Softw Syst Model (2016) 15:647-684
DOI 10.1007/s10270-014-0429-x

@ CrossMark

REGULAR PAPER

Model transformation intents and their properties

Levi Licio - Moussa Amrani - Juergen Dingel -
Leen Lambers - Rick Salay - Gehan M. K. Selim -
Eugene Syriani - Manuel Wimmer

Received: 24 September 2013 / Revised: 6 June 2014 / Accepted: 24 June 2014 / Published online: 18 July 2014

© Springer-Verlag Berlin Heidelberg 2014

Abstract The notion of model transformation intent is pro-
posed to capture the purpose of a transformation. In this
paper, a framework for the description of model transfor-
mation intents is defined, which includes, for instance, a
description of properties a model transformation has to sat-
isfy to qualify as a suitable realization of an intent. Several
common model transformation intents are identified, and the
framework is used to describe six of them in detail. A case
study from the automotive industry is used to demonstrate the

Communicated by Prof. Dragan Milicev.

L. Licio (<)
McGill University, Montreal, Canada
e-mail: Levi@cs.mcgill.ca

M. Amrani
University of Luxembourg, Luxembourg, Luxembourg
e-mail: Moussa.Amrani @uni.lu

J. Dingel - G. M. K. Selim
Queen’s University, Kingston, Canada
e-mail: Dingel @cs.queensu.ca

G. M. K. Selim
e-mail: Gehan@cs.queensu.ca

L. Lambers
Hasso Plattner Institute, University of Potsdam, Potsdam, Germany
e-mail: Leen.Lambers @hpi.uni-potsdam.de

R. Salay
University of Toronto, Toronto, Canada
e-mail: rsalay @cs.toronto.edu

E. Syriani
University of Alabama, Tuscaloosa, AL, USA
e-mail: esyriani@cs.ua.edu

M. Wimmer
Vienna University of Technology, Vienna, Austria
e-mail: wimmer @big.tuwien.ac.at

usefulness of the proposed framework for identifying crucial
properties of model transformations with different intents
and to illustrate the wide variety of model transformation
intents that an industrial model-driven software development
process typically encompasses.

Keywords Model transformation - Intent - Property -
Verification - Description framework

1 Introduction

In model-driven engineering (MDE), models or software
abstractions comprise the basic building blocks in the soft-
ware development process, and such models are manipulated
by model transformations. Thus, model transformations are
considered the heart and soul of MDE [108] and can be used
for a variety of purposes, such as the generation or synchro-
nization of models on different levels of abstraction, the cre-
ation of different views on a system, and the automation of
model evolution tasks [26].

Although several aspects of model transformations have
been thoroughly investigated in the literature (such as model
transformation languages and applications of model transfor-
mations), minimal research has been conducted on require-
ments and specifications for model transformations in gen-
eral, and on the different intents or purposes that model trans-
formations can typically serve in MDE and how they can be
leveraged for development and validation activities.

This paper proposes the notion of model transformation
intent to capture the purpose of a transformation and the
expected goals to be achieved by using it. As illustrated in
Fig. 1, intents are used to group transformations with the
same goal and to associate the so-called intent properties
with them, such as termination, type correctness, traceabil-

@ Springer

http://crossmark.crossref.org/dialog/?doi=10.1007/s10270-014-0429-x&domain=pdf

648

L. Lucio et al.

Transformation
Intents
Section 3

Transformations
Section 6

Section 5

Intent properties
Section 4

Transformation properties
Section 7

Validation method
Future work

Fig. 1 Intents as a classification mechanism for model transformations

ity, or the preservation of structural or semantic aspects. An
intent property can be thought of as a template that can be
concretized into a transformation property, i.e., a concrete
property pertaining to a specific transformation. The resulting
link between transformations and transformation properties
then facilitates validation of transformations via appropriate
validation methods.

We present a description framework for model transfor-
mation intents. The framework allows the construction of
a model transformation intent catalog through the identi-
fication of properties that an intent must or may possess,
and any conditions that support or conflict with an intent.
For instance, a translation model transformation intent can
describe a model transformation whose purpose it is to pre-
pare a model My for some kind of analysis. Thus, for a model
transformation to be considered a valid realization of the
translation intent for analysis, it should produce an output
model Mo that, when analyzed, yields analysis results that
“carry over” to Mq. High-level formalizations of key con-
cepts in the framework are given.

The use of the framework is illustrated by presenting an
initial catalog of 21 common model transformation intents
and discussing six of them (query, refinement, translational
semantics, translation, analysis, and simulation) in more
detail. Moreover, a case study involving the use of model
transformations for the development of the control software
for a power window in the automotive industry is described,
and for some of these transformations, their intents and trans-
formation properties are identified.

We expect our work on model transformation intents to
be useful to MDE practitioners and researchers. For instance,
it would help engineers identify the model transforma-
tion intent that best matches a particular MDE development
goal and facilitates the subsequent model transformation
development or reuse by explicating the properties that a
model transformation has to satisfy. Moreover, the notion of

@ Springer

model transformation intent can also provide useful input
for researchers interested in the specification and analysis
of model transformations by clarifying how to best describe
what a transformation is doing and which kinds of model
transformation analyses might be most useful. Finally, the
notion of model transformation intent can be used to clas-
sify model transformations into different domains that can
be leveraged for the development of domain-specific model
transformation languages and tools dedicated to express
transformations of specific intents due to the language fea-
tures or the kinds of analyses that they support.

This paper is a continuation of our work on model trans-
formation verification [5] which identifies three aspects influ-
encing the verification of model transformations (i.e., trans-
formations, properties, and verification techniques) and uses
them to survey formal verification approaches for model
transformations. Transformation intents were first proposed
in [4] which contains preliminary versions of the descrip-
tion framework and the intent catalog, together with a short
description of the power window case study. This paper
extends [4] significantly: We rebuild and structure the cata-
log, propose a formal description of the properties of intents,
add a thorough description of six intents to the catalog,
and exemplify the instantiation of properties for two of the
thoroughly described intents.

In the next section, we will present the framework for the
description of model transformation intents. An overview of
the structure of the remainder of the paper will be given at
the end of that section.

2 Description framework for model transformation
intents

Our description framework consists of the metamodels
shown in Figs. 2 and 3.

Model transformation intents and their properties

649

Fig. 2 Metamodel for - mandatory 1 *
describing model transformation ModelTransformationIntent > IntentProperty
intents name > name
description optional 0.* |description
useContext example
example
exogenous? T
endogenous? [
preconditions ’FundamentalProperty‘ ‘ PropertyClass

Fig. 3 Methods for validating
model transformations

|TransformationProper1y|

ValidationMethod

certifiedBy

rt -
SuppOrtS ModelTransformationLanguage

[
ByConstruction
£\

ByEvidence

ByChecking
A
Statically

Dynamically

| StaticMetrics |——| ModeIChecking|

DynamicMetrics |

| StaticAnalysis l——‘Abstractlnterpretation|

Debugging I

2.1 A metamodel for intents and their properties

In Fig. 2a, ModelTransformationintent is described in a
manner similar to object-oriented design patterns [42]. An
intent has a name and is more precisely described using
description and useContext. The description informally
conveys the general idea behind the intent, whereas the
useContext presents precise scenarios where the intent is
used. One or several examples refer to sample transforma-
tions, possibly from the literature, having this intent. A set of
preconditions describes any necessary conditions that need
to be satisfied for transformations with this intent to be possi-
ble. Boolean attributes is_exogenous and is_endogenous
indicate whether transformations with this intent can have
different or the same metamodel.

An IntentProperty is a property common to all trans-
formations with that intent. Intent properties can be seen as
templates with “holes” for either the specifics of a transfor-
mation (e.g., its specification or just aspects of it, e.g., the
target metamodel) or of the property to be expressed (e.g., a
postcondition the output model has to satisfy). Intent prop-
erties can thus refer to aspects of the execution of the trans-
formation, or to the result produced. The size and number of
holes make some intent properties more abstract than others.
Section 4 presents several intent properties including “termi-
nation,” “type correctness,” and “determinism” which are rel-
atively concrete; more abstract intent properties include the
“Structural Relation Property” which allows the expression

TheoremProving

of conditions over pairs of input and output models; intent
property “Semantic Relational” additionally considers their
semantics; properties requiring the preservation of aspects of
structure or semantics arise as special cases of these two.

The mapping between ModelTransformationintent and
IntentProperty is split into two different parts: manda-
tory and optional properties. The mandatory property set
describes necessary properties for a transformation to have
a particular intent. Note, however, that this set is not suffi-
cient, i.e., it is very common that related intents share their
mandatory properties. In such cases, the intents’ remain-
ing attributes have to be consulted for disambiguation. The
optional property set collects properties that transformations
with a specific intent may, but do not need to, have.

2.2 A metamodel for model transformation validation
methods

If the transformation is part of the development of a safety-
critical application, validation' or even formal verification
may be desired.

Partial classifications of formal verification techniques for
model transformations have already been proposed in [5,20]

I We use the term validation to refer to all formal, semi-formal, and
informal activities aimed at collecting evidence for the correctness of
a model transformation with, e.g., testing and formal verification as
prominent special cases.

@ Springer

650

L. Lucio et al.

where the impact of the model transformation language par-
adigm (i.e., if the model transformation language is, e.g.,
declarative, meta-programmed, or hybrid [26]) and the model
transformation form (i.e., how the transformation is syntacti-
cally specified [26]) on the suitability of a given verification
technique is also highlighted.

The process of filling the holes of an intent property is
called concretization and yields a TransformationProperty,
i.e., a fully fleshed out property pertaining to a specific trans-
formation which can be used for transformation validation.
In comparison with [5,20], Fig. 3 collects and organizes Val-
idationMethods (extracted from [1,24,32]) for validating a
transformation with respect to a transformation property. We
distinguish between two validation categories: ByConstruc-
tion and ByChecking. ByConstruction means that the prop-
erty is implied by the way the transformation language is con-
structed and operates. Techniques that allow transformation-
independent and input-independent validation of transforma-
tions, i.e., properties are shown to hold for all transformations
of the language and for all input models, are often ByCon-
struction; for instance, using a mathematical proof one might
be able to show termination or determinism for a model trans-
formation expressed as a graph rewrite system for all transfor-
mations and inputs (see [5] for details). Other formal prop-
erties are either Statically or Dynamically validated with
formal techniques. Dynamic techniques require executing
the transformation being validated (e.g., Testing or Dynam-
icMetrics), whereas static techniques include abstraction-
based techniques such as Abstractinterpretation, Theo-
remProving, ModelChecking, or any StaticAnalysis with
a specific scope (e.g., identifying unfireable rules). For many
of these categories, concrete examples of approaches from
the research literature can be found in [5].

2.3 Usage scenarios

We think that our work can be of use for practitioners and
researchers alike by supporting the following activities.

2.3.1 Intent identification

Given an existing transformation, our intent catalog can be
used to determine the intent of that transformation together
with any relevant optional intent properties as depicted in
Fig. 4. Should the transformation not match any intent in
the catalog sufficiently well, our framework could be used
to describe the new intent and add it to the catalog. Know-
ing the transformation’s intent may facilitate the documenta-
tion, maintenance, validation, or reuse of the transformation.
If the transformation has not been implemented yet, intent
identification may still be possible using, e.g., requirements
documents or interviews with MDE engineers. In this case,

@ Springer

[intent identified]
@ <

[no intent identified]
t : ModelTransformation Select intent using
T description attribute
¢ : Catalog
i : Intent i : Intent t : ModelTransformation
Check remaining
intent attributes
Confirm
appropriateness
= of mandatory
intent properties
[mandatory
properties required]
Select optional
o: intent
SelectedOption properties
alProperties

Fig. 4 Identifying the intent of a model transformation

knowing which intent the transformation is to have may facil-
itate implementation.

2.3.2 Model transformation validation

For validating a given transformation with respect to a spe-
cific intent, the mandatory intent properties and, to the extent
appropriate, the optional intent properties need to be con-
cretized into transformation properties pertaining to the given
transformation. Validation succeeds if the transformation sat-
isfies all transformation properties. This process is summa-
rized in Fig. 5.

2.3.3 Model transformation research

Our work is relevant to researchers interested in the specifica-
tion and analysis of model transformations, since it describes
and formalizes properties that transformations may have to
possess. Allowing for these, and perhaps other, properties to

Model transformation intents and their properties

651

¢ : Catalog
[Identify intent
t : ModelTransformation \
i 0!
Mode Transfor SelectedOptional i : Intent
mation Properties

/Concmtlm) /Concmum h

mandatory optional intent
intent properties
G v 4

(Val idate N (Val idate B

mandatory optional
properties properties
4 \ 4
. J

Fig. 5 Validating a model transformation with a specific intent

be expressed in a uniform, elegant specification language for
model transformations would be of interest, as would be the
development of effective analysis and validation techniques
and tools for model transformations.

Some intents may occur so frequently and require so
much development effort, that the development of an “intent-
specific” (e.g., domain-specific) transformation language
may be helpful. The new language may be a subset of an
existing one obtained by removing certain constructs (e.g.,
constructs that introduce non-termination), or a completely
new language employing paradigms and features that opti-
mally support the efficient construction of transformations
with a specific intent. Should these transformations be part
of the development of safety-critical software, designing the
transformation language in such a way that the proof of
transformation properties is facilitated (e.g., a transforma-
tion language without possibly non-terminating constructs
will only allow the construction of terminating transforma-

tions) could further increase productivity. Consequently, the
work presented here may also stimulate more research into
the design, implementation, and analysis of domain-specific
model transformation languages.

2.4 Structure of the remainder of the paper

Section 3 presents a non-exhaustive catalog of 25 common
transformation intents. The description of each intent is rather
short, using only a small part of the framework in Sect. 2.
Section 4 presents high-level formalizations of some key
intent properties. The list of properties is also not meant
to be exhaustive. Section 5 uses the full framework from
Sect. 2 to provide detailed descriptions of the six intents:
query, refinement, translational semantics, translation, analy-
sis, and simulation. In Sect. 6, we describe the Power Win-
dow Case Study (Pwcs) which shows how MDE techniques
in general, and model transformations in particular, can be
used for the development of software for a power window.
The case study contains a transformation chain of over 30
transformations. After a detailed description of two transfor-
mations in the case study, their intents are identified and some
of their intent properties are concretized into transformation
properties for validation purposes (the validation itself is left
for future work, though). At the end of the section, a list of
the intents of all transformations in the case study is given
together with their optional properties. Section 7 discusses
related work. Finally, Sect. 8 summarizes the paper’s contri-
butions and presents opportunities for future work.

3 The intents catalog

Several classifications for model transformations exist in the
literature. Such classifications are based on the transforma-
tion features [26], the transformation form [26], or syntactic
aspects [85]. From a formal verification point of view, what
really matters is the intent behind a transformation [5]: The
intent conveys the transformation’s actual meaning, which
influences the properties of interest that need to be verified.

This section proposes an Intent Catalog: a description of
recurring model transformation intents and illustrative exam-
ples from the literature. With respect to the metamodel in
Fig. 2, this catalog informally provides the following infor-
mation: hame, description, and example.

Our intent catalog is not an exhaustive list of all model
transformation intents, but it encompasses existing lists
(e.g., [26,57,85,113,119] which are discussed in Sect. 7).
An empirical evaluation of the catalog follows.

The catalog is divided in nine categories of model trans-
formation intents as illustrated in Fig. 6. The second level
of intents are concrete intents that describe a given model

@ Springer

652

L. Lucio et al.

Refinement Abstraction Semantic Definition
* Refinement * Abstraction * Translational Semantics
* Synthesis * Reverse Engineering ¢ Simulation

* Serialization * Restrictive Query

* Approximation

Language Translation Constraint Satisfaction
* Translation * Model Finding
* Migration * Model Generation Anaﬂ s
Editing Model Visualization Model Composition
* Model Editing * Animation * Model Merging
* Optimization * Rendering * Model Matching
* Model Refactoring * Parsing * Model Synchronization
* Normalization

* Canonicalization

Fig. 6 Intent catalog

transformation. The third level of intents emphasizes typical
special cases of concrete intents.

3.1 Refinement category

The refinement category groups intents that produce a more
precise model by reducing design choices and ambiguities
with respect to a target platform.

3.1.1 Refinement

A refinement transformation produces a lower-level specifi-
cation (e.g., a platform-specific model) from a higher-level
specification (e.g., a platform-independent model) [67], i.e.,
refinement adds precision to models. As defined in [46], a
model m | refines another model m, if m| can answer all ques-
tions that m, can answer. Typically, m| contains at least the
same information as m;. For example, a non-deterministic
finite state automaton (NFA) can be refined into a determin-
istic finite state automaton (DFA). Denil et al. [30] defined
a set of refinement transformations that iteratively add plat-
form knowledge to a deployment model.

3.1.2 Synthesis
A synthesis transformation is a refinement where the out-

put of the transformation is an executable artifact expressed
in a well-defined language format (typically textual).

@ Springer

Synthesis is also referred to as Model-to-code genera-
tion [110] when the transformation produces source code
in a target programming language. For example, Java code
can be synthesized from a UML class diagram model. Note
that the synthesis intent can be considered as a special case
of the refinement intent where the output of the transfor-
mation is an executable artifact. Furthermore, a refinement
transformation often precedes a synthesis transformation as
demonstrated in [83,122].

Serialization A special case of synthesis where the goal of
the transformation is to store the model on a medium, such
as the serialization of Ecore models into XMI.

3.2 Abstraction category

The abstraction category is the inverse of the refinement cat-
egory. It groups intents where some information of a model is
aggregated or discarded to simplify the model and emphasize
specific information.

3.2.1 Abstraction

Abstraction is the inverse of refinement: If m; refines my,
then my, is an abstraction of mi. Typically, m, will hide
some information while revealing other information. For
example, an NFA is an abstraction of a DFA. Also, Manna-
diar and Vangheluwe [83] used a transformation to extract
user-interface behavior from a Statecharts model into a

Model transformation intents and their properties

653

PhoneApps model. An view of a model that is not a sub-
model, but an aggregation of some of its information, is also
a abstraction. For example, “retrieve all cycles in a Causal
Block Diagram model” outputs a view of the causal block
diagram model represented as a cyclic graph composed of
strongly connected components.

3.2.2 Restrictive query

A query transformation requests some information about a
model in the form of a proper submodel or a view. Restrictive
query is a special case of abstraction where the result of a
query is a submodel of the input model. EMF INC-Query [10]
is a model transformation language that is used specifically
for querying EMF models. For example, the query “get all the
leaves of a tree” is a restrictive query. We consider any subse-
quent aggregation or restructuring of the resultant submodel
or view as an abstraction.

3.2.3 Reverse engineering

Reverse engineering is the inverse of synthesis: It extracts
higher-level specifications from lower-level ones. For exam-
ple, a UML class diagram model can be generated from Java
code using Fujaba [38]. Reverse engineering is considered as
a special case of abstraction where the input model is code.

3.2.4 Approximation

We consider transformation m is an approximation of mj
when m is equivalent to mj up to a certain error margin.
Naturally, m preserves more properties of m, as the error
decreases. The error margin is typically based on a distance
measure between models. For example, a fast Fourier trans-
form is an approximation of a Fourier transform, which is
computationally very expensive.

3.3 Semantic definition category

The semantic definition category groups transformation
intents whose purpose is to define the semantics of a model-
ing language.

3.3.1 Translational semantics

A translational semantics transformation gives the meaning
of a model in a source language in terms of the concepts
of another target language. It is typically used to capture
the semantics of new DSLs: As in [55], the semantic map-
ping transformation defines the mappings from the abstract
syntax of the DSL into a semantic domain with well-known
semantics. For example, Causal Block Diagram’s semantics
are expressed as ordinary differential equations.

