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Abstract The Systems Modeling Language (SysML) is
a semi-formal, graphical modelling language used in the
specification and design of systems. We describe how Com-
municating Sequential Processes (CSP) and its associated
refinement checker, FDR3, may be used to underpin an
approach that facilitates the refinement checking of the
behavioural consistency of SysML diagrams. We achieve
this by utilising CSP as a semantic domain for reason-
ing about SysML behavioural aspects: activities and state
machines are given a formal, process-algebraic semantics.
These behaviours execute within the context of the struc-
tural diagrams to which they relate, and this is reflected
in the CSP descriptions that depict their characteristic pat-
terns of interaction. We describe how CSP and FDR3 can
be used in conjunction with SysML in a formal, top-down
approach to systems engineering. Moreover, the composi-
tionality afforded by CSP alleviates the state space explosion
problem frequently encountered with complex formal mod-
els and complements the top-down approach of SysML.
Typically, a system is composed from constituent systems
using the concept of blocks. SysML permits two alternative
interpretations with regard to the behaviour of the resulting
composition. We argue that the use of a process-algebraic
formalism enables us to explore the relationships between

Communicated by Dr. Bernhard Schaetz.

B Andrew Simpson
Andrew.Simpson@cs.ox.ac.uk

Jaco Jacobs
Jaco.Jaobs@cs.ox.ac.uk

1 Department of Computer Science, University of Oxford,
Wolfson Building, Parks Road,
Oxford OX1 3QD, UK

these interpretations in a more rigorous fashion than would
otherwise be the case.
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1 Introduction

Modern systems are typically characterised as compositions
of interconnecting components or systems, functioning as
a whole in order to achieve a shared goal. This makes
it increasingly difficult to orchestrate combined behaviour
and to ensure that the intended behavioural characteristics
of the complete system are adhered to, while maintain-
ing operational independence of the components or systems
that make up the whole. The need to establish solutions to
technologically challenging problems, often in a short time
frame, further complicates the matter. Moreover, the envi-
ronment external to a system is constantly evolving and
ever more demanding, resulting in external interactions of
increased complexity. These interactions are more taxing,
either because the systems are being used in an unfamiliar or
previously unforeseen context, or because the systems them-
selves are more complex. Thus, it is clear that a systematic
approach to deal with this inherent complexity and entan-
glement would be beneficial in a number of different ways.

The Systems Modeling Language (SysML) [17], which
was proposed by the Object Management Group (OMG)1, is
a graphical modelling notation that can be used to describe
complex, heterogeneous systems comprised of various com-
ponents. Modelling a system with SysML relies on the
concept of blocks—each of which has an associated set

1 http://www.omg.org.
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of states—communicating via events, possibly resulting in
a change of state for one or more of the communicating
blocks. The architecture of these systems allows a top-down
design, starting from an abstract level with high-level con-
cepts, down to levels with increasingly more detail. These
successive transformations give rise to the pleasing opportu-
nity of allowing the replacement of an abstract block with
a composition of parts; however, a big drawback of this
decomposition approach is that it is at best semi-formal and,
as such, cannot guarantee consistency between a block and
its parts.

Communicating Sequential Processes (CSP) [9,19] is a
process algebra that can be used to describe complex pat-
terns of interaction between processes, with each process
having its own characteristic behaviour. In this paper, we
show how CSP can be used to precisely define the differing
notions of composition outlined above. Moreover, the asso-
ciated refinement checker, FDR3 [8], gives rise to a practical
approach that enables us to reason about these interactions.
We make use of a case study to illustrate the approach.

SysML and CSP have clear differences. We would argue,
however, that it would be beneficial to develop a frame-
work that integrates the two, with a view to offering the
benefits of both. Specifically, by translating SysML into
CSP, there is the potential to give a precise definition of the
intended behaviour of a given SysML model, by making use
of the underlying formal semantics of CSP. Consequently,
this would allow us to undertake refinement checking of
the SysML model. It should be noted that the intention is
not to replace existing SysML modelling tools; rather, the
intention is to develop a formal framework that can be used
in conjunction with such tools in order to complement the
modelling activity being undertaken.

Activities and state machines are the core behavioural
constructs used to ascribe behaviour to SysML blocks. The
aforementioned constructs are frequently used in combina-
tion: activities are used to assign behavioural features that
ought to execute in a particular state, or on a given transi-
tion [17]. In this paper, we provide a behavioural semantics
for the conjoined behaviour of state machines and activities.
There have been several contributions where the sole focus
was either the formalisation of state machines or the formal-
isation of activities. To the best of our knowledge, this paper
is the first contribution where the intention is on the provi-
sion of a behavioural semantics that encompasses both these
formalisms.

At the structural level, SysML takes a compositional
approach with regard to systems specification: a block
can be comprised of other blocks, which, in turn, might
themselves consist of blocks. However, for the approach
to be effective and useful, the behavioural conducts of
these blocks need to be specified in a consistent manner.
Moreover, the approach needs to enable the modeller to suf-

ficiently abstract away details irrelevant to a particular level
of abstraction. Friedenthal et al. [7] suggest two alterna-
tive interpretations with regard to the combined behaviour.
These can be characterised as follows.

1. The classifier behaviour of the block can serve as an
abstraction of the behaviours of its parts. The abstrac-
tion serves as a specification that the parts must realise:
the parts must interact in such a way that their combined
behaviour conforms to the abstraction.

2. Alternatively, the classifier behaviour of the block acts
as a controller in order to actively orchestrate the behav-
iours of its parts. In this case, the behaviour of the block
is a combination of its behaviour and that of its parts.

We argue that the use of a process-algebraic formalism
enables us to explore the relationships between these inter-
pretations in a more rigorous fashion than would otherwise
be the case. CSP was selected due to its compositional
nature and good tool support.

When mapping between two seemingly disparate nota-
tions, it is crucial that the source notation be adequately
constrained in order to ensure that the resulting formulation
in the target notation is sensible. To this end, we place cer-
tain restrictions on, or make certain assumptions about, the
state machines we consider. These are detailed below.

– Every top-level state machine2 in our formalisation is a
simple composite state: the region of this state houses
the entire state machine. This state has no associated
state-based behaviours.

– Orthogonal composite states are not allowed. As such,
we do not consider fork and join states.

– We do not support do behaviours.
– Transitions between regions are limited to source and

target states that are simple or simple composite states
themselves. Thus transitions that cross-regional bound-
aries are not permitted to start or terminate on
pseudostates.

– Submachine states are not supported.
– We do not consider history pseudostates in our formali-

sation.
– Every region contains a valid state machine. In partic-

ular, this state machine is allowed only one compulsory
initial state. Multiple final or terminate states are permis-
sible, as appropriate.

– Each initial state has a single outgoing transition: by
insisting on a single outgoing transition, we ensure that
the first active starting state is unambiguously defined.

– The outgoing transition of an initial state may not con-
tain explicit triggers or guards.

2 The state machine at the root of the state hierarchy.
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Similarly, we constrain the activities we consider by
imposing the following restrictions.

– Every activity has a unique starting point designated
either by a single initial node, or, if there is no initial
node, a single parameter node from which control starts.

– Flow final nodes are not permitted.
– We do not allow for activity partitions in our formalisa-

tion.
– An action can have either outgoing object flows or out-

going control flows, but not both.
– The behaviour of a call behaviour action in our formali-

sation is assumed to be an activity.
– We exclude activities that have activity parameter output

nodes from consideration.
– We only consider simple fork and join nodes: if a fork

node splits into k separate flows, then those k flows will
eventually be joined via a join node.

– Incoming flows are not allowed for initial nodes.
– Initial nodes are allowed a single outgoing control flow.

The structure of the remainder of this paper is as follows.
In Sect. 2, we give the background to our work. Then, in
Sect. 3, we present our CSP model of state machines. Sec-
tion 4 formalises activities, while Sect. 5 considers a formal
model of SysML blocks. We then illuminate and validate
our approach, via a case study, in Sect. 6. Finally, in Sect. 7,
we summarise the contribution of this paper and place it in
the context of work undertaken by other authors.

2 Background

In this section, we give consideration to our languages of
interest—CSP and SysML. We start by presenting a brief
introduction to CSP.

2.1 Communicating Sequential Processes

2.1.1 Syntax

Events are at the heart of CSP—they are fundamental to
the synchronisation mechanism that is employed—with an
event being an indivisible communication or interaction. We
denote by Σ the set of all possible events for a particular
specification. We can also give consideration to the alpha-
bet of a process—the events that it can perform. We write
α P to denote the alphabet of a process P .

A communication takes place when two or more
processes agree on an event. The communication can be a
primitive event, or it can take a more structured, message-
passing form, utilising channels. The message-passing mech-
anism is based on the principle of a rendezvous between a

sending and a receiving process: if the communication takes
place on a channel, c, and a sending process wants to out-
put a value, e, then the receiving process has to allow for
this (by inputting on c). Once this has happened, the event
is abstracted as c.e. A process indicates that it intends to
output a value on a channel using the syntax c!e; the will-
ingness to receive an input on a channel is expressed as
c?x .

CSP is compositional in the sense that it provides oper-
ators that allow us to define a process in terms of other,
constituent processes. In the following, we consider those
operators that are of relevance to this contribution.

The CSP syntax utilised in this paper is defined as fol-
lows:

P = P |
Stop |
Skip |
e → P |
P � P |
�e : X • e → P |
P � P |
�e : X • e → P |
P \ X |
P o

9 P |
P [X ‖Y ]P |
P [|X |]P |
‖ i • [Xi ]Pi |
P ||| P |
||| i • Pi |
if b then P else P |
let P1, . .,Pn within P

In the above, P , P1, Pn and Pi denote processes, e
denotes an event, X , Y and Xi denote sets of events, and
b denotes a Boolean condition.

Stop denotes the deadlocked CSP process: it refuses to
participate in all events. Skip is the process that commu-
nicates the special internal event, �, before behaving like
Stop; it is used to model successful termination.

The process e → P , modelled using the prefixing oper-
ator, →, performs the event e and subsequently behaves as
the process P .

CSP provides two choice operators: the external or deter-
ministic choice operator, �, offers the environment the
choice between the initial events of its argument processes;
conversely, the internal or nondeterministic choice operator,
�, offers no such choice and the observed behaviour may
be that of either of the two participating processes. Indexed
versions exist for both operators. For example, � i : I • Pi

is an external choice between processes Pi , where i serves
as an index for the parameterised process P .
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1148 J. Jacobs, A. Simpson

The application of the hiding operator, \, in the process
P \X conceals the events of X from the view of the external
environment of P .

The process P1
o
9 P2 represents the sequential composi-

tion of processes P1 and P2. This process behaves as P1

until it terminates successfully, after which it behaves as P2.
Several parallel operators exist in CSP.
First, the process P1 [|X |]P2 uses the generalised par-

allel operator to define an interface, consisting of the events
of X , on which P1 and P2 must synchronise. Events outside
X may occur independently in either process. The process
P1 [X ‖ Y ]P2 denotes alphabetised parallel, where syn-
chronisation takes place on events in the set X ∩Y . Finally,
the interleaving operator, |||, expresses the unsynchronised
concurrent interleaving of the events of its two constituent
processes.

Indexed forms exist for all of these parallel operators. For
example, |||x : X • Px represents the indexed interleaving of
processes of the form Px , where x ∈ X .

A conditional choice construct is available in the form
if b then P1 else P2, where a process behaves as P1 if b is
true and P2 otherwise.

The let within construct allows us to use local definitions
(of the form of P1, . .,Pn ) in the definition of a complex
process: let P1, . .,Pn within P .

2.1.2 Semantics

CSP allows us to compare the behaviour of one process
against that of another. Several semantic models exist, but
the consideration of traces and failures is sufficient for our
purposes in this paper.

The traces of a process, P , written traces [[P ]], are the set
of all finite sequences of observable events.

For example, traces [[ a → b → Stop � c → d → Stop ]]
is the set

{〈〉,〈a〉,〈a,b〉,〈c〉,〈c,d〉}

P/t represents the state of the process P after the obser-
vation of the trace t , and refusals [[P ]] represents the initial
set of events refused by P , no matter how long they are
offered. To quote Roscoe [18]: “A refusal set is a set of
events that a process can fail to accept anything from how-
ever long it is offered” [18]. It follows that the elements
of failures [[P ]] are the pairs of the form (t ,X ) for some
t ∈ traces [[P ]], and such that X ⊆ refusals [[P/t ]]. As an
example, the pair (〈a〉,{a,c,d}) is a failure of the above
internal choice, as is (〈c〉,{a,b,c}).

