enumerates all instances of
a higher-order type (i.e., the “power type” in UML’s termi-
nology).7

The notion of power type introduced by Odell [39] in the
object-oriented community differs from the concept coined
earlier by Cardelli [9] since the latter is derived directly
from the mathematical notion of power set while the former
may be used more loosely as we discussed in Sect. 4. The
theory presented here is able to account for both definitions
formally, revealing their differences. It covers the expressive-
ness of both approaches through formally defined structural
cross-level relations (power type of, categorization and par-
titioning). Further, it allows us to show that a higher-order
type that is related to a base type through the categorization
relation is necessarily a specialization of the power type of
that base type. Thus, the power type of a base type is the most
abstract higher-order type related to a base type.

7.2 Clabject and deep instantiation-based approaches

The concept of power type is founded on the notion that
“instances of types can also be types” [39]. Motivated by a
similar observation, Atkinson andKühne [2] coined the term
clabject, emphasizing that every instantiable entity has both
a type (or class) facet and an instance (or object) facet which
are equally valid [2]. This notion is valuable to our theory.
The basic types of MLT, except the higher-order one, may be
considered clabjects. For example, “Individual” is instance
of “First-Order Type” (its instance facet) and a type for all
entities that are not types (its type or class facet). (Note that,

7 For the sake of simplicity, we have assumed here that the classes are
not abstract. The semantic mapping becomes even more involved in the
presence of abstract classes.

123



Toward a well-founded theory for multi-level conceptual modeling 227

individuals in MLT (instances of “Individual”) have no class
facet, and thus should not be referred to as clabjects.)

In [2],Atkinson andKühne argue that amulti-levelmodel-
ing framework should adhere to two fundamental principles:
support for the clabject notion and strictmetamodeling. Strict
metamodeling [7] assumes that each element of a level must
be an instance of an element of the level above. Although
our theory is not focused on metamodeling, we follow this
principle with respect to the instantiation relation, and every
entity in our domain of enquiry is instance of exactly one of
the basic types and every entity can only be instance of enti-
ties at one order higher (all entities that have no instances are
instances of “Individual”; “Individual” and all its specializa-
tions are instances of “First-Order Type,” and so on.) They
also discuss that “some kind of ‘trick’ is needed at the top
level.” The “trick” we used in our theory is that the highest
order basic type is not instance of anything, since entities
with higher order are not considered (see Axiom A6). Alter-
natively, an infinite number of basic types may be considered
at ever increasing orders, in which case a “trick” at the top of
the classification scheme would not be required. We have
opted instead for a finite number of basic types to avoid
necessitating the existence of an infinite number of levels,
which would be an unnecessary ontological commitment for
all conceptual modeling applications we have considered so
far.

Atkinson and Kühne propose in [3] the Orthogonal
Classification Architecture (OCA) to address the need of
considering two different kinds of instantiation: the linguistic
instantiation and the ontological instantiation. Whereas lin-
guistic instantiation is used to define the relations between
domain entities and linguistic constructs, ontological instan-
tiations relate domain entities to other domain entities. For
example, considering the UML class diagram having a class
called Collie and an object called Lassie, we can identify
two linguistic instantiations; namely, Collie is an (linguis-
tic) instance of class and Lassie is an (linguistic) instance
of object.We may also consider an ontological instantiation
since Lassie is an (ontological) instance of Collie [3]. The
distinction is very important to determine the scope of our
theory: We are concerned solely with ontological instantia-
tion as it is applied across multiple levels. For example, the
instantiation relation that holds between individual and first-
order type as well as the one that holds between computer
and first-order type are both ontological since both are con-
cerned with the nature of the involved concepts and none of
them is related to linguistic issues. Aspects referring to the
relation between ontological and linguistic issues are out of
the scope of this work.

