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Abstract TheObjectConstraint Language (OCL) has been
applied, along with UML models, for various purposes such
as supporting model-based testing, code generation, and
automated consistency checking of UML models. However,
a lot of challenges have been raised in the literature regard-
ing its applicability in industry such as extensive training,
slow learning curve, and significant effort to use OCL due
to lack of familiarity of practitioners. To confirm these chal-
lenges, empirical evidence is needed, which is severely lack-
ing in the literature. To build such preliminary evidence, we
report a controlled experiment that was designed to evaluate
OCL by comparing it with Java; a programming language
that has also been used to specify constraints on UML mod-
els. Results show that the participants using OCL perform as
good as the participants working with Java in terms of three
objective quality metrics (i.e., completeness, conformance
and redundancy) and two subjective metrics (i.e., applicabil-
ity and confidence level). In addition, the participants using
OCL performed consistently well for all the constraints of
varying complexity, while fluctuating results were obtained
for the participants using Java for the same constraints. Based
on the empirical evidence, we can conclude that it does not
makemuch difference to useOCL or Java for specifying con-
straints on UML models. However, the participants working
with OCL performed consistently well on specifying con-
straints of varying complexity suggesting that OCL can be
used to model complicated constraints (commonly observed
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in industrial applications)with the samequality as for simpler
constraints. Moreover, additional analyses on the constraints
when using Java andOCL tools revealed that tools are needed
to specify fully correct constraints that can be used to support
automation.
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1 Introduction

The Object Constraint Language (OCL) [1] was defined to
append extra semantics to UML models in addition to the
ones already enforced by the UML metamodel itself. OCL
can be used to support various modeling activities for dif-
ferent purposes, such as providing precise meaning to state
invariants on states and guards on transitions of UML state
machines for automated test data generation [2–7]. More-
over, OCL can be used to specify constraints at various
MOF-levels (M3, M2, and M1) for different purposes such
as querying a subset of model elements from a model [1,8],
evaluating/validating [8–13] a specified constraint (e.g., for
automated test oracles), and solving [4,14–29] (e.g., for auto-
mated test data generation).

While working with several industrial partners on diverse
model-based engineering projects using UML and its exten-
sion andOCL, we found that the use of OCLwithmodels can
support various model-based engineering activities includ-
ing: automated model-based testing, consistency checking,
and configuration in the context of produce line engineering
[5,6,20,30]. Moreover, OCL is also widely used as the lan-
guage for writing constraints in many commercial modeling
tools such as IBM Rational Software Architect (RSA) and
Magic Draw [31]. However, successfully applying OCL in
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practice comes with a cost, i.e., additional effort (in terms of
training and required tool support) is required to specify con-
straints using OCL and being declarative language in nature,
its formalismhinders its applicability in practice. To convince
our industrial partners (who are not familiar with OCL) to
invest in terms of training and tool support, especially when
there are alternatives such as Java with which practitioners
are more familiar, it is very important to provide evidence via
rigorous empirical study to tell which constraint specification
language is better and why.

Java is a commonly used programming language, and it
may be used to specify constraints on UML models (e.g.,
[32,33]), and people in industry are usually familiar with
Java. However, as it was not defined for the purpose of speci-
fying constraints onUMLmodels, it is not so straightforward,
as compared to OCL, in terms of, e.g., traversing model ele-
ments in UML models. There exist tools for both OCL and
Java [9,12,30,34,35] for evaluating, querying, solving, and
parsing formally specified constraints. For example, com-
mercial tool IBMRSA[33] andopen source tool Papyrus [32]
both allowusers to specify/validate their constraints specified
both in Java and OCL against UML models.

Since there is no evidence in the literature suggesting that
OCL is better than Java or vice versa in terms of specify-
ing constraints on UML models, we conducted a controlled
experiment to investigate this. Our main goal is to collect a
body of evidence based on which we can recommend Java
or OCL to our industrial partners for writing constraints on
UML models in their respective applications. Moreover, we
aim to build/gather preliminary evidence about OCL/Java
for specifying constraints that is missing in the current lit-
erature (Sect. 5) that can be used by researchers and other
practitioners to select a language for specifying constraints
to solve their respective problems.

The controlled experiment was conducted with 29 fully
trained graduate students taking a graduate student course
in ‘Empirical Software Engineering’ at Beihang University,
Beijing, China. The course was given by the authors of the
paper. Two case studies were used in the experiment. Qual-
ity measures (e.g., Completeness, Conformance and Redun-
dancy) were defined to evaluate constraints specified by the
experiment participants. Results show that the participants
working with OCL and Java performed equally well. Addi-
tionally, we observed that the participants using OCL per-
formed consistently well for all the constraints of varying
complexity, which is not the case for the participants using
Java for the same constraints. Thus, we suggest using OCL
for specifying constraints in industrial applications ofmodel-
based engineering since constraints in industrial applications
are complex, as we observed in our industrial applications.

To further investigate the constraint specifications in Java
and OCL using tools, we performed additional analyses.
We selected 100 constraints with 100% conformance and

inputted/entered them to the tools to identify errors. Results
show that more errors were identified in Java specifications
as compared to OCL, and further lead to the conclusion that
tools are needed to specify fully correct constraint specifica-
tions that can be used for supporting automation.

The rest of the paper is organized as follows. Section 2 pro-
vides details on the experiment planning. Section 3 reports
and discusses experimental results. Section 4 points to pos-
sible threats to validity in our experiment. Section 5 reports
the related work and we conclude the paper in Sect. 6.

2 Experiment planning

This section discusses the planning of the experiment accord-
ing to the definition and reporting template defined byWohlin
et al. [36]. Section 2.1 provides experiment definition and
hypotheses formulation. Section 2.2 provides details on the
participants and training for the experiment. Section 2.3 pro-
vides details on the material that we used for the experiment.
Section 2.4 providesmetrics thatwe used to assess the quality
of specified constraints. Last, Sect. 2.5 discusses the design
of the experiment and its execution.

2.1 Experiment definition and hypotheses formulation

The objective of our experiment is to compare OCL and
Java with respect to their applicability of specifying con-
straints on UML class diagrams. Applicability is assessed
according to two criteria: the quality of specified constraint
specifications and participants’ subjective opinions on the
applicability of these two languages. We measure the qual-
ity of OCL and Java constraint specifications from three
complementarypoints of view:Completeness,Conformance,
and Redundancy. The subjective opinions (Applicability and
ConfidenceLevel) were collected through two four-point Lik-
ert scale questions of the questionnaires: (1) To which extent
the constraint is easy to specify and (2) To which extent do
you feel confident to apply a language (Java or OCL) to spec-
ify constraints. The independent variable that we concern
is Method (OCL vs. Java). There is one factor that is also
interesting to take into account when statistical analyses are
conducted: Constraint complexity. The detailed discussion
of the five dependent variables and related measurement is
provided in Sect. 2.4.

Based on the above variables, we can formulate the fol-
lowing null hypothesis (H0) to be tested for each dependent
variable: there is no significant difference between OCL and
Java in terms of the five dependent variables. None of the
expected differences between OCL and Java can a priori be
certain to be in a specific direction. This therefore leads to
the definition of two-tailed hypotheses (H1) and it is stated
as: OCL results in different quality of constraints or differ-
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Table 1 Hypotheses
Dependent Variable Null Hypothesis (H0) Alternative Hypothesis (H1)

Completeness Complt(OCL) = Complt(Java) Complt(OCL) �= Complt(Java)

Conformance Confor(OCL) = Confor (Java) Confor(OCL) �= Confor(Java)

Redundancy Redun(OCL) = Redun(Java) Redun(OCL) �= Redun(Java)

Applicability Appli(OCL) = Appli(Java) Appli(OCL) �= Appli(Java)

ConfidenceLevel Confi(OCL) = Confi(Java) Confi(OCL) �= Confi(Java)

ent responses to the two questions in the questionnaire when
compared to Java. Hypotheses are provided in Table 1.