We define traces-refinement, using reverse containment,
as

P1 
T P2

⇔
traces [[P2 ]] ⊆ traces [[P1 ]]

For example, the process a → b → Stop—the traces of
which are given by the set {〈〉,〈a〉,〈a,b〉}—is a traces-
refinement of the process a → b → Stop � c → d → Stop:

a → b → Stop � c → d → Stop

T

a → b → Stop

We define failures-refinement similarly:

P1 
F P2 ⇔
traces [[P2 ]] ⊆ traces [[P1 ]]
∧
failures [[P2 ]] ⊆ failures [[P1 ]]

For example, the following refinement holds as the sec-
ond process is more deterministic than the first:

a → b → Stop � c → d → Stop

F

a → b → Stop � c → d → Stop

The traces of both processes are given by

{〈〉,〈a〉,〈a,b〉,〈c〉,〈c,d〉}

The failures of a → b → Stop � c → d → Stop are given
by

{X : P{a,b,d} • (〈〉,X )}
∪
{X : P{b,c,d} • (〈〉,X )}
∪
{X : P{a,c,d} • (〈a〉,X )}
∪
{X : P{a,b,c} • (〈c〉,X )}
∪
{X : P{a,b,c,d} • (〈a,b〉,X )}
∪
{X : P{a,b,c,d} • (〈c,d〉,X )}

In the above, P{a,b,d} denotes the power set of {a,b,d},
i.e. the set of all subsets of {a,b,d}.

The failures of a → b → Stop � c → d → Stop are given
by
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On the formal interpretation and behavioural consistency checking of SysML blocks 1149

{X : P{b,d} • (〈〉,X )}
∪
{X : P{a,c,d} • (〈a〉,X )}
∪
{X : P{a,b,c} • (〈c〉,X )}
∪
{X : P{a,b,c,d} • (〈a,b〉,X )}
∪
{X : P{a,b,c,d} • (〈c,d〉,X )}

The refinement checking tool FDR3 [8]—which uses the
machine-readable dialect of CSP, CSPM —uses this theory
of refinement to investigate whether a potential design meets
its specification. A pleasing feature of FDR3 is that if such a
test fails, a counter-example is returned to indicate why this
is so. The interested reader should refer to [9] for a compre-
hensive introduction to the semantics of CSP.

2.2 Systems Modelling Language

SysML is a more compact language than UML. This fact
is reflected by the total number of diagrams and constructs
present in the specification: SysML has a total of nine dia-
grams, whereas UML has 14.

SysML is an extension of a subset of UML: some of the
UML diagrams are reused (state machine diagram, sequence
diagram and package diagram); some are extended (activity
diagram); some are modified (block definition diagram and
internal block diagram modify the class diagram and com-
posite structure diagram, respectively); and others are newly
introduced (requirement diagram and parametric diagram).

Blocks are the core modelling constructs of SysML and
provide the context in which behaviours execute. A block is
often composed of other blocks, termed parts, each of which
has its own associated behaviour. As per Sect. 1, there are
two alternative interpretations with regard to the combined
behaviour [7]: the classifier behaviour of the block can serve
as an abstraction of the behaviours of its parts; alternatively,
the classifier behaviour of the block acts as a controller in
order to actively orchestrate the behaviours of its parts.

Classifier behaviours are the main behaviours of blocks.
They execute from the instant the instance is created until
the point of destruction. The modelling construct most
frequently used to represent the classifier behaviour is a
state machine. In most systems engineering methodologies,
activities are typically used as a complementary modelling
notation to state machines: it is the behavioural formalism
normally associated with the effect component of a transi-
tion; alternatively, it is used to model behaviours related to
a particular state.

A signal is a classifier that types the asynchronous mes-
sages that are communicated between blocks. Each signal

optionally has an associated set of attributes that correspond
to the parameters that make up the content of the message.

Typically, two block instances communicate using sig-
nal events—instances of signals. The initiating block sends
a signal event to a target block. This signal event is defined
as part of the supplementary behaviours—described using
activities—associated with the initiating state machine: the
entry or exit behaviours of the active state or the effect com-
ponent of the enabled transition. The receipt of the signal
event in the target block may subsequently trigger a transi-
tion in its state machine. The approach described above is
popular when modelling event-based systems.

A connector connects two or more parts or references.
The connection formally allows the connected components
to interact, although the connector does not characterise the
nature of the interaction. Instead, the interaction is stipulated
by the behaviours of the connected blocks.

State machines allow one to depict state-dependent behav-
iour in a graphical fashion in terms of nodes and labelled
edges: nodes represent states, whereas the edges correspond
to transitions between states.

Activities provide the modeller with the ability to describe
complex routes (termed flows) along which actions execute.
In SysML activities, there are two types of flows: control
flows and object flows.

We defer detailed discussions on state machines and
activities until Sects. 3 and 4, respectively, where the rel-
evant concepts will be introduced alongside the respective
formal models.

3 A CSP model for SysML state machines

Our formalisation of state machines can be considered to
be a hybrid of the semantics previously presented by Ng
and Butler [15] and those previously presented by Bolton
Davies [4], and Davies and Crichton [6]. Specifically, we
use the semantics of [15] as a basis, extended with an event
queuing mechanism proposed in [4] and [6].

3.1 Abstract syntax

Let M denote the set containing all state machines. In the
following, we consider the formalisation as it relates to a
single state machine, M ∈ M.

A state machine describes state-based, event-driven
behaviour in terms of a finite collection of states, and tran-
sitions between those states. A state machine M is thus an
ordered pair (SM ,TM ), where:

– SM represents the set of states;
– TM represents the set of transitions.
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1150 J. Jacobs, A. Simpson

3.1.1 Transitions

Every transition exists between a source and a target state:

source : TM → SM

target : TM → SM

A transition consists of a trigger, a guard3 and an effect:

trigger : TM → S

guard : TM → B

effect : TM → A

In the above, S is the set of signals and A is the set of activ-
ities. We denote by B the set {true, false}.

3.1.2 States

We partition SM such that:

– S I
M represents the set of initial states;

– SF
M represents the set of final states;

– ST
M represents the set of terminate states;

– SJ
M represents the set of junction states;

– SC
M represents the set of choice states;

– SS
M represents the set of simple states; and

– SSC
M represents the set of simple composite states.

The aforementioned sets are pairwise disjoint and fully par-
tition SM .

Every state in our formalisation has a unique name (i.e.
name is an injective function):

name : SM � NM

In the above, NM denotes the set of state names of state
machine M .

Every simple or simple composite state has an optional
entry and exit behaviour; do behaviours are excluded from
consideration. All state-based behaviours are modelled via
activities.

entry : SM → A

exit : SM → A

In each case, an activity modelling the state-based behaviour
is returned.

The function

outgoing : SM → PTM

3 A guard is more formally a Boolean expression to be evaluated at
runtime.

returns the set of outgoing transitions for a given state.
The transitions returned are those emanating from the
state at a syntactical level, as per the graphical depiction.
In other words, the function does not return transitions
emanating from states that transitively enclose the input
state.

Our formalisation makes use of the concept of a
pseudostate. A pseudostate is a state in which a state
machine may temporarily find itself. For example, all ini-
tial, junction and choice states are considered pseudostates.

3.2 Modelling concepts

3.2.1 Enclosing states

A simple composite state has exactly one region:

region : SSC
M � SR

M

Note that the concept of region only exists for composite
states. A state machine has an enclosing top state s ∈ SSC

M at
the root of the state hierarchy. This state is a simple compos-
ite state. We assume the existence of a function that, given a
state machine, returns the top state:

top : M � SSC
M

We define a helper function, surround , that associates a
state with its immediately enclosing state.

surround : SM �→ SM

The function above is partial by virtue of the fact that no
state encloses the top state. We may also wish to consider all
states that enclose a particular state. A second helper func-
tion

enclose : SM �→ PSM

returns, for a particular state s ∈ SM , the set containing those
states that immediately or transitively enclose s . Thus

∀s : domenclose • enclose(s) = surround+(| {s} |)

We require the functions enclose and surround to be anti-
reflexive: the hierarchy imposed on states may not include
circular definitions where a state is allowed to be its own
enclosing state.

∀s : domsurround • s �→ s /∈ surround
∀s : domenclose • s �→ s /∈ enclose

123



On the formal interpretation and behavioural consistency checking of SysML blocks 1151

Hierarchical state machines need to take entry and exit
behaviours of transitively enclosing/enclosed states into
consideration during the firing of transitions.

A pivot state is the state, for a given transition, where the
nested exit behaviour of the source state has finished execu-
tion, and the behaviour of the effect component is executed,
before the nested entry behaviour of the target state begins.

We assume the existence of a function, pivot :

pivot : TM → SM

Before we define pivot precisely, we must introduce the
μ-notation. The expression

(μ x : X | p)

denotes the unique object x drawn from the set X such that
the predicate p holds.

For a transition, t ∈ TM , we define a pivot state to be the
innermost jointly transitive enclosing state with regard to the
source and target states of t . Thus

∀ t : dompivot •
pivot(t) =

(μ p : SM | p ∈ innermost ( enclose(source(t))
∩
enclose(target(t))))

In the above, the function

innermost : PSM → PSM

returns, given a set of states, the set of states at the innermost
level of the state hierarchy. More specifically, innermost
returns from the input set of states only those that do not
enclose any of the other states:

∀S : dom innermost •
S = {topM } ⇒ innermost(S ) = {topM }
∧
S �= {topM } ⇒

innermost(S ) =
{si : S |
(∀sj : S | sj �= topM • si /∈ enclose(sj ))}

3.2.2 Example

As an example of the above mathematical constructs, con-
sider Fig. 1: state machine Mex with top state topMex . We
have the following.

stm Mex

s1 r1

s3

s2 r2

s4 s5t1 t3
t7 t8

t10 t4

t5

t2

t9

t6

i1 i2
i3

f1

f2

f3

Fig. 1 State machine Mex . Mex is a hierarchical state machine. State
s1 is a simple composite state with a single region, r1. We have merely
labelled the transitions, omitting triggers, guards and effects. Similarly,
entry and exit behaviours of the respective states are elided

source(t7) = i3
target(t7) = s4

outgoing(s4) = {t8}
incoming(s4) = {t7}
surround(s1) = topMex

enclose(s5) = {s2,s1, topMex }
region(s1) = r1

Consider transition t9 of Fig. 1, the source and target
states of which are s5 and s3, respectively. The sets of states
that enclose s5 and s3 are the following.

enclose(s5) = {s2,s1, topMex }
enclose(s3) = {s1, topMex }

The function pivot returns the pivot state s1 of transition t9.

pivot(t9)
= (μ p : SM |

p ∈ innermost({s2,s1, topMex }∩{s1, topMex }))
= (μ p : SM | p ∈ innermost({s1, topMex }))
= s1

3.2.3 Behaviours

In our formalisation, all transition effects, entry and exit
behaviours are modelled using activities. In general, an
activity can be as complex as required, or may, instead, be
reduced to a single, simple event. We shall discuss activities
formally in Sect. 4.

The aforementioned behaviours are all optional: the
effect component of a transition can be omitted if not
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needed; similarly, entry and exit behaviours are not compul-
sory. For the case where the SysML behaviour is left unspec-
ified, we make use of the empty activity. This approach is
chosen in order to make the CSP formalisation more con-
cise.

The empty activity, process Aε , is defined thus.

Aε = Skip

The exit behaviour is executed upon exiting a state. In
particular, this happens after the triggering event, but before
the behaviour specified by the effect component of the
selected transition. Exit behaviours cannot be interrupted.
SysML allows the outgoing transitions of an enclosing state
to be triggered from within one of the nested states. In this
case, the exit behaviours of the transitively enclosing states
will be triggered starting with the innermost active state
until we reach the pivot state in the state hierarchy. These
transitions that emanate from a composite state are termed
high-level transitions.

We now formulate a CSP process that models exit behav-
iour.

Let s be the current active state with outgoing transition
t . Furthermore, restrict the source and target states of t to
simple or simple composite states. Thus

s ∈ SS
M ∪SSC

M

∧
t ∈ outgoing(s)
∧
target(t) ∈ SS

M ∪SSC
M

We can formalise exit behaviour as follows.

Exit(s, t) = exit(s) o
9 exit(s0) o

9 · · · o
9 exit(sn)

where
{s0 . . sn} = {si : enclose(s) |

si /∈ enclose(target(t))}
s0 = surround(s)

sn = surround(sn−1)

pivot(t) = surround(sn)

It is important to note that the above is only defined
between states that are not pseudostates. By imposing this
restriction, we can be confident that the function exit is
defined for every state in the construction above. Moreover,
integrating the semantics of high-level transitions with that
of complex transitions4 would unnecessarily complicate the
formalisation in CSP.

