
Softw Syst Model (2017) 16:229–255
DOI 10.1007/s10270-015-0455-3

REGULAR PAPER

Eugenia: towards disciplined and automated development
of GMF-based graphical model editors

Dimitrios S. Kolovos · Antonio García-Domínguez ·
Louis M. Rose · Richard F. Paige

Received: 5 July 2013 / Revised: 22 September 2014 / Accepted: 6 January 2015 / Published online: 26 February 2015
© Springer-Verlag Berlin Heidelberg 2015

Abstract EMF and GMF are powerful frameworks for
implementing tool support for modelling languages in
Eclipse. However, with power comes complexity, imple-
menting a graphical editor for a modelling language using
EMF and GMF requires developers to handcraft and main-
tain several detailed interconnectedmodels through a loosely
guided, labour-intensive, and error-prone process. We
demonstrate how the application of metamodel annotation
and model transformation techniques can help to manage the
complexity of GMF and EMF and deliver significant pro-
ductivity, quality, and maintainability benefits. We present
Eugenia, an open-source tool that implements the proposed
approach, illustrate its functionality with an example, evalu-
ate it through an empirical study, and report on the commu-
nity’s response to the tool.

Keywords Graphical modelling · Model transformation ·
Eclipse · GMF

Communicated by Dr. Juha-Pekka Tolvanen.

D. S. Kolovos (B) · L. M. Rose · R. F. Paige
University of York, York, UK
e-mail: dkolovos@cs.york.ac.uk

L. M. Rose
e-mail: louis@cs.york.ac.uk

R. F. Paige
e-mail: paige@cs.york.ac.uk

A. García-Domínguez
University of Cádiz, Cádiz, Spain
e-mail: antonio.garciadominguez@uca.es

1 Introduction

Domain-specific languages (DSLs) play an increasingly
important role in model-driven engineering: in a recent sur-
vey of MDE practitioners, “almost 40%” of participants had
used custom DSLs, 25% had used off-the-shelf DSLs, and
onlyUML (used by 85%of participants) had been usedmore
widely than DSLs [1]. Many tools exist for implementing
DSLs, including the Eclipse Modelling Framework (EMF)
[2], a robust, widely used, and flexible framework for con-
structing DSLs on top of the Eclipse software development
platform. Over the last few years, Eclipse and EMF have
become the de facto standards in the MDE community; the
majority of MDE tools (e.g. ATL, Xtend/Xpand, Acceleo,
QVT, Epsilon) have been either implemented directly on top
of them or are seamlessly integrated with them. Building
on EMF, the Graphical Modelling Framework (GMF) is a
robust framework that facilitates the development of com-
plex diagram-based editors for EMF-based DSLs.

Both EMFandGMFadopt a generative approach. Starting
from an Ecore1 metamodel which specifies the abstract syn-
tax of a (domain-specific) modelling language, developers
derive and maintain a set of more fine-grained, lower-level
models. These specify the graphical syntax and other imple-
mentation options, and which can be consumed by EMF and
GMF code generators to produce the concrete artefacts (i.e.
Java code and configuration files) that realise the editor. EMF
and GMF are particularly powerful and flexible, providing
customisation options for almost every aspect of the gener-
ated editor.

As is often the case, the price to be paid for power and
flexibility is increased complexity. As discussed in the indus-
trial experience report presented byWienands and Golm [3],

1 Ecore is the object-oriented metamodelling language of EMF.

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10270-015-0455-3&domain=pdf

230 D. S. Kolovos et al.

implementing a graphical editor for a modelling language
using EMF and GMF is a loosely guided and error-prone
process, mainly because it requires developers to handcraft
and maintain a number of low-level, complicated, and inter-
connected models. Like Wienands and Golm, we argue that
the application of EMF and GMF to implement a DSL intro-
duces significant accidental complexity into the develop-
ment process: we demonstrate the way in which developing
a graphical editor with GMF is suboptimal, particular with
respect to the maintainability of the resulting editor and the
productivity of the development process.

In this paper, we report on a way in which we have applied
model transformation to reduce the accidental complexity
of GMF and EMF. We propose a combination of a single-
sourcing approach and model transformation to both raise
the level of abstraction at which DSL developers must work
and to deliver significant productivity benefits to the process
of constructing graphical editors for modelling languages.
We demonstrate our proposed approach through Eugenia, a
mature and widely used tool that abstracts over and automat-
ically generates the low-level models required by the EMF
and GMF code generators.

This paper is an extension of earlier work presented at
the 2010 edition of the MoDELS conference [4]. Com-
pared to [4], this paper provides an extensive discussion on
the transformations that implement the proposed approach,
demonstrates recent extensions related to pre-transformation
validation and codepatching, summarises recent experiments
investigating the productivity benefits ofEugenia, and reports
on wider evaluation of Eugenia via feedback gathered from
the community.

The paper is organised as follows. Section 2 outlines the
process of developing a graphical editor using EMF/GMF
and highlights the error-prone and labour-intensive steps.
Following this, Sect. 3 demonstrates how we have used
metamodel annotation, model-to-model, and in-place model
transformation to automate these steps in the context of Euge-
nia. Section 4 presents a concrete example that demonstrates
the major features of Eugenia. Section 5 reports on a set
of experiments used to evaluate the productivity and main-
tainability benefits delivered by model transformation in this
practical problem, and on feedback fromEugenia’s user com-
munity. Section 6 provides an overview of related work, and
Sect. 7 concludes the paper and provides directions for fur-
ther work on the subject.

2 Motivation

In this section, we outline the process of implementing a
graphical editor for a modelling language using EMF and
GMF and we identify the labour-intensive, error-prone, and

maintenance-challenging steps it involves. Figure 1 provides
a graphical overviewof the process and the artefacts involved.

The first part of the process involves specifying the
abstract syntax of the language using Ecore and generating
the Java code from it (in two stages), using the EMF built-
in code generator. The second part involves specifying the
graphical syntax of the editor using a number of graphical
syntax-specific GMFmodels (in three stages) and then using
the GMF code generator to generate the concrete graphical
editor.

2.1 Specifying the abstract syntax and generating code
using EMF

In the first step of the process, the developer needs to define
the abstract syntax (metamodel) of the language using Ecore.
Following that, the developer can invoke a built-in EMF
model-to-model transformation to transform the Ecoremeta-
model into an EMF generator model (GenModel). The pro-
ducedGenModel captures lower-level information that speci-
fies how the metamodel should be implemented in Java (e.g.
the Java package under which the code will be generated,
copyright information to be embedded in the generated files,
whether certain UI elements will be generated or not). Once
derived from the Ecore metamodel, a GenModel can be cus-
tomised and fine-tuned manually. Finally, the GenModel is
consumed by a built-in model-to-text transformation which
produces all the necessary Java code and configuration files.

If the Ecore metamodel is subsequently modified, EMF
provides a built-in reconciler that can detect changes in
the metamodel and propagate them to the corresponding
GenModel without overwriting the user-defined customi-
sations. However, the reconciler is only effective for sim-
ple changes in the Ecore metamodel; for more complex
changes (e.g. moving EClasses across different EPackages),
the GenModel needs to be regenerated and customised from
scratch. This introduces a significant maintenance overhead
as it is not always clear to developers which changes in
the metamodel can or cannot be reconciled automatically.
Therefore, it is common practice to maintain documentation
about all manual changes in a separate location (e.g. a text
file), so that they can be reapplied (manually) if or when
necessary.

2.2 Specifying graphical syntax and generating
code with GMF

Once the Ecore metamodel has been defined and the EMF
code has been generated, the developer needs to construct
three additional GMF-specific models to implement a graph-
ical editor for the language.

123

Eugenia: GMF-based graphical model editors 231

Models of abstract syntax and graphical concrete syntax

Deployable graphical model editor (Java and XML)

Ecore metamodel

GMF Graph model

GMF Mapping
model

GMF Tooling model

EMF
Ecore2GenModel

transformation

GMFMap2Gen
transformation

GMF Generator
model

EMF Generator
model

GMF code
generator

EMF code
generator

GMF editor

Abstract Syntax
implementation

GMF runtime

EMF runtime

manual
derivation

automated
transformation

inter-model
references

dependency

Fig. 1 EMF/GMF graphical editor development process overview

– The graph model (GMFGraph) specifies the graphical
elements (shapes, connections, labels, decorations etc.)
used in the editor;

– The tooling model (GMFTool) specifies the element cre-
ation tools thatwill be available in the palette of the editor;

– The mapping model (GMFMap) maps the graphical ele-
ments in the graph models and the creation tools in the
tooling model with the abstract syntax elements of the
Ecore metamodel (classes, attributes, references etc.).

Figures 2, 3, and 4 provide simplified views of the meta-
models of the three models discussed above as the com-
plete metamodels are too large to illustrate in this paper (for
instance, the GMF graph metamodel consists of 81 meta-
classes containing 140 structural features in total).

Themappingmodel is then automatically transformed into
an evenmorefine-grainedgeneratormodel (GMFGen)which
contains all the low-level information that theGMFcode gen-
erator needs in order to produce the concrete artefacts (Java
code and configuration files) that realise the graphical editor.

In terms of automation, GMF provides a built-in wizard
for automatically generating initial versions of the tooling,
graph, andmappingmodels from the Ecoremetamodel itself.
Unfortunately, in practice, this wizard fails to yield useful
results for anything beyond very simple metamodels [3]—
and this is unsurprising given how little can in general be
inferred about the graphical syntax based on the abstract syn-
tax alone.

As a result, these three models need to be handcrafted
using a set of very basic tree-based editors provided byGMF.
This is liable to be a laborious and error-prone process, partic-
ularly given the complexity of the GMFmetamodels, and the
low-level error messages that GMF produces. Perhaps more
challenging than constructing these GMF-specific models is
maintaining them as, unlike with EMF, GMF does not pro-
vide a reconciler that can update these models automatically

Fig. 2 Excerpt from the GMF graph metamodel

(even for very simple changes) when the Ecore metamodel
changes. Therefore, once customised in any way, these mod-
els need to be maintained manually.

Arguably, implementing and maintaining a graphical edi-
tor with EMF and GMF are a laborious and error-prone
task, particularly so for inexperienced developers. Given that
implementing a simple graphical editor is typically one of the
first steps attempted by most of the newcomers in MDE [3],
the risk of forming a negative impression about the effort and
learning curve imposed by the MDE tool chain from their
interaction with GMF is considerable. Moreover, even for
seasoned MDE developers,2 this predominantly manual and

2 http://voelterblog.blogspot.com/2009/06/gmf-is-still-awful.html.

123

http://voelterblog.blogspot.com/2009/06/gmf-is-still-awful.html

232 D. S. Kolovos et al.

Fig. 3 Excerpt from the GMF tooling metamodel

Fig. 4 Excerpt from the GMF mapping metamodel

repetitive process is clearly tedious,which is in a sense ironic:
MDE has its strengths in automating repetitive processes.
Arguably, this is a situation where MDE could “eat its own
dog food”.

3 Automation through metamodel annotation and
model transformation

To shield developers from the complexity of GMF and
address the highlighted challenges, in this work, we propose
a single-sourcing approach, in which additional information
necessary for implementing a graphical editor is captured by
embedding high-level annotations in the Ecore metamodel.
We then use automated model-to-model and in-place trans-
formations to generate, the platform-specificmodels required
by the EMF and GMF code generators in a consistent and
repeatable manner.

In this section, we provide a detailed discussion on the
steps of the proposed approach andhighlight the productivity,
quality, and maintainability benefits it deliver. The proposed
approach has been implemented in the context of the Eugenia
open-source tool which, as discussed in Sect. 5, has received
substantial positive feedback and validation from the Eclipse

modelling community and has several users across acad-
emia and industry. The reader can now either proceed with
the remainder of the technical discussion of the proposed
approach, or jump to Sect. 4 for a concrete example, and
then return to this section.

