
Softw Syst Model (2016) 15:783–810
DOI 10.1007/s10270-014-0437-x

REGULAR PAPER

Least-change bidirectional model transformation with QVT-R
and ATL

Nuno Macedo · Alcino Cunha

Received: 16 September 2013 / Revised: 22 July 2014 / Accepted: 13 October 2014 / Published online: 22 November 2014
© Springer-Verlag Berlin Heidelberg 2014

Abstract QVT Relations (QVT-R) is the standard lan-
guage proposed by the OMG to specify bidirectional model
transformations. Unfortunately, in part due to ambigui-
ties and omissions in the original semantics, acceptance
and development of effective tool support have been slow.
Recently, the checking semantics of QVT-R has been clar-
ified and formalized. In this article, we propose a QVT-R
tool that complies to such semantics. Unlike any other exist-
ing tool, it also supports meta-models enriched with OCL
constraints (thus avoiding returning ill-formed models) and
proposes an alternative enforcement semantics that works
according to the simple and predictable “principle of least
change.” The implementation is based on an embedding of
bothQVT-R transformations andUMLclass diagrams (anno-
tated with OCL) in Alloy, a lightweight formal specification
language with support for automatic model finding via SAT
solving. We also show how this technique can be applied to
bidirectionalize ATL, a popular (but unidirectional) model
transformation language.

Keywords Model transformation · Bidirectional
transformation · Least-change principle · QVT-R ·
ATL · Alloy

Communicated by Prof. Gabriele Taentzer.

N. Macedo (B) · A. Cunha
HASLab, INESC TEC and Universidade do Minho,
Braga, Portugal
e-mail: nfmmacedo@di.uminho.pt

A. Cunha
e-mail: alcino@di.uminho.pt

1 Introduction

Model-driven engineering (MDE) is an approach to software
development that focuses on models as the primary develop-
ment entity. In MDE, different models may capture different
views of the same system (typically differentmodels are used
to specify structural and dynamic issues) or may be used at
different levels of abstraction (code is obtained by refining
platform-independent models to platform-specific ones). All
these (possibly overlapping)models should be kept somehow
consistent, and changes to one model should be propagated
to all the others in a consistent manner. Ideally, specifications
of transformations between models should be bidirectional,
in the sense that a single artifact denotes transformations
that can be used in both directions. Moreover, these trans-
formations cannot just map a source to a target model and
vice-versa: If some source information is discarded by the
transformation, to propagate an update in the target back to a
new consistent source, access to the original source model is
also required, so that discarded information can be recovered.

To support the MDE approach, the Object Management
Group (OMG) has launched the Model-driven Architecture
(MDA) initiative, which prescribed the usage of MOF [43]
(usually presented as UML class diagrams [41]) and OCL
[42] for the specification of (object oriented) models and
constraints over them. To specify transformations between
models, the OMG proposed the Query/View/Transformation
(QVT) standard [40]. While QVT provides three different
languages for the specification of transformations, the most
relevant to MDE is the QVT Relations (QVT-R) language,
that allows the specification of a bidirectional transforma-
tion by defining a single declarative consistency relation
between two (or more) meta-models. Given this specifica-
tion, the transformation can be run in two modes: check-
only, to test whether two models are consistent according

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s10270-014-0437-x&domain=pdf

784 N. Macedo, A. Cunha

to the specified relation; or enforce, that given two models
and an execution direction (picking one of them as the tar-
get) updates the target model in order to recover consistency.
The standard prescribes a “check-before-enforce” semantics,
that is, enforce mode cannot modify the target if the mod-
els happen to be already consistent according to checking
semantics.

Effective tool support forQVT-Rhas been slow to emerge,
which hinders the universal adoption of this standard. In
part, this is due to the incomplete and ambiguous semantics
defined in [40]. While the checking semantics has recently
been clarified and formalized [4,19,47], the enforcement
semantics still remains largely obscure and even incompat-
ible with other OMG standards, despite some recent efforts
to provide a formal specification [5]. Namely, it completely
ignores possible OCL constraints over the meta-models, thus
allowing updates that can lead to ill-formed target models.
Likewise, none of the existing QVT-R model transformation
tools supports such constraints, which makes them unusable
in many realistic scenarios. Unfortunately, there are other
problems that affect them. Some do not even comply to the
standard syntax and support only a “QVT-like” language
(including not providing both running modes as required by
the standard). Others do not support truly non-bijective bidi-
rectional transformations (for example, ignoring the original
target model in the enforcemode). Some purposely disregard
the intended QVT-R semantics (including checking seman-
tics) and implement a new (still unclear and ambiguous) one.
In most cases, it is not clear whether the supported checking
semantics is equivalent to the one formalized in [4,19,47].
And finally, none clarifies the problems and ambiguities in
the standard concerning enforcement semantics, and none
presents a simple enough alternative for thismode thatmakes
its behavior predictable to the user.

In this article, we propose a QVT-R bidirectional model
transformation tool that addresses all these issues. Both the
meta-models and transformation specificationsmay be anno-
tated with OCL, and it supports a large subset of the standard
QVT-R language, including execution of both modes inde-
pendently as prescribed. The main restriction is that recur-
sion must be non-circular (or well-founded), which is sat-
isfied by most of the interesting case studies. The checking
semantics closely follows the one specified in the standard,
being equivalent to the one formalized in [4,19,47]. Finally,
instead of the ambiguous (and OCL incompatible) enforce-
ment semantics proposed in the standard, our tool follows the
clear and predictable principle of least change [35] and just
returns updated consistent target models that are at aminimal
distance from the original. In particular, the “check-before-
enforce” policy required by QVT-R is trivially satisfied by
this semantics.Our tool supports twodifferentmechanisms to
measure the distance between twomodels: the graph edit dis-

tance [51], that just counts insertions and deletions of nodes
and edges in the graph that corresponds to a model; and a
variation where the user is allowed to parameterize which
operations should count as valid edits, by attaching them to
themeta-model and specifying their pre- and post-conditions
in OCL.

To achieve this, we propose an embedding of both QVT-
R transformations and UML class diagrams (annotated with
OCL) in Alloy [24], a lightweight formal specification lan-
guagewith support for automaticmodel findingviaSATsolv-
ing. Alloy is based on relational logic, which has been shown
to be very effective to validate and verify object-oriented
models. Its connection with theMDA has also been explored
before through tools that translateUMLclass diagrams anno-
tated with OCL to Alloy [1,9], on top of which we build our
embedding. The proposed technique has been implemented
as part of Echo, a tool for the consistent exploration and
transformation ofmodels throughmodel finding [33] and has
already proved effective in debugging existing transforma-
tions, namely helping us unveiling several errors in the well-
known object-relational mapping that illustrates the QVT-R
specification [40].

Our approach is sufficiently general to be applied to other
model transformation languages. To exemplify, we apply our
bidirectionalization technique to a significative subset of the
Atlas Transformation Language (ATL) [25], a widely used,
but unidirectional, model transformation language. From the
specification of an ATL forward transformation, we first
infer a consistency relation between source and target meta-
models, which then enables us to apply our bidirectionaliza-
tion engine and automatically obtain a backward transforma-
tion that follows the principle of least change.

The present article is an extended version of a previous
conference paper [31]. The application of our technique to
bidirectionalize ATL is the main new contribution, but in
addition to the previous content, this article describes the
proposed technique with more detail, how it was deployed
in a user-friendly tool, and includes a new case study and
an extensive evaluation to access its effectiveness. Sec-
tion 2 introduces the QVT-R language, describes the stan-
dard checking semantics, presents some of the problemswith
the enforcement semantics and proposes and formalizes a
simpler alternative based on the principle of least change.
Section 3 presents our embedding of UML class diagrams
(annotated with OCL) and QVT-R transformations in Alloy.
Section 4 explores how the proposed technique can also be
used to bidirectionalize ATL. Section 5 describes how it was
deployed as part of the Echo framework as an Eclipse IDE
plugin for managing of model consistency, while Sect. 6
presents the evaluation and scalability tests. Finally, Sect. 7
analyzes related work, while Sect. 8 draws conclusions and
points to future work.

123

Least-change bidirectional model transformation with QVT-R and ATL 785

2 QVT relations

In this section, the basic concepts and the semantics of the
QVT-R language are introduced. A more detailed presenta-
tion can be found in the OMG standard [40].

2.1 Basic concepts

A QVT-R specification consists of a transformation T
between a set of meta-models that states under which con-
ditions their conforming models are considered consistent.
For the remainder of this article, we will restrict ourselves
to transformations between two meta-models for simplic-
ity purposes, although most concepts could be generalized
to multi-directional transformations [32]. From T , QVT-R
requires the inference of three artifacts: a relationT ⊆ M×N
that tests if twomodelsm:M and n:N are consistent and trans-
formations

−→
T :M×N → N and

←−
T :M×N → M that prop-

agate changes on a sourcemodel to a target model, restoring
consistency between the two. Thus, transformations can be
executed in two modes: checkonly mode, where the models
are simply checked for consistency, denoted as T (m, n);
and enforce mode, where

−→
T or

←−
T is applied to inconsistent

models in order to restore consistency, depending on which
of the twomodels should be updated. Note that both transfor-
mations take as extra argument the original opposite model:
if models m : M and n : N are initially consistent, and m is
updated tom′, −→T takes as input bothm′ and n to produce the
new consistent n′. Thisway the system is able to retrieve from
n information discarded by the transformation. This formal-
ization of QVT-R is inspired by the concept of maintainer
[35] andwas first proposed in [46]. Naturally, when the trans-
formations propagate an update, the result is expected to be
consistent. Formally, the transformation is said to be correct
if:

∀ m : M, n : N |
T (m,

−→
T (m, n)) ∧ T (

←−
T (m, n), n)

The transformations are also required to follow a “check-
before-enforce” policy (also referred to as hippocraticness
[46]), that can be formalized as follows:

∀ m : M, n : N |
T (m, n) ⇒ −→

T (m, n) = n ∧ ←−
T (m, n) = m

A QVT-R transformation is defined by a set of relations.
A relation consists of a domain pattern for each meta-model
of the transformation that defines which objects of the model
it relates by pattern matching. It also may include when
and where constraints, that act as a kind of pre- and post-

conditions for the relation application, respectively. These
constraints may contain arbitrary OCL expressions. The
abstract syntax of a relation is the following:

[top] relation R {
[variable declarations]
domain M a : A { πM }
domain N b : B { πN }
[when { ψ }]
[where { φ }]

}

In relation R, the domain pattern for meta-model M consists
of a domain variable a and a template πM that binds the
values of some of its properties (attributes or related asso-
ciations), which candidate objects of type A must match.
Likewise for the domain pattern πN for meta-model N . To
simplify the presentation, the above syntax restricts relations
to have exactly one domain variable per meta-model. If the
multiplicity of a navigated property R is different from one,
pattern templates involving it denote inclusion tests, i.e., a
pattern R = a denotes the test a ∈ R. Properties can also
be navigated backwards by using the opposite keyword.
Templates can be complemented with arbitrary OCL con-
straints. Relations can optionally bemarked astop, in which
case they must hold for all objects of the specified class.
Otherwise, they are only tested for particular objects when
invoked in when or where clauses.

2.2 Examples

As a first example, we will define a simplified version of the
classic object-relational mapping transformation that illus-
trates theQVT-R specification [40]. Although simplified, this
version still exhibits some of the problems of the original
version, which we will describe in the next section. Figure 1
depicts a simplified version of the object (UML) and relational
(RDBMS) meta-models, including signatures of possible edit
operations. Figure 2 defines a transformation uml2rdbms,
whose goal is to map every persistent class in a package to a
table in a schemawith the same name. Each table should con-
tain a column for each attribute (including inherited ones) of
the corresponding class. A constraint of the UMLmeta-model
that cannot be captured by class diagrams, neitherQVT-Rkey
constraints, is the requirement that the associationgeneral
should be acyclic. One must resort to OCL to express it, for
example by adding the following invariant to the UML meta-
model:

context Class inv:
not self.closure(general)->includes(self)

The constraint relies on the transitive closure operator, which
has recently been introduced to the OCL standard [42,
p. 168].

There are two top relations: P2S that maps each pack-
age to a schema with the same name and C2T that maps

123

786 N. Macedo, A. Cunha

namespace

general

columns

setName (n : String)
setpersistent ()
addAttribute (n : String)
remAttribute (n : String)
moveAttribute (n,m: String)

name : String
persistent : Bool

Class

setName (n : String)
name : String

Attribute

attributes
setName (n : String)
name : String

Column

setName (n : String)
addColumn (n : String)
remColumn (n : String)

name : String
Table1 *

*1

*

*

setName (s : String)
addClass (n : String)
remClass (n : String)

name : String
Package

setName (n : String)
addTable (n : String)
remTable (n : String)

name : String
Schema

schema
1*

* 1

Fig. 1 Class diagrams of the UML and RDBMS meta-models

Fig. 2 Simplified version of the uml2rdbms QVT-R transformation

each class to a table with the same name. To ensure that a
class is only mapped to a table if the respective package and
schema are related, relation C2T invokes P2S (with con-

target
source* 1

* 1

machine

addTransition(s,t : String)
addTopState(n : String)
addSubState(n,m : String)

name : String
StateMachine

name : String
State

1

*
Transition

CompositeState

container

0..1

*

machine 1

*
transitions

states

Fig. 3 Class diagram of the HSM meta-model

crete domain variables) in the when clause. For concrete
class c and table t , C2T also calls relation A2C in the where
clause, that will be responsible to map each attribute in c to
a column in t . A2C directly calls PA2C, that translates each
attribute directly declared in c to a column in t and SA2C,
that recursively calls A2C on the general class of c, so that
each inherited attribute is also translated to a column in t .

Another classical bidirectional model transformation
example is that of the expansion/collapse of a hierarchical
state machine (HSM). In a HSM, states may themselves
contain sub-states (in which case they are called compos-
ite states), as defined by the HSM meta-model in Fig. 3.
Transitions may exist between sub-states and states out-
side their owning composite state. Like with the UML meta-
model, the HSMmeta-model also requires an additional OCL
constraint to avoid circular containment. One advantage of
HSMs is abstraction, and a HSM can be collapsed into a
non-hierarchical state machine (NHSM) that presents only
top-level states, inheriting the incoming and outcoming tran-
sitions of their sub-states. The NHSM meta-model is sim-
ilar to HSM without the container association and the
CompositeState class and thus is omitted.

