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Abstract We present Unit-B, a formal method inspired by
Event-B and UNITY. Unit-B aims at the stepwise design
of software systems, satisfying safety and liveness proper-
ties. The method features the novel notion of coarse and fine
schedules, a generalisation of weak and strong fairness for
specifying events’ scheduling assumptions. Based on events
schedules, we propose proof rules to reason about progress
properties and a refinement order preserving both liveness
and safety properties.We illustrate our approach by an exam-
ple to show that systems development can be driven by not
only safety but also liveness requirements.

Keywords Progress properties · Refinement · Fairness ·
Scheduling · Unit-B · Proof-based formal methods ·
Verification of cyber-physical systems

1 Introduction

Developing systems satisfying their desirable properties is a
non-trivial task. Formal methods have been seen as a pos-
sible solution to the problem. Given the increasing com-
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plexity of systems, many formal methods adopt refinement
techniques, where systems are developed step by step in a
property-preserving manner. In this way, a system’s details
are gradually introduced into its design within a hierarchical
development.

System properties are often categorised into two classes:
safety and liveness [16]. A safety property ensures that unde-
sirable behaviours will never happen during system execu-
tions. A liveness property guarantees that eventually desir-
able behaviours will happen. Ideally, systems should be
developed in such away that they satisfy both their safety and
liveness requirements. Although safety properties are often
considered the more important ones, we argue that having
live systems is also important. A system that is safe but not
live can be useless. For example, consider an elevator system
that does not move. Such an elevator system is safe (nobody
gets hurt), yet worthless. According to a survey [9], liveness
properties (in terms of existence and progress) amount to
45% of the overall system properties.

1.1 Motivation

In many refinement-based development methods (e.g. B [1],
Event-B [2], VDM [15], Z [22]), the focus is on preserv-
ing safety properties. A common problem for such safety-
oriented methods is that when applying them to the design
of a system, it is possible to make the design so safe that
it becomes unusable. This would happen if we strengthened
the guards of the events (in Event-B) or choose strong pre-
conditions (in B, Z, VDM) to facilitate the proof of safety
properties but in such a way that, in cases where the oper-
ations or events are needed to make the system progress,
they are not enabled. Concretely, in an elevator system, this
might result in a controller which eventually stops opening
the door to the elevator (possibly despite there being people
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inside) in order to satisfy the safety property that the door
not be opened between floors. It is hence our aim to design
a refinement framework preserving both safety and liveness
properties.

UNITY [4] has a calculus for liveness, but does not sup-
port refinement of programs. Specifications are written in the
UNITY logic (a subset of temporal logic), and implementa-
tions are programs (or transition systems). The initial specifi-
cation can be refined by a stronger set of temporal properties,
but once the temporal properties are implemented, further
refinement of the programs is not possible.

Event-B [2] has a calculus for refinement of safety proper-
ties, but does not provide much support for liveness and fair-
ness. Instead, Event-B provides the notion of convergence.
In a system, a set of events are convergent if they cannot
prevent the other events from happening. This can be used,
for instance, to develop model of a sequential program, to
prove that the program terminates. Convergence is proven by
choosing a variant for the system, i.e. an expression whose
type iswell ordered (e.g. natural numbers or finite sets). Then,
it must be proved that all convergent events are guaranteed
to decrease the variant whenever they are executed.

In Event-B, liveness properties cannot be directly
expressed and proved. One justifies the validity of a liveness
property (e.g. �♦evt, i.e. infinitely often, event evt occurs)
by showing that the system is deadlock free and that events
other than evt are convergent. However, one must show that
deadlock freedom is preserved in each following refinement
and that all new events are convergent. If a spontaneous event
(i.e. non-convergent) is needed in a refinement (e.g. an event
representing an environmental action), liveness is no longer
preserved. Also, only one liveness property per system can
be supported.

Our Unit-B method [12] is inspired by the treatment of
liveness in UNITY and refinement in Event-B. It improves
on both methods by offering a notion of refinement that pre-
serves liveness applicable to reactive and distributed systems.
It does this by the introduction of coarse and fine schedules
on events and event indices.

In the subsequent, we present a small example to con-
trast Event-B’s safety-based style of reasoning with Unit-B’s
liveness-driven style. We present two high-level models (one
in Event-B and the other in Unit-B) of a mutual exclusion
protocol. In each model, we show the important safety and
liveness properties that one can prove. More specifically, we
study three requirements: (1) mutual exclusion (safety), (2)
minimal progress and (3) individual progress.

1.1.1 An Event-B model

The Event-B model, shown in Fig. 1, formalises a set of
processes (Pcs) each of which is in one of three states: idle,
waiting and cs (i.e. in their critical section). The state of every

Fig. 1 Event-B mutual exclusion specification

process is recorded in the (global) variable st (see invariant
inv0). The safety requirement of the protocol, that of mutual
exclusion, is captured by invariant inv1 and can be proved at
this level of abstraction.

In order to reason about liveness in this Event-B system,
we need a variant. The variant is chosen on the basis of the
exact property that we want to demonstrate. We are inter-
ested in proving continuous progress, i.e. as long as there are
processes waiting to enter their critical section, some process
will get to enter. In linear time temporal logic, this is formu-
lated as:

�( (∃ p :: st.p = waiting) ⇒ ♦(∃ p :: st.p = cs) )

(prg0)

In this property, the p in st.p = waiting and the p
in st.p = cs are not necessarily the same and individual
processes might wait forever. There are two ways in which
an execution of the Event-B model might fail to satisfy this
(weak) liveness property:

1. The system executes forever but, after a pointwhere some
processes are waiting, only events request and exit are
taken.

2. The system deadlocks, i.e. terminates, in a state where
some processes are still waiting.

Issue 1 can be addressed by using the following variant
and by making events request and exit convergent (as in
Fig. 1).

variant : 2 × (# p :: st.p = cs) + (# p :: st.p = idle)
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Refinement guided by progress concerns 1093

In the above expression, the notation (# x : R : T ), the
counting quantifier, is used to designate the number of values
of x that satisfyT given that they satisfy R. Convergent events
are required to decrease this natural number variant. Event
exit decreases the first term by 2 and increases the second
term by 1while event request decreases the second term and
leaves the first term unchanged. The two events are therefore
convergent.

This line of reasoning proves that any (possibly partial)
execution of the system where enter is not executed must be
finite. It also follows that any infinite execution of the model
includes an infinite number of occurrences of enter. In this
case, it means that enter has to occur infinitely many times
in infinite executions.

Issue 2 is addressed by ensuring that, at any time, there
is at least one enabled event. This is known as a proof of
deadlock freedom.

dlf : (∃ p :: st.p = idle) // request

∨
(

∃ p :: st.p = waiting
∧ (∀ q : q �= p : st.q �= cs)

)
// enter

∨ (∃ p :: st.p = cs) // exit

In this small system, deadlock freedom is easy to prove.
However, the size of its formulation grows with the number
of events of the system and it cannot, in general, be broken
down into smaller proof obligations.

In addition, the (weak) liveness property (prg0) is not
automatically satisfied by refinements of the system. In order
to preserve it,we need tomake convergent all the events intro-
duced in successive refinements andwe need to prove relative
deadlock freedom at each level of abstraction, a burden that
only grows more daunting as a development progresses.

As mentioned earlier, this does not prove individual
progress of the processes involved in the protocol. We would
like to prove the following (strong) liveness property:

(∀ p :: �( st.p = waiting ⇒ ♦st.p = cs ))

i.e. every processwaiting eventually enters its critical section.
It is not possible to prove such individual progress using
the Event-B model of Fig. 1. In order to do such a proof,
we would need to include in the model a description of a
scheduler. In other words, a low-level design is necessary
even for a high-level liveness property. This is contrary to
the idea of refinement: properties should be provable at the
level of abstraction and the level of details to which they
pertain. This is what Unit-B accomplishes.

Notational convention The examples in this paper rely heav-
ily on discrete mathematics and predicate calculus. With
the exception of function application, we borrow the set-
theoretic and relational notation from the Event-B book [2];

Fig. 2 Unit-B mutual exclusion specification

function application, written f. x with f the function and
x the argument, as well predicate calculus and generalised
quantifier notation are taken from Dijkstra [7].

In Dijkstra’s relativised quantifier notation, (∀ x : R : T )

and (∃ x : R : T ), with R the range of the quantifications and
T the term, are equivalent to themore common (∀x • R ⇒ T )

and (∃x • R ∧ T ). The notation for temporal logic is taken
from [18].

1.1.2 A Unit-B model

Figure 2 shows a Unit-B model for the same problem as
Fig. 1. TheUnit-B has the same set of variables and invariants
as the Event-B model from Fig. 1. Figure 2 only shows the
events of the Unit-B model.

In addition to the Event-B constructs, the Unit-B model
features three new ones: event coarse schedules, introduced
by the keyword during; event fine schedules, introduced
by the keyword upon and event indices, denoted by the
square brackets next the event names. Intuitively, if the coarse
schedules of an event hold continually and its fine schedules
becomes true infinitely often, then the event is executed infi-
nitely often.

For all events (i.e. request, enter, exit), p is an index
instead of an Event-B parameter (declared with the keyword
any). While a parameter is conceptually a value chosen non-
deterministically, an index suggests that there exists a distinct
version of the event, including a separate scheduling assump-
tion, for every one of the index’s values. This allows us to
prove individual progress for each process p.

Event request is syntactically similar to its Event-B
counter part. Semantically, the difference is subtle but impor-
tant. In Event-B, if request is the only enabled event, i.e. its
guard is true and the guard of every of other event is false,
request will be taken eventually. In Unit-B, even if request
is the only enabled event, itmight never occur. This is because
request is not scheduled: it features neither a coarse sched-
ule (declared with during) nor a fine schedule (declared with
upon).
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Events enter and exit are scheduled events: enter has
both a coarse schedule and a fine schedule, and exit has only
a coarse schedule. In the case of exit, when its coarse sched-
ule is continually true, i.e. some process is in its critical sec-
tion and remains there; then, eventually exit is taken and p
exits its critical section. Event enter is eventually taken if a
process p is waiting continually (coarse schedule) and that
infinitely often no process is in its critical section (fine sched-
ule). The fine schedule ensures that enter occurs despite the
other processes going in and out of their critical sections.

The notion of schedule allows us to prove that certain
events are guaranteed to occur without having to reference
the other events. This is in contrast to Event-Bwhere the only
way to ensure that enter is taken is to make sure that it is
eventually the only event enabled.

The next step is to formulate the liveness requirement.
In UNITY logic, on which Unit-B is based, the absence of
livelock (i.e. (prg0)) is formulated as:

(∃ p :: st.p = waiting) � (∃ p :: st.p = cs).

It reads “whenever a process is waiting it eventually follows
that a process, possibly a different one, will gain access to its
critical section”.

Although the absence of livelock is an interesting property,
it is too weak to be useful; the goal of the processes is not to
allow an arbitrary other process to carry onwith its work; and
it is rather the goal of the mutual exclusion protocol to let the
processes go about their business unhindered, independently
from each other. This means that it is more important for
the purpose of each process not to be left to wait forever
than any other property that has to do with the competing
processes. Therefore, we choose individual progress as the
central property to be proved. Its UNITY formulation is:

st.p = waiting � st.p = cs (prg1)

The free variable p is implicitly universally quantified over
the whole formula.

In the process of proving (prg1), we will discover that
another progress property is required. This is because the
only way that every process can safely have a turn in their
critical section is for no process to linger in theirs forever.
We formulate it as (prg2) and prove it first:

true � (∀ p :: ¬st.p = cs) (prg2)

It reads “infinitely often, every process will be simultane-
ously out of their critical section”. In LTL, they are stated
as:

(∀ p :: �( st.p = waiting ⇒ ♦st.p = cs )) (prg1′)

�♦(∀ p :: ¬st.p = cs) (prg2′)

The standard way of proving a liveness property in Unit-B
is to use rules from UNITY logic to transform the property
into something that is more easily proved using the events.
The rules will be explained in more details in Sect. 3. For the
sake of conciseness, we only sketch the intuition behind the
proofs of this example.

