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Abstract Mobile application offloading is an efficient tech-
nique to unload the burden of intensive computation from
thin clients to powerful servers. In a mobile offloading sys-
tem, cloud computing is utilized to complete some heavy
tasks which are migrated from resource-constrained mobile
devices to the Cloud. To assure system performance, the
quality of the wireless network connection plays an impor-
tant role. In previous work we experimentally explored the
impact of packet loss and delay in wireless networks on the
completion time of an offloading task.We investigated a local
restart mechanism to mitigate these effects. In the presence
of unreliable communication, once the waiting time for the
response of a cloud server exceeds a given threshold, exploit-
ing the local resources of a mobile client can accelerate the
task completion.

In this paper, we upgrade the restart mechanism by
allowing several offloading retries before a job eventually
is locally restarted and finally completed in the client device
itself. This is an adaptive restart scheme which aims first
at completing the job using restart with offloading. If sev-
eral successive offloading attempts fail the job is completed
locally. Adaptively selecting the right retry threshold and
automatically restarting at the appropriate moment can bal-
ance out undesired effects. This paper extends Wang and
Wolter (Proceedings of the 6th ACM/SPEC international
conference on performance engineering. ACM, pp 3–13,
2015) by adding an adaptive retry scheme, a mathematical
derivation of the optimal limit for offloading attempts so as
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to minimize the task completion time using a greedymethod,
and by the results of a practical evaluation studywhich shows
the efficiency and benefits of the adaptive restart scheme.
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1 Introduction

In computer and communication systems, when a task is sub-
ject to failures or unpredictable delays, aborting the previous
try and launching anewprocess can speedup the task comple-
tion. This mechanism is generally called restart and is widely
used for fault tolerance. Restart is a simple yet efficient solu-
tion which can be applied even if the probability distribution
of a task completion time exhibits high variance. Examples
of such tasks include randomized search algorithms, distrib-
uted data queries and data transmission through unreliable
network connections. As modern computer systems become
more interconnected and diverse, a large number of manage-
mentwork have to be completed autonomously by the system
itself. Thus, these tasks are also widely spread in autonomic
computing [18,19]. For instance, in order to monitor the
system state, the collected system data should firstly be trans-
mitted to some management agents. The transmission time
could be high variance in a networkwith intermittent connec-
tivity. Then the data have to be queried in a large historical
database and mapped to some state. Once the state releases
some signals that the system meets problems, a searching
process is launched to find the solution to deal with this prob-
lem. Both the query and search work should be completed
within a given time, but they may also suffer a high variance.
As introduced in [43], restart allows to express an efficient
trade-off between the average and the variance in the time a
task will take.
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By migrating heavy computation to powerful cloud
servers, mobile offloading systems can circumvent con-
straints of the client hardware, e.g. high-energy consumption
microchips and low capacity batteries. But smooth offloading
of computation depends on a fast and stable network con-
nection, which guarantees seamless communication. Unfor-
tunately, the quality of a network is often not constant across
space and time. In [46] the impact of unreliable network
connections on mobile offloading has been experimentally
confirmed. The execution of offloading tasks may suffer
from long delays or even sometimes from failures. When the
offloading task fails, the client may retry offloading. Various
events can cause delays, for example a single node overload
on the path between the mobile device and the server. The
offloading data can be blocked or even lost at this node. In
this situation, repeated offloading restart cannot solve the
problem, and on the contrary, it increases congestion. To
avoid this dilemma, the task can be completed using the
resources in the local device instead of those in the Cloud.
As introduced in [44], simulations of a stochastic model
showed that if the offloading task needs an unknown time
to migrate computation through the unreliable network con-
nection, restarting and completing the computations locally
by the mobile device can save both time and energy.

This paper is an extended version of our published at
ICPE-2015 [46]. For completeness of presentation the exper-
iment about exploring the impact of unreliable network
connectivity in [46] is retained. In [46], only local restart
was introduced. In this paper, both the offloading and local
restart are jointly used to improve the system efficiency. This
new scheme is called adaptive restart. In the new scheme,
the first job attempts to restart with offloading. If the number
of restarts exceeds a threshold, the job is completed locally.
The main problem that must be solved is setting an optimal
threshold that limits the number of allowed restart tries.

We use the task completion time as a metric to evalu-
ate system performance under different thresholds. Besides
the number of tries also the timeout is essential. The time-
out controls the moment at which restart is launched. We
theoretically identify the optimal threshold and timeout and
experimentally confirm their advantages. Since both thresh-
old and timeout depend on the network and system condition,
setting their values is an adaptation process.

The remainder of this paper is organized as follows: in
Sect. 2 we briefly review the background of mobile offload-
ing systems and the restart algorithm. In Sect. 3 we introduce
an experiment to study the impact of packet loss and delay in
network on the offloading task completion time. The exper-
imental results confirm the need for applying restart. Next,
in Sect. 4 the workflow of the adaptive restart scheme is
introduced. In Sect. 5 we describe the mathematical deriva-
tion of a condition which is used to determine the optimal
threshold and timeout. The dynamic adaptive restart scheme

implemented in a practical offloading platform is introduced
in Sect. 6. The experiments and results introduced in Sect. 7
confirm the efficiency of the adaptive restart scheme. Section
8 concludes the paper.

2 Background and related work

Mobile offloading as a concept has been around for more
than a decade. Thin clients using a remote infrastructure for
compute-intensive tasks have already been seen as a method
for addressing the challenges of distribution and mobility as
in pervasive computing [34]. Powerful distributed systems
as in Cloud computing aim at turning computing as utility
into reality [5]. Recently, mobile offloading has been devel-
oped as to merge Cloud computing and mobile computing.
Research in offloading methods can be divided into three
main directions [13]: client–server communication, virtual
machine migration and mobile agents. We will now discuss
related work in all three areas.

1. Client–server communication: communication can be
supported by pre-installation of the application in both
the mobile client and the server. In this case one can
benefit from existing stable protocols for process com-
munication between mobile and surrogate devices. This
is the basis for the systems in [2,11,14,21,23].

2. Virtual machine migration: offloading can be imple-
mented as the migration of the complete virtual machine
executing the application. The most fascinating property
of this method is that no code is changed for offload-
ing of a program. The memory image of a mobile client
is copied and transferred to the destination server with-
out interrupting or stopping any execution on the client.
Although this method has clear advantages as it avoids
having two versions of a program, it requires a high vol-
ume of transferred data [4,6,36].

3. Mobile agents: Scavenger [22] introduces a framework
that partitions and distributes heavy jobs to mobile sur-
rogates in the vicinity rather than to cloud servers.
Offloading to more than one surrogate is the merit of
this framework.