3.1 Constructing and maintaining EMF generator models

The first challenge highlighted in Sect. 2 relates to customis-
ing and maintaining the EMF generator model (GenModel)
once it has been produced by the built-in EMF model-to-
model transformation. As discussed, the existing change rec-
onciler does not support propagating non-trivial structural
changes made to the Ecore metamodel, and therefore, for
such changes, the GenModel needs to be re-generated and
customised from scratch.

To overcome this limitation, we propose capturing
GenModel-specific information in the form of annotations
attached to appropriate elements of the Ecoremetamodel and
replacing the built-in EMF model-to-model transformation
with amore sophisticated transformation (Ecore2GenModel)
that can consume these annotations and propagate their val-
ues to the GenModel automatically. An overview of the pro-
posed approach for constructing EMF generator models is
illustrated in Fig. 5.

The Ecore2GenModel transformation is illustrated at a
conceptual level in Fig. 6. Each transformation rule is repre-
sented as a titled box with two compartments for the source
and target elements of the rule, respectively. Arrows between
elements represent references between them (for example,
the EClass2GenClass rule generates one GenClass for each
EClass, uses the copyAnnotations() operation, and the target
GenClass refers back to the source EClass).

The concrete transformation, which has been imple-
mented using the Epsilon Transformation Language (ETL)
[5], replicates the behaviour of the built-in EMF transforma-
tion, but also adopts a name-matching reflective approach
to copying Ecore annotation values to the respective Gen-
Model model elements. This is demonstrated in the excerpt
of the transformation illustrated in Listing 1: in the EPack-
age2GenPackage rule, after creating a GenPackage from a
sourceEPackage, the rule invokes the copyAnnotations oper-
ation to copy any annotations attached to the EPackage to
string-typed attributes of the respective GenPackage with
matching names in a reflective manner.3

For example, in the metamodel of Listing 2—expressed
using the Emfatic4 textual notation for Ecore—we have
added a GenModel-specific emf.gen annotation to the sim-

3 The transformation also supports copying Boolean annotations, but
the code for this has been omitted for conciseness.
4 http://www.eclipse.org/emfatic.

123

http://www.eclipse.org/emfatic

Eugenia: GMF-based graphical model editors 233

1 rule EPackage2GenPackage
2 transform s : Ecore!EPackage
3 to t : GenModel!GenPackage {
4

5 genModel.genPackages.add(t);
6 t.ecorePackage = s;
7 t.disposableProviderFactory = s.getBooleanAnnotation("disposableProviderFactory", true);
8 t.prefix = s.getAnnotation("prefix", s.name.firstToUpperCase());
9 copyAnnotations(s, t);

10 }
11

12 operation copyAnnotations(source : Any, target : Any) {
13

14 for (stringFeature in target.eClass().eAllStructuralFeatures.
15 select(sf|sf.isOfStringType())) {
16

17 if (source.hasAnnotation(stringFeature.name)) {
18 var annotationValue = source.getAnnotation(stringFeature.name, "");
19 if (stringFeature.many) {
20 var parts = annotationValue.split(",").collect(s|s.trim());
21 target.eGet(stringFeature).addAll(parts);
22 }
23 else {
24 target.eSet(stringFeature, annotationValue);
25 }
26 }
27 }
28

29 ...
30

31 }

Listing 1 Excerpt from the Ecore2GenModel transformation

(optional)

Annotated Ecore
metamodel

Eugenia
Ecore2GenModel

transformation

polishing
transformation

GenModel model

EMF
Ecore2GenModel

transformation

extends

Polished
GenModel model

Pre-
transformation

validation

Fig. 5 The Eugenia Ecore2GenModel transformation workflow

plem2 package5 (Line 2) that specifies that the base pack-
age under which the Java implementation of the metamodel
should be generated is org.xyz. As demonstrated in Fig. 7,
beyond creating the Simplem2 GenPackage from the sim-
plem2 EPackage, the GenModel transformation has also
copied the value of the emf.gen basePackage annotation
of the simplem2 EPackage, into the basePackage attribute

5 simplem2 stands for simple metamodel.

1 @namespace(uri="simplem2", prefix="")
2 @emf.gen(basePackage = "org.xyz")
3 package simplem2;
4

5 class Object {}

Listing 2 The simplem2 annotated metamodel in Emfatic

to the respective GenPackage.6 Similarly, every attribute
of string/boolean type in the GenModel can be controlled
by an @emf.gen annotation with the same name, attached
to its Ecore counterpart. For example, to set the value of
the propertyMultiLine property of a GenFeature to false,
an@emf.gen(propertyMultiLine=“false”) annotation can be
attached to the respective EStructuralFeature in the Ecore
metamodel.

This reflective approach is both concise (with fewer than
80 lines of transformation code, the user can currently control
106 string and boolean attributes provided by elements of the
GenModel) and future-proof as the transformation will sup-
port additional string/boolean properties that may be added

6 @namespace is a built-in annotation in Emfatic and is not processed
by the transformation.

123

234 D. S. Kolovos et al.

EClass2GenClass

EClass GenClass

EClass2GenClass

EPackage GenPackage

GenModel

EStructuralFeature2GenFeature

EStructuralFeature GenFeature

EOperation2GenOperation

EOperation GenOperation

EEnum2GenEnum

EEnum GenEnum

copyAnnotations(s : Any, t : Any)

EDataType2GenDataType

EDataType GenDataType

EEnumLiteral2GenEnumLiteral

EEnumLiteral GenEnumLiteral

EParameter2GenParameter

EParameter GenParameter

Fig. 6 Overview of the Ecore2GenModel transformation

Fig. 7 Output of the Ecore2GenModel transformation applied to the
Ecore metamodel of Listing 2

in the future to the GenModel metamodel without modifica-
tions.

For more complex customisations which require creat-
ing and deleting elements in the GenModel or modifying
their properties in a batch mode, Eugenia supports user-
defined polishing transformations. In this context, we use the
term polishing transformation to describe a user-defined in-
place model transformation—with a pre-defined file-name
(Ecore2GenModel.eol in this case) and location relative to
the Ecore metamodel—which is executed by Eugenia after
the built-in Ecore2GenModel transformation and through
which the developer can fine-tune the produced GenModel
in a programmatic—and thus repeatable—manner.

For example, if the developer needs a multi-line attribute
value editor for all single-valued string attributes in the meta-
model, instead of annotating all of them as @emf.gen(multi
LineProperty = “true”), they can define the following in-
place transformation (in EOL) under a pre-defined filename
next to their Ecore metamodel.

1 for (gf in GenModel!GenFeature.all) {
2 if (gf.ecoreFeature.isOfStringType() and
3 not gf.ecoreFeature.isMany()) {
4

5 gf.propertyMultiLine = true;
6 }
7 }

Listing 3 Sample GenModel polishing transformation

Using this approach, the GenModel can now be treated
as a fully derived artefact, and as such, there is no need to
edit/maintain it manually any more.

3.2 Generating GMF-specific models

Toautomate the constructionof theGMF-specificmodels,we
follow a similar approach to the one outlined above:we anno-
tate Ecore models with high-level GMF-specific information
and then use amodel-to-model transformation (Ecore2GMF)
to generate the interwoven tooling, graph, andmappingGMF
models—all in one step. Once the mapping model has been
transformed into a GMF generator model (GMFGen) using
the built-inGMF transformation, Eugenia applies an in-place
update transformation to it (FixGMFGen), as some of the
graphical syntax configuration options (e.g. compartment
layout) can only be specified in this model. Consistent with
the practice followed in the Ecore2GenModel transforma-
tion, the developer can contribute additional polishing trans-
formations for theEcore2GMF andFixGMFGen transforma-
tions, to fine-tune the generated models. It should be stressed
that polishing transformations have read-write access to all
GMF-specific (tooling, graph,mapping, and generator)mod-
els, and as such, they can be used to make full use of the
expressive power of GMF (i.e. any editor that can be imple-
mented using pure GMF can also be implemented using
Eugenia). Figure 8 illustrates this workflow. In addition to
polishing transformations, the developer can optionally spec-
ify further, low-level customisation via parametric patches
(Sect. 3.5), which are applied to systematically tailor the Java
source code generated by GMF.

The GMF-specific annotations supported by Eugenia
allow developers to specify a large proportion of the graph-
ical syntax of the language including node shapes, feature-

123

Eugenia: GMF-based graphical model editors 235

(optional)

(optional)

Eugenia
Ecore2GMF

transformation

GMFGraph model

GMFMap model

GMFTool model

GMFMap2Gen
transformation

GMFGen model

Annotated Ecore
metamodel

polishing
transformation

Polished
GMFGraph model

Polished
GMFMap model

Polished
GMFTool model

polishing
transformation

Polished
GMFGen model

Pre-
transformation

validation

Fig. 8 The Eugenia Ecore2GMF and FixGMFGen transformation workflow

based and static labels, class- and reference-based associa-
tions (links), affixed and phantomnodes, compartments (with
a free or a list-based layout), colours, and borders. When
we started developing Eugenia, we made a conscious deci-
sion to only support the most common elements of graph-
ical syntaxes and leave any remaining aspects for users to
customise through polishing transformations. Of course, our
understanding of whatmost commonmeans has evolved over
time and based on the feedback of the user community since
the first release of the tool, and we have extended the number
of supported annotations in an organic manner. Currently,
built-in annotations can create instances of 25 of the 61 non-
abstract EClasses in the GMF graph metamodel, 13 of the
28 non-abstract EClasses in he GMF mapping metamodel,
and 6 of the 19 non-abstract EClasses in the GMF tooling
metamodel (as discussed above, polishing transformations
can be used to create/configure instances of the remaining
EClasses).

Section 4 provides a detailed example that demonstrates a
substantial subset of the supported annotations. A complete
list of all the annotations supported by Eugenia is available
in “Appendix”. In brief, Eugenia provides six categories of
annotation:

1. @gmf.diagram annotations are used to specify diagram-
wide settings, such as the type of the root model element,
the file extension for the graphical editor, and whether to
generate Eclipse plug-ins or a stand-alone Java applica-
tion.

2. @gmf.node annotations are used to indicate which types
in the abstract syntax will be represented as nodes (ver-
tices) in the graphical syntax, and to specify the shape,
colour, size, label, etc., of each node in the graphical syn-
tax.

3. @gmf.link annotations are used to indicate which types
in the abstract syntax will be represented as edges in the
graphical syntax, and to specify the thickness, colour,
style, arrowheads, labels, etc., of each edge in the graph-
ical syntax.

4. @gmf.compartment annotations are used to indicate
which nodes may be nested inside other nodes in the
graphical syntax (e.g. attributes are nested inside classes
in UML class diagram syntax).

5. @gmf.affixed annotations are used to indicate which
nodes may be attached to the border of other nodes in
the graphical syntax (e.g. boundary events are attached
to the borders of activities in BPMN 2.0 syntax).

6. @gmf.label annotations are used to specify additional
labels for a node in the graphical syntax.

3.3 The Ecore2GMF transformation

Having enumerated the annotations supported by Eugenia, in
this section, we present the organisation of the Ecore2GMF
transformation into functional units. As the concrete trans-
formation comprises more than 1200 lines of code, our inten-
tion here is to provide a high-level overview of each func-
tional unit. However, even at this level of abstraction, it is
impossible not to refer to specific constructs in the involved
metamodels. As such, this section is mostly targeted towards
readers who already possess some understanding of theGMF
graph, tooling, and mapping metamodels.

It should be mentioned that as the GMF models do not
provide any notion of inheritance, during the transformation
process, the inheritance hierarchy of the input metamodel is
logically flattened: EClasses inherit all the annotations (and
can override annotation details) from their super-classes, and
features (attributes, references, and operations) are logically
copied to all subclasses.