The consistency relation between aHSMand its collapsed
view is specified by the hsm2nhsm QVT-R transformation
in Fig. 4. Top relation S2S relates every state of a HSMwith a
NHSM state with the same name as the top-level state owning
it. The where clause of top relation S2S tests whether the
HSM state is top-level or not: If so, TS2S is called, which
matches itself to a NHSM statewith the samename; otherwise,
SS2S is called,which recursively callsS2Swith its container

123

Least-change bidirectional model transformation with QVT-R and ATL 787

Fig. 4 The hsm2nhsm QVT-R transformation

state. Each transition is mapped by the top relation T2T,
which can be trivially specified by resorting to a where
clause stating that two transitions are related if their source
and target states are related by S2S. Since sub-states in a
HSM are related to top-states in a NHSM, every transition is
automatically pushed up to the top-states.

2.3 Checking semantics

QVT-R’s checking semantics assesses whether two mod-
els are consistent according to the specified transformation.
Although the consistency check is by itself important, it is
also an essential feature in enforce mode since the latter must

“check-before-enforce.” The semantics of a relation differs
whether it is invoked at the top-level or with concrete domain
variables in when and where clauses. The specified top-
level semantics is directional. As such, from each relation R,
two consistency relationsR�:M×N andR�:M×N must be
derived, to check whether m : M is R-consistent with n : N
and if n : N is R-consistent with m : M , respectively. The
former can be formalized as follows:

R� (m : M, n : N) ≡ ∀ xs | ψ� ∧ πM ⇒ (∃ ys | πN ∧ φ�)

where xs = fv(ψ ∧ πM) ∪ {a : A},
ys = (fv(πN ∧ φ) ∪ {b : B}) − xs

Here, fv(e) retrieves the set of free variables from the expres-
sion e, so xs denotes the set of variables used in the when
constraint and the source pattern, while ys is the set of vari-
ables used exclusively in the where constraint and in the
target pattern. Given a formula ψ , ψ� denotes the same for-
mula with all relation invocations replaced by the respective
directional version. This semantics is rather straightforward:
Essentially, for every element a : A that satisfies the when
condition ψ and matches the πM domain pattern, there must
exist an element b:B that satisfies thewhere conditionφ and
matches the πN domain pattern. The semantics in the oppo-
site direction is dual. Twomodels are consistent according to
a QVT-R transformation T if they are consistent for all top
relations in both directions. Assuming that RT is the set of
all top-level relations of transformation T , we have:

T (m : M, n : N) ≡ ∀ R : RT | R� (m, n) ∧ R� (m, n)

The QVT-R standard [40] defines rather precisely the
top-level semantics, but is omissive about the semantics of
relations invoked with concrete domain variables. Recent
works on the formalization of QVT-R checking semantics
[4,19,47] clarify that it is essentially the same as the top-
level—still directional, but defined over specific objects by
fixing the domain variables. As such, from each relation R
with domain variables of type A and B, two consistency rela-
tions R� : M × N × A × B and R� : M × N × A × B are
inferred, to check if two concrete objects a and b (belonging
to models m : M and n : N , respectively) are consistent:

R� (m : M, n : N, a : A, b : B) ≡
∀ xs | ψ� ∧ πM ⇒ (∃ ys | πN ∧ φ�)

where xs = fv(ψ ∧ πM),

ys = fv(πN ∧ φ) − xs

Although it may be tempting (and probablymore intuitive) to
defineR� in terms ofR�, that isR� (m, n) ≡ ∀ a:A | ∃ b:B |
R� (m, n, a, b), this definition is not semantically equivalent
to the one presented above, as already discussed in [4]. For

123

788 N. Macedo, A. Cunha

instance, consider the semantics (in the direction of UML) of
relation PA2C from the uml2rdbms transformation:

PA2C� (uml : UML, rdb : RDBMS) ≡
∀ t : Table, cl : Column, n : String |
cl ∈ t.columns ∧ cl.name = n ⇒

∃ c : Class, a : Attribute |
a ∈ c.attributes ∧ a.name = n

PA2C� (uml : UML, rdb : RDBMS, c : Class, t : Table) ≡
∀ cl : Column, n : String |
cl ∈ t.columns ∧ cl.name = n ⇒

∃ a : Attribute |
a ∈ c.attributes ∧ a.name = n

Consider a simple UML model where a class a with an
attribute x extends a class b with an attribute y. Consider
also a RDBMS model with a single table a containing a col-
umn x and a column y. While PA2C� holds for this pair of
models, PA2C� returns false for every pair of Class and
Table. Of course, there are cases where the two semantics
are equivalent. For instance, C2T could be defined as a non-
top relation and be called from the where clause of P2S.
The behavior is equivalent because the only free variable (n)
is bound to a unitary attribute.

Due to this asymmetry and the directionality of the seman-
tics, QVT-R transformations may not have the expected
behavior. In particular, uml2rdbms as defined in the stan-
dard does not have a bidirectional semantics, in the sense that
the only pairs of consistent and valid finite models are ones
where all classes are non-persistent and there are no tables. To
see why this happens, consider the relations A2C and SA2C
when checked in the direction of UML. These relations call
each other recursively, and their non-top-level semantics is:

A2C� (uml : UML, rdb : RDBMS, c : Class, t : Table) ≡
PA2C� (uml, rdb, c, t) ∧ SA2C� (uml, rdb, c, t)

SA2C� (uml : UML, rdb : RDBMS, c : Class, t : Table) ≡
∃ g : Class | g ∈ c.general ∧ A2C� (uml, rdb, g, t)

If the transformation takes into account the OCL con-
straint requiring general to be acyclic, the predicate
A2C� (uml, rdb, c, t) never holds in a finite model, since
c will be required to have an infinite ascending chain of
general objects. This is due to the under-restrictive SA2C
domain pattern in the RDBMS side (empty in this case),
that requires every table to have a matching class with a
general, which, due to recursion, is also required to have
a general, and so on. This is but one of the problems that
occur in the original specification of this transformation and
is another example of the ambiguities that prevail in the QVT
standard [40]: While it requires consistency to be checked in
both directions, the case study used to illustrate it was clearly
not developed with bidirectionality in mind. Note that check-

ing consistency only in the direction of RDBMS does not suf-
fice, since, for example, it will not prevent spurious tables to
appear in the target schema.

Concerning recursion, we can distinguish two situations:
one is well-founded recursion, where the call graph of the
transformation contains a loop, but in any evaluation, it is
traversed only finitely many times; another is cyclic (or infi-
nite) recursion, where such a loop may actually be traversed
infinitely many times (e.g., when a relation directly or indi-
rectly calls itself with the same arguments). The semantics of
well-founded recursion is not problematic, but the standard
is omissive about what should happen when infinite recur-
sion occurs. A possible interpretation is that it should not
be allowed, although in general, it is undecidable to detect
whether that is the case. Similarly to some QVT-R formal-
izations [19,47], the embedding presented in this article is
not well-defined when infinite recursion occurs.

Recently, a formal semantics of QVT-R was proposed [4]
that is well-defined even in presence of infinite recursion, by
resorting to modal mu calculus. To see why taking OCL con-
straints into account is fundamental, a transformation con-
forming to this semantics, but that ignores the requirement
that general is acyclic, would consider an (ill-formed)
UMLmodel with a single persistent Class a that generalizes
itself consistent with a RDBMS model with a Table a.

To prevent the problem in the uml2rdbms transforma-
tion described above, one could tag each column with the
path to the particular general they originated from and
then refine the RDBMS domain pattern to prevent problem-
atic recursive calls. A simpler alternative is to resort to the
transitive closure operation andmap at once every declared or
inherited attribute of a given class to a column of the respec-
tive table. In this new version of uml2rdbms (that will be
considered in the remainder of the article), A2C, PA2C and
SA2C are replaced by the following alternative definition of
A2C:

relation A2C {
n:String; a:Attribute; g:Class;
domain uml c:Class {} {
(c->closure(general)->includes(g) or g=c)and
g.attributes->includes(a) and a.name = n

};
domain rdb t:Table {
columns = cl:Column { name = cn }

};
}

The additional OCL constraint in the UML domain pattern
acts as a pre-condition when applying the transformation in
the direction of RDBMS, and as a post-condition in the other
direction. As such, it could not be specified in the when
clause, since it would act as (an undesired) pre-condition for
both scenarios.

Unlikeuml2rdbms, the recursive version of hsm2nhsm
does produce the intended behavior. The reason is that, while

123

Least-change bidirectional model transformation with QVT-R and ATL 789

a single attribute in uml2rdbmsmay give origin to columns
in multiple tables, a HSM transition in hsm2nhsm gives rise
to a single NHSM transition. As a consequence, unlike A2C
that must be defined over class elements, T2T can be defined
directly over transition elements. These particularities are
difficult to grasp at design time, thus effective tool support
for QVT-R is essential for the design of consistency relations
that embody the intentions of the user.

2.4 Enforcement semantics

Despite showing many ambiguities and omissions, we
believe that, due to the reasons presented next, the enforce-
ment semantics intended in the standard for this mode is
quite undesirable. Instead, we propose an alternative that is
easy to formalize, more flexible, and more predictable to the
end-user.

In the QVT-R standard, update propagation is required to
be deterministic. This is a desirable property, since it makes
its behavior more predictable. However, to ensure determin-
ism, every transformation is required to follow very strin-
gent syntactic rules that reduce update translation to a trivial
imperative procedure. Namely, it should be possible to order
all constraints in a relation (except for the target domain pat-
tern), such that the value of every free variable is fixed by
a previous constraint. Although not clarified in the standard,
this means that every relation invoked in when and where
constraints is either invokedwith previously bound variables,
or required to also be deterministic, even if the intention was
to only make update propagation deterministic. For exam-
ple, in transformation uml2rdbms, update propagation in
the RDBMS direction will only be deterministic for relation
C2T if at most one s is consistent with p according to rela-
tion P2S (note that s is still free in the when clause). In
this particular example, that happens to be true, but in gen-
eral such determinism is undesirable since it forces relations
to be one-to-one mappings, limiting the expressiveness of
the language. Moreover, it defeats the purpose of a declara-
tive transformation language, since one is forced to think in
terms of imperative execution and write more verbose trans-
formations. For example, our simpler version of A2C using
transitive closure would not be allowed, since the value of
g is not known a priori when enforcing consistency in the
direction of UML.

Another problem is the predictability of update propaga-
tion. Being deterministic is just part of the story—it should
be clear to the user why some particular element was cho-
sen to be updated instead of another. The only mechanism
proposed byQVT-R to control updatability is keys. For exam-
ple, one could add the statement key Table (name,
schema); to the running example to assert that each table
is uniquely identified by the pair of properties name and
schema. If an update is required on a table to restore con-

sistency (for example, when an attribute is added to a class),
such key is used to find a matching table. When found, an
update is performed, otherwise a new table is created. This
works well when all domains involved in relations have nat-
ural keys, which again points to one-to-one mappings only,
but fails if such keys do not exist. In those cases, the standard
prescribes that update propagation should always be made
by means of creation of new elements, even if sometimes
a simple update to an existing element would suffice. Since
creation requires defaults for mandatory (multiplicity one)
properties, thiswould result inmodelswith little resemblance
with the original (which would basically be discarded).

Our alternative enforcement semantics is based on the
principle of least change, first proposed in the context of
maintainers [35], and that promotes predictability by requir-
ing updates to be as small as possible. QVT-R “check-before-
enforce” policy is just a particular case of this more general
principle. LetΔM :M×M → Nbe anoperation that computes
the update distance between M models. Then, the principle
of least change states that the models returned by the trans-
formations

−→
T and

←−
T are just the consistent models closest

to the original. Formally, we have:

∀ m : M, n, n′ : N | T (m, n′) ⇒
ΔN (

−→
T (m, n), n) � ΔN (n′, n)

∀ m,m′ : M, n : N | T (m′, n) ⇒
ΔM (

←−
T (m, n),m) � ΔM (m′,m)

Assuming that the distance is only null when the model is
unchanged (i.e.,Δ (n, n′) = 0 ≡ n = n′), it is trivial to show
that these laws reduce to hippocraticness when the models
m and n are already consistent. Note that this principle by
itself does not ensure determinism, although it substantially
reduces the set of possible results. If among the returned
models, the user wishes to favor a particular subset, keys or
OCL constraints can be added to the meta-model to further
guide the transformation engine.

We propose two different techniques to measure the
update distance between models. In the first one, models
are interpreted as graphs and the graph edit distance (GED)
[51] is measured. GED measures the distance between two
graphs as the number of node and edge insertions and dele-
tions needed to obtain one from the other. Concretely, graph
nodes denote model elements and literal values (i.e., primi-
tive type values or enumeration literals), while edges denote
links between model elements or attributes between model
elements and literal values.GEDcounts changes in this graph
representation, with the exception of literal values, which are
considered external to particular model instances and thus do
not affect model distance. This is a meta-model-independent
metric that is automatically inferred by our tool for anymeta-
model provided by the user.

123

790 N. Macedo, A. Cunha

The simple definition for distance provided by GED
assumes a fixed repertoire of edit operations which may not
be desirable. In particular, there is no control over the “cost”
of complex operations. For example, changing the name of
a Class will have a cost of 2, since it requires deleting the
current name edge and inserting a new one, while adding a
new attribute to a class will cost 3, since it requires creating
a new attribute, setting its name, and adding it to the class.
One may wish both these operations to be atomic edits and
have the same unitary cost. Also, one may wish to allow
only particular edits in order to control non-determinism of
enforcement runs.

To address such limitations, we propose as an alternative
measure an operation-based distance (OBD) that allows the
user to control the range of valid repairs by specifying in the
meta-model which edit operations can be applied to update
themodel. These are specified using pre- and post-conditions
defined in (a subset of) OCL. For the purposes of our run-
ning example, we assume the existence of the edit operations
whose interfaces are defined in Fig. 1. The following is an
OCL specification of the operation setName from Class:

context Class::setName(n : String)
post name

self.name = n;
post frame_class_name

Class.allInstances()->forAll(c |
c.name@pre = c.name or c = self)

modifies Class::name

In this case, Δ will be the length of the edit operation
sequence (built over the user-defined operations) required
to achieve the new model. Enforcing the principle of least
change entailsminimizing this sequence between the original
and the updated models. While OBD allows the assignment
of lower costs to complex updates (simply create an oper-
ation that composes smaller operations), assigning higher
costs to simple operations is not as straight-forward as they
may not be decomposable. This would require customizable
operation costs which is left as future work.