Atkinson andKühne have also proposed the notion of deep
instantiation [5,6] as ameans to provide formultiple levels of
classification whereby an element at some level can describe
features of elements at each level beneath that level. It is based

on the idea of assigning to clabjects and fields (attributes and
slots) a potency which defines how deep the instantiation
chain produced by that clabject or field may become. When
a clabject is instantiated from another clabject the potencies
of the created clabject and of its fields are given by the origi-
nal clabject and fields potencies decremented by one. Objects
have potency equal to zero indicating they cannot be instanti-
ated. If the potency of a field becomes zero then a value can be
assigned to that field. For example, we could define a clab-
ject mobile phone model with an attribute IMEI assigning
a potency of 2 to both the type and the attribute. There-
fore, instances of mobile phone model would be clabjects
in which IMEI attribute would have potency of 1. Instances
of instances of mobile phone model have a value assigned to
IMEI, since its potency would reach zero.

The authors consider that the main benefit of a deep
instantiation-based approach is to reduce “accidental com-
plexity” in domain models since it supports multi-level
modelingwithout the need of introducing types to themodels
only “because of the idiosyncrasies of a particular solution
to deep characterization” [5]. They argue that power type-
based solutions force the modelers to add unneeded types
to the model. For instance, considering the cited example of
mobile phone model, using power types the modeler would
be forced to represent the concept of mobile phone. Using
deep instantiation, themodeler could define themobile phone
properties (e.g., IMEI) as properties of mobile phone type
having potency of 2, being free not to represent the concept
of mobile phone.

While the deep instantiation approach can reduce the num-
ber of entities represented in a model, this strategy should
be used with parsimony. Important consequences of omit-
ting base types in the current deep instantiation approach
are that the modeler becomes unable to express whether the
instances of a higher-order type (mobile phone model in pre-
vious example) are disjoint and/or covering types and we are
also prevented from determining metaproperties (e.g., rigid-
ity) of the base type (mobile phone in this case). Further, as
discussed in [21], conceptual models should always include
kinds that define the principle of identity of individuals (in
the example this type is mobile phone). If these types are
omitted (and incorporated into higher-order types by using
the notion of potency), the source of the principle of identity
becomes hidden.

It is worth noticing that the deep instantiation approach
allows the modeler to represent the base type if it is deemed
desirable. However, if the modeler decides to represent the
base type, the approach does not provide constructs to rep-
resent the relation between it and the higher-order type, not
distinguishing thus between the different possible kinds of
cross-level relations. As a consequence, the approach “as is”
does not provide mechanisms to check if the rules concern-
ing these relations are respected, e.g., to guarantee that all

123



228 V. A. Carvalho, J. P. A. Almeida

instances of the higher-order type (“Mobile Phone Model”)
specialize the base type (“Mobile Phone”). We believe that
the relations and rules we discuss here could be used to fur-
ther evolve the deep instantiation approach.

In addition to having mechanisms aimed at simplifying
the models by omitting base types, some recent deep instan-
tiation approaches [25] also support the representation of
a particular kind of regularity attribute by using a combi-
nation of the notions of attribute durability and mutability.
The durability of an attribute indicates how far the attribute
spans in an instantiation tree. The mutability of an attribute
defines how often the attribute value can be changed over
the instantiation tree. Consider, for example, a class such as
“MobilePhoneModel” with potency 2. An attribute “screen-
Size” with durability 2 and mutability 1 will be given a
value at the first instantiation (e.g., stating that the “Iphone5”
has “screenSize” equals to 4 inches), and that value will
determine the value of “screenSize” for the instances of
instances of “MobilePhoneModel” (thus, all Iphone5s have
a screen size of 4 inches). In our view, this representation
captures the constraint relating an attribute of a first-order
type (“screenSize”) and a regularity attribute of a second-
order type (“instancesScreenSize”) as a single attribute with
durability 2 and mutability 1 in a clabject with potency 2.
This is a useful language mechanism for this particular kind
of regularity attribute, which fully determines the value of
the lower-level attribute. Unfortunately, this representation
strategy is only capable of capturing the constraints involv-
ing regularity attributes that determine the exact value that
must be assigned to attributes in the lower order. It is not
applicable, for example, to capture the constraint involving
the regularity attributes “instancesMinStorageCapacity” and
“instancesMaxStorageCapacity” of “MobilePhoneModel”:
An instance i of “MobilePhone” must have assigned to the
attribute “storageCapacity” a value equal or higher than
the value assigned to “instancesMinStorageCapacity” and
equal or lower than the value assigned to “instancesMaxS-
torageCapacity” of the “MobilePhoneType” instantiated by
i. Thus, since the values of “instancesMinStorageCapac-
ity” and “instancesMaxStorageCapacity” are not directly
reflected in the value of a mobile phone attribute, they would
be given durability and mutability of 1.