All offloading systems mentioned so far may suffer from
poor network condition, and the application of well-designed
fault-tolerance methods is in place. Restart is a popular pre-
ventive maintenance method to mitigate network failures.
It can be very effective for certain types of failures, and
its performance has been widely studied [1,12,15]. Markov
chain models and Laplace transforms have been developed
to analyse the performance of restart for improving the
expected task completion time [1,3,20,28,37]. These analy-
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ses strongly support the efficiency of restart if the best restart
timeout is known. Their implementation in an online algo-
rithm for practical application is not straight forward. A fast
method based on iteration theory to identify the optimal
restart time is presented in [24]. The algorithm is improved
in [41–43]. It is tailored for Internet applications in [33].

Based on the assumption that the service time are phase-
type distributed, Fourneau et al. [15] has proposed an open
queueing network based on G-network formalism to study
the effectiveness of the restart method in a multiple clients
system. By comparing the analytical results and simulation
results, the authors indicated that in more realistic scenar-
ios, the arrival process of restart signals is not independent
of the job arrival process. In [10], a simulation-based frame-
work SFERA is introduced for the investigation of restart
algorithms and their impact on request completion times in
service-oriented system. SFERA observed systems from the
client point of view and evaluated the time behaviour of a
service-oriented architecture system.

Restart has alsobeenwidelydeployed inhigh-performance
computing (HPC) system. Generally, it collaborates together
with the checkpoint scheme [12,16]. In [26], a checkpoint–
restart framework, BlobCR is proposed specifically for the
optimization of HPC applications that need to be ported to
clouds. As an increasing rate of soft error is shown in recent
trends, Ni et al. [27] introduced an automatic checkpoint–
restart frameworkACR to detect and recover the system from
soft or hard faults with minimal application intervention. In
[9], the authors provided a formula to compute the optimal
number of checkpoint for cloud jobs under varied distribu-
tions of failure events. An adaptive algorithm is designed to
optimize the impact of checkpoint–restart scheme regarding
various costs like overhead.

In addition, restart is exploited in pure mathematics.
A heuristic adaptive restart technique is proposed in [29]
to improve the convergence rate of accelerated gradient
schemes. These schemes could reduce the complexity of
first-order algorithms applied to minimize smooth convex
function. As the iterates generated by an accelerated gradi-
ent scheme exhibit a periodic behaviour, the optimal restart
interval is proportional to this period.

3 Offloading over an unreliable network

In order to observe and analyse the impact of an unreli-
able network connection on the mobile offloading system
we design an experiment. Using the experiment we show
that the performance changes in the system under changing
network quality. We assume that the task completion time
consists of the remote execution time and the data transmis-
sion time. Generally, the execution time is assumed constant
for a given task and device and delays are added by data trans-

fer. In particular, we assume that the task completion time on
the mobile device and on the cloud server can be different,
but both will be more or less constant for identical tasks at
different times. The offloading completion time (OCT) varies
greatly because data transmission times are not the same at
all times. The impact of heavy load on the system is not con-
sidered in this paper. Overload conditions may remain in the
system for longer duration and showgreater correlation in the
task completion times. This effect is neglected by not con-
sidering overload. But for our analysis delays in the server
cannot be distinguished from delays caused by the network
and we only consider the latter.

In the remainder of this section we first introduce our
mobile offloading system and the sample application which
we use here for demonstration purposes. Then we experi-
mentally demonstrate how system performance varies over
the day due to changing load in our wireless network over the
day. The task completion time is described by fitting a dis-
tribution to selected subsets of the data. This shows that the
variance in the task completion time distribution increases
significantly for certain subsets of the data.

3.1 Experiment configuration

Offloading can be beneficial if two conditions hold. First,
the task must consist of heavy computation requirement, and
second, a small amount of data must be transmitted between
themobile device and the server. An application whichmeets
both requirements is optical character recognition (OCR),
but there are many more. OCR is a method to recognize
the characters on a binary image with optional polygonal
text regions. Generally, the recognition algorithm consists
of three steps: (1) the layout of the image is analysed to
find some baselines of the text region. (2) The text region is
chopped into components based on the gaps in the baselines.
(3) Each component is recognized as several characters by
comparing its shape with a trained database. For details of
OCR, the interested reader is referred to [38].

All three steps of OCR require heavy computation. A
series of complicated edits to the image like rotation, seg-
mentation and comparison has to be done. Performing those
tasks on the mobile device consumes a lot of energy. For the
powerful remote server energy-usage is not a critical metric.
In addition, most text images can be stored in small files of at
most a few kilobytes. So the amount of data to transmit from
the mobile device to the remote server is small. But still the
time needed for the transmission depends on the quality of
the network connection.

For the experiments amobile phone (SamsungGT-S7568,
Android 4.0) and a server (4 cores: Intel Xeon CPU E5649
2.53 GHz) have been used. The mobile phone is placed in
a dormitory room and connects to the Internet through Wifi
(54Mbps provided by a local Telecom operator). The server
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Fig. 1 Image to be recognized

is in the laboratory of the university campus and connects to
the Internet through a LAN port of 100M. We have used
the Linux command “traceroute” to track the route from
the mobile phone to the server. Normally, the route passes
12 hops to reach the destination, and the total round-trip
time is around 82ms. The offloading engine as introduced in
[44] includes an Android Application (App) for the mobile
client and a website project for the server. In our experiment,
the Tesseract OCR Engine is implemented in both parts of
the offloading engine. An image (1160 × 391 px, 8.1 KiB)
with a rectangle text region, as shown in Fig. 1, is used for
image recognition. Only 100 bytes are used to represent the
decyphered words.

Completion of an offloaded OCR task can be divided into
three phases: (1) the Android application transmits the image
from the mobile device to the server, (2) the words on the
image are recognized using the OCR engine in the server,
and (3) the mobile device receives and displays the result
from the server. The OCT is the time needed to complete the
three steps. The same offloading task has been repeated more
than 58,000 times in approximately 24h in order to observe
OCT under the different network conditions. The results are
stored in a text file in the mobile device. The memory of
the mobile phone used for caching is cleared after the task
completion and reused again in the next new task.

In addition, we conducted a different experiment where
the image recognition is performed in the mobile device. We
call it local execution, as all the processing steps (e.g. analy-
sis, chopping and recognition) are completed by the mobile

device itself. The completion time is called local completion
time (LCT). The same image Fig. 1 is repeatedly recognized
8400 times by the local execution. In the next subsection,
we will show that although local execution is slower than
offloading, it is more stable than the latter.