A sketched proof of (prg2) As long as (∀ p :: ¬st.p = cs)
does not hold, there exists a process p is in its critical section,
i.e. the coarse schedule of exit[p] is true. Therefore, accord-
ing to its scheduling assumption,exit[p] eventuallywill, thus
establishing (∀ p :: ¬st.p = cs) in the process thanks to the
mutual exclusion invariant, inv1.

A sketched proof of (prg1) Given a process p, enter[p] is
the only event that can establish st.p = cs and it does so
if st.p = waiting (its coarse schedule) holds continuously
and (∀ q : p �= q : ¬st.q = cs) (its fine schedule) is true infi-
nitely many times. The latter is entailed by (prg2) which we
already proved. The former condition is satisfied as soon as
st.p = waiting (the antecedent of (prg1)) is established.

It is very important to note that the index p allows us to
specify the scheduling assumptions on a process-by-process
basis. We can thus assert and prove that every process
will eventually acquire the lock (prg1), a property other-
wise known as starvation freedom. This property cannot be
proved in Event-B. In Event-B, we can only prove theweaker
property (prg0) that some arbitrary process will eventually
acquire the lock.

Traditionally, scheduling assumptions fall into two cate-
gories: weak fairness and strong fairness. In this example,
weak fairness (stating that if a process p is waiting and the
lock is free continually, then p eventually takes the lock)
is insufficient to prove that process p eventually takes the
lock. Normally, to prove this property, the enter[p] event
would be scheduled with strong fairness (stating that if a
process p is waiting and the lock is free infinitely often, then
p eventually holds the lock). Using strong fairness, the coarse
schedule (conditions required to hold continually) and the
fine schedule (conditions required to become true infinitely
often) would be wrapped in a single guard, thus intertwining
the reasoning about those two aspects. By decoupling these
orthogonal considerations, we can reason about process p
waiting separately from the lock becoming free. Moreover,
during refinement, this decoupling will allow us to trade
freely between the coarse and the fine schedules. The dis-
tinction between coarse and fine schedules and their rela-
tion to other scheduling assumptions are explained further in
Sects. 3 and 4.4.

The combination of the progress preserving refinement
calculus with the novel notions of coarse and fine schedules
makes it possible in Unit-B to introduce liveness properties
at any stage of a development process. Reasoning about both
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Refinement guided by progress concerns 1095

safety and liveness can be done at the relevant abstractions.
As a consequence, not only do we use liveness requirements
to rule out any design decision that would be too conserva-
tive, but we also use them to guide us to the right design deci-
sions. As a result, liveness properties, in particular progress
properties, drive the development process.

1.2 Contribution

This paper features a formal semantics for Unit-B models
and their properties, alongside an example of application of
Unit-B to a non- trivial control problem. The semantics is
formulated in computation calculus [8].We use it to formally
prove the soundness of the rules for reasoning about temporal
properties and refinement relationships in Unit-B.

In the past, Unit-B has been used to design amutual exclu-
sion algorithm [12] and a signal controller for a train station
[14]. This paper is an extended version of the latter. In addi-
tion to the contributions of [14], we (1) strengthen the separa-
tion between the formal semantics and the proof obligations,
(2) present a new rule permitting the reuse of progress prop-
erties without reproving them, (3) formulate the refinement
rules so as to allow the refinement of events to be justified
using only one rule, (4) elaborate the individual refinement
steps of the example with the design concerns that guide it
and the specific proof obligations, (5) expand the example
with two refinement steps leading to the specification of a
controller, and (6) illustrate the use of inductive proofs of
liveness in the example.

1.3 Structure

The rest of the paper is organised as follows. In Sect. 2, we
review Dijkstra’s computation calculus [8] which we used
to formulate our semantics and design our proofs. We fol-
low with a description of the Unit-B method in Sect. 3. We
demonstrate the method and its refinement rules by devel-
oping a signal control system in Sect. 4. We summarise our
work in Sect. 5 including discussion about related work and
future work.

2 Background: computation calculus

In this section, we give a brief introduction to computation
calculus, based on [8]. This will be the basis for defining
the semantics of Unit-B models, defining the semantics of
temporal properties (both safety and liveness) and formulat-
ing the proof of soundness of the Unit-B refinement rules in
Sect. 3.

– In Sect. 2.1, we introduce the notion of computation pred-
icates which can be manipulated algebraically. We use

them in Sect. 3 to characterise the execution of Unit-B
models as well as their properties.

– In Sect. 2.2, we introduce state predicates, a special case
of computation predicates which we use in Sect. 3 to for-
malise Unit-B invariants, progress and safety properties,
events’ guards and schedules.

– In Sect. 2.3, we introduce atomic computation predicates,
a special case of computation predicates which we use in
Sect. 3 to formalise the meaning of the events’ actions.

LetS be the state space: a non-empty set of “states”. Let
C be the computation space: a set of non-empty (finite or
infinite) sequences of states henceforth referred to as “com-
putations”.

2.1 Computation predicates

Definition 1 (Computation predicates) The set of computa-
tion predicates CPred is defined as follows:

CPred = C → B, (1)

i.e. functions from computations to Booleans.

The standard Boolean operators of the predicate calculus
are lifted, i.e. extended to apply to CPred. For example,
assuming s, t ∈ CPred and τ ∈ C , we have,1

(s ⇒ t).τ ≡ (s.τ ⇒ t.τ ) (2)

(∀ i :: s.i).τ ≡ (∀ i :: s.i.τ ). (3)

The everywhere operator quantifies universally over all
computations, i.e.

[ s ] ≡ (∀ τ :: s.τ ). (4)

Whenever there are no risks of ambiguity, we shall use s = t
as a shorthand for [ s ≡ t ] for computation predicates s, t .

Postulate 1 CPred is a predicate algebra.

A consequence of Postulate 1 is thatCPred satisfies all pos-
tulates for the predicate calculus as defined in [6]. In par-
ticular, true (maps all computations to TRUE) and false
(maps all computations to FALSE) are the “top” and the
“bottom” elements of the complete Boolean lattice with the
order [ _ ⇒ _ ] specified by these postulates. The lattice
operations are denoted by various Boolean operators includ-
ing ∧,∨,¬,⇒.

The predicate algebra is extended with sequential compo-
sition as follows.

1 In this paper, we use f.x to denote the result of applying a function f
to argument x . Function application is left-associative, so f.x .y is the
same as ( f.x).y.
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Definition 2 (Sequential composition)

(s; t).τ ≡ (#τ = ∞ ∧ s.τ ) ∨
(∃ n : n < #τ : s.(τ ↑ n+1) ∧ t.(τ ↓ n))

(5)

where #,↑ and↓denote sequence operations “length”, “take”
and “drop”, respectively.

Intuitively, the sequential composition of s and t can be
understood as a program specification that requires s to be
run first and then t to be run as soon as s terminates, if it does.
More specifically, a computation τ satisfies s ; t if either it is
an infinite computation satisfying s, or τ can be broken into
a finite prefix τ ↑ n+1 and a suffix τ ↓ n sharing state τ.n
such that the prefix satisfies s and the suffix satisfies t .

In the course of reasoning using computation calculus, we
make use of the distinction between infinite (“eternal”) and
finite computations. Two constantsE,F ∈ CPred have been
defined for this purpose.

Definition 3 (Eternal and finite computations) For any pred-
icate s,

E = true; false (6)

F = ¬E (7)

s is eternal ≡ [ s ⇒ E ] (8)

s is f ini te ≡ [ s ⇒ F ] (9)

An important property related to E (from [8]) is that for any
predicate s, we have

s; false = s ∧ E. (10)

Given F, the temporal “eventually” operator (i.e. ♦) can
be formulated as F; s. The “always” operator G is defined
as the dual of the “eventually” operator.

Definition 4 (Always operator) For any predicate s,

G s = ¬(F; ¬s). (11)

Important properties ofG are that it is strengthening (12),
it ismonotonic (13), and it distributes over conjunction (14).
For any predicates s and t , we have:

[ G s ⇒ s ], (12)

[ s ⇒ t ] ⇒ [ G s ⇒ G t ], (13)

G (s ∧ t) = G s ∧ G t. (14)

A useful technique that is frequently applied is to strip all
the outer G in some proofs, as illustrated in the following
example. For any predicates s, t and u, we have

[ s ∧ t ⇒ u ] ⇒ [ G s ⇒ (G t ⇒ G u) ]. (15)

The proof of (15) is as follows.

[ G s ⇒ (G t ⇒ G u) ]
= { shunting }

[ G s ∧ G t ⇒ G u ]
= { G distributes through ∧ (14) }

[ G (s ∧ t) ⇒ G u ]
⇐ { monotonicity (13) }

[ s ∧ t ⇒ u ]

According to (15), whenever we need to prove a formula
of the form [ G s ⇒ (G t ⇒ G u) ], we can reformulate it
to strip the outerG ’s and manipulate s, t and u on their own
to simplify the proof.

Definition 5 (Persistence) For any predicate s,

s is persistent ≡ s = G s. (16)

A persistent predicate describes some repetitive mosaic.
If a persistent s can be used to describe a computation τ , s
can also be used to describe every suffix of τ . We borrow the
following facts related to the notion of persistence from [8].
For all predicates s, t and persistent u, we have

G s is persistent, and (17)

[ u ⇒ (s ; t ≡ s ; (t ∧ u)) ]. (18)

Consider some computation predicate r where G r holds,
(17) ensures that G r is persistent, and (18) (together with
(12)) enables us to insert r after any sub-computation in a
series of sequential compositions. This is particularly useful
when r is an invariant, i.e. r = p; true, where p is a state
predicate as defined in the subsequent.

2.2 State predicates

Aconstant1 is defined as the (left- and right-) neutral element
for sequential composition.

Definition 6 (Constant 1) For any computation τ ,

1.τ ≡ #τ = 1 (19)
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An important property of 1 is that it is finite, i.e.

[ 1 ⇒ F ]. (20)

In fact, 1 is the characteristic predicate of the state space.
Moreover, we choose not to distinguish between a single
state and the singleton computation consisting of that state,
which allows us to identify predicates of one state with the
predicates that hold only for singleton computations. Let us
denote the set of state predicates by SPred.

Definition 7 (State predicate) For any predicate p,

p ∈ SPred ≡ [ p ⇒ 1 ] . (21)

A consequence of this definition is that SPred is also a
complete Boolean latticewith the order [ _ ⇒ _ ], with1 and
false being the “top” and “bottom” elements. It inherits all
the lattice operators that it is closed under: conjunction, dis-
junction and existential quantification. The other lattice oper-
ations, i.e. negation and universal quantification, are defined
by restricting the corresponding operators onCPred to state
predicates.We only use state predicate negation in this paper.

Definition 8 (State predicate negation∼) For any state pred-
icate p,

∼ p = ¬p ∧ 1 . (22)

For a state predicate p, the set of computations with the
initial state satisfying p is captured by p ; true: the weakest
such predicate. A special notation • : SPred → CPred is
introduced to denote this predicate.

Definition 9 (Initially operator •) For any state predicate p,

• p = p ; true . (23)

This entails the validity of the following rule, which we
will use anonymously in the rest of the paper: for p, q two
state predicates,

p ; q = p ∧ q . (24)

Another common rule related to state predicate is the state
restriction rule allowing to trade∧ and • for ; and vice versa.
Given any predicate s and any state predicate p, we have

p ; s = s ∧ •p . (25)

2.3 Atomic actions

An important operator in LTL is the “next-time operator”.
This is captured in computation calculus by the notion of
atomic computations: computations of length 2. A constant
X ∈ CPred is defined for this purpose.