2.2 Participants and training

The controlled experiment was conducted at Beihang Uni-
versity, Beijing, China. The participants in the experiment
were 29 graduate students taking a short-term but inten-
sive graduate course in ‘Empirical Software Engineering’ at
the Department of Computer Science and Engineering. The
course was given by the authors of the paper. The students in
this degree already hold a Bachelor in Computer Science and
have already been exposed to the UML and OCL notations
and have used Java for multiple course projects.

The participants were trained by the authors of this paper.
Two three-hour sessions, as part of the course curriculum,
were given on the following topics: (1) Recap of UML class
diagrams since the participants were already familiar with
this topic preceding the training, (2) Introduction to OCL,
and (3) Recap of Java. Each topic was accompanied with sev-
eral examples and interactive class assignments. The partici-
pants were given a questionnaire with eight questions before
the experiment sessions to collect information about their
knowledge and experience on UML class diagrams, OCL,
and Java. The questionnaire is provided in “Appendix D”
for reference. The collected questionnaire responses were
computed (by giving equal weight to each questionnaire) to
obtain a single value for each participant, indicating his/her
background on UML, OCL, and Java in general. These val-
ues were then used as the basis to group the participants into
two blocks and therefore ensure better homogeneity across
the two groups involved in the experiment. The experiment
was part of a series of compulsory laboratory exercises that
were part of the course curriculum.

2.3 Materials

We used two systems in the experiment: Banking System and
Video Conferencing System (VCS) [5]. Banking System is
an extended version of the Banking System from the OCL
2.2 specification [1]. The rationale of choosing this system as
one of the case studies is because the context is relatively easy
to understand. We selected VCS as the second case study as

it is a real industry case study of Video Conferencing System
(VCS) developed byCisco Systems,Norway. This case study
is part of a project aiming at supporting automated, model-
based testing of a core subsystem of a VCS called Saturn
[5].

For Banking System, a bank has several employees and
customers. Each customer can have at most two accounts in a
bank: One is saving account and the other is current account.
A customer must be employed in a company or owns a com-
pany in order to have a bank account. An employee of a bank
can also be its customer having at the most two accounts in
the bank. For the VCS case study, the core functionality to be
modeled manages the sending and receiving of multimedia
streams. Audio and video signals are sent through separate
channels, and there is also a possibility of transmitting pre-
sentations in parallel with audio and video. One conference
participant can send presentation to all others, in parallel to
the ongoing video call. The core functionality was used as
part of the experiment.

In the answer sheet provided to the participants for each
system and each method, we provided (1) a brief description
of the system, (2) the class diagram on which constraints
should be specified, (3) the description of each attribute of
the classes in the class diagrams, and (4) a list of constraints
that the participants should specify using either OCL or Java.
Hence, we designed four answer sheets for the four combina-
tions of the twomethods and the two case study systems. The
content of the answer sheets designed for Banking System
and VCS is provided in “Appendices A and B”, respectively.

2.3.1 Complexity metrics

To enable the participants to tackle increasingly more com-
plex constraints to smooth the learning curve, we ordered the
constraints according to their complexity, which is measured
by applying these four metrics sequentially:

1. Maximum number of traversals in all the clauses of a
constraint (ntraversals)

2. Number of required attribute types (ntypes)
3. Order of the complexity of the attribute types

(otypeComplexi ty), and
4. Number of clauses (nclausesRequired).
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Fig. 1 Class diagram of Banking System

Table 2 Values of complexity metrics and specifications in OCL and Java of selected constraints

UsingBankingSystemas the example to explain the above
metrics, we provide the class diagram of the system in Fig. 1
and three constraints specified in English, along with values
to the complexity metrics are provided in Table 2.

ntraversals is defined as a step from the context class to
the farthest class on whose primitive attributes a constraint is
specified. For example, Constraint A presented in Table 2 has
one traversal from Bank (the context class) to Customer.
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Table 3 Questionnaire design
Measure Statements Scale

ClassDiagramUnderstandability I understood the provided
class diagram clearly

4-point Likert scale: Completely agree,
Generally agree, Generally disagree,
Completely disagree

ConstraintUnderstandability I understood the constraint
properly

Applicability The constraint was easy to
specify with the requested
language

ConfidenceLevel I am confident to apply the
requested language

Constraint B contains two traversals from Bank (the context
class), via Account, to Customer. Constraint C is the
most complex one among the three as it has three traversals
from the context classBank, viaCustomer andAccount,
to Saving or Current.

There are four types of primitive attributes appearing in
the given constraints: Boolean, Enumeration, Integer, and
String, which are ordered (from the simplest to the most
complex) according to their complexity in terms of speci-
fying constraints. For example, as shown in Table 2, Con-
straint A involves one attribute isEmployed: Boolean
owned by class Customer. Constraint B is associated with
one integer attribute: accountNumber: Integer (of
class Account) and an integer operation size()/length
(in Java) (returning an integer) to check that each account
is linked to exactly one account. For Constraint C, we
need one integer operation size()/length in Java to
check that a customer can only have a saving account
when he/she has a current account, i.e., account->
size()=2. Moreover, we need one Boolean operation
oclIsTypeOf()/instanceof in Java to check the type
of account. For checking the reverse, again we need one
Boolean and one Integer.

Number of clauses (nclausesRequired) is defined as the total
number of clauses required in a constraint specification. We
first ordered the constraints according to the maximum num-
ber of traversals (ntraversals), then the number of required
variable types when the same maximum number of traver-
sals appears in two or more constraints. If ntypes is equal for
two or more constraints, we further check OtypeComplexi ty ,
then nclausesRequired .

2.3.2 Post-questionnaire

A post-questionnaire was distributed after the students fin-
ished the tasks of specifying constraints in each round. The
objective of the questionnaire is to obtain subjective opinions
of the participants on the applicability of Java and OCL and

their confidence level (Applicability and ConfidenceLevel)
of applying the requested method. As shown in Table 3, the
questionnaire has four statements on a 4-point Likert scale
question. The first statement is defined for each system. The
other three statements are asked for each constraint of each
system. The third statement requires the participants to rate
each constraint according to the extent to which they per-
ceive it to be easy to apply (Applicability). The last state-
ment was used to obtain the participants’ subjective opinions
on their confidence after each constraint was applied (Con-
fidenceLevel). Notice that the same questionnaire is used for
collecting information for both methods. The questionnaire
is presented as a table, with instructions, to the students as
shown in “Appendix C”.

2.4 Dependent variables and measurement

As previously discussed, in total, we defined five dependent
variables. Their measurement is described below. To illus-
trate each dependent variable, we use Banking System as the
running example.

2.4.1 Quality of constraints

We measure the quality of a constraint from three aspects:
Completeness, Conformance, and Redundancy. These qual-
ity metrics are used for measuring both OCL and Java con-
straints. In this section, we discuss how these three aspects
are measured using a set of metrics. Several OCL and Java
constraints specified by the students during the experiment
are provided in “Appendix E” for reference.

Completeness (CompletenessConstraint ): This metric
measures the percentage of the specified clauses of a con-
straint specification, with the formula below:

1 − Number of missing clauses

nClauses
,
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where nClauses is the total number of clauses expected from
a constraint specification. For example, if a specification of
Constraint B (Table 2) only describes clause “all accounts
in the bank must have unique account numbers,” then the
completeness of this specification is 1− (1/2) = 50% since
the constraint contains the other clause: “each account must
be linked to exactly one customer.”

Con f ormance (Con f ormanceConstraint ): This metric
measures the conformance of a constraint specification, using
the formula below:

CompletenessTraversal + ConformanceIteration + ConformanceCondition
x

∗ CompletenessConstraint. (1)

CompletenessTraversal , Con f ormanceI teration and
Con f ormanceCondition are the three aspects for measuring
the conformance of a constraint, with equal weights. Traver-
sals in a clause of the constraint are the steps required for
traveling from the context model element (e.g., a class) to
the destinationmodel element, as we discussed in Sect. 2.3.1.
We therefore define the metric below to calculate the overall
completeness of the traversals of a constraint:

CompletenessTraversal

=
∑nClauses

i=1

(
1 − Number of missing traversals in clause i

T otal number of traversals required f or clause i

)

nClauses
.