4 A complex transition is a transition through a junction or choice
pseudostate.

The entry behaviour is executed upon entering a state.
Again, this behaviour is not susceptible to interruption. After
the behaviour of the effect component has finished execu-
tion, the nested entry behaviour is executed starting with the
outermost state inwards towards the designated target state.

We now turn to model entry behaviour and assume a cur-
rent active state s with outgoing transition t . Therefore

s ∈ SS
M ∪SSC

M

∧
t ∈ outgoing(s)
∧
target(t) ∈ SS

M ∪SSC
M

The entry behaviour can be formalised as follows.

Entry(s, t) = entry(s0) o
9 · · · o

9 entry(sn)
where

{s0 . . sn} = {si : enclose(target(t)) |
si /∈ enclose(s)}

sn = target(t)

sn−1 = surround(sn)

pivot(t) = surround(s0)

Again, we insist that the above is defined only for states that
are not pseudostates to ensure that the construction is valid.

The effect is a behaviour, executed upon the transition
between states; in this paper, such behaviours are described
via activities. In particular, the behaviour of the effect com-
ponent is executed after the nested exit behaviours of the
source state, but before the nested entry behaviours of the
target state. In the state hierarchy, this corresponds to the
pivot state. In our formal model, the effect component of a
transition t is given by effect(t).

3.2.4 Termination condition

The termination condition relates to the generation of a com-
pletion event. A completion event is generated only once the
relevant completion criteria, defined in terms of the termina-
tion condition of the currently active state, have been met.
The completion criteria can be summarised thus.

– For a simple state s ∈ SS
M the termination condition is,

according to the standards [16,17], the completion of the
do behaviour. However, since we do not model do behav-
iours in our semantics, this condition is trivially satisfied
upon entry into a state. We argue that the completion
event should therefore be offered along with permitted
explicit transitions.
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– For a simple composite state s ∈ SSC
M the termination

condition is satisfied, according to the standards [16,17],
if either:

– the final state of the state machine residing in the
region of the composite state is reached; or

– the do behaviour of s terminates.

As we do not model do behaviours, it follows that the
termination condition is satisfied if and only if the state
machine residing in the region of the composite state s
has reached a final state.

3.2.5 Transitions

Transitions are key to our formalisation. We elaborate on the
different components that constitute a transition and present
basic concepts that aid in their formalisation.

The trigger is the stimulus that enables a transition to fire.
In this paper, we consider triggers to be either signal events
or completion events.

– A signal event corresponds to the arrival of an asynchro-
nous message typed by a signal. A signal event is an
explicit trigger. As such, we must annotate the trigger
component of the transition with the signal that typed
the triggering event.

– A completion event is an implicit event that signifies the
exit from a state. Diagrammatically, it is annotated on a
transition by omitting the trigger component.

In our formal model, implicit (or completion) events are
denoted by π . The definitions for implicit and explicit tran-
sitions can be stated thus.

∀s : SS
M • explicit(s) =

{t : outgoing(s) | trigger(t) ∈ S\{π}}
∀s : SS

M • implicit(s) =
{t : outgoing(s) | trigger(t) = π}

Consider a state s ∈ SM with a single outgoing transition
t . Thus

t ∈ TM ∧ t ∈ outgoing(s) ∧ #outgoing(s) = 1

We model the CSP process describing s as follows.5

name(s) = trigger(t) → name(target(t))

This approach is chosen in order to provide a uniform treat-
ment for all triggering events. Thus, for a transition t ∈ TM ,

5 We ignore the guard and effect components for now, as well as all
state-based behaviours.

trigger(t) denotes the trigger, regardless of whether that
transition is triggered explicitly or implicitly.

In our formalisation, completion events are modelled
using CSP events of the form π . Explicit events correspond
to CSP events that reflect the name of the classifying sig-
nal, along with any parameters communicated as part of the
event; a signal with an argument associated with it will input
on the CSP channel with the corresponding name. For exam-
ple, if the signal is named Sj ∈ S has argument a , we use the
CSP event Sj ?a as the trigger.

The guard of a transition must evaluate to true in order
for the transition to occur; alternatively, if the guard is false,
the triggering event is consumed without effect.

Consider a state s ∈ SM with a single outgoing transition
t . Thus

t ∈ TM ∧ t ∈ outgoing(s) ∧ #outgoing(s) = 1

We model the CSP process describing s as follows.6

name(s) =
trigger(t) →

if guard(t) then
name(target(t))

else
name(s)

In the above, the evaluation of the guard following the trig-
gering event determines the next active state.

A guard is evaluated based on the arguments that are
served up along with the triggering event. For example, if
we had the event Sj ?a as a trigger, the a can be used in the
evaluation of the guard. To preserve the clarity of the presen-
tation, we simply write guard(t) to denote the evaluation of
the guard. Recall that a guard is a Boolean expression to be
evaluated at runtime. In the above example, the a can be
used as part of an expression to be evaluated at runtime—
the result of which will be one of true or false. Typically,
the expression to be evaluated will involve testing the value
passed as part of the triggering event for equality/inequality
to known constants in the model (modelled using enumera-
tions).

The combined behaviour of a transition can now be mod-
elled. Consider a state with a single high-level transition t
that contains a trigger, a guard and an effect; the high-level
transition is between nonpseudostates.

6 Again, we ignore the effect component for a moment, as well as all
state-based behaviours.
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name(s) =
trigger(t) →

if guard(t) then
Exit(s, t) o

9

effect(t) o
9

Entry(s, t) o
9

name(target(t))
else

name(s)

Alternatively, if either the source or target state is a
pseudostate, we know that no transitions crossing regional
boundaries are permitted. It follows that entry and exit
behaviours, where applicable, reduce to entry(target(t)) or
exit(s), respectively.

3.2.6 Mapping function

We make use of a mapping function F that maps the struc-
tural constructs to their CSP counterparts. Broadly speaking:
each state in SysML corresponds to a process in CSP; and
each SysML event corresponds to a CSP event. Thus, the
idea is that the mapping rules take us from a given SysML
state to the next: in CSP, this corresponds to initially behav-
ing like one process, and then behaving like another. In each
state, the CSP process behaves like the state machine would
in the corresponding SysML state. Every rule, F(M ,s), is
defined such that it describes the behaviour of state machine
M at state s . These rules define process definitions, where
each state is represented by a CSP process. In CSP, the name
of the process describing state s is given by name(s); the
behaviour of this process will be given by F(M ,s). There-
fore

name(s) = F(M ,s)

The mapping rules for state machine M start from the initial
state contained in the region of the top-level state, top(M ).
This approach is based on that taken by Ng and Butler [15].

3.3 Behavioural semantics

This section outlines an approach to integrate SysML state
machines and CSP by providing a behavioural semantics
for the former in terms of the latter. Throughout, we make
use of the syntactical structures and modelling constructs of
Sect. 3.1.

The behavioural semantics of state machines, as defined
in this paper, is based on the type of the currently active
state. As such, the outline of our presentation mirrors this
by providing a formalisation for each of the different state
types in the remainder of this section.

3.3.1 Initial state

An initial state designates the first active state of state
machine M . Consider an initial state, s ∈ S I

M , with a lone
outgoing transition, t ∈ outgoing(s). A completion event,
which serves as an implicit trigger, is generated upon entry
to the pseudostate. Recall that effect returns the empty
behaviour if no effect component is defined for t . The CSP
process modelling s follows.

F(M ,s) =
trigger(t) →

effect(t) o
9 entry(target(t)) o

9 F(M , target(t))

Because no explicit triggers are allowed, only an implicit
trigger is generated and trigger(t) = π . An explicit transi-
tion is not allowed due to the fact that a state machine is not
allowed to linger in a pseudostate. Similarly, a state machine
is not allowed to be hindered from transitioning out of the
initial state by means of a guard that evaluates to false—
guards are therefore not allowed.

We insist on the presence of a unique initial state in every
region. This rule ensures that the state machine residing in
the said region is well defined in the scenario where it is
entered by default: an incoming transition ends on the state
hosting the region.

∀sr : SR
M • (∃1 si : S I

M • surround(si) = sr )

3.3.2 Final and terminate states

A final state indicates the termination of a region. Subse-
quently, it has no outgoing transitions. Once a final state
is reached, a completion event is generated to indicate the
completion of all behaviour of the containing region, and,
thus, the termination of the state machine. There is, how-
ever, no requirement for a region to contain a final state. For
example, a state machine that never terminates would not
have a final state.

Let s ∈ SF
M be a final state. If the final state resides within

a simple composite state and there is at least one outgoing
transition emanating from any of the transitively enclosing
states, that is

surround(s) ∈ SSC
M

∧
∃s ′ : enclose(s) • outgoing(s ′) �= /0

then reaching the final state represents the termination of
the state machine in the region of the state surround(s).
The completion transition emanating from surround(s), if
present, or any of the explicit transitions emanating from
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transitively enclosing states, may be taken. Completion tran-
sitions emanating from transitively enclosing states other
than surround(s) may only be taken once their respective
final states are reached.

F(M ,s) =
�s ′ : enclose(s) •

� t : explicit(s ′) •
trigger(t) →

if guard(t) then
Exit(s, t) o

9

effect(t) o
9

Entry(s, t) o
9

F(M , target(t))
else

F(M ,s)
�

� t : implicit(surround(s)) •
trigger(t) →

Exit(s, t) o
9

effect(t) o
9

Entry(s, t) o
9

F(M , target(t))

Alternatively, if the final state resides within a simple
composite state and there are no outgoing transitions ema-
nating from any of the transitively enclosing states, that is

surround(s) ∈ SSC
M

∧
∀se : enclose(s) • outgoing(se) = /0

then reaching the final state denotes the termination of M :

F(M ,s) = Skip

Reaching a final state in a nonhierarchical state machine is a
special case of the last scenario.

The formalisation of a terminate state is trivial: the state
machine behaves as the CSP process Skip.

F(M ,s) = Skip

3.3.3 Junction and choice states

A junction state is a transient point along a compound tran-
sition. The first leg of the compound transition contains the
trigger and optional guard; note that an effect component is
not allowed. Similarly, on the second leg, a trigger compo-
nent is not allowed due to the fact that a complex transition
must be selected in response to a single event. As the trigger-
ing event is assumed to have occurred on the first leg of the

transition, it is disallowed for the second. Guard and effect
components are allowed for the second leg of the compound
transition.

A choice state differs from a junction state with regard to
the first leg of the compound transition in that it additionally
allows for an effect component. The consequence of this is
that the effect component can influence the outcome of the
guards on the second leg. In contrast, a junction state does
not permit an effect component on the incoming transition,
and, as such, the guards on the second leg are in principle
evaluated the instant the triggering event is served up for
processing. However, as our formalisation is centred around
the outgoing transitions, there is no difference between the
CSP formalisation for a junction state and that of a choice
state. The distinction, however, would be made during the
formalisation of the source state of the first leg of the com-
pound transition.

Because junction and choice states are transient points
along a complex transition, we do not allow explicit events
to be triggered from the transitively enclosing states. Explicit
events from the states that transitively enclose the junction
or choice state can only be triggered once both legs of the
compound transition have been taken. This semantics is in
line with the notion that these are merely pseudostates along
a compound transition, and that the transition must be com-
pleted before other events can be triggered.

The process modelling the junction or choice state is
instantiated with the arguments passed on the trigger of the
first leg of the complex transition. These arguments are used
to evaluate the guards of the transitions that emanate from
the state, with the parameters indicated between the square
brackets following the mapping function.

F(M ,s)[params(trigger(′t))] =
� t : outgoing(s) •

(if eval(guard(t),params(trigger(′t))) then
effect(t) o

9

entry(target(t)) o
9

F(M , target(t))
else

Stop)

Note that in our formulation the transitions that termi-
nated and emanated from junction or choice states are
not allowed to cross-regional boundaries. In the above,
the formal parameters of the signal that typed the send
signal event that served as the triggering event corre-
spond to params(trigger(′t)). The transition ′t is that
of the first leg of the compound transition. In addition,
eval(guard(t),params(trigger(′t))) denotes the evalua-
tion of the guard condition of t , by substituting the asso-
ciated parameters of trigger(′t) in the expression guard(t).
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3.3.4 Simple state

A simple state s ∈ SS
M does not contain a region, and, as

such, cannot host nested states. The behaviour of a simple
state is formalised in terms of its own outgoing transitions,
and the explicit transitions of the states that transitively
enclose it.