Definition 10 (Atomic actions) For any computation τ and
predicate a,

X.τ ≡ #τ = 2 (26)

a is an atomic action ≡ [ a ⇒ X ] (27)

Given the above definition, the “next” operator can be
expressed as X ; s for arbitrary computation s. An important
property for X is that it is finite, i.e.

[ X ⇒ F ]. (28)

3 The Unit-B method

This section presents our contribution: the Unit-B method. It
is inspired by Event-B [2] and UNITY [4].

Similar to Event-B, Unit-B is aimed at the design of soft-
ware systems by stepwise refinement, where each step is ver-
ified via the application of correctness preserving refinement
rules. It differs from Event-B by its capability for reasoning
about progress properties and by its refinement order which
preserves liveness properties. It also differs from UNITY
by unifying the notions of programs and specifications,
allowing stepwise refinement of programs from abstract
models.

– In Sect. 3.1, we briefly review the syntax of Unit-B
models (which has been informally introduced earlier in
Sect. 1.1.2).

– In Sect. 3.2, we describe the semantics of a Unit-Bmodel
M. We characterise the set of executions ofM by a com-
putation predicate ex .M which is the conjunction of a
safety and a liveness component. We provide proof rules
for invariant preservation and unless properties.
We also show the that the proof rules are sound with
respect to the semantics.

– In Sect. 3.3, we provide proof rules for progress proper-
ties and prove their soundness.

– In Sect. 3.4, we provide refinement rules and prove their
soundness with respect to the semantics.
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A more extensive discussion of the soundness of the proof
rules of Unit-B is presented in [12].

3.1 Syntax

Similar to Event-B, a Unit-B system is modelled by a transi-
tion system, where the state space is captured by variables v
and the transitions are modelled by guarded events. Further-
more, Unit-B has additional assumptions on how the events
should be scheduled. Using an Event-B-similar syntax, a
Unit-B event has the following form:

e [i] =̂ during c.i.v upon f .i.v
when g.i.v then s.i.v.v′ end

(29)

where i are the event’s indices, g is the event’s guard, c is the
event’s coarse schedule, f is the event’s fine schedule, and s
is the event’s action changing state variables v. The action is
usually made up of several assignments, either deterministic
(:=) or non-deterministic (: | or :∈). An event ewith indices
i stands for multiple events. Each corresponds to several non-
indexed events e.i, one for each possible value of the indices
i. Here, g, c, f are state predicates. An event e is said to be
enabled when its guard g holds. The scheduling assumption
of the event is specified by c and f as follows: if c holds
continually and f becomes true infinitely often, then evente is
carried out infinitely often. An event without any scheduling
assumption will have its coarse schedule c equal to false. An
event having only the coarse schedule c will have the fine
schedule to be 1. Vice versa, an event having only the fine
schedule f will have the coarse schedule to be 1.

In addition to the variables and the events, a model has an
initialisation state predicate init constraining the initial value
of the state variables. All computations of a model start from
a state satisfying the initialisation and are such that, at every
step, either one of its enabled events occurs or the state is
unchanged, and each computation satisfies the scheduling
assumptions of all events.

3.2 Semantics

In the following, we use computation calculus to give the for-
mal semantics of Unit-B models. Let M be a Unit-B model
containing a set of events of the form (29) and an initial-
isation predicate init. Since the action of the event can be
described by a before–after predicate s.i.v.v′, it corresponds
to an atomic action

S.i = (∀ x :: •(x = v) ⇒ X ; s.i.x .v). (30)

In the above, the quantifiedvariable x is introduced to capture
the before value of v andhence allows us to relate the pre-state
and the post-state using the state predicate s.i.x .v applied to
the post-state (as indicated by X ; ). Given that an event e.i

can only be carried out when it is enabled, we formulate the
effect of each event execution as follows:

act.(e.i) = g.i ; S.i. (31)

The semantics of M is given by a computation predicate
ex.M which is a conjunction of a “safety part” saf .M and a
“liveness part” live.M (both to be defined later), i.e.

[ ex.M ≡ saf .M ∧ live.M ] . (32)

Definition 11 A property s is satisfied byM, denotedM � s,
if the property is implied by ex.M.

M � s if and only if [ ex.M ⇒ s ] . (33)

We use M � s to denote that M � s is provable.
Properties of Unit-B models are captured by two types of

properties: safety and progress (liveness).

3.2.1 Safety

Below, we define the general form of one step of execution
of model M, i.e. step.M, and the safety constraints saf .M on
its complete computations.

[ step.M ≡ (∃ e, i : e.i ∈ M : act.(e.i)) ∨ Skip ] (34)

[ saf .M ≡ • init ∧ G (step.M ; true) ] (35)

where Skip is a special unscheduled event that is a part of
every model. Its guard is true and its effect is to leave all
the variables of model unchanged. Since the variables of the
current model may be only one of the components of the
state space — the other components being the variables of
the models that may refine the current one — Skip makes
no commitment about the final value of those components;
that is to say that they will be changed non-deterministically
without constraints.

Safety properties of the model are captured by invariance
properties (also called invariants) and by unless properties.

Invariance properties An invariant I.v is a state property
that holds at every reachable state of the model. If I.v is an
invariant of M, in all executions of M, I.v holds forever:

[ ex.M ⇒ G • I ] . (36)

In particular, we rely solely on the safety part of the model to
prove invariance properties, i.e. we prove [ saf .M ⇒ G •I ].
This leads to the well-known invariance principle.
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� init.v ⇒ I.v

� I.v ∧ g.i.v ∧ s.i.v.v′ ⇒ I.v′ (for all event e.i)

M � G • I

(INV)

Invariance properties are important for reasoning about the
correctness of the models since they give an (over-) approxi-
mation of the set of reachable states. Thismakes it possible to
use invariance properties as additional assumptions in proofs
for other properties (often as a consequence of applying (17)
and (18)). For example, we can propagate a state predicate
I to the middle of a sequential composition s; t as follows:
under the assumption that I holds forever, i.e. G • I , either
because it is an invariant or for other reasons, for any predi-
cates s and t , we have

s ; t = s ; I ; t (37)

The proof of (37) is as follows.

s; t
= { G • I (persistent) with persistence rule (18) }

s; (t ∧ G • I )

= { G is strengthening (12) }

s; (t ∧ •I ∧ G • I )

= { G • I (persistent) with persistence rule (18) }

s; (t ∧ •I )
= { state restriction (25) }

s; I ; t

In the subsequent, we assume that modelM has an invari-
ant I.v.

Unless properties The other important class of safety prop-
erties is defined by the unless operator un.

Definition 12 (un operator) For any state predicates p, q,

[ (p un q) ≡ G (•p ⇒ (G • p) ; (1 ∨ X) ; •q) ] (38)

Informally, p un q is a safety property stating that if condi-
tion p holds, then it will hold continuously unless q becomes
true. The formula (1 ∨ X) is used in (38) to allow the last
state where p holds and the state where q first holds to either
be the same state or immediately follow one another.

The following theorem is used for proving that a Unit-B
model satisfies an unless property.

Theorem 1 (Unless rule)Consider amodelMwith invariant
I and an unless property p.v un q.v. We have

[ ex.M ⇒ p un q ]

if for every event e and index value i with e.i ∈ M,

[ (I ∧ p∧∼q); act.(e.i) ⇒ X;(p ∨ q) ] . (39)

Proof (Sketch) Condition (39) ensures that every event e.i
of M either maintains p or establishes q. By induction, we
can see that the only way for p to become false after a state
where it was true is that either q becomes true or that it was
already true. The full proof can be found in [12, Sect. 2.0.1].

��
It follows from Theorem 1 that the following proof rule

can be used to prove unless properties.

�
p.v ∧ ¬ q.v ∧ I.v ∧
g.i.v ∧ s.i.v.v′

⇒ p.v′ ∨ q.v′ (for all event e.i)

M � p un q

(UN)

The antecedent of (UN) has the interesting peculiarity that
it does not include either the fine or the coarse schedule of
event e.

3.2.2 Liveness

For each event of the form (29), its schedule sched.(e.i) is
formulated as follows, where c and f are the event’s coarse
and fine schedule, respectively:

⎡
⎣sched.(e.i) ≡ G

⎛
⎝ G •c.i ∧ GF ; •f .i

⇒
F ; f .i ; act.(e.i) ; true

⎞
⎠

⎤
⎦ .

(SCH)

Intuitively, (SCH) states that if the coarse schedule c holds
continually, i.e. G • c and the fine schedule f becomes true
infinitely often, i.e. GF; •f ; then, eventually e.i occurs at a
point where f holds, i.e. F; f ; act.(e.i). To ensure that the
event e.i only occurs when its guard g.i holds, we require the
following feasibility condition:

I.v ∧ c.i.v ∧ f .i.v ⇒ g.i.v (SCH_FIS)

In absence of this condition, the (coarse or fine) schedulemay
be continuously in contradiction with the guard: while the
scheduling constraint (SCH) states that all valid computation
will include occurrences of the event, the safety constraint
(35) states that, under the same conditions, the event will not
happen. It follows that no traces satisfy the two constraints
and the system cannot be implemented.

Our coarse and fine schedules are a generalisation of the
standardweak-fairness and strong-fairness assumptions. The
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standard4weak-fairness assumption for evente.i (stating that
if e.i is enabled continually, then eventually it will be taken)
can be formulated by using c = g and f = 1. Similarly, the
standard strong-fairness assumption for e.i (stating that if e.i
is enabled infinitely often, then eventually it will be taken)
can be formulated by using c = 1 and f = g.

[ wf.(e.i) ≡ G (G • g.i ⇒ F; act.(e.i); true) ]
[ sf.(e.i) ≡ G (GF; •g.i ⇒ F; act.(e.i); true) ]

Instead of categorising Unit-B events between weakly fair
and strongly fair, our generalisation allows us to have a little
of both in every event. Strong fairness is often a nice abstrac-
tion of scheduling magic happening under the hood, but it is
necessary to refine it away in order to implement it. Our gen-
eralisation facilitates this by making the transition between
strong fairness to weak fairness smoother.

In Sect. 4.4.1, we provide a methodological comparison
betweenweak and strong fairness on one hand and coarse and
fine schedules on the other hand in the context of the main
example. Furthermore, in Sect. 4.4 we discuss the heuris-
tics justifying the choice of coarse and fine schedules of
events.

The liveness part of the model is the conjunction of the
schedules for its events, i.e.

[ live.M ≡ (∀ e, i : e.i ∈ M : sched.(e.i)) ] (40)

The summary of the Unit-B modelling notation is showed in
Fig. 3.

3.3 Progress properties

Progress properties are of the form p � q, where � is
the leads-to operator. They state that every state satisfying
predicate p is eventually followed by a state satisfying q.

Fig. 3 Summary of Unit-B

Definition 13 (� operator) For any state predicates p, q,

[ (p � q) ≡ G (•p ⇒ F ; •q) ] (41)

In the case where p and q contain free variables, i.e. vari-
ables not belonging to the state space, p � q is understood
implicitly as

(∀ x :: p � q)

with x the tuple of all the free variables appearing in either
p or q. The same principle is applied to unless, transient and
falsifies properties, the last two are introduced later in this
section.

A special kind of progress properties is captured by the
transient operator. Transient property tr p states that when-
ever predicate p holds, it is eventually falsified. Transient
properties are especially useful for creating a bridge between
leads- to properties and the events that effect them. That
bridge is completed by the falsifies operator which we
introduce later in this section.