In an analysis of deep instantiation, Neumayr et al., [37]
observe that the approach is unable to capture certain domain
scenarios in which a clabject is related to other clabjects at
different instantiation levels. For example, consider a sce-
nario in which every instance of “MobilePhoneModel” has a
“designer” being an instance of “Person” and every instance
of an instance of “MobilePhoneModel” (i.e., every instance
of “MobilePhone”) has an “owner” which is also an instance
of “Person.” In this scenario the type “Person” should have a
relation with “MobilePhoneModel” (called “designer”) and
another relation with “MobilePhone” (called “owner”). Con-

sidering that “Person” and “MobilePhone” are in the same
level, the “owner” relation does not cross-level boundaries.
Nevertheless, “MobilePhoneModel” is placed in one level
higher, and thus, the “designer” relation is crossing level
boundaries, which is not allowed in that approach. Because
of that, the authors introduce aDualDeep Instantiation (DDI)
approach distinguishing between source potency and tar-
get potency. An association thus becomes characterized by
two potency numbers. Thus, in the aforementioned example,
the “designer” relationship between “Person” and “Mobile-
PhoneModel” would have both source and target potencies
of 1 whereas the “owner” relationship would be defined hav-
ing source potency of 1 and target potency of 2 (meaning
that ownership relations hold between instances of “Per-
son” and instance of instances of “MobilePhoneModel”).
Another approach that allows for the representation of this
kind of domain scenario is discussed in [4]. The approach
is based on the definition of the so-called “metamodeling
spaces,” each of which defines a separate set of instantiation
levels. Levels in one metamodeling space are independent
of levels in other spaces. As a consequence, an element in
a particular metamodeling space S may be simultaneously
related to elements in different levels as long as the target
elements are not in S. For example, “Person” in a space
P could be related to both “Mobile Phone” and “Mobile
Phone Model” placed in different levels in another space
M. Different from [37] and [4], our approach accommo-
dates the domain scenario without a special mechanism,
since relations between elements at different orders are
allowed. In the example considered, we would represent
the omitted base type “MobilePhone” defining that “Mobile-
PhoneModel” partitions “MobilePhone,” capturing thus, the
fact that every instance of “MobilePhone” is instance of one
instance of “MobilePhoneModel.” The “designer” relation-
ship would be placed between “MobilePhoneModel” and
“Person” whereas the “owner” relationship would be defined
between “MobilePhone” and “Person.”

In [36], another multi-level modeling approach that
applies the notion of deep instantiation is proposed. The
focus of this approach is also on reducing “unnecessary
complexity,” improve readability and simplify maintenance
and extension. The approach is founded in the concepts of
m-objects and m-relationships. M-objects encapsulate dif-
ferent levels of abstraction that relate to a single domain
concept. Analogously, m-relationships describe “relation-
ships between m-objects at multiple level of abstraction.”
An m-object can concretize another m-object. The con-
cretize relationship comprises classification, generalization
and aggregation relationships between the levels of an m-
object [36]. We observe that this is a semantic overload
between three relationships of quite different ontological
nature, which could affect the understandability and usability
of the approach.