A source of ambiguity in OCL concerns frame conditions.
Assuming that everything that is not mentioned in the post-
condition is not changed is generally a reasonable assump-
tion, but this is not trivial to infer from declarative spec-
ifications. Given the lack of OCL statements focusing on
frame conditions, we introduce “modifies” clauses, through
which the user must explicitly specify which elements of
the model may be modified by the operation—the remainder
are assumed to remain unchanged. This mechanism is simi-
lar to those introduced by behavioral interface specification
languages, like the Java Modeling Language (JML) [29]. In
the previous example, the modifies keyword states that
only the attribute name in Class is modified by operation
setName.

While our semantics, following the constraint maintain-
ers framework and the QVT-R standard, was developed in a
bidirectional transformation scenario (in the sense that con-
sistency is restored by updating a single model), it is worth
noting that it could be adapted to synchronization scenarios
where both models can be updated simultaneously: Resort-
ing to the same consistency relation, enforcement runs would
try to minimize the distance of both models to the original
ones, rather than just one. Given a synchronization procedure←→
T : M × N → M × N and a distance metric over pairs of
models ΔM×N : (M × N) × (M × N) → N, typically

ΔM×N (m, n) (m′, n′) = ΔM (m,m′) + ΔN (n, n′)

the least-change principle would be formalized as:

∀ m,m′ ∈ M, n, n′ ∈ N : T (m′, n′) ⇒
ΔM×N (

←→
T (m, n), (m, n)) � ΔM×N ((m′, n′), (m, n))

While this generalization allows the application of the tech-
nique to simple synchronization problems that can be solved
by minimal updates, addressing more complex synchroniza-
tion problems that require user interaction to solve conflicts
between the domains cannot be attained directly by least-
change techniques.

This generalization is related to the multi-directional
transformation scenario, where the user may wish to update
multiple models in order to restore consistency, to which our
technique can also be adapted [32]. Here, the system tries to
minimize the distance between the set of original and target
models that the user chose as targets of the enforcement run.

3 Embedding QVT-R in Alloy

In this section, we present how the semantics proposed in the
previous section can be operationalized by an embedding in
Alloy. To keep the paper self-contained, a brief introduction
toAlloy is presented, focusing on the concepts deemed essen-
tial to understand our embedding; for a deeper exposition, the
reader is redirected to [24]. The reader not interested in the
technical details of the embedding can skip over to Sect. 4.

3.1 A brief introduction to Alloy

Alloy is a lightweight formal specification language that,
supported by the Alloy Analyzer, provides bounded model
checking and model finding functionalities through an
embedding in off-the-shelf SAT solvers. Alloy is a rich and
flexible language; in this section, we focus only on concepts
deemed essential for the scope of this article.

An Alloy specification is developed in modules that con-
sist of paragraphs: signature declarations, constraints and

123

Least-change bidirectional model transformation with QVT-R and ATL 791

commands. A signature declaration introduces a set of ele-
ments sharing a similar structure and properties. In Alloy,
such elements are uninterpreted, immutable and indivisible
and are thus denoted atoms. A signature declarationmay also
introduce fields, i.e., relations that connect its atoms to those
of other (or the same) signatures. These are represented as
sets of tuples of atoms in instances. Alloy is not restricted to
binary relations, and it is not uncommon to have fields that
relate three or more signatures. A signature that extends
other signatures inherits their fields. It can also be contained
in another signature, in which case it is simply a subset of
the parent signature.

Signatures may be annotated with multiplicity keywords
to restrict their cardinality, namely some (at least some ele-
ments), lone (at most one element) and one (exactly one
element). The range signature in a field declaration can also
be annotated with such multiplicities, to restrict the number
of atoms that can be connected to each atom of the source
signature. If that number is arbitrary, the special multiplicity
keyword set should be used.

Facts specify properties that must hold in every instance.
These may call functions and predicates that are essentially
containers for reusable expressions. Commands are used
to perform particular analyses, by invoking the underlying
solver. Run commands try to find instances for which the
specified properties hold, while check commands try to find
counter-examples that refute them. Commands can be para-
metrized by scopes for the declared signatures, thus bound-
ing the search-space for the solver. If no scope is specified,
a default of 3 is assumed.

Figure 5 depicts a possible (incomplete) specification
of the UML class diagram meta-model using Alloy. Sig-
natures Package, Class and Attribute declare the
corresponding classes and introduce (binary) fields to rep-
resent the classes’ attributes and associations. Alloy does
not have a primitive boolean type, so boolean attributes are
usually represented by subset signatures containing the ele-
ments that have the attribute set to true. This is the case
of the persistent attribute of Class, here represented
by the Persistent subset signature. The run command
instructs the analyzer to search for instances conforming to
the acyclic predicate, setting a specific scope for each of
the signatures.

Formulas in Alloy are defined in relational logic, an exten-
sion of first-order logic with relational and closure operators.
Everything in Alloy is a relation, i.e., a set of tuples of atoms
(with uniform arity). Signatures are unary relations (sets)
containing the respective atoms and scalar values (including
quantified variables) are just singleton sets. This uniformity
of concepts leads to a very simple semantics. The relational
logic operators also favor a navigational style of specifica-
tion that is appealing to software engineers, as it resembles
object-oriented languages.

Fig. 5 A (static) specification of UML in Alloy

The key operator in Alloy is the dot join composition that
allows the navigation through fields (and relational expres-
sions in general). For example, if c is a Class, c.name
denotes its name (a scalar) and c.general accesses its
super-class (a set containing at most one Class). Besides
composition, relational expressions can also be built using
the union (+), intersection (&), difference (-) and cartesian
product (->) operators. In particular, singleton tuples can
be defined by taking the cartesian product of two (or more)
scalars. Relations can also have their domain restricted to a
given set (<:) and likewise for the range (:>). For example,
Persistent <: name is the binary relation that asso-
ciates persistent classes with the respective names. Binary
relational expressions can also be reversed (∼), extended
with the transitive closure (^), or with the reflexive tran-
sitive closure (*). For example, in the acyclic predicate,
expression self.^general retrieves all the super-classes
of self. Relational expressions may also be created by set
comprehension. Finally, there are some primitive relations
pre-defined in Alloy: univ denotes the universe, i.e., the set
of all tuples, none denotes the empty set, and iden the
binary identity relation over the universe.

Alloy has limited support for integers: The pre-defined
Int signature contains all available integers. In commands,
the scope of Int determines the available number of bits
to represent them (in two’s complement notation). Integers
can be added and subtracted with the functions plus and
minus, respectively. The default semantics for integer oper-
ations is wrap around: for example, if the scope for Int is 3,
plus[3,1] is −4. Every relation expression can have its
cardinality determined with the # operator.

Atomic formulas are built from relational expressions
using inclusion (in), equality (=) or cardinality checks

123

792 N. Macedo, A. Cunha

(besides lone, some and one, keyword no can also be
used to check if a relational expression is empty). Formulas
can be combined with conjunction (&&), disjunction (||),
implication (=>), possibly associated with an else formula,
equivalence (<=>), and negation (not). Besides the univer-
sal (all) and existential (some) quantifiers, Alloy also sup-
portslone (property holds for atmost one atom),one (prop-
erty holds for exactly one atom), and no (property holds for
no atom) quantifiers. In theacyclic predicate, as expected,
the formula quantifies over all atoms of signatureClass and
tests if the inheritance chain is acyclic.

3.2 Meta-models annotated with OCL

Themodels upon which our transformations are defined con-
sist of UML class diagrams annotated with OCL constraints.
Some translations have been proposed to embed suchmodels
in Alloy, namely [1,9]. Our embedding will be based on the
translation proposed in [9], since, unlike other proposals, it
covers an expressive OCL subset that includes closure and
operation specification via pre- and post-conditions. Here,
we will just briefly present this translation.

Classes, their attributes and related associations can be
directly translated to signatures and fields in Alloy. Likewise
for the inheritance relationship, that Alloy also supports. The
main difference between the embedding from the previous
section is that, sinceAlloy instances are built from immutable
atoms, the transformation resorts to the well-known local
state idiom [24] to capture updates to a given model. This
means that a special signature will be introduced to represent
each meta-model, whose atoms will denote different models
(or evolutions of a given model). To each field (representing
an association or an attribute), an extra column of this type is
added, to allow its value to change in different models. The
translation proposed in [9] is also extended to allow classes
to have different elements in differentmodels: For each class,
a special binary field (with the same name) will capture the
objects of that class that exist in each model, to which we
will refer as the signature’s state field. Boolean attributes are
encoded similarly:Abinary field captureswhich objects have
the attribute set to true in each model. For example, class
Class of our UMLmeta-model is translated to the following
signature declaration.

sig UML {}
sig Class {

class : set UML,
attributes : Attribute -> UML,
general : Class -> UML,
namespace : Package -> UML,
name : String -> UML,
persistent : set UML

}

The binary state field class captures the Class objects
that exist in each UMLmodel. The remaining fields model the

respective Class associations and attributes. With the rela-
tional composition operator,we can access the values of these
fields for a given UML model m. For example, class.m is
the set of Class objects that exist in model m, general.m
is a binary relation that maps each Class to its general in
model m, and persistent.m is the set of Class objects
that have the attribute persistent set to true in model
m.

Constraints must also be generated to ensure the correct
multiplicities and that fields only relate atoms existing in the
same model (inclusion dependencies). For example, fact

all m:UML|namespace.m in class.m->one package.m

is generated to capture the cardinality constraints of rela-
tion namespace, and to force it, for each UML model m,
to be a subset of the cartesian product between class.m
and package.m (respectively, the sets of Class and
Package elements of model m). Constraints that guaran-
tee the integrity of the class hierarchy are also inserted, for
instance, in the HSM meta-model, fact

all m:HSM | compositestate.m in state.m

would ensure that if a CompositeState exists in model
m, it is also registered as a State in that model. OCL invari-
ants in a given context are also automatically translated to
Alloy facts, resulting in universal quantifications over the
respective signature state fields, following the technique pre-
viously developed in [9]. Table 1 summarizes the currently
supported operations from the OCL standard library [42]
(operation oclIsNew may only be used in controlled con-
texts as explained in Sect. 3.4). For example, the OCL invari-
ant stating that association general is acyclic is translated
to Alloy as

all m:UML, self:class.m |
self not in self.^(general.m)

Here, ^(general.m) is the transitive closure of field
general projected over m.

The QVT standard extends the OCL language with the
insertion of the opposite keyword that allows the naviga-
tion of associations in the opposite direction, which can be
directly translated to Alloy using the converse operator ∼.

3.3 QVT-R transformations

Top relations R� and R� are specified by predicates para-
meterized by the model instances. The definition of all these
predicates follows closely the formalization in Sect. 2.3. In
particular, auxiliary predicates are used to specify the when
and where clauses, and the domain patterns of each rela-
tion. For example, back to uml2rdbms, Fig. 6 presents
the result of embedding C2T� in Alloy as the predicate
Top_C2T_RDBMS, as well as the necessary auxiliary predi-
cates. Note how, in the specification ofC2T�, quantifications

123

Least-change bidirectional model transformation with QVT-R and ATL 793

Table 1 Supported OCL
operations Family Operations

Base =, <>, oclIsKindOf, oclAsType, @pre,

allInstances, if-then-else, oclIsNew

Integer Boolean set +, -, >, <, <=, >=

and, or, not, implies, true, false

size, includes, includesAll, excludes,

excludesAll, isEmpty, notEmpty, union, -,

intersection, including, excluding, asSet

Iterators exists, forAll, one, any,

collect, select, reject, closure

QVT opposite

Fig. 6 Alloy specification of C2T�

are restricted to range over atoms existing in the respective
models.

For each relation R, we also declare two Alloy predicates
to specify R� and R�. For example, in Fig. 6 the omitted
predicates P2S_RDBMS and A2C_RDBMS specify P2S�
and A2C�, respectively. Besides the respective domain ele-
ments, these are also parameterized by the models they are
being applied to. Since in Alloy predicates cannot call each
other recursively, predicates R� and R� are defined in terms
of auxiliary relations over the model state signatures, speci-
fied by comprehension. For instance, the following recursive
predicates, that would arise from a direct encoding of S2S�
and SS2S� in hsm2nhsm, are invalid in Alloy.

pred S2S_NHSM [hsm:HSM,nhm:NHSM,s:State,t:State] {
no s.container => TS2S_NHSM[hsm,nhm,s,t]

else SS2S_NHSM[hsm,nhm,s,t]
}

pred SS2S_NHSM [hsm:HSM,nhm:NHSM,s:State,t:State] {
S2S_NHSM[hsm,nhm,s.container,t]

}

Instead, we declare auxiliary relations S2S_NHSM’ and
SS2S_NHSM’with typesHSM->NHSM->State->State
and HSM->NHSM->State->State, respectively, and
axiomatize their value using set comprehension as follows:

fact {
S2S_NHSM’ = { hsm:HSM,nhm:NHSM,s:State,t:State |

no s.container => hsm->nhm->s->t in TS2S_NHSM’
else hsm->nhm->s->t in SS2S_NHSM’ }

SS2S_NHSM’ = { hsm:HSM,nhm:NHSM,s:State,t:State |
hsm->nhm->s.container->t in S2S_NHSM’ }

}

Note how predicate invocation is replaced by member-
ship check: For example, instead of the predicate call
TS2S_NHSM[hsm,nhm,s,t], we check that the tuple
hsm->nhs->s->t is included in relation TS2S_
NHSM’. By resorting to these, the predicate encodingsS2S�
and SS2S� can now be redefined simply as

pred S2S_NHSM [hsm:HSM,nhm:NHSM,s:State,t:State] {
hsm->nhm->s->t in S2S_NHSM’

}

123

794 N. Macedo, A. Cunha

pred SS2S_NHSM [hsm:HSM,nhm:NHSM,s:State,t:State] {
hsm->nhm->s->t in SS2S_NHSM’

}

As discussed in Sect. 2.3, this embedding will not be well
behaved in presence of cyclic recursion.