Definition 14 (tr operator) For any state predicate p,

tr p = p �∼ p = 1 �∼ p = GF; • ∼ p (42)

The properties of � and tr that we will use in this paper
are as follows. For any state predicates p, q and r , we have:

[ G •(p ⇒ q) ⇒ (p � q) ] (Implication)

[ (p � q) ∧ (q � r) ⇒ (p � r) ] (Transitivity)

[ (p � q) ≡ (p∧∼q � q) ] (Split-Off-Skip)

[ (p un q) ∧ (trp∧ ∼q) ⇒ (p � q) ] (Ensure)
[

(p ∧ v = M � (p ∧ v < M) ∨ q)

⇒ (p � q)

]

(Induction)
[

(p � q) ∧ (r un b)
⇒ (p ∧ r � (q ∧ r) ∨ b)

]
(PSP)

Above, in the induction rule, M is a free variable and v is
the variant, an expression involving some state variables. The
name of the (PSP) rule stands for Progress, Safety, Progress.
Except for (Split-Off-Skip), the above rules are taken from
[4].

We prove progress properties by relating them to the
events of the model with falsifies properties. We can estab-
lish tr p by choosing an event e of the model and proving
e falsifies p, i.e. if p holds continually e is eventually
taken and whenever e is executed in a state where p holds it
falsifies p.
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Definition 15 (falsifies operator) For any state predicate p
and any event as follows.:

e [i] =̂ during c.i.v upon f .i.v
when g.i.v then s.i.v.v′ end

Event e with (actual) index i falsifies property p (denoted as
e.i falsifies p) if under condition p, e.i negates p in one
step (NEG), the coarse schedule c is enabled (C_EN), and
the fine schedule f is eventually enabled (F_EN).

[ e.i falsifies p ≡ (NEG) ∧ (C_EN) ∧ (F_EN) ],
(43)

where

G ((p ∧ c ∧ f ); act.(e.i) ; true ⇒ X ; • ∼ p) , (NEG)

G •(p ⇒ c), (C_EN)

p ∧ c � f . (F_EN)

Property e.i falsifies p states that, when state predicate
p holds, if it is not falsified by events other than e.i, e.i will
eventually occur and falsify p.

Given the definition of falsifies , we have the following
proof rule (taking into account the invariant I.v).

� I.v ∧ p.v ∧ c.i.v ∧ f .i.v ∧ s.i.v.v′ ⇒ ¬p.v′

� I.v ∧ p.v ⇒ c.v

M � p.v ∧ c.i.v � f .i.v

M � e.i falsifies p.v

(FLS)

The falsifies properties are the main tool for linking the
model and the progress properties in Unit-B. The attractive-
ness of such properties is that we can implement them using
a single event. In the case of events without a fine schedule
(i.e. f is1), which is the most common one, the last condition
(F_EN) becomes trivial and can be omitted.

Theorem 2 (Transient rule) Consider state predicate p and
a model M contains event e.

e [i] =̂ during c.i.v upon f .i.v
when g.i.v then s.i.v.v′ end

Given an (actual) index i, we have

[ ex.M ⇒ trp ] if [ ex.M ⇒ e.i falsifies p ] .
Proof Unfolding the definitions of tr and falsifies , we
prove GF; • ∼ p under the assumptions (NEG), (C_EN)
and (F_EN). Moreover, since e is an event in M, we have
[ ex.M ⇒ sched.(e.i) ] . Therefore, we have sched.(e.i) as
an additional assumption.

Dropping the outer G in the goal and in the assumptions
(similar to (15)), our goal becomes F; • ∼ p. Additionally,
since [ ¬s ⇒ s ≡ s ] for any computation predicate s, we
discharge our obligation by strengthening F ; • ∼ p to its
negation, G • p.

F ; •∼ p

⇐ { [ F ;X ⇒ F ], aiming for (NEG) }

F ;X ; •∼ p

⇐ { (NEG) }

F ; (p ∧ c ∧ f ) ; act.(e.i) ; true
⇐ { property of G (37) }

F; f ;act.(e.i);true ∧ G •c ∧ G • p
⇐ { sched.(e.i) and definition (SCH) }

GF;• f ∧ G •c ∧ G • p
= { G distributes through ∧ (14)}

G ( F;• f ∧ •(c ∧ p) )

= { (F_EN) }

G •(c ∧ p)

= { (C_EN) }

G • p

��
Theorem 2 corresponds to the following proof rule.

M � e.i falsifies p

M � trp
(TRS)

3.4 Refinement

In this section, we develop rules for refining Unit-B models
such that safety and liveness properties are preserved. Con-
sider models M and N. Refinement, denoted by M � N, is
defined by:

M � N ≡ [ ex.M ⇐ ex.N ] . (REF)

We callM the abstract model andN the concretemodel. As a
result of this definition, any property ofM is also satisfied by
N. Similarly to Event-B, refinement is considered in Unit-B
on a per event basis. Each abstract event ea is refined by a
concrete event ec.

ea [i] =̂ during ca.i.v upon fa.i.v
when ga.i.v then s.i.v.v′ end

(44)

ec [ j] =̂ during cc. j.v upon fc. j.v
when gc. j.v then s. j.v.v′ end

(45)
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We say that ec refines ea if

(
∀ j ::

(∃i :: [ ex.N ⇒
(act.(ec. j) ⇒ act.(ea.i)) ]

))
(EVT_SAFE)

(
∀ i ::

(∃ j :: [ ex.N ⇒
(sched.(ec. j) ⇒ sched.(ea.i)) ]

))

(EVT_LIVE)

The proof that N refines M (i.e. (REF)) given conditions
(EVT_SAFE) and (EVT_LIVE) is left out. A special case
of event refinement is when the concrete event ec is a new
event. In this case, we prove that ec is the refinement of the
specialSkip event which is unscheduled and does not change
any variables of the abstract model.

Condition (EVT_SAFE) leads to similar proof obligations
in Event-B such as guard strengthening and simulation. We
focus here on expanding the condition (EVT_LIVE).

We consider two cases for event refinement: (1) the
abstract and concrete events have the same indices, and (2)
the indices are removed from the concrete event.

Theorem 3 (Retaining events’ indices) Consider events ea
and ec as follows.

ea [i] =̂ during ca.i.v upon fa.i.v
when ga.i.v then s.i.v.v′ end

(46)

ec [i] =̂ during cc.i.v upon fc.i.v
when gc.i.v then s.i.v.v′ end

(47)

Assume (EVT_SAFE) have been proved for ea and ec, i.e.

act.(ec.i) ⇒ act.(ea.i) . (48)

Given

ca ∧ fa � cc (C_FLW)

cc un ∼ca (C_STB)

ca ∧ fa � fc (F_FLW)

G • (cc ∧ fc ⇒ fa) (F_STR)

then

sched.(ec.i) ⇒ sched.(ea.i) (49)

Proof We first prove that the left-hand side of sched.(ea.i),
i.e. G • ca ∧ GF; •fa eventually leads to the left-hand side
of sched.(ec.i), i.e. G • cc ∧ GF; •fc.
G (G • ca ∧ GF; •fa ⇒ F; (G • cc ∧ GF; •fc)) (50)

Dropping the outer G from (50), we start the proof from
GF; •fa with assumption G • ca.

GF; •fa
⇒ { G • ca }

GF; •(ca ∧ fa)

⇒ { (C_FLW) and (F_FLW) }

GF; •cc ∧ GF; •fc
⇒ { (C_STB) and definition of un (38) }

GF; (G • cc); (1 ∨ X); •¬ca ∧ GF; •fc
⇒ { G • ca }

GF; (G • cc); (1 ∨ X); (•¬ca ∧ •ca) ∧ GF; •fc
⇒ { contradiction }

GF; (G • cc); (1 ∨ X); false ∧ GF; •fc
⇒ { (1 ∨ X); false = false }

GF; (G • cc); false ∧ GF; •fc
⇒ { property of eternal computation (10) }

GF; (G • cc) ∧ E ∧ GF; •fc
⇒ { weakening }

GF; (G • cc) ∧ GF; •fc
⇒ { G is strengthening (12) }

F; (G • cc) ∧ GF; •fc
⇒ {GF; •fc is persistent (17) and persistence rule (18)}

F; (G • cc ∧ GF; •fc)

Finally, the proof of (49) is as follows. Expanding the
definition of sched, we prove

G (G • ca ∧ GF; •fa ⇒ F; fa; act.(ea.i)) (51)

under the assumptions

G (G • cc ∧ GF; •fc ⇒ F; fc; act.(ec.i)) (52)

First, notice that we drop the outerG from (51), (52). and
start the proof with the left-hand side of (51).

G • ca ∧ GF; •fa
⇒ { (50) }

F; (G • cc ∧ GF; •fc))
⇒ { (52) }

F; (G • cc ∧ F; fc; act.(ec.i))
⇒ { invariant property (37), and F;F= F}

F; (cc ∧ fc); act.(ec.i)
⇒ { (F_STR) }

F; fa; act.(ec.i)
⇒ { (48) }

F; fa; act.(ea.i)
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Theorem 3 leads to the following proof rule.

N � ca ∧ fa � cc

N � cc un ∼ca

N � ca ∧ fa � fc

� Ic ∧ cc ∧ fc ⇒ fa

N � sched.(ec.i) ⇒ sched.(ea.i)

(53)

The following corollaries are direct consequences of The-
orem 3, hence concerning events ea and ec as in (46) and
(47). They illustrate different ways of refining event schedul-
ing information: weakening the coarse schedule, replacing
the coarse schedule, strengthening the fine schedule and
removing the fine schedule.

Corollary 1 (Coarse schedule weakening) Given fc = fa,
we have

sched.(ec.t) ⇒ sched.(e.t)

if

G • (ca ⇒ cc) . (54)

Proof (Sketch) Given fc = fa, conditions (F_FLW) and
(F_STR) of Theorem 3 are trivial. Conditions (C_FLW) and
(C_STB) are direct consequences of (54).

Corollary 2 (Coarse schedule replacement) Given fc = fa,
we have

sched.(ec.t) ⇒ sched.(e.t)

if

ca ∧ fa � cc (C_FLW)

cc un ∼ca . (C_STB)

Proof (Sketch) Given fc = fa, conditions (F_FLW) and
(F_STR) of Theorem 3 are trivial.

Corollary 3 (Fine schedule strengthening) Given cc = ca,
we have

sched.(ec.i) ⇒ sched.(ea.i)

if

ca ∧ fa � fc , and (F_FLW)

G • (fc ⇒ fa) . (F_STR)

Proof (Sketch) Given cc = ca, conditions (C_FLW) and
(C_STB) of Theorem 3 are trivial.

Corollary 4 (Fine schedule removal) Given cc = ca and
fc = 1, we have

sched.(ec.i) ⇒ sched.(ea.i)

if

G • (ca ⇒ fa). (55)

Proof (Sketch) Given cc = ca, conditions (C_FLW) and
(C_STB) of Theorem 3 are trivial. Given fc = 1, condition
(F_FLW) is trivial and condition (F_STR) is a direct conse-
quent of (55).

A special case of event refinement allows removing event
indices as illustrated by the following theorem.

Theorem 4 (Events’ indices removal) Consider ea as fol-
lows

ea [i, j] =̂ during i = E . j.v ∧ c.(i, j).v upon f .(i, j).v
when g.(i, j).v then s.(i, j).v.v′ end

(56)

The following event ec is a refinement of ea, i.e. satisfying
(EVT_SAFE) and (EVT_LIVE).

ec [ j] =̂ during c.(E . j.v, j).v upon f .(E . j.v, j).v
when g.(E . j.v, j).v then s.(E . j.v, j).v.v′ end

(57)

Proof For (EVT_SAFE), we use E . j.v as the witness for the
removing indices i, which leads to the proof obligation:

act(ec. j) ⇒ act(ea.(E . j.v, j)).