3.3.1 Transforming @gmf.diagram-annotated EClasses

The transformation assumes that one EClass of the meta-
model is annotated as @gmf.diagram (as such, the
@gmf.diagram annotation is not inherited). As displayed
in Fig. 9, from this EClass, the transformation creates the
scaffolding of the graph, mapping and tooling models under

123

236 D. S. Kolovos et al.

DiagramEClass2GMF

Mapping

Graph

Tooling

EClass

CanvasMapping nodes

ToolRegistry Palettepalette

ToolGroup (nodes)

ToolGroup (connections)

tools
tools

Canvas FigureGallery

MappingdomainCanvas

diagram TopNodeReference
(for each containment reference)

TopNodeReference
(for each containment reference/

compatible node type)

NodeMapping
ownedChilddomainMetaElement

Fig. 9 Overview of the transformation of EClasses annotated as gmf.diagram

NodeEClass2GMF

Mapping

Graph

Tooling

EClass

Node

DiagramLabel

FigureDescriptor Shape

Label

actualFigure

children

NodeMapping

diagramNode

FeatureLabelMappinglabelMappings

diagramLabel
domainMetaElement

ChildAccess

accessors

CreationTool

DefaultImage

DefaultImage

smallIcon

largeIcon

MarginBorderborder

Insets

insets

accessor

diagramLabel

Fig. 10 Overview of the transformation of EClasses annotated as gmf.node

which all other model elements produced in the transfor-
mation will be placed. More specifically, it creates a Can-
vas and a FigureGallery in the graph model and a Tool-
Registry, a Palette and two built-in ToolGroups (one for
nodes and one for connections) in the palette. In the map-
ping model, the transformation creates a CanvasMapping
that links back to the EClass and contains one TopNodeRef-
erence and NodeMapping for each subtype of each of the
containment references of the EClass.

3.3.2 Transforming @gmf.node-annotated EClasses

As displayed in Fig. 10, for each suchEClass, the transforma-
tion creates interwoven elements in all three output models.
More specifically, in the graph model, it creates a Node of an
appropriate Shape and MarginBorder and—optionally a—
Label. The shape and its background colour are controlled by
the figure and color annotation details, while the properties of
the border are controlled by the border.* annotation details.

The properties of the generated Label and DiagramLabel
are controlled by the label.* annotation details. For exter-
nal labels (label.position=“external”), an additional Fig-
ureDescriptor is produced. The transformation also creates
a CreationTool and respective DefaultImages in the tool-
ing model (configured via the tool.* annotation details) and
brings everything together by generating aNodeMapping and
a FeatureLabelMapping in the mapping model.

3.3.3 Transforming @gmf.link-annotated EClasses
and EReferences

As illustrated in Figs. 11 and 12, for @gmf.link-annotated
EClasses and EReferences the transformation produces, in
the graph model, one FigureDescriptor for the link and
(optionally) one for its label. It also produces a Connection,
a PolylineConnection and the link-end PolylineDecorations,
the shapes of which are controlled by the *.decoration anno-

123

Eugenia: GMF-based graphical model editors 237

LinkEClass2GMF

Mapping

Graph

Tooling

EClass

Connection

LinkMapping

diagramLink

FeatureLabelMappinglabelMappings

domainMetaElement

CreationTool

DefaultImage

DefaultImage

smallIcon

largeIcon

PolylineDecoration

PolylineConnection

FigureDescriptor LabelactualFigure

FigureDescriptor actualFigure PolylineDecoration

DiagramLabel

sourceDecoration

targetDecoration

diagramLabel

EAttribute

eStructuralFeatures

Fig. 11 Overview of the transformation of EClasses annotated as gmf.link

tation details. In the tooling model, it creates a CreationTool
and its respective icons.

In the mapping model, the transformation produces a
LinkMapping that binds the EClass/EReference to the Con-
nection in the graphmodel and to theCreationTool in the tool-
ing model. Depending on whether the annotation is attached
to an EClass or to an EReference, the transformation also
produces a FeatureLabelMapping which links the generated
label with the label-attributes of the EClass or a read-only
DesignLabelMapping.

3.3.4 Transforming @gmf.compartment-annotated
EReferences

As illustrated in Fig. 13, for each containment EReference
annotated as@gmf.compartment in the flattenedmetamodel,
the transformation produces a Compartment in the graph
model, and as many ChildReferences as the subclasses of
the type of the EReference in the mapping model.

3.4 Pre-transformation validation

In its earlier versions, the Ecore2GMF transformation would
assume that the GMF-specific annotations attached to the
input Ecore metamodel would conform to the constraints
specified above and would fail with a run-time exception in
case they did not. To remedy this limitation, since publishing
an earlier version of this work [4], we have implemented
a set of constraints (using EVL—the validation language
of Epsilon), which guard the transformation against invalid
input and provide understandable error messages to the user.
For example, the metamodel of Listing 4 does not satisfy
the EVL constraints of Listing 5, and as such, the following
error messages are produced and the transformation process
is aborted:

1 package sample;
2

3 @gmf.diagram
4 class Map {
5 val Hazard[*] hazards;
6 val Base[*] bases;
7 }
8

9 @gmf.node(label="name",
10 figure="triangle")
11 class Hazard {
12 attr String name;
13 }
14

15 @gmf.node(label="name", figure="polygon")
16 class Base {
17 attr String name;
18 }

Listing 4 Sample invalid Ecore metamodel in Emfatic

– No polygon x/y coordinates provided for polygon figure
Base (error).

– The value of @gmf.node (figure) of hazard must be one
of rectangle, ellipse, rounded, svg, polygon, or a fully-
qualified Java class name (warning).

3.5 Post-transformation parametric patching

Not all aspects of the appearance and behaviour of a GMF
editor can be controlled via the GMFmodels described in the
previous sections, because the GMF code generator hard-
codes many details of the generated Java code. Customi-
sations that cannot be specified in the GMF models must
instead be made by either altering or extending the GMF
code generator, or by customising the Java source code gen-
erated by GMF. The former approach is limited by the devel-
oper’s knowledge of the code generation language used by
GMF (currently Xpand), the extensibility mechanisms pro-

123

238 D. S. Kolovos et al.

LinkEReference2GMF

Mapping

Graph

Tooling

EReference
Connection

LinkMapping

diagramLink

DesignLabelMappinglabelMappings

linkMetaFeature

CreationTool

DefaultImage

DefaultImage

smallIcon

largeIcon

PolylineDecoration

PolylineConnection

FigureDescriptor LabelactualFigure

FigureDescriptor actualFigure PolylineDecoration

DiagramLabel

sourceDecoration

targetDecoration

diagramLabel

Fig. 12 Overview of the transformation of EReferences annotated as gmf.link

CompartmentEReference2GMF

Mapping

Graph

EReference

CompartmentMappingChildReference
ChildReference

(for each subtype of the type
of the EReference)

children

Compartment

compartment

NodeMapping NodeMapping

containmentFeature

parentNode

referencedChild

Fig. 13 Overview of the transformation of EReferences annotated as gmf.compartment

vided by that code generation language, and the modularity
of the GMF code generator. At present, using the aspect-
oriented programming constructs of Xpand is likely the most
maintainable approach to extending the GMF code genera-
tor7 but this limits extension to the existing pointcuts of the
GMF code generator. In other words, only customisations
that have been anticipated by the developers of theGMF code
generator are possible. The latter approach—altering the gen-
erated Java source code—requires no knowledge of Xpand
or of the GMF code generator, but is not easily repeatable
if performed manually. This section discusses the paramet-
ric patching capabilities of Eugenia, which we have added
since publishing an earlier version of thiswork [4], andwhich
allow a developer to automate the latter approach to tailoring
the generated source code of a GMF editor.

With Eugenia, customisation of the Java source code
generated by GMF involves the automated application of
patches, deltas generated by source code management sys-
tems such as Subversion or Git. After invoking the GMF

7 http://community.bonitasoft.com/blog/customize-your-gmf-editor-
customizing-templates.

code generator on the GMFGen model, Eugenia will auto-
matically apply any .patch files (conventionally located in a
patches directory) to the generated Java source code.Because
the .patch files used with Eugenia are generated by exist-
ing source code management systems, Eugenia reuses the
Compare library of the Eclipse platform to programmatically
apply patches using a PatchParser to obtain IFilePatchRe-
sults (Listing 6). By automatically applying source code
patches, Eugenia makes customisation of the generated Java
source code a repeatable process and hence simplifies the
maintenance of altering generated code.

For similarmodifications that need to be applied in several
places in the generated source code, Eugenia supports para-
metric patches, deltas created by a patch generator defined by
the developer. Instead of—or in addition to—any .patch files,
the developer provides a patch generator (a model-to-text
transformation, conventionally namedGeneratePatches.egx)
that specifies how one or more .patch files are to be gener-
ated by Eugenia at run-time. After invoking the GMF code
generator, Eugenia executes the patch generator and then
applies any .patch files (generated or otherwise). A patch
generator has access to all of the (polished) GMF and EMF

123

http://community.bonitasoft.com/blog/customize-your-gmf-editor-customizing-templates
http://community.bonitasoft.com/blog/customize-your-gmf-editor-customizing-templates

Eugenia: GMF-based graphical model editors 239

1 context EClass {
2

3 guard: self.isNode()
4

5 /* Checks that polygon nodes also provide polygon.x and polygon.y coordinates*/
6 constraint IsValidPolygonNode {
7

8 check : (self.getAnnotationValue("gmf.node", "figure") = "polygon") implies
9 (

10 self.getAnnotationValue("gmf.node", "polygon.x").isDefined() and
11 self.getAnnotationValue("gmf.node", "polygon.y").isDefined()
12)
13

14 message : "No polygon x/y coordinates provided for polygon figure " + self.name
15

16 }
17 }
18

19 context EStringToStringMapEntry {
20

21 critique IsValidNodeFigure {
22

23 guard : self.is("gmf.node", "figure")
24

25 check {
26 var values = Sequence{"rectangle", "ellipse", "rounded", "svg", "polygon"};
27 return self.value.isWithinValuesOrLooksLikeJavaClassName(values);
28 }
29

30 message : "The value of " + self.toEmfatic() + " must be one of: " +
31 values.concat(", ") + " or a fully-qualified Java class name."
32 }
33 }

Listing 5 Excerpt from the set of pre-transformation constraints

1 package org.eclipse.epsilon.eugenia.patches;
2

3 public class Patcher {
4

5 ...
6

7 private void applyPartialPatch(IFile targetFile, IFilePatchResult result) {
8 if (targetFile.exists()) {
9 // Alter contents of existing file according to patch

10 targetFile.setContents(result.getPatchedContents(), IFile.KEEP_HISTORY, null);
11 } else {
12 // Create new file from patch
13 targetFile.create(result.getPatchedContents(), false, null);
14 }
15

16 // If the file has no content after the patch has been applied
17 // assume that the file should be deleted.
18 if (isEmpty(result.getPatchedContents())) {
19 targetFile.delete(false, null);
20 }
21 }
22 }

Listing 6 Excerpt of the patch application code

123

240 D. S. Kolovos et al.

(optional) (optional)

GMF code
generator

(Polished)
GMFGen model

Generated
Java code

patch generator
source code

patches

Fig. 14 The GMF code generation and parametric patching workflow

models described in the previous sections and hence can pro-
grammatically generate multiple patches that apply the same
change to different parts of the generated Java source code.
Currently, Eugenia only supports patch generators that are
specified in the Epsilon Generation Language (EGL), the
model-to-text transformation language of the Epsilon plat-
form, but the conceptual approach is not limited to EGL.