F(M ,s) =
� t : implicit(s) •

trigger(t) →
if guard(t) then

Exit(s, t) o
9

effect(t) o
9

Entry(s, t) o
9

F(M , target(t))
else
F(M ,s)

�

� t : explicit(s) •
trigger(t) →

if guard(t) then
Exit(s, t) o

9

effect(t) o
9

Entry(s, t) o
9

F(M , target(t))
else
F(M ,s)

�

�s ′ : enclose(s) •
� t : explicit(s ′) •

trigger(t) →
if guard(t) then

Exit(s, t) o
9

effect(t) o
9

Entry(s, t) o
9

F(M , target(t))
else
F(M ,s)

The above composition can be deconstructed as follows.

– The process offers the nondeterministic choice
between all completion or implicit transitions. The
indexed form of the choice operator is used as it is
possible for a state to have more than one completion
transition.

– The process offers the deterministic choice between all
explicit, outgoing transitions of s . Deterministic choice
is selected as the transition taken is dependent upon the
triggering signal; the decision as to which transition to
take is not internalised as is the case for completion tran-
sitions. Thus, all possible transitions ought to be offered.

– For transitively enclosing states of s , we permit only
explicit transitions. Transitions emanating from the states
that transitively enclose s are allowed to trigger, while s
is active. When a higher level transition fires while s is
active, the state s is exited and the transition followed.

Each of the above corresponds to a different scenario under
which s might be exited. However, the behaviour once an
exit is triggered remains the same, as described by the expo-
sitions following the guard.

3.3.5 Simple composite state

A simple composite state s ∈ SSC
M has a single region

which contains nested states. For that region, only one
of the nested substates is allowed to be active. Recall
that each region has a unique initial state. The behav-
iour of the composite state is described by the behaviours
of the states that it contains. It follows that a transi-
tion to a composite state is equivalent to a transition to
the initial state of that composite state. The composite
state thus behaves like the initial state that it contains.
The subsequent behaviour is then completely described by
the target state of the initial state, and so forth. This is
by virtue of the fact that our formalisation for noncom-
posite states, like initial, final and simple states incorpo-
rate the transitions of the states that transitively enclose
them.

Given si ∈ (surround−1(| {s} |))∩S I
M , the unique initial

state of s , the formalisation is as follows.

F(M ,s) = F(M ,si)

3.3.6 Execution environment

Run-to-completion semantics The execution semantics for
SysML state machines is as follows. A run-to-completion
semantics is defined: a state machine is only permitted to
consume a single triggering event, namely the current event,
at any one instant and must do so until processing of the said
event is complete. For this purpose, each state machine has
an associated event queue.

– An event is received when it is accepted and waiting for
processing. The event is placed at the back of the event
queue.

– The event at the front of the queue is removed and pre-
sented to the state machine. At this instant, it becomes
the current event. We say the event is dispatched.

– The state machine finishes the processing of the current
event, uninterrupted, and until completion. Once this has
happened, the event is consumed. A consumed event is
no longer available for processing.
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In the formalisation, we assume a FIFO queue, although the
standard [16] does not define the order of dequeuing.

Event queue We model the event queue of a state machine
using a CSP process called EQ that communicates on a
channel queue.

EQ = queue?e → local?p!e → EQ

The above formulation is in essence a buffer process that sits
between the state machine and its external environment. A
triggering event e is communicated along channel queue by
the external environment. The event is then consumed (and
therefore removed from the buffer) by the state machine on
channel local . An event can be consumed in one of two
ways.

– The event can be processed: the current active state has
an outgoing transition with a triggering event that cor-
responds to the event served up for processing. In this
case, the event takes the form local .proc.e.

– The event can be discarded: the current active state has
no outgoing transition corresponding to the event served
up for processing. In this case, the event takes the form
local .disc.e.

The event queue is willing to communicate either event by
inputting on the channel; the events offered by the current
active state will determine whether the event is processed or
discarded.

Here, we assume a queue with a maximum capacity of 1;
the queue blocks when full. Nonblocking semantics, where
events are discarded when the queue becomes full, is con-
ceivable; so are event queues with different capacities. A
semantics with an unbounded queue is also conceivable,
although this is not finite state, and therefore not amenable
to verification with FDR3. However, animators can be used
to explore the behaviour in the case of unbounded event
queues.

The process definitions, as they stand in Sect. 3.3, are
not entirely complete: we need to adapt these to consider
whether a particular event should be processed or discarded,
depending on the current active state of the state machine
M . In particular, triggering events need to be extended to
include communication on the channel local7—an event e
that is processed takes the form local .proc.e or local .disc.e,
depending on whether the event is processed or discarded at
the time it is served up for consumption (as determined by
the active state of the state machine).

7 The channel local is a parameter of the process modelling M .

Thus, we need to consider the eventuality where the state
machine M receives a signal event not expected in the cur-
rent state s ∈ SM : that is, an instance of a signal event Sj ∈ S

such that Sj /∈ {t : outgoing(s) • trigger(t)}. Here, the state
machine discards the unexpected event.

Assume that the function

unexpected : SM → PS

returns the set of unexpected events for state s ∈ SM . The
interpretation of unexpected events depends on the type of
the current state.

If the current state is a pseudostate, that is

s ∈ ⋃{S I
M ,SF

M ,ST
M ,SJ

M ,SC
M }

then unexpected events are receive signal events that are not
outgoing transitions of the current state s .

Alternatively, if the current state is a nonpseudostate, that
is

s ∈ ⋃{SS
M ,SSC

M }

then unexpected events are receive signal events that are not
contained within the outgoing transitions of the transitively
enclosing simple or simple composite states of s , and out-
going transitions of s itself.

Thus,

∀s : domunexpected •
s ∈ ⋃{S I

M ,SF
M ,ST

M ,SJ
M ,SC

M } ⇒
unexpected(s) =

{Sj : S | Sj /∈ {t : outgoing(s) • trigger(t)}}
∧
s ∈ ⋃{SS

M ,SSC
M } ⇒

unexpected(s) =
{Sj : S | Sj /∈ {t : (s) • trigger(t)}}

State machine The overall state machine is modelled as
a single process that contains, as appropriate, localised
process descriptions corresponding to the state machine’s
syntactic structure, with the overall structure being simi-
lar to that described in [6]. The environment external to
the state machine communicates with the event queue. The
state machine receives all communications via its associated
event queue, which is modelled as a CSP buffer of size 1.
It communicates with this buffer on a CSP channel, local .
Each of the localised processes has access to this channel in
order to receive communications from the event queue.

The process that models the state machine, M , first
behaves as that associated with the initial state, F(M , i), and
then as each of the subsequent processes, until it terminates
in state f . The local process EQ models the event queue.
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M (queue, local) =
let
F(M , i) = . . .
...
F(M , f ) = Skip
EQ = queue?e → local?p!e → EQ

within
F(M , i) [| {| local |} |]EQ

In the above, the local definitions F(M , i) . . .F(M , f ) take
into consideration whether an event will be processed or dis-
carded.

In Sect. 5.3, we discuss the communication semantics for
multiple state machines, as well as integration with other
constructs, such as activities.

4 A CSP model for SysML activities

4.1 Abstract syntax

Recall that A denotes the set containing all activities. We
consider the formalisation as it relates to a single activity
A ∈ A. An activity A is a quintuple

(AA,RA,PA,CFA,OFA)

where:

– AA denotes the set of action nodes;
– RA denotes the set of routing nodes;
– PA denotes the set of parameter nodes;
– CFA denotes the set of control flows; and
– OFA denotes the set of object flows.

An activity defines flow-based behaviour in terms of nodes
and edges: the nodes are represented by the sets AA, RA and
PA; the edges are denoted by CFA and OFA.

4.1.1 Nodes

Actions are the building blocks of activities. The set of action
nodes AA is further partitioned such that:

– ASS
A denotes the set of send signal event actions;

– ARS
A denotes the set of receive signal event actions;

– AVS
A denotes the set of value specification actions;

– AO
A denotes the set of opaque actions; and

– ACB
A denotes the set of call behaviour actions.

The aforementioned sets are pairwise disjoint and fully par-
tition AA.

Routing nodes are used to model complex flow-based
logic. The set of control nodes RA is partitioned thus:

– RI
A denotes the set of initial nodes;

– RF
A denotes the set of final nodes;

– RFK
A denotes the set of fork nodes;

– RJN
A denotes the set of join nodes;

– RD
A denotes the set of decision nodes; and

– RM
A denotes the set of merge nodes.

The aforementioned sets are pairwise disjoint and fully par-
tition RA.

Activity parameter nodes, denoted by PA, are used to
model the input and output arguments of activities. For our
purposes, we only consider activity parameter nodes that
serve as inputs to activities; this is partly due to a desire to
keep the semantics elegant and partly due to the context in
which we use activities. We assume that a single argument
is passed per node.

4.1.2 Edges

An object flow is used to model the passage of a parameter
between two nodes: the parameter flows from the source or
outputting node to the target or inputting node. We define
the following functions for an object flow of ∈ OFA, to
yield the outputting and inputting object node, sourceof and
targetof , respectively.

sourceof : OFA → ⋃{ARS
A ,AVS

A ,RFK
A ,RJN

A ,

RD
A ,RM

A ,PA}
targetof : OFA → ⋃{ASS

A ,ACB
A ,RFK

A ,
RJN

A ,RD
A ,RM

A }

Note that the aforementioned are total functions: every
object flow must have an associated source (or target) node.

The outgoing edges of a decision node have mutually
exclusive guards that determine the next flow to be taken.
The function

guard : OFA �→ B

denotes the evaluation of the guard of an object flow ema-
nating from a decision node. The guard is evaluated based
on the value of the object passed along the incoming flow of
the decision node.

Control flows model the passage of control between the
constituent nodes of an activity. Control flows are permitted
between action and routing nodes. We define the following
functions for a control flow, cf ∈ CFA, to yield the source
and target node, respectively.
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sourcecf : CFA → ⋃{ (AA\AVS
A ),RI

A,R
FK
A ,

RJN
A ,RM

A }

targetcf : CFA → ⋃{ (AA\AVS
A ),RF

A ,R
FK
A ,

RJN
A ,RM

A }

Guards on control flows are not modelled. Our formal-
isation of state machines evaluated guards based on the
value of a parameter passed with the triggering event. In
SysML, guards on control flows are used in a more general
sense and typically expressed in natural language; how-
ever, we would argue that interpreting guards using natural
language is unsuitable in a formal framework, where a pre-
cise meaning is desirable. Moreover, we seek to provide a
semantics where guards are interpreted in a uniform man-
ner. Activities typically execute within the context of state
machines, and we will therefore interpret the guards analo-
gously.

4.2 Modelling concepts

4.2.1 Outgoing edges

The function

outgoingof :
⋃{ARS

A ,AVS
A ,ACB

A ,

RFK
A ,RJN

A ,RD
A ,RM

A ,PA} → POFA

returns the set of outgoing object flows for certain types of
nodes.

We also define a similar auxiliary function that returns,
for certain types of nodes, the set of outgoing control flow
edges:

outgoingcf :
⋃{ (AA\AVS

A ),RI
A,

RFK
A ,RJN

A ,RM
A } → PCFA

We require an action to either have an outgoing object
flow or an outgoing control flow, but not both:

∀a : domoutgoingof ∩domoutgoingcf •
outgoingof (a) �= /0 ⇒ outgoingcf (a) = /0
∧
outgoingcf (a) �= /0 ⇒ outgoingof (a) = /0

4.2.2 Mapping function

To define behavioural semantics for activities, we once again
make use of a mapping function, F, that maps the structural
constructs to their CSP counterparts. Every node in SysML
corresponds to a process in CSP; similarly, every edge has an
associated CSP process. The idea is that the mapping rules
take us from the SysML source node to the target node: in

a1 a2

a3

act Aex

i1

f1

cf1

cf2

of2

of1

cf3

Fig. 2 Activity Aex . Aex is not allowed in our formalisation due to
the fact that action a1 has an outgoing control flow cf2 as well as an
outgoing object flow of1. However, Aex would have exactly the same
behaviour if cf2 was removed

CSP, this entails initially behaving like the source process,
then behaving like the edge connecting the source and target
nodes and then behaving like the target node. The behav-
iour of the edge is usually the behaviour of its target node;
an object flow edge has an additional process parameter to
model the flow of objects. Every rule, F(A,c), is defined
such that it describes the behaviour of activity A at a partic-
ular construct c. These constructs are the nodes and edges
of A. The mapping rules for activity A start from the initial
node.