3.3.2 Simulation

A simulation transformation defines the operational seman-
tics of a modeling language that updates the modeled sys-
tem’s states. The output model of the transformation is then
an “updated version” of the input model (i.e., the transfor-
mation is in-place). Simulation updates the abstract syntax of
the model, which may trigger modifications in the concrete
syntax. One example is in [72], where a model transforma-
tion was used to simulate a Petri Net model and produced a
trace of the transitions firing.

3.4 Language translation category

The language translation category groups transformation
intents that define a translation between two modeling lan-
guages.

3.4.1 Translation

A model translation transformation maps the concepts of a
model in a source language to the concepts of another tar-
get language while translating the semantics of the former
in terms of the other. A typical translation transformation
is the class diagram to the relational database schema case
study [12]. The resulting model can then be used to achieve
several tasks that are difficult, if not impossible, to perform
on the originals. For example, Syriani and Ergin [114] trans-
formed a UML activity diagram into a Petri Net model in
order to detect deadlocks and starvation, i.e., analysis is
delegated to the Petri Net workspace.

3.4.2 Migration

A migration transformation is such that it transforms soft-
ware models written in one language (or framework) into
software models conforming to another language (or a mod-
ified version of it), while keeping the models at the same
abstraction level [15]. Migration can be thought of the con-
sequence of evolving a model language to a newer version.
For example, transforming Enterprise Java Beans 2.0 (EJB2)
class diagrams so that the resulting models conform to EJB3
can be achieved by a migration transformation as in [6]. The
process of migrating each model individually so that they
conform to the evolved metamodel can be automated through
model transformations as presented in [22].

3.5 Constraint satisfaction category

The constraint satisfaction category groups transformation
intents that output models given a set of constraint to satisfy.

@ Springer

654

L. Lucio et al.

3.5.1 Model generation

Model generation is a transformation that automatically pro-
duces possible (correct) instances of a metamodel, such as
in [132]. The metamodel of a language can be defined using a
grammar, e.g., expressed in the Extended Backus-Naur Form
(EBNF), or a graph grammar [128] which, in a sense, encode
the constraints that the instances need to satisfy. Such model
transformations are very useful for testing model transfor-
mations since it facilitates the automatic generation of input
test models to verify the correctness of a transformation [27].

3.5.2 Model finding

Adapted from [120], model finding is a transformation that
searches for models that satisfy given constraints. In that
case, several models are generated according to a set of
rules and evaluated to check whether the generated models
satisfy some constraints. If not, a backtracking mechanism
reverses some of the applied rules to find another model.
A typical use of this intent is in design-space exploration
(e.g., [104]) which supports decision-making when several
solutions exist.

3.6 Analysis

The analysis intent is a category on its own that encom-
passes all analysis techniques that are too long to enumerate
here. An analysis transformation implements analysis algo-
rithms of varying complexities, from detecting dead code
or unapplicable rules to model-checking temporal formulae
over appropriate structures described by models. For exam-
ple, Licio and Vangheluwe [81] implemented a symbolic
model-checker for the DSLTrans transformation language
using model transformations.

3.7 Editing category

The editing category groups transformation intents that
manipulate a model directly.

3.7.1 Model editing

The simplest operations on a model are adding an element to
the model, removing an element from the model, updating an
element’s properties, navigating through the elements, and
accessing the properties of an element. These primitive oper-
ations are also known as the CRUD operations as first intro-
duced by Kilov [66]. These simple operations are considered
as a model transformation when the system is completely and
explicitly modeled, such as in AToMPM [118].

@ Springer

3.7.2 Optimization

Optimization is a special kind of model edition that aims
at improving operational qualities of models, e.g., scalabil-
ity and efficiency. For example, replacing n-ary associations
with binary associations in a UML class diagram can opti-
mize the code generated from the class diagram [45].

3.7.3 Model refactoring

Model refactoring is a special kind of model edition where the
model is restructured to improve certain internal quality char-
acteristics without changing the model’s observable behav-
ior [40,48]. Zhang et al. [135] proposed a generic model
transformation engine that can be used to specify refactor-
ings for domain-specific models.

3.7.4 Normalization

Normalization is a special kind of model edition that aims
at decreasing the syntactic complexity of models by translat-
ing complex language constructs of an input model into more
primitive constructs. For example, Agrawal et al. [2] normal-
ized a Statechart model into its flattened form, replacing OR
and AND states by the appropriate states and transitions.

Canonicalization A special case of normalization where
the representation of a model is normalized in a unique form.
This is typically useful when verifying the equality of two
models. For example, the work in [102] discusses how to
compute normal forms of equation expressions using model
transformation with Maude.

3.8 Model visualization category

The model visualization category groups transformation
intents that deal with the relation between the abstract and
concrete syntax of a modeling a language.

3.8.1 Animation

Animation is the visualization of a simulation. It projects the
behavior of a model on a specific animation view. In contrast
with a simulation transformation, an animation transforma-
tion operates on the concrete syntax (or the abstract syntax
of the concrete syntax) of a model. For example, Ermel and
Ehrig [36] used a model transformation to define the mapping
from simulation steps to animation steps of a radio clock.

3.8.2 Rendering
A rendering transformation assigns one (or more) concrete

representation(s) to each abstract syntax element or group of
elements in an input model, as long as the metamodel of the

Model transformation intents and their properties

655

concrete syntax is defined explicitly. For example, Guerra
and de Lara [54] used event-driven grammars to relate the
abstract and concrete syntaxes of visual languages.

3.8.3 Parsing

Parsing is the inverse of rendering: It maps the concrete syn-
tax of a modeling language back to its abstract syntax. This is
implemented by a model transformation involving the meta-
model of the concrete syntax and the meta-metamodel of the
language. For example, a model written in the Textual Con-
crete Syntax (TCS) [59] is transformed into a KM3 model of
its abstract syntax.

3.9 Model composition category

The model composition category groups transformation
intents that integrate models produced in isolation into a
compound model, where each isolated model represents a
concern that may overlap with any of the other isolated
models.

3.9.1 Model merging

A particular instance of composition is model merging. In this
case, the composition creates a new model such that every
element from the union of both models is present exactly
once in the merged model. Engel et al. [34] proposed a trans-
formation language that allows one to compute the merged
model from two models conforming to the same metamodel.

3.9.2 Model matching

A model matching transformation creates correspondence
links between corresponding entities. This is also known
as model weaving. Del Fabro and Valduriez [37] defined
a generic metamodel to capture correspondences between
models.

3.9.3 Model synchronization

Model synchronization integrates models that have evolved
in isolation and that are subject to global consistency con-
straints by propagating changes to the integrated models.
Such transformations are typically used when multiple views
of a common repository model are accessed or modified as
in [53].

3.10 Empirical evaluation of the intent catalog
We first started presenting a preliminary version at sev-

eral workshops with various audiences (CAMPaM’11°12,
AMT’12, AOM’13) in order to receive feedback from the

community. Once the catalog reached a fixed point, we pro-
ceeded with a succession of iterative empirical studies con-
ducted over several months. In the following, we report on
the final study that led to the intent catalog presented in this

paper.

3.10.1 Objectives

The goal of this study was to evaluate the correctness, unam-
biguity, and completeness of the intent catalog. There are two
levels of correctness that we wanted to measure: (Q1) “Up
to what degree do people agree with what we (the authors of
the catalog) expected?” and (Q2) “Up to what degree do peo-
ple agree with each other independently from the expected
answers?” The unambiguity objective can be formulated as
(Q3) “How difficult is it to distinguish between two or more
intents to characterize one model transformation?” Finally,
the completeness objective can be formulated as (Q4) “Is
there any intent of an existing transformation that does not
fall under an intent of the catalog?”

3.10.2 Methodology

Formally validating the intent catalog is intractable because
of the informality in which it is defined. Therefore, we opted
to empirically validate the catalog with respect to the four
objectives defined previously. We prepared an online survey
where we asked 26 questions: 25 randomized multiple choice
and one free form. Each question of the first 25 described a
model transformation example in one sentence in English and
stated explicitly the input and output metamodels involved.
For example, “Map a custom DSML for wrist watches to a
Statechart model in order to define its behavior. Input: Watch
DSML Output: Statechart.” The participants had to drag and
drop one intent from the list of intents provided to them in
alphabetical order at each question in the intent box. If they
were doubting between two intents and they could not decide,
they were allowed to drop the least likely one in the alternate
box.

The last question was an open question asking them to
optionally answer the objective question Q4 or any other
comment they would have.

For their training, each participant was given the intent
catalog and the instructions. They were not allowed to ask
any question regarding the catalog or the questionnaire, since
we were evaluating the unambiguity of the catalog. However,
they were allowed to seek resources from the Web if they were
not familiar with concepts in a question. There was no time
limit for the experiment. The participants took on average
42 min to perform the experiment.

@ Springer

656

L. Lucio et al.

3.10.3 Inclusion and exclusion criteria

A participant was eligible for the experiment if he had imple-
mented at least one complete model transformation in the
past. In total, we surveyed 38 participants with very different
backgrounds and expertise. We did not distinguish between
participant profiles because the catalog is intended to be
used by anyone who wants to develop or analyze a model
transformation. Among the participants, there were masters
and doctoral students, researchers, and professors in com-
puter science, electrical, and mechanical engineering. For the
last iteration of this experiment, which we discuss next, we
surveyed 14 participants.

3.10.4 Results and discussions

To quantitatively measure Q1, every question of each partic-
ipant was assigned a score of 1 if the answer in the intent
or alternate intent box matched our expected answer and 0
otherwise. Figure 7 shows how many participants agree with
our answers on how many questions based on the scores.
For example, 93 % of the participants found the same intent
as we expected on 28 % of the questions. Therefore, we can
conclude that participants agreed with our answers on aver-
age 73 % of the time. Furthermore, the scores recorded var-
ied between 56 and 88 %, which reflects that all participants
agreed with our expected answers more often than they did
not. This is a very satisfactory result for Q1 to measure the
correctness of the catalog given the heterogeneity of the par-
ticipants and the subjectivity of the experiment, and that they
could not ask for any clarification.

For Q2, we used the statistical measure, called Fleiss’
kappa [39], to assess the inter-rater reliability of agreement.
The values of « range between O (no agreement) and 1 (per-
fect agreement) indicating how much multiple judges agree
with their decisions. This measure is therefore unbiased with
our expected answers since every answer given by a partic-
ipant is taken into account equally. For the 14 participants,
kx = 0.57 that indicates a “moderate agreement.” However,
as depicted in Fig. 8, we observe a quasi-linear correlation
between « and the score. This means that the more partici-

Fig. 7 The ratio of participants
agreeing with respect to the
number of questions 259%

number of questions
30% -

Mean: 73%
1 Median: 74%
Std dev: 10%

20% A
15% A
10%

5% A

0%

14% 29% 36%

@ Springer

85% 1kappa
almost perfect agreement
80%

75%

70% A substantial agreement
65%

60%

55% A
50% A moderate agreement

45% -

40% S¢o I19.

58% 63% 68% 73% 78% 83% 88%

Fig. 8 The correlation between « and the score

pants agreed with our expected answers, the more they were
in agreement. This indicates that our expected answers were
correct according to the participants. Scores of at most 68 %
are in “moderate agreement.” Some answers provided by
these participants were dramatically different and incorrect,
e.g., when expecting translation, model matching was given
or when expecting synthesis, restrictive query was given.
Therefore, if we partition the participants into one group with
all scores of at least 68 % (10 participants) and another group
with remaining (4 participants), than the former group is in
“substantial agreement” (k¢ = 0.64), whereas the latter one
is in “moderate agreement” (x = 0.51). We may therefore
consider the latter group as outliers.

For Q3, the alternate intent box was used only 7.7 % of all
the questions among all participants (350 answers). There-
fore, on average, a participant could not decide between two
intents only once. This low ratio reflects the low level of
ambiguity of the catalog.

For Q4, none of the participants was able to suggest addi-
tional intents that they thought are missing in the catalog.

In order to improve the catalog, we extracted which ques-
tions were problematic. We considered a question to be prob-
lematic if at most 50 % of the top 10 participants agreed with
the correct answer or if at least two of them agreed on an

43% 57% 64% 71% 79% 86% 93% 100%
participants agreeing with us

Model transformation intents and their properties

657

incorrect answer. In this experiment, we were able to reduce
to six problematic questions: those dealing with translation,
synthesis, optimization, rendering, approximation, and pars-
ing. The variations between the answers ranged from three to
five different answers for each question. Nevertheless, there
was only “slight agreement” (x = 0.19) on the problematic
questions and “almost perfect agreement” (x = 0.81) on all
remaining questions.

3.10.5 Threats to validity

The first threat to the validity of this study is in the participants
themselves. The number of participants and their arbitrary
selection may have had an influence on the results. Further-
more, the survey was anonymous: We did not distinguish
between beginners, novices, and experts in model transfor-
mation. Through the various experiments we conducted, sev-
eral participants were not familiar with some of the con-
cepts involved in the questions. Distinguishing between these
groups will give stronger insights into how to formulate the
questions and possibly the catalog depending on the pro-
file of the reader and suggests the appropriate background
needed to use the catalog. Also, although instructed to do
so, the participants may not have always totally relied on the
description of each intent, but instead relied on their famil-
iarity with the intent name which has different meanings in
different domains.

A second threat is the possible ambiguity of the questions.
Although we assessed the ambiguity of the catalog, the par-
ticipants may have found the questions ambiguous, leading to
different answers than those expected. One remedy is to pro-
vide additional information per question, such as complete
input and output models or the complete transformation.

We see a few threats in the statistical measures used. For
example, Fleiss’ kappa gives equal weight to all answers.
A weighted kappa could have been used by giving higher
weights to intents that fall in the same category as the
expected answer, for instance.

Finally, we believe that providing the participants with
the full characteristics of each intent, as described in Sect. 5
for six of them, would have mitigated the ambiguities they
faced. However, this would require them to spend several
hours to get familiar with the content. We therefore inter-
pret the results of this empirical evaluation as a motivation
to further formalize the intent catalog as described in the fol-
lowing sections. As future work, a more extensive evaluation
is planned once this formalization of the catalog is complete.
Such an extensive evaluation might then clarify if ambiguities
that occurred in this experimental evaluation could indeed be
avoided. At the stage of using the intent catalog for the pur-
pose of verifying model transformations, this would be very
important, since preciseness then plays an indispensable role.

4 Formalization of intent properties

Figure 9 depicts the general ideal process of model transfor-
mation. An input model, conforming to a source metamodel,
is transformed into an output model, itself conforming to a
target metamodel, by executing a transformation specifica-
tion that conforms to its transformation language. A transfor-
mation specification is defined in terms of the source and tar-
get metamodels, whereas its execution operates on the model
level. Both source and target metamodels, as well as the trans-
formation specification, are themselves models, conforming
to their respective metamodels: For metamodels, this is the
classical notion of meta-metamodel; for transformations, it
actually refers to the transformation language, which allows
a sound transformation specification. Of course, some trans-
formations manipulate several input and/or output models.

This section provides a minimal mathematical framework
sufficient for our purpose: It allows to formally define the
mandatory and optional properties of our Description Frame-
work (Sect. 2) that are detailed in Sect. 5, paving the way
toward transformation validation, and later serves to illustrate
the transformations extracted from the Pwcs. This frame-
work is obviously not exhaustive: It is tailored for the set of
intents covered by this paper. Describing the other intents
not yet formally described by the Description Framework
will necessitate different property classes whose formalisa-
tion can elaborate on the current mathematical framework’s
state.

Section 4.1 provides notations for the general notions
(metamodels and models, model transformations, and model
semantics) on which the properties used for describing the
transformation intents of Sect. 4.2 are based. The readers not

Meta-meta-
model

L
172}
. £ .
. 5., .
. 2 .
4 8' .
’ .
©, %

% %
S A
§ X
$©,7)
§ ¢ A
S e +o
¢ .
¢ .

conforms to
4

Transformation
Specification

Source
Meta-model

conforms to
executes

Transformation outputs

Execution

Fig. 9 Model transformation: the big picture (adapted from [115])

@ Springer

658

L. Lucio et al.

{ BehaviouralProperty |

Structural} { Semantic |Termi- Type
Relation Relation | Lhation Correctness
Property Property |_Determinism |

Structural \

Semantic
Preservation

Preservation

i Traceability }

'
'
lemccccccccccaaas &

Fig. 10 Intent property hierarchy

particularly interested in the mathematical content can safely
skip this section and only refer to Fig. 10 to retrieve the corre-
spondence between mandatory/optional properties and their
formal counterpart.

4.1 Metamodels & models, model transformation,
and model semantics

Figure 9 depicts models, metamodels, and the conformance
relationship between them. The following definition intro-
duces notation for these notions.

Definition 1 ((Meta-)models—Conformance) Let M and M
be the sets of all metamodels and models respectively, as
defined by a meta-metamodel. For a given model M € M
and a given metamodel MM € M, we write M << MM if M
conforms to MM. We denote by £(MM) the set of all models
M € M conforming to MM, i.e. all models M € M such that
M < MM.

Historically, one of the first definitions for model transfor-
mation was proposed by the OMG, in line with the model-
driven architecture view. The OMG perceives transforma-
tions as “the process of converting one model to another
model of the same system” [49]. This system-centric view
was enlarged by Kleppe et al.: “a model transformation is the
automatic generation of a target model from a source model,
according to a transformation definition” [67]. This definition
brings a change from the system-centric view and considers
general input/output models, while insisting on the fact that
transformations are mostly perceived as directed and auto-
matic (i.e., without users’ intervention) manipulation of mod-
els. Similarly, Tratt describes a transformation as “a program
that mutates one model into another” [121], emphasizing the
computational aspect of transformations. More recently, two
contributions have widened the perspective with two impor-
tant aspects: Mens et al. proposed to view transformations as
“the automatic generation of one or multiple target models
from one or multiple source models, according to a transfor-
mation description” [85], whereas Syriani re-introduced the

@ Springer

crucial importance of the intent behind transformations: “the
automatic manipulation of a model with a specific intention”
[113].

We propose a broader definition that clearly embeds the
dual nature of model transformation, distinguishing its spec-
ification from its execution, and places the transformation’s
intent at its core.

Definition 2 (Informal Definition adapted from [5]) A trans-
formation is the automatic processing of input models to
produce output models, that conforms to a specification and
has a specific intent.

In this definition, note that the input and output models
may be the same artifact in the case where a transformation
is in-place. As with any computational artifact, a transforma-
tion operates at two levels: the specification, which is defined
by the transformation designer, refers to source/target meta-
models; and the execution, performed by the transformation
engine, following a specific semantics.

Definition 3 (Model Transformation Specification) A trans-
formation specification ¢ is a triple

= (MMS)ker1.ng> MME)ker1m)» SPEC)

where (MME)ke[l,.n] and (MMr)ke[l..m] are indexed sets of
source and target metamodels, respectively, and spec € £
is a well-formed transformation specification written in a
transformation language L.

Transformation specifications have a dual nature, as
noticed by Bézivin et al. [11]. As a model transformation,
it emphasizes a particular manipulation of source and tar-
get metamodels that spec describes precisely—this corre-
sponds to, in Fig. 9, the horizontal links named refers to from
Transformation Specification. As a transformation model, it
emphasizes the linguistic nature of spec, i.e., the confor-
mance relationship between spec and its language definition
L, and subsequently, its execution—this corresponds to, in
Fig. 9, the vertical links from Transformation Specification to
its Transformation Language and Transformation Execution.
Moreover, the form of spec depends on £’s underlying para-
digm (either operational or declarative, or both, i.e., hybrid—
see [26]) and manipulates directly the concepts defined by
the source and target metamodels.