The checking semantics of the transformation is repre-
sented by a predicate that checks all top relations in both
directions. In the uml2rdmbs example, we have:

pred uml2rdbms [uml:UML,rdb:RDBMS]{
Top_P2S_RDBMS[uml,rdb] && Top_P2S_UML[uml,rdb] &&
Top_C2T_RDBMS[uml,rdb] && Top_C2T_UML[uml,rdb]

}

Regarding enforcement semantics, to implement the prin-
ciple of least change as described in Sect. 2.4, we require
the measurement of the update distance between two mod-
els. The first proposed metric is GED that interprets models
as graphs and measures the distance as the number of node
and edge insertions and deletions needed to obtain one graph
from the other. Note that an Alloy instance is isomorphic to
a labeled graph whose nodes are the atoms, and edges tuples
in fields (technically to hypergraphs, since fields are n-ary).
With this mechanism, ΔUML can be computed as follows:

fun Delta_UML [m,m’:UML] : Int {
#((class.m-class.m’)+(class.m’-class.m)).plus[
#((name.m-name.m’)+(name.m’-name.m)).plus[
. . . // symmetric difference of remainder fields
]]

}

Assuming m’ represents an updated version of m, this
function sums up, for every signature and field, the size of
their symmetric difference in both models. To avoid Alloy’s
standard wrap around semantics for integers, model finding
is executed with the option Forbid Overflow set [36].

Regarding OBD, the edit operations, specified by the user
in OCL using pre- and post-conditions, are automatically
converted to Alloy using the translation procedure defined in
[9]. Essentially, each operation will originate an Alloy pred-
icate that specifies when it can hold between two models.
The resultingAlloy predicate takes as arguments the pre- and
post-states of the affected model (with the post-state being
denoted by a primed variable), the receiver element of the
edit operation (denoted by argument self of the appropri-
ate context class), as well as the stated operation parameters.
For example, the result of translating setName to Alloy is
the following:

pred setName[self:Class,n:String,m,m’:UML] {
self.(name.m’) = n;
all c:class.m’ |

c.(name.m) = c.(name.m’) or c = self
// frame conditions inferred from modifies
class.m’ = class.m
attributes.m’ = attributes.m
general.m’ = general.m
namespace.m’ = namespace.m
. . . // remaining frame conditions

}

The body of the predicate consists of the translation of the
pre- and post-conditions from the OCL specification. Pre-
conditions (if any) are evaluated over the pre-state of the UML
model m, while post-conditions refer to the respective post-
model m’, except in the case of operations and properties
marked by the tag @pre which are still evaluated in the pre-
state. Frame conditions for all classes and associations not
included in the modifies clause are also automatically
inferred.

Given the specifications of operations, we constrain mod-
els to form a sequence, where each step corresponds to the
application of an edit operation:

open util/ordering[UML]
fact {
all m:UML, m’:m.next | {
some c:class.m,n:String | setName[c,n,m,m’] or
some c:class.m,n:String | addAttribute[c,n,m,m’] or
. . . // remaining operation predicates

}
}

The Alloy module ordering imposes a total order on all
atoms of the given signature (in this case,UML) and declares a
binary relation next that captures such order. The presented
fact restricts the possible values of next, by requiring each
state m and subsequent state m.next to be related by one of
the specified operations.

In this case, ΔUML will be the number of models (inter-
mediate steps) required to achieve a consistent target, which,
as we will see next, will be determined by the scope of the
signature denoting the respective meta-model, UML in this
case.

3.4 Executing the semantics

Executing the transformation in checkonly mode is fairly
simple: We just need to check the consistency predicate for a
pair of concrete models. To represent a concrete model, since
Alloy has no specific constructs to denote model instances,
we use singleton signatures to denote specific objects and
facts to fix the interpretation of fields. For example, a UML
model Mwith Class A and Class B, with no Attribute
elements, in a single Package P, where A is persistent
and extends the non-persistent B, can be specified as
follows:

one sig M extends UML {}
one sig P extends Package {}
one sig A,B extends Class {}
fact {

class.M = A + B &&
package.M = P &&
namespace.M = A->P + B->P &&
general.M = A->B &&
persistent.M = A &&
no attributes.M

}

123

Least-change bidirectional model transformation with QVT-R and ATL 795

To check whether UML model M is consistent
with a RDBMS model N the command check
{ uml2rdbms[M,N] } is issued, with the scope of each
signature being set to the number of elements of the respec-
tive class in each of the twomodels. Regarding enforce mode
with GED minimization, in order to determine a new UML
model M’ consistent with RDBMS model N, with original
model M, the command

run { uml2rdbms[M’,N] && Delta_UML[M,M’]=Δ}

is issued with increasingΔ values (starting at 0). In this case,
the scope of each signature is set to the number of elements of
the respective class plusΔ, to allow complete freedom in the
choice of edit operations. The calculation and increment of
bothΔ and the scope are performedautomatically byour tool.
Since we are dealing with exact scopes, the class hierarchy
must also be taken into consideration. For instance, for a HSM
solution with one CompositeState and one State, the
scope of State must be set to 2.

Regarding enforce mode with OBD minimization, the
command

run { uml2rdbms[M’,N] && M = first && M’ = last }

is issued with increasing scopes Δ (plus one) for signature
UML, as all UML atoms will belong to the total order entailed
by the operations. Singleton fields first and last denote
the first and last atoms of the next total order: They are con-
strained to be the original and updated model, respectively,
meaning that the latter should be obtained from the former
using Δ edit operations. The scope of the remaining signa-
tures is inferred from the operations specified in the meta-
model, allowing a finer control over the scopes of the model
finder, since we know the behavior of all possible update
steps. This requires the creation of elements by the opera-
tions to be detected, which is by itself an ambiguous issue in
OCL-specified operations. For our technique, we assume that
every new element created by an operation is identified with
the oclIsNew() operation in the post-condition and inside
a one quantification (a predicate which holds for exactly
one element [42, p. 170]). With oclIsNew() tags inside
other quantifiers we would not be able to precisely measure
the scope increment. For instance, consider the operation
addAttribute(n:String) from the Class class. Its
post-condition would contain, among others, the following
constraint:

self.attributes->one(a |
a.oclIsNew() and a.name = n)

This in turn would be translated to Alloy as:

a not in self.(attributes.m) &&

self.(attributes.m’) = self.(attributes.m) + a &&

a.(name.m’) = n

The user is required to specify an upper-bound for Δ that
limits the search for consistent targets. If several consistent

models are found at the minimum distance, our tool warns
the user and allows him to see the different alternatives. If
the user then desires to reduce such non-determinism, he can,
for example, add extra OCL constraints to the meta-model or
narrow the set of allowed edit operations to target a specific
class of solutions. Section 6 will present a concrete example
of how such narrowing can be done.

4 Bidirectionalizing ATL

ATL [25] is a widely used model transformation language
created to answer the originalQVTRFPand thus shares some
characteristics with the standardized QVT languages. Unlike
QVT-R, ATL has de facto standard operational semantics
implemented as a plugin for the Eclipse IDE.1 However, it is
unidirectional, in the sense that a transformation between M
and N meta-models (which will be denoted by

−→
t :M → N ,

as it is a deterministic procedure), only specifies how to cre-
ate an N model from an M model. The prescribed method
to obtain bidirectional transformations with ATL is to write
two unidirectional transformations. Unfortunately, this leads
to obvious correctness and maintenance problems, since the
language provides no means to check that they are inverses
of each other, nor to automatically derive one from the other.
Moreover, that onlyworkswell for essentially bijective trans-
formations, since, unlike in QVT-R, in ATL transformations
are not able to recover missing information from the previous
target model, as they only receive the source model as input
(as specified in the type of

−→
t). In this section, we explore

how our technique can be adapted to confer bidirectional
semantics to ATL transformations.

4.1 ATL language

ATL is a hybrid language with both declarative and impera-
tive constructs. The authors advocate that transformations
should be declarative whenever possible, and imperative
specifications should only be used if specifying the trans-
formation declaratively proves to be difficult [25]. In this
work, we restrict ourselves to declarative constructs, disre-
garding imperative ones (known inATLas called rules anddo
blocks). Giving semantics to imperative constructs in Alloy’s
relational logic is doable (see, for example, [38]), but the need
to explicitly represent all intermediate updates to the models
in execution traces would deem our solver-based approach
completely unfeasible, in particular in presence of loops. The
main constituents of ATL transformations are rules, the ATL
equivalent to QVT-R relations, whose abstract syntax is:

1 http://www.eclipse.org/atl/.

123

http://www.eclipse.org/atl/

796 N. Macedo, A. Cunha

[[unique] lazy] rule R {
from a : A (πM)
to b : B (φ)

}

Rules consist of a single source element a from the source
meta-model and a set of target elements (for the scope of
this presentation we restrict ourselves to a single target ele-
ment b) from the target meta-model. Source elements are
selected by an OCL pattern πM over their properties, while
target patterns consist of bindings φ over the target element,
which may consider values from source elements. Roughly,
the execution semantics creates a target element for every
source element that matches πM . Source models are read-
only and target models write-only, and thus, transformations
are not able to take into consideration existing elements in the
target model, not even being able to “check-before-enforce”
(although more recent work on incremental ATL executions
could eventually be used to address this issue [27]).

Default rules are called matched rules and must be exe-
cuted for all elements of the source model (similarly to QVT-
R top relations). Lazy rules, unlike matched rules, are only
executed if explicitly called from other rules (similarly to
QVT-R non-top relations). They can either be unique or not:
In unique lazy rules, a source element is always matched to
the same target element, no matter how many times the rule
is called over that source element; in non-unique lazy rules,
a new target element is created every time it is called.

One particular characteristic of ATL is that target bindings
may rely on implicit traceability links between elements cre-
ated by other matched rules. Target elements may be directly
“assigned” source elements, in which case, traces are used
to retrieve the corresponding target element. This is possi-
ble because execution is divided in two phases: The first
phase binds source elements to the source patterns and cre-
ates the target elements, implicitly creating traces between
them; the second phase applies the bindings to the tar-
get elements, resorting to the traces if necessary. Since a
source element cannot be matched by more than one rule
[2], there is no ambiguity in the choice of the target ele-
ment for each source element. Lazy rules must be explicitly
called and thus are not taken into consideration in implicit
resolutions.

Figure 7 presents anATL version of thehsm2nhsm trans-
formation using transitive closure. Rule S2S relates every
top-level state in HSM to a state in NHSMwith the same name,
while ruleT2Tmaps every transition inHSM to a transition on
NHSM between the top-level containers of its source and tar-
get states. These are retrieved by filtering the result of the clo-
sure operation by a select operation. Note how in T2T, states
of the HSM input model are being attributed to the source
and target of transitions in the NHSM output model: The rule
is taking advantage of the implicit traces created by S2S
between HSM and NHSM states. A similar situation occurs

Fig. 7 The hsm2nhsm ATL transformation

in S2S when assigning state machines previously bound by
M2M.

4.2 Overview of the bidirectionalization technique

To bidirectionalize ATL transformations, we will first derive
a consistency relation T ⊆ M × N from an ATL trans-
formation

−→
t : M → N and then use it to determine suit-

able (inverse) transformations according to the least-change
semantics proposed in Sect. 2.4 for QVT-R enforce mode.

Since we are given the forward transformation
−→
t :M →

N , one could imagine that it would suffice to derive a suit-
able backward transformation

←−
t : M × N → N , thus lift-

ing ATL transformations to the framework of lenses [13], as
attempted before by Sasano et al [45]. A well-behaved lens
consists precisely of a pair of transformations

−→
t : M → N

(usually known as get) and
←−
t : M × N → M (usually

known as put), that is acceptable,
−→
t (

←−
t (m, n)) = n,

guaranteeing that an update on n is indeed propagated to
m, and stable,

←−
t (m,

−→
t (m)) = m, the lens equivalent

to hippocraticness. The lens framework is designed to deal
with transformations that are abstractions (i.e., surjective
transformations), as implied by the asymmetric nature of

123

Least-change bidirectional model transformation with QVT-R and ATL 797

the two transformations: The view n can always be derived
solely from a source m as it contains less information. In
particular, if a model n is updated to n′ that falls outside
the range of

−→
t , the behavior of

←−
t is undefined. Such

well-behaved lens could be obtained in our least-change
maintainer framework, by setting the forward transforma-
tion as an implicit consistency relation as T (m, n) ≡ n =−→
t (m).
Unfortunately, this imposes some undesirable limitations

in the allowed usage scenarios. Consider a very simple exam-
plewhere a sourcemodelWorld consists of a set of Person
elements with a name, and a target model Company con-
sists of a set of Employee elements with a name and an
(optional)salary (Fig. 8), and a trivial ATL transformation
employ thatmaps everyPerson to anEmployeewith the
same name and an empty salary (Fig. 9). This transfor-
mation is clearly not surjective since it only targets the subset
of Company models where Employee elements have no
salary. Now, consider a model wrd :World with a single
person p and the corresponding model cpn : Company cre-
ated by

−−−−−→
employ. If the user updates cpn to cpn′ by assign-

ing a salary to p, there will be no valid wrd ′ such that
cpn′ = −−−−−→

employ wrd′, and thus cpn′ would be an invalid
model. This limitation would greatly reduce the updatability
of the framework.

A possible solution to this problem would be to weaken
the lens laws, as suggested in [45], by allowing

←−
t (m, n)

to produce a source m′ whose view n′ = −→
t (m′) is not n

(breaking acceptability) as long as propagating n′ backward
produces m′ again, i.e.,

←−
t (m, n) = m′ ⇒ ←−

t (m,
−→
t (m′)) = m′

Fig. 8 Class diagrams of the World and Company meta-models

Fig. 9 The employ ATL transformation

(deemed weakly acceptable). However, even if the above
update is now allowed, if the user updates the Worldmodel
(for example, inserting a new person) and wishes to prop-
agate such change to the Company, the forward transfor-
mation

−−−−−→
employ would erase the previously assigned salary

of p, since it is not incremental. Embedding ATL in a lens
framework with such weakened laws presumes that once−→
t is run to generate a new target model from a source,
subsequent updates can only be safely propagated back-
wards.