123



Toward a well-founded theory for multi-level conceptual modeling 229

Telos [34] is a knowledge representation language that
supports the representation of types having other types as
instances (i.e., clabjects). Roughly 30 axioms are defined to
formalize Telos’ principles for instantiation, specialization,
object naming and attribute definition [30]. Telos supports
multi-level modeling through its notion of type, and, simi-
larly to MLT it accepts relations between types in different
levels. In contrast to MLT, it does not elaborate on the nature
of cross-level relations between higher-order types and base
types. Further, it does not employ systematically the pow-
ertype pattern, although we consider it would be possible
to extend the Telos built-in support by using its features
of user-defined constraints and rules to formally define the
cross-level structural relations proposed in MLT.

Besides the so farmentioned initiatives, many other works
focusing on deep instantiation-based approaches can be
found in the literature, proposing alternative formalizations
for it (e.g., [46]), exploring its uses in different contexts
(e.g., [28,29]), and proposing tools for automated support
(e.g., [1,27]). Theseworks focus ondeep instantiation,which
illustrates its wide acceptance as a basic mechanism for
multi-level modeling approaches. However, none of these
approaches aim at providing a semantic account that can be
used to explain regularity attributes in deep instantiation and
that supports the power type pattern and its variations.

8 Final considerations

In this paper, we have presented a well-founded theory for
conceptual multi-level modeling. The theory is formally
defined using first-order logic and its consistency is veri-
fied using a lightweight formal method. Both the basic types
and the structural relations defined in the theory are founded
on the basic notion of (ontological) instantiation, which is
applied regularly across levels, organizing the entities of the
domain of enquiry in strictly stratified orders.We have shown
how the elements of the theory can be used as foundations
for a domain theory: domain types instantiate and specialize
the basic types of the theory.

To verify the consistency of our theorywe have usedAlloy
[24]. The axioms of our theory were represented as facts and
the theoremswere defined as assertions in anAlloymodule. It
allowed us to verify the satisfiability of our theory, to conduct
some model simulations and to verify the theorems whose
informal proofs have been discussed in the paper.8

Using the structural cross-level relations defined in the
theory (powertype of, categorization, partitioning), we are
able to account for the different notions of power type in the
literature, as well as to contrast and relate them. Since these

8 The full specification of the theory in Alloy can be found in https://
github.com/jpalmeida/mlt-ontology.

relations are ultimately explained in terms of instantiation
between entities of adjacent levels, the consequence of our
account of power types is that we formally harmonize power
type- and clabject-based approaches.

With respect to intra-level relations, we define the “ordi-
nary” specialization relation and a subordination relation
between higher-order types of the same order. Subordina-
tion allows for the creation of expressive multi-level models;
subordination between higher-order types implies specializa-
tion between instances of the types related by subordination.
An example of the usefulness of the subordination relation
is shown in the biological taxonomy domain, in which taxo-
nomic ranks (instances of “Second-Order Type”) are related
by subordination in a sequence (with lower ranks subordi-
nated to higher ranks). This ensures the taxonomy at the
first-order level has an adequate structure (a taxonomic tree).

In order to facilitate the readers’ first contactwithMLT,we
have opted to supress two direct extensions of the theory in
the early part of this paper: (1) the support for non-rigid types
and (2) the generalization of the notion of order to support
an infinite number of classification levels. With respect to (1)
this extension is presented in Sect. 6.2. It allows instantiation
to be contingent, thereby enabling dynamic classification,
which is an important feature for conceptual modeling [21].
With respect to (2), Axioms A3, A4 and A5 would give way
to an inductive definition for a basic type Ti+1 based on the
definition of the basic type at an immediately lower order Ti .
The “disjointness” Axiom (A6) would be modified accord-
ingly.