An overview of the parametric patching workflow is
shown in Fig. 14. A similar workflow could be applied to
the generation of code from the EMFGen model, though we
have not yet found a practical need for extending the EMF
code generator in this manner.

An example of using parametric patching to customise a
GMFeditor is described in Sect. 4. In the context of the exam-
ple, we also describe the way in which parametric patches
can be specified in a manner that makes them reusable over
different GMF editors.

3.6 Implementation notes

The Eugenia transformations are implemented using the
Epsilon platform [6]. More specifically, the built-in
Ecore2GenModel transformation has been implemented
using the rule-based ETL [5] model-to-model transforma-
tion language,while theEcore2GMF andFixGMFGen trans-
formations have been implemented using the imperative
EOL language [7]. TheEcore2GMF transformation is imple-
mented with an imperative—as opposed to a rule-based—
language due to its high complexity and need for low-level
control of the execution flow. Validation constraints have
been specified using EVL and share code with the ETL
and EOL transformations discussed above. In terms of size,
the Ecore2GenModel transformation is 264 lines long, the
Ecore2GMF transformation contains 1217 lines of code
(including operation libraries), the FixGMFGen transforma-
tion is 91 long and the EVL constraints that guard the trans-
formation span 353 lines of code.

These transformations could also be implemented using
otherM2M languages (e.g. ATL, QVT, and Kermeta) as long
as they provide the following capabilities:

– Managing more than one source and target model in the
same transformation.

1 <?xml version="1.0" encoding="UTF-8"?>
2 <project name="run-eugenia">
3 <target name="main">
4 <epsilon.eugenia src="metamodel.emf"/>
5 </target>
6 </project>

Listing 7 Sample project description for automatically invoking
Eugenia on the Emfatic source file metamodel.emf through the Ant
build system in Eclipse

– In-place as well as model-to-model transformation.
– Establishing and navigating cross-model references.
– Reflective access to model elements (i.e. the ability to
find a feature of a given element by name and get/set its
value at run-time), which is particularly desirable in the
Ecore2GenModel transformation that otherwise will con-
tain many explicit annotation copying statements (76 for
EPackages alone).

The transformations can be launched both manually and
automatically from Eclipse. Eugenia extends the Ant build
system integrated in Eclipse with an additional task that can
run the entire Eugenia workflow or only a part of it. This
Ant task can be then integrated into the advanced workflows
required by some developers and can be invoked automati-
cally by Eclipse when the annotated metamodel is changed.
Listing 7 shows the simplest Ant build file needed to invoke
Eugenia. The Ant task can be further configured to provide
additional models for the user-defined polishing transforma-
tions or to start or stop the process at different steps than
usual.

3.7 Scalability

Due to the annotation inheritance mechanism discussed
above, for large metamodels, Eugenia annotations arguably
scale up better than manually maintaining the respective
GMF models. A potential point of concern is that for highly
customised editors, polishing transformations can become
disproportionately large. In such a case, developers can lever-
age the modularity mechanisms and the mature tool sup-
port provided by EOL (e.g. syntax-aware editor, debugger)
to manage these transformations efficiently.

4 Example

In this section, we present an example that demonstrates
using Eugenia for implementing the graphical editor of a
Simple Component-connector Language (SCL) using EMF
and GMF.8 Firstly, we specify the abstract syntax of SCL

8 Additional examples are available on the Epsilon website: http://
eclipse.org/epsilon/doc/articles/#eugenia.

123

http://eclipse.org/epsilon/doc/articles/#eugenia
http://eclipse.org/epsilon/doc/articles/#eugenia

Eugenia: GMF-based graphical model editors 241

using Ecore. Briefly, an SCL model contains named com-
ponents, which contain any number of ports and subcompo-
nents. Pairs of components can be linked through their ports.
The Ecore metamodel of SCL, expressed in the Emfatic tex-
tual notation for Ecore, is illustrated in Listing 8.

1 @namespace(uri="scl", prefix="scl")
2 package scl;
3 class Component {
4 attr String name;
5 attr String description;
6 val Component[*] subcomponents;
7 val Port[*] ports;
8 }
9

10 class Connector {
11 attr String name;
12 ref Port#outgoing from;
13 ref Port#incoming to;
14 }
15

16 class Port {
17 attr String name;
18 val Connector#from outgoing;
19 ref Connector#to incoming;
20 }

Listing 8 The SCL Ecore metamodel in Emfatic

For Eugenia to realise the graphical editor for SCL using
EMF and GMF, we need to annotate the Ecore metamodel
as shown in Listing 9. In particular, the annotations specify
the following:

– Line 2: Source code should be generated in the org.eclipse.
epsilon.eugenia.examples Java package.

– Line 5: Each diagram contains a top-level component
model element.

– Line 6: Each component is represented in the diagram as a
light grey node labelled with the name of the component.

– Line 11: Each component has a compartment in which
subcomponents are placed.

– Line 17: Each connector is represented as a link (associ-
ation) between its from and to ports. The end attached to
the to port is decorated with an arrow.

– Lines 24, 25: EachPort is represented as a 15×15 icon-less
circle, attached to the border of the component to which it
belongs (Line 13).

From this annotated metamodel, Eugenia can automati-
cally generate the GMF editor that appears in Fig. 15. While
the generated editor is fully functional, we wish to further
customise it to match our requirements (see Fig. 16).

To achieve this, we specify the polishing transformation
shown in Listing 10 and place it in a pre-defined loca-
tion (a file named Ecore2GMF.eol in the same directory as
SCL.ecore), so that Eugenia can locate and execute it after the
built-in Ecore2GMF transformation every time it is invoked.

Fig. 15 The first version of the GMF SCL editor

Fig. 16 The polished and patched version of the GMF SCL editor

The polishing transformation fulfils almost all of our require-
ments, but cannot be used to adjust the position of the labels
placed external to our Port construct (see, for example, the
position of the speed and friction labels in Fig. 15). Instead,
we specify the patch generator shown in Listing 11 and
also place it in a pre-defined location (a file named Gener-
atePatches.egx) in the same directory as SCL.ecore, so that
Eugenia can locate and execute it after invoking the GMF
code generator. Our patch generator makes use of the patch
template shown in Listing 12 to generate a .patch file for
each node in our Ecore file which has a label placement set
to external. Currently, only the Port construct of SCL uses
GMF nodes with externally placed labels, but our patch gen-
erator can be reused for future iterations of SCL.

Specifying the graphical syntax information in the form of
annotations in the SCLmetamodel involved adding 7 lines of
Emfatic code (excluding line-breaks for formatting reasons).
From these 7 lines, 59 elements were produced by Euge-
nia in the graph, tooling, and mapping models. The produc-
tivity benefits delivered by Eugenia increase alongside the
size and complexity of the metamodel—mainly because the
graph,mapping, and toolingmodels do not support the notion
of inheritance and therefore inheritance in the Ecore meta-
model causes a significant amount of duplication in these
models. For example, for the FileSystemmetamodel,9 5 lines

9 http://www.eclipse.org/epsilon/doc/articles/eugenia-gmf-tutorial/.

123

http://www.eclipse.org/epsilon/doc/articles/eugenia-gmf-tutorial/

242 D. S. Kolovos et al.

1 @namespace(uri="scl", prefix="scl")
2 @emf.gen(basePackage="org.eclipse.epsilon.eugenia.examples")
3 package scl;
4

5 @gmf.diagram
6 @gmf.node(label="name", color="232,232,232")
7 class Component {
8 attr String name;
9 @emf.gen(propertyMultiline="true")

10 attr String description;
11 @gmf.compartment(layout="free")
12 val Component[*] subcomponents;
13 @gmf.affixed
14 val Port[*] ports;
15 }
16

17 @gmf.link(source="from", target="to", label="name", target.decoration="arrow")
18 class Connector {
19 attr String name;
20 ref Port#outgoing from;
21 ref Port#incoming to;
22 }
23

24 @gmf.node(figure="ellipse", size="15,15", label.icon="false",
25 label.placement="external", label="name")
26 class Port {
27 attr String name;
28 val Connector#from outgoing;
29 ref Connector#to incoming;
30 }

Listing 9 The annotated SCL Ecore metamodel in Emfatic

1 // Add bold font to component label
2 var componentLabel = GmfGraph!Label.all.
3 selectOne(l|l.name="ComponentLabelFigure");
4 componentLabel.font = new GmfGraph!BasicFont;
5 componentLabel.font.style = GmfGraph!FontStyle#BOLD;
6

7 //Set background color and border
8 //of the component compartment
9 var componentCompartment = GmfGraph!Rectangle.all.

10 selectOne(r|r.name="ComponentSubcomponentsCompartmentFigure");
11 var lineBorder = new GmfGraph!LineBorder;
12 lineBorder.width = 1;
13 componentCompartment.backgroundColor = createColor(245,245,245);
14 componentCompartment.border = lineBorder;
15

16 operation createColor(red : Integer, green : Integer,
17 blue : Integer) : GmfGraph!RGBColor {
18

19 var color = new GmfGraph!RGBColor;
20 color.red = red;
21 color.blue = blue;
22 color.green = green;
23 return color;
24 }

Listing 10 The polishing in-place transformation in EOL

123

Eugenia: GMF-based graphical model editors 243

1 // Imports the EClass#getLabelPlacement() operation from Eugenia
2 import "platform:/plugin/org.eclipse.epsilon.eugenia/transformations/ECoreUtil.eol";
3

4 rule FixExternalLabelMargins
5 // apply this rule to all EClasses where...
6 transform c : ECore!EClass {
7

8 // ... the EClass is annotated with @gmf.node(label.placement="external")
9 guard: c.getLabelPlacement() == "external"

10

11 // invoke the following EGL template on the EClass
12 template : "FixExternalLabelMargin.egl"
13

14 // make the source directory and name of the node available to the template
15 parameters : Map{ "srcDir" = getSourceDirectory(), "node" = c.name }
16

17 // and save the generated text to the following .patch file
18 target : "FixExternalLabelMarginsFor" + c.name + ".patch"
19 }
20

21 // Determine source directory from GMF Gen model
22 @cache
23 operation getSourceDirectory() {
24 var genEditor = GmfGen!GenEditorGenerator.all.first;
25 return genEditor.pluginDirectory.substring(1) + "/" +
26 genEditor.packageNamePrefix.replace("\\.", "/");
27 }

Listing 11 The patch generator in EGL

1 diff --git [
2 index d0684d6..f162365 100644
3 --- [
4 +++ [
5 @@ -143,7 +143,7 @@
6 if (borderItemEditPart instanceof [%=node%]NameEditPart) {
7 BorderItemLocator locator = new BorderItemLocator(getMainFigure(),
8 PositionConstants.SOUTH);
9 - locator.setBorderItemOffset(new Dimension(-20, -20));

10 + locator.setBorderItemOffset(new Dimension(-5, -5));
11 borderItemContainer.add(borderItemEditPart.getFigure(), locator);
12 } else {
13 super.addBorderItem(borderItemContainer, borderItemEditPart);

Listing 12 The patch template for customising the margins of externally placed labels in EGL

of Emfatic annotations result in 102 elements in the graph,
tooling, and mapping models.

Polishing transformations and parametric patching may
not have similar productivity results in terms of the num-
ber of model elements they produce/modify. For example,
the polishing transformation in Listing 10 takes 25 lines of
code to create 3 and modify 2 elements, and the patch gen-
erator and template in Listings 11 and 12 take 41 lines of
code to customise 1 line of code per applicable node in the
generated Java source. However, in our experience, the effort
spent for constructing them quickly pays off as graphical edi-
tor development is a highly iterative process [3] and because
common polishing and patching code can be shared between
projects.