To overcome this limitation, we opt instead to embed ATL
transformations in the framework of maintainers, likewise to
QVT-R. The main idea is to infer from

−→
t : M → N a con-

sistency relation T ⊆ M × N such that every model m is
considered consistent with any model that extends

−→
t (m),

in the sense that it sets values for properties not bound by
−→
t .

This of course implies that
−→
t ⊆ T. From T a new forward

transformation
−→
T : M × N → N and a backward transfor-

mation
←−
T : M × N → M can then be derived to propagate

updates in both directions, using the least-change semantics
described in Sect. 2.4 (obviously satisfying both the correct-
ness and hippocraticness laws). Back to the example from
Fig. 9, since

−−−−−→
employ does not bind the salary attribute

in Company models, the World with a single Person
p would be consistent with any Company with a single
Employee p, whatever his salary. The following sec-
tion will present a technique to infer one such possible T
from

−→
t .

The bidirectional ATL framework obtained with this tech-
nique satisfies the following properties. First, since

−→
t ⊆ T,

the consistency relation trivially holds for pairs of models
(m, n) such that

−→
t (m) = n. Second, if

−→
t is surjec-

tive, applying either
−→
t or

−→
T to an updated source will

yield the same updated target: in this case,
−→
t completely

defines the target elements, thus T only related a model
m to

−→
t (m). In this case, the pair of transformations

−→
t

and
←−
T will form a well-behaved lens. In contrast, for non-

surjective ATL transformations this is no longer the case.
It is easy to see why by considering the toy example from
Fig. 9: by updating a view

−→
t wrd to cpn with the inser-

tion of a salary, wrd and cpn will still be consistent
by Employ, and thus neither

−−−−−→
Employ nor

←−−−−−
Employ will

update themodels; applying
−−−−−→
employ, however, would revert

cpn back to
−→
t wrd. In this case

−−−−−→
employ and

←−−−−−
Employ do

not form a well-behaved lens, satisfying only weak accept-
ability. Thus, while the derivation of a maintainer T does
not invalidate the use of

−→
t paired with

←−
T —the pair com-

prises a stable and weakly acceptable lens—due to its non-
incrementality,

−→
t is better suited to initially create the target

model from a source, at which point
−→
T and

←−
T can be used

to propagate updates in both directions to maintain consis-
tency.

123

798 N. Macedo, A. Cunha

4.3 Inferring a consistency relation

Atfirst glance, the semantics of anATL transformation shares
some similarities with the checking semantics of QVT-R
described in Sect. 2.3: Pattern matching is used to filter
candidate source elements, and it resembles the forall-there-
exists quantification pattern to relate source and target ele-
ments. There are also some apparent differences: It is a direc-
tional semantics, in the sense that the above forall-there-
exists quantification in principle should only be checked in
the direction of the target (the direction of the transforma-
tion), and the existential quantifier should be unique, that is,
for all candidate source elements, there must exist exactly
one target element built with the target bindings. However,
there are some subtle differences: As the following example
will show, the forall-there-exists semantics cannot be real-
ized using quantifiers, and explicit traceability links must be
used instead; furthermore, checks must be also performed in
the opposite direction to avoid spurious target elements.

Consider again the simple transformation from Fig. 9,
and the following semantics for the ruleP2Ewith quantifiers,
using a notation similar to the one introduced in Sect. 2.3 for
QVT-R:

P2E� (wrd : World, cpn : Company) ≡ ∀ p : Person |
(∃ ! e : Employee | p.name = e.name)

Given a source model wrd with two Person elements
with the same name a, this semantics would force a con-
sistent target model cpn with exactly one Employee with
name a. This is obviously not the intended ATL semantics,
as two Employee elements with the same name are cre-
ated by the transformation, one for each source Person.
Obviously, relaxing the uniqueness constraint of the exis-
tential quantifier will not solve the problem, as an arbitrary
number of Employee elements would be allowed. The
one-to-one mapping between candidate source and gener-
ated target elements cannot be realized by quantifiers, but
through an explicit traceability relation between them.More-
over, this directional check does not guarantee that the only
Employee elements in the target model are the ones cre-
ated by the transformation, and some check in the opposite
directionmust be performed to ensure that every Employee
originates from a Person. Such semantics can be encoded
through a higher-order quantification as follows:

P2E� (wrd : World, cpn : Company) ≡
∃ P2E�� ⊆ Person × Employee |

∀ p : Person | ∃ ! e : Employee |
P2E�� (p, e) ∧ p.name = e.name ∧

∀ e : Employee | ∃ ! p : Person |
P2E�� (p, e) ∧ p.name = e.name

That is, the transformation ensures that there exists a
traceability relation P2E�� between every Person (since
πWorld is empty) to a unique Employee with the same
name, and vice-versa. Note that this semantics considers tar-
get elements that fall outside the range of

−−−−−→
employ, namely

those that have the salary defined.
In general, the semantics of a matched rule R can be spec-

ified as follows:

R� (m : M, n : N) ≡ ∃ R�� ⊆ A × B |
∀ a : A | πM ⇒ (∃ ! b : B | R�� (a, b) ∧ φ) ∧
∀ b : B | (∃ ! a : A | R�� (a, b) ∧ πM ∧ φ)

This defines R�� as a one-to-one relation between every
candidate source element and a single corresponding valid
target element. The first expression states that every a : A
that matches the pattern πM must be related to a single b : B
with the bindings φ; the second expression states that every
b : B must be related to a valid a : A. The binding φ in a rule
assigns to the target element values possibly from the source
element: Unlike in QVT-R target patterns, all variables in φ

must be previously assigned in the source pattern πM . As
such, they are interpreted likewise to where conditions in
QVT-R.

An implicit call that might occur in the right-hand side e
of a binding is handled as follows. If e has a primitive type
or is a target element, then it is directly translated to Alloy. If
e denotes a source element of type A, we retrieve the match-
ing target element of type B from the respective traceability
relation R�� (notice that it is always possible to uniquely
determine R��, since source elements of a given type are
restricted to be matched by a single rule [2]). Traceabilities
can also be implicitly called over collections, as in the T2T
transformation. Our tool also supports these implicit calls for
collections that are sets, the above procedures being applied
for every element e in the set.

Although the semantics of unique lazy rules also relies on
explicit traceability links, there is a subtlety that prevents their
encoding in a similar way to (top) matched rules, namely it is
quite difficult to infer in static time what elements a unique
lazy rule must relate—recall that they only create unique
target elements when called from another rule. As such, the
semantics of these ruleswill be divided in two parts. Given an
unique lazy rule R, the following predicate will only enforce
the correctness of the respective traceability relation, with
the existence and uniqueness checks being deferred to the
rule call:

R� (m : M, n : N) ≡ ∃ R�� ⊆ A × B |
∀ a : A, b : B | R�� (a, b) ∧ πM ⇒ φ

Moreover, when a unique lazy rule R is called over an expres-
sion e, we insert the following additional constraints to ensure

123

Least-change bidirectional model transformation with QVT-R and ATL 799

that the trace between e and thematched element b exists and
is unique:

∃ ! b : B | R�� (e, b) ∧ ∀ a : A | TU (a, b) ⇒ a = e

where TU denotes the union of all unique lazy traces. The
first part of the conjunction states that e is uniquely matched
to a b by R��, and the second that b is not being matched to
any other element by any other rule.

Finally, for an ATL transformation T , we assume that two
models are consistent if the above semantics holds for all
(matched and unique lazy) rulesRT :

T (m : M, n : N) ≡ ∀ R : RT | R� (m, n)

This semantics can be encoded in Alloy in a similar man-
ner to that of QVT-R, as described in Sect. 3.3. The higher-
order existential quantification that asserts the existence of
the traceability relation R�� can be encoded by skolemiza-
tion, by explicitly declaring an Alloy relation that represents
it. This ends up being similar to the actual encoding of QVT-
R, where an auxiliary relation was also declared to encode
R�, albeit for a different reason, namely to support recur-
sion. Non-unique lazy rules are currently not supported by
our technique.

5 Deployment

The technique for bidirectional model transformations pre-
sented in this article has been implemented for both QVT-R
and ATL transformations as part of the Echo framework,2

a tool for managing intra- and inter-model consistency. In
this section, we first briefly present Echo features and archi-
tecture and then describe with more detail two of its key
components: the model visualizer and transformation opti-
mizer.

5.1 The Echo framework

The focus of this framework is to help users develop and keep
their models consistent. It supports both intra-model (i.e.,
consistency between a model and its meta-model) and inter-
model consistency (relating several models via bidirectional
transformations, the focus of this article). In both cases,Echo
can detect and repair inconsistencies.

Concerning intra-model consistency, given a meta-model
M with OCL constraints, Echo can automatically check
whether a model m is consistent with M , that is m : M .
This can be done for newly created models or every time the

2 Download and more information about Echo is available at http://
haslab.github.io/echo and in the tool demo [33].

Fig. 10 A snapshot of Echo, with RDBMS and UML models depicted
with Eclipse’s XMI editor and with the embedded Alloy visualizer,
respectively

user updates an existing model. If consistency of model m
is broken, for example because some of the OCL constraints
is violated, then Echo can automatically suggest minimally
repaired models m′ : M using the model finding procedure
described in this article, that is, it can find consistent models
m′ at minimum GED or OBD from m. Various alternatives
for repaired models are presented to the user in increasing
distance to the original model, among which the user is able
to choose the preferred one. To help the user choose the pre-
ferred model, they can be depicted as graphs by resorting to
the Alloy visualizer, as seen in Fig. 10. For better readabil-
ity, an Alloy theme is automatically inferred from the meta-
models (as described in Sect. 5.2). A user-defined theme can
also be provided if desired. To help kickstart model devel-
opment, Echo can also be used to generate a new minimal
model m : M (notice that often models cannot be empty due
tometa-model constraints), or to generate scenarios formeta-
model validation, that is, models parameterized by particular
scopes and/or additional OCL constraints targeting specific
configurations.

Concerning inter-model consistency, given a QVT-R or
ATL transformation T , from which consistency relation T ⊆
M × N is inferred, and models m : M and n : N , Echo
can automatically check if m and n are T-consistent, that is
T (m, n). In the case of QVT-R, it follows the standard-
compliant checking semantics presented in Sect. 2.3. For
ATL, the semantics described in Sect. 4.3 is used. Given
a transformation T ⊆ M × N and models m : M and
n : N such that ¬T (m, n), Echo can perform a mini-
mal update to one of the models to recover consistency, for
example produce n′ : N such that T (m, n′). This repair
follows the enforcement semantics satisfying the principle
of least-change, as described in Sect. 2.4. Likewise to intra-

123

http://haslab.github.io/echo
http://haslab.github.io/echo

800 N. Macedo, A. Cunha

model consistency recovery, the user is able to choose the
desired repaired model among all minimal consistent mod-
els. Finally, given a transformation T ⊆ M × N and a model
m : M , Echo can produce a minimal model n : N such that
T (m, n) (likewise for the opposite direction). This is useful
at early phases of model-driven software development, when
the user has developed a first version of the source model,
from which he wishes to derive a first version of the target.
Afterward, updates can be performed and consistency recov-
ered incrementally to any of the models, by resorting to the
same transformation.

While also available as a command-line application,
Echo’s main distribution platform is as a plugin for the
Eclipse IDE, which automates the features just presented.
Echo’s environment consists of a set models, conforming to
OCL-annotated meta-models, and a set of inter-model con-
straints specified by QVT-R and ATL transformations. Each
model is thus restricted by the intra-model constraint entailed
by themeta-model and anynumber of inter-model constraints
simultaneously. The Echo plugin was designed to be used
in an online setting, in the sense that the consistency tests
are automatically applied as the user is editing the models
and, thus, updates are expected to be incremental, leaving
the original models as unmodified as possible. Every time
the user updates a model, the system automatically checks
its consistency in relation to the other artifacts. If a model
is deemed inconsistent, the plugin displays an inconsistency
error and proposes possible fixes. As there may be more than
one consistent model at minimal distance, Echo presents all
possiblemodels in succession, allowing the user to choose the
desired one, at which time the update is effectively applied to
the model instance. If none of the minimal solutions is cho-
sen, Echo presents models at increasingly higher distances
from the original.

The plugin is built on top of the Eclipse Modeling Frame-
work (EMF),3 and resorts to the Model Development Tools
(MDT) component to process OCL formulas and to the
Model-to-Model Transformation (MMT) component to parse
QVT-R and ATL specifications. EMF prescribes Ecore for
the specification of meta-models, while model instances are
presented as XMI resources. To enhance the meta-models
with additional constraints,we follow the technique proposed
by MDT, of embedding the OCL constraints in meta-model
annotations. Both Ecore meta-models and XMI instances are
translated to Alloy following the techniques from Sect. 3, so
that the transformation engine described in this article can be
applied.

To promote inter-operability, EMF processes models
defined in an abstract syntax, which are persisted as XMI
resources. Thus, as a model-to-model transformation tool
over EMF, Echo is only able to directly process models

3 http://www.eclipse.org/modeling/.

represented in XMI, much like the other MMT components
(QVT-R and ATL). Echo’s core engine can also be used
directly as a library, in which case models are expected to be
already parsed into the EMF’s abstract syntax. Nonetheless,
EMF has a wide support for domain-specific languages pre-
sented in a concrete syntax, which can be directly harnessed
by Echo. The currently prescribed mechanism to convert
models from concrete to abstract syntax is through Xtext,4 a
language processing framework that provides parser genera-
tors as well as full integration with the Eclipse IDE through
custom code editors. As an example, to processQVT-R trans-
formations, Echo translates QVT-R specifications following
the standard’s concrete syntax to EMF’s abstract syntax by
relying on the MMT functionalities built over Xtext.

5.2 Visualizing model instances

As just described, the user is able to choose the desired
repairedmodel from the range of all minimal consistent solu-
tions. Performing such choice over the concrete XMI files
would not be user-friendly (even with the standard Eclipse’s
XMI editor), so instead we resort to the Alloy graph visual-
izer, where perceiving models is as easy as grasping graphs.
However, in order to be better understandable by the user,
these graphs must be presented in a shape that resembles its
model structure. The Alloy visualizer allows the definition of
custom themes, and our tool automatically determines one
such theme using the information available from the Ecore
meta-models. Alloy’s magic theme functionality [44] also
tries to infer a suitable theme from an Alloy specification
through a set heuristics. However, while some of the visu-
alization properties determined by our technique are similar
to those inferred by the magic theme, the extra information
available in the meta-model, and knowledge about the under-
lying encoding of the transformations, proves to be an advan-
tage and eliminates the need of said heuristics.