The whole theory presented here is built up from an
“opaque” notion of instantiation, i.e., using instantiation as
a primitive notion and not appealing to the “internals” of
intensions. The resulting theory is thus independent of any
modeling choices or ontological commitments concerning
the nature of “intensions” of types. Naturally, this could be
worked out in an extension of this work. To formally discuss
the nature of “intensions” of types, one could either opt for
using a higher-order logics (which we avoid here intention-
ally since we aim at amore approachable formalization) or to
reify and treat the intensions of types as structured elements
with “parts” or “constituents pretty much like the linguis-
tic expressions that we use to speak about them” [48]. The
adequacy of these approaches is an issue for further investi-
gation.

It is important to stress that it is not our intention in
this paper to propose a multi-level conceptual modeling
language. Instead, we focus on the concepts that would con-
stitute an adequate semantic domain for such a language. The
theory we propose can be considered a reference top-level
ontology for types, with the main purpose of clarifying key
concepts and relations for multi-level conceptualizations.

As discussed in [21], a reference ontology can be used
to inform the revision and redesign of a modeling language,

123

https://github.com/jpalmeida/mlt-ontology
https://github.com/jpalmeida/mlt-ontology


230 V. A. Carvalho, J. P. A. Almeida

first through the identification of semantic overload, con-
struct deficit, construct excess and construct redundancy, but
also through the definition of modeling patterns and seman-
tically motivated syntactic constraints [11]. This has been
fruitful in the past in the revision of the UML, resulting in
the OntoUML profile for conceptual modeling [21]. Thus, a
natural application for this work is to inform the (re-)design
of awell-foundedmulti-level conceptualmodeling language.
Some earlier results to that extent are presented in Sect. 4,
showing: (1) how theorems of the theory reveal useful syn-
tactic constraints for multi-level domain models and (2) how
patterns of domain entities that are admissible by the the-
ory can be reflected in modeling patterns. We have also been
able to spot a deficiency in the UML given its reliance on
the construct of generalization set to represent the power
type pattern. Further, we have been able to identify cases
of semantic overload in the power type-based technique pre-
sented in [17], and in them-objects approach [36]. Recently,
Recker et al. [45] reported results from a study with 528
modelers demonstrating that “users of conceptual modeling
grammars perceive ontological deficiencies to exist and that
these deficiency perceptions are negatively associated with
usefulness and ease of use of these grammars.” This high-
lights the potential practical implications of our theory.

We are currently working on an extension of the Uni-
fied Foundation Ontology (UFO) [21] to fully incorporate
the theory presented in this paper. The current version of
UFOonly countswith an informal notion of higher-order uni-
versal, with no associated formalization. The theory would
serve as the top-most layer of UFO, and the typology
of universals of UFO would be incorporated as special-
izations of “First-Order Type,” including RigidUniversal,
Anti-RigidUniversal, Category, Kind, Role, Phase. Further,
“Individual” would be specialized into Endurant, Moment,
Event, Action, etc., leveraging important conceptual distinc-
tions of UFO. The revision of UFO to incorporate this theory
will give us a sound basis to improve the formalization of
ontologies based on UFO (e.g., the core ontology for ser-
vices called UFO-S [35] and the organizational ontology
called O3 [43]) since their conceptualizations span multiple
levels of classification.

Acknowledgements This research is partly funded by the Brazil-
ian Research Funding Agencies CAPES, CNPq (Grant Numbers
311313/2014-0, 485368/2013-7, 461777/2014-2) and FAPES (Grant
Number 69382549).