5 Evaluation

To assess the extent to which Eugenia delivers the envisioned
productivity benefits compared to pure GMF in a conclusive
manner, ideally, a large-scale experiment would need to be
performed. In such an experiment, productivity would be
assessed by comparing the results of two substantially large
groups of developers (to minimise skill-related bias), devel-
oping graphical editors for a wide range of DSLs (to avoid
language-related bias), with and without Eugenia. As GMF
targets a niche developer audience, recruiting a sufficiently
large number of developers with substantial GMF experience
to perform such an experiment in a meaningful way proved
to be beyond our capacity. This is consistent with existing

123

244 D. S. Kolovos et al.

related literature (e.g. [8,9]), which also lacks evidence of
experiments of this scale. To partially overcome this restric-
tion, in this section, we (1) discuss our observations from two
small-scale experiments involving two developers, (2) report
on our experiences in re-implementing an existing non-trivial
graphical editor with Eugenia, (3) present a summary of the
feedback collected from Eugenia’s user community, and (4)
discuss the testing mechanisms used to evaluate the correct-
ness of Eugenia. Finally, we consider the limitations of the
proposed approach.

5.1 Small-scale evaluation experiments

Two small-scale experiments were performed to assess the
productivity of developers and the maintainability of the pro-
duced artefacts using Eugenia versus the standard GMF tool-
ing. Both experiments involved (the same) two volunteers (A,
B), both ofwhomhad substantial experiencewithEclipse and
EMF, but no experience with GMF.

In each experiment, the volunteerswere asked to develop a
GMF editor for a provided Ecore metamodel. In both exper-
iments, developer A was asked to develop the editor with
Eugenia, while developer B was asked to develop the editor
using standard GMF tooling.

Each experiment consisted of three tasks. In the first task,
developers were asked to develop an editor for a provided
metamodel that matched in its appearance a provided screen-
shot. For the next task, theywere asked to customise an aspect
of the editor so that the editormatched a second screenshot. It
is worth noting that the customisation requested in both cases
was intentionally not supported by Eugenia annotations (i.e.
the font weight of certain labels). For the final task, devel-
opers were asked to modify the Ecore metamodel (rename
an EClass) and then evolve their GMF editor to reflect this
change. Developers were asked to keep track of the time it
took them to complete each task and record any challenges
they faced.

Each experiment involved a 15-min briefing session, a 2-h
development session, and a 15-min debriefing session where
developers would report on their progress, on the time it took
them to complete each task, and on any challenges they faced.

Our initial intention was to run only one experiment; how-
ever, during the debriefing session that followed the first
experiment, we identified that both developers had spent a
significant amount of time learning how to use the respec-
tive tools, by reviewing documentation and trial by error.
As such, we decided to perform a second experiment that
was similar in structure to the first experiment, but asked the
developers to construct a graphical editor for a different DSL.
Both developers performed significantly better in the second
experiment than they did in the first.

Fig. 17 Maze metamodel

5.1.1 Experiment 1

For the first task of this experiment, the two developers were
asked to build a GMF editor for a Maze Game Metamodel,
which the authors had originally prepared for anMScmodule
onMDE.Themetamodel appears in Fig. 17, and the provided
reference screenshot appears in Fig. 18. For the next task of
the experiment, the developers were asked to customise the
editor by changing the font weight of room labels to bold. For
the final task, developerswere asked to rename the roomclass
of themetamodel to level and update their editor accordingly.
The following sections report on the performance of the two
developers.

5.1.2 Developer A (standard GMF tooling)

Developer A completed only the first of the three tasks.
Developing the first version of the editor took 100min. The
last 20min was used to try and add composition to the dia-
gram, but no results were accomplished. As it was the first
time that developer A had used GMF, most of the time on
the first task was spent trying to understand the functionality
and limitations of the different wizards provided by GMF,
and how to appropriately customise the models produced by
the wizards.

5.1.3 Developer B (Eugenia)

Developer B completed 2 of the 3 tasks within the 2-h slot.
In particular, developing the first version of the editor for the
first task took 78min, and polishing the appearance of the edi-
tor (the second task) took 41min. Developer B commented
that once he became familiar with the tool and created a first

123

Eugenia: GMF-based graphical model editors 245

Fig. 18 Maze reference editor

functional version of the editor which supported one or two
metamodel concepts, completing the task by introducing the
required metamodel annotations was quite straightforward.
Regarding task 2, developer B commented that the most dif-
ficult part of the task was to identify the changes that needed
to be performed on the GMF map model; encoding them in
EOL was then straightforward.

5.1.4 Experiment 2

For the first task of this experiment, the two developers were
asked to develop a GMF editor for a state machine meta-
model (Fig. 19). The developers were provided with a refer-
ence screenshot (Fig. 20) for their eventual graphical editor.
As in the first experiment, developer A worked with GMF
and developer B with Eugenia. In the second task of the
experiment, the developers were asked to customise the edi-
tor by changing the background colour of the state machine
compartment to light grey (Fig. 21). In the last step of the
experiment, developers were asked to rename the state class
of the metamodel to step and update their editor accordingly.
The following sections report on the performance of the two
developers.

5.1.5 Developer A (standard GMF tooling)

Within the available time for the experiment, developer A
managed to produce a nearly complete editor for the provided
metamodel with the following limitations: as demonstrated

Fig. 19 State machine metamodel

Fig. 20 State machine reference editor

Fig. 21 Polished state machine reference editor

Fig. 22 Developer A’s state machine editor

in Fig. 22, the editor does not provide a black background
colour for the initial and final states and does not provide an
arrowhead on the target of transitions. Developer A did not
have time to attempt the second and third task.

123

246 D. S. Kolovos et al.

Fig. 23 Simplified BPMN metamodel from [8]

5.1.6 Developer B (Eugenia)

Developer B completed all three tasks within 45min. In
particular, he was able to construct the first version of the
editor (the first task) within 25min, customise the back-
ground colour of the state compartment (the second task)
within 18min, and co-evolve their editor to reflect the change
requested in the third taskwithin 3min.Developer B reported
that most of the time spent on the second task was used to
find the way in which the GMF graphmodel should be modi-
fied through the built-in editor, and only relatively little time
was then used to express the same change as a polishing
transformation in EOL code.

5.1.7 Discussion

The results obtained through these small-scale experiments
are in line with our informal experience that Eugenia can
significantly simplify and speed up the editor development
process, and make GMF accessible to inexperienced devel-
opers. However, as discussed at the beginning of Sect. 5,
due to the small number of developers and the small num-
ber of DSLs involved in the experiment, the obtained results
are not necessarily generalisable. To further assess whether
Eugenia is a significant improvement compared to pureGMF,
the following section discusses our observations from a re-
implementation of an existing non-trivial graphical editor
with Eugenia.

5.2 Implementation of a simplified BPMN editor

In [8], the authors performed a comparative evaluation of
different graphical modelling frameworks by using them to
implement graphical editors for the simplified BPMN meta-
model illustrated in Fig. 23. In this experiment, we attempted
to implement a graphical editor that conforms to the visual
guidelines proposed in Fig. 24 using Eugenia and compare
the development effort against that required by the authors
of the paper to implement the same editor using pure GMF
(25 man-days).

Our implementation consists of the Eugenia-annotated
copy of the metamodel of Fig. 23, seven SVG images, a con-
cise polishing transformation, and two custom Java classes.10

5.2.1 Annotated BPMN metamodel

The annotated metamodel illustrated in Listing 13 defines
the bulk of the graphical BPMN syntax, using SVG images
to represent non-trivial graphical elements such as gate-
ways (lines 50, 54 and 68) and events (lines 61 and 66),
and required 73min to develop. However, we were unable
to define the left-to-right layout of pools and lanes and
the source decoration (white circle) of message flows (see
Fig. 24) using the built-in annotations provided by Eugenia.

10 The complete source code is available under http://dev.eclipse.
org/svnroot/modeling/org.eclipse.epsilon/trunk/examples/org.eclipse.
epsilon.eugenia.bpmn and http://dev.eclipse.org/svnroot/modeling/
org.eclipse.epsilon/trunk/examples/org.eclipse.epsilon.eugenia.bpmn.
diagram.custom.

123

http://dev.eclipse.org/svnroot/modeling/org.eclipse.epsilon/trunk/examples/org.eclipse.epsilon.eugenia.bpmn
http://dev.eclipse.org/svnroot/modeling/org.eclipse.epsilon/trunk/examples/org.eclipse.epsilon.eugenia.bpmn
http://dev.eclipse.org/svnroot/modeling/org.eclipse.epsilon/trunk/examples/org.eclipse.epsilon.eugenia.bpmn
http://dev.eclipse.org/svnroot/modeling/org.eclipse.epsilon/trunk/examples/org.eclipse.epsilon.eugenia.bpmn.diagram.custom
http://dev.eclipse.org/svnroot/modeling/org.eclipse.epsilon/trunk/examples/org.eclipse.epsilon.eugenia.bpmn.diagram.custom
http://dev.eclipse.org/svnroot/modeling/org.eclipse.epsilon/trunk/examples/org.eclipse.epsilon.eugenia.bpmn.diagram.custom

Eugenia: GMF-based graphical model editors 247

1 @namespace(uri="http://eclipse.org/eugenia/simplebpmn", prefix="sbpmn")
2 @gmf
3 package SimpleBPMN;
4

5 @gmf.diagram
6 class BusinessProcessDiagram {
7 val BPMNElement[*] elements;
8 }
9

10 class BPMNElement {
11 attr String name;
12 }
13

14 @gmf.node(label="name")
15 abstract class Swimlane extends BPMNElement {}
16

17 class Lane extends Swimlane {
18 @gmf.compartment
19 val FlowObject[*] flowObjects;
20 }
21

22 class Pool extends Swimlane {
23 @gmf.compartment
24 val Lane[*] lanes;
25 }
26

27 @gmf.link(label="name", source="from", target="to", color="0,0,0")
28 abstract class ConnectingObject extends BPMNElement {
29 ref FlowObject from;
30 ref FlowObject to;
31 }
32

33 @gmf.link(tool.name="Message Flow", style="dash", target.decoration="closedarrow")
34 class MessageFlow extends ConnectingObject {}
35

36 @gmf.link(tool.name="Sequence Flow", target.decoration="filledclosedarrow")
37 class SequenceFlow extends ConnectingObject {}
38

39 @gmf.link(style="dot", target.decoration="arrow")
40 class Association extends ConnectingObject {}
41

42 @gmf.node(label="name")
43 abstract class FlowObject extends BPMNElement {}
44

45 @gmf.node(figure="svg", margin="2", label.icon="false",
46 label.placement="external", resizable="false")
47 abstract class Gateway extends FlowObject {}
48

49 @gmf.node(tool.name="XOR Gateway",
50 svg.uri="platform:/plugin/org.eclipse.epsilon.eugenia.bpmn/svg/xor-gateway.svg")
51 class XOR extends Gateway {}
52

53 @gmf.node(tool.name="OR Gateway",
54 svg.uri="platform:/plugin/org.eclipse.epsilon.eugenia.bpmn/svg/or-gateway.svg")
55 class OR extends Gateway {}
56

57 @gmf.node(tool.name="AND Gateway",
58 svg.uri="platform:/plugin/org.eclipse.epsilon.eugenia.bpmn/svg/and-gateway.svg")
59 class AND extends Gateway {}

123

248 D. S. Kolovos et al.

60 @gmf.node(tool.name="Start Event", figure="svg",
61 svg.uri="platform:/plugin/org.eclipse.epsilon.eugenia.bpmn/svg/start-event.svg",
62 label.icon="false", label.placement="external", resizable="false", margin="2")
63 class StartEvent extends FlowObject {}
64

65 @gmf.node(tool.name="Intermediate Event", figure="svg",
66 svg.uri="platform:/plugin/org.eclipse.epsilon.eugenia.bpmn/svg/intermediate-event.svg",
67 label.icon="false", label.placement="external", resizable="false", margin="2")
68 class IntermediateEvent extends FlowObject {}
69

70 @gmf.node(tool.name="End Event", figure="svg", label.icon="false",
71 label.placement="external", resizable="false", margin="2"
72 svg.uri="platform:/plugin/org.eclipse.epsilon.eugenia.bpmn/svg/end-event.svg")
73 class EndEvent extends FlowObject {}
74

75 class Activity extends FlowObject {}
76

77 @gmf.node(label="name")
78 abstract class Artifact extends BPMNElement {}
79

80 @gmf.node(tool.name="Data Object", figure="svg", label.icon="false",
81 label.placement="external", resizable="false", margin="2",
82 svg.uri="platform:/plugin/org.eclipse.epsilon.eugenia.bpmn/svg/data-object.svg")
83 class DataObject extends Artifact {}
84

85 @gmf.node(label.placement="external", label.icon="false", border.style="dash", margin="2")
86 class Group extends Artifact {
87 @gmf.compartment
88 val BPMNElement[*] elements;
89 }

Listing 13 Eugenia-annotated copy of the Simplified BMPN metamodel

5.2.2 Polishing transformation

To address these limitations, we had to use Java to define a
custom layout for pools and lanes (24 lines of code), and a
customwhite circle figure (44 lines of code) to be used as the
source decoration ofmessage flows (see Fig. 24). To integrate
this custom code with the generated part of the editor, we had
to write a brief polishing transformation illustrated in Listing
14. This required 92min of additional effort.