4.2.3 Example

Refer to Fig. 2 and activity Aex . We have

AAex = {a1,a2,a3}
RAex = {i1, f1}
OFAex = {of1,of2}
CFAex = {cf1,cf2,cf3}

4.3 Behavioural semantics

The behavioural semantics of activities, as defined in this
paper, is based upon the type of the currently active node.
As such, the outline of our presentation mirrors this by pro-
viding a formalisation for each of the different node types in
the remainder of this section. The semantics further distin-
guishes and provides alternative interpretations based on the
type of the connecting edges, activity parameter nodes and
value specification actions.

4.3.1 Control flow

Control flows are used to route the flow of control between
different nodes of an activity. In our formalisation, a control
flow cf ∈ CFA can be thought of as a CSP process. The
behaviour of this process is dependent on the target node
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of the control flow, given by targetcf (cf ). If the target is
not a join node, i.e. targetcf (cf ) /∈ RJN

A , the process simply
designates its behaviour to be that of the target node.

F(A,cf ) =
F(A, targetcf (cf )) if targetcf (cf ) /∈ RJN

A

Join(cf ) otherwise

In the case where targetcf (cf ) ∈ RJN
A , there will be k − 1

other control flows that terminate in the same join node.8

Let the control flows be cf0 . . cfk−1. Exactly one of the
control flows, cf0, will exhibit the behaviour of the join
node.

Join(e) =
join → Skip if e �= cf0
join → F(A, targetcf (e)) otherwise

The above construction ensures that exactly one of the pre-
viously forked flows continues after the join node.

4.3.2 Object flow

Object flows model the flow of objects between the different
nodes in an activity. In our formalisation, an object flow of ∈
OFA behaves similarly to a control flow edge. However, the
value of the object being passed along the flow is passed as
a process argument between the processes representing the
different constructs. We do not permit object flows to termi-
nate on or emanate from join nodes (see the formalisation of
join nodes). Thus, the behaviour of an object flow is given by
the behaviour of the node that it terminates on, targetof (of ).

The process modelling the object flow simply designates
its behaviour to be that of the target node, passing the object
o as a process parameter.

F(A,of )[o] = F(A, targetof (of ))[o]

In the above, the CSP process to the left is initialised by the
source node of object flow of , sourceof (of ).

4.3.3 Initial node

An initial node i ∈ RI
A is a routing node that designates the

starting point of an activity A. Subsequently, only a single
control flow is permitted to emanate from i ; object flows are
disallowed and can neither emanate from, nor terminate on
i . Let the unique control flow be

cf = (μ f : CFA | f ∈ outgoingcf (i))

8 We only consider simple fork/join constructs.

The formalisation of the initial node follows.

F(A, i) = F(A,cf )

Only one initial node is permitted per activity.

4.3.4 Final node

A final node f ∈ RF
A has no outgoing edges and a single

incoming control flow edge. It is modelled trivially as the
CSP process Skip.

F(A, f ) = Skip

4.3.5 Send signal event

A send signal event action is used as a means of com-
munication between different activities that execute within
the context of state machines; the action corresponds to the
sending of a signal event. A send signal event action node
is entered either via a control flow or an object flow edge;
in the case where the node is entered via a control flow an
incoming object flow is possible, provided the object flow
emanates from a parameter node. Note that a send signal
event action is always exited via a control flow edge.

A send signal event action has an input pin corresponding
to the attribute of the signal to be sent9 and one input pin to
specify the target for the signal.

Entry via control flow A send signal event action ss ∈ ASS
A ,

entered via a control flow edge, with a single outgoing con-
trol flow,

cf = (μ f : CFA | f ∈ outgoingcf (ss))

can be formalised thus:

F(A,ss) = target(ss).signal(ss) → F(A,cf )

A send signal event action has an input pin that names the
target of the send signal action. In CSP, this corresponds to
the channel name used to communicate with the target state
machine, denoted by target(ss) in the above. The name of
the signal event is given by signal(ss).

Optionally, an incoming object flow of is possible. This
serves as input to the send signal event action and models
the parameters sent as part of the send signal event. In our
semantics, the object flow of , if present, emanates from an
activity parameter node p ∈ PA and terminates on the send
signal event node ss; ss is therefore not entered via of , but

9 No input pin is present if the signal does not have an associated
attribute.
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of is instead used to pass a value to be used as part of the
action. Note that an incoming control flow is still present
and also terminates on ss . The construction par(p) is the
parameter available within the context of the owning activ-
ity, as defined per the arguments of the process modelling
the activity.

F(A,ss) = target(ss).signal(ss).par(p) → F(A,cf )

Entry via object flow Consider a send signal event action
ss ∈ ASS

A , entered via an object flow edge, with a single out-
going control flow

cf = (μ f : CFA | f ∈ outgoingcf (ss))

In this case, the process modelling the send signal event
action would have an input argument, p, passed from the
process modelling the incoming object flow.

F(A,ss)[p] = target(ss).signal(ss).p → F(A,cf )

4.3.6 Receive signal event

A receive signal event node represents the action of receiv-
ing a signal event. A receive signal event action node can
only be entered via a control flow, but may be exited either
via a control or via an object flow.

A receive signal event action may output the received sig-
nal attribute on an output pin. An input pin is used to specify
the source of the event.

Exit via control flow A receive signal event node is typi-
cally exited via a control flow edge if the receive signal event
has no associated attributes. Assume a receive signal event
action rs ∈ ARS

A with a single outgoing control flow

cf = (μ f : CFA | f ∈ outgoingcf (rs))

and no signal attributes associated with the signal. In the
following, source(rs) denotes the source specified for the
receive signal event.

F(A,rs) = source(rs).signal(rs) → F(A,cf )

If a signal attribute is present, we have an input on the CSP
channel corresponding to the attribute a .

F(A,rs) = source(rs).signal(rs)?a → F(A,cf )

Exit via object flow A receive signal event action node can
only be exited via an object flow if the signal has attributes
that are output along the object flow. Assume a receive sig-
nal event rs ∈ ARS

A with a single outgoing object flow

of = (μ f : OFA | f ∈ outgoingof (rs))

and an associated attribute a .

F(A,rs) = source(rs).signal(rs)?a → F(A,of )[a]

The attribute a is passed along the object flow by instantiat-
ing the process modelling the flow correspondingly.

4.3.7 Value specification action

A value specification action is a primitive action that outputs
a constant value on its output pin. A value specification node
is always entered via a control flow edge. Let vs ∈ AVS

A be
a value specification action with outgoing object flow

of = (μ f : OFA | f ∈ outgoingof (vs))

We have

F(A,vs) = F(A,of )[value(vs)]

In the above, value(vs) denotes the value output by the
action.

4.3.8 Opaque action

An opaque action is an action executed in a language exter-
nal to SysML. An opaque action may optionally take an
input and, after executing the action, produce an output.
These opaque actions are modelled as CSP events.

There are three possible formalisations for opaque actions
permitted in our formalisation. We consider each in turn.

Entry and exit via control flows Assume the existence of an
opaque action oa ∈ AO

A node entered via an incoming con-
trol flow, and an outgoing control flow

cf = (μ f : CFA | f ∈ outgoingcf (oa))

In the following, action(o) denotes the event corresponding
to the opaque action of node oa .

F(A,oa) = action(oa) → F(A,cf )
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Entry and exit via object flows Assume the existence of an
opaque action oa ∈ AO

A node with an incoming object flow
and an outgoing object flow

of = (μ f : OFA | f ∈ outgoingof (oa))

In the composition below, o denotes the object that serves as
input to the opaque action, passed via the object flow.

F(A,oa)[o] = action(oa) → F(A,of )[g(o)]

It is possible to view opaque actions as functional: the action
takes an input and produces an output. In CSP, this can be
modelled as a function g .

Entry via object flow; exit via control flow Assume the exis-
tence of an opaque action oa ∈ AO

A node with an incoming
object flow passing object o and an outgoing control flow

cf = (μ f : CFA | f ∈ outgoingcf (oa))

We have

F(A,oa)[o] = action(oa) → F(A,cf )

4.3.9 Call behaviour action

A call behaviour action allows an activity to call another
behaviour as one of its actions. While this can be any behav-
ioural formalism of SysML, we consider only the calling
of activities. We restrict the activities used as call behav-
iour actions to contain only input pins; output pins are not
permitted. Alternatively, a call behaviour action node may
be entered via a control flow. In our model, call behaviour
nodes are always exited using control flows.

Entry via control flow Consider a call behaviour action cb ∈
ACB

A with an incoming control flow and a single outgoing
control flow

cf = (μ f : CFA | f ∈ outgoingcf (cb))

The construction behaviour(cb) represents the CSP process
modelling the activity specified as part of the call behaviour
action cb.

F(A,cb) = behaviour(cb) o
9 F(A,cf )

Entry via object flow Consider a call behaviour action cb ∈
ACB

A with an incoming object flow and a single outgoing
control flow

cf = (μ f : CFA | f ∈ outgoingcf (cb))

The object o is passed to the CSP process behaviour(cb).

F(A,cb)[o] = behaviour(cb)[o] o
9 F(A,cf )

4.3.10 Fork node

A fork node splits a single flow into multiple separate flows.
The flows can be either control flows or object flows. How-
ever, if the flow terminating on a fork node is a control flow,
then control flows must exit the node; similarly, if an object
flow terminates on the fork node, then multiple object flows
must leave the fork node.

Control flows A fork node fk ∈ RFK
A operating on control

flows splits the incoming control flow in k separate out-
going flows cf0 . . cfk−1. The alphabetised indexed parallel
construction ensures that all the different threads of control
only synchronise on the join event; all other events are inter-
leaved.

F(A, fk) = [|join |]cf : outgoingcf (fk) • F(A,cf )

Object flows The formalisation for object flows is similar.
The difference is that the object is passed to each of the k
separate forked flows. A fork node fk ∈ RFK

A operating on
object flows splits the incoming object flow in k separate
outgoing object flows cf0 . .cfk .

F(A, fk)[o] =
[|join |]of : outgoingof (fk) • F(A,of )[o]

4.3.11 Join node

A join node synchronises previously forked flows: it has k
incoming flows and a single outgoing flow. We only for-
malise join nodes that operate on control flows. The reason
for this is that the semantics of join nodes that operates on
object flows does not sit well with our formalisation. The
object flows in our semantics essentially deal with process
arguments, i.e. concrete values. However, token flow seman-
tics on object flows via join nodes requires that each token
on every flow is passed to the outgoing flow. This would be
inconsistent with our treatment of object flows and are thus
excluded.

A join node jn ∈ RJN
A synchronises k parallel control

flows and has a single outgoing control flow, cf :

cf = (μ f : CFA | f ∈ outgoingcf (jn))

Recall that only one of the previously forked flows will
behave as the join node.

F(A, jn) = F(A,cf )
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4.3.12 Decision node

A decision node offers the choice between possible alter-
native flows, based on the evaluation of guards. A decision
node has an incoming flow edge and several outgoing flow
edges, with mutually exclusive guards placed on the outgo-
ing edges. However, only one of the outgoing edges—the
edge where the guard evaluates to true—is taken. Our model
only incorporates object flows via decision nodes. This is
intrinsically linked with the evaluation of the guards of the
outgoing edges.

A decision node d ∈ RD
A over object flows passes an

object along one of several possible object flows. The
k alternative outgoing object flows ofk ∈ outgoingof (d)
are evaluated. The following assumes mutually exclusive
guards. A guard may contain an else clause, in which case
it is trivially mapped to a CSP else construct. Machine-
readable CSP has only an if then else conditional construct;
we are therefore forced to adapt the formalisation to include
the process Stop, as presented below.

F(A,d)[o] =
if guard(of0) then
F(A,of0)[o]

...
else if guard(ofk ) then
F(A,ofk )[o]

else
Stop

4.3.13 Merge node

A merge node has several incoming flows, but only one out-
going flow edge. The merge node behaves like the process
modelling its outgoing flow.

Control flow A merge node m ∈ RM
A has a single outgoing

control flow, cf :

cf = (μ f : CFA | f ∈ outgoingcf (m))

The behaviour can be modelled thus.

F(A,m) = F(A,cf )

Object flow A merge node m ∈ RM
A has a single outgoing

object flow

of = (μ f : OFA | f ∈ outgoingof (m))

along which the object originating from one of the incoming
flows is passed.

F(A,m)[o] = F(A,of )[o]

4.3.14 Execution environment

The activities in our formalisation execute within the con-
text of a state machine. Each state machine has an event
queue that interacts with the external environment under a
run-to-completion assumption. The activities here therefore
execute under that same assumption, using the event queue
of the associated, owning state machine. These activities
are akin to local process definitions that execute under the
process M of Sect. 3.3.