For example, if a specification of Constraint B (Table 2) only
describes clause “each account must be linked to exactly one
customer,” and the specification only describes the traversal
fromBank toAccount, then the completeness of traversals

for this particular specification is calculated as:

(
1− 1

2

)
+0

2 =
25%.

Con f ormanceI teration indicates whether manipulating
(or iterating over) a collection of objects, which is frequently
needed for constraints specified on class diagrams due to the
multiplicities on associations, is correct. The following met-
ric is used to compute its values:

Con f ormanceI teration =
∑nClauses

i=1 (Con f ormanceI terationi)

nClauses
,

inwhich,Con f ormanceI terationi is the conformance of iter-
ation for each clause, further defined as: if the iteration is
totally wrong, a value 0 is assigned; if it is partial correct, 0.5
is assigned; if it is fully correct, 1 is assigned.

Con f ormanceCondition takes into account the confor-
mance of the condition required for each clause in a con-
straint specification. As for conformance of iteration, if it is
fully correct, partially correct, or fullywrong, in terms of cor-
responding to the provided input, 1, 0.5, and 0 are assigned,
respectively. Examples to calculate conformance based on
students’ solutions are provided in “Appendix E”.

In Formula (1), x is determined by whether iterations are
required to specify a constraint. In our experiments, five con-
straints of VCS do not have iterations. Therefore, for these
cases, x equals 2; otherwise 3. The average conformance of
the three aspects times the completeness gives us an overall
conformance of the constraints, as shown in Formula (1).

Redundancy (RedundancyConstraint ), for specifying a
constraint, extra clauses are considered as redundant clauses:

Number of extra clauses

Number of extra clauses + nClauses − Number of missing clauses
.

2.4.2 Applicability and confidence level

Applicability and ConfidenceLevel are two subjective mea-
sures used to assess the two languages (i.e., OCL and Java),
and they are based on the responses to two 4-point Lik-
ert Scale questions of the post-questionnaire, from 1 (Com-
pletely disagree) to 4 (Completely agree).

2.4.3 Complexity of constraints

Wemeasure the complexity of constraints as an ordinal vari-
able with three levels: Low, Medium, and High. As we dis-
cussed in Sect. 2.3, a set of criteria (i.e., ntraversals , ntypes ,
OtypeComplexi ty and nclausesRequired) were used to order 10
constrains for each case study system. To define the com-
plexity of constraints across two case study systems, we first
ordered the 20 constraints (10 for Banking and 10 for VCS)
using the same set of criteria. Then, this order is divided into
three groups, which correspond to three levels of our con-
straint complexity measurement. The division is based on
the objective of balancing the number of constraints follow-
ing into each level. As the result, for VCS, three, four and
three constraints follow into three categories (Low, Medium,
andHigh), respectively. For Banking, four, two and four con-
straints are classified into Low,Medium, andHigh categories,
respectively. In total, eight, six and six constraints are at Low,
Medium, and High levels for all the 20 constraints of the
two systems. For example, according to this mechanism, the
complexity of Constraint A, Constraint B and Constraint C
presented in Table 2 are classified as Low,Medium, andHigh,
respectively.
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Table 4 Experiment design

Round System Group 1 Group 2 Obtained data points

OCL Java

1 Banking System OCL Java 160 130

2 Video
Conferencing
System (VCS)

Java OCL 130 160

580

2.5 Experiment design and execution

The design of our experiment is summarized in Table 4. We
used awithin-subjects design1 sincewehave two systems and
two languages (Java and OCL). During the training sessions
(Sect. 2.2), each subject was equally trained to understand
the two languages: OCL and Java. Based on the results of a
questionnaire (Sect. 2.2), the experiment groupswere formed
through randomization and blocking to obtain two compara-
ble groups of 16 students each (Group 1 and Group 2) with
similar proportions of students from each block. In the first
round, Group 1 was asked to specify constraints of Banking
using OCL, whereas Group 2 was asked to use Java instead.

Such awithin-subjects design offers twomain advantages.
First, with it, we can reduce the error variance due to individ-
ual differences in human performance, which is quite com-
mon in software engineering tasks. This is due to the fact
that the same group of students is exposed to both languages
across the different systems. Second, within-subjects designs
provide more statistical power as compared to a between-
subjects design [36] as it leads to more observations for each
treatment. Potential threats from within-subjects designs are
“carryover” effects. To address this, for each system, each
groupwasgiven adifferent treatment in such away that order-
ing effects were counterbalanced: languages, i.e., OCL and
Java occurred once in a different order across the two groups.
For example, as shown in Table 4, in round 1, Group 1 was
asked to specify constraints for Banking in OCL, whereas
Group 2 to specify constraints for Banking in Java. Note that
in the experiment, in the first round, Banking was used, and
in the second round, VCS was used. The purpose is to enable
the participants to tackle increasingly more complex models
and constraints. With a within-subjects design, a matched
pair analysis can be applied by comparing the performance
of subjects with themselves across treatments (Sect. 3.2).

1 A within-subjects design offers two main advantages. First, we can
reduce the error variance due to individual differences in human per-
formance, which is quite common in software engineering tasks. This
is due to the fact that the same group of students is exposed to all
OCL specification approaches across the different case studies. Sec-
ond, within-subjects designs provide more statistical power as it leads
to more observations for each treatment Wohlin et al. [36].

Aswepreviously discussed in Sect. 2.2, in our experiment,
we have 32 participants enrolled in the experiment after the
training sessions, which were divided into two groups, each
of which has 16 participants. During the experiment, all the
16 participants of Group 1 participated in the experiment
and 13 out of 16 participants from Group 2 participated in
the experiment and completed the tasks. Each participantwas
asked to specify 10 constraints either using OCL or Java for
each system. Therefore, we obtained in total 580 data points
and their decomposition is provided in Table 4 for reference.

At the beginning of the experiment, an answer sheet con-
taining a brief description of the system, the class diagram on
which the constraints will be specified, and the instruction of
tasks to perform was distributed to the participants. The par-
ticipants were given 15 minutes to read the answer sheet and
had an opportunity to raise questions on the answer sheet.
Then, the authors of the paper explained the system and its
class diagram to all the participants. After all these prepara-
tion activities, the first constraint was given to the students
via a classroom projector screen. At the same time, a 10
minutes timer was triggered. This process repeated 10 times
until all the constraints were specified. Notice that before
the experiment was conducted, two students were asked to
specify the constraints and the average time spent on speci-
fying one constraint was around 10 minutes. After that, the
post-questionnaire was distributed. Fixing the time for task
execution tends to yield more differences in task effective-
ness, but then results cannot be used to study time differences
across treatments [36].

The students used pens during the experiment to record
the results on the provided answer sheets (“AppendicesA and
B”), whichwere collected after each task.We understand that
it would be closer to reality to use OCL and Java tools in the
experiment. However, we considered that selecting which
tools to use would form an internal threat to validity, as there
exist various OCL and Java tools in the market and applying
which one, even in reality, heavily depend on the application
context and there is no unified answer. It is also worth noting
that the scope of this experiment is to evaluate howwell OCL
and Java can be used to specify constraints, not to evaluate
particular tools.

The authors of the paper carefully checked the collected
answer sheets and evaluated the derived constraints based
on the defined quality metrics (Sect. 2.4.1). The data were
encoded into a JMP [37] data file to perform the statistical
analysis.

3 Results and discussion

In this section, we present results and discussions to test the
hypothesis formulated in Sect. 2.1. We first provide descrip-
tive statistics of the dependent variables in Sect. 3.1. In
Sect. 3.2, we report the results of the univariate analysis that
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we conducted to test the significant difference of OCL and
Java in terms of the five dependent variables byMethod and
by Complexity of constraint, respectively. To further analyze
whether the objective qualitymeasures and the two subjective
measures correlate to each other, we conducted correlation
analysis (Sect. 3.3).