For (EVT_LIVE), we note that in the case where i �= E . j.v,
the coarse schedule of ea is false, hence ea.i is unscheduled,
hence (EVT_LIVE) is satisfied. Therefore, sched.(ec. j) =
sched(ea.(E . j.v, j)) holds.

4 Example: a signal control system

We illustrate our method by applying it to design a system
controlling trains at a station [13]. We first present some
informal requirements of the system.

4.1 Requirements

The network at the station contains an entry block, several
platform blocks and an exiting block, as seen in Fig. 4. Trains
arrive on the network at the entry block and then can move
into one of the platform blocks before moving to the exiting
block and leaving the network. In order to control the trains
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Fig. 4 A signal control system

at the station, signals are positioned at the end of the entry
block and each platform block. The train drivers are assumed
to obey the signals. The signals are supposed to change from
green to red automatically when a train passes by.

The most important properties of the system are that (1)
there should be no collision between trains (SAF 1) and (2)
each train in the network eventually leaves (FUN 2).

SAF 1 There is at most one train on each block
FUN 2 Each train in the network eventually leaves
ENV 3 The tracks are arranged according to Fig. 4
FUN 4 Every train enters only through the entry block, then

proceed to a platform block and move on to the exit
block from where they leave the station.

EQP 5 A light signal is positioned after the entrance block
and after each of the platforms.

ENV 6 Train drivers obey the light signals, i.e. when the
signal is green, they advance and they stop when
the signal is red.

Refinement strategy Our development consists of an initial
model and five refinement steps. We summarise our refine-
ment strategy for developing the signal control system as
follows.

Init. model We abstractly model the trains in the network,
focusing on FUN 2.

1st Ref. We introduce the topology of the network ENV
3 and FUN 4.

2nd Ref. We strengthen the model of the system, focus-
ing on SAF 1.

3rd Ref. We introduce the signals and derive a speci-
fication for the controller that manages these
signals EQP 5 and ENV 6.

4th Ref. We refine the controller’s specification, in par-
ticular, scheduling the trains passing the station
in a first-in-first-out manner.

5th Ref. We refine further the controller’s specification
so that it can be implemented in some program-
ming language.

Notation Well-definedness [20] is an important issue when
dealingwith partial functions. However, when trying tomake
formulas well-defined, some overhead often has to be intro-
duced which can make said formulas bulky. For example, if
we need to express

f.x ≤ g.y ,

with f, g two partial functions, the formula is only mean-
ingful in the case where x ∈ dom. f ∧ y ∈ dom.g and the
formula above is therefore not necessarily well-defined. This
new formula

x ∈ dom. f ∧ y ∈ dom.g ∧ f.x ≤ g.y

is well defined and is often a suitable substitute for f.x ≤ g.y
but it is much longer and the subject matter, the ordering of
f and g, constitute only a small fraction of the formula: the
attention of the reader is mostly drawn to the technicality of
well-definedness.

As a shorthand, we will use a new notation defined as
〈P〉 � D(P) ∧ P . In the previous example, we can express
the property as

〈 f.x ≤ g.y〉
which is false if f.x or g.y is ill-defined and has the expected
truth value otherwise. It might be also handy to have a short-
hand for x ∈ dom. f ∧ y ∈ dom.g ⇒ f.x ≤ g.y — which
is true if f.x or g.y is ill-defined and has the normal truth
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value otherwise—but we will not need it in this paper and
therefore refrain from defining a shorthand for it.

Logic In Sect. 3, we conducted the proofs of soundness of
the refinement rules and the inference rules of temporal prop-
erties using computation calculus. In the example, we will
conduct our reasoning using these inference rules and predi-
cate calculus without reference to computation calculus. The
purpose is to use the rules as a clear interface between the
semantics of Unit-B and the reasoning about Unit-B models.

Proof format The equational proof format has been used to
advantage already in Sects. 2 and 3. There we use this for-
mat in rewriting an expression with value preserving rules
or various order preserving rules (e.g. ⇒, ≤), from an ini-
tial expression to a final expression. The style of manipula-
tions has an algebraic flavour. In this section, we use equa-
tional proof format to manipulate sequents instead of normal
expressions. While an expression has a value, a sequent is
provable or not. The usual way of relating two sequents is
the inference rule:

�, α � φ

� � ψ

Whenbuilding a formal proofwith them, the format becomes
quickly unwieldy and unreadable. Instead, we use� to relate
two sequents in equational proofswith the understanding that
� � ψ � �, α � φ stands for the inference above, i.e.
� � ψ has a proof if �, α � φ has a proof.

Sometimes, inferences rules have more than one premise.
In such cases, in our calculations, either we keep the most
important one as the main thread of reasoning and refer to
the other ones in the hint of the step, or we list the ones we
kept one above the other. The subsequent steps can apply to
any one of them.

Naming convention We adopt the following convention in
naming the properties appearing in the subsequent develop-
ment to indicate the type of the property (e.g. invariance,
unless or progress), the level of refinement and the sequence
number of the property. For example, inv0_1 is the first
invariant of the initial model, while un2_1 and prg2_1 are
the first unless property and the first progress property of the
second refinement, respectively.

Refinement strategy The refinement strategy for our devel-
opment is as follows.

Init. model focuses on specifying and reason-
ing about themainprogress require-
ment FUN 2.

1st Ref. introduces the topology of the train
station ENV3 and themovement of
the trains through the station FUN
4.

2nd Ref. incorporates the safety requirements
of the system to prevent train colli-
sions SAF 1.

3rd Ref. adds the light signals to the model
EQP 5 and the assumption that the
train drivers always obey these light
signals ENV 6.

4th Ref. realises a software controller for the
signals in the station. In particu-
lar, the scheduling of the train pass-
ing through the station is performed
using a queue.

5th Ref. simplifies the software controller
by removing the index of the cor-
responding event.

4.2 Initial model M0: arriving and departing

In this initial model M0, we use a carrier set TRN to denote
the set of trains and a variable st (short for station) to denote
the set of trains currently inside the station.

variables : st
invariants :
inv0_1 : st ⊆ TRN

Initially, st is assigned the empty set∅. At this abstract level,
we have two events to model a train arriving at the station
and a train leaving the station as follows:

arrive [t] =̂ when t ∈ TRN then st := st ∪ {t} end
depart [t] =̂ when t ∈ TRN then st := st\{t} end

Requirement FUN 2 can be specified as a progress prop-
erty (with t implicitly quantified universally over the whole
property):

t ∈ st � ¬t ∈ st . (prg0_1)

We attempt to use event depart to implement prg0_1 as
follows.

M0 � t ∈ st � ¬t ∈ st

� { Transient definition (42)}

M0 � tr t ∈ st

� { Transient rule (TRS) with depart.t }

M0 � depart.t falsifies t ∈ st

� { Falsifies rule (FLS) with: (C_EN_1) and (NEG_1) }

true
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with:

t ∈ st ⇒ false (C_EN_1)

t ∈ st ∧ false ∧ st′ =st\{t} ⇒ ¬t ∈ st′ (NEG_1)

The proof obligation (NEG_1) is trivial. However,
(C_EN_1) cannot be proved because the coarse schedule of
depart is false (sincedepart is current unscheduled).We can
remedy this situation by adding a coarse schedule to depart,
which becomes as follows:

depart [t] =̂ during t ∈ st
when t ∈ TRN then st := st \ {t} end

The updated proof obligations are:

t ∈ st ⇒ t ∈ st (C_EN_1’)

t ∈ st ∧ t ∈ TRN ∧ st′ =st \ {t} ⇒ ¬t ∈ st′ .

(NEG_1’)

The proof obligations (C_EN_1’) and (NEG_1’) can be eas-
ily discharged.

Note that event depart has different guard and coarse
schedule. It is our intention to design depart with a weak
guard and a strong coarse schedule that allow us to prove
system properties (e.g. invariance and progress properties).
This gives more flexibility in strengthening events’ guards
and weakening schedules as needed during the course of
refinement.

Since event arrive will not affect the reasoning about
progress properties (it is always unscheduled), we omit its
refinement in the subsequent presentation.

4.3 First refinement MchI: the topology

In this refinementM1, we first introduce the topology of the
network in terms of blocks (ENV 3). We introduce a carrier
setBLK = {Entry}∪PLF∪{Exit} denoting the entry block,
the platform blocks and the exit block, respectively. A new
variable loc is added to denote the location of trains in the
network, constrained by this invariant:

loc ∈ st → BLK . (inv1_1)

Tocapture FUN4,we formulate the following safety prop-
erties:

¬t ∈ st un 〈loc.t = Entry〉 (un1_1)

〈loc.t = Entry〉 un 〈loc.t ∈ PLF〉 (un1_2)

〈loc.t ∈ PLF〉 un 〈loc.t = Exit〉 (un1_3)

〈loc.t = Exit〉 un ¬t ∈ st (un1_4)

They can be summarised in Fig. 5.

Fig. 5 State transitions for trains

We use (UN) to prove that they hold. In particular, for
un1_2 and un1_3, we need to strengthen the guard of
depart. Subsequently, in order tomake sure that the schedule
is stronger than the guard (condition (SCH_FIS)), we need to
strengthen the coarse schedule accordingly. An assignment
for loc is added for the maintenance of inv1_1.

depart [t]
during
t ∈ st ∧ loc.t = Exit

when
t ∈ st ∧ loc.t = Exit

then
st := st \ {t}
loc := {t} �− loc

end

In order to prove the refinement of depart, we apply
Corollary 2 (coarse schedule replacing). In particular, condi-
tions (C_FLW) and (C_STB) require us to prove the follow-
ing properties:

t ∈ st � 〈loc.t = Exit〉 (prg1_1)

〈loc.t = Exit〉 un ¬t ∈ st (un1_4)

From now on, we focus on reasoning about progress prop-
erties, e.g. prg1_1, omitting the reasoning about unless prop-
erties, e.g. un1_4. The proofs of these unless properties can
be done using (UN) and will be omitted here.

In order to satisfy prg1_1, we first transform it into a
transient property.

t ∈ st � 〈loc.t = Exit〉
= { (Split-Off-Skip) }

〈¬ loc.t = Exit〉 � 〈loc.t = Exit〉
� { (Transitivity) }

〈¬ loc.t = Exit〉 � 〈loc.t ∈ PLF〉
〈loc.t ∈ PLF〉 � 〈loc.t = Exit〉
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�
⎧⎨
⎩

(Split-Off-Skip) and with (prg1_2)
(see below) on first leads-to property

⎫⎬
⎭

〈loc.t ∈ PLF〉 � 〈loc.t = Exit〉
� { (Ensure) with (un1_3) }

tr 〈loc.t ∈ PLF〉

with the new property:

〈loc.t = Entry〉 � 〈loc.t ∈ PLF〉 (prg1_2)

We implement the resulting transient property, i.e. tr
〈loc.t ∈ PLF〉 using a new event moveout. We leave the
coarse and the fine schedule as some unknown c? and f ?
and see how to derive them from resulting proof obligations.

moveout [t] =̂ during c? upon f ?
when t ∈ st ∧

loc.t ∈ PLF
then loc.t := Exit end

The proof that moveout implements the transient property
is as follows.

M1 � tr 〈loc.t ∈ PLF〉
� { Transient rule (TRS) withmoveout.t }

M1 � moveout.t falsifies 〈loc.t ∈ PLF〉
= { Falsifies rule (FLS) with (C_EN_2) and (NEG_2) }

M1 � 〈loc.t ∈ PLF〉 ∧ c? � f ?

where

〈loc.t ∈ PLF〉 ⇒ c? (C_EN_2)

〈loc.t ∈ PLF〉 ∧ c? ∧ f ? ∧
loc′ = loc �− {t �→ Exit}2 ∧ st′ = st

⇒ ¬〈loc′.t ∈ PLF〉
(NEG_2)

We design the coarse schedule c? and the fine schedule
f ? such that the goal, i.e. 〈loc.t ∈ PLF〉 ∧ c? � f ?,
and conditions (C_EN_2) and (NEG_2) can be discharged
trivially. One such design is to have c? being t ∈ st ∧ loc.t ∈
PLF and f ? being true. This gives us the following design
for moveout:

2 loc�−{t �→ Exit} denotes a relation equal to loc excepts for the entry
for t which is mapped to Exit .

moveout [t]
during
t ∈ st ∧ loc.t ∈ PLF

when
t ∈ st ∧ loc.t ∈ PLF

then
loc.t := Exit

end

The updated conditions (C_EN_2) and (NEG_2) is as fol-
lows and can be discharged easily.