References

1. Atkinson, C., Gerbig, R.: Melanie: multi-level modeling and
ontology engineering environment. In: Proceedings of the 2nd
International Master Class on Model-Driven Engineering Model-
ing Wizards—MW’12. New York, USA (2012)

2. Atkinson, C., Kühne, T.: Meta-level independent modeling. In:
InternationalWorkshop “ModelEngineering” (inConjunctionwith
ECOOP’2000), Cannes, France (2000)

3. Atkinson, C., Kühne, T.: Model-driven development: a metamod-
eling foundation. IEEE Softw. 20(5), 36–41 (2003)

4. Atkinson, C., Kühne, T.: Processes and products in a multi-level
metamodeling architecture. Int. J. Softw. Eng. Knowl. Eng. 11(6),
761–784 (2001)

5. Atkinson, C., Kühne, T.: Reducing accidental complexity in
domain models. Softw. Syst. Model. 7(3), 345–359 (2008)

6. Atkinson, C., Kühne, T.: The essence of multilevel modeling. In:
Proceedings of the 4th International Conference on the Unified
Modeling Language, pp. 19–33. Toronto, Canada (2001)

7. Atkinson, C.: Metamodelling for distributed object environments.
In: First International Enterprise Distributed Object Computing
Workshop (EDOC’97). Brisbane, Australia (1997)

8. Bealer, G.: Quality and Concept. Clarendon Press, Oxford (1982)
9. Cardelli, L.: Structural subtyping and the notion of power type. In:

Proceedings of the 15th ACM Symposium of Principles of Pro-
gramming Languages, pp. 70–79 (1988)

10. Carvalho, V.A., Almeida, J.P.A.: A semantic foundation for orga-
nizational structures: a multi-level approach. In: Proceedings of the
Enterprise Computing Conference (EDOC2015) (2015)

11. Carvalho, V.A., Almeida, J.P.A., Guizzardi, G.: Using reference
domain ontologies to define the real-world semantics of domain-
specific languages. In: Proceedings 26th International CAiSE
Conference (CAiSE 2014), pp. 488–502. Springer, Heidelberg
(2014)

12. Carvalho, V.A., Almeida, J.P.A., Fonseca, C.M., Guizzardi G.:
Extending the foundations of ontology-based conceptual model-
ing with a multi-level theory. In: 35th International Conference on
Conceptual Modeling (ER 2015), pp. 119–133 (2015)

13. Chen, P.P.: The entity-relationship model: toward a unified view.
ACM Transactions on Database Systems 1(1), 9–36 (1976)

14. Coquand, T.: Type theory. In: Zalta, E.N. (ed.) The Stanford Ency-
clopedia of Philosophy (Fall 2014 Edition). http://plato.stanford.
edu/archives/fall2014/entries/type-theory/ (2014)

15. Ereshefsky, M.: Species. In: Zalta, E.N. (ed.) The Stanford Ency-
clopedia ofPhilosophy (Spring2010Edition). http://plato.stanford.
edu/archives/spr2010/entries/species/ (2010)

16. Eriksson, O., Henderson-Sellers, B., Ågerfalk, P.J.: Ontological
and linguistic metamodeling revisited: a language use approach.
Inf. Softw. Technol. 55(12), 2099–2124 (2013)

17. Gonzalez-Perez, C., Henderson-Sellers, B.: A powertype-based
metamodelling framework. Softw. Syst.Model. 5(1), 72–90 (2006)

18. Guarino,N.,Welty,C.: Evaluating ontological decisionswithOnto-
Clean. Commun. ACM 45(2), 61–65 (2002)

19. Guarino, N.: The ontological level. In: Casati, R., Smith, B.,White,
G. (eds.) Philosophy and the Cognitive Science, pp. 443–456.
Holder-Pivhler-Tempsky, Vienna (1994)

20. Guarino, N., Guizzardi, G.: “We need to discuss the relationship”:
revisiting relationships as modeling constructs. In: Proceedings of
the 27th International CAiSE Conference (CAiSE 2015), pp. 488–
502 (2015)

21. Guizzardi, G.: Ontological Foundations for Structural Conceptual
Models. University of Twente, Enschede (2005)

22. Guizzardi, G. et al.: Towards an ontological analysis of powertypes.
In: Proceedings of the International Workshop on Formal Ontolo-
gies for Artificial Intelligence (FOFAI 2015), 24th International
Joint Conference on Artificial Intelligence (2015)