3.1 Descriptive statistics

The descriptive statistics for all the dependent variables are
provided in Tables 5, 6, and 7. The overall observation is
that regardless which method was used, the participants per-
formed well in terms of the three quality metrics: high Com-
pleteness (91 and 89% for OCL and Java, respectively),
reasonable Conformance (71 and 73% for OCL and Java,
respectively), and low Redundancy (2 and 4% for OCL and
Java, respectively). Another observation is that there is no big
difference betweenOCL and Java by looking at themean val-
ues of the three quality metrics (rows 5, 7 and 9 of Tables 5,
6). To confirm the significance, we performed statistical tests,
which will be discussed in Sect. 3.2.

When looked into mean values of each method of the
three constraint complexity levels, the participants who were
using OCL performed consistently well across all the lev-
els (Table 5). There are 6 and 10% differences between
Medium and High and between Medium and Low, for

Java, in terms of Completeness, and 13 and 12% differ-
ences between Medium and High and between Medium and
Low, for Java, in terms of Conformance (Table 5). This
result indicates that the participants performed differently
when they were specifying different levels of complexity
of constraints using Java. Further statistical analysis con-
ducted to check the significance and results is reported in
Sect. 3.2.

Regarding the two subjective, Likert scale measures,
the participants subjectively thought constraints with higher
complexity were more difficult to specify and they had less
confidence. This observation applies to both Java and OCL.
For example, for OCL, constraints with Low, Medium and
High complexity, received 51, 31, and 25% Applicability
as shown in Table 7. Further statistical analysis was con-
ducted to check the significance and results are reported in
Sect. 3.2.

3.2 Univariate analysis

3.2.1 Dependent variables by method

Due to the fact that the distributions of all the continuous
dependent variables strongly depart from normality as the
results of the Shapiro–Wilk W test [38] showed, we per-
formed nonparametric, Matched Pair, Wilcoxon rank sum

Table 5 Descriptive statistics for Completeness, Conformance, and Redundancy—OCL

Measures Complexity Level

High Medium Low

Mean (%) N Std. Mean (%) N Std. Mean (%) N Std.

Completeness 90 103 0.25 91 84 0.23 93 103 0.21

91% (average), 290 data points

Conformance 72 103 0.32 71 84 0.3 70 103 0.32

71% (average), 290 data points

Redundancy 1 99 0.07 3 83 0.12 2 100 0.08

2% (average), 282 data points

Table 6 Descriptive statistics for Completeness, Conformance, and Redundancy—Java

Measures Complexity Level

High Medium Low

Mean (%) N Std. Mean (%) N Std. Mean (%) N Std.

Completeness 90 100 0.23 84 90 0.28 94 100 0.19

89% (average), 290 data points

Conformance 78 100 0.31 65 90 0.34 77 100 0.31

73% (average), 290 data points

Redundancy 4 97 0.13 3 87 0.11 5 99 0.15

4% (average), 283 data points
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Table 7 Descriptive statistics for Applicability and ConfidenceLevel

Complexity
level

Method Measure Completely
agree (%)

Generally
agree (%)

Generally
disagree (%)

Completely
disagree (%)

Count

Low Java Applicability 51 34 13 2 97

ConfidenceLevel 36 37 24 3 100

OCL Applicability 51 34 13 2 103

ConfidenceLevel 41 39 19 1 103

Medium Java Applicability 51 34 13 2 86

ConfidenceLevel 36 37 24 3 90

OCL Applicability 31 36 29 5 84

ConfidenceLevel 20 44 30 6 84

High Java Applicability 36 19 36 9 97

ConfidenceLevel 20 29 38 13 100

OCL Applicability 25 30 36 9 103

ConfidenceLevel 23 25 38 14 103

Table 8 Two-tailed matched
pair Wilcoxon test with the
significance level α = 0.05
(dependent variables by method)

Group Measures Wilcoxon test

Mean difference (OCL–Java) (%) DF Prob > |Z |
1 Completeness 6.4 159 0.0071

Conformance −2.5 159 0.5255

Redundancy −3.9 151 0.0042

Applicability −1.3 149 0.9022

ConfidenceLevel 8.1 159 0.3312

2 Completeness −4.5 129 0.1544

Conformance −1.5 129 0.6105

Redundancy 0.3 122 0.7969

Applicability 3.1 129 0.6473

ConfidenceLevel 9.3 129 0.1689

1 + 2 Completeness 1.5 289 0.4059

Conformance −2 289 0.4006

Redundancy −20 274 0.0227

Applicability 0.7 279 0.8029

ConfidenceLevel 8.6 289 0.1048

test [38], and results are reported in Table 8. Each row reports
on each dependent variable measure for each group of partic-
ipants or the two groups together (1+2). Columns show the
mean differences, degree of freedom (DF), and correspond-
ing probability for the Wilcoxon test.

For Group 1 who used OCL to specify constraints for
Banking in the first round and specified constraints for VCS
using Java in the second round, as shown in Table 4, the
matched pairs were formed based on the data collected for
these two tasks.Apair in our context is the same student using
OCL to specify a constraint at a level of complexity in the
first round and specifying a constraint using Java in the sec-
ond round of equivalent. The same strategy was followed for
matching the results of applying OCL and Java by Group 2.

The participants in Group 1 performed significantly bet-
ter when they were using OCL than Java in terms of quality
metrics Completeness and Redundancy, as shown in Table 8
(the values highlighted in bold in Column 5). No signifi-
cant difference was observed between two methods regard-
ing Conformance though when Java was used, the partici-
pants performed slightly better than when they were using
OCL (notice the negative value in Row 4 and Column 3:
−0.025). Regarding the participants’ subjective opinions
on the applicability of the methods and their confidence
of applying them, no significant difference was observed
between the two methods. When looking at the results of
Group 2, no significant difference can be observed between
the two methods for any of the five dependent variables.
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Table 9 Wilcoxon test with the
significance level α = 0.05
(dependent variables by
Complexity)

Method Measures Pearson Chi-square
test (Prob>ChiSq)

Wilcoxon test (p value)

High-Medium Medium-Low High-Low

OCL Completeness N/A 0.825 0.4736 0.3228

Conformance 0.7061 0.9523 0.7001

Redundancy 0.5092 0.3529 0.7609

Applicability 0.0001 N/A

ConfidenceLevel <0.0001

Java Completeness N/A 0.1533 (−) 0.0036 0.1150

Conformance 0.0051 (−) 0.0089 0.8744

Redundancy 0.7528 (−) 0.4874 (−) 0.6994

Applicability 0.0004 N/A

ConfidenceLevel 0.0064

Fig. 2 Mean diamonds graph for Completeness (a) and Conformance (b) by Complexity of Java

When the results from the two groups are combined, OCL
yieldedbetter performance than Java in termsofRedundancy,
implying that the participantsworkingwith Java significantly
introduced more redundant clauses as compared to the par-
ticipants working with OCL.

3.2.2 Dependent variables by Complexity

As discussed in Sect. 2.4, we classified all the 20 constraints
of the two systems into three categories: Low, Medium, and
High. For continuous data, to testwhether the dependent vari-
ables are significantly different given different levels of com-
plexity, we performed the Kruskal–Wallis one-way analysis
of variance test [38]. It is a nonparametric equivalent of the
one-way ANOVA test, since the distributions of all the con-
tinuous dependent variables strongly depart from normality
as the results of the Shapiro–WilkW test showed. To compare
each pair of complexity levels, we performed the Wilcoxon
Signed-Rank test [38]. Results are provided in Table 9. For
ordinal data, the Pearson Chi-square test [38] was performed
and results are also reported in Table 9.