The most evident feature of the inferred theme is hiding
the extra Alloy fields required by the underlying enforcing
mechanism but irrelevant for the user, in particular the sig-
nature’s state fields and the auxiliary fields used to represent
relation calls. Our enforcing mechanism also requires that
both the original source and target models, as well as the
updated target model coexist in a single Alloy instance. Pre-
senting them together to the user would be very confusing,
so we opted to project the instance over concrete models,
focusing first on the updated model, but allowing the user
to visualize the others if he so desires (Alloy’s magic theme
would try to infer such projections [44], but our experiments
showed that it would fail to pick the desired one in this par-
ticular case). To better highlight the differences between the
original and the repaired models, the elements inserted or

4 http://www.eclipse.org/xtext/.

123

http://www.eclipse.org/modeling/
http://www.eclipse.org/xtext/

Least-change bidirectional model transformation with QVT-R and ATL 801

Fig. 11 hsm2nhsm-consistent models as presented in Echo. a NHSM model, b possible HSM model, c possible HSM model

removed by the repair are painted in a different color (green),
while the existing elements are painted gray. Calculating the
GED Δ between Alloy instances already requires calculat-
ing the symmetric difference between their elements (and
links). Since the Alloy visualizer allows subset signatures to
be drawn differently, that component of the Δ function is
reused to that end. Elements belonging to different classes
are distinguished by shape.

Like in [44], enumeration literals are hidden and fields
whose target type is an enumeration are presented as node
labels rather than as edges to the enumeration literals. How-
ever, we need not use heuristics to detect enumerations, as
their existence can be detected directly in the Ecore meta-
model. Following the same reasoning, Alloy fields that orig-
inated from attributes in the meta-model are also presented
as node labels rather than as edges to the attribute’s value
node, to minimize the number of visual elements. As a con-
sequence of the projectedmodel states, sets end up also being
represented by node labels.

Finally, we are also able to determine a suitable span-
ning tree for the graph, that defines its dominant hierarchical
structure. In our context, these are represented by the contain-
ment associations of themeta-model,whichdefine theoverall
structure of the model instances, the remaining associations
depicting only references between existing elements. In the
Alloy, visualizer spines are defined by tagging such fields as
influencing the layout.

Figure 10 shows two models: the left-one conforms to
the RDBMS meta-model and is depicted with the standard
Eclipse XMI editor; the right-one conforms to the UML
meta-model and is depicted with the embedded Alloy visu-
alizer, using the automatically inferred theme. Note how the
graph is adapted to the UML meta-model: different classes

are shaped differently, while the attribute name and the set
persistent are presented as labels rather than edges. All
information not relevant to the presentation of the model is
hidden. The class diagram is a very simple company model,
where there are Employee and Employer classes, which
are both extensions of Person. Each Person has a name,
which is inherited by the persistent classes Employee and
Employer.

The models in Fig. 10 are consistent with the QVT-R
uml2rdbms bidirectional transformation, hence the rela-
tional schema on the left-hand side with the two correspond-
ing tables. The Employee table has a salary column,
whose matching attribute in the UML model is painted green
(in contrast to the other elements painted gray). This means
that this attribute has just been inserted by Echo in order to
restore consistency between the two models.

Figure 11 presents models kept consistent by the
hsm2nhsm transformation. The original HSM model was
a simple state machine with two top-level states, Idle
and Active. Active is a composite state, containing
two sub-states, Waiting and Running, with a transition
from Idle directly to Waiting. In the collapsed view,
Waiting and Running are dropped, but the transition
between the sub-stateWaiting and the top-level stateIdle
is inherited by Active. It is worth noting that in this exam-
ple, HSM and NHSM are two different meta-models, and thus
the different shape assigned to elements of similarly named
classes. At some point, the NHSM model was updated with
the insertion of a transition from Active to Idle, breaking
the consistency between the models. When propagating the
update, Echo proposes three minimal solutions. Figure 11
presents two of them: set the composite state Active as the
source of the new transition or choose instead one of its sub-

123

802 N. Macedo, A. Cunha

states, in this case, Waiting. In the third minimal repair
(not shown), the sub-state Running is set as the source of
the new transition.

5.3 Optimizing Alloy models

The major caveat of model finding approaches is scalabil-
ity. While we are aware that our technique will never be as
efficient as syntactic approaches (even if more expressive),
in this section, we present some optimizations that enable
its application to many realistic examples. Although a novel
contribution, the reader uninterested inAlloy technical details
may skip this section as it does not affect the semantics of
the proposed technique.

As presented in Sect. 2.3, QVT-R semantics relies heav-
ily on nested forall-there-exists quantifications. These intro-
duce inefficiency, since the complexity of the generated for-
mulas may prevent skolemization and other optimizations
performed by Kodkod [50] (the underlying relational model
finder that supports Alloy) when translating to SAT. As such,
themaingoal of our optimizationprocedure is to eliminate (or
reduce the scope of) as many quantifiers as possible, some-
times taking advantage ofmeta-model knowledge not readily
available to Kodkod.

Figure 13 presents the equivalence laws used by our sys-
tem (as rewriting rules oriented from left to right) to eliminate
or reduce the scope of quantifiers. Among the most effective,
we have the one-point rules, that require as side-condition
that the set over which the quantified variable ranges is a
singleton. Using knowledge about the meta-model, this con-
dition is many times trivial to check, namely when such set
is the result of a navigation expression over a mandatory
attribute. Figure 12 presents some additional laws that are
used to eliminate redundant expressions, again using knowl-
edge about the meta-model.

To simplify the application of such rules, navigation
expressions are kept normalized in the shape x.R, where
x is typically a quantified variable and R an arbitrary com-
position of binary relations or their converse. Such normal-
ization can be done by application of associativity and con-
verse laws concerning the relational composition operator,
such as R.x≡x.∼R or (∼(R.S)) ≡ (∼S).(∼R). More-
over, in this normalization, we attempt to isolate the near-
est quantified variable in a membership check using the
rule y in x.R ≡ x in y.(∼R) to potentiate the applica-

Fig. 12 Redundancy elimination

tion of trading rules. Finally, whenever possible, we also
replace multiplicity checks by their navigational equivalent,
for example using the law some x.R ≡ x in x.R.(∼R).

As an optimization example, consider the most simple
QVT-R relation from uml2rdbms, namely relation P2S in
the direction of RDBMS. By applying QVT-R semantics, the
following formulawould result fromour embedding inAlloy:

all p:package.m,n:String | n in p.(name.m) =>
some s:schema.m’ | n in s.(name.m’)

Although simple, this formula already contains 3 quantifi-
cations whose range is loosely restricted (for instance, n
is freely quantified over all strings). Figure 14 shows how
this formula can be simplified using the above rules. To
understand how the side-conditions can be easily checked
using meta-model knowledge, consider the name attribute
in the Package class of the UML meta-model. As we have
seen in Sect. 3.2, when embedding this meta-model in Alloy,
this attribute is encoded as a relation of type Package->
String->UML (to be used always as a binary relation in the
context of particular UMLmodel—in our optimization exam-
ple the model m), constrained by the following multiplicity
and inclusion dependency fact.

all m:UML | name.m in package.m -> one String

From this, we can deduce that p.(name.m) in String,
the side-condition required for the first application of rule ∩-
Subset, that one p.(name.m), the side-condition to the
application of ∀-One-Point, and that the domain of name.m
is a subset of package.m, formally (name.m).univ
in package.m, in the final application of δ-Subset.

This optimization procedure essentially attempts to trans-
late relational logic formulas to the, so-called, point-free
notation: a version of this logic with no variables (nor quanti-
fiers). Suchnotation iswell known for its amenability to proof
and optimization through simple equational reasoning [39],
and transformation of Alloy formulas to such style has been
explored before [14,30], as means to perform unbounded
verification proofs. In this case, its application to optimiza-
tion is particularly effective, since it takes advantage of the
fact that formulas originating from our embedding follow a
very specific pattern, and information about the meta-model
is readily available to speed up side-condition checks.

Finally, some other optimizations, not related to quan-
tifier elimination, are also performed. For example, when
embedding meta-models in Alloy, fields are not created for
associations marked as opposite of another existing asso-
ciation. Instead, when a call to an opposite association
occurs in a formula (e.g., states.m), it is just replaced
to a call on its opposite using the converse operator (e.g.,
∼(machine.m)). This further reduces the overall amount
of variables and constraints during SAT solving.

Note that our tool performs these optimizations only once,
when the meta-models and transformations are loaded and

123

Least-change bidirectional model transformation with QVT-R and ATL 803

Fig. 13 Quantifier elimination and restriction

Fig. 14 Optimization example

embedded into Alloy, and not every time the transformation
is run after an update.As such, the time spent on the optimiza-
tions (which is almost negligible anyway) does not affect the
performance of the least-change update propagation proce-
dure.

6 Evaluation

As made evident on Sect. 3.3, choosing between GED and
OBD imposes a clear trade-off between control over the
updates and user overload due to the mandatory definition
of operations. In this section, we start by analyzing the con-
sequences of this choice with concrete examples. We then
discuss the impact of bidirectional (as opposed to unidirec-
tional) checking semantics in QVT-R. Finally, we present
some efficiency tests to access the scalability of our tech-
nique.

6.1 GED versus OBD

Consider the UML class diagram and database schema from
Fig. 10, and imagine that the database manager decides that
employers also have salaries, creating a column salary in

the Employer table. Since GED is meta-model indepen-
dent, our tool automatically infers how to calculate model
distance according to it. In particular, the minimal repairs
on the UML model according to GED are either setting
Employee as a super-class of Employer or to move the
attribute salary from Employee up to Person, both at
distance 2. If none of these are desirable repairs, the user
can ask for the next closest solution at distance 3, which in
this case is the introduction of a new attribute salary in
Employer.

Suppose the user wants to rule out all repairs that change
the class hierarchy or assign the same cost to either create a
new attribute or move an attribute from one class to another.
To do so, he can specify (using OCL) which are the valid edit
operations that can be performed to repair a model. For our
running example, we only assume the existence of operations
whose signature is presented in Fig. 1.Notice that there are no
edit operations that modify the hierarchy, and both creation
and moving of an attribute are now atomic edit operations.
Through OBD our technique finds the minimal sequence of
edit operations that repairs the model. In our company run-
ning example, there will now be twominimal repairs, namely
insert the new attribute salary in Employer, or moving
the existing one from Employee to the common super-class

123

804 N. Macedo, A. Cunha

Person, which were considered at different distances using
GED. As expected, the solution which set Employer as a
sub-class of Employee has also been excluded.

For another example of trade-off between GED and OBD,
consider the expansion/collapse of state machines example.
Imagine the user wants to allow the occurrence of errors
and creates a new simple state Error on the collapsed dia-
gram and a transition to it from Active. Propagating this
update back to the expanded state machine using GEDwould
yield 3 possible solutions at minimal distance: the creation
of the simple state Error with a transition to it from either
the composite state Active or the sub-states Waiting or
Running, all at minimal cost. The user could easily navi-
gate through these solutions and select the most suitable one
depending on the context.

Suppose, however, that the user prefers that transitions
inserted in the collapsed state machine are reflected back
only at the top-level states. If that is the case, besides the
addTopState and operations addSubState, he could
simply define an addTransition operation in a way that
it only allows the insertion of transitions between top-level
states. Figure 3 presents the signatures of these edit oper-
ations. In that case, if the previous update was propagated
using the OBD metric, it would present only one solution at
minimal distance, namely the insertion of a new transition
from the composite state Active to Error.

We believe this combination of ameta-model independent
metric and a user parameterizable one provides a high level
of flexibility to our technique.

6.2 Bidirectional versus unidirectional checking semantics

While the prevalent idea is that the QVT-R standard forces
checking semantics to be bidirectional (i.e., run the test in
both directions) [4], this requirement may be too strong in
somecontexts. In fact, someambiguities in the standard allow
different interpretations and ModelMorf [49], the tool that
allegedly follows theQVT-R standard the closest, allows uni-
directional checks. In this section, we briefly analyze the
consequences of this directionality.

Let us consider theuml2rdbms transformation and com-
pare a unidirectional consistency check in the direction of
UML and a bidirectional check as prescribed by the QVT-R
standard. The main difference between them is that, while
in the bidirectional version, only extra classes not matched
by any relation are disregarded (insertion of a non-persistent
class does not introduce inconsistencies), in the unidirec-
tional version any extra class not related to a table is disre-
garded (insertion of a class, even if persistent, never causes
inconsistencies). Clearly, this is undesirable in uml2rdbms
transformation and would be as well in hsm2nhsm.

However, this is not always the case. Consider for instance
the consistency relation between UML class diagrams and

UML sequence charts. One of the basic consistency con-
straints between these models is that all classes mentioned
in the sequence chart must exist in the class diagram; how-
ever, not all classes in the class diagram must exist in the
sequence chart. This kind of consistency relation would be
impossible to specify with QVT-R’s forall-there-exists bidi-
rectional checks, unless the classes which are mentioned in
the sequence chart were somehow (artificially) marked in
the class diagram, so that a pattern to filter them out can be
defined in the consistency relations.

Our tool’s default checking mode uses a bidirectional
semantics, but the fact that it consists of the conjunction of
the two unidirectional tests makes it easy to adapt the system
to perform unidirectional tests when desirable.

In fact, this asymmetry issue is just one dimension of a
more general problem that emerges when considering multi-
directional transformations. In [32], we show that our embed-
ding can be trivially generalized to the multi-directional sce-
nario, where updates on multiple models are propagated to
a set of designated target models (another feature not cur-
rently offered by any existing QVT-R tool). We also show
that the QVT-R standard enforcement semantics for multiple
models—the forall-there-exists constraint from every source
model to a single target model—is too restrictive, excluding
many interesting application scenarios.

6.3 Scalability

At the time of writing, no benchmark for the assessment of
bidirectional transformation tools has been proposed. Thus,
to assess the scalability of our technique, we devised a class
of synthetic examples of the familiar uml2rdbms transfor-
mation, with the intention of achieving linear increases both
in model size (number of nodes and edges when seen as a
graph) and required update distance.