Figure 2 shows a scatter plot of all data of the entire 58,000
samples over a 24-h period starting at 8am on 14 January
2014. Under the assumption of a constant processing time, a
large total completion time can be attributed to a long trans-
mission time, i.e. poor network performance. The majority
of the samples fall into the range between 980 and 1380ms,
corresponding to the 0.05 and 0.75 quantile of all the sam-
ples. Obviously, the distribution of the sample values is not
identical at different times. While we do not know the reason
for systematic changes in network transmission times, there
are clearly several types of typical behaviour that should be
distinguished.

We have selected three subsets of our observations as indi-
cated by the shaded areas in Fig. 2, each containing 2000
samples, which corresponds to a time window of 40 min
each. The number of samples is enough to decently fit a
distribution and capture one type of network behaviour, the
normal, the deteriorated and the bad state.

3.2 Experimental results

Table 1 shows the mean, the quantiles and the variance of
the three subsets. In the normal subset the mean completion
time has a low variability, as the 0.9 quantile is only 15%
higher than the mean. It is also worth mentioning that for the
given application and set-up fast offloading takes in total only
half as long as local computation, because remote servers are
much faster than mobile devices.

Very roughly speaking, it seems like the network degrades
most in the early afternoon and in the evening. We do not try
to explain this, as finding the cause of network delays is not
within the scope of this paper. Rather we argue that offload-
ing as well as a local restart make sense for certain network

Fig. 2 Scatter plot of all OCT samples
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Table 1 Statistics of completion times (ms)

Normal Deteriorated Bad LCT

Mean 1191 1618 2183 2377

0.6 Quantile 1171 1466 2075 2382

0.9 Quantile 1358 2595 3027 2411

0.99 Quantile 1575 5495 7514 2480

variance 14,496 805,861 1,680,265 1249

Fig. 3 Scatter plot of all LCT samples

conditions and since we rightfully assume that network con-
ditions change over time a sliding window estimate is needed
and appropriate.

It shouldbenoted that on the average, even inpoor network
condition the offloaded task completes faster than the one that
is computed locally. However, for the bad network period,
since enough outliers skew the distribution and increase the
sample variance, the variability in the data is high enough to
justify the use of restart.

The completion time measurement of the local computa-
tion (LCT) is shown in Fig. 3. Local computation is usually
stable, with very few outliers. Most samples fall into a nar-
row range between 2338 and 2411ms, corresponding to the
0.05 and 0.9 quantile.

In summary, in the best case offloading can provide a
solution in approximately half the time needed for local
processing. On the other hand, local execution times are very
stable, albeit longer than processing using offloading, which
suffers from high variability and, hence, sometimes takes
very long.

3.3 Data analysis

In this section the sampled data will be analysed to deter-
mine whether the theoretical conditions for successful restart
are met. It can be shown [43] that restart is beneficial if the
task completion time follows a distribution with sufficiently
high variance or heavy tail. Therefore, the distribution of the
experimental data and its variability will be determined. The

log–log complementary distribution plot is used to illustrate
the weight of the tail of the distribution [8].

Figure 4 shows the completion time of the three sub-
sets and the LCT versus their complementary cumulative
distributions on a log scale. Clearly, for the subset of the
bad network state the curve has an approximately con-
stant slope of −2, indicating a heavy tail [8]. For the
subset in deteriorated condition the tail has an exponen-
tial decay for long task completion times. Therefore, in
this case we cannot clearly diagnose a heavy-tailed distri-
bution. For the normal subset the decrease is steep, and
for local computation completion times it is almost infinite.
This indicates certainly no heavy tail in the latter two sub-
sets.

Completion times using the local computation are almost
constant. There is very little variation in the measurements.
This means that once local computation has started restart
will certainly not be beneficial. However, during a phase of
poor network quality, a local restart may speed up the solu-
tion.This does not yet answer thequestionwhat a goodchoice
of the timeout for restart could be.

Figures 5, 6 and 7 show the histograms of the three sub-
sets and the density of the fitted distribution. For convenient
fitting of phase-type distributions, the histograms have been
shifted to the origin by subtracting the minimum value from
all observations. The distribution fitting will be discussed in
the next section.

3.4 Distribution fitting

In this section, we will describe the fitting process for
the OCT as shown in the histograms and densities in
Figs. 5, 6 and 7. Let the random variable To represent
OCT of an offloading task without restart. The distrib-
ution of To is fitted with the cluster-based fitting algo-
rithm [32] that fits a phase-type (PH) distribution to the
data. The fitting procedure uses clustering and fits an

Fig. 4 Log–log complementary distribution of the completion time

123



402 Q. Wang, K. Wolter

Fig. 5 Histogram and PH distribution of the normal subset

Fig. 6 Histogram and PH distribution of the deteriorated subset

Fig. 7 Histogram and PH distribution of the bad subset

Erlang distribution to each cluster. The full distribution is
then a mix of those Erlang distributions, a hyper-Erlang
distribution.

The hyper-Erlang distribution is suitable for situations
where restarts succeed [31]. This distribution takes values
from different random variables with different probabilities,
for instance, with probability αi a value from an Erlang
distribution with mi phases and parameter λi > 0, i =
1, 2, . . . , M . M is the number of clusters. In general, the
mixed-Erlang distribution is represented by a vector-matrix
tuple (α, Q).

Q =

⎡
⎢⎢⎢⎣

Q1 0
. . .

. . .

0
QM

⎤
⎥⎥⎥⎦ , Qi =

⎡
⎢⎢⎢⎣

−λi λi
. . .

. . .

−λi λi
−λi

⎤
⎥⎥⎥⎦

(1)

α = (α1, 0, . . . , 0︸ ︷︷ ︸
m1

, α2, 0, . . . , αM , 0, . . . , 0︸ ︷︷ ︸
mM

, )

M∑
i=1

αi = 1

(2)

Qi ∈ R
mi×mi , i = 1, . . . , M is a square matrix with size

mi . The probability density function and cumulative distrib-
ution function are defined as:

f (t) = αeQt (−Q · 1) =
M∑
i=1

αi
(miλi )

mi tmi−1

(mi − 1)! e−miλi t (t � 0)

(3)

F(t) = 1 − αeQt · 1 = 1 −
M∑
i=1

αi

(mi−1∑
k=0

(miλi t)k

k! e−miλi t

)
,

(4)

where 1 is the column vector of ones with the appropriate
size.

Although the hyper-Erlang distribution has exponentially
decaying tails, its variance can still be large enough to fulfil
the requirements for successful restart as formally introduced
in Sect. 5.1.