This paper generally considers intents involving one input
model and one output model. Without loss of generality, the
rest of our definitions for transformations is therefore focused
toward this particular case: We consider n = m = 1 and
simply write a specification t = (MMg, MM, spec).

Due to its computational nature, a transformation exe-
cution can be represented by a transition system, whose
execution provides the semantics for the transformation
specification.

Model transformation intents and their properties

659

Definition 4 (Model Transformation Execution) The execu-
tion, or semantics, of a model transformation specification ¢
is given by a transition system TSy = (S, |, —>) where S
is a set of execution states that is a subset of M[; | C Sis a
set of initial states, called input models; and — C S x S
is the transition relation over S.

A transformation execution TSy is linked to its specifica-
tion t = (MMg, MMy, spec) through the subscript notation
(avoided when clear from context). The precise definitions
of S and — strongly depend on the specification language
L.

Note that we will only consider in this paper transforma-
tions with legal input models, i.e., transformations executing
or starting, from a conforming input model: VM € I, M €
L(MMs).

From the perspective of formal language theory, what a
model designer defines with a metamodel is a language’s
abstract syntax, i.e., the designer captures the relevant con-
cepts and their relationships in a way that enables their inter-
nal representation for further computations. To allow their
manipulation by modelers, a metamodel must be accompa-
nied with one or several concrete syntaxes that define their
concrete representation, be it graphical or textual (or both).
As a last ingredient, the semantics is necessary to perform
manipulations of models according to the meaning attached
to the modeled concepts.

Definition 5 (Model Semantics [55]) Let MM € M be a
metamodel. The semantics of MM, denoted [MM)], is a pair
[MM] = (D tyy)> Where Dy, is called the semantic
domain and p,,, the semantic mapping given as follows:

g © LIMM) — D,
M =y (M)

The precise definition of D, ,,, and t,,,, (noted without sub-
scripts when clear from context) highly depends on the nature
of the models in £(MM) and what the semantics will be used
for. If it does not have any associated behavior, the semantic
domain usually consists only of data structures. Otherwise,
L(MM) has a behavior, and the semantic domain needs to
appropriately capture it.

Note also that the semantics style depends on the machin-
ery associated with D, : It can be denotational if D,,, comes
with a functional framework, operational if it is equipped
with rewriting capabilities, axiomatic if it defines a Floyd-
Hoare logic, or even translational if D,,,, actually represents
a target computer language the semantics is translated into.

4.2 Intent properties

This section details the second important class of our intent
domain metamodel in Fig. 2, namely IntentProperty. In our

description framework, each transformation intent has cor-
responding mandatory (optional) properties that all transfor-
mations with this intent must (may) satisfy. Some intent prop-
erties can directly be instantiated for a given transformation,
and other properties are still quite abstract and will need to
be concretized for the given transformation before they can
be checked. Section 6 demonstrates for two example trans-
formations how it is possible to find out the appropriateness
of mandatory properties for a given transformation and also
how to concretize abstract intent properties to concrete trans-
formation properties that can be validated.

In the following, we assume a transformation specifica-
tion t = (MMg, MM, spec) with its associated execution
TS; = (S, |, —). Each property is given an abbreviation
(in square brackets following the name) that is used to refer
to the property in the remainder of the paper.

We start with the following three well-known properties:
termination, determinism, and type correctness. Type cor-
rectness is specific to model transformations, whereas termi-
nation and determinism apply to any computational system.
The reader can refer to [5] for further details about the veri-
fication of such properties.

Definition 6 (Termination [T]) TS; is terminating if there
exists no infinite chain Mg — My — ... — M, —

- starting from an input model Mg. We say that My, is an
output model for Mg if there exists a finite chain Mg —>
M{ — ... —> My such that no further transition from Mp,
exists.

A terminating transformation execution ensures the exis-
tence of an output model for any input model.

Definition 7 (Relation Rt) Given TSy, the relation Rt over
| x M consists of all pairs of models (M, M’) s.t. M is an input
model and M’ is an output model for M.

Note that for a terminating transformation the relation Ry is
left-total.

Definition 8 (Determinism [D]) TSy is deterministic (or
confluent) if for each model M that can be reduced to My
and Mo (i.e. My *«<— M —* M>), there exists another
model M’ into which both My and My reduce, i.e. My —*
M *«— Mo.

Executing a deterministic transformation means that the
execution result does not depend on the order in which actions
(leading to transitions) are performed. Note that if TS; is
terminating and deterministic, it is said to be convergent, or
functional, since for each input model, there exists a unique
output model. In other words, the relation Ry is right-unique
and left-total.

Definition 9 (Type Correctness [TC]) TSt is type correct if
each output model for an input model conforms to MM;.

V(M, M) € R, M" <« MM;

@ Springer

660

L. Lucio et al.

We proceed with the description of more abstract proper-
ties that share the same form and that rely on the same arte-
facts. For a specific transformation obeying a given intent,
these properties still need to be concretized for the given
transformation afterward to effectively validate the transfor-
mation correctness. This is demonstrated in Sect. 6, for some
example properties on two example transformations.

Definition 10 (Structural [STR]1/Semantic [SMR]| Rela-
tion Property) A structural relation property is a property of
all input/output model pairs (M, M’) in R;.

A semantic relation property is a property of the seman-
tics (typ, (M), Fam, (M")) of all input/output model pairs
(M, M) in Ry.

For example, an interesting concrete structural relation
property is the fact that an injective homomorphism needs to
exist between each input and output model pair in ¢ (this is,
for instance, useful for the query intent, among others).

An example for a semantic relation property is simulation,
a property that may hold on the semantics of each input and
output model pair in Rt expressing that the execution of the
output model cannot be observationally distinguished from
the input model. This means that the output model can be
transparently used in lieu of the input.

Definition 11 (Traceability [TR]) Structural correspon-
dences between an input model and an output model (M, M")
in Ry consist of a relation oy € M x M’. We say that Ry
demonstrates traceability if structural correspondences are
created during transformation execution TS; for each model
pair (M, M) in R;.

Note that in the above definition, we have a slight abuse
of notation, where we assume oy w to be a relation over the
set of elements that make up M and M”’s structure. Moreover,
note that traceability is a special case of a structural relation
property, since it is a property of all input/output model pairs
in Rs.

Definition 12 (Structural Preservation [STP]) Let P(MMg)
(resp. P(MMy)) be a property language operating on all mod-
els conforming to the source (resp. the target) metamodel.
A structural preservation property stipulates that for each
input and output model (M, M’) in Ry, it holds that whenever
aproperty 7 € P(MMs) holds on the input model M, then an
equivalent property 7’ € P(MMy) holds on the output model
M.

Mbsm € PMMg) = M k7’ € P(MMy)

Note that the structural preservation property is also a spe-
cial case of the structural relation property, since it is a special
property on all input and output model pairs in R.

@ Springer

Definition 13 (Semantic Preservation [SMP])LetP(]D)MMS)
(resp. P(DMMt)) be a property language on the source
(resp. target) metamodel’s semantic domain. A seman-
tic preservation property stipulates that for the seman-
tics (g (M), o, (M")) of each input and output model
(M, M) in Ry, it holds that whenever ,uMMS(M) satisfies a
semantic property ¢, then P, (M) satisfies an equivalent

property ¢'.

Mg (M) Es ¢EP(DMMS) - MMMt (M/) = ¢/ e,PGD)N"VH)

Similar to the syntactic case, the satisfaction relation (rep-
resented here by =g and |=t, to differentiate from the syn-
tactic case) can differ on each side. It is sometimes possible
to predefine a property translator for syntactic or semantic
properties if the property languages on input and output are
the same, or at least comparable. Generally, however, when
they differ too much, or the semantic gap between each meta-
model is too deep, no general procedure exists for building
such translators. This becomes the designer’s job, with all
the accompanying issues: Aside from the properties’ cor-
rectness, the translation can add another source of errors for
the validation process [127]. Finally, note that the semantic
preservation property is also a special case of the semantic
relation property, since it is a special property on the seman-
tics of all input and output model pairs in R;.

In contrast with relation properties, behavioral properties
qualify in a more general way the transformations instead of
only considering properties on the input and output models.

Definition 14 (Behavioural Property [BP]) Let P(TSt) be
a property language over the transformation execution and
M e | an input model. A behavioural property ¢ € P(TSy)
expresses the fact that starting from M, the transformation
execution TSy satisfies ¢.

M, TSt |= 45 S P(TSt)

where M, TS; denotes the part of the transition system reach-
able from M.

A behavioral property can be seen as the most general
property, since it is able to qualify the complete transition
system TS;. All the other properties either qualify only par-
ticular parts of the transition system (e.g., input and output
models) or express a special property of the transition system
(e.g., termination). We can summarize the introduced proper-
ties in this section into the hierarchy of properties depicted in
Fig. 10. This figure summarizes the kind of properties that we
distinguish and the relationships between them. The dashed
properties are intent properties that still need concretization
for a given transformation.

Model transformation intents and their properties

661

5 Six intents: restrictive query, refinement, translational
semantics, translation, analysis, and simulation

This section presents the six intents we have chosen to
illustrate in detail: Restrictive Query, Refinement, Trans-
lational Semantics, Translation, Analysis, and Simulation.
The choice of this particular set of intents was based on the
transformation intents present in our Power Window Case
Study, introduced in Sect. 6 of this paper. As can be seen in
Table 6, Restrictive Query, Translation, and Simulation are
the most abundant intents in the Power Window Case Study,
and according to that criterion we chose them as part of the
intent set, we analyze in depth in this section. The Synthesis
intent is also very present in the Power Window Case study.
However, as per our catalog, Synthesis is a form of refine-
ment. As such, and in the interest of reuse and incrementality,
we have chosen to first explore the Refinement intent. Finally,
the Analysis intent is part of our original study on intent of
model transformations [4]. As such, after some updates fol-
lowing the most recent version of our intent catalog, we have
naturally included it in this study.

Eachintentis described systematically using the following
approach:

1. We informally present the intent to convey the general
idea behind it;

2. We review contributions from the literature to demon-
strate different intent usages and help explain how the
ModelTransformationintent instance is built;

3. We formalize the intent as an instance of the metamodel
presented in Fig. 2. The goal of this formalization is to
provide a mapping between the intent, informally pre-
sented in Sect. 3, and its properties, defined in Sect. 4.

5.1 Restrictive query

As with queries over databases, a query transformation
applied to a model extracts a subset of information from that
model. We refer to the extracted subset of information as a
view. The Query/View/Transformations initial call for sub-
missions [43] defines a query as “an expression that is eval-
uated over a model” and a view as ““a model which is com-
pletely derived from another model.” This definition is very
general since any automated transformation could be viewed
as a way of completely deriving one model from another.
In this paper, we define a restrictive query transformation as
one that produces a restrictive view of the model by omit-
ting a portion of the model—that is, it extracts a submodel.
For example, the query “show only classes/associations of
a class diagram” produces a restrictive view that extracts
the submodel of a class diagram containing all and only the
classes and associations.

5.1.1 Restrictive query in the literature

Restrictive query transformations are often used as a pre-
processing step to extract the portion of a model that is
needed as input for another transformation. For example, in
order to apply an analysis transformation to a state machine
within a larger UML model, a restrictive query transfor-
mation will first be used to extract this state machine.
Restrictive query transformations are also used to sup-
port the separation of concerns by extracting the submod-
els related to different concerns and then feeding these
to their own transformations. For example, the UWE web
application engineering method using MDE [68] initially
uses restrictive query transformations to extract the sub-
sets of the requirements model related to Web site func-
tion and Web site architecture. It then feeds these submodels
into their own transformation chains that ultimately reinte-
grate these concerns downstream. We give additional exam-
ples of this technique below for the power window case
study.

Model slicing represents a type of restrictive query trans-
formation that has received recent attention by the model-
ing community (e.g., see [74]). Model slicing, like program
slicing, is intended to support human comprehension of a
complex model by extracting submodels that are restricted
to the behavior and properties for a subset of model elements.
Some of the slicing techniques produce amorphous [56]
models, while other produce structure-preserving ones. The
techniques that produce structure-preserving models can be
considered as restrictive queries. For example, in [74], the
authors describe slicing techniques for various UML dia-
grams with the goal of producing analyzable models from
those diagrams.

Similar approaches have been proposed in the literature
for metamodel slicing. For example, the authors of [8] use
a model slicing technique to modularize and manage the
complexity of the UML metamodel. The technique takes
as input key elements of UML diagrams (e.g., Class Dia-
grams, Use Case Diagrams, etc) and, for those key elements,
produces a sub-metamodel that describe such diagrams. The
algorithm produces the sub-metamodel by navigating asso-
ciations emanating from those key elements. Following a
similar line of thought, Sen et al. [107] propose in a more
generic approach that makes use of a Kermeta [89] model
transformation to prune any given metamodel. The goal is to
find a sub-metamodel for a given purpose, such as defining
the allowed set of inputs for a model processing program or
tool. The model transformation takes as inputs the large meta-
model and a set of required classes and properties and returns
a sub-metamodel including those classes and properties, and
their mandatory dependencies. The authors also provide an
additional algorithm to check that the pruned metamodel is a
subtype of the source metamodel. This ensures that instances

@ Springer

662

L. Lucio et al.

of the pruned metamodel are also instances of the source
metamodel.

Since the application of a restrictive query on a model pro-
duces a model fragment that is not necessarily well-formed,
an important consideration for a restrictive query transfor-
mation is how to ensure type correctness (i.e. well-formed
results). The work of Kelsen et al. [61] provides an efficient
algorithm to address this problem by decomposing a frag-
ment into its atomic constituents and then re-merging them
while preserving well-formedness. The net effect is that the
fragment is expanded to the nearest well-formed submodel
that contains it.

5.1.2 Restrictive query metamodel instance

The attributes of the restrictive query transformation intent
are shown in Table 1. If we consider the mandatory prop-
erties, termination [T] is a reasonable property to expect
from a query—since it is of no use if it never produces a
result. We also expect the resulting view to be well-formed
with respect to the target metamodel, and so it must be fype

Table 1 Restrictive query intent characterization

Attributes

name Restrictive Query

description Extract the unique submodel (the view)
from a model that satisfies some
criterion (the query)

useContext 1. Want to extract the relevant part (view)
of a model for a task

2. Want to decompose a model to manage

complexity

example 1. Extract the submodel that are

immediate neighbors of a particular
element

2. Extract the submodel of structural
elements from a UML model
3. Model slicing
4. Model decomposition
is_exogeneous False
is_endogeneous True
1. Must be able to characterize the
submodel of interest using a condition
expressible in terms of the metamodel of
the base model

preconditions

Associations

mandatory 1. [T] Terminating
2. [TC] Type Correct
3. [STR] The view must be a submodel of
the base
optional 1. [D] Deterministic

2. [SMP] Semantics preservation

@ Springer

correct [TC]. Most importantly, the resulting view must be
a submodel of the input, or base model. This is the key prop-
erty that identifies a transformation as a restrictive query and
can be formalized as a structural relation [STR] enforcing
an injective homomorphism mapping from the view to the
base.

A property that is optional is for the restrictive query to
be deterministic [D]—i.e., that the query should always pro-
duce the same result on the same input model. Often this is
expected, but there are cases where it is not needed. For exam-
ple, consider a restrictive query transformation that extracts
a submodel of a UML model showing an example of how
a class is used. In this case, any sequence diagram that uses
the class is sufficient, and it is not necessary to always pro-
duce the same one. The optional property that the restrictive
query be semantics preserving [SMP] means that the infor-
mation in the view submodel should not change its meaning
even though it is taken out of context of the whole model.
This is often an important requirement when the view has
a human consumer (e.g., model slicing) since otherwise the
information in the view could be misleading.

Note that in practice, the target metamodel of a restric-
tive query may be also a subset of the input metamodel,
or slightly different to accommodate the resulting models.
This means for certain transformation implementations the
restrictive query intent may in fact be exogenous. However,
in this study, we privilege a conceptual view on intents and
consider that in the general case, a restrictive query is an
endogenous transformation.

5.2 Refinement

A transformation with the refinement intent is a transfor-
mation that produces a lower-level specification (e.g., a
platform-specific model) from a higher-level specification
(e.g., a platform-independent model) [67].

5.2.1 Refinement in the literature

Model transformations from the literature that fall under the
refinement intent can be either interactive refinement trans-
formations or fully-automated refinement transformations.
In particular, we investigated the approaches described in the
following paragraphs in order to come up with a characteri-
zation of the refinement intent as given in Table 2. Moreover,
we also considered more general studies [46,96] describing
the characteristics of refinement in MDE and its correspond-
ing verification.

Interactive refinement transformations The refinement
approaches presented by Padberg [95] as well as by Scholz
[106] are rule-based. In the first approach, the rules need
to adhere to specific properties in order to guarantee the

Model transformation intents and their properties

663

Table 2 Refinement intent characterization

Attributes

name Refinement

description Add precision such that the output model
contains at least the same amount of
information as the input model. The
information contained by a model is
equivalent to the relevant questions that
can be asked concerning the model [46]

useContext Add more detail to a model

example Going from a platform-independent
model to a platform-specific model [67]

is_exogeneous True

is_endogeneous True

preconditions 1. A clear understanding of the amount of

information described by the input
model, and how to preserve it

2. A clear understanding of the
information that needs to be added, and
how to add it

Associations

mandatory 1. [T] Termination
2. [TC] Type Correctness
3. [STR, SMR, STP, SMP] Information
Preservation
4. [STR, SMR] Information Creation
optional

preservation of safety properties, and in the second approach,
specific refinement rules already exist. The user decides
where to apply which rules. Van der Straeten et al. [111]
present a formal approach to model refinement and its inter-
play with model refactoring. The user of the refinement needs
to decide how to refine the models, and afterward, behavior
preservation can be checked.

Fully-automated refinement transformations Baresietal. [9]
describe in their work exogenous refinements of business-
oriented architectures, abstracting from technology aspects,
into service-oriented ones. Mannadiar et al. [83] introduce
two exogenous graph transformations, one of which is used
to refine a domain-specific model (DSM) of the PhoneApps
domain-specific language (DSL) for a conference registra-
tion mobile application. The authors present the PhoneApps
DSL for capturing both the behavior and the visual struc-
ture of mobile device applications. Tri and Tho [122] discuss
an approach for the automatic refinement of SEAM models.
SEAM is a language and tool that supports visual modeling.
SEAM has the same modeling capability as that of UML with
the additional advantage that SEAM can easily maintain con-
sistency between design components since it can capture the
entire system in a single view. Due to that single-view rep-
resentation, the final SEAM model can become too compli-

cated. Thus, the paper describes an approach to automatically
refine abstract SEAM models into detailed SEAM models
such that the final SEAM model can eventually be used to
generate code.

5.2.2 Refinement metamodel instance

Table 2 instantiates the intent metamodel of Fig. 2 for the
refinement intent, summarizing our findings in the literature.
Since transformations with the refinement intent are required
to add detail to existing models, it is intuitive that having a
clear understanding of the information to be preserved and
the information to be added are preconditions for such trans-
formations. These preconditions were mentioned implicitly
in all the papers discussed in Sect. 5.2.1. For example, in the
rule-based refinement approaches, these preconditions are
needed to be able to design the refinement rules as well as
to apply them. In the studies discussed in Sect. 5.2.1, it was
usually mentioned that the mandatory fermination, type cor-
rectness, information preservation, and information creation
properties stated in Table 2 need to be fulfilled. Whereas ter-
mination and type correctness have a one-to-one correspon-
dence with properties [T] and [TC] in Sect. 4, information
preservation and information creation will generally need to
be shown by a collection of several concrete properties, both
at the structural and the semantic level. For example, the
fact that there is a simulation between each input and out-
put model’s semantics might imply information preservation
and can be expressed as semantic relation [SMR] property.
Also, having a bijection between the syntactic elements of
the input and the output models might imply information
preservation and can be expressed as a structural relation
[STR] property. It is also reasonable to think that informa-
tion preservation might be expressed as a set of structural
preservation [STP] properties where the information to be
preserved is encoded in the syntactic property that is trans-
ported to the output model. The same reasoning holds at the
semantic level for the usage of a set of semantic preservation
[SMP] properties. Note that in Table 2, the notation [STR,
SMR, STP, SMP] means that any non-empty combination
of those four properties can be used to formally show infor-
mation preservation.