〈loc.t ∈ PLF〉 ⇒ t ∈ st ∧ loc.t ∈ PLF (C_EN_2)

〈loc.t ∈ PLF〉 ∧
t ∈ st ∧ loc.t ∈ PLF ∧ true ∧
loc′ = loc �− {t �→ Exit} ∧ st′ = st

⇒ ¬〈loc′.t ∈ PLF〉
(NEG_2)

The remaining progress property, i.e. prg1_2, can be
implemented in a similar fashion. We first transform prg1_2
into a transient property and implement it by the following
new event movein.

movein [t]
during
t ∈ st ∧ loc.t = Entry

when
t ∈ st ∧ loc.t = Entry

then
loc.t :∈ PLF

end

Applying the unless rule (UN), we can verify that the new
events, i.e.movein andmoveout, satisfy safety constraints,
such as un1_1, un1_2, un1_3 and un1_4. It should be noted
that those safety requirements guided our design of the new
events along side the progress properties that they are meant
to satisfy.

4.4 Second refinement M2: preventing collisions

In this refinement,M2, we incorporate the safety requirement
stating that there are no collisions between trains within the
network, i.e. SAF 1. This is captured by a new invariant about
loc:

(∀ t1, t2 : t1, t2 ∈ st ∧ loc.t1 = loc.t2 : t1 = t2). (inv2_1)

Theguardof eventmoveout needs to be strengthenedwith
the fact that the exit block is free (i.e. ¬Exit ∈ ran.loc), to
maintain inv2_1. Due to the feasibility condition (SCH_FIS)
for Unit-B events (requiring the schedules to be stronger than
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the guard), we need to strengthen the schedules accordingly.
In particular, we add a fine schedule to moveout:

moveout [t]
during
t ∈ st ∧ loc.t ∈ PLF

upon
¬Exit ∈ ran.loc

when
t ∈ st ∧ loc.t ∈ PLF ∧ ¬Exit ∈ ran.loc

then
loc.t := Exit

end

The scheduling information for moveout states that for any
train t, if t stays in a platform for infinitely long and the exit
block becomes free infinitely often, then t will eventually
move out of the platform.

Heuristics So far, all the scheduling informationwas encoded
in coarse schedules. It is a general principle that coarse
schedules should be used over fine schedules whenever
possible. This is because, contrary to fine schedules, each
coarse schedule can be manipulated in separation from each
other.

For example, if during refinement we want to replace the
coarse schedule a0 ∧ a1 ∧ p with c0 ∧ c1 ∧ p, we can meet
the proof obligation by proving

a0 ∧ a1 ∧ p � c0 ∧ c1 ∧ p,

c0 ∧ c1 ∧ p un a0 ∧ a1 ∧ p.

Since the two schedules involved can be arbitrarily complex,
it is oftenmore convenient to break down the proof obligation
into the following smaller ones:

a0 �c0

a1 �c1

c0 un ¬a0

c1 un ¬a1

Instead of seeing the replacement of the coarse schedule
as one operation, we can see it as the replacement of a0 with
c0 and a1 with c1. This is especially convenient because the
set of concrete schedules is rarely manipulated all at once.

In comparison, when refining fine schedules, the proof
obligation (a0∧a1∧ p � c0∧c1∧ p) has to be dealt with as
a whole. The comparison between coarse and fine schedule
is similar when proving liveness properties. This is why we
should keep the fine schedules as small as possible.

One situation favours fine schedules. Contentions hap-
pen when many events have to occur and the occurrence
of one falsifies the schedules of the others. A mutual

exclusion protocol is a good example of contention. The
enter_cri tical_section event of each process has to occur
when the process is waiting but no other process is in its crit-
ical section. When two processes, say p0 and p1 are waiting,
if p0 first enters its critical section, it falsifies p1’s schedule.
If it were a coarse schedule, this means that there is no guar-
antee that the other process will ever be granted access to its
critical section. The situation can be fixed by making part of
the events’ schedule coarse and the other part fine. The fact
that p1 is waiting is stable and no other process will falsify
this. It can therefore safely be made into the coarse schedule.
The other part, the condition that no other process be in their
critical region, should be made into the fine schedule. It is
not stable but as long as it becomes true infinitely often, p1
will be granted access to its critical section.

As a rule of thumb, most schedules should be made into
coarse schedules.When liveness properties cannot be proved,
coarse schedules should be selectively made into fine sched-
ules.
(end of heuristics)

In order to prove the refinement of moveout, we apply
Corollary 3 (fine schedule strengthening), which requires to
prove the following progress property. The abstract event
moveout has no fine schedules, it is assumed to be true.
Condition (F_STR) is trivial since the abstract fine schedule
is true. Condition (F_FLW) leads to the following property:

〈loc.t ∈ PLF〉 � ¬Exit ∈ ran.loc , (prg2_1)

which can be strengthened to

true � ¬Exit ∈ ran.loc (prg2_2)

We satisfy prg2_2 (which is a transient property) by apply-
ing the transient rule (TRS) using eventdepartwith the index
denoting the train at the Exit location, i.e. loc−1.Exit . Intu-
itively, the train at the exit blockwill eventually depart, hence
the exit block becomes free.

M2 � tr Exit ∈ ran.loc

� { Transient rule (TRS) with depart.((loc−1).Exit)}

M2 � depart.((loc−1).Exit) falsifies Exit ∈ ran.loc

= { Falsifies rule (FLS) with (C_EN_3) and (NEG_3) }

true

where

Exit ∈ ran.loc
⇒

(loc−1).Exit ∈ st
∧ loc.( (loc−1).Exit ) = Exit

(C_EN_3)
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Exit ∈ ran.loc
∧ (loc−1).Exit ∈ st
∧ loc.( (loc−1).Exit ) = Exit
∧ true
∧ loc′ = { (loc−1).Exit } �− loc
∧ st′ = st \ { (loc−1).Exit }

⇒ ¬ Exit ∈ ran.loc′

(NEG_3)

The proofs of conditions (C_EN_3) and (NEG_3) are
straightforward and will be left out.

Finally, we strengthen the guard of movein and subse-
quently strengthen its coarse schedule. We apply Corollary 2
(coarse schedule replacing) movein. The detailed proof is
omitted here.

movein [t]
during
t ∈ st ∧ loc.t = Entry ∧ ¬PLF ⊆ ran.loc

when
t ∈ st ∧ loc.t = Entry ∧ ¬PLF ⊆ ran.loc

then
loc.t :∈ PLF \ ran.loc

end

4.4.1 Comparison between coarse/fine schedules and
weak/strong fairness

Event moveout has both a coarse and a fine schedule. The
alternative, using only weak or strong fairness, would com-
plicate the proofs and make refinement of the system more
difficult.

On the one hand, weak-fairness requires for the exit block
to remain free continuously in order for trains to move out.
This assumption is not met by the current system: if, infi-
nitely often, another train than t located at a different platform
moves on to the exit block before t does, t’s weak-fairness
allows for t to stay where it is forever. In other words, the
weak- fairness assumption formoveout will be too weak; it
does not guarantee that a train inside the station will eventu-
ally exit. An attempt to prove the refinement with the weakly
fairmoveout event using Corollary 2 will lead to the follow-
ing unprovable (C_STB) condition.

〈loc.t ∈ PLF ∧ ¬Exit ∈ ran.loc〉
un ¬(t ∈ st ∧ loc.t ∈ PLF)

(58)

The event that fails to satisfy (58) ismoveout for train other
than the current t.

On the other hand, strong-fairness would allow a train to
access the exit block if it is present on the platform intermit-
tently. This assumption is more flexible than we need since it
allows behaviours where a train hops on and off the platform
infinitely oftenwhile waiting for its turn at the exit block. The
price of that flexibility is to entangle properties of the exit

block with properties of trains: indeed, we would need not
only to prove that the train will be on its platform and that the
exit block will become free but that both happen simultane-
ously infinitely often.More formally, whilewe can prove that
the strongly fairmoveout event refines the abstractmoveout
event, future refinement of moveout will be more difficult
due to the stronger scheduling assumption. We choose to
relinquish this flexibility and are therefore capable of struc-
turing our proof better: on one hand, the train stays on its
platform as long as necessary; independently, the exit block
becomes free infinitely many times. This (choosing a weaker
scheduling assumption) is similar to choosing aweaker guard
such that safety properties are satisfied: it is minimalistic and
gives more flexibility for later refinements.

The relationship between our schedules (coarse/fine) and
fairness assumptions (weak/strong) can be illustrated as fol-
lows. Consider the following events with identical actions.
The guard of these events are also the same as c∧ f for some
predicates c, f .

ewf =̂ during c ∧ f
when c ∧ f then . . . end

esch =̂ during c upon f
when c ∧ f then . . . end

esf =̂ upon c ∧ f
when c ∧ f then . . . end

Event ewf is scheduled with weakly fairness, event esf is
scheduled with strongly fairness. Event esch’s scheduling is
split between a coarse schedule c and a fine schedule f . Con-
sider the strength of their scheduling assumption, we have
the following relationship:

sched.ewf ⇐ sched.esch ⇐ sched.esf .

In fact, using coarse and fine schedules, we can specify
a finer-grained spectrum of scheduling assumptions (com-
pared with fairness assumptions) with the minimum being
the weak-fairness assumption and the maximum being the
strong-fairness assumption, as can be seen in Fig. 6.

4.5 Third refinement: the actuators

In this refinementM3, we focus on requirements EQP 5 and
ENV 6 which describe the light signals in the station and
state the assumption that the train drivers always obey these
light signals. So far,moveout andmovein which model the
behaviour of individual trains and their driver, state that the

Fig. 6 The spectrum of scheduling assumptions
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trainsmovewhen it is safe to. However, the drivers often can-
not judge for themselveswhether it is safe to proceed because
they cannot see all the dangers. This is whywe adopt the con-
vention of the light signals: wherever it may be dangerous to
proceed, a light signal is located and can only be green if it
is safe for the train it is addressed to advance. This allows us
to change the guard and schedules of the train events to only
refer to information that the drivers have access to.

We continue our development by modelling the signals
associated with different blocks within the network. Variable
g_sgn is introduced to denote the set of platform for which
the light signal is green. We focus the rest of this section on
the control of the signals regulating the departure from the
platforms. In particular, invariants inv3_2 and inv3_3 state
that if a platform signal is green, then the exit block is free
and the other platform signals are red. Invariant inv3_4 states
that the signal is green only for occupied platforms.

invariants :
inv3_1 : g_sgn ⊆ PLF
inv3_2 : Exit ∈ ran.loc ⇒ g_sgn = ∅

inv3_3 : (∀ p, q : p, q ∈ g_sgn : p = q)

inv3_4 : g_sgn ⊆ ran.loc

We refine the moveout event to use the platform signal
as follows.

moveout [t]
during

t ∈ st ∧ loc.t ∈ PLF
∧ loc.t ∈ g_sgn

upon
¬ Exit ∈ ran.loc

when
t ∈ st ∧ loc.t ∈ PLF

∧ loc.t ∈ g_sgn
then
loc.t := Exit
g_sgn := g_sgn \ {loc.t}

end

The refinement of moveout is justified by applying Theo-
rem 3 which requires us to prove the following:

〈loc.t ∈ PLF〉 � 〈loc.t ∈ PLF ∩ g_sgn〉 (C_FLW_3)

〈loc.t ∈ PLF ∩ g_sgn〉 un ¬〈loc.t ∈ PLF〉 (C_STB_3)

〈loc.t ∈ PLF〉 ∧ ¬ Exit ∈ ran.loc � true (F_FLW_3)

〈loc.t ∈ PLF ∩ g_sgn〉 ∧ true
⇒ ¬ Exit ∈ ran.loc

(F_STR_3)

(F_FLW_3) follows directly from the implication rule
(Implication); (F_STR_3) follows from inv3_2; (C_STB_3)
requires a number of simple proofs which will be left out. To

discharge (C_FLW_3), we apply the ensure (Ensure) rule.