Since the completion times of a task have a lower threshold
greater than zero, as can be seen in Fig. 2 and PH distribu-
tions preferably have a nonzero density at the origin, we have
shifted the density fo(t) to the left by the minimum observed
value T o

min for To, i.e. fo(t) = f ′
o(t−T o

min). This yields f ′
o(t)

as the PH fitting result of the experimental data shifted to the
origin.

Figures 5, 6 and 7 show the histograms and the PH results
of the shifted To of the normal, deteriorated and bad sub-
set. We used three clusters to fit the data, M = 3. Since
we grouped the data into three categories this seemed to be
a natural choice. Of course, one could have chosen more
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Table 2 Hyper-Erlang parameters

T o
min 806

Phase-type distribution

m λ α

Normal [5, 2, 3] [0.016, 0.0041, 0.0037] [0.88, 0.047, 0.073]

Det [3, 6, 2] [0.00082, 0.0163, 0.0023] [0.1, 0.7, 0.2]

Bad [4, 8, 4] [0.008, 0.0036, 0.001] [0.7, 0.15, 0.15]

Det deteriorated

Table 3 Error

Normal Deteriorated Bad

� f 0.2783 0.3051 0.2921

e1 0.1077 0.0262 0.2894

clusters, which might have increased the accuracy of the fit.
The parameter results are shown in Table 2. Table 3 shows
the error measurement of the PH results of the three sub-
sets. We use the area difference between densities � f and
the relative error in the first moment e1 to measure the error.

� f = ∫∞
0 | f̂ (t) − f (t)|dt and e1 = |ĉ1 − c1|

c1
, where f (t)

denotes the empirical pdf of the distribution to be fitted, f̂ (t)
is the pdf of the PH result, c1 and ĉ1 is the first standardized
moment of the empirical distribution and of the fitted PH
distribution, respectively.

4 Failure handling with restart

Our concept of mobile offloading is to provide both options,
i.e. of executing a given application locally in amobile device
as well as remotely in a server and selecting the suitable one
of the two. In the normal system state, the mobile device
can establish a reliable connection with the server to send
parameters and receive results. When the connection is inter-
rupted or suffers degradation, the system is in some kind of
a failed state. The failure handling consists of restart after
expiry of a timeout. The workflow of normal offloading and
restart is shown in Fig. 8.

4.1 Offloading retry

We assume that during the offloading process, if the network
connection is disturbed and cannot support the data transmis-
sion, the mobile device is informed to wait. A timeout value
is set to restrict the waiting time. If the network recovers
quickly before the timeout expires, the offloading process
resumes execution. However, if the network is not robust
enough, the connection is unable to recover in a short time.

Fig. 8 Process of the offloading execution with adaptive restart

This is assumed to happen when the waiting time exceeds
the timeout. In this case the previous task is abandoned, and
a new try of the same offloading task is restarted.

4.2 Adaptive restart

At times the offloading process may meet an unpredictable
delay in data transmission. If the connection quality expe-
riences a long-term turbulence, the mobile device has to
restart several times and waits long for a sufficiently long
up-time of the connection to complete the data transmission.
Obviously, the redundant restart consumes not only time but
also too much energy. In order to avoid such a long waiting
time, the pre-offloading task will be restarted locally in the
mobile device. Although the local restart may take longer
than offloading, the execution continuity is maintained.

5 Optimal adaptive restart

When using restart one has to decide whether and when to
abort a running task and to restart it. Obviously, there is a
trade-off between waiting for the offloading task to complete
and terminating the attempt to try again locally. In [43], an
iterative solution for an infinite number of possible retries has
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been derived. In this section, we adopt the solution for com-
puting the optimal timeout from [43] for the expected task
completion time of the adaptive restart scheme. Based on the
theoretical analysis, the optimal timeout for every restart and
the optimal threshold for the number of offloading restarts
are derived.

For a given random variable T describing task completion
time restart after a timeout τ is promising if the following
condition holds [43]:

E[T ] < E[T − τ |T > τ ] (5)

The interpretation of condition (5)means that for restart to
be beneficial the expected completion time when restarting
from scratch must be less than the expected time still needed
to wait for completion. It can be shown [43] that condition
(5) holds if the task completion time follows a distribution
with sufficiently high variance or heavy tail.

5.1 Derivation of the restart condition

Remember that To represents the OCT of an offloading task
without restart. Its density is fo(t), and its distribution func-
tion is Fo(t). Assume τ is the restart time, at which the
previous offloading task is aborted and the new try is issued.
Correspondingly, Tl represents the local computation time
LCT of the same task, fl(t) its density and Fl(t) its distrib-
ution. We assume that Fo(t) and Fl(t) are both continuous
probability distribution functions defined over the domain
[0,∞), such that Fo(t) > 0 and Fl(t) > 0 if t > 0. We
introduce T to denote the completion time when restart is
allowed. We write f (t) and F(t) for its density and cumu-
lative distribution function, respectively. We are interested
in the expectation of T using the optimal timeout τ ∗. The
value of τ can be changed in real time according to system
performance. But for simplifying the theoretical analysis,
we assume that τ is constant in the process of completing
a given task. Then, in the next subsection, we use individ-
ual timeout values for the restart with offloading and local
execution.

F(t) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Fo(t) 0 � t < τ

1 − (1 − Fo(τ ))(1 − Fo(t − τ)) τ � t < 2τ
.
.
.

1 − (1 − Fo(τ ))n−1(1 − Fo(t − (n − 1)τ )) (n − 1)τ � t < nτ

1 − (1 − Fo(τ ))n(1 − Fl (t − nτ)) nτ � t

(6)

f (t) =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

fo(t) 0 � t < τ

(1 − Fo(τ )) fo(t − τ) τ � t < 2τ
.
.
.

(1 − Fo(τ ))n−1 fo(t − (n − 1)τ ) (n − 1)τ � t < nτ

(1 − Fo(τ ))n fl (t − nτ) nτ � t

(7)

Remember in Eqs. (6) and (7), that n � 2, when
n = 1 is the single local restart mode which has been

analysed in [46] as:

F(t) =
{
Fo(t) (0 � t < τ)

1 − (1 − Fo(τ ))(1 − Fl(t − τ)) (τ � t)
(8)

f (t) =
{
fo(t) (0 � t < τ)

(1 − Fo(τ )) fl(t − τ) (τ � t)
(9)

We define the partial expectation M(τ ) of the completion
time T to determine its expectation E[T ].

M(τ ) =
∫ τ

0
t f (t)dt =

∫ τ

0
t fo(t)dt (10)

The respective densities of T and To are identical between
0 and τ , so their partial expectations are equal as well.