The activity as a whole is modelled with a single process
that contains, as appropriate, localised process descriptions
corresponding to its syntactic structure. We provide two
formalisations, based on whether the activity has an initial
node, or whether execution starts from the activity parame-
ter node.

Activity with initial node An activity with an initial node
always starts execution from the initial node, whether an
activity parameter node is present or not. Initially, the overall
process behaves like the initial node i ∈ RI

A. In the follow-
ing, the process argument a corresponds to the argument of
the activity parameter node; if no parameter node is present,
the process argument is elided. The argument a is a global
parameter available for use anywhere in the activity; dia-
grammatically, the use of this parameter would be indicated
with an object flow connecting the parameter node and the
node using a as input.

A(a) =
let
F(A, i) = . . .
...
F(A, f ) = Skip

within
F(A, i)

Activity without initial node It is possible for an activity to
initially behave as an activity parameter node. In this case,
we assume there is no initial node, and that a single object
flow connects another node with the activity parameter node.
Thus, the activity initially behaves as the activity parameter
node. In this case, we assume a single activity parameter
node with a single outgoing object flow. Let p ∈ PA be the
lone activity parameter node, with argument a .

A(a) =
let
F(A,p)[o] = . . .
...

within
F(A,p)[a]
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The activity parameter node behaves like the outgoing object
flow:

of = (μ f : OFA | f ∈ outgoingof (p))

F(A,p)[o] = F(A,of )[o]

5 A CSP model for SysML blocks

In this section, we provide formalisations for the struc-
tural counterparts of our framework. The behavioural for-
malisms we have introduced thus far—state machines and
activities—all execute within the context of a structural
counterpart. The structural constructs of interest to us are
enumerations, signals, blocks, parts and connectors.

5.1 Enumerations and signals

Signal and enumeration definitions introduce the messages
and associated parameters communicated between state
machines and activities.

Let E denote the set of all enumerations. An enumera-
tion is a user-defined type where the enumeration literals
represent distinct constants in the model. The CSP counter-
part of a SysML enumeration is a CSP datatype. Here, there
is a one-to-one mapping between the constants of the CSP
datatype, and the enumeration literals defined for the SysML
enumeration.

Let S denote the set of all signals. Signals are commu-
nicated along the connectors that connect parts. The signals
used by the communicating state machines correspond to
constants of a CSP datatype definition. For each block,
the signals corresponding to the provided receptions of the
particular block are used. Where a signal has associated
parameters, these are included in the datatype definition.

5.2 Blocks, parts and connectors

The fundamental modelling construct present in SysML
is the block. Each block is assigned an associated main
behaviour, called its classifier behaviour. Depending on the
purpose of the block, the classifier behaviour can either be a
state machine or an activity.

Let B denote the set of all blocks. A block B ∈ B is a
classifier that describes common behavioural and structural
features of its instances, and can be considered akin to a
UML class. We assume that the classifier behaviour is spec-
ified using state machines, and given by the function

classifier : B → M

These blocks communicate via events (instances of signals)
that act as stimuli for the respective state machines.

A block makes known the names of the receptions, each
corresponding to a signal, that: it responds to (i.e. the block
provides the behaviour); or, alternatively, expects its SysML
environment to respond to (i.e. the environment provides
the behaviour). These behavioural features are designated
as provided and required behavioural features. We define
the functions

prov : B → PS

reqd : B → PS

to return provided and required receptions.
The internal block diagram graphically sets out the inter-

nal structure of a block from its parts. In contrast, the block
definition diagram depicts the composition of a block, but
abstracts away from the internal structure. A part is con-
nected to another part via a connector; it is an instance of a
block. As such, it represents a particular usage of its clas-
sifying block within the context of its owning block. Each
part P ∈ P is typed by a block B ∈ B; the function

type : P → B

reflects this.
The connector serves as a bidirectional link between the

block instances and is used to convey signals between com-
municating block instances. The state machine of a block
B only receives (through its event queue) the provided
receptions, prov(B). The required features, reqd(B), are
communicated across the connectors linking parts. SysML
block instances are connected using connectors; connectors
are modelled using CSP channels. For simplicity, we use the
name of the association end for the purposes of communica-
tion and assume this to be the name of the associated block
instance. For example, if another part Pi provides a feature
Sj that a part Pk requires, the state machine of Pk will use
the name of part Pi as the CSP channel on which to send the
required event.

The structure, and subsequent overall behaviour, of a
block B ∈B, composed from N constituent block instances,
{P0 . .PN−1} ⊆ P, is expressed in CSP via parallel compo-
sition. The classifier behaviour of each part Pj is modelled
via a state machine Mj , given by

Mj = classifier(type(Pj ))

The complete system, Bi , can be modelled by placing
in parallel the processes corresponding to each of the state
machines Mj , where 0 ≤ j ≤ N −1:

Bi = ‖ j : {0 . .N −1} • [αMj ]Mj
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5.3 Reasoning about blocks

We now discuss and formalise the different interpretations
(abstraction and controller) attributed to the resulting com-
position when a block is composed of other blocks.

5.3.1 Abstraction

The first of the interpretations above assumes that the behav-
iour of the composite block serves as an abstraction of
the behaviour of its parts. Assume a block Bi ∈ B com-
posed of K constituent blocks B0 . .BK−1, where i ≥ K .
We know that the aggregate behaviour exhibited by blocks
B0 . .BK−1 must adhere to that of the composite block Bi .
Bi is an abstract specification block that the more concrete
implementation blocks B0 . .BK−1 must implement. Stated
in terms of CSP: the characteristic process of Bi serves
as the specification process and B0 . .BK−1, suitably com-
bined using parallel composition, form the implementation
process.

Assume that classifier(B) represents the classifier behav-
iour of a SysML block. Using CSP the conformance of the
implementation process to that of the specification can be
stated thus.

CONCRETE = ‖P : {B0 . .BK−1} • classifier(P)
classifier(Bi) 
 CONCRETE

Events introduced at the lower level of implementation are
excluded from the above observation; the hiding operator of
CSP can be used to conceal such events.

Using this approach, and assuming the refinement holds,
Bi can be safely substituted for the concrete composition
B0 . .BK−1. This stepwise, compositional approach to sys-
tems specification and design sits well with CSP’s approach
to refinement. This statement is not necessarily true for con-
ventional model checkers that rely on temporal logics to
assert safety or liveness properties. In a system of systems,
Bi , previously our system of interest, is now just a compo-
nent block representing one of the subsystems.

5.3.2 Controller

The second interpretation assumes that a block acts as a
controller for its parts. The behaviour of the block is a com-
bination of its behaviour and that of its parts: the behaviour
of its parts is considered as part of the behaviour of the com-
posite.

Assume a block Bi ∈ B, which is composed of K con-
stituent blocks B0 . .BK−1, where i ≥ K . We known that the
aggregate behaviour is that of blocks B0 . .BK−1 as well as
the composite block Bi . Here, we think of all of the blocks

as implementation blocks that combine in order to give the
desired behaviour. This can be formalised in terms of CSP
thus.

CONCRETE =
‖P : Union({{B0 . .BK−1},{Bi}}) •

classifier(P)

6 Consistency checking: an illustrative case study

6.1 A case study

We now give consideration to a case study, which we will
use to illustrate our contribution. The case study, reprised
from [13], is used as a means to evaluate and illuminate the
contribution of this paper.

We study a single component—a robotic arm—of a fully
fledged case study that is well known within the formal
methods community. The production cell is an industrial
installation of a metal processing plant located in Karlsruhe,
Germany [14]. However, in the interest of brevity and clar-
ity, we consider the Arm as our system of interest. The Arm
is one subsystem of the travelling crane, which is yet another
component of the much bigger system—the production cell
itself.

Actuators and sensors are individual components that
communicate with the system controller: actuators receive
outputs from the controller in order to coordinate the oper-
ation of several components; sensors, as the name suggests,
are sensory components that send inputs to the system con-
troller. Examples of actuators include bidirectional motors,
which can operate in two opposing directions, and electro-
magnets, which can activate or deactivate a magnetic field
using an electric current. A potentiometer is an example of
a sensor: it provides a value within certain limits so as to
indicate the range of extension.

The Arm is equipped with a bidirectional motor responsi-
ble for vertical extension. An electromagnet is placed at the
front of the Arm for handling metal objects; a potentiometer
is present to indicate the range of extension of the Arm.

The case study is explored from two different perspec-
tives, related to the different interpretations that can be
attributed to the composition of the composing block.

6.2 The Arm

The Arm is the block of interest for the purposes of the case
study. In this subsection, we explore the behaviours of the
blocks that make up the composition: BDMotor, PDMeter
and Magnet. These blocks or parts have exactly the same
behaviour, regardless of the interpretation assigned to their
composition. We introduce the SysML constructs common
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pd0
pd1
pd2

PD

fwd
rev

Direction

bdd Enumerations

bdd Signals

d: Direction

BDMotorOn

OnPD

BDMotorOff

MagnetOn

MagnetOff

pd: PD

NotifyPD

pd: PD

Grasp

pd: PD

Drop

Ready

pd: PD

PickUp

pd: PD

PutDown

Fig. 3 The block definition diagram introducing signals and enumer-
ations

to both interpretations and their relationships to their CSP
counterparts in this section. We start by looking at the struc-
tural aspects, followed by behavioural constructs, such as
state machines and activities.

6.2.1 Enumerations and signals

Refer to Fig. 3. Signal and enumeration definitions intro-
duce the messages and associated parameters communicated
between state machines and activities. We introduce all the
signals and enumerations utilised in both interpretations
here.

The Direction and PD enumerations of Fig. 3 can be rep-
resented with CSP datatypes:

datatype Direction = fwd | rev
datatype PD = pd0 | pd1 | pd2

In the above, the potential differences are denoted using
different constants, with each corresponding to a reading
returned by the potentiometer.

The signals used by the communicating state
machines are defined similarly. For each block, the signals
that correspond to the provided receptions of the particular
block are used. Where a signal has associated parameters,
these are included in the datatype definition.

datatype BDMotorSignal =
BDMotorOn.Direction | BDMotorOff

datatype MagnetSignal = MagnetOff | MagnetOn
datatype PDMeterSignal = NotifyPD .PD

SysML blocks are connected using connectors, which are
modelled using CSP channels. For the sake of simplicity, we
use the name of the association end for the purposes of com-
munication and assume this to be the name of the associated
block. Thus, for every block, we require two CSP channels:
the first models the event queue that the block uses to com-
municate with the external environment; the second is used
for internal communication between the block and its asso-
ciated event queue.

channel bdmotor : BDMotorSignal
channel bdmotorlocal : Dispatched .BDMotorSignal
channel magnet : MagnetSignal
channel magnetlocal : Dispatched .MagnetSignal
channel pdmeter : PDMeterSignal
channel pdmeterlocal : Dispatched .PDMeterSignal

For example, the channel bdmotor is used to communi-
cate with the state machine of the bidirectional motor via
its associated event queue and the channel bdmotorlocal
is used by the event queue of the bidirectional motor to
dispatch events for processing. The datatype Dispatched
models this: an event can either be processed, or, if the
state machine is in a state where the dispatched event is not
expected, discarded. Using the above assumption, any block
connected to BDMotor via a connector uses the channel
bdmotor to send signal events destined for BDMotor .

datatype Dispatched = proc | disc

6.2.2 State machines

The classifier behaviour is the main behaviour of a block
and executes as soon as the instance is created until the
point of destruction. The modelling construct that is most
frequently used to represent the classifier behaviour is a
state machine. In most systems engineering methodologies,
activities are typically used as a complementary modelling
notation to state machines: it is the behavioural formalism
normally associated with the effect component of a transi-
tion; alternatively, it is used to model behaviours related to
a particular state.

Figure 4 shows the state machines of the magnet, the bidi-
rectional motor and the potentiometer. Activities that exe-
cute on the transitions as the effect component are italicised
after the trigger, which is set in bold typeface. Activities are
shown in Fig. 5 and are discussed in Sect. 6.2.3. For now,
it is sufficient to assume that these are modelled using CSP
processes.