〈loc.t ∈ PLF〉 un 〈loc.t ∈ PLF ∩ g_sgn〉 (un3_1)

tr 〈loc.t ∈ PLF \ g_sgn〉 (prg3_1)

Ignoring safety property un3_1, we focus on prg3_1. In
order to have an event to falsify 〈loc.t ∈ PLF \ g_sgn〉, we
need the event to add loc.t to g_sgn, i.e. to turn to green the
signal of the platform where t is. This is clearly a task of the
controller rather than a model of the trains. Therefore, we
introduce a controller event, ctrl_platform, indexed with the
platforms. Our first design for ctrl_platform is as follows.

ctrl_platform [p]
during
p ∈ ran.loc ∧ p ∈ PLF \ g_sgn

begin
g_sgn := g_sgn ∪ {p}

end

The proof that ctrl_platform implements prg3_1 is as
follows.

M3 � tr 〈loc.t ∈ PLF \ g_sgn〉
� { Transient rule (TRS) with ctrl_platform.(loc.t)}

M3 � ctrl_platform.(loc.t) falsifies
〈loc.t ∈ PLF \ g_sgn〉

= { Falsifies rule (FLS) with (C_EN_4) and (NEG_4)}

true

where

〈loc.t ∈ PLF \ g_sgn〉
⇒

loc.t ∈ ran.loc // coarse schedule

∧ loc.t ∈ PLF \ g_sgn
(C_EN_4)

〈loc.t ∈ PLF \ g_sgn〉
∧ loc.t ∈ ran.loc
∧ loc.t ∈ PLF \ g_sgn
∧ g_sgn′ = g_sgn ∪ {loc.t} // action

∧ loc′ = loc
⇒

¬〈loc′.t ∈ PLF \ g_sgn′〉

(NEG_4)

Notice that we choose the coarse schedule of ctrl_platform
so as to simplify the proof of (C_EN_4). Furthermore, we
choose the assignment to g_sgn in such a way as to satisfy
(NEG_4).
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Table 1 Proof obligations and formulas justifying the design of
ctrl_platform

Event part Formula PO

Coarse schedule prg3_1 (C_EN_4)

Action prg3_1 (NEG_4)

Guard inv3_2 and inv3_3 Invariance

Fine schedule guard (SCH_FIS)

The next step is to prove that ctrl_platform satisfies the
safety properties (i.e. unless properties and invariants) of the
current refinement. In order to prove inv3_2 and inv3_3, we
need to strengthen the guard to:

p∈PLF ∧ p∈ ran.loc ∧ ¬Exit ∈ ran.loc ∧ g_sgn=∅.

Due to feasibility condition (SCH_FIS), we need to
strengthen the schedules of ctrl_platform accordingly. Since
strengthening the current coarse schedule will invalidate the
current proof of (C_EN_4), we introduce the following new
fine schedule for ctrl_platform:

¬Exit ∈ ran.loc ∧ g_sgn = ∅.

Event ctrl_platform is finalised as:

ctrl_platform [p]
during
p ∈ ran.loc ∧ p ∈ PLF \ g_sgn

upon
¬Exit ∈ ran.loc ∧ g_sgn = ∅

when
p ∈ PLF ∧ p ∈ ran.loc

∧ ¬Exit ∈ ran.loc ∧ g_sgn = ∅

then
g_sgn := g_sgn ∪ {p}

end

Table 1 summarises the design choices behind event
ctrl_platform.

It is interesting to see that, in this refinement, we effec-
tively shift the fine schedule from moveout (an environ-
ment event) to ctrl_platform (a controller event). The model
remains abstract when it comes to specify the order in which
the trains gain access to the exit block but specific enough to
maintain liveness.

Event ctrl_platform is a specification for the computer
to control the platform signals satisfying both safety and
liveness properties of the overall system. In particular, the
scheduling information states that if (1) a platform is occu-
pied and the platform signal is red infinitely long and (2)
the exit block is unoccupied and the other platform signals
are all red infinitely often, then the system should eventually
turn this platform signal to green. The refinement of event

movein and how the entry signal is controlled is similar and
omitted for the rest of the paper.

The newfine schedule changes the earlier proof of prg3_1
in two ways. First, the fine schedule gets in the antecedent of
(NEG_4), which does not invalidate the proof of (NEG_4).
Second, we get an additional leads-to property to prove cor-
responding to (F_EN).

〈loc.t ∈ PLF \ g_sgn〉 � ¬ Exit ∈ ran.loc
∧ g_sgn = ∅

(F_EN_4)

We start the proof of (F_EN_4) by weakening its right-
hand side to true (consequence of transitivity (Transitivity)
and implication (Implication) rules), and we keep refining it
until we can implement it simply.

true � ¬ Exit ∈ ran.loc ∧ g_sgn = ∅

� { (Transitivity) }

true � g_sgn = ∅

g_sgn = ∅ � ¬ Exit ∈ ran.loc ∧ g_sgn = ∅

�

⎧⎪⎪⎨
⎪⎪⎩

(PSP) on second with p := true ,
q := ¬ Exit ∈ ran.loc , r := g_sgn = ∅ ,
b := ¬ Exit ∈ ran.loc ∧ g_sgn = ∅

⎫⎪⎪⎬
⎪⎪⎭

true � g_sgn = ∅ (prg3_2)

true � ¬ Exit ∈ ran.loc (prg3_3)

g_sgn = ∅ un ¬ Exit ∈ ran.loc ∧ g_sgn = ∅ (un3_2)

We leave out the detailed proof for prg3_2 and un3_2:
prg3_2 is a transient property which can be implemented by
moveout event, un3_2 is a trivial safety property.

Property prg3_3 is identical to prg2_2 in the second
refinement M2. However, we cannot directly reuse prg2_2
since this could lead to circular reasoning. As explained
below, additional precautions are required to avoid the prob-
lem.

4.5.1 Reusing progress properties

Property prg2_2, which states that the exit block becomes
free infinitely often, turns out to be a key abstraction in M2.
InM3 and later refinements, it will be very important that the
exit block be available infinitely many times so that, even if
a given train misses the first opportunity to move away from
its platform, it still is certain to get a turn eventually. As a
result, we would like to reuse prg2_2 in the reasoning about
M3 and subsequent refinements.

Earlier, we have proved that M2 satisfies prg2_2, i.e.

[ ex.M2 ⇒ prg2_2 ]. (59)
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To ensure that M3 refines M2, we prove

[ ex.M3 ⇒ ex.M2 ] (60)

Succeed in proving (60), together with (59), will ensure that
M3 also satisfies prg2_2. However, we cannot directly reuse
prg2_2 during the proof of (60): our reasoning would be
circular.

In order to avoid circular reasoning, for each model, we
keep a binary relation representing the dependency between
progress properties of interest and the events that contribute
to their implementation. Consider the initial modelM0, since
the property prg0_1 is eventually implemented by depart,
the dependency relation can be

{prg0_1 �→ (M0.)depart}.
In the first refinement, consider the dependency for

prg0_1, it is dependent on event (M1.)depart (which is the
refinement of the abstract event (M0.)depart) and events
moveout, movein (which are used for proving the refine-
ment of (M0.)depart by (M1.)depart).

{prg0_1 �→ (M1.)depart,

prg0_1 �→ (M1.)moveout,

prg0_1 �→ (M1.)movein} .

More formally, the dependency relation denotes the rela-
tionship between the scheduling assumptions of the events
and the property these events implement. Consider a model
M and its dependency relation:

{P1 �→ (M.)e1, P1 �→ (M.)e2, P2 �→ (M.)e3} .

The above relation encodes the following conditions:

[ saf .M ∧ sched.e1 ∧ sched.e2 ⇒ P1 ] (61)

[ saf .M ∧ sched.e3 ⇒ P2 ] (62)

For a given model, we only need to consider the dependency
relation for the progress properties that we want subsequent
refinements to reuse. By default, progress properties are not
reused.

In summary, the dependency relation summarises the
proofs (accumulated through refinement) of progress proper-
ties. We use it in order to avoid any circular reasoning linked
to the reuse of progress properties. A progress property can
be reused only after its effecting events have been refined.
Naturally, during the proof of refinements of these dependent
events, the progress property cannot be used. This means that
if, in a refinement of M in the previous example, we replace
the coarse schedule of e1, we cannot use P1 in the proof of
(C_FLW).

Coming back to the train station example, we are inter-
ested in reusing prg2_2 which is introduced in M2. Since
prg2_2 is implemented by depart, the dependency relation
forM2 is as follows:

{prg2_2 �→ (M2.)depart} .

Since depart is unchanged in M3, its refinement is trivial.
Therefore, we are free tomake use of prg2_2 in all the proofs
of liveness inM3. It also follows that, the dependency forM3
is the same as that of M2, i.e.

{prg2_2 �→ (M3.)depart} .

In fact, property prg2_2 is also reused in future refinements.

4.6 Fourth refinement: the controller

In this refinementM4, we focus on realising the software con-
troller. At the end of the previous refinement, the controller is
entirely specified by ctrl_platformwhich has a fine schedule.
Although the fine schedule is a useful specification mecha-
nism, we argue that it is not readily implementable. While
it is easy to produce a correct (if not efficient) implementa-
tion for an event that has only a coarse schedule — a pro-
gram that tests infinitely often (every second, every minutes
or every year) the schedule and execute the event when its
guard is true would be a correct implementation — it is not
so straightforward for a fine schedule. Repeatedly testing a
fine schedule will be incorrect in a situation where the fine
schedule becomes true and false infinitely many times and
that the program just happens to test infinitely many times
only when it is false. This naive scheduler will fail to detect
that the event has to be executed.

To make our controller more deterministic, we now pro-
ceed to refining ctrl_platform’s fine schedule away. For that
purpose, we introduce three new variables (qe, hd, tl) to
model a queue. Variable qe is an injective function from plat-
form to an interval of integers where hd is the index of the
first element of the queue and tl is the index just after the last
element of the queue. This entails that the queue is empty
when hd = tl.