23. Henderson-Sellers, B.: On the Mathematics of Modeling, Meta-
modelling, Ontologies and Modelling Languages. Springer, Berlin
(2012)

24. Jackson, D.: Software Abstractions: Logic, Language and Analy-
sis. The MIT Press, Cambridge (2006)

123

http://plato.stanford.edu/archives/fall2014/entries/type-theory/
http://plato.stanford.edu/archives/fall2014/entries/type-theory/
http://plato.stanford.edu/archives/spr2010/entries/species/
http://plato.stanford.edu/archives/spr2010/entries/species/


Toward a well-founded theory for multi-level conceptual modeling 231

25. Kennel, B.: A Unified Framework for Multi-level Modeling. Uni-
versity of Mannheim, Mannheim (2012)

26. Kühne, T.: Contrasting classification with generalisation. In: Pro-
ceedings of the 6th Asia-Pacific Conference on Conceptual Mod-
eling. Wellington, New Zealand (2009)

27. Lara, J. de, Guerra, E.: Deep meta-modelling with MetaDepth. In:
Proceedings of the 48th International Conference, TOOLS 2010.
Málaga, Spain (2010)

28. Lara, J. de, Guerra, E., Cuadrado, J. S.: When and how to use
multilevel modelling. ACM Trans. Softw. Eng. Methodol. 24(2),
1–46, 23 (2014)

29. Lara, J. et al.: Extending deep meta-modelling for practical model-
driven engineering. Comput. J. 57(1):36–58 (2013)

30. Jarke, M., Gallersdörfer, R., Jeusfeld, M.A., Staudt, M.:
ConceptBase—a deductive object base for meta data management.
J. Intell. Inf. Syst. 4(2), 167–192 (1995)

31. Mayr, E.: The Growth of Biological Thought: Diversity, Evolution,
and Inheritance. Belknap Press, Cambridge (1982)

32. Montague,R.: Formal philosophy: selected papers ofRichardMon-
tague. In: Thomasson, R. (eds.) Paperback, p.370. Yale University
Press, New Haven (1974)

33. Mylopoulos, J.: Conceptual modeling and Telos. In: Loucopoulos,
P., Zicari, R. (eds.) Conceptual Modeling, Databases and CASE,
pp. 49–68. Wiley, New York (1992)

34. Mylopoulos, J., Borgida, A., Jarke, M., Koubarakis, M.: Telos:
representing knowledge about information systems. ACM Trans.
Inf. Syst. 8(4), 325–362 (1990)

35. Nardi, J.C., Falbo, R., Almeida, J.P.A., Guizzardi, G., Ferreira
Pires, L., van Sinderen, M., Guarino, N.: Towards a commitment-
based reference ontology for services. In: Proceedings of the 17th
IEEE International Enterprise Distributed Object Computing Con-
ference (EDOC 2013), pp. 175–184. IEEEComputer Society Press
(2013)

36. Neumayr, B., Grün, K., Schrefl, M.: Multi-level domain model-
ing with m-objects and m-relationships. In: Proceedings of the
6th Asia-Pacific Conference on Conceptual Modeling. Wellington,
New Zealand (2009)

37. Neumayr, B., Jeusfeld, M. A., Schrefl, M., Schütz, C.: Dual deep
instantiation and It ConceptBase implementation. In: Proceedings
26th International CAiSEConference (CAiSE 2014), pp. 503–517.
Springer, Heidelberg (2014)

38. Neumayr, B., Schrefl, M., Thalhiem, B.: Modeling techniques
formulti-level abstraction. In: Kaschek, R., Delcambre, L. (eds.)
LNCS, vol. 6520, pp 68–92. Springer, Heidelberg (2011)

39. Odell, J.: Power types. J. Object Oriented Program. 7(2), 8–12
(1994)

40. Olivé, A.: Conceptual Modeling of Information Systems. Springer,
Berlin (2007)

41. OMG : UML Superstructure Specification—Version 2.4.1 (2011)
42. OMG: Meta Object Facility (MOF) Core Specification—Version