E[T ] =
∫ τ

0
t fo(t)dt + (1 − Fo(τ ))

∫ 2τ

τ

t fo(t − τ)dt + · · ·

+ (1 − Fo(τ ))n−1
∫ nτ

(n−1)τ
t fo(t − (n − 1)τ )dt

+ (1 − Fo(τ ))n
∫ ∞

nτ

t fl(t − nτ)dt

= M(τ ) + (1 − Fo)(τ )(M(τ ) + τ Fo(τ )) + · · ·
+ (1 − Fo(τ ))n−1(M(τ ) + (n − 1)τ Fo(τ ))

+ (1 − Fo(τ ))n(nτ + E[Tl ])

=
n−1∑
k=0

(1 − Fo(τ ))k(M(τ ) + kτ Fo(τ ))

+ (1 − Fo(τ ))n(nτ + E[Tl ]), (11)

∵

(1 − Fo(τ ))nnτ + (1 − Fo(τ ))n−1(n − 1)τ Fo(τ )

= (1 − Fo(τ ))nτ + (1 − Fo(τ ))n(n − 1)τ

+ (1 − Fo(τ ))n−1τ Fo(τ )

= (1 − Fo(τ ))nτ + (1 − Fo(τ ))n−1(n − 1)τ, (12)

∴

n−1∑
k=0

(1 − Fo(τ ))kkτ Fo(τ ) + (1 − Fo(τ ))nτ

= τ

n∑
k=1

(1 − Fo(τ ))k . (13)

Substituting (13) in Eq. (11), we get

E[T ] = M(τ ) +
n−1∑
k=1

(1 − Fo(τ ))k(M(τ ) + τ)

+ (1 − Fo(τ ))n(τ + E[Tl ]). (14)
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Let E[Ti ] represents E[T ] when n = i , and E[Tτ ] means
n → ∞. When n → ∞ is the mode with infinite offloading
restart, as derived in [43]:

E[Tτ ] = M(τ ) + τ

Fo(τ )
− τ. (15)

When n = 1,

E[T1] = M(τ ) + (1 − Fo(τ ))(τ + E[Tl ]). (16)

The criterion to decide whether to restart or not can be
formulated as E[T ] < E[To]. With (14), this condition can
be written as the following inequality:

E[Tl ] <

∫∞
τ

t fo(t)dt

(1 − Fo(τ ))n
−

n−1∑
k=1

M(τ ) + τ

(1 − Fo(τ ))k
− τ (17)

In [46], the restart criterion for n = 1 has been derived as

E[Tl ] <

∫∞
τ

t fo(t)dt

1 − Fo(τ )
− τ (18)

For n → ∞, the restart criterion is

M(τ ) + τ

Fo(τ )
− τ < E[To]. (19)

Theorem 1 When the criterion of exclusive local restart
(n = 1, Eq. 18) is satisfied, the criterion of the adaptive
restart scheme (n > 1, Eq. 17 or n → ∞, Eq. 19) is also
satisfied.

Proof As the prerequisite of using offloading is E[To] <

E[Tl ], Eq. (18) can be extended as:

E[To] < E[Tl ] <
E[To] − M(τ )

1 − Fo(τ )
− τ (20)

�⇒

E[To](1 − Fo(τ )) < E[To] − M(τ ) − τ(1 − Fo(τ ))

�⇒

M(τ ) + τ(1 − Fo(τ )) < E[To]Fo(τ )

�⇒
M(τ ) + τ

Fo(τ )
− τ < E[To].

So when n → ∞, Theorem 1 is true. Let

g1(τ ) =
∫∞
τ

t fo(t)dt

1 − Fo(τ )
− τ. (21)

Fig. 9 Restart timeout with 0–4 offloading retries and 1 local retry

When n � 2,

gn (τ ) =
∫∞
τ

t fo (t) dt

(1 − Fo (τ ))n
−

n−1∑
k=1

M (τ ) + τ

(1 − Fo (τ ))k
− τ. (22)

gn (τ ) − gn−1 (τ ) =
∫∞
τ

t fo (t) dt

(1 − Fo (τ ))n−1

(
1

1 − Fo (τ )
− 1

)

− M (τ ) + τ

(1 − Fo (τ ))n−1

= E[To] − M (τ )

(1 − Fo (τ ))n
Fo (τ )

− M (τ ) + τ

(1 − Fo (τ ))n−1 (23)

Recalling the result of Eq. (19) and substituting for E[To],
we have

gn(τ ) − gn−1(τ ) >

M(τ ) + τ

Fo(τ )
− τ − M(τ )

(1 − Fo(τ ))n
Fo(τ )

− M(τ ) + τ

(1 − Fo(τ ))n−1 = 0. (24)

Hence, we have proved that gn(τ ) > gn−1(τ ), when n �
2. Thus if g1(τ ) > E[Tl ], the inequality of (17) is always
true for any n > 1, including n → ∞.

Figure 9 shows the result of (22), calculated according
to fo(t) of the bad subset from Table 2. Theorem 1 is also
demonstrated in Fig. 9. An interesting point worth mention-
ing is that when (M(τ ) + τ)/Fo(τ ) − τ = E[To], τ is at the
critical value and gn(τ ) = gn−1(τ ) = · · · = g1(τ ) = M(τ ).
When τ is larger than this critical value, gn(τ ) becomes an
increasing function with n at the same τ . Thus if g1(τ ) >

E[Tl ], then gn(τ ) > E[Tl ]. This proves Theorem 1.

Theorem 2 When the criterion of restart is satisfied as the
inequality (19) holds, the expected task completion time

123



406 Q. Wang, K. Wolter

E[Tn] decreases with the number of restart n at the same
τ .

Proof Using the prerequisite of using offloading E[To] <

E[Tl ], the inequality of (19) can be extended as:

M(τ ) + τ

Fo(τ )
− τ < E[Tl ]. (25)

When n > 1, we have E[Tn] < E[Tn−1]:

E[Tn] − E[Tn−1]
= (1 − Fo (τ ))n−1 (τ + M (τ )) + (1 − Fo (τ ))n−1 (τ

+ E[Tl ]) (1 − Fo (τ ) − 1)

= (1 − Fo (τ ))n−1 ((τ + M (τ )) − (τ + E[Tl ]) Fo (τ ))

< (1 − Fo (τ ))n−1
(

(τ + M (τ ))

Fo (τ )
− τ − E[Tl ]

)
= 0.