Information creation implies the existence in the output
model of syntactic and semantic elements that did not exist
in the transformation’s input model. It thus seems reason-
able to think that [STR, SMR] can be helpful, if necessary,
in showing information creation, depending on the notion
information creation required by the considered transforma-
tion.

Some of the papers we surveyed have not explicitly veri-
fied all the properties in Table 2. Our work aims at identifying
these gaps in order to allow for a more systematic engineering
of model transformations with specific intents in the future.

@ Springer

664

L. Lucio et al.

For example, in [83, 122], the mandatory properties were not
verified and case studies were used to demonstrate that the
refinement transformations fulfill their purpose. Both studies
also informally discussed how a mapping is done between the
input model and the refined model and, thus, how information
is preserved. Usually, the information creation property does
not need to be checked explicitly, since it trivially follows
from applying a refinement in the corresponding approaches.
For endogenous approaches like [95], it is moreover usually
trivial to check type correctness.

5.3 Translation and translational semantics

A transformation with the translation intent is a transforma-
tion that translates the meaning of models conforming to a
source metamodel into models conforming to a target meta-
model. The resulting models can then be used to achieve
tasks that are difficult, or impossible, to perform on the
originals.

This section describes two intents of our catalog: Trans-
lation and Translational Semantics. Despite the fact that it
made sense to distinguish them from an engineering point
of view in the catalog, they are very similar from a ver-
ification point of view. As the name suggests, a transla-
tional semantics is no more than a translation whose pur-
pose is to provide semantics to a metamodel (or more
often, to a DSL) by mapping its concepts into the ones of
the target metamodel, which becomes the so-called seman-
tic domain: This is the exact definition of the Translation
intent, which implies that the associated properties should be
similar.

5.3.1 Translation in the literature

From the review of the contributions present in the litera-
ture, it appears that a translation is performed for two main
reasons:

Bridging structures to enable metamodel exchanges at a
structural level (e.g., for importing models from another
metamodeling framework);

Delegating actions to the target metamodel by simulating, or
formally analyzing input models using dedicated engines
available for the output models. The delegation is valu-
able in the case where the cost of re-implementing a sim-
ulation/analysis engine for the source metamodel is too
high.

Bridges The four-layered organization depicted in Fig. 9 is
shared by several technical spaces: modelware, grammar-
ware, ontoware, or dataware, to name just a few [91,131].
Often, one has to bridge artifacts from one to another:
For example, query languages and transaction operations

@ Springer

in dataware are already available, and taking advantage of
SQL and its many capabilities and various implementations,
one can simply reuse instead of reimplementing things for
a novel technical space. The goal of a bridge is to translate
the meaning of the meta-metamodel itself, i.e., offering a
way to automatically convert any metamodel of one technical
space into another. This differs from the usual understanding
of a transformation shown in Fig. 9, where the transforma-
tion is specified on a metamodel and executes on a model,
not the level above. However, as previously noted, a meta-
metamodel can usually be treated just as a metamodel and
manipulated as such. Furthermore, bidirectional bridges are
usually required for enabling round-trips between technical
spaces.

Two papers [91,131] published in 2005 explicitly use the
terms grammarware and modelware to refer to exchanges
between textual and visual representations of models. Most
probably, closing the gap between language theory or com-
pilation techniques (based on BNF grammars) and MDE
(usually using MOF) are the most represented contribu-
tions [28,58,91]. Kern and his colleagues performed sev-
eral bridges from various meta-metamodels into either MOF
or its specific Eclipse implementation EMF: GOPRR, used
in the commercial transformation engine MetaEdit+ [62];
Aris, the well-known enterprise modeling tool [64]; Visio,
the Microsoft general-purpose modeling tool [65]. A com-
parative study is available in [63], where the authors also
describe the bFlow Toolbox, their integrated tool for per-
forming these bridges seamlessly. Bruneliere et al. [16] and
Bézivin et al. independently studied bidirectional bridges
between Microsoft DSL Tools and Eclipse EMF, providing
an efficient way to exchange models between one of the most
popular DSL development tools.

Simulation delegation A Translation is often specified for
providing simulation (or execution) capabilities for models.
This type of delegation is a popular approach for defining the
semantics of DSLs: This kind of translation is more precisely
called Translational Semantics. Since they capture domain
expertise as concepts and rules with a precise meaning, the
Translation just transposes these semantics in terms of a tar-
get metamodel that offers the necessary execution machinery.
Another popular use for Translation consists of taking advan-
tage of a richer framework to perform tasks specific to sim-
ulation, such as calibrating the parameter values of models
to enhance their non-functional properties (typically, perfor-
mance). The main difference resides in whether the source
metamodel’s semantics is known a priori or not: For a trans-
lational semantics, the translation itself serves as a semantics
definition.

Rivera et al. [100] use Maude for specifying the behav-
ioral semantics of domain-specific modeling languages and
for simulating the models by executing them using Maude

Model transformation intents and their properties

665

rewriting rules. Kiihne et al. [71] define a transformation
from Finite State Automata into Petri Nets, implementing
the automata’s semantics: By running the Petri Net trans-
lated model over an input sequence, it can check whether
it belongs to the language accepted by the input automaton
model.

MoTif results from combining the T-Core framework with
the discrete event simulation language DEVS [116]. This
allows model transformations to be expressed in a modular
and compositional way together with the explicit introduction
of atime dimension. In [112], Syriani et al. demonstrated how
adding the notion of time allows for the simulation-based
design of reactive systems such as computer games. This
allows the modeling of player behavior and the incorporation
of data about human players’ behavior and reaction times.
The models of both player and game were used to evaluate,
through simulation, the playability of a game design.

Troyaetal. [123,124] employ simulations based on model
transformations for reasoning about aspects of quality of
service (QoS), such as performance and reliability. In their
work, Troya et al. add not only general runtime information
to the models, as is for example, done in [35] or in f{UML,
but they also add specific elements called observers to track
information the designer is interested in. The authors used e-
Motions [100] for implementing and executing the behavior
of the models to simulate. Internally, e-Motions is compiled
to Maude.

Analysis delegation A Translation can take advantage of the
analysis capabilities of the target metamodel.

De Lara and Taentzer transform in [76] models for process
interaction expressed in a discrete event formalism tailored
for the manufacturing domain into timed transition Petri
Nets. This transformation is expected to terminate, to be
deterministic, to type correct, and to preserve process inter-
action’s behavior. Termination, type correctness, and behav-
ior preservation are proved informally, but determinism is
proved using the classical critical pairs technique already
implemented in AGG, the tool used to specify the transfor-
mation.

Varr6 et al. [126] prove the termination of graph trans-
formations with negative application conditions by trans-
lating them into Petri Nets and showing that the resulting
Petri Net is not partially repetitive, i.e., no (initial) marking
has a firing sequence in which a transition occurs infinitely
many times. Augur2, a graph transformation tool proposed
by Konig and Kozioura [69], approximates transformations
with Petri Nets for analyzing property preservation. Here, the
property is specified as a graph pattern and then translated
into an equivalent marking, which is checked for reachabil-
ity. A counterexample is produced in case the marking is not
reachable.

Naranayan and Karsai [93] proved reachability within
StateCharts using a two-layered translation. First, a State-
Chart model is translated into an Extended Hybrid Automa-
ton model, building traceability links between both instances.
Then, the Extended Hybrid Automaton is translated in
PROMELA, the entry language of the SPIN model-checker,
where reachability can be checked. If a counterexample is
produced, it can be traced back to the StateChart model fol-
lowing the traceability links previously established. Notice,
however, that this technique is not general: It checks a par-
ticular property (reachability in the paper) on a particu-
lar StateChart model and works only because the State-
Chart and the Hybrid Automaton models are proved to be
bisimilar.

Cabot et al. [19] automatically extract OCL invariants
from bidirectional transformations expressed declaratively in
QVT [50], using a higher-order transformation. These invari-
ants allow one to answer various questions about the transfor-
mation, such as whether a valid input or output model exists
for the transformation, or whether an output model exists
for any possible valid input. However, the actual invariant
satisfaction problem is delegated to specialized tools able to
work on UML models decorated with OCL invariant con-
straints.

5.3.2 Translation metamodel instance

Table 3 shows the ModelTransformationintent’s instance
for the Translation intent.

A Translation is by nature terminating [T] and determin-
istic [D]; otherwise, the expected output models could never
exist, or could be ambiguous regarding the original input.
Because the output is expected to somehow “represent” the
input, the transformation should be type correct [TC].

The remaining mandatory properties depend on both the
Translation’s nature and the existence of a precise semantics
for the source metamodel.

Bridge If it is possible to attach a formal semantics to both
meta-metamodels, then it becomes possible to formally
compare conforming metamodels of both sides; other-
wise, it should be possible to define structural preserva-
tion [STP] between both sides.

Simulation If the Simulation defines the source metamodel’s
semantics, then structural preservation [STP] is the only
possible property. Otherwise, in case the source meta-
model has a predefined semantics, structural [STP], but
also semantics preservation [SMP], are possible. It can
also be interesting to prove a simulation relation [SMR]
between the input and the output, thus ensuring for reac-
tive systems that all actions of the input can actually be
performed by the output (but obviously, also more actions,
typically time-related).

@ Springer

666

L. Lucio et al.

Table 3 Translation intent characterization

Attributes
name
description

Translation

Translate the meaning of conforming
input models into models conforming to
a target metamodel to achieve a
subsequent task

useContext Equip a DSL with an executable
semantics, or perform a task difficult, or
impossible to realize over the original

models

1. Provide a reference semantics for a
DSL. (cf. PWCS)

2. Exchange models between Microsoft
Visio and Eclipse EMF [65]

3. Prove reachability in StateCharts using
PROMELA [93]

example

is_exogeneous True
is_endogeneous True
preconditions
Associations
mandatory 1. [T] Termination
2. [D] Determinism
3. [TC] Type Correctness
4. [STP] Semantic equivalence (Bridge)

5. [SMR, SMP] Observational
equivalence / Similarity (Simulation,
when source semantics available)

6. [STR, STP] Structural Preservation
(Simulation, without source semantics
available)

7. [STP, SMP, SMR] Soundness
(Analysis)

1. [TR] Backward Traceability to relate
results back to the input

optional

2. Readability of the transformation’s
output for debugging purposes

Analysis Since an Analysis generally focuses on particu-
lar aspects of the inputs, the transformation should be
“sound”, i.e. it should verify some form of preservation
of the property under analysis [STP,SMP]. Depending
on the abstraction level difference of both sides, it is also
possible to verify a simulation relation [SMR] between
models in each side.

Some optional properties are also sometimes desirable.
As already mentioned, a Bridge could sometimes be bidirec-
tional. Traceability [TR] is also desirable for Analysis and
Simulation to be able to relate results back to the input, for
example, playing a counterexample obtained from an analy-
sis in terms of the input to help identify errors.

@ Springer

5.4 Analysis

A transformation with the Analysis intent is a transformation
that implements an analysis algorithm of any complexity.
Examples include the following: the computation of a call
graph for operations of a MOF model, detecting dead code
or inapplicable rules, and the model-checking of a temporal
formula over a given structure.

5.4.1 Analysis in the literature

From the literature review, we noted two types of scenarios
in which Analysis occurs. A transformation is a:

Pure Analysis Transformation if it expresses an analysis algo-
rithm on its own, i.e. computes the necessary information
for performing the analysis.

Built-In Analysis Transformation if it is executing with
a transformation engine that is already equipped with
analysis features.

Pure analysis transformations This Analysis scenario is, in
fact, very rare. One reason is that specifying an analysis algo-
rithm is typically complicated, and so it is often easier instead
to delegate the analysis to a dedicated tool after having trans-
lated the models. Furthermore, a key issue when analyzing
models is scalability, and this often requires the use of dedi-
cated data structures to enable performance gains (e.g., con-
sider the use of binary decision diagrams for scalable model-
checking).

Narayanan and Karsai [94] have implemented a graph
rewriting system in GREAT to transform UML activity dia-
grams to Communicating Sequential Process (CSP) models.
The graph rewriting system was then checked for preserving
structural correspondences between input and output mod-
els (property preservation). Unfortunately, no data related to
the performance and scalability are given. Recently, Licio
and Vangheluwe [81] explored the possibility of checking
structural correspondence properties on DSLTrans transfor-
mations. The approach scales up to 21 rules for a transfor-
mation with acceptable computation times.

Built-In Analysis Transformations This Analysis scenario
corresponds to the fact that a transformation is expressed
in a transformation framework that is natively equipped with
formal analysis capabilities. When possible, this represents
a good choice, since the analyses are tailored for the trans-
formation engine, ensuring good performance.

Rivera et al. [101] encode graph transformations into
Maude [25]. Graph transformations are specified visually by
using AToM? [77] as a front end and encompass negative
application conditions, well-formedness rules, and both sin-
gle and double pushout approaches. Since Maude provides

Model transformation intents and their properties

667

reachability analysis, LTL model-checking, and theorem-
proving capabilities, all these analysis become available
for graph transformations, and the results are easily traced
back due to their high-level encoding of (meta-)models.
Gargantini, Riccobene, and Scandurra [44] use Abstract
State Machines (ASM) [14] to encode a DSLs’ semantics.
Metamodels and models are expressed with EMF, whereas
the transformation expressing their operational semantics is
expressed with the ASM language. Using the built-in bidi-
rectional translation into vSMV, it becomes possible to per-
form LTL model-checking in this framework. Groove [99]
allows the (bounded) model-checking of CTL formula over
graph-based transformations with negative conditions [60].
The tool can also handle reachability analysis by expressing
adequate invariants in CTL.

5.4.2 Analysis metamodel instance

Table 4 shows the ModelTransformationIntent
instance for the Analysis intent. This intent is closely related
to two other intents: Translation and Simulation: A Trans-
lation often delegates an analysis to the target metamodel,
whereas a Simulation can directly benefit from the poten-
tially available analysis capabilities of the simulation engine.
When such capabilities exist, the task of the transforma-
tion designer consists of just specifying the transformation
adequately (i.e. in the engine’s own language): the analy-
sis becoming the transformation’s engine responsibility, not
the designer’s. For example, Riveira et al. [101] (cited as
example in Table 4) use Maude as such a target, providing
model-checking and theorem-proving analysis for all trans-
formations specified within their framework.

Table 4 Analysis intent characterization

Attributes

name Analysis

description Perform an analysis on the input models

useContext 1. Develop an analysis algorithm using
transformations

2. Benefit from the built-in analysis

capabilities of a transformation engine

example Reuse Maude’s model-checking
capabilities for model-checking graph
transformations [101]

is_exogeneous True

is_endogeneous False

preconditions 1. Access to analysis algorithms
Associations

mandatory 1. [TC] Type correctness

optional

Pure analysis transformations are obviously type correct
when delivering a result [TC]. Beyond this, it is difficult to
say more since it highly depends on the analysis being per-
formed. They are not necessarily required to be terminating,
or deterministic, since many types of static analysis are unde-
cidable. For example, consider a model-checking procedure:
It does not generally terminate for infinite systems, and if
it does, the only requirement is to answer with one coun-
terexample among all possible ones. In general, proving an
analysis transformation’s correctness is roughly equivalent
to proving the correctness of an implementation with respect
to an analysis algorithm. For example in [81], the authors
would be asked to prove that their transformations actually
correctly realize model-checking.

The Analysis intent clearly needs further research. The
fact that we cannot better characterize such an intent also
comes from the fact that it is often, based on our observa-
tions, neither an atomic intent nor has a single-target (con-
sider again model-checking: The analysis verdict is, if nega-
tive, accompanied with a counterexample).

5.5 Simulation

In the modeling community, simulation is a transforma-
tion that encodes some operational semantics of a language.
Therefore, it simply updates the state of a model in response
to events (e.g., time, trigger, causal dependency). We can
define a simulation such that its trace of execution is a label-
transition system (LTS) where a node is a legal snapshot of
the state of the model and a transition is the application of a
rule.

Note that the term “model simulation” is understood dif-
ferently in the modeling community and the simulation com-
munity. In the modeling community, model simulation nor-
mally refers to the development of an operational semantics
for a modeling language, while in the simulation community,
simulation [109] refers to the process of designing a model
of a real system and conducting experiments with this model
for a certain purpose. Thus, the first interpretation can be seen
as the enabler of the latter.

5.5.1 Simulation in the literature

There is a large body of work discussing how to implement
the operational semantics for modeling languages. Generally,
there are two approaches for defining the behavior of models:
(i) by incorporating the runtime concepts into the metamodel
and adding transformation rules for evolving the initial state
of a model, and (ii) embedding the modeling language into
some existing simulation formalism (as already discussed
in Sect. 5.3.1). Thus, we refer the interested reader for the
second approach to Sect. 5.3.1 and deal in this subsection
only with the first one.

@ Springer

668

L. Lucio et al.

Concerning the first approach, one way for defining an
operational semantics is to introduce executability concerns
by defining graph transformation rules operating on meta-
model instances as proposed by Engels et al. [35]. Another
possibility is to follow an object-oriented approach by spec-
ifying the behavior of operations defined for the metaclasses
of a modeling language (within the metamodels represent-
ing the abstract syntax of the languages) using a dedicated
action language. Many action languages have been proposed,
including the use of existing general-purpose program-
ming languages: Kermeta [89], Smalltalk [33], xCore [23],
EOL [103], the approach proposed by Scheidgen and Fis-
cher [105], and fUML [84]. Prominent examples used in
these papers are the definition of the operational semantics
of Petri Nets or state charts.

Most of this work only addresses the definition of the
operational semantics of languages that model discrete sys-
tems without time, i.e., the time elapsed between two state
changes is not considered. However, there are also some
approaches dedicated to modeling specific real-time systems
that require an explicit notion of time. For instance, de Lara
etal. [75] use the so-called flow graph grammars for schedul-
ing graph transformation rules and scheduling grammars for
introducing an explicit notion of time for modeling a mail
system.

An interesting problem and solution are presented in
[13,36] where the goal is to have consistency between ani-
mation rules operating on the concrete syntax of a model
and the simulation rules operating on the abstract syntax of
the model. Although we consider this consistency property
between animation and simulation as very important, in this
paper, we focus only on properties inherent to the simulation
intent.

5.5.2 Simulation metamodel instance

Table 5 shows the ModelTransformationIntent
instance for the Simulation intent.

As already mentioned, the purpose of simulation in MDE
is to give operational semantics to a modeling language by
updating the state of a model. Of course, this applies only to
behavioral models. The transformation is considered to be
either exogenous if an already existing simulation formalism
is selected for this purpose or endogenous if the behavioral
semantics is directly attached to the language’s metamodel.