The CSP processes modelling the state machines for the
BDMotor, the Magnet and the PDMeter blocks follow. Local
process definitions model each state in the associated state
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Fig. 4 The state machine
diagrams of the Magnet,
BDMotor and PDMeter blocks

onoff

stm Magnet

MagnetOn/ActivateMagnet

MagnetOff/DeactivateMagnet

senseidle

stm PDMeter

/OnSense

NotifyPD(d)

onoff

stm BDMotor

BDMotorOn(d)/TurnOnBDMotor(d)

BDMotorOff/TurnOffBDMotor

Fig. 5 Activity diagrams
modelling additional behaviours
executed within the context of
state machines MagnetOn

MagnetOff

act Magnetise

act Demagnetise

fwd::Direction BDMotorOn

NotifyPD

OnPD

act Extend

d: PD

BDMotorOn

NotifyPD
OnPD

act Retract

rev::Direction

pd0

act ActivateMagnet

act DeactivateMagnet

EMFOn

EMFOff

act OnSense

OnPD

act TurnOffBDMotor

EngineOff

d: Direction

EngineFwd

EngineRev

act TurnOnBDMotor

BDMotorOff

BDMotorOff

Ready

[d=fwd]

[else]
act SetReady

Ready

machine. The deterministic choice between permissible trig-
gers is offered to the external environment. Recall that if a
CSP event corresponding to a permitted SysML triggering
event is received:

– the process modelling the exit behaviour of the source
state executes;

– the process modelling the effect of the transition exe-
cutes;
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– the process modelling the entry behaviour of the target
state executes; and

– the target state is entered.

The above is modelled using the sequential composi-
tion operator. The aforementioned behaviours are all SysML
activities with corresponding CSP processes; if a behaviour
is not present, it is simply not included in the sequential
composition.10 Note that, in every state, the dispatched,
unexpected events are discarded and thus removed from the
event queue without effect: this corresponds to communica-
tions of the form local .disc.e, where e is an signal event.
Events that are served up for processing and successfully
processed by the state machine correspond to communica-
tions of the form local .proc.e.

Alphabets of the individual processes are defined below
each process definition. The alphabet of a state machine is
the set of events that it can communicate, as well as the
alphabets of its associated activities.

BDMotor(queue, local) =

let

I0 = OFF

OFF =
local .proc.BDMotorOn?d →

TurnOnBDMotor(d) o
9

ON
�

local .disc?e : {| BDMotorOff |} →
OFF

ON =
local .proc.BDMotorOff ?d →

TurnOffBDMotor(d) o
9

OFF
�

local .disc?e : {| BDMotorOn |} →
ON

EQ = queue?e → local?p!e → EQ

within

I0 [| {| local |} |]EQ

BDMOTOR = BDMotor(bdmotor ,bdmotorlocal)

αBDMOTOR =
Union({{| bdmotor ,bdmotorlocal |},

αTurnOnBDMotor ,
αTurnOffBDMotor})

10 Alternatively, it can be modelled using the CSP process, Skip.

Magnet(queue, local) =

let

I0 = OFF

OFF =
local .proc.MagnetOn →

ActivateMagnet o
9

ON
�

local .disc?e : {| MagnetOff |} →
OFF

ON =
local .proc.MagnetOff →

DeactivateMagnet o
9

OFF
�

local .disc?e : {| MagnetOn |} →
ON

EQ = queue?e → local?p!e → EQ

within

I0 [| {| local |} |]EQ

MAGNET = Magnet(magnet ,magnetlocal)

αMAGNET =
Union({{| magnet ,magnetlocal |},

αActivateMagnet ,
αDeactivateMagnet})

PDMeter(queue, local) =

let

I0 = IDLE

IDLE =
local .proc.NotifyPD?pd → SENSE

SENSE =
OnSense o

9 IDLE
�

local .disc?e : {| NotifyPD |} → SENSE

EQ = queue?e → local?p!e → EQ

within

I0 [| {| local |} |]EQ
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PDMETER = PDMeter(pdmeter ,pdmeterlocal)

αPDMETER =
Union({{| pdmeter ,pdmeterlocal |},

αOnSense})

The channel pdmeter is used for communication with
the state machine of the potentiometer, and pdmeterlocal
is used for internal communication between the event queue
and state machine.

6.2.3 Activities

The activities that serve to augment the classifier behaviour
of the blocks introduced in Sect. 6.2.2 are formalised in the
following.

Each activity has an associated CSP process with localised
process definitions corresponding to the actions. Activity
parameter nodes are modelled with local process variables.
Opaque actions are communicated on the CSP channel,
opaque .

The activities of the bidirectional motor—TurnOnBD
Motor and TurnOffBDMotor—can be modelled thus.

TurnOnBDMotor(d) =

let

MERGE0 =
if d == fwd then

OA0

else
OA1

OA0 = opaque.enginefwd → F0

OA1 = opaque.enginerev → F0

F0 = Skip

within

MERGE0

α TurnOnBDMotor =
{| opaque.enginefwd ,opaque.enginerev |}

TurnOffBDMotor =

let

I0 = OA0

OA0 = opaque.engineoff → F0

F0 = Skip

within

I0

α TurnOffBDMotor = {| opaque.engineoff |}

The processes corresponding to the remainder of the
activities of Fig. 5—ActivateMagnet, DeactivateMagnet and
OnSense—are defined similarly. We omit the definitions
here in the interest of brevity.

6.3 Interpretations

We now give consideration to the different notions that can
be attributed to the behavioural composition of a collection
of blocks using a process-algebraic approach.

6.3.1 Abstraction

We now explore the behavioural composition of the Arm
block with the first interpretation of Sect. 1—“The classifier
behaviour of the block can serve as an abstraction of the
behaviours of its parts”—in mind.

The block definition diagram showing the composition
of the Arm is given Fig. 6; the interconnections among the
parts are depicted with the internal block definition dia-
gram of Fig. 7. The structural aspects of the system are
modelled using blocks for the controller, the bidirectional

Arm

Controller Magnet

BDMotor

PDMeter

bdd ArmSystem

Fig. 6 The block definition diagram of the Arm system
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ibd Arm

: Controller

: Magnet

: PDMeter

: BDMotor

magnet

bdmotor

pdmeter

controller

controller controller

Fig. 7 The internal block definition diagram of the Arm block

prov            PickUp (pd : PD)
prov            PutDown (pd : PD)
reqd            Ready()

Arm

bdd Arm

Fig. 8 The block definition diagram of the Arm block

motor, the electromagnet and the potentiometer. The clas-
sifier behaviour of the Arm is to serve as an abstraction of
the behaviours of its parts: the BDMotor, Magnet, PDMe-
ter and Controller. We have seen CSP definitions modelling
the behaviours of the BDMotor, Magnet and PDMeter; the
controller is introduced below.

The channel and datatype definitions are similar to those
defined earlier.

datatype ArmSignal = PickUp.PD | PutDown.PD
datatype ControllerSignal =

Grasp.PD | Drop.PD | OnPD

channel controller : ControllerSignal
channel controllerlocal :

Dispatched .ControllerSignal

The provided and required receptions of the Controller
and Arm blocks are shown below.11 There is a clear cor-
respondence between the CSP datatype definitions and the
provided receptions of the SysML blocks. Required recep-
tions should appear in the CSP datatype definitions of other
blocks in the system that receive these signal events as trig-
gers in their classifying state machines (Fig. 8, 9).

The CSP process describing the characteristic behav-
iour of the controller’s state machine follows. The activity

11 The detailed block definition diagrams of other blocks are omitted
in the interest of brevity.

bdd Controller

prov            Grasp (pd : PD)
prov            Drop (pd : PD)
prov            OnPD()
reqd            MagnetOn()
reqd            MagnetOff()
reqd            BDMotorOn (d : Direction)
reqd            BDMotorOff()
reqd            NotifyPD()
reqd            Ready()

Controller

Fig. 9 The block definition diagram of the Controller block

Extend is associated with the effect component of the tran-
sitions emanating from the idle state; the activity Magnetise
represents the entry behaviour of the grasp state. Activities
are shown in Fig. 4.

Controller(queue, local) =

let

I0 = IDLE

IDLE =
local .proc.Grasp?e →

Extend(local ,e) o
9

Magnetise o
9

GRASP
�

local .proc.Drop?e →
Extend(local ,e) o

9

Demagnetise o
9

DROP
�

local .disc?e : {| OnPD |} →
IDLE

GRASP =
Retract(local) o

9 IDLE
�

local .disc?e : {| Grasp,Drop,OnPD |} →
GRASP

DROP =
Retract(local) o

9 IDLE
�

local .disc?e : {| Grasp,Drop,OnPD |} →
DROP

EQ = queue?e → local?p!e → EQ

within

I0 [| {| local |} |]EQ
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ready

PutDown(e)
PickUp(e)

stm Arm

idle

grasp

entry: Magnetise

drop

entry: Demagnetise

Grasp(e)/Extend(e) Drop(e)/Extend(e)

/Retract /Retract

stm Controller

busy

/SetReady

Fig. 10 The state machine diagrams of the classifier behaviours of the
Arm and Controller blocks

CONTROLLER =
Controller(controller ,controllerlocal)

αCONTROLLER =
Union({{| controller ,controllerlocal |},

αMagnetise,
αDemagnetise,
αExtend ,
αRetract})

The blocks described above—Controller, BDMotor, Mag-
net and PDMeter—are all concrete implementation blocks
in SysML (Fig. 10). The abstract block, Arm, which serves
as an implementation that the parts must realise, is modelled
below.

Arm(queue, local) =

let

I0 = READY

READY =
local .proc.PickUp?e → BUSY
�

local .proc.PutDown?e → BUSY

BUSY =
SetReady o

9 READY
�

local .disc?e : {| PickUp,PutDown |} →
BUSY

EQ = queue?e → local?p!e → EQ

within

I0 [| {| local |} |]EQ

ARM = Arm(arm,armlocal)

αARM =
Union({{| arm,armlocal |},

αSetReady})

The process SetReady used within the ARM process fol-
lows.

SetReady =

let

I0 = SS0

SS0 = client .Ready → F0

F0 = Skip

within

I0

αSetReady = {| client .Ready |}

The processes responsible for modelling the activities
used in the CONTROLLER process follow.

All activities in this paper execute within the context of
their owning state machine. An activity can take parame-
ters, passed from the arguments of the triggering event of
the owning state machine, as input. Some activities have
receive signal events as actions; these receive signal events
need to be passed via the event queue mechanism of the state
machine. It follows that the channel used for local commu-
nication with the state machine ought to be passed in as an
argument to the activity.

Extend(local ,pd) =

let

I0 = VS0

VS0 = SS0(fwd)

SS0(o) = bdmotor .BDMotorOn.o → SS1

SS1 = pdmeter .NotifyPD .pd → RS0

RS0 =
local .proc.OnPD → SS2

�

local .disc?ev : {| Grasp,Drop |} → RS0

SS2 = bdmotor .BDMotorOff → F0

F0 = Skip

within

I0
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αExtend =
{| bdmotor .BDMotorOn.fwd ,

bdmotor .BDMotorOff ,
pdmeter .NotifyPD |}

Retract(local) =

let

I0 = VS0

VS0 = SS0(rev)

SS0(o) = bdmotor .BDMotorOn.o → VS1

VS1 = SS1(pd0)

SS1(o) = pdmeter .NotifyPD .0 → RS0

RS0 =
local .proc.OnPD → SS2

�

local .disc?ev : {| Grasp,Drop |} → RS0

SS2 = bdmotor .BDMotorOff → SS3

SS3 = client .Ready → F0

F0 = Skip

within

I0

αRetract =
{| bdmotor .BDMotorOn.rev ,

bdmotor .BDMotorOff ,

pdmeter .NotifyPD .pd0,
client .Ready |}

Magnetise =

let

I0 = SS0

SS0 = magnet .magnetOn → F0

F0 = Skip

within

I0

αMagnetise = {| magnet .MagnetOn |}

Demagnetise =

let

I0 = SS0

SS0 = magnet .magnetOff → F0

F0 = Skip

within

I0

αDemagnetise = {| magnet .MagnetOff |}

Send signal event actions may have input object pins that
determine the argument sent as part of the event; simi-
larly, receive signal event actions may receive arguments
and therefore have object output pins. Value specification
actions12 are used in object flows to output a constant value
that serve as input to another action. In every case, the inter-
nal channel is used to receive events using the event passing
mechanism. Signal events13 are sent using the channel with
the same name as the target block, similar to the approach
taken for state machines.14

Assuming that

P = {CONTROLLER,MAGNET ,
BDMOTOR,PDMETER}

we then have

CONCRETE = ‖p : P • [αp]p

The set of processes, P , represent the concrete implemen-
tation blocks whose conjoined behaviour must be that of
the block arm that serves as its specification. The similarity
with CSP here is striking: refinement in CSP is expressed
between specification and implementation processes.