As a convention, platforms are pulled at hd and inserted
at tl. Below, [hd, tl) is an integer interval that includes hd but
excludes tl and (qe−1)[ {hd} ] is the application of the inverse
of qe to the set {hd}. The latter has the particularity that, when
hd is not in the range of qe, the expression evaluates to the
empty set rather than being undefined.

invariants :
inv4_1 : qe ∈ PLF �� [hd, tl)
inv4_2 : g_sgn ⊆ (qe−1)[ {hd} ]
inv4_3 : dom.qe = PLF ∩ ran.loc

In order tomaintain inv4_3, we letmovein increase tl and
insert the platforms in the queue as they become occupied
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and moveout increase hd and remove the platforms as they
become free.

movein [t]
during

...

when
...

then
...

tl := tl + 1
qe.(loc′.t) := tl
loc.t :∈ PLF

\ran.loc
end

moveout [t]
during

...

when
loc.t ∈ g_sgn

then
...

hd := hd + 1
qe :=qe �− {hd}
loc.t := Exit
g_sgn := g_sgn

\{loc.t}
end

With the queue, we can schedule the controller determin-
istically: to turn green the light signal of a platform, that plat-
form has to be the head of the queue. Event ctrl_platform is
refined as follows.

ctrl_platform [p]
during

p ∈ PLF ∩ ran.loc
p ∈ dom.qe

∧ qe.p = hd
∧ ¬Exit ∈ ran.loc
∧ ¬p ∈ g_sgn

upon
¬Exit ∈ ran.loc ∧ g_sgn = ∅

when
p ∈ PLF ∧ p ∈ ran.loc

∧ ¬Exit ∈ ran.loc ∧ g_sgn = ∅

then
g_sgn := g_sgn ∪ {p}

end

We apply Theorem 3 to prove the refinement of
ctrl_platform. Omitting the trivial obligations related to
(F_FLW) and (F_STR), we focus on the obligations for
replacing p ∈ PLF ∩ ran.loc (which is equivalent to p ∈
dom.qe) with 〈qe.p = hd〉 ∧ ¬Exit ∈ ran.loc for the
coarse schedule of ctrl_platform (i.e. conditions (C_FLW)
and (C_STB)).

p ∈ dom.qe � 〈qe.p = hd〉 ∧
¬Exit ∈ ran.loc

(C_FLW_5)

〈qe.p = hd〉
∧ ¬Exit ∈ ran.loc un ¬p ∈ dom.qe

(C_STB_5)

So far in our development, progress properties can be sep-
arated in two different groups:

1. Those that are satisfied in a single step. These properties
are proved by transforming them into transient proper-
ties (for example, making use of rules such as ensure

(Ensure) rule). Each transient property is implement by
an individual event using a combination of transient rule
(TRS) and falsifies rule (FLS).

2. Those that are satisfied in some predetermined number
of steps. These properties are proved by breaking them
down into several properties that can be satisfied in a
single step using transitivity (Transitivity).

Property (C_FLW_5) does not fit neither categories so far.
In fact, the number of steps to satisfy (C_FLW_5) depends
on the position of the platform p within the queue qe. As a
result, in order to prove (C_FLW_5) we apply the induction
rule (Induction).

p ∈ dom.qe � 〈qe.p = hd〉 ∧
¬Exit ∈ ran.loc

� { Induction rule (Induction)}

〈qe.p−hd=M〉� 〈qe.p−hd<M〉 ∨
〈qe.p=hd ∧ ¬Exit ∈ ran.loc〉

(prg4_1)

�

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

(PSP) with p := 〈qe.p − hd = M〉 ,
q := ¬〈qe.p − hd = M〉 ,
r := 〈qe.p − hd ≤ M〉 ,
b := 〈qe.p = hd〉 ∧ ¬Exit ∈ ran.loc

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

〈qe.p − hd = M〉 � ¬〈qe.p − hd = M〉 (prg4_2)

〈qe.p − hd ≤ M〉 un 〈qe.p = hd〉 ∧
¬Exit ∈ ran.loc

(un4_1)

We focus on the development for prg4_2. It basically says
that, eventually, either the value ofqe.p−hd changes orp is no
longer in the queue.While this is exactlywhatmoveout does,
we cannot prove that moveout falsifies 〈qe.p − hd = M〉.
This is because it could take as many as three steps to do that.
For example, let us assume that there is a train at the Exit
block, i.e. Exit ∈ ran.loc, all the platform signals are red,
hence g_sgn = ∅. In order to falsify 〈qe.p − hd = M〉, the
following steps have to happen:

1. Event depart frees the Exit block,
2. Event ctrl_platform turns the platform signal to green for

some platform,
3. Eventmoveout moves to the exit block the train located

at the platform for which the signal is green.

As a result, we use (Transitivity) to split prg4_2 into three
different properties.

〈qe.p − hd = M〉 � 〈qe.p − hd = M〉 ∧
¬Exit ∈ ran.loc

(prg4_3)
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〈qe.p − hd = M〉
∧ ¬Exit ∈ ran.loc

�
〈qe.p − hd = M〉 ∧
¬ g_sgn ⊆ ∅ ∧
¬ Exit ∈ ran.loc

(prg4_4)

〈qe.p − hd = M〉
∧ ¬ g_sgn ⊆ ∅

∧ ¬ Exit ∈ ran.loc � ¬〈qe.p − hd = M〉
(prg4_5)

Subsequently, our intention is to implement prg4_3
with depart, prg4_4 with ctrl_platform and prg4_5 with
moveout, according to our informal reasoning before. The
detail proofs are left out.

4.7 Refinement 5: removal of the event indices

At the end of the fourth refinement, the controller event
ctrl_platform is indexed with the platform p whose signal
is going to be turned green. However, since p is determined
as the head of the queue qe, we can remove the index of
ctrl_platform. The final version of ctrl_platform is as fol-
lows.

ctrl_platform
during

hd < tl
∧ ¬Exit ∈ ran.loc
∧ ¬(qe−1).hd ∈ g_sgn

when
¬Exit ∈ ran.loc ∧ g_sgn = ∅

then
g_sgn := g_sgn ∪ {(qe−1).hd}

end

The refinement of ctrl_platform can be justified trivially
using Theorem 4, with (qe−1).hd as the witness for the
removed index p.

The first-in-first-out policy may appear too rigid because
it does not allow trains to stand still at a platform for a while
when they are ahead of schedule. We chose to adhere to it
because of its simplicity which is a correct choice since the
ability for trains to linger is not one of the stated requirements.
It would, however, make for an interesting model, one which
is outside the scope of this paper.

4.8 Summary

Our development fromM0 toM5 is driven by both safety and
progress concerns. In particular,we choose onpurpose to take
into account liveness requirement FUN 2 atM0. As a result,
the need to prove and maintain progress properties justifies
a number of design decisions within our development. We
summarise the key features and techniques of Unit-B that
have illustrated throughout our case study.

M0 We introduce the basis of modelling using scheduled
events and application of transient rule (TRS) to prove
simple progress properties.

M1 We illustrate how to refine scheduled events, and appli-
cations of transitivity rule (Transitivity) and ensure
rule (Ensure) to prove progress properties.

M2 We discuss the difference between coarse/fine schedules
and weak/strong fairness.

M3 We illustrate how progress properties that have been
proved in earlier abstract models can be reused through
refinement.

M4 We compare different strategies for implementing
progress properties: single step (ensure and transient
rules), predetermined number of steps (transitivity rule)
and arbitrary finite number of steps (induction rule).

M5 We illustrate how events can be made more concrete by
removing indices.

5 Conclusion

In this paper, we presented Unit-B, a formal method inspired
by Event-B and UNITY. Our method allows systems to be
developed gradually via refinement and support reasoning
about both safety and liveness properties. An important fea-
ture of Unit-B is the notion of coarse and fine schedules for
events. Standard weak- and strong-fairness assumptions can
be expressed using these event schedules. We proposed and
prove the soundness of refinement rules to manipulate the
coarse and fine schedules so that liveness properties are pre-
served automatically (i.e. without the need to reprove them).
We illustrated Unit-B by developing a signal control system.

A key observation in Unit-B is the role of event schedul-
ing regarding liveness properties being similar to the role
of guards regarding safety properties. Guards prevent events
from occurring in unsafe states so that safety properties will
not be violated; similarly, schedules ensure the occurrence
of events in order to satisfy liveness properties.

Another key aspect of Unit-B is the role of progress prop-
erties during refinement: the obligation to prove newprogress
properties in the application of refinement rulesmotivates the
introduction of new events and suggests the refinement of old
events. In short, the progress considerations guide the refine-
ment of the system.

Related work Unit-B and Event-B differ mainly in the
scheduling assumptions. In Event-B, event executions are
assumed to satisfy a minimal progress condition: as long
as there are some enabled events, one of them will be exe-
cuted non-deterministically. Given this assumption, certain
liveness properties can be proved for Event-B models such
as progress and persistence [11]. The minimum progress
assumption is often too weak to prove the required set of
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liveness properties. Furthermore, the liveness properties that
can be proved using minimal progress have to be reproved in
later refinements to ascertain that they still hold.

TLA+ [18] is another well-known formal method based
on refinement supporting reasoning about liveness proper-
ties. The execution of a TLA+ model is also captured as a
formula with safety and liveness sub-formulae expressed in
the Temporal Logic of Actions (TLA) [17]. Actions in TLA+
(events in Unit-B) can be scheduled with weak or strong fair-
ness. Refinement in TLA+ is based on the WF2 and SF2
rules [17]. RuleWF2 allows a weakly fair event to be refined
by another weakly fair event and Rule SF2 allows a strongly
fair event to be refined by another strongly fair event. The
refinement rule for Unit-B is more general than the com-
bination of WF2 and SF2: during refinement, we can trade
freely between the weakly fair component (i.e. the coarse
schedule) and the strongly fair component (i.e. the fine sched-
ule). Moreover, liveness properties in TLA+ are considered
to be unimportant [18, Chapter 8]. In our opinion, develop-
ing systems satisfying liveness properties is as important as
ensuring that the systems satisfy safety properties. We argue
that the liveness properties should be considered from the
early stages of the design. Indeed, addressing liveness prop-
erties as an after thought in the design process will often lead
to complicated proofs, since the model is not designed with
proofs of liveness properties in mind.

See [19] for a review of the temporal logic framework
developed by Manna and Pnueli. The authors use fair transi-
tion systems for the semantics of concurrent or reactive pro-
grams and temporal logic for specifying system properties.
Rules are provided for proving response properties (called
progress properties in this paper) that rely on just or com-
passionate transitions (equivalent to the weak- and strong-
fairness scheduling policies) of the system for their valid-
ity. Although the Manna–Pnueli framework does not have a
progress preserving refinement calculus as in Unit-B, it does
have rules for data abstraction and compositional reasoning.

The idea of combining different formal methods to rea-
son about liveness properties is also explored by other
researchers. In [21], the authors combine Event-B and TLA+
for proving liveness properties in populationprotocols.While
refinement has been used in their development, liveness
properties are not preserved: progress properties have to be
reproved at each level of refinement.

Future work Currently, we only consider superposition
refinement in Unit-B where variables are retained during
refinement. More generally, variables can be removed and
replaced by other variables during refinement (data refine-
ment). We are working on extending Unit-B to provide rules
for data refinement.

Another important technique for coping with the dif-
ficulties in developing complex systems is composition/

decomposition and is already apart ofmethods such asEvent-
B and UNITY. We intend to investigate on how this tech-
nique can be added to Unit-B, in particular, the role of event
scheduling during composition / decomposition.

Tool support is currently under construction under the
name Literate Unit-B. The goal is to integrate seamlessly
the activities of modelling, proving and documenting. We do
so bymaking equational proofs first-class citizens in models,
by taking LATEX source files at the input of the tool and allow-
ing arbitrary interleaving of model and proof elements. We
use the Z3 SMT solver [5] to discharge the proofs obligations
and to validate the proof steps.

The goal is to allow the user to formulate formal proofs in
a clear manner and integrate them in the documentation of
the models, letting the tool verify that every step of reason-
ing is sound or suggest where a lemma would be needed to
justify a step. Such a tool is needed for the Unit-B method
to be practical. This tool substantially reduces the burden of
validity checking, therefore allowing developers to focus on
the software design.

As is the case with Rodin [3], the tool for Event-B, a large
percentage of proof obligations can be discharged automat-
ically, freeing the user from the need to check many sim-
ple facts. This leaves him with the job of proving only the
hardest obligations. It is useful then to be able to design and
present the proof of these hard theorems using a format that is
both readable by humans and amenable to formal reasoning
by humans. We believe the equational format [10] exhibits
these properties since it permits the user to focus on one line
of reasoning at a time.
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