In general, a simulation is a terminating transformation.
When a terminating condition is met, the simulation must
stop. This condition can be based on the state of a model, on
the gained information, or on time. This latter point means
that the transformations are expected to terminate at some
point in time, although it may happen that the simulation
has to be stopped even though there are still rules that can
be applied. Concerning the second point, sometimes the

@ Springer

Table 5 Simulation intent

Attributes

name Simulation

description To give an operational semantics to a mod-
eling language by updating the state of the
model

useContext Need to compute the trace of a model’s exe-
cution, its final state or both

example Compute worst-case execution time,
throughput, error rates of a production
model

is_exogeneous False

is_endogeneous True

preconditions 1. Access to intended semantics
2. Metamodel contains runtime informa-
tion as is currently provided by the dynamic
metamodeling approach [35]. As an exam-
ple for runtime information consider the
token concept in Petri Nets
3. Modeling language has behavior
4. Real-time systems require a notion of
time

Associations

mandatory 1. [T] Controlled Termination
2. [TC] Type correctness

optional 1. [BP] Preservation of properties of

interest
2. Log of simulation is accessible

3. Readability of the transformation’s
output

4. If animation is provided, it has to corre-
spond to the simulation

successful execution of the simulation is meant to be non-
terminating unless an information saturation point is met.
This can be a failure or an exception case arises that may
lead to rejecting the hypothesis to be tested, or the opposite,
the information gained allows to accept the hypothesis. To
sum up, controlled termination [T] has to be supported.

Whether a simulation transformation is deterministic
depends on the system being modeled and cannot be decided
on a general basis. If the system is deterministic, the sim-
ulation should be deterministic, too. If the system is non-
deterministic, and several transformation rule matches are
found at some point, one of them is non-deterministically
selected and applied.

Each simulation step should result in a valid model with
respect to its metamodel as such type correctness [TC] needs
to hold. However, ensuring this may require a sequence of
several transformation rules corresponding to a single logical
simulation step—similar to the concept of transaction.

A means for proving that a simulation is correct is to
show that a set of desired behavioral properties [BP] hold.

Model transformation intents and their properties

669

Examples of such properties could be invariants or reacha-
bility constraints over the set of reachable states of the sim-
ulated system. Due to the fact that simulations may be also
useful without proving such properties, they are considered
optional.

Logging of transformation execution events is considered
to be an useful but optional property. In particular, some
transformation engines are able to produce complete logs,
e.g., the order of the rules applied, the different execution
states, the binding of the rules, and timing information. Some
approaches also provide the means to automatically produce
views on the logging information to support better under-
standability of the simulation results, e.g., to show the num-
ber of events per event type. This is also connected to an
optional property, the readability of the transformation’s out-
put. Here, not only the output model has to be in a human-
readable form, but also the logging information since it may
be considered to form a critical aspect of the simulation result.

Because an animation of a simulation is optional, we con-
sequently consider the consistency property between anima-
tion and simulation as an optional property.

6 Identifying transformation intents within the power
window case study (PWcCS)

This section introduces the case study for this paper, devel-
oped in the context of an industrial project aimed at building
control software for an automobile’s power window [29,92].
A power window is basically an electrically powered win-
dow. Such devices exist in the majority of the automobiles
produced today. Besides lifting and descending the window,
a power window also includes an increasing set of additional
functionalities, aimed at improving the comfort and secu-
rity of the vehicle’s passengers. To manage this complexity
while reducing costs, automotive manufacturers use software
to handle the control of such physical devices.

The case study consists of a chain of model transforma-
tions aiming at generating control software for a power win-
dow as C code, starting from high-level requirements. The
whole transformation chain contains 37 transformations and
involves 28 different metamodels.

The Power Window Case Study (PWCS) serves as an exper-
imental platform for the research presented in this paper. We
use it for two complementary purposes: (i) Since the PwcS
was developed independently of our research, it presents an
unbiased collection for partially validating the Intent Catalog
of Sect. 3 by allowing us to identify occurrences of intents in
a real-world transformation chain; (ii) the PWCS can be used
to illustrate the practical usefulness of our Intent/Property
mapping in Sect. 5 and of our abstract framework for for-
malizing properties provided in Sect. 4.2. In particular, we
extract from the transformation chain two witness transfor-

mations in Sect. 6 for two exemplary intents, namely, Trans-
lation and Simulation. By using our mapping, we illustrate
how to build concrete transformation properties that help in
showing the correctness of the two witness transformations.

Section 6.1 presents the FTG+PM formalism in which
the PWCS transformation chain is expressed. Section 6.2
describes the transformation chain itself, with an empha-
sis on the steps the witness transformations are extracted
from. In Sects. 6.3 and 6.4, we describe for two given PwCS
transformations how we identified them with the translation
and simulation intent, respectively, according to the process
described in Fig. 4. In Sect. 6.5, we provide an overview of
the intents identified within the Power Window Case Study.

6.1 FTG+PM: formalism transformation graph and process
model

Figure 11 depicts a simplified version of the FTG+PM (For-
malism Transformation Graph + Process Model) for the
Pwcs. On the left, the FTG describes which domain-specific
formalisms, represented as labeled rectangles, are consumed
and produced by which transformations, represented as
labeled small circles. On the right, the PM describes two flows
in a way similar to UML activity diagram [51]. The transfor-
mation control flow, corresponding to thick arrows, describes
how transformations, depicted as round-edged labeled rec-
tangles corresponding to actions, are chained to produce the
expected final result. These actions are “typed” as executions
of the transformations declared in the FTG with the same
label. The data control flow, corresponding to thin arrows,
describes how models, depicted as square-edged rectangles,
are consumed and produced by transformations executions.
These data objects have to be valid instances of the for-
malisms with the same label surrounding the transformations
whose execution uses them. Similar to activity diagrams, the
control flow can join or fork sets of actions (depicted as hor-
izontal bars with decision nodes as diamonds). The FTG and
the PM distinguish between automatic transformations (using
yellow circles and rectangles, respectively) from manual or
assisted ones (colored in gray).

6.2 Description

The FTG+PM for the PWCS contains several phases: Require-
ments Engineering, Design, Verification, Simulation, Cali-
bration, Deployment, and finally Code Generation. We focus
on the four first phases that lead to a viable, trusted system
that can then be calibrated and deployed: The construction
of transformation properties used in Sect. 6 is extracted from
these phases. A detailed description of the PWCS can be found
in the corresponding literature [29,79,92].

Note that the PM of Fig. 11 contains collapsed blocks (e.g.,
Model Requirements, Safety Analysis, or Hybrid Simula-

@ Springer

670 L. Lucio et al.

1 :Use Case
I ‘ __Diagram ||

Model’ g ualReq
e Model E » | :Use Cases H
_. Requit (
Reguirements . 13- | :Requirement ‘
[| /| Diagram |-

oEnv) (ModelPlant

[:Médelbor{trol}‘

v v
:Plant DSL :Control DSL

:Control érTo@

:Environment

Rgfin
SysMLUse || Use - }/0séCrse
Case Diagram Cases |Desdriptiol

V//

[Rlant Modr({Chntrol

‘ Plant DSL | ‘Control DsL |

Env(GLBD ConalloSe
ExtractRégdiremexfs, Mod PlafibPn S¢ToPn
SysMLReq | Rplige Network Causal Block | TEncapsulated (
Diagram__]Reqtivements|_Formalism | |_ Diagrams Petri nets Statecharts

:ToDynamic-}
) v ~/ [— Specificatior
RefngBiwork F
combinePN
comt{ngtBD
P
Hybrid
Formalism Buidra
SimuldteHybrid Reachability
Graph
HybridSimula-
tion Trace
ChEckCil

Check@oltinuous ‘

ToDynami€Specification

ToSafetyRegjuirement

FTG
[:l language @ manual transformation () automatic transformation

PM
:] model @ manual D automatic
artifact activity activity

Fig. 11 Partial FTG (on the left) and PM (on the right) for the Power Window software development

tion) that hide the details of the corresponding tasks. When-
ever relevant for the explanation, we will explicitly detail the
blocks’ content.

central locking system, the ignition system, etc (the way
the PWCS is built closely follows the work by Moster-
mann and Vangheluwe [88]). Each aspect of the system
is captured by a dedicated DSL (Domain-Specific Lan-
guages explicitly named Environment, Plant and Control
in Fig. 11), later bound together using an extra Network
DsL for expressing how they interact.

(D Requirements Engineering Before design activities can
start, engineers have to extract requirements from legal
and technical documents in order to produce requirement
and use case diagrams that document what is expected
from the system. These transformations are usually done
manually, although some parts could be automated (e.g.,
for populating those diagrams).

(@ Design Using these requirement artefacts, software engi-
neers start the design activity following design practices
inspired from control theory [31]: The controller is the
piece of software controlling the window’s functionali-
ties; the process (also called plant) is the physical power
glass window with all its mechanical and electrical com-

After this phase, the entire system is modeled and can be
deployed. However, regulations in the automotive sector have
strong security concerns that need to be addressed at early
stages of the system design. Since the Power Window is a
critical system, two validation tasks, namely verification and
simulation, are conducted in parallel in the PWCS to ensure
that the code generated from the models is trustable.

(3 Verification Formal Verification is applied by translat-

ponents, i.e., the mechanical lift, the electrical engine,
and the sensors detecting the window’s position or col-
lision events; and the environment is constituted of the
human actors and the other vehicle subsystems, e.g., the

@ Springer

ing all domain-specific models from the previous stage
into corresponding Petri Nets [97]. All the resulting
Nets are then composed accordingly to the Network
model in order to obtain a fully functional Petri Net, on

Model transformation intents and their properties

671

Fig. 12 Safety Analysis
FrG+PM Slice, with FTG on the
left and PM on the right

Encapsulated
Petrinets
J
ToSafet rement
Reachability
Graph

Checkl doleState

Boolean

which reachability analysis of undesired states, specified
according to the requirements, is then checked.

Figure 12 describes the details of the collapsed block
corresponding for safety analysis. On the right side, the
:CombinePN composes the five models resulting from
the previous Design activity into a combined Petri Net
that describes the behavior of the whole system. This
combined Petri Net is the source of two activities per-
formed in parallel: The :toSafetyReq, which requires
human intervention, produces a set of CTL formulas
encoding the requirements based on a safety requirement
model; and the :BuildRG automatically builds the reach-
ability graph corresponding to the combined Petri Net
model. These activities are then joined together, since
they are prerequisites before the ReachableState action
is executed, for model-checking the combined Petri Net
behavior against the safety requirements, and produces a
verdict (given as a boolean value).

(@ Simulation On the other hand, a simulation of the whole
system is conducted to evaluate the responsivity when
interacting with the passengers. The continuous behav-
ior of the window is modeled using a hybrid formalism:
The models for the environment and the plant resulting
from the Design phase are translated in Causal Block
Diagrams (CBDs)?, whereas the controller model is trans-
formed into a StateChart. The process of verifying the
continuous behavior is similar to the Verification phase,
although as a requirement language CBDs are also used.

When the Verification and Simulation tasks are both com-
pleted, engineers can think about how to efficiently deploy
the system on the platforms they target. The Calibration phase
aims at extracting a performance model that gives measure-
ments about the execution times corresponding to the differ-
ent use cases. This performance model is then used during the
Deployment phase for selecting a deployment solution with
real-time behavior where spatial and temporal requirements

2 Causal Block Diagrams are a general-purpose formalism used for
modeling causal, continuous-time systems, mainly used in tools like
Simulink.

:Encapsulated
Petrinets

:CombinePN

:Encapsulated :Petrinets

Petrinets

H
gl

[ToSafetyReq] [:BuildRG

e

:CheckReachable
State

:Encapsulated
Petrinets

:Network
Formalism

:Reachability
Graph

:Boolean

are respected. Finally, when a feasible solution is found, the
code specific to the target platforms can be synthesized: This
includes the code of the application itself, but also the code
corresponding to the middleware and to the runtime environ-
ment. The complete FTG+PM for the Power Window Case
study can be found in [78].

:Requirements
Diagram

6.3 Translation

As a first example transformation for which we want to iden-
tify the intent, we chose the EnvToPN transformation located
in Area (3) in Fig. 12.

Select intent using description attribute As aforementioned,
the EnvIoPN transformation takes a model expressed in the
Environment DSL language and produces as result a model
in the Encapsulated Petri Nets language. The purpose of this
translation is to profit from the fact that the Encapsulated
Petri Net has a well-known and studied semantics which can
be used as a semantic domain for the analysis of models of the
Environment DSL language. The Environment DSL language
has no explicitly formalized semantics, and the role of the
translation is to provide an artifact that can explicitly produce
such semantics in the form of a Petri Net-like formalism.
Consequently, the obvious intent of the transformation is to
provide Translational Semantics to Environment DSL models
in terms of the Petri Net formalism. This fits nicely to the
description of the Translation intent in Table 3.

Check remaining intent attributes The useContext men-
tioned in Table 3 and the fact that the transformation needs to
be exogeneous fit both as well. In what concerns the example
attribute, example 3 is the same kind of translation having
analysis as its purpose.

Check appropriateness of mandatory properties Let us now
switch to checking if the mandatory intent properties are
appropriate for the EnvToPN transformation. As can be
observed in Table 3, the Translation intent has as manda-
tory properties termination, determinism, type correctness,

@ Springer

672

and soundness. As for the first three properties, it is obvious
that they are appropriate.

Because the semantics of models written in the Environ-
ment DSL language is not defined, it is not meaningful to dis-
cuss the preservation of semantic properties for the EnvIoPN
transformation. It is, however, meaningful to preserve syn-
tactic properties of an Environment DSL model that reflect
its correct translation into an Encapsulated Petri Net model.
Consequently, we can conclude that the mandatory properties
are appropriate.

Select optional properties The optional properties for the
translation intent are backward traceability and readability.
The implementation traceability was not required given the
simple nature of the properties being verified in the PWcSs.
Special care was, however, devoted to the readability of the
transformation’s output such that, given the very visual nature
of Petri Nets, the models resulting from the EnvToPN trans-
formations could be understood by humans. This proved use-
ful both for debugging and especially for demoing purposes,
as the PWCS has been presented at several venues as an exam-
ple of transformation chaining for the construction of com-
plex systems using MDE principles.

Outlook to validating properties After having identified the
intent for the EnvToPN transformation, we want to validate
as described in Fig. 5 if its mandatory/selected optional prop-
erties are indeed fulfilled. We give a brief idea of this process
and first have a more detailed look into the EnvToPN trans-
formation.

Figure 14 depicts the result of executing the EnvIoPN
transformation on the model in Fig. 13. The model in Fig. 14
represents the parallel issuing of two sequences of state-
ments. The box annotated with “Driver” sends out four
sequential commands to the set of buttons on the driver’s
door, and the box annotated with “Pass” send three sequen-
tial commands to the set of buttons on the passenger’s door.
Note that each command box has a number in it, which rep-
resents the amount of time during which the command is in
effect. The translational semantics of the model in Fig. 13
is produced by transformation as the Encapsulated Petri Net
model in Fig. 14. The resulting model is a Petri Net where
the commands issued by the driver are merged with the com-
mands issued by the passenger along the same Petri Net tran-
sition timeline. Petri Net transitions pass messages to outside
of the component via ports, represented as black squares on
the border of the component. Due to timing constraints, the
driver and the passenger commands are sometimes issued
simultaneously. In the model in Fig. 14, this translates into
the fact that some of the transitions on the Petri Net in Fig. 14
are connected to more than one port in the component.

In Fig. 15, we express a structural preservation [STP]
transformation property that we wish to hold for the EnvToPN

@ Springer

L. Lucio et al.
'd)
1
4 Y 4)\
!emdUp 3 lcmdUp 3
! cmdStop 4 I stickHead 3
!'lockOut 1
Driver Pass
(. J (. J
A\ J

Fig. 13 Example model for the Environment DSL language

cmdUpDriver cmdStopDriver cmdDownDriver lockOutDriver

opepeioptel

cmdUpPass stickHeadPass

cmdUpPass

Fig. 14 Example model for the Encapsulated Petri Nets language

transformation. Several authors [3,17,18,21,47,52,82,125]
have studied structural preservation properties. They allow
expressing in a similar fashion how the structure of the trans-
formation’s input model influences the structure of the trans-
formation’s output model. In order to express such properties
for all executions of a transformation, those languages typ-
ically use a mix of the transformation’s source and target
metamodel elements, additional constraint languages (e.g.,
OCL [17,18,21,47,52,125]) and often metaclasses allowing
describing traceability connections between the source and
target metamodel elements [3,17,82]. For our example pur-
poses, we have chosen the property language defined in [82],
which we have based ourselves upon to express the transfor-
mation property in Fig. 15.

The [STP] transformation property in Fig. 15 states that
whenever the input model includes two sequences of parallel
output commands, each of those sequences containing a first
and a last command, the resulting output model will merge
the two first commands as a single transition, and the final
transition is coming from the last command of either the
first or the second sequence (but not both, as denoted by the
XOR operator). Note that in Fig. 15, the thick dashed arrows
between Precondition or Postcondition elements state those
elements are indirectly linked; thin dashed arrows between
Precondition and Postcondition elements represent traceabil-

Model transformation intents and their properties

673

MergeEventSequences

Precondition

1

Po'Stcon('jition XdR

—_—— R
:Postcondﬁlon Postcondition :

A —

— =

O O

. J N\ J

Fig. 15 Syntactic property preservation example for the EnvToPN
Power Window transformation

ity links; and blend colored elements represent negative con-
dition, i.e., elements that cannot not occur in input/output
models.

In Sect. 4, we have defined [STP] properties as follows:

Mi Fsm € LMMg) = Mg 7’ e L(MMy)

For the example property in Fig. 15, 7 and 7’ correspond
respectively to the Precondition and Postcondition part of the
property. Also, Mj and My, are instances of the Environment
DSL and Encapsulated Petri Net languages respectively, and
Mo is the result of applying the EnvIoPN transformation
to M;. If M instantiates the property’s Precondition pattern
7, then Mo necessarily instantiates the property’s Postcon-
dition pattern 7r’. Note also that 77 and 7’ are related by the
property’s traceability links connecting the property’s Pre-
condition and Postcondition elements.

6.4 Simulation

As asecond example transformation, we have selected a Petri
Net simulation called BuildRG and located in Area (3) of
Fig. 12. We describe the intent identification of this trans-
formation with less detail. In particular, we select the intent
using the description attribute and then describe merely why
one of the mandatory properties is appropriate.

Select intent using description attribute The transformation
BuildRG specifies the semantics of Place/Transition Petri
Nets operationally, i.e., in an inplace fashion. This fits obvi-
ously to the description attribute of the Simulation intent in
Table 5.

Check appropriateness of mandatory property [BP]:

Let us call t = (MMs, MMy, spec) the corresponding
transformation specification. Since a simulation is in-place,
MMs and MM; both represent a metamodel for Place /
Transition Petri Nets. The specification follows a graph-
based approach, using MoTif [117] as a model transfor-
mation language £. The attached transformation execution
TSt = (S, —) corresponds to the semantics of MoTif exe-
cution engine.

As shown in Fig. 16, it is possible in MoTif to spec-
ify the transformation rules (on the left, adapted from [72]
for the purpose of the PWCS), but also their scheduling (on
the right). Four rules compose the specification: FindTr,
ConsumeTks, NonFiringTr, and ProduceTks. The
rules are organized in two nested loops: the outermost, called
Simulation, runs in an infinite loop. The first rule FindTr
(which is a query consisting of solely a LHS) selects one
transition. The transition found is assigned to a pivot vari-
able transition to be referred by subsequent rules. Then,

!