As shown in Table 9 (Rows 5, 6, 10 and 11, and Col-
umn 3), for Applicability and ConfidenceLevel, significant

differences were observed between any two Complexity lev-
els. When we further looked into the details, we observed
that for more complex constraints, the participants had sig-
nificantly less confidence and thought the given method was
significantly more difficult to apply. This observation is con-
sistent for both OCL and Java.

Regarding the three quality measures with continuous
data, results of the Wilcoxon pair tests show that there is
no significant difference for any constraint complexity level
pair for any measure of OCL, as shown in Table 9 (Rows 3–5
and Columns 4–6). This implies that OCL consistently per-
formed well (with 91% Completeness, 71% Conformance,
and 2% Redundancy on average) for all constraints at the
different levels of complexity.

For Java, as shown in Table 9, significant difference was
observed for Completeness between pair Medium-Low in
favor of Low (notice that ‘(−)’ attached to the p values in
the table indicates the direction of the differences). As shown
in Fig. 2, constraints with the Medium complexity specified
using Java obtained lower Completeness than the ones with
High complexity though no significant difference was iden-
tified (see Row 8, Column 4 of Table 9). As shown in Row 9
and Columns 4 and 5 of Table 9, constraints with theMedium
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Table 10 Correlation analysis among dependent variables with the sig-
nificance level α = 0.05

Variable by Variable Spearman ρ Prob > |ρ|
Completeness Applicability 0.1846 <0.0001

Conformance Applicability 0.3266 <0.0001

Redundancy Applicability −0.0309 0.4672

ConfidenceLevel Applicability 0.8046 <0.0001

ConfidenceLevel Completeness 0.1814 <0.0001

ConfidenceLevel Conformance 0.2938 <0.0001

ConfidenceLevel Redundancy −0.0679 0.1069

complexity specified by the participants using Java have sig-
nificantly lowerConformance than constraints with the other
two levels of complexity (on average 13 or 12% lower than
the constraints classified as the High or Low complexity,
respectively, as shown in Table 6). This result indicates that
the complexity of constraints has impact on the quality of
specified constraints when Java was used. Recall that in our
experiment, the ten constraints for each system were ordered
from the simplest one to the most complex one. The partici-
pants started from the simplest ones (Low) to more complex
ones (Medium andHigh). For constraints with low complex-
ity, the participants performed well. Gradually along with
the increase in the complexity, their performance decreased.
But they gained experience of applying Java for specifying
constraints after finished roughly two third of the constraints,
which eventually leads to the fact that they performed well
for the constraints with the High complexity.

3.3 Correlation analysis

It is also interesting to know whether there are correlations
between the quality measures (i.e., Completeness, Confor-
mance and Redundancy) and the measures measuring the
participants’ subjective opinions on the applicability of two
methods: Applicability andConfidenceLevel. To this end, we
conducted the nonparametric Spearman’s ρ test [38]. Results
are reported in Table 10. Spearman’s ρ is used to determine
the wellness of dependence relationship between two depen-
dent variables. The value of ρ ranges from −1 to +1. When
the value is 0 this means that there is no dependence between
two variables. A positive valuemeans the value of one depen-
dent variable increases as the value of the second dependent
variable increases. A negative value of ρ shows increasing
the value of one dependent variable decreases the value of
the second dependent variable. In addition to reporting ρ,
a p value is often reported to show the significance of the
relationship.

From Table 10, Rows 1–2 and Column 4, one can observe
that Completeness and Conformance are significantly corre-
lated withConfidenceLevel and Applicability, as the p values

are less than 0.05. This result indicates that the objectivemea-
sures of the quality of constraints and the subjective opinions
of the participants on the two methods are nicely consistent.
In otherwords, a participantwhowasmore confident to apply
a method to specify a constraint and thought the method was
easier to apply specified constraints with higher quality. Sig-
nificant correlation was identified between ConfidenceLevel
and Applicability, which implies that when participants were
confident also thought the methods were easy to apply.

3.4 Additional analysis

We also conducted additional analyses to understand how far
the student’s derived constraint specifications are from the
fully correct specifications in the sense that they are ready to
be processed by tools for supporting automation. From the
constraint specifications derived by the students, we selected
25 specifications that achieved 100% conformance for each
system and each method. In total, 100 constraint specifica-
tions were selected and inputted to IBM RSA for checking
OCL constraints and Eclipse IDE for Java development for
checking Java specifications.

Out of the 25 selected OCL constraints for the Banking
System, 12 of them contained errors that need to be fixed
before being used for supporting automation. For VCS, fif-
teen OCL constraints have errors identified. We report the
identified error types and number of errors in Table 11. One
can see that most of the errors are due to syntactically incor-
rect reference to enumeration literals. For example, in OCL,
an enumeration literal is referred as “Enumeration Name::
Enumeration Literal.” Some students mistakenly referred to
enumerations in one of the following ways: (1) Referring to
the enumeration literal as in Java, i.e., “Enumeration Name.
Enumeration Literal”; (2) Referring only with the name of
the enumeration literal, i.e., “Enumeration Literal.”

For the selected 25 Java specifications for the Banking
System, ten out of them contained one or more errors. For
VCS, nine out of 25 contained one or more errors; three
of them were caused by the incorrect design of the class
diagram. As it can be seen in Fig. 5, the cardinalities from
Saturn to SIP and H323 classes are exactly one. In the correct
design, it should have been “0..1.” In addition for VCS, we
found seven instances where the students referred to objects
in a syntacticallywrongway (J1 inTable 12). For example, an
object s of typeSaturnwasgiven to the students as the starting
point for traversal, but in these seven instances, the students
did not start the traversal from s. We report the identified
error types and number of errors in Table 12. In total, fifteen
errors were identified in the 10 constraints for Banking and
20 errors were identified in the 9 constraints for VCS.

Based on the total number of errors observed, it seems that
constrains specified in Java contain more errors than con-
strains specified in OCL. However, to further confirm this,
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Table 11 Errors observed when
tools were used (OCL) ID Error type Number of errors

Banking VCS

O1 Referring to an enumeration literal in a syntactically wrong way 4 11

O2 Referring to a subtype in a syntactically wrong way 1 0

O3 Missing ‘self.’ 1 1

O4 Spelling mistakes 2 0

O5 Missing either a left or right bracket 1 0

O6 Missing “endif” 1 0

O7 ‘.’ is used instead of ‘->’ when referring to size() 1 0

O8 Redundant if-then-else-endif statements 1 0

O9 The class diagram provided is not fully correct N/A 3

Total 12 15

Table 12 Errors observed when
tools were used (Java) ID Error type Number of errors

Banking VCS

J1 Referring to an object in a syntactically wrong way 0 7

J2 Referring to an enumeration literal in a syntactically wrong way 0 1

J3 Misused uppercase or lowercase when referring to objects 6 4

J4 ‘Boolean’ is used instead of ‘bool’ 5 1

J5 Missing semicolon 1 2

J6 Missing double quotation marks for strings 0 4

J7 Misspelling 1 1

J8 Extra bracket 1 0

J9 Used function size() to obtain the size of an array instead of “.length” 1 0

Total 15 20

another controlled experiment is needed with students spec-
ifying constraints directly in Java and OCL tools. We plan to
conduct such experiment in the future. Another observation
is that tools are needed for specifying fully correct OCL and
Java constraints. We can also learn from the results of the
experiment that the error types reported in Tables 11 and 12
are easy to fix with tool support.

3.5 Overall discussion

Based on the results presented in Sects. 3.1, 3.2 and 3.3, we
can observe that the performance of the participants speci-
fying constraints using both OCL and Java is equally well
as shown in Table 5. The mean Completeness for OCL is
91 and 89% for Java, whereas mean Conformance for OCL
is 73 and 71% for Java as shown in Table 5. Moreover, the
specified constraints have low mean Redundancy, i.e., 1%
for OCL and 4% for Java (Table 5).