12 As an example, the action outputting the forward direction in
Extend.
13 As examples, see BDMotorOn in Extend for a send signal event and
OnPD in Retract for a receive signal event.
14 In addition, send and receive signal events have input and output
pins that can identify the target and source of an action.
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CONCRETER is the process with events suitably
renamed to ensure compatible alphabets.

CONCRETER =
CONCRETE [

controller .Grasp.pd0 ←arm.PickUp.pd0,

controller .Drop.pd0 ←arm.PutDown.pd0,
controller .Grasp.pd1 ←arm.PickUp.pd1,
...
]

The set Hidden contains those events not present in the
alphabet of the concrete specification process, ARM ; Σ
denotes the set of all CSP events within the context of the
specification. Thus

Hidden =
Σ\{| arm.PickUp,

arm.PutDown,
armlocal .proc.PickUp,
armlocal .proc.PutDown,
armlocal .disc.PickUp,
armlocal .disc.PutDown,
client |}

FDR3 verifies the assertion

ARM 
T CONCRETER \ Hidden [
T holds]

As the traces-refinement holds, ARM can be substi-
tuted for its parts in the complete system: the behaviour
of the concrete implementation processes (which is cap-
tured by CONCRETER) can neither accept nor refuse an
event unless ARM can. Stated another way, the character-
istic behaviour of CONCRETER is completely contained
within that of ARM . The compositional approach presented
above is effective in alleviating the state space explosion
problem: subsystems can be developed and formally ver-
ified in isolation and subsequently combined to form an
integrated system description.

6.3.2 Controller

We explore the behavioural composition of the Arm block
with the second interpretation of Sect. 1—“the classifier
behaviour of the block acts as a controller in order to actively
orchestrate the behaviours of its parts”—in mind. The sec-
ond interpretation calls for the classifier behaviour of the
Arm block to act as a controller in order to actively orches-
trate the behaviours of its parts. Thus, the behaviour of the
Arm block must be a combination of its own behaviour and
that of its parts (Fig 11).

idle

grasp

entry: Magnetise

drop

entry: Demagnetise

Grasp(e)/Extend(e) Drop(e)/Extend(e)

/Retract /Retract

stm Arm'

Fig. 11 The state machine diagram of the classifier behaviour of the
Arm’ block

Arm'

Magnet BDMotor

PDMeter

bdd Arm'System

Fig. 12 The block definition diagram of the Arm’ system

ibd Arm'

: Magnet

: PDMeter

: BDMotor

magnet

bdmotor

pdmeterarm'

Fig. 13 The internal block definition diagram of the Arm’ block

Figure 12 shows the new composition of the Arm using
the second interpretation. The Arm is still composed from
instances of the potentiometer, bidirectional motor and mag-
net blocks. The controller block, however, is missing. The
interconnection between the parts is depicted in Fig. 13: the
parts now directly communicate with the composite block.
The resulting composition thus behaves as a combination
of its own behaviour (the classifying behaviour of the Arm)
and that of its parts (the behaviours of the magnet, the poten-
tiometer and the bidirectional motor).

The behaviour of the state machine for the Arm in the
second interpretation is exactly the behaviour of the con-
troller in the first interpretation. In the first interpretation,
the controller orchestrated the behaviour of the rest of the
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parts, and the Arm block served as the specification. Here,
the Arm block itself orchestrates the behaviours of its parts.

The behaviour of the state machine for the Arm using the
second interpretation follows.

datatype Arm ′Signal =
Grasp.PD | Drop.PD | OnPD

channel arm ′ : Arm ′Signal
channel arm ′local : Dispatched .Arm ′Signal

Arm ′(queue, local) =

let

I0 = IDLE

IDLE =
local .proc.Grasp?e →

Extend(local ,e) o
9

Magnetise o
9

GRASP
�

local .proc.Drop?e →
Extend(local ,e) o

9

Demagnetise o
9

DROP
�

local .disc?e : {| OnPD |} →
IDLE

GRASP =
Retract(local) o

9 IDLE
�

local .disc?e : {| Grasp,Drop,OnPD |} →
GRASP

DROP =
Retract(local) o

9 IDLE
�

local .disc?e : {| Grasp,Drop,OnPD |} →
DROP

EQ = queue?e → local?p!e → EQ

within

I0 [| {| local |} |]EQ

ARM ′ = Arm ′(arm ′,arm ′local)

αARM ′ =
Union({{| arm ′,arm ′local |},

αMagnetise,
αDemagnetise,
αExtend ,
αRetract})

The complete behaviour of the Arm and all its parts can
be expressed in CSP as follows. Assuming that

P =
{ARM ,MAGNET ,BDMOTOR,PDMETER}

we then have

CONCRETE ′ = ‖p : P • [αp]p

The set of processes, P , represent the Arm that acts as a con-
troller and its constituent parts: the magnet, the bidirectional
motor and the potentiometer. The behaviour is a combina-
tion of the Arm and that of the magnet, the bidirectional
motor and the potentiometer.

The second interpretation above has the drawback that
there is no specification process that can be substituted for
the composition. However, this interpretation sits well where
the overall system architecture is described in terms of high-
level blocks. These high-level blocks might be specification
level or abstract blocks, each obtained from previous refine-
ments using the first interpretation. At the architectural level,
however, the integrated behaviour of all the components
would be of interest to the modeller. Here, techniques that
would assist in assured requirements traceability would be
beneficial [10].

Figure 14 depicts these concepts. For example, the design-
ers of a travelling crane might use the first interpretation
above that results in an abstract block that denotes the
robotic arm. This block might then be substituted in place
of its components15 in the system of interest—the travel-
ling crane—along with other blocks, such as sensors and
bidirectional motors, using the second interpretation. Alter-
natively, the first interpretation might be used again to obtain
a single abstract block, modelling the travelling crane, when
the system of interest is the production cell. At this level,
one might have refinements modelling behavioural safety
requirements, as outlined in, for example [10].

7 Conclusions

We have shown how the refinement checker FDR3 can be
used in a practical setting to ensure that different behavioural
formalisms—activities and state machines—are consistent.
Moreover, we have demonstrated how refinement can be
used to decompose a complex design problem to give rise
to a top-down approach to designing a system comprised
of subsystems. In doing this, we have defined the seman-
tics of state machines and activities that execute within this
context. This paper represents a significant extension to the

15 Presuming that the refinement holds.
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B3

B

B2B1

A2

A

A1

C2

C

C1

D

Safety

Fig. 14 The compositional approach afforded by CSP. The white
ellipses denote the behavioural interpretation of blocks using the
abstraction approach. The system of interest, block D, is composed of
abstract blocks and serves as a controller that orchestrates the behav-
iour. The second interpretation, shown inside the dark ellipse, applies
here. The behavioural of the overall system is the combined behaviour
of blocks A, B, C and D. Furthermore, block A serves as a behav-

ioural specification that must be satisfied by its constituted blocks A1
and A2. Block A can be substituted for its components in the overall
system. A similar line of argument can be followed for blocks B and
C, together with their component blocks. Safety requirements can be
allocated behavioural constructs to further refine the intentions of the
modeller and checked for conformance using CSP [10]

contribution of [12]. The interested reader is referred to [10]
for a consideration of how this approach can support formal
requirements traceability via refinement checking.

To the best of our knowledge, this is the first contribu-
tion that has explored the different notions of behavioural
integration from a formal, process-algebraic perspective.
Furthermore, we are not aware of any other contribution
that integrates the combined behaviour of the formalisms
explored in this paper—state machines and activities—using
CSP.

Formal semantics for some of the SysML diagrams has
been given in terms of the COMPASS Modelling Language
(CML) [21]. A set of translation rules are given that maps
SysML diagrams to their counterparts in CML. The work
described in this paper differs in that CML integrates state-
based, as well as process-algebraic description techniques.
Our work, on the other hand, is concerned solely with
defining a process-algebraic approach to ensure behavioural
conformance among the behaviour diagrams of SysML.

Ng and Butler [15] proposed the formalisation of UML
state machine diagrams, with CSP being used as the seman-
tic domain [15]. They define the translation in terms of a
mapping from structural diagrammatic constructs to their

CSP counterparts. The translation starts from an initial state
and then proceeds to deduce the behaviour of the entire
state machine in terms of CSP descriptions. Broadly speak-
ing, each state is mapped to a process and each UML
event is mapped to a CSP event. The work of Yeung et
al. [25] builds on that of Ng and Butler by generalising
inter-level transitions and prioritising transitions at different
levels of the state hierarchy. The authors therefore pro-
vide an alternative semantics for state machines. However,
their approach only takes into account those constructs for-
malised in [15].

Zang and Liu [26] mapped state machine diagrams to
CSP using the model checker PAT [20]. A state machine
is modelled by a single CSP process; translation rules are
presented that map state machine constructs to CSP# [20],
which is the input language of the Process Analysis Toolkit
(PAT) [20]. Refinement checking, as well as model check-
ing, is possible: both are natively supported by the model
checker. The transformation methodology is presented via a
set of rules.

Xu et al. [22,23] formalised activity diagrams in CSP. A
transformation function is defined that maps the mathemat-
ical representation of an activity to the semantic domain of
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Table 1 Comparison of CSP formalisations of state machines

State machine construct This paper Ng and Butler [15] Bolton, Crichton and Davies [4,6] Yeung et al. [25]

Initial state � � � �
Final state � � � �
Terminate state �
Simple state � � � �
Junction state �
Choice state � �
Simple composite state � � �
Orthogonal composite state �
Triggers � � � �
Guards � �
Effects � � �
Entry and exit behaviours � � �
Do behaviours �
Event queue � �
Multiple state machines � �
Integration with activities �
Global variables �

Table 2 Comparison of CSP formalisations of activities

Activity construct This paper Xu et al. [22,23] Bolton, Crichton
and Davies [4,6]

Abdelhalim et al. [1,2]

Initial node � � � �
Final node � � � �
Fork node � � �
Join node � � �
Decision node � � � �
Merge node � � � �
Signal event nodes � �
Value specification nodes � �
(Opaque) actions � � � �
Call behaviour actions �
Parameter nodes � �
Interruptible region �
Control flows � � � �
Object flows � �
Integration with state machines �
Global variables

CSP. The goal of the work described in [22,23] is on pro-
viding a formal semantics for activities in terms of CSP,
rather than checking behavioural conformance. Only a lim-
ited number of diagrammatic constructs are considered, and
object flows are omitted. Constructs such as send and receive
event actions are not addressed.

Our work differs from that of the aforementioned contri-
butions in a number of ways. Primarily, we present a compo-

sitional approach to refinement and specification, evaluated
within the context of SysML. In addition, we consider
the behaviour of several interacting state machines, supple-
mented with behaviours described via activities. In contrast,
previous approaches placed emphasis on the formalisation
of a single state machine (or activity); considering the exe-
cution semantics in terms of interaction with other state
machines (or activities) was not the primary focus. Tables 1
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and 2 attempt to draw comparisons between our work and
that of others, with respect to the constructs addressed in the
various contributions.

With respect to future work, we plan to integrate the
semantics of state machine and activity diagrams with that
of sequence diagrams in a CSP framework that encom-
passes all behavioural diagrams of SysML. To this end, a
formal semantics for sequence diagrams in terms of CSP
has already been given in [11].

The work described in this paper significantly
extends the work of [12] by providing a more comprehen-
sive semantics for both SysML activities and state machines.
The purpose of [12] was to demonstrate an integrated
semantics for activities and state machines, rather than for-
mulate a comprehensive semantics of each. In this paper,
we aim to demonstrate a comprehensive, integrated seman-
tics considering both behavioural constructs. The case study
presented in [13] is employed to illuminate and validate the
contribution of this paper.

Another formal method often used to formalise UML and
SysML diagrams is Petri nets: state machine diagrams are
given a formal semantics in [3] and [5]; activity diagrams
are formalised in [24].

In conclusion, the contributions of this paper are as fol-
lows.

– We have presented a formal model of SysML blocks
using CSP. In particular, we have demonstrated one
interpretation of SysML blocks for modelling and inte-
grating system behaviour in a formal setting.

– We have presented an overarching behavioural
semantics for state machines and activities. To the best
of our knowledge, this is the first formalisation that
encompasses and considers the combined behaviour of
both of these constructs.

– We have demonstrated how CSP can be used in conjunc-
tion with SysML in a compositional, refinement-based
approach to specification. The proposed methodology
was evaluated using a case study that we would argue
is ideally suited to illustrate the principles of systems
engineering.

Acknowledgements The authors would like to thank the anonymous
reviewers for their helpful and constructive comments.
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