5.2.3 Discussion

Overall, implementing an editor for the simplified BPMN
metamodel using Eugenia required 165min (2.75h), which
is a significant reduction from the 25days measured by the
authors of [8]. Similar to the set of experiments discussed in
Sect. 5.1, comparing the two figures directly is not straight-
forward as performancemay have been affected by the famil-
iarity of the developers with the respective tools and the cho-
sen subset of BPMN. The following section extends the dis-

Fig. 24 Core set of BPMN elements from [8]

123

Eugenia: GMF-based graphical model editors 249

1 var laneFigure = GmfGraph!RoundedRectangle.all.selectOne(r|r.name="LaneFigure");
2 var poolFigure = GmfGraph!RoundedRectangle.all.selectOne(r|r.name="PoolFigure");
3

4 poolFigure.setCustomLayout(
5 "org.eclipse.epsilon.eugenia.bpmn.diagram.custom.SwimlaneLayout");
6 laneFigure.setCustomLayout(
7 "org.eclipse.epsilon.eugenia.bpmn.diagram.custom.SwimlaneLayout");
8

9 var laneLabelFigure = GmfGraph!Label.all.selectOne(l|l.name="LaneLabelFigure");
10 var poolLabelFigure = GmfGraph!Label.all.selectOne(l|l.name="PoolLabelFigure");
11 laneLabelFigure.makeVertical();
12 poolLabelFigure.makeVertical();
13

14 var circleDecoration = new GmfGraph!CustomDecoration;
15 circleDecoration.qualifiedClassName =
16 "org.eclipse.epsilon.eugenia.bpmn.diagram.custom.CircleDecoration";
17 circleDecoration.name = "Circle";
18 GmfGraph!FigureGallery.all.first().figures.add(circleDecoration);
19 GmfGraph!PolylineConnection.all.
20 selectOne(pc|pc.name="MessageFlowFigure").sourceDecoration = circleDecoration;
21

22 operation GmfGraph!Layoutable setCustomLayout(class : String) {
23 var layout = new GmfGraph!CustomLayout;
24 layout.qualifiedClassName = class;
25 self.layout = layout;
26 }
27

28 operation GmfGraph!Label makeVertical() {
29 var labelFigure = self;
30 var labelFigureName = labelFigure.name;
31 var labelFigureText = labelFigure.text;
32 var figure = labelFigure.eContainer();
33 var labelFigureChildAccess =
34 GmfGraph!ChildAccess.all.selectOne(ca|ca.figure = labelFigure);
35 delete labelFigure;
36 labelFigure = new GmfGraph!VerticalLabel;
37 labelFigure.name = labelFigureName;
38 labelFigure.text = labelFigureText;
39 figure.children.add(0, labelFigure);
40 labelFigureChildAccess.figure = labelFigure;
41 }

Listing 14 Simplified BPMN editor polishing transformation

cussion by reviewing feedback obtained from the user com-
munity of Eugenia.

5.3 Community validation and feedback

Since its first release, Eugenia has been used extensively by
researchers and engineers both in academia and in indus-
try. Evidence for this exists in the large number of posts in
the Epsilon forum,11 and in several publications that dis-
cuss using Eugenia to develop graphical editors for domain-
specific languages across a number of domains.

Seehusen and Stølen [10] describe their experiences in
constructing a GMF editor for a risk modelling language
(CORAS) with and without Eugenia. When using GMF

11 http://www.eclipse.org/epsilon/forum.

alone, Seehusen and Stølen report that the development of
the GMF editor took longer than anticipated (about 3.5 man-
months), partly due to the time taken to iteratively develop
the various EMFandGMFartefacts in Fig. 1. After switching
to Eugenia, the authors remark that “This [Eugenia] worked
very well; it was very easy to learn and the execution of
the transformation [that produced a GMF editor from the
CORAS metamodel] was reduced to pressing a button as
opposed to clicking through a series of dialogs”. A primary
concern with the GMF transformations was that they were
found to be impractical due to their interactive nature and that
the single-sourcing approach of Eugenia “worked far better
than the GMF dialog based approach”. Seehusen and Stølen
also report that their unfamiliarity with GMF (and related
technologies) and that a lack of good GMF documentation
were also contributing factors to the longer-than-anticipated

123

http://www.eclipse.org/epsilon/forum

250 D. S. Kolovos et al.

development time of their GMF editor. It is possible that the
GMF annotations provided by Eugenia increase the learn-
ability of GMF and reduce the need for detailed documenta-
tion of low-level GMF features, but Seehusen and Stølen do
not consider this in their evaluation.

Sun et al. [11] report and reflect on their experiences in
developing a graphical DSL for distributed time-triggered
systems. Sun et al. note that Eugenia was chosen over GMF
due to “previous experience with the complexities and inef-
ficiencies of GMF” and that applying Eugenia “consider-
ably sped up the creation of graphical DSL editors”. Sun
et al. focus on the benefits of the single-sourcing approach
employed by Eugenia, noting that “building and maintain-
ing a modelling tool with GMF is by no means an easy task,
which requires six individual models that are highly depen-
dent on each and all need to be in sync with each other. The
Eugenia tool essentially reduces development and mainte-
nance down to one model and some optional, separate cus-
tomisation information”.

Dayibaş and Oǧutüzün [12] applied Eugenia to develop
a graphical editor for feature-driven product derivation and
noted that Eugenia makes “editor development easier” as
compared to GMF, which “requires lots of configurations
[sic]”.

Eugenia has also been used to develop graphical editors
forDSLs in fields such as distributed time-triggered systems ,
software architectures [13–15], industrial robot control [16],
mobile robotics,12 distributed application modelling [17],
access control policies [18], and enterprise application inte-
gration [19].

As a teaching tool, Eugenia has been used in lectures at
universities in Kassel (Germany),13 Madrid (Spain)14 and
Oslo (Norway)15. An introductory book recently written by
the Spanish MDE research community includes a chapter
on Eugenia [20]. Eugenia has been used to implement an
arcade game16 for a project that seeks to teach DSLs via
educational videogames17 at the University of Cadiz. It is
also used at York (UK) for both MSc teaching on MDE18

and to introduce high school students to MDE [21].

12 https://code.google.com/p/rbcodegen (Last accessed: May 2013).
13 http://seblog.cs.uni-kassel.de/wp-content/uploads/2011/11/Uebung
2.pdf (Last accessed: April 2013).
14 http://astreo.ii.uam.es/~jlara/doctorado.2010/3_DSLs_tecnologias.
pdf (Last accessed: April 2013).
15 http://www.uio.no/studier/emner/matnat/ifi/INF5120/v11/under
visningsmateriale/Lecture4_ModelTransformation.pdf (Last accessed:
April 2013).
16 http://github.com/chelder86/ArcadeTongame (Last accessed: May
2013).
17 http://wikis.uca.es/wikiPILI/index.php/Videojuegos_Educativos_
DSL (Last accessed: May 2013).
18 http://www.cs.york.ac.uk/postgraduate/modules/mode.html (Last
accessed: February 2014).

5.4 Regression testing

Eugenia provides a set of transformations on top of another
model-driven workflow (GMF). Ideally, each aspect of the
transformation should be individually tested with an appro-
priate set of inputmodels and assertions on the resultingmod-
els. However, these tests would be brittle, as a new version
of GMF with revised metamodels and transformations of its
own could potentially break many of them. The tests would
also potentially need to consider many model elements, as
a single annotation in the Emfatic code could produce large
changes in the GMF models.

As a compromise, we use regression testing for validating
each new version of Eugenia, using the EUnit testing frame-
work [22]. We run Eugenia against several annotated meta-
models that provide a representative sample of all features in
Eugenia and ensure that there are no significant differences
between the generated GMF models and a previously gen-
erated set of models which have been manually validated.
Non-significant differences are normalised using the avail-
able options in EUnit and custom EOL code: for instance,
some of the GMF models contain Java code, and differences
due to whitespace in the code should not be treated as sig-
nificant. However, if the significant differences are due to a
change inGMFandnot a bug inEugenia, the newly generated
models are manually validated and replace the old generated
models.

5.5 Limitations

Eugenia currently demonstrates four notable limitations.
Firstly, Eugenia annotations pollute metamodels with infor-
mation irrelevant to their primary purpose (abstract syntax
definition). While user feedback indicates that this is often
an acceptable trade-off for the increased efficiency offered
by the tool, to avoid metamodel pollution without sacrific-
ing usability, we are experimenting with extracting a stand-
alone text-based language from the annotations provided by
Eugenia.

The second limitation of Eugenia is that it does not
provide support for automating the process of develop-
ing graphical editors comprising of more than one type
of diagrams. Developers can still use the standard GMF
process for achieving this, but as this is a fragile and error-
prone process, it would benefit from additional automa-
tion.

A third limitation of Eugenia is that, to compose polishing
transformations, developers need to become familiar with a
particular transformation language (EOL). To overcome this
limitation, future versions of Eugenia would benefit from
modular support for custom transformation languages.

Finally, this annotation-based approach is arguably more
suitable for languages in which the structure of the abstract

123

https://code.google.com/p/rbcodegen
http://seblog.cs.uni-kassel.de/wp-content/uploads/2011/11/Uebung2.pdf
http://seblog.cs.uni-kassel.de/wp-content/uploads/2011/11/Uebung2.pdf
http://astreo.ii.uam.es/~jlara/doctorado.2010/3_DSLs_tecnologias.pdf
http://astreo.ii.uam.es/~jlara/doctorado.2010/3_DSLs_tecnologias.pdf
http://www.uio.no/studier/emner/matnat/ifi/INF5120/v11/undervisningsmateriale/Lecture4_ModelTransformation.pdf
http://www.uio.no/studier/emner/matnat/ifi/INF5120/v11/undervisningsmateriale/Lecture4_ModelTransformation.pdf
http://github.com/chelder86/ArcadeTongame
http://wikis.uca.es/wikiPILI/index.php/Videojuegos_Educativos_DSL
http://wikis.uca.es/wikiPILI/index.php/Videojuegos_Educativos_DSL
http://www.cs.york.ac.uk/postgraduate/modules/mode.html

Eugenia: GMF-based graphical model editors 251

and concrete (graphical) syntax is not radically different. For
languages with divergent abstract and graphical syntaxes,
or where substantial customisation is required, a substantial
amount of polishing transformation code may need to be
developed and maintained as discussed in Sect. 3.7.