Based on the results presented in Sect. 3.2, we observed
that the participants who worked with OCL performed con-
sistently well to specify constraints of varying complexity;
however this was not the case for Java. Based on these results,
it is apparent that it does not make much difference to use
OCL or Java for specifying constraints on UML models.
However, since the performance of the participants working
withOCL is not affected by the complexity of constraints, we
recommend using OCL for specifying constraints on UML
models. Even when one has to specify complex constraints,
as is the case in most of the industrial applications, we expect
the better performance with OCL as compared to Java.

Notice that the purpose of the experiment is to compare
OCL and Java in terms of specifying constraints on UML
Models at the design time andwewere not interested in study-
ing the runtime details of Java and OCL. Moreover, some of
OCL evaluators such as Dresden OCL [10] and Eclipse OCL
[8] translate OCL constraints into Java for evaluation at the
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backend and thus all the runtime issues of Java are the same
as for OCL.

It is important to point it out that the motivation of the
work is to test the capability of human subjects in terms of
specifying constraints using OCL and Java. We do not aim
to use, in the context of this controlled experiment, manually
derived specifications for any particular purpose (e.g., gen-
erating test data). Therefore, evaluating constraints is out of
the scope of this experiment. In addition, evaluating an OCL
constraint and the execution of a Java program require OCL
evaluators and Java compilers, respectively, and thus are out
of the scope of this controlled experiment.

In this experiment, we only measure the semantic con-
formance of derived OCL and Java constraint specifications
against provided English specifications and class diagrams.
Since we focus on comparing OCL and Java in terms of
specifying constraints bymentally understanding UML class
diagrams and constraints written in English, measuring syn-
tactic conformance of these constraint specifications is not
within the scope of this experiment. This is due to the reason
that a tool can easily check syntactic conformance of OCL
and Java constraint specifications, but it cannot ensure their
semantic conformance against requirements and validating
their semantic conformance has to be manual, which leads
to the definition of the complexity metrics as discussed in
Sect. 2.3.1.

4 Threats to validity

Below, we discuss the threats to validity of our controlled
experiment based on the concepts discussed in [36]. Con-
clusion validity threats are concerned with factors that can
influence the conclusion that can be drawn from the results
of the experiments. As with most controlled experiments in
software engineering, our main conclusion validity threat is
related to the sample size on which we base our analysis. To
deal with this, our experiment design required modeling 10
constraints per system (20 in total for two systems) to max-
imize the number of observations within time constraints.
The other concern is that the quality of constraints specifica-
tion can be interpreted in various ways, depending on one’s
subjective opinion. However, we made an effort to minimize
subjective judgments by proposing a set of objective metrics
to measure the quality of constraints. By doing so, subjective
perceptions can be reduced to minimum and the compari-
son of constraints derived by different participants becomes
possible.

Internal validity threats exist when the outcome of results
is influenced by confounded factors and are not necessarily
due to the application of the treatment being studied. Through
our experiment design,we have tried tominimize the chances
of other factors being confounded with our primary indepen-

dent variable: the use of OCL and Java. We used a within-
subjects design and matched pairs analysis since the strength
of this design is that the variation due to differences in par-
ticipants is eliminated as each participant acts as its own
control. We avoided any biased assignment of participants
to groups by randomization and blocking based on question-
naire results. The experiment participantswere providedwith
constraints that are written in English as the input, which are
inherently ambiguous. Therefore, it might have the impact on
the quality of the derivedOCLand Java constraints.However,
it is worth noticing that the participants using either OCL or
Java for the same system were provided with the same set
of constraints in English. Therefore, we do not expect this
threat having any impact on the comparison ofOCL and Java.
Another concern is the proficiency of the English language
of the students. Explaining the constraints in English by the
authors to the participants during the experiment reduces the
potential impact of proficiency of the English of participants
on their performance.We also avoided the possible impact of
this factor by using the within-subjects design and matched
pairs analysis.

Regarding construct validity, the main threat is that we
were not able to investigate all features of OCL (such as spe-
cialized operations including oclInState) in this experiment
due to the nature of our case studies. This will require repli-
cations with different systems, which we plan to conduct in
the future.

The main threat to external validity is typical of con-
trolled experiments in artificial settings: Are the participants
representative of software professionals? Many practitioners
have anyway very little knowledge of OCL in general, and
hence require training. Note also that we chose a group of
experienced graduate students with an advanced educational
background (Sect. 2.2). In addition, some studies [39–41]
have been reported on the performance, for various tasks, of
trained software engineering students when compared with
professional developers. These differences were not statisti-
cally significant when compared to junior and intermediate
developers, thus suggesting that there is no evidence that
students trained for the tasks at hand may not be used as
participants in place of professionals.

5 Related work

OCL is a standard language that is widely accepted for writ-
ing constraints on UML models. OCL is based on first-
order logic and set theory and provides various constructs
(e.g., collection operations) to define constraints in a concise
form. The language allows modelers to write constraints at
various levels of abstraction and for various types of mod-
els. For example, it can be used to write class and state
invariants, guards in state machines, constraints in sequence
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diagrams, and pre- and post-conditions of operations. Our
several industrial case studies have shown the benefits that
it can bring to solve various industrial problems such as
supporting automated model-based test case generation and
automatedmodel-based consistency checking and configura-
tion in the context of produce line engineering [5,6,15,18–
20,26,28,30]. OCL is also being used as the language for
writing constraints on models in many commercial MBT
tools such as CertifyIt [13] and QTronic [42].

Java is a programming language that has been very widely
used and supported by a lot of tools. However, the model-
ing community does not often notice that Java can also be
used as a constraint language to specify constraints in UML
models. Considering Java is widely known and practiced by
software developers and has a large number of tools available
in the market, gradually it becomes an option, in addition to
OCL, to specify constraints on UML models. This obser-
vation is supported by the fact that some market-leading
UML modeling tools such as IBM RSA [33] and Papyrus
[32] support using both OCL and Java to specify constraints.
It is, however, rarely reported in the literature, with scientific
evidence, which of these two languages (i.e., OCL or Java)
is better in terms of specifying constraints on UML class
diagrams.

In the rest of the section, we discuss several representa-
tive tools that provide support for using OCL and/or Java
for specifying constraints (Sect. 5.1), followed by the related
work reporting controlled experiments empirically evaluat-
ing the impact of OCL in UML-based maintenance and the
understandability of OCL (Sect. 5.2).

5.1 Tools that implement OCL and/or Java for specifying
constraints

In UML models, constraints can be specified using different
types of languages such as natural language, programming
languages (e.g., Java and C++), and OCL. Some existing
open source and commercial tools such as IBM RSA [33]
and Papyrus [32] providemodeling environments for users to
specify constraints in UML models with various languages.
However, OCL and Java are two commonly implemented
constraint specification languages and some modeling tools
also support automated validation of constraints specified
in OCL and/or Java. In the following section, we briefly
discuss some widely used modeling tools that have OCL
and/or Java implemented as their constraint specification
languages.

IBM RSA [33] allows one to specify constraints either
using OCL or Java. One argument for supporting both lan-
guages is that “Javamight be easier to use to express complex
constraints, and offer great flexibility” and “OCL is more
consistent with how OMG defines UML constraints” [43].
Notice that this argument is not supported with any scientific

evidence. The empirical study, we conducted exactly aims to
test which one is easier to use andwhich one can handle com-
plex constraints better. The results reported in Sect. 3 reveal
that OCL performs significantly better than Java in terms of
handling complex constraints, which is not consistent with
the argument provided in [43]. Open source modeling tool
Papyrus [32] allows users to specify constraints using OCL,
Java, natural language, C, and C++. However, as mentioned
in [44], to make specified constraints usable by Papyrus, con-
straints must be written in OCL or Java such that specified
constraints can be validated automatically.