2.4.1 (2013)
43. Pereira,D.,Almeida, J.P.A.:Representingorganizational structures

in an enterprise architecture language. In: Proceedings of the 6th
Workshop on Formal Ontologies meet Industry (FOMI 2014), Rio
de Janeiro (2014)

44. Pirotte, A., Zimanyi, E., Massart, D., Yakusheva, T.: Materializa-
tion: a powerful and ubiquitous abstraction pattern. In: Bocca, J.,
Jarke, M., Zaniolo, C. (eds.) Proceedings of the 20th International
Conference on Very Large DataBases (VLDB’94), pp. 630–641
(1994)

45. Recker, J., Rosemann, M., Green, P., Indulska, M.: Do Ontological
Deficiencies in Modeling Grammars Matter? MIS Q. 35(1), 1–9
(2011)

46. Rossini, A., et al.: A formalisation of deep metamodelling. Form.
Asp. Comput. 26(6), 1115–1152 (2014)

47. Steinberg, D., Budinsky, F.: EMF: Eclipse Modeling Framework,
2nd edn. Addison-Wesley Professional, Boston (2008)

48. Swoyer, C., Orilia, F.: Properties. In: Zalta, E.N. (eds.) The Stan-
ford Encyclopedia of Philosophy (Fall 2014 Edition). http://plato.
stanford.edu/archives/fall2014/entries/properties/ (2014)

49. W3C: OWL 2 Web Ontology Language—Structural Specification
and Functional-Style Syntax (Second Edition). https://www.w3.
org/TR/2012/REC-owl2-syntax-20121211 (2012)

Victorio Albani Carvalho is
Assistant Professor at the Fed-
eral Institute of Espírito Santo
and member of the Ontology and
Conceptual Modeling Research
Group (NEMO) of the Federal
University of Espírito Santo. He
holds a master’s degree in Infor-
matics from the Federal Univer-
sity of Espírito Santo and is a
PhD candidate at this university.
He has worked as system analyst
for 10 years before becoming a
professor. His current research
focuses onOntology-BasedCon-

ceptual Modeling and Multi-level Modeling.

João Paulo A. Almeida is Asso-
ciate Professor at the Federal
University of Espírito Santo and
senior member of the Ontol-
ogy and Conceptual Modeling
Research Group (NEMO). He
holds aPhD inComputer Science
from the University of Twente,
the Netherlands. Since 2007, he
has been working on the applica-
tion of ontologies in conceptual
modeling, enterprise architecture
and enterprise modeling. He has
served as Dean of the Graduate
School in Computer Science at

the Federal University of Espírito Santo (2011–2013). He currently
serves as a member of the Executive Committee of the International
Association for Ontology and its Applications (IAOA) and as chair of
the IEEE EDOC Conference Steering Committee. He is a senior mem-
ber of the IEEE and of the ACM.

123

http://plato.stanford.edu/archives/fall2014/entries/properties/
http://plato.stanford.edu/archives/fall2014/entries/properties/
https://www.w3.org/TR/2012/REC-owl2-syntax-20121211
https://www.w3.org/TR/2012/REC-owl2-syntax-20121211

	Toward a well-founded theory for multi-level conceptual modeling
	Abstract
	1 Introduction
	2 MLT foundations: basic types and the instantiation relation
	3 Intra-level structural relations
	4 Cross-level structural relations
	4.1 The power type of relation
	4.2 The categorization relation

	5 Applying the theory to taxonomical structures
	6 Accounting for attributes, relationships and dynamic classification
	6.1 Attributes and relationships
	6.2 Dynamic classification
	6.3 A note on the identity conditions of types

	7 Related work
	7.1 Power type-based approaches
	7.2 Clabject and deep instantiation-based approaches

	8 Final considerations
	Acknowledgements
	References