6 Related work

Similarly to Eugenia, GmfGen [23] also aims at simpli-
fying the incremental development of GMF editors. The
graph, mapping, and tooling models depicted in Fig. 1 typi-
cally contain some duplication of information. This dupli-
cation exasperates any inconsistency problems that may
arise when changes are made to one of the models. Gmf-
Gen provides templates for generating the models needed
to construct a GMF editor. The templates remove most of
the duplication present in GMF models. However, GmfGen
does not address the steep learning curve encountered when
first using GMF to generate a visual editor. In fact, knowl-
edge of GMF is required to understand the way in which
the GmfGen templates are constructed. Instead, Eugenia
focuses on abstracting away from GMF. In [24], the authors
present a metamodel-annotation-based framework that post-
dates Eugenia and targets a home-grown graphicalmodelling
framework instead of GMF.

Obeo Designer (OD) is a commercial product that builds
on top of the GMF run-time but does not make use of the
GMF code generation facilities. Obeo Designer replaces the
3 intermediate models of GMF (graph, tool, and mapping)
with a single model that contains similar constructs and pro-
vides more elaborate—but still tree-based editors—to define
this model. A strong advantage of OD over the default GMF
tooling is that the former does not involve a code generation
step and as such changes to the graphical syntax can be tested
more quickly.

This work focuses on GMF as, despite its shortcomings,
it is still one of the most powerful, flexible, and widely used
open-source graphical editor frameworks available today.
GMF has a large user community and when tuned appro-
priately, it can achieve impressive results (the widely used
IBM RSA UML19 modeller, as well as the open-source Top-
cased20 and Papyrus21 modelling tools are all implemented
atop GMF).

Beyond GMF, there is a large number of open-source and
commercial frameworks that provide comparable support for
developing graphical editors, most notably MetaEdit+ [25],
GME[26] (and itsEclipse-basedGEMSbranch),AToM3 [27],

19 http://www-01.ibm.com/software/websphere.
20 http://www.topcased.org/.
21 http://www.eclipse.org/papyrus/.

Graphiti (and its Spray extension22). In our view, comparing
these frameworks against Eugenia would quickly boil down
to a comparison against GMF, which has been attempted
before [8,9]. This is beyond the scope of this paper, but a
very interesting direction for future work.

7 Conclusions and further work

In this paper, we have presented an approach that employs
metamodel annotations,model-to-model, and in-placemodel
transformations to deliver productivity and consistency bene-
fits to the process of developing graphical model editors with
the EMF andGMF frameworks. The tool that implements the
proposed approach (Eugenia) has been well received from
the Eclipse modelling community, and there is strong evi-
dence that it is extensively used by both researchers and
practitioners.

While Eugenia already greatly improves the usability of
GMFand lowers the entrance barrier for inexperienceddevel-
opers, a significant amount of work remains, including sup-
port for: subdiagrams, multiple (non-hierarchical) diagrams
in the same file, and advanced property editing. Ongoing
research seeks to addresses some of these issues in the
MOSKitt23 and EEF24 projects. We aim to converge with
these projects and progressively extend Eugenia to support,
in a usable and intuitive manner, all of the features discussed
above.

An additional interesting direction for further research
is to target alternative graphical editor frameworks such as
Graphiti, or web-based frameworks such as UMLCanvas.25

Acknowledgements Parts of this work were supported by the Euro-
pean Commission’s Seventh Framework Programme, through Grant
#611125 (MONDO). Other parts of this work were supported by the
doctoral scholarship PU-EPIF-FPI-C 2010-065 from the University of
Cádiz and by the MoDSOA Project (TIN2011-27242) of the National
Research, Development and Innovation Program of the Spanish Min-
istry of Science and Innovation. The authors would also like to thank
Adolfo Sanchez-Barbudo Herrera and Horacio Hoyos Rodriguez for
their help with the evaluation experiments discussed in Sect. 5.

8 Appendix: List of annotations supported by Eugenia

The complete list of metamodel annotations currently sup-
ported by Eugenia is given below. Features of GMF that are
not made available via annotations can be managed using
the polishing transformation mechanism. An up-to-date ref-

22 https://code.google.com/a/eclipselabs.org/p/spray.
23 http://www.moskitt.org.
24 http://www.eclipse.org/modeling/emft/?project=eef#eef.
25 http://umlcanvas.org/.

123

http://www-01.ibm.com/software/websphere
http://www.topcased.org/
http://www.eclipse.org/papyrus/
https://code.google.com/a/eclipselabs.org/p/spray
http://www.moskitt.org
http://www.eclipse.org/modeling/emft/?project=eef#eef
http://umlcanvas.org/

252 D. S. Kolovos et al.

erence guide to the annotations of Eugenia is available on the
Epsilon website.26

8.1 gmf.diagram

Denotes the root EClass for the editor. Only one (non-
abstract) EClass must be annotated as gmf.diagram. The
annotation accepts the following details.

– diagram.extension (optional): the file extension for the
diagram file;

– model.extension (optional): the file extension for the
domain (EMF) model;

– onefile (optional): specifies whether the domain model
and the diagram should be stored in the same file;

– rcp (optional): specifies whether the editor is intended to
be part of a Rich Client Platform product;

– units (optional): the units for the diagram (e.g. Pixels).

8.2 gmf.node

Applies to an EClass and denotes that its instances should
appear on the diagram as nodes. The annotation accepts the
following details.

– figure (optional): the figure that will represent the node.
Can be set to rectangle, ellipse, rounded (default), svg
(see svg.uri), polygon (see polygon.x and polygon.y) or to
the fully qualified name of a Java class that implements
the GMF Figure interface;

– border.color (optional): an RGB color (e.g. 255, 0, 0) that
will be set as the node’s border color;

– border.style (optional): the style of the node’s border. Can
be set to solid (default), dash or dot;

– border.width (optional): an integer that specifies the width
of the node’s border;

– color (optional): an RGB color that specifies the node’s
background color;

– label: the name(s) of the EAttribute(s) of the EClass, the
value(s) of whichwill be displayed as the label of the node.
If label.placement is set to none, this detail is not required;

– label.icon (optional): if set to true (default), a small icon
appears on the left of the label;

– label.parser (optional): indicates the unqualified name of
the class that will parse the text entered by the user into
the label;

– label.edit.pattern (optional): similar to label.pattern, but
only for editing the label;

– label.pattern (optional): if more than one attributes are
specified in the label, the format detail is necessary to
specify how their values will be rendered in the label. The

26 http://www.eclipse.org/epsilon/doc/eugenia/.

format follows the Java Message Format style (e.g. {0} :
{1}). The same pattern is used for editing and viewing the
label.

– label.view.pattern (optional): similar to label.pattern, but
only for viewing the label;

– label.placement (optional): defines the placement of the
label in relation to the node.Canbe set to internal, external,
or none (in which case, no label will be shown);

– label.text (optional): defines the default text to be used
when the EAttribute(s) in label are not set. By default, it
is set to the name of the EClass;

– label.readOnly (optional): a value of true denotes that the
label cannot be changed in the generated diagram editor;

– margin (optional): inset margin (5 units by default) for the
node;

– phantom (optional): defines if the node is phantom
(true/false). Phantomnodes are particularly useful in order
to visualise containment references using links instead of
spatial containment;27

– polygon.x (when figure is set to polygon): list of space-
separated integers with the X coordinates of the polygon
used as figure;

– polygon.y (when figure is set to polygon): list of space-
separated integers with the Y coordinates of the polygon
used as figure;

– resizable (optional): a value of false disables all the resize
handles for the node;

– size (optional): a GMF dimension that will be used as the
node’s preferred size (e.g. 10, 5);

– svg.uri (when figure is set to svg): URI of the .svg file
to be used as figure for the node. For instance, plat-
form:/plugin/my.plugin/my.svg will access the my.svg file
in the my.plugin plugin.

8.3 gmf.link

Applies to EClasses that should appear on the diagram as
links, and to non-containment EReferences.

8.4 gmf.link (for EClasses)

The annotation accepts the following details.

– color (optional): the RGB color of the link;
– incoming (optional): specifieswhether the generated editor
should allow links to be created from target to source.
Defaults to false;

– label (optional): the names of theEAttributes of theEClass
the value of whichwill be displayed as the label of the link;

27 For an example involving phantom nodes, the reader can refer to
http://eclipse.org/epsilon/doc/articles/eugenia-phantom-nodes/.

123

http://www.eclipse.org/epsilon/doc/eugenia/
http://eclipse.org/epsilon/doc/articles/eugenia-phantom-nodes/

Eugenia: GMF-based graphical model editors 253

– label.parser (optional): indicates the unqualified name of
the class that will parse the text entered by the user into
the label;

– label.text (optional): defines the default text to be used
when the EAttribute(s) in label are not set. By default, it
is set to the name of the EClass;

– source: the source non-containment EReference of the
link;

– source.constraint (optional): OCL assertion that should be
checked by the graphical editor when creating a link. For
instance, self <> oppositeEnd would forbid users
for creating a link from a node to itself (a self-loop): self
is the source of the link, and oppositeEnd is the target of
the link;

– source.decoration (optional): the decoration of the source
end of the link. Can be set to none, arrow, rhomb, fille-
drhomb, square, filledsquare, closedarrow, filledclosedar-
row, or the fully qualified name of a Java class that imple-
ments the org.eclipse.draw2d.RotatableDecoration inter-
face;

– style (optional): the style of the link (see border.style
above);

– target : the target non-containment EReference of the link;
– target.constraint (optional): See source.constraint;
– target.decoration (optional): See source.decoration;
– width (optional): the width of the link.

8.5 gmf.link (for non-containment EReferences)

It accepts the following details:

– color (optional): the RGB color of the link;
– label (optional): the static text that will be displayed as the
label of the link. If no label is specified, the name of the
reference is displayed instead;

– label.text (optional): equivalent to label in this case;
– source.decoration (optional): See source.decoration above;
– style (optional): the style of the link (see border.style
above);

– target.decoration (optional): as above;
– width (optional): the width of the link.

8.6 gmf.compartment (for containment EReferences)

Defines that the containment reference will create a compart-
ment where model elements that conform to the type of the
reference can be placed. It accepts the following details:

– collapsible (optional): when set to false, it prevents the
compartment from collapsing (default is true);

– layout (optional): the layout of the compartment. Can be
set to free (default) or list.

8.7 gmf.affixed (for containment EReferences)

Defines that the containment reference will create nodes
which are affixed to the edges of the containing node. An
example demonstrating affixed references is illustrated in
Sect. 5.

8.8 gmf.label (for EAttributes)

Defines additional labels for the containing EClass. These
labels will be displayed underneath the default label for the
containing EClass. It accepts the following details:

– label.edit.pattern (optional): like label.pattern, but only
for editing the label;

– label.parser (optional): indicates the unqualified name of
the class that will parse the text entered by the user into
the label;

– label.pattern (optional): if more than one attributes are
specified in the label, the format detail is necessary to show
how their values will be rendered in the label. The format
follows the Java Message Format style (e.g. 0: 1). The
same pattern is used for editing and viewing the label;

– label.readOnly (optional): a value of true denotes that the
label cannot be changed in the generated diagram editor;

– label.text (optional): defines the default text to be used
when the attribute is not set;

– label.view.pattern (optional): similar to label.pattern, but
only for viewing the label.

All gmf.node and gmf.link annotations also support the
following details which can be used to define the appearance
of the respective palette tools of the editor.

– tool.description (optional): the description of the creation
tool.

– tool.large.bundle (optional): the bundle of the large icon
of the creation tool.

– tool.large.path (optional): the path of the large icon of the
creation tool.