:Simulation
v
3
1:FindTr
FindTr ConsumeTks v X
—> 2\
transition 2 3 1 2 3 1 Av4
O I () ’I v
-~ R F
transition 2:FindTr
PreNode(2).tokens PostNode(2).tokens 74
> PreNodes(1).weight / = value — PreNodes(1).weight))
- ?]
NonFiringTr ProduceTks :NonFiringTr
2 s ! h _ =
)—>I 193 2 193 2
-—
transition I_>C> I_>C> F
PreNode(2).tokens transition PostNode(2).token = :ConsumeTks
< PreNodes(1).weight %

value + PreNode(3).weight /

:ProduceTks F
v X
O] g

Fig. 16 Simulation of petri nets: transformation rules (left) and sched-
ule (right)

@ Springer

674

L. Lucio et al.

the transformation ensures that only firing transitions will
be processed. To find enabled transitions, the transformation
iterates through all transitions until one has been found that
does not satisfy the pattern of a non-firing transition. This
is done by iterating over every transition in the model, and
if the NonFiringTr rule cannot succeed, it is assigned
to the pivot in order to fire the transition. This interruption
in the inner loop is represented by connection from the fail
port of the rule NonFiringTr to the success port of the
enclosing rule block. When a firing transition is found, it is
assigned the transition pivot, replacing the former transition.
Then, tokens are transferred along this transition as depicted
by rules ConsumeTks and ProduceTks. These two rules
are applied for all adjacent arcs and places (denoted by an
‘F’). After that, the first FindTr rule is applied again recur-
sively, by re-matching the new model looking for a transition
given the new marking. This control flow goes on until no
more transitions are fireable. This transformation succeeds if
the input model contains a transition and fails if not.

Outlook to validating mandatory property [BP]: After hav-
ing identified the intent for the BuildRG transformation,
we want to validate as described in Fig. 5 if its manda-
tory/selected optional properties are indeed fulfilled. We give
a brief idea of this process for the identified mandatory prop-
erty [BP] as described above.

The [BP] mandatory intent property can be concretized
in the following way. As defined in Definition 14, a [BP]
depends on an input model. In our case, M; is the Petri Net
model illustrated in Fig. 9 of [80] that models the behavior
of the power window control software. In particular, each
place in that Petri Net must contain at most one token during
its execution. Petri Nets of this kind are also called /-safe.
Therefore, an indicator of the correctness of the BuildRG
transformation that at each step of the simulation each place
has at most one token, assuming of course the Petri Net model
being simulated is indeed 1-safe. The following [BP] states

Table 6 Intents of transformations present in the PWCS

that given that input Petri Net, the execution of the trans-
formation from Fig. 16 will always satisfy that property ¢
expressed in LTL. Here, M denotes the marking of a place p
in|wp

Vp € Mi. M, TSt = =G (IM (p)| > 1)

Simulation transformations often include a loop where
the same steps are re-executed on the resulting model. Fur-
thermore, some steps may require choices to be done. Thus,
a simulation execution consists of one branch in TS;. In
our example, every loop of the simulation starts by look-
ing for a non-firing transition. However, when found, only
one such transition is taken into consideration. Therefore, to
verify that a transformation does not satisfy ¢, it suffices to
check whether ¢ is not satisfied for one step in one simula-
tion execution. Some approaches allow one to specify such
invariants on the model transformation steps directly, such
as in [130].

6.5 Overview

As a partial validation of our description framework, we
applied the scenario described in Fig. 4: We identified the
intents of transformations of the PwcS. In Table 6, the Pwcs
transformations are classified according to the intent they
obey. As one can easily notice, some of our intents are not
represented at all. This is not surprising however: The pur-
pose of the PwCS transformation chain is to generate trustable
C code for hardware execution; consequently, intents related
to transformation visualization, synchronization, or syntactic
manipulation, among others, have no corresponding trans-
formation in the chain. On the contrary, some of the intents
collect many transformations: Most of the transformations
belong to either Query, Refinement, Synthesis, Translation,
or Simulation.

In addition to the coarse-grained alignment, Tables 7 and 8
show the detailed results for the Simulation and Transla-

Intent Transformations

Restrictive Query CheckReachableState,

CheckContinuous, ExtractPerformance,

CheckBinPacking, SearchArchitecture, SearchECU, SearchDetailed,

CheckSchedulability,
Refinement ArchitectureDeployment,
Abstraction ExtractTimingBehaviour
Synthesis

ArToRte
Translation

ToBinPackingAnalysis,
Simulation

CalculateSchedulability
Composition

CheckDEVSTrace

ECUDeployment, DetailedDeployment

SCToAUTOSAR, SwToC, ToInstrumented, GenerateCalibration, ArToMw,

EnvToPN, PlantToPN, ScToPN, ControllerToSc, EnvToCBD, PlantToCBD,
ToSchedulabilityAnalysis, ToDeploymentSimulation

BuildRG, SimulateHybrid, ExecuteCalibration, SimulateDEVS,

CombinePN, CombineCBD, CombineCalibration, CombineC

@ Springer

Model transformation intents and their properties

675

Table 7 Model transformation examples from the PWcS falling under the Simulation intent

Transformation Description

Precond. Mandatory Optional

BuildRG

The BuildRG transformation simulates the

M, (2),3) M, 2,3, (1),

execution of a Place/Transition Petri Net in
order to build that net’s reachability graph.
Safety requirements for the power window can
then be checked on the produced reachability

graph
SimulateHybrid

This transformation simulates the interactions

1), (2),3),® 1), (2),3),® 1, @), 03)

between the physical window and the designed
window controller. While the physical window
has continuous behavior, i.e., the window is
moving up/down in a continuous manner, the
user can push buttons to control the window
that correspond to discrete signals. Casual
Block Diagrams (CBD) representing the

window behavior are co-simulated with

Statecharts that represent the user events

CalculateBinPacking

The bin packing transformation is a simple

1, (2),3). » M1, 2),3).® {1, 2

transformation that simulates and evaluates the
usage of a hardware component by calculating
the sum of each execution time of a function
mapped to the hardware component divided by
the period of the functions. The transformation
is implemented as an equation and produces

measurements
ExecuteCalibration

By running a simulation on a host computer, the

1, 2),3).H.5 1,2.6).@ @O,

input to execute an instrumented software
application on the target platform for collecting
measurements to obtain calibration parameters

SimulateDEVS

AUTOSAR models are translated into DEVS for

1, (2),3).H.5 1,D.6.@ @O,

producing traces by simulating the DEVS
representations. The output of the DEVS
simulations are traces that are further analyzed

by a boolean formula

tion transformations identified in the PwcS. For each trans-
formation, we describe what the transformation does and
report on the satisfaction of the preconditions, and manda-
tory/optional properties. This gives an interesting snapshot
on the applicability of our method in real-world trans-
formation chains. Although both tables collect transfor-
mations with the same intent, the preconditions and even
the mandatory properties are not the same for all trans-
formations: In Table 7, these differences are due to the
fact that preconditions (4) and (5) in the Simulation intent
(Table 5) are considered optional; in Table 8, the differ-
ences in the mandatory properties come from the fact that
some properties in the Translation intent (Table 3) are
dependent on the translation type (bridge, simulation, or
analysis).

6.6 Lessons learned on intent choice for the PwcCs
transformations

The decision on which intents are attributed to each trans-
formation of the PWCS, as described in Table 6, was made

by making use of the process described in Fig. 4. The step
of selecting an intent using the description attribute in Fig. 4
was achieved by interviewing the transformation engineer.
This was the starting point to the process as it is the transfor-
mation engineer who can best describe the role, or intent, of
a given transformation in a model transformation chain. We
observed that the intuitive intent from the engineer’s view-
point of the transformation is very important and provides
the most accurate entry point into the identification and ver-
ification process.

We have also observed that the educational background of
the transformation engineer influences the intuitive choice of
an intent, as the keywords chosen by us for intents could
be connotated with activities different than the ones we
have associated with the keywords in our catalog. In fact,
we observed the intent description attribute (as described
in Fig. 2) is often quickly looked over in favor of a pre-
defined notion of the keyword used to name the intent—
as mentioned in Sect. 3.10 about the empirical evalua-
tion of the catalog. As such, it is of the utmost impor-
tance the catalog reflects the common and intuitive under-

@ Springer

676

L. Lucio et al.

Table 8 Model transformation examples from the PWCS falling under the Translation intent

Transformation

Description

Precond.

Mandatory

Optional

EnvToPN

SCToPN

PlantToPN

ControllerToSC

Build a Petri Net representation of a specialized
model of the passenger’s interactions with the
powerwindow

Build a Petri Net representation of a statechart
model representing the powerwindow control
software to allow checking power window
security requirements

Build a Petri Net representation of a specialized
model of the powerwindow physical
configuration to allow checking power window
security requirements

Produce a statechart for providing semantics to a
specialized model of the power window control

None

None

None

None

M), 2),3), (N

1, 2).3),

1, 2).3). (N

1, 2).3). (N

@)

@

@

@

flow
PlantToCBD

Generate a causal block diagram (as python None

1, (2),(3), 0 @

code) that can be used both for simulation of
the combined system and for calibration of the

combined system
EnvToCBD

Generate a causal block diagram (as python None

1, (2),(3), © @)

code) that can be used both for simulation of
the combined system and for calibration of the

combined system
ToBinPackingAnalysis

Build an equational algebraic representation of None

1, (2),(3), 0 @)

the dynamic behavior of the involved hardware
components from an AUTOSAR [7]
specification to allow checking processor load

distribution
ToSchedulabilityAnalysis

Build an equational algebraic representation of None

1, (2), (3), (6) @

the dynamic behavior of the involved hardware
and software components from an AUTOSAR
specification to allow checking software

response times
ToDeploymentSimulation

Build a DEVS representation of the deployment None

(1), 2), (3), (6) @)

solution to allow checking latency times,

deadlocks and lost messages

standing of the intent vocabulary as possible. Addition-
ally, it became clear that the more detailed information
is available about the transformation and the context in
which it is used, the more straightforward intent choice
becomes. As such, the use_context and the preconditions
attributes play a fundamental role in accommodating sub-
jective aspects of intent choice by the transformation engi-
neer.

The formal notion of infent, as presented in Sect. 5, forces
transformations to fit within certain formal ranges defined
by the mandatory and optional properties, as well as by
the is_endogenous and is_exogenous attributes. However,
given a model transformation chain, a transformation’s intent
might depend on the granularity at which a transformation
is observed. For example, the EnvIoPN transformation in
Fig. 11 might be seen as locally having the translational
semantics intent, given the Environment DLS language does
not have explicitely defined semantics. However, in the con-
text of the verification area of Fig. 11, it might also be seen

@ Springer

as having the analysis intent given that in that context, the
goal of the transformation is to delegate the analysis of the
model to a Petri net checker. This last remark points to the
fact that groups of transformations may also have intents that
fall within the range of our catalog. This is for example the
case of the verification or simulation blocks in Fig. 11 that
could be seen as generally having the analysis and simulation
intents, respectively. This demonstrates the fact that studying
intent composition together with corresponding verification
needs is an interesting topic of future work.

We have also realized that instantiating the mandatory and
optional formal properties (described in Sect. 4) into concrete
ones is, for the time being, not a straightforward task. In order
to perform this instantiation, we require property languages
built for the used model transformation language, and for
which a automated property checking tool is available. How-
ever, given the fact that the verification of model transforma-
tions is a recent domain currently under active investigation,
there is at the moment of the writing of this paper a lack of

Model transformation intents and their properties

677

standard tools that can verify multi-type properties of model
transformations, as required by our approach.

In this study, we have used in Sect. 6.3 a property language
adapted for proving the properties of transformations with
the translation intent, defined in [82]. In Sect. 6.4, we have
CTL to express a property for a transformation having the
simulation intent. We are nonetheless convinced that more
mature property languages and verification tools associated
with specific model transformation languages and toolsets
are required to make it such that property instantiation within
our framework becomes feasible for the required range of
properties identified for each intent. In this sense, the research
presented in this document can be seen as a roadmap for
the development and unification of current verification tech-
niques for model transformations.

7 Related work

Our study investigated model transformation intents and
identified relevant properties for each intent that should be
verified. Thus, we discuss three lines of studies related to our
work: (i) intents in software engineering, (ii) classifications
of model transformations, and (iii) classifications of model
transformation verification approaches.

7.1 Intents in software engineering

The notion of intents in software engineering is not new.
In 1994, Yu and Mylopoulos [134] realized that research
in this area was, at the time, more focused on design and
implementation of software—the what and the how—rather
than on the requirements necessary to understand the soft-
ware to improve the underlying development processes—
the why. MDE is following a similar path: Research has
been more devoted to the different modeling and transforma-
tion activities rather than exploring the intents behind such
activities.

Two studies [70,90] investigated the rationale (i.e., pur-
pose or intent) behind modeling artifacts. Kiihne [70] identi-
fied two modeling intents based on the relationship between
the modeled artifacts and their representative models: foken
models “project and translate” artifacts from the reality, and
type models that additionally perform an “abstraction” step
from the artifacts to represent universal aspects. Recently,
Muller et al. [90] explored the relationship between artifacts
and their symbolic representations, using intention as a core
constituent to the modeling activity. The intents discussed
in the two former studies are among the intents presented in
this paper, besides other additional intents that we investigate
using our Intent/Property mapping (Sect. 2.1).

In the field of requirements models, requirements patterns
have been proposed to facilitate requirements analysis [133].

Similar to transformation intents, requirements patterns are
high-level descriptions of the properties that the implemen-
tation should possess. A key difference is that our notion
of intents focuses on model transformations used in MDE,
whereas requirements patterns have a much wider scope and
are not tailored to the intricacies of a specific domain.

Finally, Amrani et al. [4] presented a preliminary version
of this work focusing on the Analysis intent. In this study,
we present three major additions to our work in [4]: (1) we
provide an intent catalog that summarizes many of the intents
discussed in the literature, (2) we provide an updated defini-
tion of the Analysis intent, and (3) we investigate four other
intents in depth (i.e., query, refinement, translation, and sim-
ulation).

7.2 Classifications of model transformations

Several studies [26,57,85,119,129] proposed different clas-
sifications of model transformations based on different trans-
formation aspects. Mens and Van Gorp [85] provided a mul-
tidimensional taxonomy of transformations based on aspects
related to the manipulated models (e.g., the abstraction level
of the transformation’s input and output models) and the
used transformation execution strategies (e.g., in-place and
out-place transformations). The classification dimensions are
illustrated on transformations that can be grouped accord-
ing to our intents. In our study, we investigate well-known
uses of transformations, propose fourteen additional intents
to seven intents presented in [85], and discuss several intent
properties. In [57], design patterns for model transformations
expressed in QVT Relations are presented, but the intents
behind the transformations are not discussed.

Tisi et al. [119] examined higher-order transformations,
i.e., transformations manipulating transformations. They
classified them based on whether their input and/or output
models are transformations or not, resulting in four com-
binations: synthesis produces a transformation from a non-
transformation; analysis takes an input transformation and
produces a non-transformation output; (de-)composition uses
multiple transformations both in input and output; and mod-
ification takes an input transformation and the produces a
modified version of the input as an output. Our intents are
more general in the sense that we do not distinguish between
transformation and non-transformation models allowing for
a wider applicability of the intent catalog.

Czarnecki and Helsen [26] classified the features of trans-
formation languages by establishing a feature model. To do
so, they introduced five intended applications of transfor-
mations which are also covered in our transformation intent
catalog.

A taxonomy of program transformations is presented by
Visser [129]. Instead of proposing a taxonomy of multiple
dimensions as in [85], Visser employed one discriminator for

@ Springer

678

L. Lucio et al.

the taxonomy: out-place vs. in-place transformations (named
as translations and rephrasing). Some of the leaf nodes in
the taxonomy are program-specific, e.g., (de-)compilation,
inlining, and desugaring. Other nodes in the taxonomy are
covered in our intent catalog. Moreover, we present several
intents that are specific to model transformations.

To sum up, our transformation intent catalog is more
comprehensive than previous attempts. Besides providing a
name and an example of each intent, comprehensive meta-
information (e.g., the use context, preconditions) and prop-
erties of interest for the given intent are proposed. To the best
of our knowledge, the latter aspect has not been previously
investigated.

7.3 Classifications of model transformation verification
approaches

Several studies proposed classifications of formal verification
approaches of model transformations [5,20,41,98]. In [5],
we presented a tri-dimensional space for classifying trans-
formation verification approaches where the three dimen-
sions were transformation language, verification property,
and verification technique. Furthermore, these three dimen-
sions have been also reused in [20] to derive the state-of-the-
art in model transformation verification. Lukman and Whit-
tle [98] have classified model transformation verification
approaches with respect to the general approach used (e.g.,
testing, theorem proving, and model-checking) and investi-
gated the approaches with respect to the three dimensions
in [5] (i.e., transformation language, verification property,
and verification technique).

Gabmeyer et al. [41] presented a feature model for the clas-
sification of verification approaches of software models that
can be leveraged for the classifications of model transforma-
tion verification approaches by considering transformations
as models. The three dimensions used in [5] correspond on
a general level to the main features of the feature model pre-
sented by Gabmeyer et al. in [41].

This study adds another dimension to the formerly men-
tioned classifications of model transformation verification
approaches: the model transformation intent. Besides being
another dimension in the classification, we believe that the
dimension of transformation intent is the key in identifying
all the other dimensions.

8 Conclusion

The long-term goal of our work is to facilitate the use of
model transformations in industry in general, but also to
pave the way to the efficient development of verified transfor-
mations for safety-critical applications. This paper summa-
rizes the results of our work on intents and their properties

@ Springer

for model transformations to capture transformation goals
and requirements and simplify the process of transformation
specification, development, reuse, maintenance, validation,
and verification.

The paper builds on our previous work in [4,5], but extends
it significantly and makes the following contributions:

— The description framework for transformation intents
first proposed in [4] is extended and described in detail;
in the framework, intents are described using, among
other attributes, the properties that are relevant for them
(Sect. 2).

— The preliminary intent catalog from [4] is extended to
25 intents and presented in more detail; for each intent,
at least one sample transformation from the literature
is given. In addition, the intents are now structured
using a hierarchical classification scheme. The catalog
is the result of a thorough literature review and was
built to encompass the most frequently occurring intents
(Sect. 3).

— The intent catalog has been empirically evaluated with
respect to correctness, ambiguity, and completeness
based on a survey of 38 transformation creators. The
results indicate that there is substantial agreement that
our intent descriptions are correct and unambiguous. Fur-
thermore, no participant found the set of intents to be
incomplete. While more evaluation is needed, the results
suggest that the current catalog is good beginning and
has the potential to bring value to the community.

— A list of relevant properties is identified in the form of
intent properties, which are general descriptions of prop-
erties on varying levels of abstraction. High-level formal-
izations of these properties are presented (Sect. 4).

— The framework is evaluated and illustrated extensively by
using it to describe six common intents in detail (Sect. 5)
and by applying it to the Power Window Case Study
(Sect. 6); the intents of the more than 30 transforma-
tions in the case study are identified, and for two trans-
formations, concrete examples of mandatory properties
are provided by concretizing the intent properties into
transformation properties.

8.1 Future work

The work presented in this paper has many limitations that
could be addressed in future work.

The detailed description of 16 of the intents identified
in Sect. 3 using our framework still needs to be carried out.
Also, the description of other transformations and their trans-
formation properties in the case study could be attempted.
These uses of the framework may reveal the need for addi-
tional intents or intent properties leading to an extension of
the framework. In particular, making intent properties “real-

Model transformation intents and their properties

679

time-sensitive” would be interesting, not just for automotive,
but for safety-critical, real-time software in general.

On the more long-term, yet practical side, the true utility
of our notion of intent for industrial model-driven software
development remains to be determined. Input from industrial
users of MDE might be helpful here.

On the more theoretical side, Sect. 2.3.3 has already dis-
cussed the relevance of our work to research on the, possibly
“intent-specific,” specification, implementation, and analy-
sis of model transformations. In this context, it would be
interesting to explore the potential connections with recent
work on the formal specification, testing, and formal verifica-
tion of model transformations [17,52,81,82,86,87,125]. For
example, to what extent can existing techniques be used or
extended to help developers verify the properties associated
with a transformation’s intent?