OneModelica [45] is the IDE designed for the Modelica
modeling language. In [46] a study was reported to compare
OCL and Java in the context of OneModelica for Model-
ica code validation. OCL and Java were compared to each
other regarding two aspects: readability of constraints as well
as execution performance. The first comparison aspect is
closely relevant to the objective of the controlled experiment
reported in this paper. The authors of the paper [46] con-
cluded, via subjective language concept comparison, that the
readability of OCL constraints is “very good” as compared
to Java. However, more software developers can understand
Java and tool support is a quite important benefit as compared
toOCL. This conclusion conforms towhat we observed from
the controlled experiment. However, it is important to notice
that the controlled experiment we conducted is a scientific
way to provide evidence and the results of the experiment
were analyzed and evaluated with more objective metrics
(e.g., conformance, completeness) instead of a very subjec-
tive evaluation of readability.

MagicDraw [31], EnterpriseArchitect [47], and argoUML
[48] are another threeUMLmodeling tools that provide capa-
bility of specifying OCL constraints and validating them.
None of them, however, support specifying constraints using
Java.

5.2 Controlled experiments

Briand et al. [49,50] conducted a controlled experiment to
evaluate the impact of OCL in UML-based maintenance,
from the perspective of using OCL on model comprehension
andmaintainability. Themotivationwas to assess the benefits
(precision) that OCL brings when applying it in UML-based
development, considering the additional effort required and
extra formality introduced. Results show that an initial learn-
ing curve is required to gain significant benefits when using
OCL in combination with UML diagrams. To compare with
our experiment, we evaluate the applicability ofOCL in com-
bination with UML by comparing it with Java, which can
equivalently do the same thing. Our motivation is to collect
evidence and provide arguments in a scientific way which of
these two languages is better. Therefore, we can recommend
it to our industrial partners.
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Correa et al. reported a controlled experiment in [51]
to evaluate the impact of bad OCL expressions and their
refactoring on the understandability of OCL specifications.
Results show thatmost refactoring significantly improves the
understandability of OCL specification. We did not find any
other work relating to empirical evaluation of OCL or Java.

Harald Störrle reported in [52] the results of a series of
controlled experiments to evaluate the usability of the OCL
Query API (OQAPI), which was designed for the purpose
of improving the usability of OCL for supporting querying.
Experiment results show that OQAPI is easy to use in terms
of facilitating user querying using OCL.

Based on the above-related work, we can conclude that
the controlled experiment reported in this paper is one of
the first experiments that were exclusively designed to com-
pare OCL and Java for specifying constraints on UML
models. The results of the experiment provide some evi-
dence that can be used by practitioners and academics to
choose a language for specifying constraints for their specific
problems.

6 Conclusion

The Object Constraint Language (OCL) has been widely
used along with UML models for various purposes such as
supporting model-based testing and configuration of prod-
ucts in a product line. From the last several years, we have
been working on various industrial projects on model-based
engineering (MBE), which involved using the OCL. One
of the major challenges that we faced is the limited evi-
dence about the applicability of OCL in the literature as
compared to, e.g., Java. Such evidence is important to con-
vince the industrial partners about the use of OCL in the
industry.

To collect some evidence about the use of OCL, we
reported a controlled experiment that was conducted to eval-
uate the “applicability” of OCL by comparing it with one of
themost commonly used programming languages in terms of
applying them to specify constraints onUMLclass diagrams.
We looked at applicability from two aspects: the quality of
specified constraints in terms of completeness, conformance,
and redundancy, and subjective opinions of participants on
the applicability and their confidence of applying the two
languages.

Experiment results showed that both OCL and Java are
equally good: Completeness and conformance of the speci-
fied constraints were high, and there were very few redun-
dant clauses in the specified constraints. We also observed
that the applicability of OCL is not impacted by the com-
plexity of constraints. This observation gives us confidence
that OCL scales well when it is used for specifying complex
constraints, which are commonly seen in industrial settings.

However, this is not a case for Java whose performance is
influenced by the complexity of constraints.

Moreover, we performed additional analyses where we
took 100 constraints in Java and OCL that have 100%
conformance. These constraints were inputted to OCL and
Java tools to identify additional errors in their specification.
Results show that the constraints specified in Java contain
more errors than in the ones in OCL. These results suggest
that tools are absolutely needed for specifying fully correct
OCL and Java constraints.

Based on the results of the experiment, we recommend
using OCL for specifying constraints on UML models
for addressing large-scale industry problems, especially for
industrial contexts where Java is not used as the development
language.

Appendix A: Answer sheet of the Banking System case
study

In this Appendix, we present the answer sheet that was
provided to the students during the controlled experiment
for Banking System, including the instruction, the system
description, the class diagram that OCL constraints should
be applied on, and the 10 constraints written in English.

A.1 Instruction for specifying constraints using OCL

Check the provided system description and the class dia-
gram, and specify the given constraints using OCL with the
following format:

context Bank
inv:

A.2 Instruction for specifying constraints using Java

Check the provided system description and the class dia-
gram, and specify the given constraints using Java. All the
attributes in the class diagram are public, which means that
they can be directly accessed with objects. Please provide the
specification of each constraint as the body of the following
function:

public boolean constraint (Bank b) {
}

A.3 System description

This case study is an extended version of Banking System
case study from theOCL2.2 specification.Abank has several
employees and customers. Each customer can have at most
two accounts in a bank: One is saving account and the other is
current account. A customer must be employed in a company
or owns a company in order to have a bank account. An
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Fig. 3 Class diagram for Banking System

Table 13 Description of each attribute

Class Attribute Description

Bank Name Name of a bank

Address Address of a bank

Customer Name Name of a customer

Address Address of a customer

isEmployed True if a customer is employed or owns a company; false otherwise

Gender Male or female

Account accountNumber A unique account number of a customer

Balance Amount in an account

Status Close if a bank account is closed down; open otherwise

withdraw True if a certain amount can be withdraw from an account; false otherwise

Company Name Name of a company

Address Address of a company

numberOfEmployees Number of employees in a company

employee of a bank can also be its customer having accounts
in the bank.

A.4 Class diagram

Figure 3 shows a class diagram modeling the Banking Sys-
tem. Table 13 provides the description of each attribute of a
class in the class diagram.

A.5 Constraints

1. All customers of the bank must be employed.
2. All customers and employees of the bank must be

18years or older.
3. If all the accounts of a customer have balance less than

or equal to 0, then these accounts should be all closed.
4. A customer is either employed in a company or owns

his/her company.
5. All accounts in the bank must have unique account num-

bers and each account must be linked to exactly one cus-
tomer.

6. Each customer of the bank either owns at least a company
or work in a company that has more than one employee.

7. The bank does not allow their customers to withdraw
money from their saving accounts.

8. In the bank, there should be gender equality in its employ-
ees, i.e., the number of male employees should be equal
to the number of female employees.

9. An employee of the bank must not work in another com-
pany, but may own a company with exact one employee.

10. A customer of the bank can only have a saving account
when he/she has a current account but not vice versa.

Appendix B: Answer sheet of the Video Conferencing
System (VCS) case study

In this Appendix, we present the answer sheet that was pro-
vided to the students during the controlled experiment for
Video Conferencing System, including the instruction, the
system description, the class diagram that OCL constraints
should be applied on, and the 10 constraints written in Eng-
lish.