The shape of a UML class diagram of dimension n consists
of a spine of n non-persistent Class elements (identified as
class i at level i), each with a persistent sub-Class (iden-
tified as class i ′ at level i), which have themselves a single
Attribute (with the same name i ′ as the owning class).
Thus, a UML model of dimension n has 5n + 2 nodes and
8n edges. For instance, Fig. 15 depicts the UML model for
n = 3, the number of nodes being the number of model ele-
ments (10) and string literals (7), while the number of edges is
the number of association links (14) and element’s attributes
(13), the latter shown as node labels in Fig. 15. The cor-
responding RDBMS models, to be uml2rdbms-consistent,
must contain a Tablewith a singleColumn for each persis-
tent Class i ′, that is, 3n + 2 nodes and 4n + 1 edges. Since
theUML andRDBMSmodels coexist, the total size of the envi-
ronment is the sum of the respective sizes, with the exception
of string literals which are shared. These models were gen-
erated using Echo’s model generation feature, which allows

123

Least-change bidirectional model transformation with QVT-R and ATL 805

Fig. 15 Synthetic UML model with n = 3

Fig. 16 Synthetic RDBMS model with n = 3 and d = 2

the specification of model sizes and the definition of extra
OCL constraints that parametrize the shape of the generated
solutions.

To introduce inconsistencies, new Column elements are
inserted in the RDBMSmodel that impose repairs on the UML
model. The smallest inconsistency consists of inserting in
Table n′ a Column (n − 1)′. To solve this inconsistency,
the minimal update is to move Attribute (n − 1)′ in the
UML model to the (n − 1) non-persistent Class, so that it
is shared by both Class n′ and Class (n − 1)′. This has
a cost Δ = 2 for GED and Δ = 1 for OBD. Increasingly
distant updates d < n can be attained by inserting in every
Table i ′ such that i > n − d every Column j ′ such that
n − d � j < i , resulting in updates Δ = 2d for GED and
Δ = d for OBD in the UML model. Thus, an inconsistency
at distance d introduces d(d+1)

2 nodes and d(d + 1) edges.
As an example, Fig. 16 presents the RDBMSmodel for n = 3
with inconsistencies for d = 2.

Table 2 Scalability tests size for enforce mode with GED and d = 1

n Nodes Edges Variables

2 18 27 449

3 25 39 763

4 32 52 1063

5 39 63 1,469

6 46 75 1,941

7 53 87 2,479

8 60 99 3,083

9 67 111 3,753

10 74 123 4,489

All tests were run usingEcho over Alloy 4.2with theMin-
iSat solver, on a 1,8 GHz Intel Core i5 with 4 GB memory
running OS X 10.8. We performed experiments for models
up to n = 10 and update distance up to d = 3, when applica-
ble. Table 2 summarizes the total size of both models for n
up to 10 given an update d = 1. The last column represents
the number of variables present in the SAT problem gener-
ated by Kodkod, Alloy’s underlying relational model finder
[50], when repairing the consistency between both models.
All tests were run multiple times as to get the average per-
formance values.

Figure 17 compares execution times (shown in log scale)
of runs with and without the optimizations presented in
Sect. 5.3. Figure 17 compares checkonly runs, and the gains
are very significant. For n = 10, the optimized version takes
only 7% of the time spent by the non-optimized version,
with average gains of 45%. Checkonly runs do not require
the measurement of model distances, so the choice of the
distance metric does not affect the performance. Figure 17b
compares enforcement runs using GED and OBD again with
and without formula simplifications, for a fixed d = 1. The
optimized versions are in average 29 and 56%more efficient
than the non-optimized versions, for GED and OBD, respec-
tively, but again the difference grows fast, and for n = 10, the
optimized versions take only 7% of the execution time of the
non-optimized ones for bothGEDandOBD.As alreadymen-
tioned in Sect. 5.3, optimizingAlloy formulas may take some
time, but since this optimization is performed only once at
static time (when the transformations are translated toAlloy),
it does not affect the time effectively spent in the repair. The
gain from enforcement executions using GED to those using
OBD is also significant (in average the first takes 75% of the
time of the second, and around 40% for n = 10), but these
results should be analyzed with caution, as they occur in a
controlled scenario where GED repairs require only twice as
much solving iterations than the ones with OBD. In practice,
OBD can be much faster than GED if each atomic operation
is more complex, combining multiple insertions/deletions of

123

806 N. Macedo, A. Cunha

nodes and edges, allowing inconsistencies to be repairedwith
smaller distances.

Figure 18 depicts the execution times of checkonly and
enforcement modes (with optimizations), using both GED
and OBD, respectively, as the dimension n of the model
increases, and for different fixed update distances d. Exe-
cution times for d = 0, i.e., consistency checks, take up
to 8s for n = 10. While these values are not competitive
against other existing techniques for consistency checking,
they are due to the lack of support for instances of Alloy: par-
tial solutions must be encoded by additional singleton signa-
tures and constraints in the model. The performance in this
case could be significantly improved by embedding the tech-
nique directly in Kodkod or by using Alloy extensions with
support for partial instances, like the one proposed in [37], as
our current studies show [10]. The impact on running times
of the increasing d is intrinsic to our iterative technique, since
every Δ step requires a new model finding run. This is better
depicted in Fig. 19 that presents the same data but in relation
to increasing distance Δ, for fixed model dimensions n.

Although not ready to handle industrial-size models,
Echo’s greatest strength lies in its ability to allow the user to
quickly and simply analyze and debug transformation spec-
ifications. In fact, a great challenge in model transformation
is to guarantee that the behavior of the specified artifacts
reflects the intention of the user: With a predictable least-
change semantics and quick provision of feedback to the
user,Echo excels in these tasks. In this context, the size of the
models is not as crucial—as put by the small scope hypoth-
esis advocated by the Alloy creators [24], most problems on
specifications may be flagged by small instances. The fact
that we were able to detect heretofore undetected problems
in the standard’s uml2rdbms transformation attests this.
Nonetheless, despite the size of the models, the complexity
introduced by the meta-models and inter-model constraints
could alone deem solving unfeasible—in fact, without the
optimizations presented in Sect. 5.3 that was precisely the
case. In the future, we intend to develop functionalities ded-
icated to automatically check specific properties of model
transformations—like the fact that they are total, determin-
istic, or that they always produce well-formed models—to
fully exploit this facet of Echo. As our technique is already
based on model finding, these extensions are rather straight-
forward to implement.

7 Related work

QVT-R tool support Regarding tool support forQVT-R trans-
formations, Medini and ModelMorf are the main exist-
ing functional tools. Medini [23] is an Eclipse plugin for
a subset of the QVT-R language. Although popular, its
(unknown) semantics admittedly disregards the semantics

from the QVT standard (it does not have a checkonly mode,
for instance). To support incremental executions, it stores
explicit traces between elements of the two models. Mod-
elMorf [49] allegedly follows the QVT standard closely
(although once again the concrete semantics is unknown),
since its development team was involved in the specification
of the standard. However, the development of the tool seems
to have stopped. None of these tools has support for OCL
constraints on the meta-models. Other prototype tools have
been proposed but once again the implemented semantics are
not completely clear.Moment-QVT [3] is an Eclipse plugin
for the execution of QVT-R transformations by resorting to
the Maude rewriting system; [11] proposes the embedding
of QVT-R in Colored Petri Nets. All these tools support only
unidirectional transformations, in the sense that they ignore
the original targetmodel.As such, they are not able to retrieve
information not present in the source, leading to the genera-
tion of completely newmodels every time the transformation
is applied. Once again, none supports OCL constraints on the
meta-model. In [17], the authors discuss the possible imple-
mentation of QVT-R transformations in TGGs. While some
TGGs tools prevent loss of information by supporting incre-
mental executions [16] or partial matches between domains
[18,21], this embedding focuses only on the embedding of
QVT-R specifications in the TGG architecture, disregarding
the consequences on the enforcement semantics.

A technique that follows an approach similar to ours is the
JTL tool [8], although it does not support QVT-R, but rather a
restrictedQVT-like language. Like ours, JTL generatesmod-
els by resorting to a solver (the DLV solver), which is able
to retrieve some (unquantified) information from the original
target. However, it is not clear how the solver chooses which
information to retrieve or how the new model is generated. It
also forces the totality of the transformation, returning incon-
sistent models in case there is no consistent one.

QVT-R Semantics Recently there has been an attempt to for-
malize the standard QVT-R enforce semantics [5], follow-
ing previous work on the checking semantics [4,47]. As
prescribed in the standard, to enforce the forall-there-exists
semantics, the procedure consists of a creation phase of new
target elements whenever a source element does not have a
matching target (or modification of existing ones, if keys are
used), followed by a deletion phase, to remove target ele-
ments that are no longer matching a source element. These
phases occur only at top-level relations, aswhen and where
are assumed to be predicates that top-level quantified ele-
ments must comply. This procedure does not take into con-
sideration additional constraints on the meta-model, in par-
ticular no specific technique is proposed to fill-in mandatory
attributes and associations of newly created (or modified)
elements, taking into account such meta-model constraints,
and when and where clauses (likewise to our technique,

123

Least-change bidirectional model transformation with QVT-R and ATL 807

(a) (b)

Fig. 17 Execution times for optimized (OPT) and non-optimized (RAW) implementations. a Checkonly, b enforcement (d = 1) for GED and
OBD

(a) (b)

Fig. 18 Execution times over model size n, for fixed Δ values. a GED, b OBD

(a) (b)

Fig. 19 Execution times over model distance Δ, for fixed n values. a GED, b OBD

the usage of solvers is hinted as a possible solution). Since it
closely follows the standard, this semantics also suffers from
the problems already described in Sect. 2.4.

Two approaches have been proposed for the validation of
QVT-R transformations that also rely on solvers. In [15], the
authors use Alloy to verify the correctness of QVT-R spec-
ifications, in order to guarantee the well-formedness of the
output and avoid run-time errors. In [7], OCL invariants of
the shape forall-there-exists are inferred from QVT-R trans-
formations (much like the checking semantics), that allow the
validation of QVT-R specifications under a set of properties.
It supports OCL constraints in the meta-model, and recursive
calls are translated to recursive OCL specifications. A simi-
lar technique has also been developed for the verification of
ATL transformations [6]. However, these approaches are not
focused on enforcemode and its semantics anddonot analyze
the behavior of the transformation for concrete input mod-

els, which is the focus of our embedding. As already stated,
our technique could also be adapted to support the valida-
tion of similar properties, like checking if a transformation
is injective or that all consistent models are well-formed.

Bidirectionalization of ATL The relation between ATL and
QVT has previously been explored in [26]. However, the
focus was on aligning the architecture of the two languages,
without any semantic considerations. They suggest that inter-
operability could be attained by mapping both QVT-R and
ATL to QVT Operational.

Some previous work has been done toward the bidirec-
tionalization of ATL. In [52], the authors infer a synchro-
nization procedure from a subset of the byte-code produced
by the ATL compiler, in the sense that both the source and
target model can be updated in order to restore consistency.
However, it is not clear how the restrictions on the byte-

123

808 N. Macedo, A. Cunha

code are reflected on the ATL language. In [45], the authors
interpret models as graphs and ATL declarative rules as
UnCAL operations over said graphs, which are bidirection-
alized in the GRoundTram bidirectional graph transforma-
tion system [22]. However, the supported subset of the ATL
language is much more limited than ours, namely matching
rules cannot have source patterns and target bindings must
comply to a very limited OCL subset, excluding rule calls
(implicit or explicit). As discussed in Sect. 4.2, if we see our
ATLbidirectional transformations as lenses, the bidirectional
properties from [45] also hold in our framework. None of
these approaches are concerned with enforcing least-change
updates.

Solver-based model repair Some research have been made
on applying model finding techniques to model repair prob-
lems, in particular using Alloy. Model repair and bidirec-
tional model transformations are closely related, since the
two meta-models can be merged in a single global meta-
model, where inter-model consistency could be specified by
standard intra-model constraints, with the tweak that, when
propagating an update to the target, model repairs should
only be allowed in the subset of the global merged model
conforming to the original source meta-model. Even if exist-
ing model repair tools do not implement this tweak, and thus
cannot be directly applied to bidirectional model transforma-
tions, the underlying repair techniques are quite similar and
both areas could benefit from crossbreeding.

In [28], the authors propose a general approach for
constraint-based solving in the context of MDE (including
application tomodel repair), using theAlloy andOPL solvers
as concrete examples. However, the original inconsistent
model is specified as the lower bound for the new model,
meaning that the solver will only be able to add new atoms
and relations while solving the constraints. Following a simi-
lar approach, [48] assesses the feasibility of usingKodkod to
repair inconsistencies. Given an inconsistent Kodkod prob-
lem, a consistent problem is found by relaxing the bounds
of the original model in order to allow the addition of new
relations or the removal of relations suspected of causing
the selected inconsistencies. This assumes that the concrete
inconsistencies were previously detected by an external tool.
In both approaches, there is also no control over how close
the new model is to the original one and the authors do not
reason on how to manage the creation of new atoms. [20]
describes a technique for generating quick fixes for DSMLs
embedding on CSP over models. The technique guarantees
that the number of inconsistencies on the model decreases,
even if side effects occur. This is achieved by applying every
candidate fix to the inconsistent model and detecting and
counting the inconsistencies in the resulting model. In terms
of expressivity, this last approach is the closest to ours, but,

being also solver based, it suffers from the same scalability
issues.

Least-change transformations As far as we are aware, stud-
ies on least-change bidirectional transformations are limited
to the seminal work of Meertens [35], as already discussed
in Sect. 2.4, and our own previous work on composing least-
change lenses [34]. While it would be interesting to explore
the compositionality of QVT-R transformations under the
least-change principle, classicmaintainers are already known
not to be compositional [35], greatly lowering the expecta-
tions for a composable least-change QVT-R language.

Our least-change approach, like QVT-R, is state-based, in
the sense that transformations (and thus the model distance
metrics) consider only the pre- and post-states of the model,
in contrast to operation-based frameworks [12], where trans-
formations are provided extra information about how the
updated model was attained, either through the applied edit
sequence or through a sameness relation between model
elements. This extra knowledge allows the transformations
to disambiguate overlapping scenarios, the classic example
being the ability to distinguish modifications from deletion-
s/insertions, which under state-based frameworks are undis-
tinguishable unless elements are assigned unique keys.