(26)

When n → ∞:

E[Tτ ] − E[Tn]

= M(τ ) + τ

Fo(τ )
− τ − M(τ ) −

n−1∑
k=1

(1 − Fo(τ ))k(M(τ ) + τ)

− (1 − Fo(τ ))n(τ + E[Tl ]), (27)

∵

n−1∑
k=1

(1 − Fo(τ ))k = (1 − Fo(τ )) − (1 − Fo(τ ))n

Fo(τ )
, (28)

∴

E[Tτ ] − E[Tn]
= M (τ ) + τ

Fo (τ )
− τ − M (τ ) − 1 − Fo (τ )

Fo (τ )
(M (τ ) + τ)

− (1 − Fo (τ ))n

Fo (τ )
(τ + M (τ ))

− (1 − Fo (τ ))n (τ + E[Tl ])
= (1 − Fo (τ ))n

(
M (τ ) + τ

Fo (τ )
− τ − E[Tl ]

)
< 0. (29)

Thus if inequality (25) holds, we have E[Tτ ] < E[Tn] <

· · · < E[T1] < E[To] < E[Tl ]. This proves Theorem 2.

5.2 Optimal restart timeout

The optimal restart timeout is the value of τ where E[Ti ] is
minimal. For comparing the system performance under the
adaptive restart scheme with different number of restart, Fig.
10 shows E[Ti ](i = 1–5), E[Tτ ] and E[To] for the same data

Fig. 10 Expectation of the task completion time versus τ under differ-
ent restart polices

Table 4 Performance comparison under identical restart timeout

E[T1] E[T2] E[T3] E[T4] E[Tτ ]
Min 2630 2305 2230 2208 2198

τ 6901 4402 3576 3185 2818

d 0.49 0.87 0.96 0.98 1

fo(t) of the bad subset from Table 2. As expected E[Tτ ] has
the best performance, the minimum of E[Tτ ] is the lowest.
Themost important observation shown in Fig. 10 is thatwhen
i = 2, E[T2] is quite close to the ideal performance of E[Tτ ].
To evaluate the performance of different number of restarts,
we define a metric to measure the distance between the opti-
mal performance E[Tτ ] and E[Ti ]. As we have proved that
E[Ti ] < E[To] for i = 1, 2, . . . ,∞, the value of E[Ti ]
can only vary in the space of (E[Tτ ], E[To]). So we define
di = (E[To] − E[Ti ])/(E[To] − E[Tτ ]) to measure how
close is E[Ti ] to E[Tτ ].

From Table 4, we can easily find that the performance
of using two restarts can closely approach the best per-
formance of infinite offloading restarts. Because E[T2] has
reached 87% performance of E[Tτ ], whereas if restarting
exclusively with the local execution, its performance E[T1]
reachesmerely 50%of E[Tτ ]. Accordingly, we can conclude
that the adaptive restart scheme is better than the exclusive
local restart. This is because it uses the offloading restart to
speed up the task completion. Actually, by applying the local
restart, the adaptive restart scheme can also avoid the unpre-
dictable waiting time of redundant offloading restart.Wewill
use experiments to prove this conclusion in Sect. 7.

5.3 Individual restart timeout

In the previous subsection, we have evaluated the perfor-
mance of the adaptive restart scheme with identical optimal
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timeout value. In this subsection, applying a different τl as
the timeout for the local restart is analysed. T ′ denotes the
task completion time when τl is allowed.

F(t)

=

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Fo(t) 0 � t < τ

1 − (1 − Fo(τ ))(1 − Fo(t − τ)) τ � t < 2τ
...

1 − (1 − Fo(τ ))n−1(1 − Fo(t − (n − 1)τ )) (n − 1)τ � t < (n − 1)τ + τl
1 − (1 − Fo(τ ))n−1(1 − Fo(τl)(1 − Fl(t − (n − 1)τ ) − τl) (n − 1)τ + τl � t

(30)

f (t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

fo(t) 0 � t < τ

(1 − Fo(τ )) fo(t − τ) τ � t < 2τ
...

(1−Fo(τ ))n−1 fo(t−(n−1)τ ) (n−1)τ � t < (n−1)τ +τl
(1 − Fo(τ ))n−1(1 − Fo(τl) (n − 1)τ + τl � t
fl(t − (n − 1)τ ) − τl)

(31)

As the function (6) and (7), n � 2 in the above function
(30) and (30). When n = 1, the situation is identical with (8)
and (9), so we do not write them out again.

Using the similar expression as Eq. (11), we calculate the
expectation of T ′ as

E[T ′] =
n−1∑
k=0

(1 − Fo(τ ))k(M(τ ) + kτ Fo(τ ))

+ (1 − Fo(τ ))n−1(1 − Fo(τl))((n − 1)τ

+ τl + E[Tl ]) (32)

Unfortunately, it is impossible to give a simplified expres-
sion for E[T ′] as for (14). Figure 11 shows E[T ′

2] for
various values of τ with different τl . The bottom of the
graph indicates the best timeout fraction (parameters in Table
5). Comparing the two Tables 4 and 5, we can find that
using different timeout values for the offloading and local
restarts individually can improve the performance. The min-
imum of E[T ′

2] is less than that of E[T2]. But considering
the complexity of the computation for the optimal τ and τl ,
this performance increase is expensive. In addition, in real
applications, it is difficult for a mobile device to estimate the
optimal τ and τl online as it requires to simultaneously sort a
two-dimensional matrix. A large amount of time and energy
is required for calculating the individual timeout values, but
the benefit is limited. Thus, we cannot recommend the use
of individual timeouts for the adaptive restart scheme.

Before moving on to the next section, we briefly review
the conclusions obtained in this section.

1 Theoretically, infinite offloading restart is the optimal
option with the lowest mean completion time. But
applying the adaptive restart scheme with two restarts

(one offloading and one local) can reach almost 90% of
the best performance.

2 Although triggering the offloading and local restart with
individual timeout value can slightly reduce the expected
completion time, due to its high complexity for calcu-
lating the optimal individual timeout values, we do not
implement this scheme in the experiments.

6 Dynamic restart scheme

The procedure of fitting a theoretical distribution and com-
puting the optimal restart timeout from this distribution

Fig. 11 Expectation of the task completion time versus τ and τl

Table 5 Performance comparison with optimal timeout τ and τl

Min τ τl d

E[T ′
2] 2284 3767 6901 0.90

E[T ′
3] 2220 3266 6901 0.97
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is computationally very expensive. Various algorithms and
tools exist for fitting PH distributions to empirical data
[17,39,40,45], and the fitted distributions approximate the
data in many cases very well. For efficiency reasons we use
a direct method [33] to estimate g(τ ) and E[T ] from the his-
togram. We dynamically build and update a histogram and
then repeatedly determine the optimal restart timeout as dis-
cussed in the following subsections.