123



Constraints on UML models 773

Fig. 4 Class diagram for
Saturn (Part I)

Fig. 5 Class diagram for Saturn (Part II)

Table 14 Description of each attribute

Class Attribute Description

System Unit NumberOfActiveCalls Holds number of VCSs in a videoconference

MaximumNumberOfCalls Maximum number of calls supported by Saturn (3 in this case)

Conference PresentationMode Saturn is “off” when none of VCSs is presenting. Saturn is
“Receiving” when a VCS other than Saturn is presenting.
Saturn is “Sending” when Saturn is presenting

PresenterId A non-negative Id of the VCS currently presenting

Call CallItem It is a non-negative Id of a call to a VCS

Number Number or IP address of a VCS that is in a videoconference with Saturn

IncomingPresentationChannel Protocol Protocol used for presentation, which is: Off, H263, H264, and H263b

OutgoingPresentationChannel Protocol

B.1 Instruction for specifying constraints using OCL

Check the provided system description and the class dia-
gram, and specify the given constraints using OCL with the
following format:

context Bank
inv:

B.2 Instruction for specifying constraints using Java

Check the provided system description and the class dia-
gram, and specify the given constraints using Java. All the
attributes in the class diagram are public, which means that
they can be directly accessed with objects. Please provide the
specification of each constraint as the body of the following
function:

public boolean constraint (Saturn s) {
}

B.3 System description

Our case study is part of a project aiming at supporting auto-
mated, model-based testing of a core subsystem of a video
conferencing system (VCS) called Saturn. The core func-
tionality to bemodeledmanages the sending and receiving of
multimedia streams.Audio andvideo signals are sent through
separate channels, and there is also a possibility of transmit-
ting presentations in parallel with audio and video. Only one
conference participant can send presentations at a time and
all others receive it.

123



774 T. Yue, S. Ali

B.4 Class diagram

The functional behavior of Saturn consists of a set of class
diagrams and a set of UML state machines. An excerpt of
class diagram for Saturn is provided in Fig. 4. The UML
class diagram is meant to capture information about APIs
and system (state) variables, which are required to generate
executable test cases in our application context. In this figure,
however, we do not show APIs, since we do not need them

in this context. Figure 5 is also a class diagram for Saturn
capturing various configuration parameters. The Saturn class
in Figs. 4 and 5 is the same, and we present two separate
class diagrams for the purpose of clarity. Table 14 shows the
description of each attribute.

B.5 Constraints

1. Saturn should be either in SIP mode or H323, but not in
both modes at the same time.

2. Number of active calls for Saturn ranges from 0 to 3.
3. When Saturn is presenting, the presenter’s ID should be

a non-negative integer.
4. For each call, call item should be a non-negative integer

and call number shouldn’t be an empty string (“”).
5. For each call, call item and number should be unique.
6. In H323 mode, rate adaption and forward error correct

mode should be enabled at the same time.
7. When Saturn is in SIP mode then all the information

related to SIP protocol shouldn’t be empty.
8. When Saturn is presenting, protocols of all the outgoing

presentation channels should not be off.
9. When Saturn is receiving presentation, exactly one of

input presentation channels should have protocol not
equal to off.

10. When Saturn’s presenting or receiving presentation,
exactly one of the presentation channels should have pro-
tocol not equal to “Off”.

Appendix C: Post-questionnaire

Please put a (
√

) in the corresponding column. You are
strongly encouraged to refer to the list of constraints you
were provided with. (The constraint numbers in the follow-
ing tablesmatch the numbers provided in the list of restriction
specifications).

A: Completely agree; B: Generally agree; C: Generally
disagree; D: Completely disagree

Constraint# I understand the 
provided class 
diagram clearly 

I understood the 
constraint 
properly The constraint was easy 

to specify with the 
requested language.

I feel confident to 
apply the 
language 

A B C D A B C D A B C D A B C D 

1 

2 
3
4 
5 
6
7 
8 
9
10 

Appendix D: Pre-questionnaire

Levels of agreement: Strongly agree, Agree, Neither agree
nor disagree, Disagree, and Strongly disagree
Likert Scale Questions:

1. I have good knowledge onUML class diagrammodeling.
2. I have good knowledge on writing OCL expressions.
3. I have good knowledge on programming using Java.

Open Questions:

4. How many courses have you taken that taught UML?
What are these courses?

5. How many courses have you taken that taught OCL?
What are these courses?

6. How many Java-programming projects have you con-
ducted in the past? What are they?

7. Howmany OCL and UML related courses have you con-
ducted in the past? What are they?

8. What other kinds training on UML, OCL, or Java have
you received in the past?

Appendix E: Examples of OCL and Java constraints

In this Appendix, we provide some examples of OCL and
Java constraints taken from the answer sheets submitted by
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the students during the controlled experiment. We also pro-
vide the evaluation results based on the metrics defined in
Sect. 2.4.1.

E.1 OCL, Banking System

Banking System:

Constraint A: All customers of the bank must be employed.

Student A:
Context Bank
inv: self.customer->iterate(c:Customer|

c.isEmployed = true)
Completeness = 1, Conformance = 1, and Redundancy =

0

Student B:
Context Bank
inv: for each self.employee.isEmployed

= true
Completeness = 1, Conformance = 0.67, and Redundancy

= 0

Constraint B: All accounts in the bank must have unique
account numbers and each account must be linked to exactly
one customer.

Student A:
Context Bank
inv: self.amount->isUnique(account

Number) and self.account.customer->size()
=1

Completeness = 1, Conformance = 0.83, and Redundancy
= 0

Student B:
Context Bank
inv: if for all self.account.account

Number is unique and for each self.
account.account

Completeness = 0.5, Conformance = 0.25, and Redun-
dancy = 0

Constraint C: A customer of the bank can only have a sav-
ing account when he/she has a current account but not vice
versa.

Student A:
Context Customer::Saving:Saving
inv: self.current->size()>=1
Completeness = 0.25, Conformance = 0.097, and Redun-

dancy = 0

Student B:
Context Customer
inv: if self.current.size()>0 then

self.saving.size()>0
Completeness = 0.5, Conformance = 0.11, and Redun-

dancy = 0

E.2 OCL, Video Conferencing Systems

Constraint D: Saturn should be either in SIPmodel or H323,
but not in both modes at the same time.

Student C:
Context Saturn
inv: (self.networkService.SIP_Mode =

On and self.networkService.H323_Mode
= Off) or (self.networkService.SIP_mode
= Off and self.networkService.H323_Mode
= On)

Completeness = 1, Conformance = 0.75, and Redundancy
= 0

Student D:
Context Saturn
inv: self.h323->size() + self.sip

->size() =1
Completeness = 1, Conformance = 1, and Redundancy =

0

Constraint E: For each call, call item and number should be
unique.

Student C:
Context Saturn
inv: self.conference.calls->isUnique

(callItem) and self.conference.calls->
isUnique(number)

Completeness = 1, Conformance = 0.33, and Redundancy
= 0

Student D:
Context Saturn
inv: self.conference.calls->isUnique

(CallItem) and self.conference.calls->
isUnique(number)

Completeness = 1, Conformance = 0.33, and Redundancy
= 0
Constraint F: When Saturn’s presenting or receiving pre-
sentation, exactly one of the presentation channels should
have protocol not equal to “Off”.

Student C:
Context Saturn
inv: OutgoingPresentationChannel::
Protocol <> Off or Incoming
PresentationChannel::Protocol <> Off
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Completeness = 0.5, Conformance = 0.28, and Redun-
dancy = 0

Student D:

Completeness = 1, Conformance = 1, and Redundancy
= 0

E.3 Java, Banking System

Constraint A: All customers of the bank must be employed.

Student C:

Completeness = 1, Conformance = 1, and Redundancy
= 0
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Student D:

Completeness = 1, Conformance = 0.67, and Redundancy
= 0

Student D:

Completeness = 1, Conformance = 1, and Redundancy
= 0

E.4 Java, Video Conferencing System

Constraint D: Saturn should be either in SIPmodel or H323,
but not in both modes at the same time.

Student A:

Completeness = 1, Conformance = 1, and Redundancy
= 0.5
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Student B:

Completeness = 1, Conformance = 1, and Redundancy =
0

Constraint E: For each call, call item and number should be
unique.

Student A:

Completeness = 1, Conformance = 0.83, and Redundancy
= 0

Student B:

Completeness = 1, Conformance = 0.83, and Redundancy
= 0

Constraint F: When Saturn’s presenting or receiving pre-
sentation, exactly one of the presentation channels should
have protocol not equal to “Off”.
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Student A:

Completeness = 0.5, Conformance = 0.5, andRedundancy
= 0.5

Student B:

Completeness = 1, Conformance = 1, and Redundancy
= 0.5
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