Finally, our case study illustrates that model transforma-
tions in MDE are typically composed to achieve some higher-
level goal in the sense of goal-oriented requirements engi-
neering (GORE) [73]. In GORE, the software to be developed
and its environment are thought of as consisting of goal-
seeking, cooperating agents. Goal modeling is used to iden-
tify and justify requirements which are goals whose achieve-
ment is the responsibility of a particular software agent. Since
model transformations are typically the responsibility of par-
ticular agents, requirements in GORE appear to correspond to
our model transformation intents. For example, it is conceiv-
able that the PM in Fig. 11 is the result of the refinement
of high-level goal “construct verified control software for a
power window” into a suitable composition of subgoals, soft-
goals (often also called “non-functional requirements’), and
intents, some of which are then operationalized into model
transformations. A more concrete example is the realization
of the safety analysis in the case study as shown in Fig. 12
in which the DSL models are first translated into Petri Nets
using an abstraction and then combined for the construction
of the reachability graph and the check of the CTL formula.
These examples suggest that parts of the work on GORE might
be applicable to MDE and that requirements engineering for
MBPDE in general, and GORE for MDE in particular, might be
fruitful topics for further research.

References

1. Adrion, W.R., Branstad, M.A., Cherniavsky, J.C.: Validation, ver-
ification, and testing of computer software. ACM Comput. Surv.
14(2), 159-192 (1982)

2. Agrawal, A., Karsai, G., Kalmar, Z., Neema, S., Shi, F., Vizhanyo,
A.: The design of a language for model transformations. Softw.
Syst. Model. 5(3), 261-288 (2006)

3. Akehurst, D., Kent, S.: A relational approach to defining transfor-
mations in a metamodel. In: Proceedings of the 5th International
Conference on the Unified Modeling Language (UML), pp. 243—
258. Springer, Berlin (2002)

10.

11.

12.

13.

14.

15.

17.

19.

Amrani, M., Dingel, J., Lambers, L., Licio, L., Salay, R., Selim,
G., Syriani, E., Wimmer, M.: Towards a model transformation
intent catalog. In: Proceedings of the First Workshop on Analy-
sis of Model Transformations (AMT), pp. 3-8. ACM, New York
(2012)

Amrani, M., Licio, L., Selim, G., Combemale, B., Dingel, J.,
Vangheluwe, H., Le Traon, Y., Cordy, J.R.: A tridimensional
approach for studying the formal verification of model transfor-
mations. In: Proceedings of the First Workshop on Verification
and Validation of Model Transformations (VOLT), pp. 921-928.
IEEE Computer Society (2012)

Asztalos, M., Syriani, E., Wimmer, M., Kessentini, M.: Simplify-
ing model transformation chains by rule composition. In: Models
in Software Engineering—Workshops and Symposia at MODELS
2010, Reports and Revised Selected Papers, LNCS, vol. 6627, pp.
293-307 (2011)

AUTOSAR: http://www.autosar.org (2010)

Bae, J.H,, Lee, K., Chae, H.S.: Modularization of the UML meta-
model using model slicing. In: Proceedings of the Fifth Interna-
tional Conference on Information Technology (ITNG), pp. 1253—
1254. IEEE (2008)

Baresi, L., Heckel, R., Thone, S., Varr6, D.: Style-based model-
ing and refinement of service-oriented architectures. Softw. Syst.
Model. 5, 187-207 (2006)

Bergmann, G., Ujhelyi, Z., Réth, 1., Varr6, D.: A graph query
language for EMF models. In: Proceedings of the 4th International
Conference on Theory and Practice of Model Transformations (
ICMT), LNCS, vol. 6707, pp. 167-182. Springer, Berlin (2011)
Bézivin, J., Biittner, F., Gogolla, M., Jouault, F., Kurtev, 1., Lin-
dow, A.: Model transformations? Transformation models! In: Pro-
ceedings of the 9th International Conference on Model Driven
Engineering Languages and Systems (Models) (2006)

Bézivin, J., Rumpe, B., Tratt, L.: Model transformation in prac-
tice workshop announcement. http://sosym.dcs.kcl.ac.uk/events/
mtip05/long_cfp.pdf (2005)

Biermann, E., Ehrig, K., Ermel, C., Hurrelmann, J.: Generation of
simulation views for domain specific modeling languages based
on the eclipse modeling framework. In: Proceedings of the Inter-
national Conference on Automated Software Engineering (ASE),
pp. 625-629. IEEE Computer Society (2009)

Borger, E., Stirk, R.: Abstract State Machines: A Method for
High-Level System Design and Analysis. Springer, Berlin (2003)
Mc Brien, P., Poulovassi, A.: Automatic migration and wrapping
of database applications—a schema transformation approach. In:
Akoka, J., Bouzeghoub, M., Comyn Wattiau, 1., M’etais, E. (eds.)
Proceedings of the International Conference on Conceptual Mod-
eling (ER), LNCS, vol. 1782, pp. 99-114. Springer, Berlin (1999)
Bruneliére, H., Cabot, J., Clasen, C., Jouault, F., Bézivin, J.:
Towards model driven tool interoperability: bridging eclipse and
microsoft modeling tools. In: Proceedings of the European Con-
ference on Modelling Foundations and Applications (ECMFA),
(LNCS), vol. 6138, pp. 32-47 (2010)

Biittner, F., Egea, M., Cabot, J., Gogolla, M.: Verification of ATL
transformations using transformation models and model finders.
In: Proceedings of the 14th International Conference on Formal
Engineering Methods (ICFEM), (LNCS), vol. 7635, pp. 198-
213. Springer, Berlin (2012)

. Biittner, F., Egea, M., Cabot, J.: On verifying ATL transforma-

tions using ’off-the-shelf” SMT solvers. In: Proceedings of the
15th International Conference on Model Driven Engineering Lan-
guages and Systems (Models), pp. 432-448. Springer, Berlin
(2012)

Cabot, J., Clarisé, R., Guerra, E., de Lara, J.: Verification and
validation of declarative model-to-model transformations through
invariants. J. Syst. Softw. 83, 283-302 (2010)

@ Springer

http://www.autosar.org
http://sosym.dcs.kcl.ac.uk/events/mtip05/long_cfp.pdf
http://sosym.dcs.kcl.ac.uk/events/mtip05/long_cfp.pdf

680

L. Lucio et al.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

Calegari, D., Szasz, N.: Verification of model transformations: a
survey of the state-of-the-art. Electron. Notes Theor. Comput. Sci.
292, 5-25 (2013)

Cariou, E., Belloir, N., Barbier, F., Djemam, N.: OCL contracts for
the verification of model transformations. ECEASST 24 (2009)
Cicchetti, A., Di Ruscio, D., Eramo, R., Pierantonio, A.: Automat-
ing co-evolution in model-driven engineering. In: Proceedings
of the International IEEE Enterprise Distributed Object Comput-
ing Conference (EDOC), pp. 222-231. IEEE Computer Society
(2008)

Clark, T., Evans, A., Sammut, P., Willans, J.: Applied Metamod-
elling: A Foundation for Language Driven Development. Ceteva,
Sheffield (2004)

Clarke, E.M., Wing, J.M.: Formal methods: state of the art and
future directions. ACM Comput. Surv. 28(4), 626-643 (1996)
Clavel, M., Duran, F., Eker, S., Lincoln, P., Marti Oliet, N.,
Meseguer, J., Talcott, C.: All About Maude. A High-Performance
Logical Framework, LNCS, vol. 4350. Springer, Berlin (2007)
Czarnecki, K., Helsen, S.: Feature-based survey of model trans-
formation approaches. IBM Syst. J. 45(3), 621-645 (2006)
Dalal, S.R., Jain, A., Karunanithi, N., Leaton, J.M., Lott, C.M.,
Patton, G.C., Horowitz, B.M.: Model-based testing in practice. In:
Proceedings of the International Conference on Software Engi-
neering (ICSE), pp. 285-294. ACM Press, New York (1999)
Deltombe, G., Le Goaer, O., Barbier, F.: Bridging KDM and
ASTM for model-driven software modernization. In: Proceed-
ings of the International Conference on Software Engineering &
Knowledge Engineering (SEKE), pp. 517-524 (2012)

Denil, J.: Design, verification and deployment of software-
intensive systems: a multi-paradigm modelling approach. Ph.D.
thesis, Universiteit Antwerpen (2013). http:/msdl.cs.mcgill.ca/
people/joachim/academic

Denil, J., Cicchetti, A., Biehl, M., De Meulenaere, P., Eramo,
R., Demeyer, S., Vangheluwe, H.: Automatic deployment space
exploration using refinement transformations. In: Amaral, V.,
Hardebolle, C., Vangueluwe, H., Lengyel, L., Bunus, P. (eds.)
Recent Advances in Multi-paradigm Modelling, vol. 50, Elec-
tronic Communications of the EASST, Berlin (2012)

Dorf, R.C.: Modern Control Systems, 12th edn. Addison-Wesley
Longman Publishing Co., Inc, Boston (2011)

D’Silva, V., Kroening, D., Weissenbacher, G.: A survey of auto-
mated techniques for formal software verification. IEEE Trans.
CAD Integr. Circuits Syst. 27(7), 1165-1178 (2008)

Ducasse, S., Girba, T.: Using smalltalk as a reflective executable
meta-language. In: Proceedings of the 9th International Con-
ference on Model Driven Engineering Languages and Systems
(Models), pp. 604-618 (2006)

Engel, K.D., Paige, R., Kolovos, D.: Using a model merging lan-
guage for reconciling model versions. In: Rensink, A., Warmer, J.
(eds.) Proceedings of the European Conference on Model Driven
Architecture-Foundations and Applications (ECMFA), LNCS,
vol. 4066, pp. 143—-157. Springer, Berlin (2006)

Engels, G., Hausmann, J.H., Heckel, R., Sauer, S.: Dynamic meta
modeling: a graphical approach to the operational semantics of
behavioral diagrams in UML. In: Proceedings of the 3rd Interna-
tional Conference on the Unified Modeling Language (UML),
pp- 323-337 (2000)

Ermel, C., Ehrig, H.: Behavior-preserving simulation-to-
animation model and rule transformations. Electron. Notes Theor.
Comput. Sci. 213(1), 55-74 (2008)

Del Fabro, M.D., Valduriez, P.: Towards the efficient develop-
ment of model transformations using model weaving and match-
ing transformations. Softw. Syst. Model. 8(3), 305-324 (2009)
Fischer, T., Niere, J., Turunski, L., Ziindorf, A.: Story dia-
grams: a new graph rewrite language based on the unified mod-
elling language and java. In: Proceedings of the 6th Interna-

@ Springer

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.

49.
50.

51.

52.

53.

54.

55.

56.

57.

58.

tional Workshop on Theory and Application of Graph Transfor-
mations (TAGT), LNCS, vol. 1764, pp. 296-309. Springer, Berlin
(2000)

Fleiss, J.L.: Measuring nominal scale agreement among many
raters. Psychol. Bull. 76(5), 378-382 (1971)

Fowler, M.: Refactoring: Improving the Design of Existing Code.
Addison-Wesley, Reading (1999)

Gabmeyer, S., Brosch, P., Seidl, M.: A classification of model
checking-based verification approaches for software models. In:
Proceedings of the 2nd International Workshop on the Verification
of Model Transformation (VOLT) (2013)

Gamma, E., Helm, R., Johnson, R., Vlissides, J.: Design Pat-
terns: Elements of Reusable Object-Oriented Software. Addison-
Wesley Longman Publishing Co., Inc., Boston (1995)

Gardner, T., Griffin, C., Koehler, J., Hauser, R.: A review of OMG
MOF 2.0 query/views /transformations submissions and recom-
mendations towards the final standard. In: Proceedings of the
MetaModelling for MDA Workshop, pp. 178-197 (2003)
Gargantini, A., Riccobene, E., Scandurra, P.: Combining formal
methods and MDE techniques for model-driven system design
and analysis. JAS 3(1-2), 1-18 (2010)

Gessenharter, D.: Mapping the UML2 semantics of associations
to a java code generation model. In: Proceedings of the Interna-
tional Conference on Model Driven Engineering Languages and
Systems (MODELS), LNCS, vol. 5301, pp. 813-827. Springer,
Berlin (2008)

Giese, H., Levendovszky, T., Vangheluwe, H.: Summary of the
workshop on multi-paradigm modeling: concepts and tools. In:
Models in Software Engineering: Workshops and Symposia at
MOoDELS 2006, Reports and Revised Selected Papers, LNCS,
vol. 4364. Springer, Berlin (2007)

Gogolla, M., Vallecillo, A.: Tractable model transformation test-
ing. In: Proceedings of the 7th European Conference on Modelling
Foundations and Applications (ECMFA), LNCS, vol. 6698, pp.
221-235. Springer, Berlin (2011)

Griswold, W.G.: Program restructuring as an aid to software main-
tenance. Ph.D. thesis, University of Washington (1991)

Object Management Group: MDA Guide (version 1.0.1) (2003)

Object Management Group: Mof Qvt: Query/View/
Transformation (2008)
Object Management Group: Unified Modeling Language (UML)

2.4.1 Superstructure (2011)

Guerra, Esther, de Lara, Juan, Wimmer, Manuel, Kappel, Gerti,
Kusel, Angelika, Retschitzegger, Werner, Schonbock, Johannes,
Schwinger, Wieland: Automated verification of model transfor-
mations based on visual contracts. Autom. Softw. Eng. 20(1),
5-46 (2013)

Guerra, E., de Lara, J.: Model view management with triple graph
transformation systems. In: Proceedings of the International Con-
ference on Graph Transformation (ICGT), LNCS, vol. 4178, pp.
351-366. Springer, Berlin (2006)

Guerra, E., de Lara, J.: Event-driven grammars: relating abstract
and concrete levels of visual languages. J. Softw. Syst. Model.
6(6), 317-347 (2007)

Harel, D., Rumpe, B.: Modeling Languages: Syntax, Semantics
and All That Stuff, Part I: The Basic Stuff. Tech. Rep, Weizmann
Institute of Sience (2000)

Harman, M., Binkley, D., Danicic, S.: Amorphous program slic-
ing. In: Software Focus, pp. 70-79. IEEE Computer Society Press
(1997)

Tacob, MLE., Steen, M.W.A., Heerink, L.: Reusable model trans-
formation patterns. In: Proceedings of EDOCW’08, pp. 1-10
(2008)

Izquierdo, J.L.C., Molina, J.G.: Extracting models from source
code in software modernization. Software and Systems Modeling
(SoSyM), pp. 1-22 (2012)

http://msdl.cs.mcgill.ca/people/joachim/academic
http://msdl.cs.mcgill.ca/people/joachim/academic

Model transformation intents and their properties

681

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

70.

71.

72.

73.

74.

75.

76.

71.

78.

Jouault, F., Bézivin, J., Kurtev, I.: TCS: a DSL for the speci-
fication of textual concrete syntaxes in model engineering. In:
Proceedings of the 5th International Conference on Generative
Programming and Component Engineering. GPCE ’06, pp. 249—
254. ACM, Portland (2006)

Kastenberg, H., Rensink, A.: Model checking dynamic states in
groove. In: Model Checking Software (Spin), LNCS, vol. 3925,
pp. 299-305. Springer, Berlin (2006)

Kelsen, P, Ma, Q., Glodt, C.: Models within models: taming
model complexity using the sub-model lattice. In: Proceedings
of the International Conference on the Foundational Approaches
to Software Engineering (FASE), pp. 171-185. Springer, Berlin
(2011)

Kern, H.: The Interchange of (meta)models between MetaEdit+
and eclipse EMF using M3-level-based bridges. In: Proceed-
ings of the International Workshop on Domain-Specific Modeling
(DSM) (2009)

Kern, H., Hummel, A., Kiihne, S.: Towards a comparative analysis
of meta-metamodels. In: Proceedings of the International Work-
shop on Domain-Specific Modeling (DSM) (2011)

Kern, H., Kiihne, S.: Model interchange between ARIS and eclipse
EME. In: Proceedings of the International Workshop on Domain-
Specific Modeling (DSM) (2007)

Kern, H., Kiihne, S.: Integration of microsoft visio and eclipse
modeling framework using M3-level-based bridges. In: Proceed-
ings of the ECMDA Workshop on Model-Driven Tool & Process
Integration (2009)

Kilov, H.: From semantic to object-oriented data modeling. In:
Proceedings of the First International Conference on System Inte-
gration, pp. 385-393 (1990)

Kleppe, A.G., Warmer, J., Bast, W.: MDA Explained. The Model
Driven Architecture: Practice and Promise. Addison-Wesley,
Reading (2003)

Koch, N., Knapp, A., Zhang, G., Baumeister, H.: UML-based web
engineering. Web Engineering: Modelling and Implementing Web
Applications, pp. 157-191 (2008)

Konig, B., Kozioura, V.: Augur 2-A new version of a tool for the
analysis of graph transformation systems. Electron. Notes Theor.
Comput. Sci. 211, 201-210 (2008)

Kiihne, T.: Matters of (meta-) modeling. Softw. Syst. Model. 5,
369-385 (2006)

Kiihne, T., Mezei, G., Syriani, E., Vangheluwe, H., Wimmer, M.:
Systematic transformation development. EcEasst 21 (2009)
Kiihne, T., Mezei, G., Syriani, E., Vangheluwe, H., Wimmer,
M.: Explicit transformation modeling. In: Models in Software
Engineering—Workshops and Symposia at MODELS 2009,
Reports and Revised Selected Papers, Lncs, vol. 6002, pp. 240-
255. Springer, Berlin (2010)

Axel van Lamsweerde: Goal-oriented requirements engineering:
a guided tour. In: Proceedings of the 5th IEEE International Sym-
posium on Requirements Engineering (RE) (2001)

Lano, K., Kolahdouz Rahimi, S.: Slicing techniques for UML
models. JOT 10, 149 (2011)

de Lara, J., Guerra, E., Boronat, A., Heckel, R., Torrini, P.: Graph
transformation for domain-specific discrete event time simulation.
In: Proceedings of the 5th International Conference on Graph
Transformations (ICGT), Lncs, vol. 6372, pp. 266-281. Springer,
Berlin (2010)

de Lara, J., Taentzer, G.: Automated model transformation and its
validation using AToM3 and AGG. Diagrammatic Representation
and Inference (Diagrams), pp. 182-198 (2004)

de Lara, J., Vangheluwe, H.: Defining visual notations and their
manipulation through meta-modelling and graph transformation.
J. Vis. Lang. Comput. 15(3—4), 309-330 (2004)

Licio, L., Amrani, M., Dingel, J., Lambers, L., Salay, R., Selim,
G., Syriani, E., Wimmer, M.: Additional material for the paper

79.

80.

81.

82.

83.

84.

85.

86.

87.

88.

89.

90.

91.

92.

93.

94.

95.

96.

97.
98.