6.1 Dynamic histogram

A histogram simply divides up the range of possible obser-
vations into intervals, which we call buckets, and counts the
number of observations that fall into each bucket. Buck-
ets can have a variable or a constant width; we choose
the latter for simplicity. Histograms initially hold too few
samples to provide a good approximation of a probability
distribution. After collecting data for a while a stationary
distribution is represented increasingly well. However, if the
distribution changes, old samples will never be dismissed
from the histogram and will forever bias the new probability
distribution.

There are several options how to handle changes in distri-
bution: the histogram can be repeatedly flushed as to build up
a new histogram for the respective current state of the system.
This introduces many initial periods with insufficient data.
Another option is to transform the buckets intodrippingbuck-
ets that lose samples constantly over time. It is not easy to
adjust the dripping speed such that the histogram will hold
sufficient but not too many samples at all times [25,30,35].

We propose a partial flush which is tuned using two para-
meters, the total number of samples in the histogram when
executing the partial flush and the percentage of samples to
equally flush from all buckets.

Algorithm 1 Initialization for the histogram
Tl ← Local_Run() //Complete the task by local execution
T o
min ← Offload_Run() //Complete the task by offloading

T o
max = Tl

�B = (T o
max − T o

min)/N //�B: The bucket width
for i = 1 to N do

Baverage[i] = 0
NB [i] = 0

end for
Nout = 0
Bout = 0

Algorithm 1 shows the algorithm to initialize the his-
togram prior to run time. The parameters are the following:

T o
min : The lower bound of the histogram.

T o
max : The upper bound of the histogram.

Tl : The task completion time by local execution.

N : The number of buckets in the histogram.
Baverage[i]: The mean of all the samples in the i th bucket.
NB[i]: The number of samples in the i th bucket.
Nout : The number of samples, whose value >T o

max .
Bout : The mean of all the samples >T o

max .

The number of buckets N must be chosen manually. The
upper bound of the histogram is determined by the execu-
tion time of one local run. The lower bound is given as
the execution time of one offloading task. In the course of
the experiments there may later be shorter offloading times
which will be used as new lower bound and additional buck-
ets will be inserted. These choices are motivated by the
purpose of the histogram: to determine the optimal restart
timeout the precise shape of the distribution in the tail is not
needed.

Algorithm 2 Recording a new sample
Local Execution:
1: Ttemp ← Local_Run()
2: Tl = (Tl + Ttemp)/2
Offloading:
3: Ttemp ← Offload_Run()
4: switch Ttemp do
5: case 1 : Ttemp � T o

max

6: Bout = (Bout×Nout )+(Ttemp−T o
min)

Nout+1
7: Nout + +
8: case 2 : Ttemp < T o

min
9: M = �(T o

min − Ttemp)/�B�
10: Insert(M)
11: Baverage[1] = Ttemp − T o

min
12: NB [1] = 1
13: case 3 : T o

min � Ttemp < T o
max

14: j = 
(Ttemp − T o
min)/�B� + 1

15: Baverage[ j] = (Baverage[ j]×NB [ j])+(Ttemp−T o
min )

NB [ j]+1
16: NB [ j] + +
17:
18: function Insert(k)

//Insert k empty buckets between Ttemp and T o
min

19: N = N + k
20: T o

min = T o
min − �B × k

21: for i = 1 to N do
22: Baverage[i + k] = Baverage[i] + �B × k
23: NB [i + k] = NB [i]
24: end for
25: end function

Algorithm 2 shows the algorithm to record a new sample
at run time. If the sample comes from local execution, Tl is
updated by themean of its original value and the new sample.
Hence, the impact of old samples is reduced and replaced by
that of new ones.

If the new sample is produced by offloading, it can be
added to the histogram in three ways according to its value.
Case 1, when new samples are larger than T o

max , they are
all added to the out bucket. Case 2, when a shorter offload-
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Fig. 12 Recording a new offloading sample

ing time arrives, M additional buckets are inserted, M is
calculated based on the ceiling function shown in line 9.
T o
min moves down to include the new sample. Lines 21–24

adjusts the mean and index of each original bucket accord-
ingly. Case 3, when the sample falls into the range between
T o
min and T

o
max , it is added to the corresponding bucket in the

histogram. Figure 12 is the illustrative diagram of the three
cases.

The partial flush algorithm, shown as Algorithm 3, needs
the two new parameters Nbound and p:

Nbound : threshold to start the update. When the number of
samples stored in the histogram exceeds this value,
the update algorithm is triggered.

p: percentage of samples to be kept. Fromeachbucket,
(1 − p)/100 ∗ ni samples are removed if the
bucket holds a total of ni samples before the partial
flush.

Algorithm 3 Update for the histogram

B =
N∑
i=1

NB [i] + Nout

if B > Nbound then
NB [i] = 
NB [i] × p� // i from 1 to N
Nout = 
Nout × p�

end if

A large number of samples Nbound until partial flush leads
to a long sampling period. Conversely, a large percentage p
indicates that themajority of the samples are kept after updat-
ing. Thiswill lead to frequent inexpensive partial flushes. The
mechanism is related to hysteresis as used in the control of
queueing systems.

6.2 Asymptotically unbiased ratio estimator

The estimate for the optimal restart timeout is based on
the asymptotically unbiased ratio estimator [7]. Using the
dynamic histogram proposed in Sect. 5.2, an estimator for
gn(τ ) in Eq. (22) is:

ĝn (τi ) =
∑N

j=i NB[ j] · Baverage[ j] + Nout · Bout(∑N
k=i NB[k] + Nout

) (
1 − F̂o

′
(τi )
)n

−
n−1∑
l=1

M̂ ′ (τi ) + τi(
1 − F̂o

′
(τi )
)l − τi

− T o
min

(
1− 1

F̂o
′
(τi)

)⎛
⎜⎝1− 1(

1− F̂o
′
(τi)
)n−1

⎞
⎟⎠

(33)

We assume that the optimal timeout τ only takes on values
τi = i × �B, i = 1, 2, . . . , N . The cumulative distribution
function F̂o

′
(τi ) is estimated as:

F̂o
′
(τi ) =

∑i
j=1 NB[ j]

∑N
k=1 NB[k] + Nout

(34)

The partial moment M̂ ′(τi ) is estimated as:

M̂ ′(τi ) =
∑i

j=1 NB[ j] · Baverage[ j]∑i
k=1 NB[k] (35)

If the maximum estimate ĝ(τi )max > Tl , the restart con-
dition (18) is fulfilled. Then, an estimate of E[T ] provides
the optimal timeout.