8 Conclusions and future work

This article proposed a QVT-R bidirectional model transfor-
mation tool, supporting both the standard checking seman-
tics and a clear and precise enforcement semantics based
on the principle of least change. It also supports meta-
models annotated with OCL constraints and specification
of allowed edit operations, which allows its applicability to
non-trivial domains and provides a fine-grained control over
non-determinism. The implementation is based on an embed-
ding in Alloy, taking advantage of its model finding abilities.
We have also extended our tool to support the bidirection-
alization of ATL transformations. The tool is deployed as a
plugin for the Eclipse IDE, focusing on user-friendliness,
namely presenting in a clear way which model repairs are
being applied.

Being solver-based, the main drawback of the proposed
tool is performance. Improving it is the main goal of our
future work: We intend to explore incremental solving tech-
niques to speed up the execution of successive commands
with increasing scope, and to define mechanisms to infer
which parts of target model can be fixed a priori in order to
speed-up solving. In particular, we are currently analyzing
the impact of embedding our technique directly in Kodkod,
which has support for partial instances, and adapting it to
rely on Max-SAT solvers instead, through the use of target-
oriented solving techniques [10]. Nonetheless, even in its

123

Least-change bidirectional model transformation with QVT-R and ATL 809

present status, the tool is already fully functional, much due
to the development of optimization techniques. In particular,
it already proved effective in debugging existing transfor-
mations, namely helping us unveiling several errors in the
well-known object-relational mapping that illustrates QVT-
R specification. In the future, we plan to further explore the
debugging aspect of the tool by providing means to auto-
matically verify and validate correctness properties of model
transformations.

Acknowledgments This work is funded by ERDF—European Regio-
nal Development Fund through the COMPETE Programme (opera-
tional programme for competitiveness) and by national funds through
the FCT - Fundação para a Ciência e a Tecnologia (Portuguese Foun-
dation for Science and Technology) within project FCOMP-01-0124-
FEDER-020532. The first author is also sponsored by FCT grant
SFRH/BD/69585/2010. The authors would also like to thank all anony-
mous reviewers for the valuable comments and suggestions.

References

1. Anastasakis, K., Bordbar, B., Georg, G., Ray, I.: On challenges of
model transformation from UML to Alloy. Softw. Syst. Model. 9,
69–86 (2010)

2. ATLAS group: ATL user guide. http://wiki.eclipse.org/ATL/User_
Guide

3. Boronat, A., Carsí, J., Ramos, I.: Algebraic specification of amodel
transformation engine. FASE’06, LNCS, vol. 3922. Springer,
Berlin (2006)

4. Bradfield, J., Stevens, P.: Recursive checkonly QVT-R transfor-
mations with general when and where clauses via the modal mu
calculus. In: FASE’12, LNCS, vol. 7212, pp. 194–208. Springer,
Berlin (2012)

5. Bradfield, J., Stevens, P.: Enforcing QVT-R with mu-calculus and
games. In: FASE’13, LNCS, vol. 7793, pp. 282–296. Springer,
Berlin (2013)

6. Büttner, F., Egea, M., Cabot, J., Gogolla, M.: Verification of ATL
transformations using transformation models and model finders.
In: ICFEM’12, LNCS, vol. 7635, pp. 198–213. Springer, Berlin
(2012)

7. Cabot, J., Clarisó, R., Guerra, E., de Lara, J.: Verification and
validation of declarative model-to-model transformations through
invariants. J. Syst. Softw. 83(2), 283–302 (2010)

8. Cicchetti, A., Ruscio, D.D., Eramo, R., Pierantonio, A.: JTL: a
bidirectional and change propagating transformation language. In:
SLE’10, LNCS, vol. 6563, pp. 183–202. Springer, Berlin (2010)

9. Cunha, A., Garis, A., Riesco, D.: Translating between alloy spec-
ifications and UML class diagrams annotated with OCL. Softw.
Syst. Model. 1–21 (2013)

10. Cunha, A., Macedo, N., Guimarães, T.: Target oriented relational
model finding. In: FASE’14, LNCS, vol. 8411, pp. 17–31. Springer,
Berlin (2014)

11. de Lara, J., Guerra, E.: Formal support for QVT-relations with
coloured petri nets. In: MoDELS’09, LNCS, vol. 5795, pp. 256–
270. Springer, Berlin (2009)

12. Diskin, Z., Xiong, Y., Czarnecki, K., Ehrig, H., Hermann, F., Ore-
jas, F.: From state- to delta-based bidirectional model transforma-
tions: the symmetric case. In: MoDELS’11, LNCS, vol. 6981, pp.
304–318. Springer, Berlin (2011)

13. Foster, J.N., Greenwald, M.B., Moore, J.T., Pierce, B.C., Schmitt,
A.: Combinators for bidirectional tree transformations: a linguistic

approach to the view-update problem. ACMTrans. Program. Lang.
Syst. 29(3), 17 (2007)

14. Frias, M.F., Pombo, C.L., Aguirre, N.: An equational calculus for
Alloy. In: ICFEM’04, LNCS, vol. 3308, pp. 162–175. Springer,
Berlin (2004)

15. Garcia, M.: Formalization of QVT-Relations: OCL-based static
semantics and Alloy-based validation. In: MDSD Today 2008, pp.
21–30. Shaker (2008)

16. Giese, H., Wagner, R.: From model transformation to incremental
bidirectional model synchronization. Softw. Syst. Model. 8(1), 21–
43 (2009)

17. Greenyer, J., Kindler, E.: Comparing relational model transforma-
tion technologies: implementing query/view/transformation with
triple graph grammars. Softw. Syst. Model. 9(1), 21–46 (2010)

18. Greenyer, J., Pook, S., Rieke, J.: Preventing information loss
in incremental model synchronization by reusing elements. In:
ECMFA’11, LNCS, vol. 6698, pp. 144–159. Springer, Berlin
(2011)

19. Guerra, E., de Lara, J.: An algebraic semantics for QVT-relations
check-only transformations. Fundam. Inform. 114(1), 73–101
(2012)

20. Hegedüs, Á., Horváth, Á., Ráth, I., Branco, M.C., Varró, D.: Quick
fix generation for DSMLs. In: VL/HCC’11, pp. 17–24. IEEE
(2011)

21. Hermann, F., Ehrig, H., Orejas, F., Czarnecki, K., Diskin, Z.,
Xiong, Y., Gottmann, S., Engel, T.: Model synchronization based
on triple graph grammars: correctness, completeness and invert-
ibility. Softw. Syst. Model. 1–29 (2013)

22. Hidaka, S., Hu, Z., Inaba, K., Kato, H., Nakano, K.: GRoundTram:
an integrated framework for developingwell-behaved bidirectional
model transformations. In: ASE’11, pp. 480–483. IEEE (2011)

23. ikv++ technologies ag: Medini QVT. http://projects.ikv.de/qvt/
24. Jackson, D.: Software Abstractions: Logic, Language, and Analy-

sis, revised edn. MIT Press, Cambridge (2012)
25. Jouault, F., Kurtev, I.: Transforming models with ATL. In: MoD-

ELS’05 Satellite Events, LNCS, vol. 3844, pp. 128–138. Springer,
Berlin (2005)

26. Jouault, F., Kurtev, I.: On the architectural alignment of ATL and
QVT. In: SAC’06, pp. 1188–1195. ACM (2006)

27. Jouault, F., Tisi, M.: Towards incremental execution of ATL trans-
formations. In: ICMT’10, LNCS, vol. 6142, pp. 123–137. Springer,
Berlin (2010)

28. Kleiner, M., Fabro, M.D.D., Albert, P.: Model search: formal-
izing and automating constraint solving in MDE platforms. In:
ECMFA’10, LNCS, vol. 6138, pp. 173–188. Springer, Berlin
(2010)

29. Leavens, G.T., Baker, A.L., Ruby, C.: Preliminary design of JML:
a behavioral interface specification language for java. ACM SIG-
SOFT Softw. Eng. Notes 31(3), 1–38 (2006)

30. Macedo, N.: Translating alloy specifications to the point-free style.
Master’s thesis, Escola de Engenharia, Universidade do Minho,
Braga, Portugal (2010)

31. Macedo, N., Cunha, A.: Implementing QVT-R bidirectional model
transformations using Alloy. In: FASE’13, LNCS, vol. 7793, pp.
297–311. Springer, Berlin (2013)

32. Macedo, N., Cunha, A., Pacheco, H.: Towards a framework
for multidirectional model transformations. In: EDBT/ICDT’14
Workshops, CEUR Workshop Proceedings, vol. 1133, pp. 71–74.
CEUR-WS.org (2014)

33. Macedo, N., Guimarães, T., Cunha, A.: Model repair and transfor-
mation with Echo. In: ASE’13, pp. 694–697. IEEE (2013)

34. Macedo, N., Pacheco, H., Cunha, A., Oliveira, J.N.: Composing
least-change lenses. ECEASST 57, 1–18 (2013)

35. Meertens, L.: Designing constraint maintainers for user interac-
tion. In: ThirdWorkshop on Programmable StructuredDocuments.
Tokyo University (2005)

123

http://wiki.eclipse.org/ATL/User_Guide
http://wiki.eclipse.org/ATL/User_Guide
http://projects.ikv.de/qvt/

810 N. Macedo, A. Cunha

36. Milicevic, A., Jackson, D.: Preventing arithmetic overflows in
alloy. In: ABZ’12, LNCS, vol. 7316, pp. 108–121. Springer, Berlin
(2012)

37. Montaghami, V., Rayside, D.: Extending alloy with partial
instances. In: ABZ’12, LNCS, vol. 7316, pp. 122–135. Springer,
Berlin (2012)

38. Near, J.P., Jackson, D.: An imperative extension to alloy. In:
ASM’10, LNCS, vol. 5977, pp. 118–131. Springer, Berlin (2010)

39. Oliveira, J.N.: Extended static checking by calculation using the
pointfree transform. In: LerNet’08, LNCS, vol. 5520, pp. 195–251.
Springer, Berlin (2009)

40. OMG: MOF 2.0 query/view/transformation specification (QVT),
version 1.1 (2011). http://www.omg.org/spec/QVT/1.1/

41. OMG: OMG unified modeling language (UML), version 2.4.1
(2011). http://www.omg.org/spec/UML/2.4.1/

42. OMG: OMG object constraint language (OCL), version 2.3.1
(2012). http://www.omg.org/spec/OCL/2.3.1/

43. OMG: OMG meta object facility (MOF), version 2.4.1 (2013).
http://www.omg.org/spec/MOF/2.4.1/

44. Rayside, D., Chang, F.S.H., Dennis, G., Seater, R., Jackson, D.:
Automatic visualization of relational logic models. ECEASST 7,
1–14 (2007)

45. Sasano, I., Hu, Z., Hidaka, S., Inaba, K., Kato, H., Nakano,
K.: Toward bidirectionalization of ATL with GRoundTram. In:
ICMT’11, LNCS, vol. 6707, pp. 138–151. Springer, Berlin (2011)

46. Stevens, P.: Bidirectional model transformations in QVT: semantic
issues and open questions. Softw. Syst. Model. 9(1), 7–20 (2010)

47. Stevens, P.: A simple game-theoretic approach to checkonly QVT
relations. Softw. Syst. Model. 12(1), 175–199 (2013)

48. Straeten, R.V.D., Puissant, J.P., Mens, T.: Assessing the Kodkod
model finder for resolving model inconsistencies. In: ECMFA’11,
LNCS, vol. 6698, pp. 69–84. Springer, Berlin (2011)

49. TataResearchDevelopment andDesignCentre:ModelMorf. http://
www.tcs-trddc.com/trddc_website/ModelMorf/ModelMorf.htm

50. Torlak, E., Jackson, D.: Kodkod: A relational model finder. In:
TACAS’07, LNCS, vol. 4424, pp. 632–647. Springer,Berlin (2007)

51. Voigt, K.: Structural graph-based metamodel matching. Ph.D. the-
sis, University of Desden (2011)

52. Xiong,Y., Liu, D., Hu, Z., Zhao,H., Takeichi,M.,Mei, H.: Towards
automatic model synchronization from model transformations. In:
ASE’07, pp. 164–173. ACM (2007)

Nuno Macedo is currently a
Ph.D. candidate at the High-
Assurance Software Laboratory
of the University of Minho,
Portugal, where he previously
obtained his M.Sc degree. His
thesis focuses on a relational
approach to bidirectional model
transformation, and is being
developed under the supervision
of Alcino Cunha.

Alcino Cunha is currently
Assistant Professor at University
of Minho, Portugal, where he
is also a member of the High-
Assurance Software Laboratory.
He obtained his Ph.D. degree
in Computer Science from this
university in 2005. His current
research interests are focused on
lightweight formal methods and
bidirectional model transforma-
tion.

123

http://www.omg.org/spec/QVT/1.1/
http://www.omg.org/spec/UML/2.4.1/
http://www.omg.org/spec/OCL/2.3.1/
http://www.omg.org/spec/MOF/2.4.1/
http://www.tcs-trddc.com/trddc_website/ModelMorf/ModelMorf.htm
http://www.tcs-trddc.com/trddc_website/ModelMorf/ModelMorf.htm

	Least-change bidirectional model transformation with QVT-R and ATL
	Abstract
	1 Introduction
	2 QVT relations
	2.1 Basic concepts
	2.2 Examples
	2.3 Checking semantics
	2.4 Enforcement semantics

	3 Embedding QVT-R in Alloy
	3.1 A brief introduction to Alloy
	3.2 Meta-models annotated with OCL
	3.3 QVT-R transformations
	3.4 Executing the semantics

	4 Bidirectionalizing ATL
	4.1 ATL language
	4.2 Overview of the bidirectionalization technique
	4.3 Inferring a consistency relation

	5 Deployment
	5.1 The Echo framework
	5.2 Visualizing model instances
	5.3 Optimizing Alloy models

	6 Evaluation
	6.1 GED versus OBD
	6.2 Bidirectional versus unidirectional checking semantics
	6.3 Scalability

	7 Related work
	8 Conclusions and future work
	Acknowledgments
	References