– tool.name (optional): the name of the creation tool.
– tool.small.bundle (optional): the bundle of the small icon
of the creation tool.

– tool.small.path (optional): the path of the small icon of the
creation tool.

References

1. Hutchinson, J., Whittle, J., Rouncefield, M., Kristoffersen, S.:
Empirical assessment ofMDE in industry. In: Proceedings of ICSE,
pp. 471–480. ACM, New York (2011)

2. Steinberg, D., Budinsky, F., Paternostro, M., Merks, E.: EMF:
Eclipse Modelling Framework. Eclipse Series, 2nd edn. Addison-
Wesley Professional, Reading (2008)

123

254 D. S. Kolovos et al.

3. Wienands, C., Golm,M.: Anatomy of a visual domain-specific lan-
guage project in an industrial context. In: ACM/IEEE 12th Inter-
national Conference on Model Driven Engineering Languages and
Systems (MoDELS), pp. 453–467, Denver, CO, USA (2009)

4. Kolovos, D.S., Rose, L.M., Abid, S.Bin., Paige, R.F., Polack, Fiona
A.C., Botterweck, G.: Taming EMF and GMF using model trans-
formation. In: Proceedings of the 13th International Conference on
Model Driven Engineering Languages and Systems: Part I, MOD-
ELS’10, pp. 211–225. Springer, Berlin (2010)

5. Kolovos, D.S., Paige, R.F., Polack, F.A.C.: The epsilon transfor-
mation language. In: Proceedings of 1st International Conference
on Model Transformation (ICMT), Zurich, Switzerland (2008)

6. Eclipse Foundation. Epsilon modeling GMT component. http://
www.eclipse.org/gmt/epsilon

7. Kolovos, D.S., Paige, R.F., Polack, F.A.C.: The epsilon object lan-
guage. In: Proceedings of European Conference in Model Driven
Architecture (EC-MDA) 2006, Volume 4066 of LNCS, pp. 128–
142, Bilbao, Spain (2006)

8. El Kouhen, A., Dumoulin, C., Gerard, S., Boulet, P.: Evalua-
tion of modeling tools adaptation. Technical report, Laboratoire
d’Intégration des Systèmes et des Technologies - LIST, LIFL -
DART - LIFL - DART, Laboratoire d’Informatique Fondamentale
de Lille - LIFL, LIFL - DART/Émeraude (2012)

9. Baetens, N.: Comparing graphical DSL editors: AToM3, GMF,
MetaEdit+. Technical report, University of Antwerp (2011)

10. Seehusen, F., Stølen, K.: An evaluation of the graphical modeling
framework (GMF) based on the development of the CORAS tool.
In: Jordi, C., Eelco, V. (eds.) Theory and Practice of Model Trans-
formations, Volume 6707 of Lecture Notes in Computer Science,
pp. 152–166. Springer, Berlin (2011)

11. Sun, Y., Wienands, C., Felser, M.: Applying model-driven design
and development to distributed time-triggered systems. In: Pro-
ceedings of 2nd International Conference on Engineering and
Meta-Engineering (2011)

12. Dayibas, O., Oguztuzun, H.: Kutulu: A domain-specific language
for feature-driven product derivation. In: Computer Software and
Applications Conference (COMPSAC), 2012 IEEE 36th Annual,
pp. 105–110 (2012)

13. Demirli, E., Tekinerdogan, B.: Save: software architecture environ-
ment for modeling views. In: 2011 9th Working IEEE/IFIP Con-
ference on Software Architecture (WICSA), pp. 355–358 (2011)

14. Di Ruscio, D., Malavolta, I., Muccini, H., Pelliccione, P., Pieran-
tonio, A.: Developing next generation ADLs through MDE tech-
niques. In: Proceedings of the 32nd ACM/IEEE International Con-
ference on Software Engineering—Volume 1, ICSE ’10, pp. 85–94.
ACM, New York, NY (2010)

15. Pena, C., Villalobos, J.: An MDE approach to design enterprise
architecture viewpoints. In: 2010 IEEE 12th Conference on Com-
merce and Enterprise Computing (CEC), pp. 80–87 (2010)

16. Sun, Y., Gray, J., Bulheller, K., Baillou, N.: A model-driven
approach to support engineering changes in industrial robotics soft-
ware. In: France, R.B., Kazmeier, J., Breu, R., Atkinson, C. (eds.)
Model Driven Engineering Languages and Systems, Volume 7590
of Lecture Notes in Computer Science, pp. 368–382. Springer,
Berlin Heidelberg (2012)

17. Noguero, A., Calvo, I.: FTT-Modeler: a support tool for FTT-
CORBA. In: 2012 7th Iberian Conference on Information Systems
and Technologies (CISTI), pp. 1–6 (2012)

18. Calvillo, J., Román, I., Roa,L.M.:Empowering citizenswith access
control mechanisms to their personal health resources. Int. J. Med.
Inform. 82(1), 58–72 (2013)

19. Frantz, R.Z., Reina Quintero, A.M., Corchuelo, R.: A domain spe-
cific language to design enterprise application integration solutions.
Int. J. Coop. Inf. Syst. 20(02), 143–176 (2011)

20. García, J., García, F.O., Pelechano, V., Vallecillo, A., Vara, J.M.,
Vicente-Chicote, C. (eds).: Desarrollo de software dirigido por
modelos: conceptos, métodos y herramientas. Ra-Ma (2013)

21. Williams, J.R., Poulding, S., Rose, L.M., Paige, R.F., Polack,
F.A.C.: IdentifyingDesirableGameCharacterBehavioursThrough
theApplication of EvolutionaryAlgorithms toModel-DrivenEngi-
neering Metamodels, vol. 6956. Springer, Berlin (2011)

22. García-Domínguez, A., Kolovos, D.S., Rose, L.M., Paige, R.F.:
Inmaculada Medina-Bulo. EUnit: a unit testing framework for
model management tasks. In: Proceedings of the 14th International
Conference onModelDrivenEngineeringLanguages andSystems,
MODELS’11, pp. 395–409. Springer, Berlin (2011)

23. Schnepel, E.: GenGMF: efficient editor development for largemeta
models using the graphical modelling framework. In: Proceedings
of special interest group on model-driven software engineering
(SIG-MDSE) (2008)

24. Temate, S., Broto, L., Tchana, A., Hagimont, D.: A high level
approach for generating model’s graphical editors. In: 2011 Eighth
International Conference on Information Technology: NewGener-
ations (ITNG), pp. 743–749 (2011)

25. MetaCase. Meta-Edit+. http://www.metacase.com
26. Generic Modeling Environment. http://www.isis.vanderbilt.edu/

Projects/gme
27. De Lara, J., Vangheluwe, H.: Using AToM3 as a meta-CASE

tool. In: Proceedings of 4th International Conference on Enterprise
Information Systems, pp. 642–649, Ciudad Real - Spain (2002)

Dimitrios S. Kolovos is a Lec-
turer in the Department of
Computer Science at the Uni-
versity of York. He has co-
authored more than 100 sci-
entific papers in international
journals, conferences, and work-
shops in the broader field of
Software Engineering and has
been an Eclipse Foundation
committer leading the develop-
ment of the Epsilon open-source
project (http://www.eclipse.org/
epsilon) since 2006, and the
Emfatic project (http://www.ecli

pse.org/emfatic) since 2010.

Antonio García-Domínguez is
a researcher at the University of
Cádiz (UCA). Antonio obtained
his Ph.D. at the University of
Cádiz in 2013, in which he
used model-driven engineering
to generate performance tests for
web service composition mod-
els. During his Ph.D., Antonio
started a collaboration with the
University of York on the devel-
opment of the Epsilon toolset,
helping improve Eugenia and
contributing the EUnit testing
framework. Antonio has also

contributed to other open-source research tools, such as the MuBPEL
WS-BPEL mutation testing tool or the BPELUnit unit testing tool. In

123

http://www.eclipse.org/gmt/epsilon
http://www.eclipse.org/gmt/epsilon
http://www.metacase.com
http://www.isis.vanderbilt.edu/Projects/gme
http://www.isis.vanderbilt.edu/Projects/gme
http://www.eclipse.org/epsilon
http://www.eclipse.org/epsilon
http://www.eclipse.org/emfatic
http://www.eclipse.org/emfatic

Eugenia: GMF-based graphical model editors 255

his current research contract, he assists UCA on integrating a open-
source business intelligence solution and is developing model-driven
approaches to assist local IT staff in applying best practices. He has
published numerous works in journals, workshops, and international
conferences on dynamic invariant generation and mutation testing of
WS-BPELcompositions, open-source software in education andmodel-
driven verification and validation, among other lines of work.

Louis M. Rose is a lecturer
in Enterprise Systems at the
University of York, UK. He
conducts research on improving
software engineering processes
and practices, with a focus on
model-driven engineering, soft-
ware maintenance and mutation
testing. He is lead developer
of Epsilon (www.eclipse.org/
epsilon), an open-source fam-
ily of MDE tools, and a co-
investigator on the MONDO EC
FP7 project examining the scal-
ability of MDE. He co-organises

the transformation tool content and is a programme committee member
of the European Conference on Modelling Foundations and Applica-
tions. His e-mail address is louis.rose@york.ac.uk and his web-page is
http://www.cs.york.ac.uk/~louis.

Richard F. Paige is Professor
of Enterprise Systems at the
University of York, UK, where
he leads the Enterprise Sys-
tems research group that spe-
cialises in model-driven engi-
neering. He has chaired numer-
ous leading software engineer-
ing conferences and workshops,
is on the editorial boards of Soft-
ware and Systems Modeling, the
Journal of Object Technology
and Empirical Software Engi-
neering. His research interests
are in model management, for-

mal methods, software processes, agile methods, and safety critical
systems.

123

www.eclipse.org/epsilon
www.eclipse.org/epsilon
http://www.cs.york.ac.uk/~louis

	Eugenia: towards disciplined and automated development of GMF-based graphical model editors
	Abstract
	1 Introduction
	2 Motivation
	2.1 Specifying the abstract syntax and generating code using EMF
	2.2 Specifying graphical syntax and generating code with GMF

	3 Automation through metamodel annotation and model transformation
	3.1 Constructing and maintaining EMF generator models
	3.2 Generating GMF-specific models
	3.3 The Ecore2GMF transformation
	3.3.1 Transforming @gmf.diagram-annotated EClasses
	3.3.2 Transforming @gmf.node-annotated EClasses
	3.3.3 Transforming @gmf.link-annotated EClasses and EReferences
	3.3.4 Transforming @gmf.compartment-annotated EReferences

	3.4 Pre-transformation validation
	3.5 Post-transformation parametric patching
	3.6 Implementation notes
	3.7 Scalability

	4 Example
	5 Evaluation
	5.1 Small-scale evaluation experiments
	5.1.1 Experiment 1
	5.1.2 Developer A (standard GMF tooling)
	5.1.3 Developer B (Eugenia)
	5.1.4 Experiment 2
	5.1.5 Developer A (standard GMF tooling)
	5.1.6 Developer B (Eugenia)
	5.1.7 Discussion

	5.2 Implementation of a simplified BPMN editor
	5.2.1 Annotated BPMN metamodel
	5.2.2 Polishing transformation
	5.2.3 Discussion

	5.3 Community validation and feedback
	5.4 Regression testing
	5.5 Limitations

	6 Related work
	7 Conclusions and further work
	Acknowledgements
	8 Appendix: List of annotations supported by Eugenia
	8.1 gmf.diagram
	8.2 gmf.node
	8.3 gmf.link
	8.4 gmf.link (for EClasses)
	8.5 gmf.link (for non-containment EReferences)
	8.6 gmf.compartment (for containment EReferences)
	8.7 gmf.affixed (for containment EReferences)
	8.8 gmf.label (for EAttributes)

	References