Ê[T ]τi = M̂ ′(τi ) +
n−1∑
k=1

(1 − F̂o
′
(τ ))k(M̂ ′(τi ) + τi )

+ (1− F̂o
′
(τi ))(τi + Tl)+ 1−(1 − F̂o

′
(τi ))

n

F̂o
′
(τ )

T o
min

(36)

Remember that we have shifted all data, and the his-
togram to the origin. Therefore, the lower bound T o

min of the
histogram should be added to the expectation. The partial
moment M̂ ′(δi ) is estimated as:

M̂ ′(δi ) =
∑i

j=1 NB[ j] · Baverage[ j]∑i
k=1 NB[k] (37)

The optimal restart time can be identified by selecting
the value of δi , which minimizes Ê[T ]δi , and the optimal
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Fig. 13 User interface of the offloading engine implemented with the
dynamic adaptive restart scheme

timeout is τ = δi + T o
min . Actually, at run time first the

restart condition is evaluated and if it is not satisfied Ê[T ]δi
is not determined.

7 Comparison in practical application

In order to observe and analyse the performance of the
adaptive restart scheme in a real application we design an
experiment. Using the experiment we show a comparison of
five restart modes under different thresholds using the same
scenario. Figure 13 shows the user interface of the offload-
ing engine which is implemented with the dynamic adaptive
restart scheme.

7.1 Experiment environment

In order to imitate a scenariowhere the network connection is
unreliable, we walk around the main building in our campus
carrying the mobile device. The blue line in Fig. 14 shows

Fig. 14 Plan of the teaching building

the route of the device. As shown by the scale on the upper
right corner in Fig. 14, the area of this teaching building
is about 300 × 200m2 and seamlessly covered by wireless
network. When the mobile device is moving, it has to hand-
off frequently between different Wi-fi access points (APs).
We state that the time interval of switching from one AP to
the next is decided by some factors, e.g. the moving velocity
of the device, the idle capacity of the next AP and the number
of available APs near the device. But in our experiment, we
assume that this interval time is a randomvariable.During the
interval, the wireless network is unavailable for the mobile
device. Thus, the wireless network connection between the
mobile device and the server is unreliable when the device is
moving.

The same OCR offloading task introduced in Sect. 3 has
been repeated successivelywhile themobile devicewasmov-
ing. The results were stored in a text file in the mobile device.
The memory of the mobile phone used for caching is cleared
after each task completion and reused again in the next new
task.

7.2 Experimental results

In our experiment, we started from point A as shown in Fig.
14. For initializing the dynamic histogram, we stayed there
for 5 min. Then, we walked 10 min to the point B. A second
chronograph is used to measure the time in the experiment.
Although we cannot accurately reached the point B on time,
we guaranteed that the deviation is no more than 15 s. Then
we had a rest at the point B for 5 min. During the break, the
mobile device connected with an identical Wi-fi AP which
covers the area around point B. Even when we move in the
5×5m2 area around B, the mobile device did not hand-off to
another AP. Thus, in the remaining time, the mobile device
kept a reliable network connection to the server. The reason
we stayed was to observe the impact of restart on a good
network connection in the offloading system.

After the break, we spent 10 min again walking along
another route back to point A as shown by the arrow in Fig.
14. The total time of one walk was 30 min. We compared
five different restart modes:

A: No restart.
B: Infinite offloading restart, n → ∞.
C: Exclusively local restart, n = 1.
D: One offloading restart + local restart, n = 2.
E: Two offloading restart + local restart, n = 3.

Wewalked along the same route for each scheme six times
and added up the results. The throughput of the five schemes
over periods of 5 min is shown in Fig. 15. We defined the
throughput as the number of tasks completed in each period.
For each scheme, the number of tasks completed by the orig-
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Fig. 15 Throughput of different times in a day

inal offloading (oof), the restarted offloading and the local
execution are marked individually in Fig. 15. Surprisingly,
the experiment result shows that infinite offloading restart is
not the optimum as its throughput is less than the other three
restart schemes C, D and E. The explanation for this phe-
nomenon is that when the mobile device is changing Wi-fi
AP, sometimes the hand-off process requires tens of seconds.
In particular, if the next access point has already connected
to a large number of users, the new coming mobile device is
hardly assigned sufficient resources to build a reliable con-
nection. Connecting to a heavily loaded AP means that the
hand-off time may extend to several minutes. During this
time, repeatedly restarting to offload cannot speed up the
task completion. Under a slow hand-off, local restart can at
least guarantee task completion.

Figure 15 also demonstrates that the throughput of scheme
C is lower than that of scheme D, E. This phenomenon
follows Theorem 2 in Sect. 5. However, the throughput of
scheme D is higher than that of scheme E because in practi-
cal applications successive offloading tries are in many cases
not independent. Generally, the failure of the first offloading
restart indicates a high probability of the failure of successive
offloading restarts. Our experiments give a strong indication
of the correlation between successive restarts, at least when
network quality is poor. Due to its complexity we did not
consider the correlation in our theoretical analysis. In con-
clusion, the adaptive restart with one offloading retry and one
local restart is in this scenario the optimal scheme to increase
system performance.

8 Conclusion

In this paper we have extended our previous local restart
scheme introduced in [46]. We have proposed a new adap-
tive restart scheme to improve the performance of mobile
offloading systems. Before a task terminates by local restart

in themobile device, the adaptive scheme restarts it first using
several offloading attempts. When the number of offload-
ing restarts tries exceeds a given threshold, local restart is
launched.Restarting the task again at the appropriatemoment
can reduce its overall completion time.

First, we introduced an experiment to illustrate the impact
of network delays onmobile offloading. Then, wemathemat-
ically derived the optimal threshold and timeout in order to
reduce the task completion time. We proposed a dynamic
scheme to implement the adaptive restart for the mobile
offloading system. In this scheme, a dynamic histogram is
used to track the variation of the network quality, and the
restart condition and the optimal time are estimated using
the histogram.

By theoretically comparing the performance of applying
different numbers of offloading retries, infinite offloading
restart is proved to perform best, given that successive tries
are independent and follow the same probability distribution.
However, in practice a limited number of offloading restarts
are preferred. Therefore, we have replaced infinite tries with
a final local execution.We experimentally explore howmany
offloading restarts should preceed the final local execution as
to optimize the system throughput (and hence the job comple-
tion time). We find that after one failed offload attempt local
execution leads to higher throughput than another offload try.
We assume that this effect indicates correlation of succes-
sive tries since most network problems have longer duration.
Besides the correlation of successive delays, accelerating
the adaptation of restart configuration by quickly updating
threshold and timeout also improves the systemperformance.
And the frequency of tuning the histogram has an impact on
the update process. In the future we will include correlation,
the speed of adaptation and the histogram update frequency
in our theoretical study as to better predict the expected ben-
efit of repeated offloading tries.
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