“Model Transformation Intents and Their Properties”. http://msdl.
cs.mcgill.ca/people/levi/transformation_intents/material (2014)
Licio, L., Denil, J., Mustafiz, S., Vangheluwe, H.: An overview
of model transformations for a simple automotive power window.
Tech. Rep. SOCS-TR-2012.1, McGill University (2012)

Licio, L., Mustafiz, S., Denil, J., Vangheluwe, H., Jukss, M.:
FTG+PM: an integrated framework for investigating model trans-
formation chains. In: System Design Languages (Sdl) Forum:
Model-Driven Dependability Engineering, LNCS, vol. 7916, pp.
182-202. Springer, Berlin (2013)

Licio, L., Vangheluwe, H.: Model transformations to verify model
transformations. In: Proceedings of the 2nd Workshop on Verifi-
cation of Model Transformations (VOLT) (2013)

Licio, L., Vangheluwe, H.: Symbolic execution for the verifi-
cation of model transformations. Tech. Rep. SOCS-TR-2013.2,
McGill University (2013). http://msdl.cs.mcgill.ca/people/levi/
files/MTSymbExec.pdf

Mannadiar, R., Vangheluwe, H.: Modular synthesis of mobile
device applications from domain-specific models. In: Model-
Based Methodologies for Pervasive and Embedded Software
Workshop (2010)

Mayerhofer, T., Langer, P., Wimmer, M.: Towards xMOF: exe-
cutable DSMLs based on fUML. In: Proceedings of the 12th
Workshop on Domain-Specific Modeling (DSM’12) (2012)
Mens, T., Van Gorp, P.: A taxonomy of model transformation.
Electron. Notes Theor. Comput. Sci. 152, 125-142 (2006)
Selim, G.M.K., Cordy, J.R., Dingel, J.: Analysis of model trans-
formations. Tech. Rep. 2012-592, Queen’s University (2012)
Selim, G.M.K., Cordy, J.R., Dingel, J.: Model transformation test-
ing: the state of the art. In: Proceedings of the 1st International
Workshop on the Analysis of Model Transformations (AMT)
(2012)

Mosterman, P.J., Vangheluwe, H.: Computer automated multi-
paradigm modeling: an introduction. Simulation 80(9), 433—450
(2004)

Muller, P.A., Fleurey, F., Jézéquel, J.M.: Weaving executabil-
ity into object-oriented meta-languages. In: Proceedings of the
8th International Conference on Model Driven Engineering Lan-
guages and Systems (MoDELS), LNCS, vol. 3713, pp. 264-278.
Springer, Berlin (2005)

Muller, P.A., Fondement, F., Baudry, B., Combemale, B.: Model-
ing modeling modeling. Softw. Syst. Model. 11, 1-13 (2010)
Muller, P.A., Hassenforder, M.: HUTN as a bridge between Mod-
elWare and grammarWare—an experience report. In: Proceed-
ings of the Workshop in Software Model Engineering Wisme
(2005)

Mustafiz, S., Denil, J., Licio, L., Vangheluwe, H.: The FTG+PM
framework for multi-paradigm modelling: an automotive case
study. In: Proceedings of the Multi-Paradigm Modelling Work-
shop (MPM). ACM (2012)

Narayanan, A., Karsai, G.: Towards verifying model transforma-
tions. Electron. Notes Theor. Comput. Sci. 211, 191-200 (2008)
Narayanan, A., Karsai, G.: Verifying model transformations
by structural correspondence. Electronic Communications of
the European Association of Software Science and Technology
(EASST) 10 (2008)

Padberg, J.: Categorical approach to horizontal structuring and
refinement of high-level replacement systems. Appl. Categ.
Struct. 7, 371-403 (1999)

Paige, R.F., Kolovos, D.S., Polack, F.A.C.: Refinement via con-
sistency checking in MDA. Electron. Notes Theor. Comput. Sci.
137(2), 151-161 (2005)

Peterson, J.: Petri nets. ACM Comput. Surv. 9(3), 223-252 (1977)
Rahim, L.A., Whittle, J.: A survey of approaches for veri-
fying model transformations. Software and Systems Modeling
(SoSym), pp. 1-26 (2013)

@ Springer

http://msdl.cs.mcgill.ca/people/levi/transformation_intents/material
http://msdl.cs.mcgill.ca/people/levi/transformation_intents/material
http://msdl.cs.mcgill.ca/people/levi/files/MTSymbExec.pdf
http://msdl.cs.mcgill.ca/people/levi/files/MTSymbExec.pdf

682

L. Lucio et al.

99.

100.

101.

102.

103.

104.

105.

106.

107.

108.

109.

110.

111.

112.

113.

114.

115.

116.

117.

118.

Rensink, A.: The groove simulator: a tool for state space gener-
ation. In: Proceedings of the Second International Workshop on
Applications of Graph Transformations with Industrial Relevance
(AGTIVE), LNCS, vol. 3062, pp. 479-485 (2003)

Rivera, J.E., Duran, F., Vallecillo, A.: On the behavioral seman-
tics of real-time domain specific visual languages. In: Workshop
Proceedings of WRLA’10 @ ETAPS’10, pp. 174-190 (2010)
Rivera, J., Guerra, E., de Lara, J., Vallecillo, A.: Analyzing rule-
based behavioral semantics of visual modeling languages with
maude. In: Proceedings of the International Conference on Soft-
ware Language Engineering (SLE), pp. 54-73. Springer, Berlin
(2009)

Romero, J.R., Rivera, J.E., Duran, F., Vallecillo, A.: Formal and
tool support for model driven engineering with maude. J. Object
Technol. 6(6), 187-207 (2007)

Kolovos, D.S., Paige, R.F., Polack, F.: The epsilon object language
(EOL). In: Proceedings of ECMDA-FA’06, pp. 128-142 (2006)
Schitz, B., Holzl, F., Lundkvist, T.: Design-space exploration
through constraint-based model-transformation. In: Proceedings
of the international conference and workshops on engineering of
computer based systems, ECBS’10, pp. 173-182 (2010)
Scheidgen, M., Fischer, J.: Human comprehensible and machine
processable specifications of operational semantics. In: Proceed-
ings of the Third European Conference on Model Driven Archi-
tecture Foundations and Applications (ECMDA-FA’07), LNCS,
vol. 4530, pp. 157-171. Springer, Berlin (2007)

Scholz, P.: A refinement calculus for statecharts. In: E. Astesiano
(ed.) Proceedings of the International Conference on Fundamental
Approaches to Software Engineering (FASE), LNCS, vol. 1382,
pp. 285-301. Springer, Berlin (1998)

Sen, S., Moha, N., Baudry, B., Jézéquel, J.M.: Meta-model prun-
ing. In: Proceedings of the 12th International Conference on
Model Driven Engineering Languages and Systems (Models), pp.
32-46. Springer, Berlin (2009)

Sendall, S., Kozaczynski, W.: Model transformation: the heart and
soul of model-driven software development. IEEE Softw. 20(5),
42-45 (2003)

Shannon, R., Johannes, J.D.: Systems simulation: the art and sci-
ence. [EEE Trans. Syst. Man Cybern. 6(10), 723-724 (1976)
Stahl, T., Voelter, M., Czarnecki, K.: Model-Driven Software
Development—Technology, Engineering, Management. Wiley,
London (2006)

Van der Straeten, R., Jonckers, V., Mens, T.: A formal approach
to model refactoring and model refinement. Softw. Syst. Model.
6, 139-162 (2007)

Syriani, E., Vangheluwe, H.: Programmed graph rewriting with
time for simulation-based design. In: Proceedings of the First
International Conference on Theory and Practice of Model Trans-
formations (ICMT), LNCS, vol. 5063, pp. 91-106. Springer,
Berlin (2008)

Syriani, E.: A multi-paradigm foundation for model transforma-
tion language engineering. Ph.D. thesis, McGill University (2011)
Syriani, E., Ergin, H.: Operational semantics of UML activity
diagram: an application in project management. In: Proceedings
of RE 2012 Workshops. IEEE (2012)

Syriani, E., Gray, J., Vangheluwe, H.: Modeling a model transfor-
mation language. In: Domain Engineering: Product Lines, Con-
ceptual Models, and Languages. Springer, Berlin (2012)
Syriani, E., Vangheluwe, H.: DEVS as a semantic domain for
programmed graph transformation, chap. 1, pp. 3-28. CRC Press,
Boca Raton (2010)

Syriani, E., Vangheluwe, H.: A modular timed model transforma-
tion language. Softw. Syst. Model. 11, 1-28 (2011)

Syriani, E., Vangheluwe, H., Mannadiar, R., Hansen, C., Van
Mierlo, S., Ergin, H.: AToOMPM: a web-based modeling environ-
ment. In: MODELS’ 13 Demonstrations. CEUR (2013)

@ Springer

119.

120.

121.

122.

123.

124.

125.

126.

127.

128.

129.

130.

131.

132.

133.

134.

135.

Tisi, M., Jouault, E., Fraternali, P., Ceri, S., Bézivin, J.: On the
use of higher-order model transformations. In: Proceedings of
the 5th European Conference on Model Driven Architecture—
Foundations and Applications ECMDA-FA, LNCS, vol. 5562,
pp. 18-33. Springer, Berlin (2009)

Torlak, E., Jackson, D.: Kodkod: a relational model finder. In:
Tools and Algorithms for the Construction and Analysis of Sys-
tems, LNCS, vol. 4424, pp. 632—-647. Springer, Berlin (2007)
Tratt, L.: Model transformation and tool integration. Softw. Syst.
Model. 4, 112-122 (2005)

Tri, D., Tho, Q.: Systematic diagram refinement for code gener-
ation in SEAM. In: Proceedings of the Fourth International Con-
ference on Knowledge and Systems Engineering (KSE), pp. 203—
210. IEEE (2012)

Troya, J., Rivera, J.E., Vallecillo, A.: On the specification of non-
functional properties of systems by observation. In: Models in
Software Engineering, Workshops and Symposia at MODELS
2009, Reports and Revised Selected Papers, LNCS, vol. 6002,
pp- 296-309. Springer, Berlin (2010)

Troya, Javier, Vallecillo, Antonio, Duran, Francisco, Zschaler,
Steffen: Model-driven performance analysis of rule-based domain
specific visual models. Inf. Softw. Technol. 55(1), 88-110 (2013)
Vallecillo, A., Gogolla, M.: Typing model transformations using
tracts. In: Proceedings of the 5th International Conference on the
Theory and Practice of Model Transformations (ICMT), LNCS,
vol. 7307, pp. 56-71. Springer, Berlin (2012)

Varrd, D., Varré Gyapay, S., Ehrig, H., Prange, U., Taentzer, G.:
Termination analysis of model transformations by petri nets. In:
Proceedings of the International Conference on Graph Transfor-
mations (ICGT), pp. 260-274. Springer, Berlin (2006)

Varré, D., Pataricza, A.: Automated formal verification of model
transformations. In: Jiirjens, J., Rumpe, B., France, R., Fernan-
dez, E.B. (eds.) Proceedings of the UML 03 Workshop CSDUML
2003: Critical Systems Development in UML, TUM-10323, pp.
63-78. Technische Universitit Miinchen (2003)

Viehstaedt, G., Minas, M.: DiaGen: a generator for diagram edi-
tors based on a hypergraph model. In: Proceedings of the Interna-
tional Workshop on Next Generation Information Technologies
and Systems, pp. 155-162 (1995)

Visser, E.: A survey of strategies in rule-based program transfor-
mation systems. J. Symb. Comput. 40, 831-873 (2005)
Wimmer, M., Kappel, G., Kusel, A., Retschitzegger, W., Schon-
bock, J., Schwinger, W.: Right or wrong?—Verification of model
transformations using colored petri nets. In: Proceedings of the
9th OOPSLA Workshop on Domain-Specific Modeling (DSM)
(2009)

Wimmer, M., Kramler, G.: Bridging grammarware and model-
ware. In: Proceedings of MoDELS Satellite Events, pp. 159—168
(2005)

Winkelmann, J., Taentzer, G., Ehrig, K., Kiister, J.M.: Translation
of restricted OCL constraints into graph constraints for generating
meta model instances by graph grammars. Electron. Notes Theor.
Comput. Sci. 211, 159-170 (2008)

Withall, S.: Software Requirement Patterns. Microsoft Press,
Redmond (2007)

Yu, E.S., Mylopoulos, J.: Understanding “Why” in software
process modelling, analysis, and design. In: Proceedings of the
International Conference on Software Engineering (ICSE), pp.
159-168 (1994)

Zhang, J., Lin, Y., Gray, J.: Generic and domain-specific model
refactoring using a model transformation engine. In: Volume II
of Research and Practice in Software Engineering, pp. 199-218.
Springer, Berlin (2005)

Model transformation intents and their properties

683

Levi Licio is a Research
Associate with the Modelling,
Simulation and Design Labora-
tory of McGill University. He
received his PhD from the Uni-
versity of Geneva, Switzerland,
in 2008. His research is about
bridging software engineering
and formal techniques. Some
of his concrete areas of inter-
est are model-driven develop-
ment, model transformation lan-
guages, the verification of model
transformations, correctness-by-
construction, models of concur-
rency (in particular Algebraic Petri Nets), model evolution, model-based
testing, and tool construction. Together with several PhD students, he is
currently developing a suite of techniques and tools for the verification
of model transformations for the automotive industry.

Moussa Amrani is currently
a postdoc at the University of
Namur (Belgium), working on
the analysis of model transfor-
mations that include real-time
features. He recently received his
PhD from University of Luxem-
bourg for a dissertation entitled
“Formal Verification of Model
Transformation—An Application
to Kermeta” that addressed two
challenges: providing a method-
ological framework for helping
model transformation designers
to ensure the correctness of their
transformation; and proposing formal verification techniques for Ker-
meta, a popular object-oriented model transformation framework used
in industrial projects. Before his PhD, Moussa Amrani received a BSc,
a MSc, and a Magistere in Computer Science from University Joseph
Fourier (Grenoble, France) where his work was dedicated to the formal
verification of object-oriented programming languages like Java, using
popular techniques such as model-checking and abstract interpretation.
His main areas of expertise are model-driven engineering, formal veri-
fication techniques, and formal semantics.

Juergen Dingel received an
MSc from Berlin University of
Technology in Germany and
a PhD in Computer Science
from Carnegie Mellon Univer-
sity (2000). He is an Associate
Professor in the School of Com-
puting at Queen’s University
where he leads the Modeling and
Analysis in Software Engineer-
ing group. His research interests
include model-driven engineer-
ing, formal methods, and soft-
ware engineering.

Leen Lambers is a postdoc-
toral researcher working on the
DFG-project CorMoranT (Cor-
rect Model Transformations) in
the group of Prof. Holger Giese
at the Hasso Plattner Institute for
Software Systems Engineering at
the University of Potsdam since
January 2010. She received her
PhD for her dissertation “Certi-
fying Rule-Based Models using
Graph Transformation” at the
Technical University of Berlin in
December 2009, where she has
been a scientific assistant in the
group of Prof. Hartmut Ehrig from October 2003 until December 2009.
Her main research focus is formal modeling and analysis in software
engineering, in particular, using graph transformation. She has spent
several research periods in the group of Prof. Mauro Pezz¢é at the Uni-
versity of Milano Bicocca and in the group of Prof. Fernando Orejas
at the Technical University of Catalonia. She served as PC co-chair for
the International Workshop on Graph Transformation and Visual Mod-
eling Techniques and for the International Workshop on Verification of
Model Transformation. She served as PC member for the International
Conference on Model Transformation, the International Conference on
Graph Transformation, and the International Conference on Software
Maintenance and Evolution.

Rick Salay is a NECSIS
research associate in the Depart-
ment of Computer Science of
the University of Toronto, work-
ing in the Software Engineer-
ing Group with Prof. Marsha
Chechik. He received a B.A.Sc.
and M.A.Sc. in Systems Design
Engineering from University of
Waterloo (1991) and a PhD
in Computer Science from the
University of Toronto (2010)
with Prof. John Mylopoulos. His
research focus is on developing
formal theories about non-formal
concepts such as modeler intent and modeler uncertainty in order to pro-
vide a foundation for tool support that will help software engineering
practioners. Prior to his PhD, he had a 15 year career in advanced soft-
ware product development holding various senior software design roles,
most recently as chief architect at InSystems Technologies Inc. (now
Oracle).

@ Springer

684

L. Lucio et al.

Gehan M. K. Selim received an
MSc from Cairo University (Fac-
ulty of Computers and Informa-
tion) in Egypt and is currently
a PhD candidate in the School
of Computing of Queen’s Uni-
versity in Canada. Her research
interests include model transfor-
mations, testing of model trans-
formations, and formal verifica-
tion of model transformations.

Eugene Syriani At the time of
the paper, Eugene Syriani was
an Assistant Professor in Com-
puter Science at the University of
Alabama. He currently holds the
same position at I'UniversitZ de
MontrZal. He received his PhD
in Computer Science in 2011
and holds a BSc in Mathemat-
ics and Computer Science from
2006, both at McGill Univer-
sity. He also pursued postdoc-
toral research on model trans-
formation in the Canada-wide
NECSIS project on model-driven

engineering for automotive systems. He mainly teaches software engi-
neering courses at the undergraduate and doctoral level. His main
research interests are in model-based design, in particular model
transformation design and verification, model-driven methodology,
simulation-based design, and application of MDE in non-computer
science domains. He serves on the program committee and orga-
nizes several international conferences/workshops and is a reviewer for
many international journals in modeling and in simulation. Eugene has
worked in service-oriented software companies as a software engineer
in Canada for a decade. He is also a member of the ACM and IEEE

societies.

@ Springer

Manuel Wimmer is postdoc-
toral researcher at the Busi-
ness Informatics Group of the
Vienna University of Technol-
ogy. Previously, he has been
working as visiting researcher at
the Software Engineering Group
of the University of Mailaga.
He is/was involved in sev-
eral national and international
projects dealing with the founda-
tions of model engineering tech-
niques such as modeling lan-
guages and model transforma-
tions as well as with the appli-
cation of these techniques for

domains, such as tool interoperability, model versioning, cloud com-
puting, and Web engineering.

	Model transformation intents and their properties
	Abstract
	1 Introduction
	2 Description framework for model transformation intents
	2.1 A metamodel for intents and their properties
	2.2 A metamodel for model transformation validation methods
	2.3 Usage scenarios
	2.3.1 Intent identification
	2.3.2 Model transformation validation
	2.3.3 Model transformation research

	2.4 Structure of the remainder of the paper

	3 The intents catalog
	3.1 Refinement category
	3.1.1 Refinement
	3.1.2 Synthesis

	3.2 Abstraction category
	3.2.1 Abstraction
	3.2.2 Restrictive query
	3.2.3 Reverse engineering
	3.2.4 Approximation

	3.3 Semantic definition category
	3.3.1 Translational semantics
	3.3.2 Simulation

	3.4 Language translation category
	3.4.1 Translation
	3.4.2 Migration

	3.5 Constraint satisfaction category
	3.5.1 Model generation
	3.5.2 Model finding

	3.6 Analysis
	3.7 Editing category
	3.7.1 Model editing
	3.7.2 Optimization
	3.7.3 Model refactoring
	3.7.4 Normalization

	3.8 Model visualization category
	3.8.1 Animation
	3.8.2 Rendering
	3.8.3 Parsing

	3.9 Model composition category
	3.9.1 Model merging
	3.9.2 Model matching
	3.9.3 Model synchronization

	3.10 Empirical evaluation of the intent catalog
	3.10.1 Objectives
	3.10.2 Methodology
	3.10.3 Inclusion and exclusion criteria
	3.10.4 Results and discussions
	3.10.5 Threats to validity

	4 Formalization of intent properties
	4.1 Metamodels & models, model transformation, and model semantics
	4.2 Intent properties

	5 Six intents: restrictive query, refinement, translational semantics, translation, analysis, and simulation
	5.1 Restrictive query
	5.1.1 Restrictive query in the literature
	5.1.2 Restrictive query metamodel instance

	5.2 Refinement
	5.2.1 Refinement in the literature
	5.2.2 Refinement metamodel instance

	5.3 Translation and translational semantics
	5.3.1 Translation in the literature
	5.3.2 Translation metamodel instance

	5.4 Analysis
	5.4.1 Analysis in the literature
	5.4.2 Analysis metamodel instance

	5.5 Simulation
	5.5.1 Simulation in the literature
	5.5.2 Simulation metamodel instance

	6 Identifying transformation intents within the power window case study (Pwcs)
	6.1 Ftg+Pm: formalism transformation graph and process model
	6.2 Description
	6.3 Translation
	6.4 Simulation
	6.5 Overview
	6.6 Lessons learned on intent choice for the Pwcs transformations

	7 Related work
	7.1 Intents in software engineering
	7.2 Classifications of model transformations
	7.3 Classifications of model transformation verification approaches

	8 Conclusion
	8.1 Future work

	References

